Appendix G2 Stormwater Quality Management Plan

(D24-00006)

CITY OF OCEANSIDE ENGINEERING DIVISION
PRIORITY DEVELOPMENT PROJECT
STORM WATER QUALITY MANAGEMENT PLAN
FOR
OLIVE PARK APARTMENTS
ENGINEER OF WORK
Alisi S. Vaalpando
Alisa Vialpando – RCE 47945 Exp: 12/31/2025

PREPARED FOR:

CAPSTONE EQUITIES 5455 WILSHIRE BLVD, SUITE 1012 LOS ANGELES, CALIFORNIA 90036 TELEPHONE NUMBER: (310) 666-6860

PREPARED BY:

HUNSAKER & ASSOCIATES- SAN DIEGO, INC. 9707 WAPLES STREET SAN DIEGO, CA 92121 (858) 558-4500

Olive Park Apartments (D24-00006) Priority Development Project - Storm Water Mitigation Plan R9-2013-001, Version February 16, 2016

How to Use This Template

This template, assembled by GHD Inc. on behalf of the City of Oceanside, is for the development of Storm Water Quality Management Plans (SWQMPs) for Priority Development Projects (PDPs) proposed within Oceanside, CA. It is based on requirements set forth in the Regional Water Quality Control Board's National Pollutant Discharge Elimination System MS4 Permit that covers the San Diego Region (Order No. R9-2013-0001).

All references within the template refer to the City of Oceanside BMP Design Manual dated February 2016 (Manual). Use of this template in conjunction with the Manual is intended to help a project applicant develop a SWQMP compliant with City of Oceanside and MS4 Permit requirements.

Applicable elements of SWQMP were update in accordance with the January 2022 city of Oceanside BMP Design Manual.

Template Date: February 16, 2016

Assembled By:

Quick Reference Guide

Item	Project Information
Project Name	Olive Park Apartments
Application Number(s)	D24-00006
Project Address	College Boulevard and Olive Drive, Oceanside, CA 92056
Total Parcel Area	1,894,822 sq. ft.
Project Description	The proposed project will develop a single pad designated for two building structures, accommodating a total of 282 apartment units, complete with courtyards. The development plan includes private driveways, sidewalks, landscaping, and parking spaces, alongside the necessary infrastructure and utilities typical for such a development. This infrastructure will consist of a dual storm drain system comprising pipes, inlets, catch basins, brow ditches, and cleanouts. To facilitate access to the site from College Blvd, the existing access road northeast of the site will be paved and improved as a gated emergency-only ingress/egress road. A new connection to the cul-de-sac on Olive Drive, east of the site, is proposed.
Proposed Disturbed Area	439,208 sq. ft.
Created or Replaced Impervious	252,571 sq. ft.
Project Hydrologic Unit Watershed	 □ Santa Maria □ San Luis Rey ⊠ Carlsbad
Required to implement HMP	⊠ Yes □ No

Table of Contents

CERTIFICATION PAGE	Section 1
SUBMITTAL RECORD	Section 2
PROJECT VICINITY MAP	Section 3
FORM I-1: APPLICABILITY OF PERMANENT STORM Water BMP REQUIREMENTS	Section 4
FORM I-2: PROJECT TYPE DETERMINATION CHECKLIST	Section 5
FORM I-3B: SITE INFORMATION CHECKLIST	Section 6
FORM I-4: SOURCE CONTROL BMP CHECKLIST	Section 7
FORM I-5: SITE DESIGN BMP CHECKLIST	Section 8
FORM I-6: SUMMARY OF PDP STRUCTURAL BMPS	Section 9
BMP CONSTRUCTION SELF CERTIFICATION FORM	Section 10
ATTACHMENT 1: BACKUP FOR PDP POLLUTANT CONTROL BMPS	Section 11
ATTACHMENT 1a: DMA Exhibit	Section 11
ATTACHMENT 1b: Tabular Summary of DMAs	Section 11
ATTACHMENT 1c: Design Capture Volume Worksheet	Section 11
ATTACHMENT 1d: FORM I-7: Harvest and Use Feasibility Screening Checklist	Section 11
ATTACHMENT 1e: FORM I-8: Categorization of Infiltration Feasibility Condition	Section 11
ATTACHMENT 1f: Pollutant Control BMP Design Worksheets/Calculations	Section 11
ATTACHMENT 2: BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES	Section 12
ATTACHMENT 2a: Hydromodification Management Exhibit	Section 12
ATTACHMENT 2b: Management of Critical Coarse Sediment Yield Areas	Section 12
ATTACHMENT 2c: Geomorphic Assessment of Receiving Channels	Section 12
ATTACHMENT 2d: Flow Control Facility Design and BMP Drawdown Calculations	Section 12
ATTACHMENT 2e: Vector Control Plan	Section 12
ATTACHMENT 3: STRUCTURAL BMP MAINTENANCE INFORMATION	Section 13
ATTACHMENT 3a: Structural BMP Maintenance Thresholds and Actions	Section 13
ATTACHMENT 3b: Management of Critical Coarse Sediment Yield Areas	Section 13
ATTACHMENT 4: STORM WATER BMP PLAN SHEETS	Section 14
ATTACHMENT 5: DRAINAGE REPORT & LANDSCAPE PLANS	Section 15
ATTACHMENT 6: GEOTECHNICAL AND GROUNDWATER INVESTIGATION REPORT	Section 16
ATTACHMENT 7: STORM WATER QUALITY ASSESSMENT FORM	Section 17
ADDITIONAL SUPPORTING DOCUMENTATION	Section 18

CERTIFICATION PAGE

Project Name: Olive Park Apartments Permit Application Number: D24-00006

I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the City of Oceanside BMP Design Manual, which is based on the requirements of San Diego Regional Water Quality Control Board Order No. R9-2013-0001 (MS4 Permit).

I have read and understand that the City has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the BMP Design Manual. I certify that this SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this SWQMP by City staff is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

As Engineer of Work, I agree to indemnify, defend, and hold harmless the City of Oceanside, its officers, agents, and employees from any and all liability, claims, damages, or injuries to any person or property which might arise from the negligent acts, errors, or omissions of the Engineer of Work, my employees, agents or consultants.

Hisi S. Vralpando

Alisa Vialpando, RCE 47945, Exp. 12/31/25

Alisa Vialpando_____

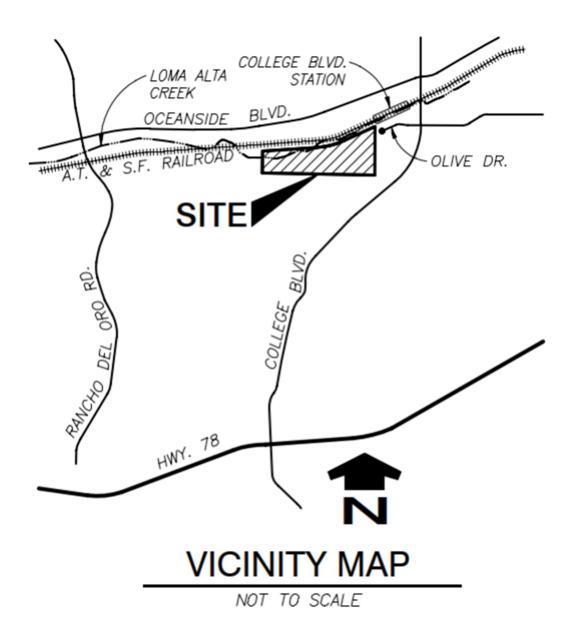
Print Name

Hunsaker & Associates San Diego, Inc.

Company

10/07/2024

Date


Engineer's Seal:

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this SWQMP. Each time the SWQMP is re-submitted, provide the date and status of the project. In last column indicate changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments behind this page.

Submittal Number	Date	Project Status	Changes
1	02/27/2024	 Preliminary Design/ Planning/ CEQA Final Design 	SWQMP Initial Submittal
2	[08/07/2024]	Preliminary Design/ Planning/ CEQA	Address City Comments
3	[10/08/2024]	Preliminary Design/ Planning/ CEQA	Address City Comments
4	[MM/DD/YY]	Preliminary Design/ Planning/ CEQA Final Design	Click here to enter text.

Applicability of Permanent, Post	-Constructio	on	
Storm Water BMP Requirements			Form I-1
(Storm Water Intake Form for all Developmen			
	dentification		
Project Name: Olive Park Apartments			
Permit Application Number: D24-00006			Date: 10/07/2024
	n of Requirement		
The purpose of this form is to identify permanent, post-cc serves as a short <u>summary</u> of applicable requirements, in so backup for the determination of requirements.			
Answer each step below, starting with Step 1 and progress Refer to the manual sections and/or separate forms refere			ching "Stop".
Step	Answer	Progressi	on
Step 1: Is the project a "development project"? See Section 1.3 of the manual for guidance.	⊠Yes	Go to Step	o 2.
	□No	apply. No	t BMP requirements do not SWQMP will be required. scussion below.
Step 2: Is the project a Standard Project, PDP, or exception to PDP definitions?	□Standard Project	Stop. Standard F	Project requirements apply,
To answer this item, see Section 1.4 of the manual <i>in its</i>	FIOJECI		Standard Project SWQMP.
<i>entirety</i> for guidance, AND complete Form I-2, Project Type Determination.	⊠PDP		rements apply, including PDP
	 Exception to PDP definitions 	Provide di	Project requirements apply. scussion and list any additional nts below. Prepare Standard /QMP.
Discussion / justification, and additional requirements for	exceptions to PD	P definitions	s, if applicable:

	I Page 2 of 2	
Step	Answer	Progression
Step 3. Is the project subject to earlier PDP	□Yes	Consult the [City Engineer] to
requirements due to a prior lawful approval?		determine requirements.
See Section 1.10 of the manual for guidance.		Provide discussion and identify
5		requirements below.
		Go to Step 4.
	⊠No	BMP Design Manual PDP
		requirements apply.
		Go to Step 4.
Discussion / justification of prior lawful approval, ar <i>does not apply</i>):	nd identify requi	irements (<i>not required if prior lawful approva</i>
Step 4. Do hydromodification control requirements	⊠Yes	PDP structural BMPs required for
apply? See Section 1.6 of the manual for guidance.		pollutant control (Chapter 5) and hydromodification control (Chapter 6).
		Go to Step 5.
		Stop.
		PDP structural BMPs required for
		pollutant control (Chapter 5) only.
		Provide brief discussion of exemptio
		to hydromodification control below.
Step 5. Does protection of critical coarse sediment	□Yes	Management measures required for
yield areas apply?		protection of critical coarse sediment
See Section 6.2 of the manual for guidance.		yield areas (Chapter 6.2).
		Stop.
	⊠No	Management measures not required
		for protection of critical coarse
		sediment yield areas.
		•
		sediment yield areas. Provide brief discussion below.
Discussion / justification if protection of critical coa	rse sediment yie	sediment yield areas. Provide brief discussion below. Stop.
Discussion / justification if protection of critical coa	rse sediment yie	sediment yield areas. Provide brief discussion below. Stop.
No Critical Coarse Sediment Yield Areas (CCSYA) a area according to the WMAA map. There is a CCSY.	re located withi	sediment yield areas. Provide brief discussion below. Stop. eld areas does <u>not</u> apply: n or upstream of the project's disturbed
No Critical Coarse Sediment Yield Areas (CCSYA) a area according to the WMAA map. There is a CCSY.	re located withi	sediment yield areas. Provide brief discussion below. Stop. eld areas does <u>not</u> apply: n or upstream of the project's disturbed
Discussion / justification if protection of critical coa No Critical Coarse Sediment Yield Areas (CCSYA) a area according to the WMAA map. There is a CCSY, of the project and will not be impacted.	re located withi	sediment yield areas. Provide brief discussion below. Stop. eld areas does <u>not</u> apply: n or upstream of the project's disturbed

	Pro	oject	Type Determination Checklist	Form I-2	
	Project Information				
-			ve Park Apartments		
Permi	t Appli	catior	n Number: D24-00006		
			Project Type Determination: Standard Pro	ject or PDP	
	-	•	ect one): × New Development Redevelopment		
		•	d newly created or replaced impervious area is: _252,5	571 ft ² (5.80) acres	
			y of the following categories, (a) through (f)?		
Ye 区	s No	(a)	New development projects that create 10,000 squar (collectively over the entire project site). This includ mixed-use, and public development projects on pub	des commercial, industrial, residential,	
Yes	No	(b)	Redevelopment projects that create and/or repl		
	\boxtimes		impervious surface (collectively over the entire pro	5	
			square feet or more of impervious surfaces). T		
Mar	NLa	(-)	residential, mixed-use, and public development proj		
Yes	No	(C)	New and redevelopment projects that create 5,000 surface (collectively over the entire project site)		
\boxtimes			following uses:	, and support one of more of the	
			 (i) Restaurants. This category is defined as a drinks for consumption, including station stands selling prepared foods and drinks f 5812). 	ary lunch counters and refreshment	
			(ii) Hillside development projects. This cate natural slope that is twenty-five percent or g		
			(iii) Parking lots. This category is defined as a parking or storage of motor vehicles us commerce.	5 1 5	
			(iv) Streets, roads, highways, freeways, and driv paved impervious surface used for the tr motorcycles, and other vehicles.	, , , , , , , , , , , , , , , , , , , ,	

			Form I-2 Page 2 of 2		
Yes	No	(d)	New or redevelopment projects that create or replace 2,500 square feet or more of		
	\boxtimes		impervious surface (collectively over the entire project site), and discharging directly to an		
			Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is		
			conveyed overland a distance of 200 feet or less from the project to the ESA, or		
			conveyed in a pipe or open channel any distance as an isolated flow from the project to		
			the ESA (i.e. not commingled with flows from adjacent lands).		
			Note: ESAs are areas that include but are not limited to all Clean Water Act Section		
			303(d) impaired water bodies; areas designated as Areas of Special Biological		
			Significance by the State Water Board and SDRWQCB; State Water Quality		
			Protected Areas; water bodies designated with the RARE beneficial use by the State		
			Water Board and SDRWQCB; and any other equivalent environmentally sensitive		
			areas which have been identified by the Copermittees. See manual Section 1.4.2 for		
			additional guidance.		
Yes	No	(e)	New development projects that support one or more of the following uses:		
	\boxtimes		(i) Automotive repair shops. This category is defined as a facility that is categorized		
			in any one of the following SIC codes: 5013, 5014, 5541, 7532-7534, or 7536-		
			7539.		
			1007.		
			(ii) Retail gasoline outlets. This category includes retail gasoline outlets that meet the		
			following criteria: (a) 5,000 square feet or more or (b) a projected Average Daily		
			Traffic of 100 or more vehicles per day.		
Yes	No	(f)	New or redevelopment projects that result in the disturbance of one or more acres of		
\boxtimes			land and are expected to generate pollutants post construction.		
			Note: See manual Section 1.4.2 for additional guidance.		
	•	-	neet the definition of one or more of the PDP categories (a) through (f) listed above?		
\Box No	o – the	proje	ct is not a PDP (Standard Project).		
🛛 Ye	es – the	proje	ct is a PDP.		
The f	ollowin	g is fo	or redevelopment PDPs only:		
			g (pre-project) impervious area at the project site is: ft ² (A)		
		-	a newly created or replaced impervious area is: ft ² (B)		
	Percent impervious surface created or replaced (A/B)*100:%				
•		•	vious surface created or replaced is (select one based on the above calculation):		
		than o	or equal to fifty percent (50%) – only new impervious areas are considered PDP		
	OR				
	🗆 grea	ater th	nan fifty percent (50%) – the entire project site is a PDP		

Site Information Checkl For PDPs	Form I-3B (PDPs)				
Project Summary Information					
Project Name	Olive Park Apartment	ts			
Project Address	College Boulevard and Olive Drive, Oceanside, CA 92056				
Assessor's Parcel Number(s)	162-111-04-00				
Permit Application Number	D24-00006				
Project Watershed (Hydrologic Unit)	Select One: Santa Margarita 902 San Luis Rey 903 Carlsbad 904				
Parcel Area (total area of Assessor's Parcel(s) associated with the project)	_43.50 Acres	s (1,894,822 Square Feet)			
Area to be disturbed by the project (Project Area)	10.08 Acres (_	_439,208 Square Feet)			
Project Proposed Impervious Area (subset of Project Area)	5.80 Acres	(252,571 Square Feet)			
Project Proposed Pervious Area (subset of Project Area)		(186,637 Square Feet)			
Note: Proposed Impervious Area + Proposed Pervious Area = Area to be Disturbed by the Project. This may be less than the Parcel Area.					

Hydrologic Unit	Hydrologic Area	Hydrologic Sub-Area
Santa Margarita 902.00	□ Ysidora 902.10	Lower Ysidora 902.11
San Luis Rey 903.00	□ Lower San Luis 903.10	□ Mission 903.11
		□ Bonsall 903.12
	🛛 Loma Alta 904.10	Not Applicable
Carlsbad 904.00	□ Buena Vista Creek 904.20	□ El Salto 904.21
		□ Vista 904.22
	□ Agua Hedionda 4.30	Los Monos 904.31

Form I-3B Page 2 of 10
Description of Existing Site Condition and Drainage Patterns
Current Status of the Site (select all that apply):
Existing development
Previously graded but not built out
Agricultural or other non-impervious use
⊠Vacant, undeveloped/natural
Description / Additional Information: The site is situated on slopes descending northwest towards Loma Alta Creek, which borders the northern edge of the site. The topographical contours show an increase in gradient from north to south. The creek, characterized by a gentle gradient, flows westward in a meandering pattern and features vertically incised embankments, with heights reaching up to 10 feet at certain points along its edges. A fill berm, constructed as part of railroad enhancements, is present along the site's northeast boundary. In the southeast corner, a level and graded pad has been prepared for the construction of a residential development along Wooster Drive. Existing Land Cover Includes (select all that apply): \boxtimes Vegetative Cover \boxtimes Non-Vegetated Pervious Areas
Impervious Areas
Description / Additional Information: The existing pervious area consists of vacant undeveloped area, vegetative cover and slopes. Vegetation across the site varies significantly with the topography, including flat, intermediate, and steep slopes. In areas with flat slopes, the vegetation primarily consists of hydric (water-seeking) species, such as rushes and marsh- type plants, with several eucalyptus trees also dotting these areas. The intermediate slopes, which have undergone disking, are home to sparse, xeric (dry) vegetation. Meanwhile, the areas with steep slopes boast dense coverage of vegetation, including species like mustard, sage, and cactus.
Underlying Soil belongs to Hydrologic Soil Group (select all that apply):
⊠NRCS Type A
⊠NRCS Type C
⊠NRCS Type D

Approximate Depth to Groundwater:

 \Box Groundwater Depth < 5 feet

 $\boxtimes 5$ feet < Groundwater Depth < 10 feet

 \boxtimes 10 feet < Groundwater Depth < 20 feet

 \boxtimes Groundwater Depth > 20 feet

According to the geotechnical report prepared by Geocon in March 2024, groundwater was not detected within the proposed development area. However, it was encountered at a depth of approximately 7 to 13 feet below the existing ground surface, which is roughly 1 to 5 feet above mean sea level, on the western portion of the property that is not designated for development.

Form I-3B Page 3 of 10

Description of Existing Site Topography and Drainage [How is storm water runoff conveyed from the site? At a minimum, this description should answer (1) whether existing drainage conveyance is natural or urban; (2) describe existing constructed storm water conveyance systems, if applicable; and (3) is runoff from offsite conveyed through the site? If so, describe]:

The site is situated on slopes descending northwest towards Loma Alta Creek, which borders the northern edge of the site. The topographical contours show an increase in gradient from north to south. The creek, characterized by a gentle gradient, flows westward in a meandering pattern and features vertically incised embankments, with heights reaching up to 10 feet at certain points along its edges. A fill berm, constructed as part of railroad enhancements, is present along the site's northeast boundary. In the southeast corner, a level and graded pad has been prepared for the construction of a residential development along Wooster Drive. The site's elevation ranges from approximately 185 feet above Mean Sea Level (MSL) at the northwest corner, near Loma Alta Creek, to 464 feet MSL at the graded pad.

The proposed development occupies the northeastern corner of the site, with the remaining area left undeveloped. The drainage study focuses on the eastern watersheds affected by the development, covering approximately 29.9 acres. This includes 5.0 acres of an offsite area along the eastern boundary, consisting of both the southeastern slope that drains through a brow ditch along the eastern boundary of the site, moving northward, and water from an existing development channeled via the Olive Drive curb and gutter system into the same brow ditch. This ditch enters the site from its northeastern corner.

Furthermore, the drainage area under consideration incorporates 2.80 acres of the offsite northeastern section, where the proposed emergency-only ingress/egress road from College Boulevard will be situated. The onsite drainage flows north towards the railway lines (part of the Loma Alta Creek Floodway), merging with the offsite flows mentioned earlier. It then moves westward through the undisturbed project boundary towards Loma Alta Creek's existing natural channel. This channel crosses under the railway line within the site and continues west to discharge into the Pacific Ocean at the mouth of Loma Alta Creek. Refer to Appendix 4 in the Preliminary Drainage Study for Olive Park Apartments, prepared by Hunsaker and Associates SD and dated October 2024, for calculations regarding peak runoff under existing conditions.

Form I-3B Page 4 of 10

Description of Proposed Site Development and Drainage Patterns

Project Description / Proposed Land Use and/or Activities:

The proposed project will develop a single pad designated for two building structures, accommodating a total of 282 apartment units, complete with courtyards. The development plan includes private driveways, sidewalks, landscaping, and parking spaces, alongside the necessary infrastructure and utilities typical for such a development. This infrastructure will include a dual storm drain system, comprising pipes, inlets, catch basins, brow ditches, and cleanouts. One component of this dual system is designed to collect and convey the onsite 100-year runoff through the project area to the proposed underground storage facilities. These facilities will provide attenuation and direct the runoff to the proposed structural pollutant control Best Management Practices (BMPs) to meet water quality requirements. The second component, the bypass storm drain system, aims to capture and convey the offsite flows along with a portion of the onsite flows from the undisturbed slopes directly to the existing northern channel.

To facilitate access to the site from College Blvd, the existing access road northeast of the site will be paved and improved as a gated emergency-only ingress/egress road. A new connection to the cul-de-sac on Olive Drive, east of the site, is proposed.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

Building rooftops, roadways, sidewalks, walkways, parking, patios and other hardscapes areas.

List/describe proposed pervious features of the project (e.g., landscape areas): Landscaped areas, Decomposed granite, resilient surface areas on the playground, and artificial turf in the podium courtyard and the dog run.

Does the project include grading and changes to site topography? ⊠Yes

Description / Additional Information:

Grading will be performed onsite to accommodate the buildings and ensure the positive drainage. Existing drainage patterns will be maintained.

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)? ⊠Yes

□No

Description / Additional Information:

The project introduces a new storm drain system, featuring inlets throughout the site designed to efficiently capture onsite runoff. This water is then conveyed through storm drain pipes to underground storage facilities, which designed to handle anticipated designed captured volumes and regulate the flow into downstream biofiltration BMPs before reaching the Loma Alta Creek to the north. Specifically, runoff from two designated areas, DMA1 and DMA2, is directed to these underground facilities. These facilities provide additional storage and flow control to comply with Hydromodification Management Plan (HMP) and peak flow requirements.

To effectively manage runoff, the project includes brow ditches and catch basins to collect water from both offsite and undisturbed onsite areas, channeling it via proposed separate bypass storm drain system or brow ditches to discharge points along the northern boundary of the site without mixing with untreated onsite flows. Furthermore, the eastern section of the emergency-only ingress/egress road route (DMA 4) is engineered to slope towards one flow-based proprietary biofiltration unit appropriately sized to fulfill water quality standards. The unit will then route flows to an underground storage facility sized to addressed hydromodification. The majority of this road route route (DMA 3), which slopes southwest, features a proprietary flow-based biofiltration Best Management Practice (BMP) that treats runoff before it discharges into the creek. Additionally, the underground storage facility for DMA 2 (HMP 2) is specifically designed to over-detain flows for DMA 3 that are not routed to a storage unit, ensuring compliance with HMP requirements at the points of compliance (POCs).

Form I-3B Page 5 of 10 Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply): \boxtimes Onsite storm drain inlets \boxtimes Interior floor drains and elevator shaft sump pumps \boxtimes Interior parking garages ⊠ Need for future indoor & structural pest control \boxtimes Landscape/outdoor pesticide use Pools, spas, ponds, decorative fountains, and other water features □ Food service \boxtimes Refuse areas Refuse areas are situated within the buildings; the western building has its refuse area underground within the garage, while the eastern building features a designated trash room within the building itself. □ Industrial processes Outdoor storage of equipment or materials □Vehicle and equipment cleaning □Vehicle/equipment repair and maintenance □ Fuel dispensing areas □ Loading docks \boxtimes Fire sprinkler test water ⊠ Miscellaneous drain or wash water \boxtimes Plazas, sidewalks, and parking lots

Form I-3B Page 6 of 10				
Identification of Receiving Water Pollutants of Concern				
Describe path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable): The site drains to Loma Alta Creek, then to Loma Alta Slough and ultimately to Pacifica Ocean Shoreline at Loma Alta Creek mouth.				
3	es within the path of storm water fror voir, as applicable), identify the pollut _s for the impaired water bodies:			
303(d) Impaired Water Body	Pollutant(s)/Stressor(s)	TMDLs		
Loma Alta Creek	Benthic Community Effects, Bifenthrin, Cyfluthrin, Cyhalothrin, Lambda, Indicator Bacteria, Nitrogen, Phosphorus, Pyrethroids, Selenium, Toxicity	N/A		
Loma Alta Slough	Eutrophic, Indicator Bacteria	Phosphorus (Alternative TMDL – Addressed by regional MS4 permit per Carlsbad WMA WQIP)		
Pacific Ocean Shoreline, Loma Alta HSA, at Loma Alta Creek mouth	Indicator Bacteria, Trash	N/A		

Form I-3B Page 7 of 10

Identification of Project Site Pollutants*

*Identification of project site pollutants is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs (note the project must also participate in an alternative compliance program unless prior lawful approval to meet earlier PDP requirements is demonstrated)

Identify pollutants expected from the project site based on all proposed use(s) of the site (see manual Appendix B.6):

· .pp oa 2o).			
	Not Applicable to the	Expected from the	Also a Receiving Water
Pollutant	Project Site	Project Site	Pollutant of Concern
Sediment			
Nutrients			
Heavy Metals			
Organic Compounds			
Trash & Debris			
Oxygen Demanding			
Substances			
Oil & Grease			
Bacteria & Viruses			
Pesticides			

<u>Note:</u> Indicator Bacteria shall be addressed as a Pollutant of Concern (POC) for projects located in the Lower San Luis Hydrologic Area <u>and</u> for projects that discharge to the Pacific Ocean Shoreline within the boundaries of the City of Oceanside.

<u>Note:</u> Nutrients shall be addressed as a Pollutant of Concern (POC) for projects located in the Loma Alta Hydrologic Area.

Form I-3B Page 8 of 10

Hydromodification Management Requirements

Do hydromodification management requirements apply (see Section 1.6 of the manual)?

Section Section Section Control Structural BMPs required.

□ No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.

□ No, the project will discharge runoff directly to conveyance channels whose bed and bank are concretelined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.

 \Box No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA for the watershed in which the project resides.

Description / Additional Information (to be provided if a 'No' answer has been selected above):

SWMM Analysis is performed to show compliance with hydromodification requirements.

Critical Coarse Sediment Yield Areas*

*This Section only required if hydromodification management requirements apply

Based on the maps provided within the WMAA, do potential critical coarse sediment yield areas exist within the project drainage boundaries?

□Yes

 \boxtimes No, no critical coarse sediment yield areas to be protected based on WMAA maps

If yes, have any of the optional analyses presented in Section 6.2 of the manual been performed?

□6.2.1 Verification of GLUs Onsite

□6.2.2 Downstream Systems Sensitivity to Coarse Sediment

□6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite

□ No optional analyses performed, the project will avoid critical coarse sediment yield areas identified based on WMAA maps

If optional analyses were performed, what is the final result?

□ No critical coarse sediment yield areas to be protected based on verification of GLUs onsite.

□Critical coarse sediment yield areas exist but additional analysis has determined that protection is not required. Documentation attached in Attachment 8 of the SWQMP.

□Critical coarse sediment yield areas exist and require protection. The project will implement management measures described in Sections 6.2.4 and 6.2.5 as applicable, and the areas are identified on the SWQMP Exhibit.

Discussion / Additional Information:

No Critical Coarse Sediment Yield Areas (CCSYA) are located within or upstream of the project's disturbed area according to the WMAA map. There is a CCSYA within the site's boundary, but it is situated to the west of the project and will not be impacted.

Form I-3B Page 9 of 10

Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.2.1). For each POC, provide a POC identification pame or number correlating to the project's H

Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.

Three points of compliance (POCs) were analyzed for the proposed project. The first POC (POC3), located at the northeast end of the emergency-only ingress/egress road near College Blvd (offsite), currently receives runoff from a dirt-compacted access road in existing conditions. In the proposed condition, the road will be improved, surfaced, and superelevated towards one proprietary biofiltration unit to address water quality requirements that will route the flows into an underground storage facility (HMP4) to address hydromodification requirements.

The second POC (POC2), situated at the easterly end of the onsite improvements, receives flow from DMA 2 after routing through the underground storage facility (HMP2) and the downstream MWS unit, along with treated flow from DMA 3 that was routed through the flow-based MWS unit and commingled with bypassed flow south of the EVA.

The third POC (POC1), located at the westerly end of the onsite improvements, receives flow from POC2 and runoff from DMA 1 that is directed through another underground storage facility (HMP1) and a volumebased MWS unit, which then discharges directly into Loma Alta Creek. Runoff from the southern slopes is also directed through brow ditches to POC1. Due to grading, the area directed to POC1 has increased compared to existing conditions.

Continuous simulation has been provided for POC1 and POC2 to verify that the proposed facilities have adequate storage and outlet structures to meet HMP requirements.

Form I-3B Page 10 of 10

Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

LOMA Alta Creek crosses through the site on its western portion. The project disturbed area will be outside of the flood way and flood plain of the creek.

Optional Additional Information or Continuation of Previous Sections As Needed This space provided for additional information or continuation of information from previous sections as needed.

The proposed curb and sidewalk on Olive Drive, serving as the entrance to the project, are meticulously designed to align seamlessly with the existing curb and sidewalk at the Olive Drive cul-de-sac. New storm drain inlets, strategically positioned on-site west of the cul-de-sac, are intended to capture runoff from this new entrance and direct it to the proposed storage facility and MWS unit (HMP2 and BF-3-2), preventing it from mixing with the offsite runoff on Olive Drive. Additionally, another inlet is planned for the existing offsite Olive Drive cul-de-sac to effectively capture runoff from the existing road and route it through a separate, proposed storm drain system directly to POC2. Overlying and resurfacing at this connection are expected to ensure a flawless and integrated transition at the cul-de-sac.

Source Control BMP Checklist				
for All Development Projects		Form	-4	
(Standard Projects and PDPs)				
Project Identification				
Project Name: Olive Park Apartments				
Permit Application Number: D24-00006				
Source Control BMPs				
All development projects must implement source control BMPs SC-1 throu feasible. See Chapter 4 and Appendix E of the manual for information to in shown in this checklist.				
Answer each category below pursuant to the following.				
• "Yes" means the project will implement the source control BMP Appendix E of the manual. Discussion / justification is not require	ed.			
 "No" means the BMP is applicable to the project but it is not fe justification must be provided. 	easible to in	nplement. C	iscussion /	
 "N/A" means the BMP is not applicable at the project site becau feature that is addressed by the BMP (e.g., the project has no Discussion / justification may be provided. 				
Source Control Requirement	l	mplemente	∋d?	
SC-1 Prevention of Illicit Discharges into the MS4	⊠ Yes	🗆 No	□ N/A	
Discussion / justification if SC-1 not implemented: All proposed impervious surfaces are strategically designed to drain into adjacent landscaped areas where feasible. This setup facilitates the dispersion of non-stormwater discharges into the landscaping for infiltration. Efficient irrigation practices will be employed as well. Additionally, BMPs outlined under SC-6 will help prevent illicit discharges. Please refer to the information provided below for further details.				
SC-2 Storm Drain Stenciling or Signage	⊠ Yes	🗆 No	□ N/A	
 Discussion / justification if SC-2 not implemented: Locations of inlets are shown on exhibits. Placards will be provided for all storm water drain inlets and catch basins within the project area with prohibitive dumping language (E.G. "NO DUMPING – I LIVE DOWNSTREAM"). See DMA maps. Maintain and periodically repaint or replace inlet markings. Provide storm water pollution prevention information to new owners, lessees, or operations. 				
SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On,	□ Yes	🗆 No	🛛 N/A	
Runoff, and Wind Dispersal				
Discussion / justification if SC-3 not implemented: There's no "Outdoor Materials Storage Areas" contemplated for this proje	ect.			

Form I-4 Page 2 of 3				
Source Control Requirement		mplemente	ed?	
SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□ Yes	🗆 No	⊠ N/A	
Discussion / justification if SC-4 not implemented:				
There's no "Materials Stored in Outdoor Work Areas" contemplated for th	nis project.			
	1	1		
SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and	🖾 Yes	🗆 No	□ N/A	
Wind Dispersal				
Discussion / justification if SC-5 not implemented:				
Trash storage areas are situated within the buildings; the western building h	has its trash	storage area	а	
underground within the garage, while the eastern building features a designated trash room within the				
building itself.				

Form I-4 Page 3 of 3				
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants		Implemented?		
(must answer for each source listed below)		<u> </u>		
Onsite storm drain inlets	⊠ Yes	🗆 No	□ N/A	
Interior floor drains and elevator shaft sump pumps	⊠ Yes	🗆 No	□ N/A	
Interior parking garages	⊠ Yes	🗆 No	□ N/A	
Need for future indoor & structural pest control	⊠ Yes	🗆 No	□ N/A	
Landscape/outdoor pesticide use	⊠ Yes	🗆 No	□ N/A	
Pools, spas, ponds, decorative fountains, and other water features	□ Yes	🗆 No	⊠ N/A	
Food service	□ Yes	🗆 No	⊠ N/A	
Refuse area	⊠ Yes	🗆 No	□ N/A	
Industrial processes	□ Yes	🗆 No	⊠ N/A	
Outdoor storage of equipment or materials	□ Yes	🗆 No	⊠ N/A	
Vehicle and equipment cleaning	□ Yes	🗆 No	⊠ N/A	
Vehicle/equipment repair and maintenance	□ Yes	🗆 No	⊠ N/A	
Fuel dispensing areas	□ Yes	🗆 No	⊠ N/A	
Loading docks	□ Yes	🗆 No	⊠ N/A	
Fire sprinkler test water	⊠ Yes	🗆 No	□ N/A	
Miscellaneous drain or wash water	⊠ Yes	🗆 No	□ N/A	
Plazas, sidewalks, and parking lots	⊠ Yes	🗆 No	□ N/A	

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

• SC-6A: All onsite storm drain inlets to be marked with legend "NO DUMPING, FLOWS TO BAY", or similar.

• SC-6B: The "Interior floor drains and elevator shaft sump pumps" will be plumbed to sanitary sewer.

• SC-6C: The "Interior parking garages" parking garage floor drains will be plumbed to the sanitary sewer.

• SC-6D1: To discourage the entry of pests and meet the source control requirements for future indoor and structural pest control in the proposed building design, some or all of the following key features could be considered:

1-Seal Openings: Ensure that all potential entry points for pests are properly sealed. This includes gaps around doors, windows, utility penetrations, and vents. Use weatherstripping, door sweeps, and caulking

to seal any openings. 2-Ventilation: Install appropriate mesh screens on vents, windows, and other openings to prevent insects and rodents from entering while still allowing for proper ventilation. 3-Landscaping: Maintain a clear separation between landscaping and the building structure. Keep vegetation trimmed away from the building to reduce potential pathways for pests to enter. 4-Trash Management: Implement

a proper waste management system with sealed trash bins inside the building and regular disposal to prevent pests from being attracted to food sources. 5-Drainage: Ensure proper drainage to prevent water accumulation, which can attract pests like mosquitoes and rodents. Regularly inspect and maintain gutters, downspouts, and drains to prevent blockages.6-Structural Integrity: Maintain the structural integrity of the building by regularly inspecting and repairing any cracks or gaps in walls, foundations, and roofs, as these can serve as entry points for pests. 7-Pest-Resistant Materials: Use pest-resistant building materials, such as concrete, metal, or treated wood, for vulnerable areas like the foundation and exterior walls.and\or 8-Integrated Pest Management (IPM): Incorporate an Integrated Pest Management program for ongoing pest prevention and control. This approach combines various methods, such as inspections, monitoring, and targeted treatments, to minimize the use of pesticides.

• SC-6D2: Final landscape plans will accomplish all the following:

o Preserve existing drought tolerant trees, shrubs, and ground cover to the maximum extent possible.

o Landscaping designed to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to storm water pollution.

o Where landscaped areas are used to retain or detain storm water, use plants that are tolerant of periodic saturated soil conditions.

o Use pest-resistant plants, especially adjacent to hardscape.

o Ensure successful establishment, appropriate selection of plants to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.

• SC-6E: There's no "Pools, spas, ponds, decorative fountains, and other water features" contemplated for this project.

• SC-6F: There's no "Food Service" contemplated for this project.

• SC-6G: There's no "Refuse areas" contemplated for this project.

• SC-6H: There's no "Industrial processes" contemplated for this project.

• SC-61: There's no "Outdoor storage of equipment or materials" contemplated for this project.

• SC-6J: There's no "Vehicle and equipment cleaning" contemplated for this project.

• SC-6K: There's no "Vehicle/equipment repair and maintenance" contemplated for this project.

• SC-6L: There's no "Fuel dispensing areas" contemplated for this project.

• SC-6M: There's no "Loading Docks" contemplated for this project.

• SC-6N: Fire sprinkler test water" is planned for this project and will be connected to the sewer system.

• SC-6O: Final architect's and engineer's plans will accomplish all the following:

o Boiler drain lines will be directly or indirectly connected to the sanitary sewer system and will not discharge to the storm drain system.

o Rooftop mounted equipment with potential to produce pollutants will be roofed and/or have secondary containment.

o Roofing, gutters, and trim made won't be made of copper or other unprotected metals that may leach

into runoff.

• SC-6P: Plazas, sidewalks, and parking lots will be swept regularly to prevent the accumulation of litter and debris.

Site Design BMP Checklist					
for All Development Projects		Form	1-5		
(Standard Projects and PDPs)					
Project Identification					
Project Name: Olive Park Apartments					
Permit Application Number: D24-00006					
Site Design BMPs					
All development projects must implement site design BMPs SD-1 through SD-8 where applicable and feasible. See Chapter 4 and Appendix E of the manual for information to implement site design BMPs shown in this checklist.					
Answer each category below pursuant to the following.					
 "Yes" means the project will implement the site design BMP a Appendix E of the manual. Discussion / justification is not require 	d.				
 "No" means the BMP is applicable to the project but it is not fea justification must be provided. 	asible to in	nplement. D	iscussion /		
 "N/A" means the BMP is not applicable at the project site becaus feature that is addressed by the BMP (e.g., the project site has no Discussion / justification may be provided. 					
Site Design Requirement		Applied?			
SD-1 Maintain Natural Drainage Pathways and Hydrologic Features	⊠ Yes	🗆 No	□ N/A		
Discussion / justification if SD-1 not implemented: Loma Alta Creek flows along the northern boundary of the site from east to west, entering the site to the west of the development area and crossing under the rail lines, extending approximately 1280 feet through the property. The project plans to disturb less than 25% of the site, carefully avoiding any encroachment into the creek's floodplain or floodway, while maintaining a buffer zone of about 430 feet from the creek's floodplain limit on site. Approximately 75% of the site to the south and west of the development will preserve its natural drainage pathways, natural swales, and permeable soils. For the disturbed areas, all runoff from the upstream slope will be captured and redirected to maintain its original flow path and discharge points into Loma Alta Creek. The site layout has been optimized to minimize the need for grading near the train tracks and floodplain.					
SD-2 Conserve Natural Areas, Soils, and Vegetation	⊠ Yes	□ No	□ N/A		
Discussion / justification if SD-2 not implemented: The proposed development is situated in the northeastern corner of the site, leaving the majority of the area undeveloped. The project aims to disturb less than 25% of the site, focusing development on the least environmentally sensitive areas and maintaining a setback from natural zones. Vegetation, soils, and natural landscapes across 75% of the site will be preserved. SD-3 Minimize Impervious Area Image: Yes Image: No					
	L I 103				

Form 1-5 Page 2 of 2 Discussion / justification if SD-3 not implemented:			
Sidewalks, streets & parking stalls were designed with widths minimized as much as possible. Adhering to the			
City of Oceanside's standards, the minimum sidewalk width is 4 feet. T	proposed sid	lewalk widtl	n is 5 ft to
accommodate the expected heavy pedestrian traffic due to the size of b	ildings and fo	or public saf	ety reasons
without unnecessarily expanding the impervious area.			
Similarly, for the parking layout, we've strictly followed the required directly	ensions of 8.5	5' x 18' for e	each stall,
ensuring no additional impervious surface beyond what is essential for	unctionality ar	nd compliar	nce.
SD-4 Minimize Soil Compaction	🛛 Yes	🗆 No	□ N/A
Discussion / justification if SD-4 not implemented:	I	1	1
Proposed landscaped areas will be compacted as minimally as possible l	y minimizing	the amount	of time
vehicles are spent of known landscaped areas. The goal is to ensure that soil is compacted as little as possible			
vehicles are spent of known landscaped areas. The goal is to ensure that	soil is compa	cted as little	as possible
			•
to create optimal conditions for plant growth. Any landscape area when			
to create optimal conditions for plant growth. Any landscape area when			
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth.	compaction	is needed sł	hall be re-
to create optimal conditions for plant growth. Any landscape area wher tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion	Compaction	is needed sh	nall be re-
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented:	compaction	is needed sh	nall be re-
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a	compaction Yes persion has be reas before be	is needed sh	nall be re-
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a routed to the storm drain system. However, due to the large size of the	compaction Yes Dersion has be reas before be puilding and t	is needed sh D No een impleme eing collecte he limited s	ented where and urrounding
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a routed to the storm drain system. However, due to the large size of the landscaped area, it is not practical to route the entire roof runoff to the	compaction Yes persion has be reas before be puilding and t andscape. Wh	is needed sh D No een impleme eing collecte he limited s nile directing	ented where and and urrounding
to create optimal conditions for plant growth. Any landscape area wher tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a routed to the storm drain system. However, due to the large size of the landscaped area, it is not practical to route the entire roof runoff to the stormwater from impervious surfaces like the roof and sidewalks to per	compaction Yes Dersion has be reas before be building and t andscape. Wh vious areas all	is needed sh Den impleme eing collecte he limited s hile directing ows for son	ented where d and urrounding
to create optimal conditions for plant growth. Any landscape area when tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a routed to the storm drain system. However, due to the large size of the landscaped area, it is not practical to route the entire roof runoff to the stormwater from impervious surfaces like the roof and sidewalks to per infiltration, the available landscaped space around the building is insuff	compaction Yes Dersion has be reas before be building and t andscape. Wh vious areas all cient to handle	is needed sh Den impleme eing collecte he limited s nile directing ows for son e the full vo	ented where and urrounding ne lume of
to create optimal conditions for plant growth. Any landscape area wher tilled before planting to ensure optimal growth. SD-5 Impervious Area Dispersion Discussion / justification if SD-5 not implemented: The Low Impact Development (LID) approach for impervious area dis feasible. Roof areas and walkways have been directed toward pervious a routed to the storm drain system. However, due to the large size of the landscaped area, it is not practical to route the entire roof runoff to the stormwater from impervious surfaces like the roof and sidewalks to per	compaction Yes Dersion has be reas before be building and t andscape. Wh vious areas all cient to handle	is needed sh Den impleme eing collecte he limited s nile directing ows for son e the full vo	ented where and urrounding ne lume of

To mitigate these risks, a portion of the roof area and some sidewalk runoff will be routed to the landscaped areas, allowing for effective stormwater treatment while preventing overloading of the landscape. The remaining roof runoff will be directed to the podium, where it will be hard-piped into the storm drain system for conveyance and treatment. This solution minimizes the risks of standing water, erosion, and drainage failures in the landscaped areas while maintaining compliance with stormwater management requirements.

By managing impervious area disconnection in a controlled manner, this design ensures efficient runoff management without overwhelming the landscape. Splitting the flow between the podium and the landscaped areas strikes a balance between maximizing natural infiltration and ensuring the site's drainage system can effectively handle the volume of stormwater runoff.

management system.

Form I-5 Page 2 of 2				
SD-6 Runoff Collection	🛛 Yes	🗆 No	□ N/A	
Discussion / justification if SD-6 not implemented:				
Small collection strategies such as earthen swales on building pads to con- landscape before being captured by catch basins, area drain, or inlet. Deco was also used in the community areas.				
SD-7 Landscaping with Native or Drought Tolerant Species	⊠ Yes	🗆 No	□ N/A	
Discussion / justification if SD-7 not implemented:	<u>I</u>			
Native and drought-tolerant species will be included in landscape design.				
SD-8 Harvesting and Using Precipitation	□ Yes	🗆 No	⊠ N/A	
Discussion / justification if SD-8 not implemented:				
barrels would require someone to perform this task within 36 hours after a rainfall event, which is not practical given the absence of such personnel on-site. The logistics of ensuring timely maintenance and water usage after every rain event would be difficult to implement effectively in this setting.				
 Limited Utility of Harvested Water: The locations where rain within areas where the harvested water can be effectively used. T site that would benefit from the water, and the landscape mainten through other sustainable measures. This further diminishes the in this specific project. 	here is limite nance is alrea	d landscape dy accounte	d area on- ed for	
 Space Constraints: The high-density nature of the development, with little open space between units, limits the available space to install and access rain barrels. This would not only make installation difficult but also impede ongoing maintenance, making the long-term management of rain barrels unrealistic. 				
rain barrels unrealistic. Given these technical challenges, we believe rain barrels are not a suitable BMP for this project. We proposed alternative BMPs that are more practical and effective given the project's specific characteristics, such as dispersion areas where feasible and practical.				

Summary of PDP Structural BMPs

Form I-6 (PDPs)

Project Identification

Project Name: Olive Park Apartments Permit Application Number: D24-00006

PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the local jurisdiction at the completion of construction. This may include requiring the project owner or project owner's representative to certify construction of the structural BMPs (see Section 1.12 of the manual). PDP structural BMPs must be maintained into perpetuity, and the local jurisdiction must confirm the maintenance (see Section 7 of the manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

The general strategy for implementing structural BMPs is outlined in the provided approach:

1- Site Analysis: The project site information has been thoroughly reviewed, revealing hydrologic soil groups of types "D", "C", and "A". Infiltration has been deemed infeasible onsite according to the Stormwater Management Investigation conducted by Geocon in August 2024. Their findings indicate that the majority of the proposed development is situated on landslide debris and materials prone to landslides. Additionally, groundwater within the alluvial deposits is less than 10 feet from the existing grade, and the development plan involves placing fills more than 5 feet deep across the entire site after removing the landslide debris. Due to these factors—proximity to groundwater, proposed fill depths, and existing geologic hazards—Geocon did not perform infiltration tests within the granitic rock or Santiago Formation. Consequently, infiltration is considered infeasible across the site.

For the small segment of the access road that drains away from the project and is located in soil type "A", five tree wells are planned to fulfill both water quality and HMP requirements. Additionally, an alternative design featuring a vault and biofiltration basin has been developed and included for this section, to be implemented if infiltration issues arise during the final engineering phase.

Due to the proposed land use and number of stories of the proposed building, harvest and use BMPs are deemed infeasible.

- 2- Self-Mitigating Area: The proposed landscaped slopes surrounding the project are designed to be isolated from the rest of the site. The flow from the majority of these slopes (specifically the southwestern slopes SM1) will be directed through brow ditches to the point of connection (POC1), without mixing with untreated flows, thus qualifying this slope as a self-mitigating area. The flow from the southeastern self-mitigating slope will also be channeled via a brow ditch, captured by a catch basin, and then directed to POC2 through a bypass storm drain system.
- 3- Determining DCV for each DMA: DCV for each DMA has been determined using Worksheet B.1 (per Appendix B.1).

A. Rainfall depth has been determined to be 0.62 inch per Appendix B.1.1, as utilized in Line 1.

B. Each BMP tributary area has been delineated, which includes the slopes that will be graded and will not be bypassed. DMA area for each BMP has been labeled, and an area breakdown for each DMA per surface type has been provided. The square footage of surfaces was provided in Lines 2-9.

C. Runoff factors have been determined for each subarea within individual DMA based on the surface type, as outlined in Appendix B.1.3. These factors have been used in the "Standard Drainage Basin Input" section of the Worksheet.

D. Dispersion areas have been carefully designated to meet the minimum retention requirements. The dispersion areas have been clearly delineated on the DMA map, and the corresponding calculated areas have been filled out in the "Dispersion Area" section. Supplemental calculations using the County SSD-BMPs worksheets for these designated dispersion areas have been provided.

Form I-6 Page 2 of 14

(Page reserved for continuation of description of general strategy for structural BMP implementation at the site)

4- Retention Requirements: Worksheet B.2 (per Appendix B.2) has been used to determine retention requirements for each DMA.

Å. The evaluation confirms that the project does not propose a building over 9 stories. Therefore, a capture and use evaluating the potential for toilet/landscape use for the DCV is not required.

B. The geotechnical investigation, prepared by Geocon Inc. and dated August 2024, confirms that the proposed BMP location restricts infiltration activities due to the soil type and groundwater.

C. Considering the infeasibility of infiltration due to the identified soil type, no infiltration rate has been determined.

D. As the project falls under the category of a PDP project, the minimum retention requirements are applicable.

5- BMP Performance was determined per Appendix B.3

A. The proposed site design elements satisfied the annual retention requirements for each DMA (as determined per line 46 in worksheet B.3, and the County SSD-BMPs worksheets.

B. The proposed proprietary biofiltration BMPs "Modular Wetland System Linear" were sized per Section B.4.3 "BMPs Downstream of a storage unit" for DMA1 and DMA2. For each DMA of these Two DMAs, a CMP storage facility has been proposed to carry the required design captured volume and regulate the flows to the downstream biofiltration BMP (BF-3-1 and BF-3-2). Using of this approach is not supported by County automated worksheets, but compliance with stormwater pollutant control requirements has been demonstrated using the following steps:

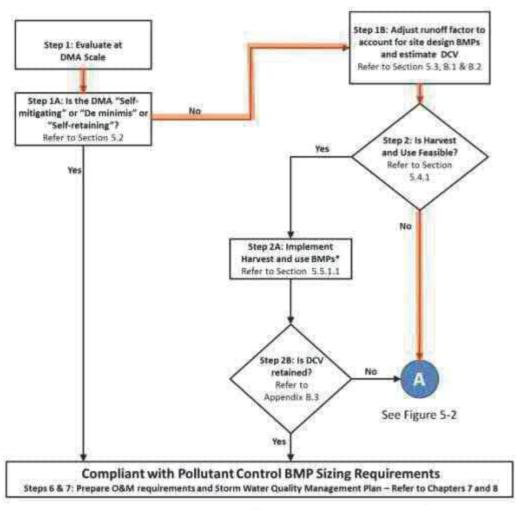
a- The design of the outlet structures in the proposed underground storage facilities is aimed to fulfill both Hydromodification Management Plan (HMP) and Water Quality (WQ) requirements. The low flow orifices, crucial for controlling discharge, are specifically sized to meet these criteria. For this project, these orifices are primarily governed by the low flow HMP requirements, employing a specific fraction of the Design Capture Volume (DCV) and associated drawdown time (2 DCV in 63 hours) instead of the standard practice of treating 1.5 times the DCV within 36 hours.

To determine the necessary fraction of the Design Capture Volume (DCV) required to treat 92% of the annual runoff volume, we referred to the percent capture nomographs shown in Figure B.3-1 of the BMP manual. The low flow orifices, designed to meet the HMP requirements, direct flows to the downstream biofiltration BMPs and were verified to draw down the specified fraction of DCV within the predetermined drawdown time to achieve the 92% annual runoff volume target. The flow rate from these orifices was calculated using the orifice equation once the storage unit reaches the depth associated with the specified fraction of the DCV, allowing for precise calculation of the drawdown time.

b- The proposed biofiltration BMPs are sized to manage the required volume and meet the specified drawdown time, utilizing the media filtration rate verified through manufacturer-certified testing. Additionally, a safety factor, as recommended by the manufacturer, has been incorporated to ensure reliability. This approach ensures that the MWS units are capable of treating the designated volume within the required drawdown time, with an added factor of safety for enhanced performance.

C. For DMA 3, a flow-based curb type proprietary biofiltration BMP (MWS or equivalent) is proposed to provide pollutant control treatment for this area before it enters the bypass storm drain system. From there, it continues westward to commingle with the treated and mitigated flows from HMP-2 and BF-3-2, and ultimately discharges into the Creek at POC2. HMP2 is designed to over-detain flows from DMA2 to account for the flows from DMA3 that discharge directly to the POC, ensuring compliance with hydromodification requirements at both POC1 and POC2. For sizing the flow-based proprietary biofiltration BMP-MWS unit (or equivalent), Section F.2.2 of the BMP manual was consulted. The runoff flow rate for a 0.2 inch per hour

uniform intensity precipitation event was calculated by multiplying the intensity with the runoff coefficient and the area of this DMA ($Q = C \mid A$). This calculated flow rate was then increased by a factor of 1.5 to determine the design flow rate for the biofiltration system.


D. The minimum retention requirements for DMA 1 and 2 have been met through the use of dispersion areas. Additionally, extra dispersion was implemented in DMA 2 to account for the required retention volume for DMA 3.

Proprietary information have been provided demonstrating that the device meets bifiltration criteria outlined in Appendix F.1.-F.2

E. DMA 4 encompasses a small segment of the EVA road, engineered to drain towards a proprietary

biofiltraion MWS unit or equivalent and Underground storage facility to address HMP and WQ requirements.

Chapter 5: Storm Water Pollutant Control Requirements for PDPs

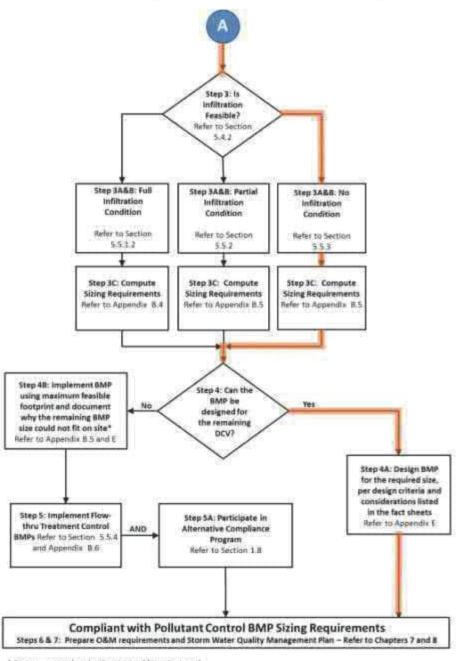

* Step 2C: Project applicant has an option to also conduct feasibility analysis for infiltration and if infiltration is fully or partially feasible has an option to choose between infiltration and harvest and use BMPs. But if infiltration is not feasible and harvest and use is feasible, project applicant must implement harvest and use BMPs.

FIGURE 5-1, Storm Water Pollutant Control BMP Selection Flow Chart

February 2016

Chapter 5: Storm Water Pollutant Control Requirements for PDPs

* Project approval at the discretion of [City Engineer]

FIGURE 5-2. Storm Water Pollutant Control BMP Selection Flow Chart

February 2016

Form I-6 Page 3 of 16		
	mmary Information	
	on for each individual proposed structural BMP)	
Structural BMP ID No. BF-3-1		
Construction Plan Sheet No. 8 (Tentative Map)		
Type of structural BMP:		
□ Retention by harvest and use (HU-1)		
□Retention by infiltration basin (INF-1)		
□Retention by bioretention (INF-2)		
□Retention by permeable pavement (INF-3)		
Partial retention by biofiltration with partial retentio	n (PR-1)	
Biofiltration (BF-1)		
	roval to meet earlier PDP requirements (provide BMP	
type/description in discussion section below)	ment/forebay for an onsite retention or biofiltration	
-	hich onsite retention or biofiltration BMP it serves in	
discussion section below)	inclusive recention of biointration bioin it serves in	
	pliance (provide BMP type/description in discussion	
section below)		
Detention pond or vault for hydromodification mar	nagement	
⊠Other (describe in discussion section below)		
Purpose:		
⊠Pollutant control only		
Hydromodification control only		
Combined pollutant control and hydromodification	control	
□ Pre-treatment/forebay for another structural BMP		
□Other (describe in discussion section below)		
Who will certify construction of this BMP?	Alisa Vialpando, RCE.	
Provide name and contact information for the party	Avialpando@HunsakerSD.com	
responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of		
the manual)		
Who will be the final owner of this BMP?	Capstone Equities	
Who will maintain this BMP into perpetuity?	Capstone Equities	
What is the funding mechanism for maintenance?	Capstone Equities	

Form I-6 Page 4 of 14

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The proposed BF-3-1 is a volume-based proprietary biofiltration BMP (MWS-L-8-12) that treats runoff from DMA 1. It is situated downstream of the HMP-1 storage unit, which includes an outlet structure designed to regulate the flow to the MWS unit and control the drawdown time.

Drawdown Time = 63 hours

Treatment Volume (2 DCV) = 15,138 CF.

To meet minimum retention requirements for DMA1, dispersion areas site design BMPs are implemented.

Structural BMP ID No. BF-3-2 Tentative Map Sheet No. 5 Type of structural BMP: Retention by harvest and use (HU-1) Retention by harvest and use (HU-1) Retention by bioretention (INF-2) Retention by bioretention (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management MOther (describe in discussion section below) Purpose: SPOllutant control only Hydromodification control only Hydromodification ontoriol only Other (describe in discussion section below) Who will certify construction of this BMP? Provide ame and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (see Section 1.12 of the manual)	Form 1-6 I	Page 5 of 16
(Copy this page as needed to provide information for each individual proposed structural BMP) Structural BMP ID No. BF-3-2 Tentative Map Sheet No. 5 Type of structural BMP: Retention by harvest and use (HU-1) Retention by bioretention (INF-1) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP iscression below) Plow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Cletention pond or vault for hydromodification management SQ Other (describe in discussion section below) Purpose: Zipollutant control only Control only Hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Alisa Viapando, RCE. Avialpando@HunsakerSD.com Who will be the final owner of this BMP? Capstone Equities		0
Tentative Map Sheet No. 5 Type of structural BMP: □Retention by harvest and use (HU-1) □Retention by infiltration basin (INF-1) □Retention by bioretention (INF-2) □Retention by bioriltration with partial retention (PR-1) □Biofiltration (BF-1) □Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) □Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) □Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) □Detention pond or vault for hydromodification management ⊠Other (describe in discussion section below) Purpose: ⊠Pollutant control only □Pre-treatment/forebay for another structural BMP □Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will maintain this BMP into perpetuity? Capstone Equities		5
Type of structural BMP: □ Retention by harvest and use (HU-1) □ Retention by infiltration basin (INF-1) □ Retention by bioretention (INF-2) □ Retention by bioretention with partial retention (PR-1) □ Biofiltration (BF-1) □ Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) □ Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) □ Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) □ Detention pond or vault for hydromodification management ⊠ Other (describe in discussion section below) □ Purpose: ⊠ Pollutant control only □ Hydromodification control only □ Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will maintain this BMP into perpetuity? Capstone Equities	Structural BMP ID No. BF-3-2	
Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Other (describe in discussion section below) Purpose: ZPollutant control only Hydromodification control only Gorbined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will maintain this BMP into perpetuity? Capstone Equities	Tentative Map Sheet No. 5	
Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Plow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Plote-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Purpose: XPUPorpose: XPUPorpose: XPUPorpose: XPUPorpose: XPUPorpose: XPO will certify construction of this BMP? Provide name and contact information for the party required by the [City Engineer] (See Section 1.12 of the manual) Who will maintain this BMP into perpetuity? Capstone Equities	Type of structural BMP:	
Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management &Other (describe in discussion section below) Purpose: &Pollutant control only Hydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Alias Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (see Section 1.12 of the manua) Who will maintain this BMP into perpetuity? Capstone Equities	\Box Retention by harvest and use (HU-1)	
Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP is serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management 20ther (describe in discussion section below) Purpose: 2Pollutant control only Hydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Alias Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (see Section 1.12 of the manua) Who will maintain this BMP into perpetuity? Capstone Equities	\Box Retention by infiltration basin (INF-1)	
Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Observe thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Purpose: Solutiant control only Hydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will maintain this BMP into perpetuity? Capstone Equities	Retention by bioretention (INF-2)	
Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Xio Other (describe in discussion section below) Purpose: Xio Pollutant control only Hydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Who will maintain this BMP into perpetuity? Capstone Equities	□Retention by permeable pavement (INF-3)	
Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management ØOther (describe in discussion section below) Purpose: ØPollutant control only Hydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Who will maintain this BMP into perpetuity? Capstone Equities	\Box Partial retention by biofiltration with partial retention	n (PR-1)
type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management ØOther (describe in discussion section below) Purpose: ØPollutant control only Hydromodification control only Other (describe in discussion section below) Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities	□Biofiltration (BF-1)	
□ Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) □ Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) □ Detention pond or vault for hydromodification management ⊠ Other (describe in discussion section below) Purpose: ⊠ Pollutant control only □ Combined pollutant control and hydromodification control □ Pre-treatment/forebay for another structural BMP □ Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Who will maintain this BMP into perpetuity? Capstone Equities		roval to meet earlier PDP requirements (provide BMP
BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Ø Other (describe in discussion section below) Purpose: Ø Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities		
discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Alisa Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Alisa Vialpando @HunsakerSD.com Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities	•	5
Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities		nich onsite retention of diofiltration BIVIP it serves in
section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Porpose: Porpose: Porpodification control only Hydromodification control only Other (describe in discussion section below) Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Who will be the final owner of this BMP? Who will maintain this BMP into perpetuity? Capstone Equities		nliance (provide RMP type/description in discussion
□ Detention pond or vault for hydromodification management ☑ Other (describe in discussion section below) Purpose: ☑ Pollutant control only □ Hydromodification control only □ Combined pollutant control and hydromodification control □ Pre-treatment/forebay for another structural BMP □ Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Who will be the final owner of this BMP? Capstone Equities		phanee (provide bivin type/description in discussion
Image: Source in discussion section below) Purpose: Image: Pollutant control only Image: Pollutant control only Image: Pre-treatment/forebay for another structural BMP Image: Pre-treatment/forebay for another structural BMP? Image: Pre-treatment describe in discussion section below) Image: Pre-treatment describe in discussion section forms if required by the [City Engineer] (See Section 1.12 of the manual) Image: Pre-treatment describe in this BMP? Image: Pre-treatment describe in this BMP? Image: Pre-treatment describe in this BMP? Image: Pre-treatment description forms if required by the [City Engineer] (See Section 1.12 of the manual) Image: Pre-treatment description forms if the party required by the final owner of this BMP? Image: Pre-treatment description forms if the party required by the final owner of this BMP? Image: Pre-treatment description forms if the pre-treatment description forms if the party represent description forms if the party represent description forms if the party represent description forms description forms description forms description forms description forms description forms desc		nagement
Purpose: \Bigstyle Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Mho will maintain this BMP into perpetuity? Capstone Equities		
 Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Capstone Equities 		
 Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? 	Purpose:	
Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity?		
 Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? 		
Other (describe in discussion section below)Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Who will be the final owner of this BMP? Who will maintain this BMP into perpetuity?Capstone Equities		control
Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Alisa Vialpando, RCE. Avialpando@HunsakerSD.comWho will be the final owner of this BMP?Capstone EquitiesWho will maintain this BMP into perpetuity?Capstone Equities	5	
Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Avialpando@HunsakerSD.comWho will be the final owner of this BMP?Capstone EquitiesWho will maintain this BMP into perpetuity?Capstone Equities	\Box Other (describe in discussion section below)	
Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Avialpando@HunsakerSD.comWho will be the final owner of this BMP?Capstone EquitiesWho will maintain this BMP into perpetuity?Capstone Equities	Who will certify construction of this BMP?	Alisa Vialpando, RCE
responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Capstone EquitiesWho will be the final owner of this BMP?Capstone EquitiesWho will maintain this BMP into perpetuity?Capstone Equities		
the manual) Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities		
Who will be the final owner of this BMP? Capstone Equities Who will maintain this BMP into perpetuity? Capstone Equities		
Who will maintain this BMP into perpetuity? Capstone Equities		
	Who will be the final owner of this BMP?	Capstone Equities
What is the funding mechanism for maintenance? Capstone Equities	Who will maintain this BMP into perpetuity?	Capstone Equities
	What is the funding mechanism for maintenance?	Capstone Equities

Form I-6 Page 6 of 14

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The proposed BF-3-2 is a volume-based proprietary biofiltration BMP (MWS-L-4-8) that treats runoff from DMA 2. It is situated downstream of the HMP-2 storage unit, which includes an outlet structure designed to regulate the flow to the MWS unit and control the drawdown time.

Drawdown Time = 63 hours

Treatment Volume (2.0 DCV) = 6,570 CF

To meet minimum retention requirements for DMA2, dispersion areas site design BMPs are implemented.

Form I-6 F	Page 7 of 16
	mmary Information
	on for each individual proposed structural BMP)
Structural BMP ID No. BF-3-3	
Tentative Map Sheet No. 5	
Type of structural BMP:	
\Box Retention by harvest and use (HU-1)	
\Box Retention by infiltration basin (INF-1)	
□Retention by bioretention (INF-2)	
□Retention by permeable pavement (INF-3)	
Partial retention by biofiltration with partial retentio	n (PR-1)
□Biofiltration (BF-1)	
	roval to meet earlier PDP requirements (provide BMP
type/description in discussion section below)	
	ment/forebay for an onsite retention or biofiltration
	hich onsite retention or biofiltration BMP it serves in
discussion section below)	pliance (provide DMD type/description in discussion
section below)	pliance (provide BMP type/description in discussion
Detention pond or vault for hydromodification mar	pagement
Other (describe in discussion section below)	lagement
Purpose:	
⊠Pollutant control only	
□ Hydromodification control only	
□Combined pollutant control and hydromodification	control
□ Pre-treatment/forebay for another structural BMP	
\Box Other (describe in discussion section below)	
Who will certify construction of this BMP? Provide name and contact information for the party	Alisa Vialpando, RCE. Avialpando@HunsakerSD.com
responsible to sign BMP verification forms if	Aviaipando@Hullsakei3D.com
required by the [City Engineer] (See Section 1.12 of	
the manual)	
Who will be the final owner of this BMP?	Capstone Equities
Who will maintain this BMP into perpetuity?	Capstone Equities
What is the funding mechanism for maintenance?	Capstone Equities

Form I-6 Page 8 of 16

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The Proposed BF-3-3 is a flow based Proprietary Biofiltration BMP (MWS-L-4-13) that treats DMA 3.

Required flow rate to be treated = 0.133 cfs

Form 1.6	Page 9 of 16	
	Immary Information	
(Copy this page as needed to provide information for each individual proposed structural BMP)		
Structural BMP ID No. BF-3-4		
Tentative Map Sheet No. 4		
Type of structural BMP:		
□Retention by harvest and use (HU-1)		
□Retention by infiltration basin (INF-1)		
Retention by bioretention (INF-2)		
□Retention by permeable pavement (INF-3)		
Partial retention by biofiltration with partial retentic	on (PR-1)	
□Biofiltration (BF-1)		
	roval to meet earlier PDP requirements (provide BMP	
type/description in discussion section below)		
	ment/forebay for an onsite retention or biofiltration	
	hich onsite retention or biofiltration BMP it serves in	
discussion section below)	pliance (provide BMP type/description in discussion	
section below)	phance (provide Divir type/description in discussion	
Detention pond or vault for hydromodification mar	nagement	
⊠Other (describe in discussion section below)		
· · · · · · · · · · · · · · · · · · ·		
Purpose:		
□Hydromodification control only		
□Combined pollutant control and hydromodification	control	
□ Pre-treatment/forebay for another structural BMP		
\Box Other (describe in discussion section below)		
Who will certify construction of this BMP? Alisa Vialpando, RCE.		
Provide name and contact information for the party	Avialpando@HunsakerSD.com	
responsible to sign BMP verification forms if		
required by the [City Engineer] (See Section 1.12 of		
the manual)		
Who will be the final owner of this BMP?	Capstone Equities	
Who will maintain this BMP into perpetuity?	Capstone Equities	
What is the funding mechanism for maintenance?	Capstone Equities	

Form I-6 Page 10 of 16

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The Proposed BF-3-4 is a flow-based Proprietary Biofiltration BMP (MWS-L-4-4) that treats DMA 3. Required flow rate to be treated= 0.016 cfs

Form L-6 F	Page 11 of 16	
	ummary Information	
(Copy this page as needed to provide information for each individual proposed structural BMP)		
Structural BMP ID No. HMP-1		
Construction Plan Sheet No. 8		
Type of structural BMP:		
□Retention by harvest and use (HU-1)		
□Retention by infiltration basin (INF-1)		
Retention by bioretention (INF-2)		
□Retention by permeable pavement (INF-3)		
Partial retention by biofiltration with partial retention	on (PR-1)	
□Biofiltration (BF-1)		
	roval to meet earlier PDP requirements (provide BMP	
type/description in discussion section below)		
	tment/forebay for an onsite retention or biofiltration	
discussion section below)	hich onsite retention or biofiltration BMP it serves in	
	pliance (provide BMP type/description in discussion	
section below)	ipliance (provide Divir type/description in discussion	
Detention pond or vault for hydromodification mar	nagement	
□Other (describe in discussion section below)		
Purpose:		
□Pollutant control only		
☑ Hydromodification control only		
□Combined pollutant control and hydromodification	control	
□ Pre-treatment/forebay for another structural BMP		
\Box Other (describe in discussion section below)		
Who will certify construction of this BMP?	Alisa Vialpando, RCE.	
Provide name and contact information for the party	Alisa Vialpando, RCE. Avialpando@HunsakerSD.com	
responsible to sign BMP verification forms if		
required by the [City Engineer] (See Section 1.12 of		
the manual)		
Who will be the final owner of this BMP?	Capstone Equities	
Who will maintain this BMP into perpetuity?	Capstone Equities	
What is the funding mechanism for maintenance?	Capstone Equities	
L		

Form I-6 Page 12 of 16

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The CMP underground storage facility features an outlet structure and is comprised of seven barrels of 84" perforated pipes, with gravel between them (40% porosity) and a 0.5-foot layer of gravel above the pipes. This system provides water quality (WQ) storage for the downstream biofiltration BMP, hydromodification storage, and flow control, and peak flow detention.

Cumulative Storage= 40,273 cft. WQ ponding depth= 2.83 ft, drawdown time = 63 hrs HMP ponding depth= 5.51 ft 100 Year WSE= 6.5 ft Total depth of system 7.5 ft. Total system drawdown time= 91 hrs

Outlet structure:

Eight 0.5625" (9/16") orifice to drawdown the WQ volume within 63 hrs. These orifices direct flows to the downstream MWS unit BF-3-1.

Internal weir set at 2.83 ft to divert the flows associated with the volume that exceeds the required WQ volume to the bypass system.

1 X 0.5" orifice at 2.83 ft to the bypass storm drain system (bypassing MWS unit).

10X 2" orifices at 4.75 ft to the bypass storm drain system (bypassing MWS unit).

12 X 4" orifices at 5.0 ft to the bypass storm drain system (bypassing MWS unit).

Wall weir length 14 ft with rim at 6.4 ft.

Form Ho Page 13 of 16 Structural BMP Summary Information (Copy this page as needed to provide information for each individual proposed structural BMP) Structural BMP ID No. HMP-2 Construction Plan Sheet No. 5 Type of structural BMP: □Retention by havest and use (HU-1) □ □Retention by bioretention (INF-2) □ □Retention by permeable pavement (INF-3) □ □Partial retention by biofiltration with partial retention (PR-1) □ □Biofiltration (BF-1) □ □Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) □Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) □Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) © Detention pond or vault for hydromodification management □Other (describe in discussion section below) Purpose: □Pollutant control only □Combined pollutant control and hydromodification control □Pre-treatment/forebay for another structural BMP □	Form L6 P	2399 12 of 16	
(Copy this page as needed to provide information for each individual proposed structural BMP) Structural BMP ID No. HMP-2 Construction Plan Sheet No. 5 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by bioretention (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Purpose: Obtent (describe in discussion section below) Purpose: Other (describe in discussion section below) Who will certify construction of this BMP? Alisa Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities			
Structural BMP ID No. HMP-2 Construction Plan Sheet No. 5 Type of structural BMP: Retention by harvest and use (HU-1) Retention by bioretention (INF-1) Retention by bioretention (INF-2) Retention by bioretention (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) ©Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only KHydromodification control only Who will certify construction of this BMP? Alisa Vialpando, RCE. Provide ame and contact information forms if required by the [City Engineer] (See Section 1.12 of Who will be the final owner of this BMP? Capstone Equities	5		
Construction Plan Sheet No. 5 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioritention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Section below) © Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only & Hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BM			
Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Stotention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Klydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities			
Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Section below) Potention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only K Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities <td></td> <td></td>			
Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) © Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	51		
Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Bothward for below) Chow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities			
Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Botom section below) Plow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) © Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	□Retention by bioretention (INF-2)		
Partial retention by biofiltration with partial retention (PR-1) Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Botom section below) Plow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) © Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	□Retention by permeable pavement (INF-3)		
Biofiltration (BF-1) Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Stote below) Botention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Combined pollutant control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities		n (PR-1)	
type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Bottom pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Keyromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	\Box Biofiltration (BF-1)		
Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only KHydromodification control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Alisa Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	Flow-thru treatment control with prior lawful appr	roval to meet earlier PDP requirements (provide BMP	
BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) ØDetention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only KHydromodification control only Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	type/description in discussion section below)		
discussion section below) Image: Section below is a sectore below is a sectore below is a sectore be	□Flow-thru treatment control included as pre-treat	ment/forebay for an onsite retention or biofiltration	
Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Key description in discussion section below) Purpose: Pollutant control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities		hich onsite retention or biofiltration BMP it serves in	
section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Mho will be the final owner of this BMP? Capstone Equities			
Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities		pliance (provide BMP type/description in discussion	
Other (describe in discussion section below) Purpose: Pollutant control only Key and the section of the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities			
Purpose: Pollutant control only Pollutant control only Mydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Alisa Vialpando, RCE. Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Alisa Vialpando@HunsakerSD.com Who will be the final owner of this BMP? Capstone Equities		agement	
□ Pollutant control only □ Combined pollutant control and hydromodification control □ Pre-treatment/forebay for another structural BMP □ Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities			
 Hydromodification control only Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities 	Purpose:		
Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	Pollutant control only		
 Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities 	⊠Hydromodification control only		
Other (describe in discussion section below) Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	Combined pollutant control and hydromodification	control	
Who will certify construction of this BMP?Alisa Vialpando, RCE.Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual)Alisa Vialpando@HunsakerSD.comWho will be the final owner of this BMP?Capstone Equities	□ Pre-treatment/forebay for another structural BMP		
Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Avialpando@HunsakerSD.com Who will be the final owner of this BMP? Capstone Equities	\Box Other (describe in discussion section below)		
Provide name and contact information for the party responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Avialpando@HunsakerSD.com Who will be the final owner of this BMP? Capstone Equities			
responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities	5	•	
required by the [City Engineer] (See Section 1.12 of the manual) Who will be the final owner of this BMP? Capstone Equities		Aviaipando@HunsakerSD.com	
the manual) Who will be the final owner of this BMP? Capstone Equities			
Who will be the final owner of this BMP? Capstone Equities			
Who will maintain this BMP into perpetuity? Capstone Equities	Who will be the final owner of this BMP?	Capstone Equities	
	Who will maintain this BMP into perpetuity?	Capstone Equities	
What is the funding mechanism for maintenance? Capstone Equities	What is the funding mechanism for maintenance?	Capstone Equities	

Form I-6 Page 14 of 16

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The CMP underground storage facility features an outlet structure and is comprised of three barrels of 90" perforated pipes, with gravel between them (40% porosity) and a 0.75-foot layer of gravel above the pipes. This system provides water quality (WQ) storage for the downstream biofiltration BMP, hydromodification storage, and flow control, and peak flow detention.

Cumulative Storage= 18,273 cft.

WQ ponding depth= 3.0 ft, drawdown time = 63 hrs

HMP ponding depth= 6.6 ft

100 Year WSE= 7.10 ft

Total depth of system 8.17 ft. Total system drawdown time= 92 hrs

Outlet structure:

four 0.525" orifices to drawdown the WQ volume within 63 hrs. These orifices direct flows to the downstream MWS unit BF-3-2.

Internal weir set at 3.0 ft to divert the flows associated with the volume that exceeds the required WQ volume to the bypass system.

1 X 0.5" orifice at 3 ft to the bypass storm drain system (bypassing MWS unit).

4X 1" orifices at 5.50 ft to the bypass storm drain system (bypassing MWS unit).

12 X 3" orifices at 6.0 ft to the bypass storm drain system (bypassing MWS unit).

Wall weir length 14 ft with rim at 7 ft.

Form L6	Page 15 of 16		
	Immary Information		
(Copy this page as needed to provide information for each individual proposed structural BMP)			
Structural BMP ID No. HMP-4			
Construction Plan Sheet No. 4			
Type of structural BMP:			
Retention by harvest and use (HU-1)			
□Retention by infiltration basin (INF-1)			
□Retention by bioretention (INF-2)			
□Retention by permeable pavement (INF-3)			
□Partial retention by biofiltration with partial retention	on (PR-1)		
□Biofiltration (BF-1)			
□ Flow-thru treatment control with prior lawful app	roval to meet earlier PDP requirements (provide BMP		
type/description in discussion section below)			
	ment/forebay for an onsite retention or biofiltration		
	hich onsite retention or biofiltration BMP it serves in		
discussion section below)			
	pliance (provide BMP type/description in discussion		
section below)	aggement		
Detention pond or vault for hydromodification man	lagement		
□Other (describe in discussion section below)			
Purpose:			
□Pollutant control only			
⊠Hydromodification control only			
Combined pollutant control and hydromodification	control		
□ Pre-treatment/forebay for another structural BMP			
□Other (describe in discussion section below)			
Who will certify construction of this BMP?	Alisa Vialpando, RCE.		
Provide name and contact information for the party	Avialpando@HunsakerSD.com		
responsible to sign BMP verification forms if required by the [City Engineer] (See Section 1.12 of			
the manual)			
Who will be the final owner of this BMP?	Capstone Equities		
Who will maintain this BMP into perpetuity?	Capstone Equities		
What is the funding mechanism for maintenance?	Capstone Equities		

Form I-6 Page 16 of 16

Structural BMP Summary Information

(Copy this page as needed to provide information for each individual proposed structural BMP) Discussion (as needed):

The underground storage facility features an outlet structure has been preliminarly sized to be an underground vault with a minimum HMP Volume of 98 cubic feet to address hydromodification requirements. The San Diego County BMP sizing calculator worksheet has been used to size this BMP.

City of Oceanside 300 N Coast Highway Oceanside, CA 92054

Permanent BMP

February 2016

Self Certification Form

Construction

Date Prepared: TBD	Project No.: D24-00006
Project Applicant: TBD	Phone: TBD
Project Address: TBD	
Project Engineer: TBD	Phone: TBD

The purpose of this form is to verify that the site improvements for the project, identified above, have been constructed in conformance with the approved Storm Water Quality Management Plan (SWQMP) documents and drawings.

This form must be completed by the engineer and installing contractor and submitted prior to final inspection of the construction permit. Completion and submittal of this form is required for all new development and redevelopment projects in order to comply with the City's Storm Water ordinances and NDPES Permit Order No. R9-2013-0001. Final inspection for occupancy and/or release of grading or public improvement bonds may be delayed if this form is not submitted and approved by the City of Oceanside.

ENGINEER'S CERTIFICATION:

As the professional in responsible charge for the design of the above project, I certify that I have inspected all constructed Low Impact Development (LID) site design, source control and treatment control BMP's required per the approved SWQMP and Construction Permit No. Click here to enter text.; and that said BMP's have been constructed in compliance with the approved plans and all applicable specifications, permits, ordinances and Order No. R9-2013-0001 of the San Diego Regional Water Quality Control Board.

I understand that this BMP certification statement does not constitute an operation and maintenance verification.

Signature: _____

Date of Signature: _ TBD	
Printed Name: _ TBD	
Title: _ TBD	
Phone No TBD	
	Engineer's Stamp
CONTRACTOR'S CERTIFICA	TION
	-
	ible charge for construction of the above project, I certify that all opment (LID) site design, source control and treatment control
BMP's required per the approv	ed SWQMP and Construction Permit No. Click here to enter text.;
have been constructed in component permits, and ordinances.	pliance with the approved plans and all applicable specifications,
•	certification statement does not constitute an operation and
maintenance verification.	
Signature:	
Date of Signature: _ TBD	
Printed Name: <u>TBD</u>	
Title: _ <u>TBD</u>	
Phone No TBD	

ATTACHMENT 1

BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 1a	DMA Exhibit (Required) See DMA Exhibit Checklist.	⊠Included
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)* *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	 □Included on DMA Exhibit in Attachment 1a ⊠Included as Attachment 1b, separate from DMA Exhibit
Attachment 1c	Design Capture Volume Worksheet	⊠Included
Attachment 1d	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	Included □Not included because the entire project will use infiltration BMPs
Attachment 1e	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs) Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	☑Included □Not included because the entire project will use harvest and use BMPs
Attachment 1f	Pollutant Control BMP Design Worksheets / Calculations (Required) Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines	⊠Included

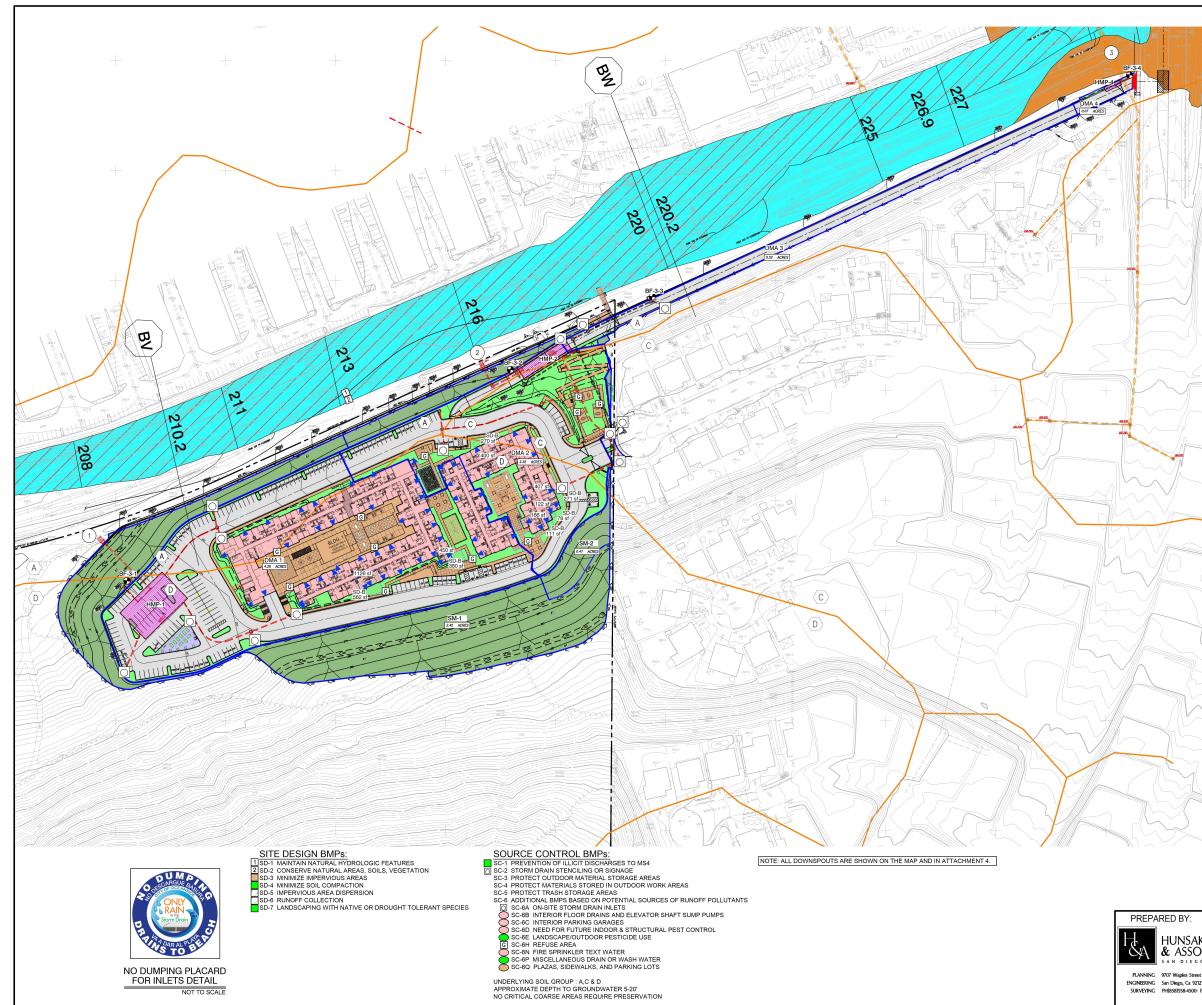


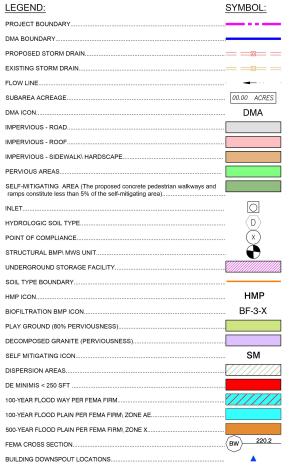
Use this checklist to ensure the required information has been included on the DMA Exhibit:

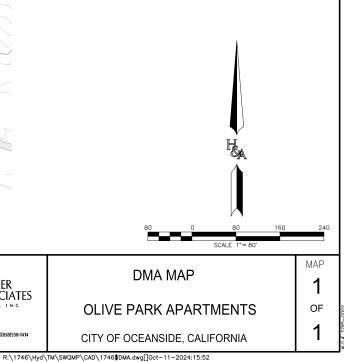
The DMA Exhibit must identify:

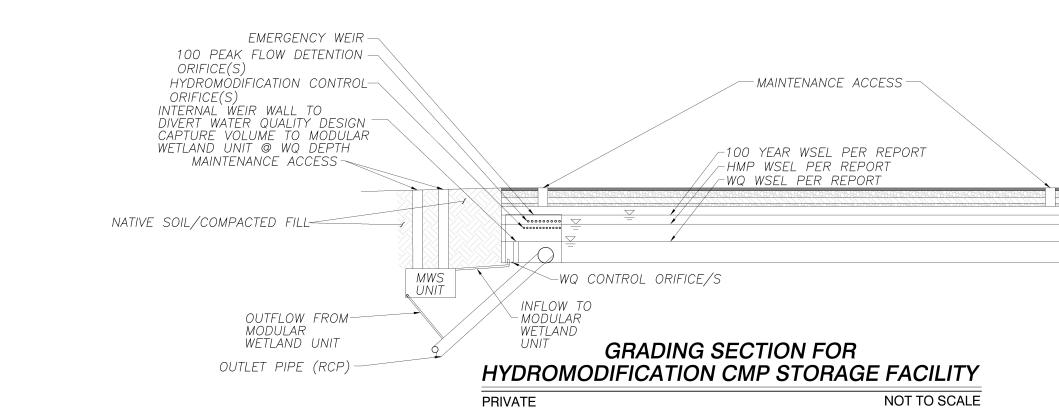
Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography and impervious areas
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed design features and surface treatments used to minimize imperviousness
Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
Potential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Form I-3B)

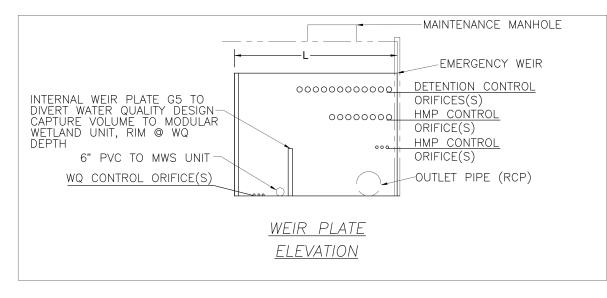
Structural BMPs (identify location, type of BMP, and size/detail)



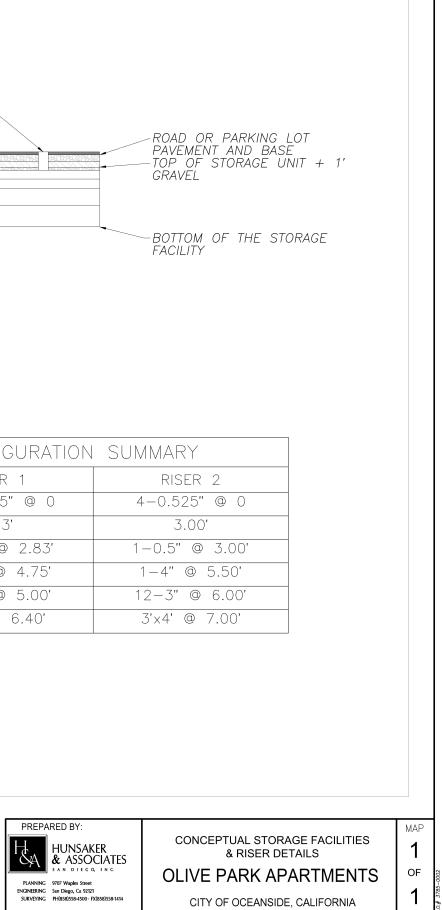

Placeholder – DMA Exhibit

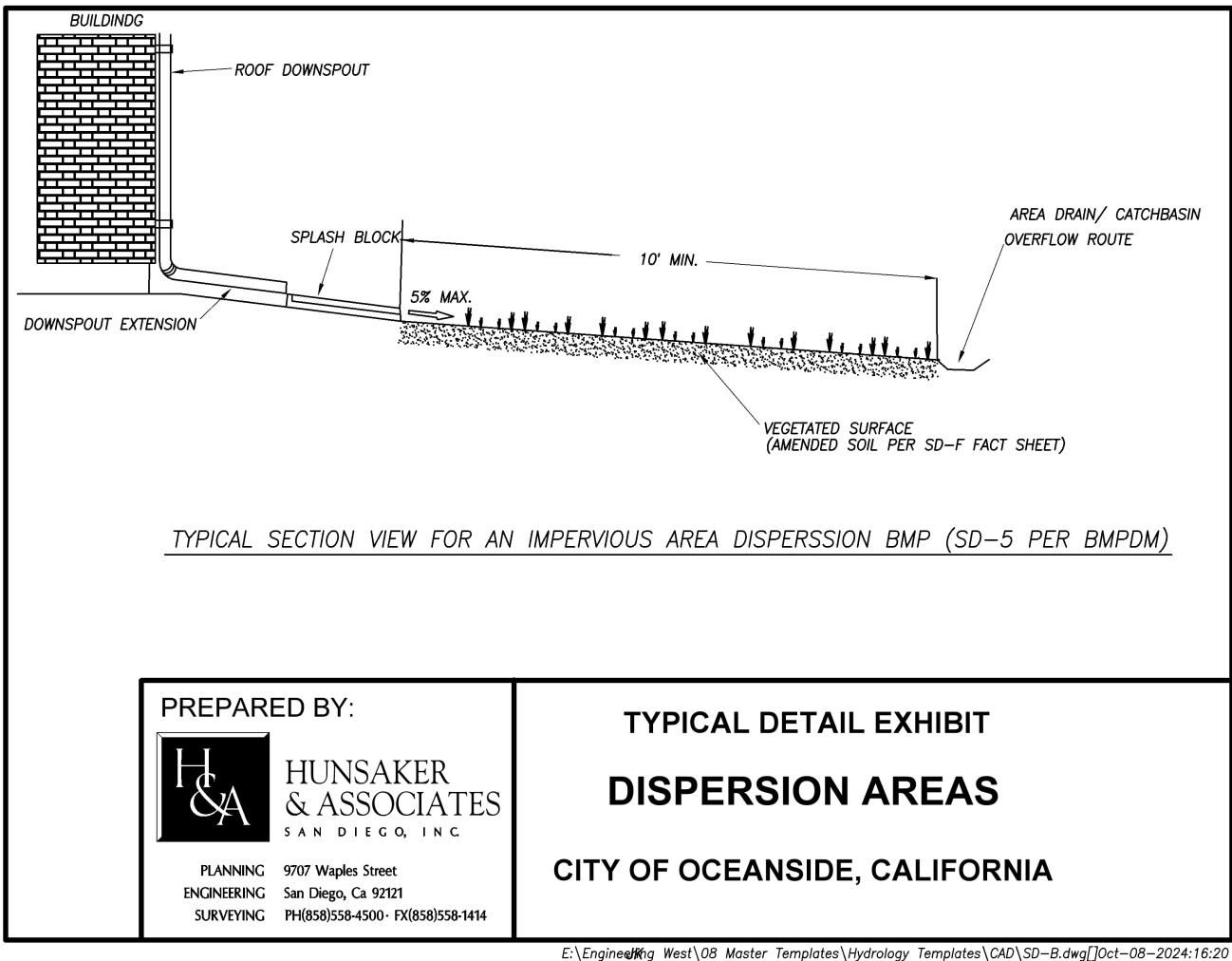

Please provide the Exhibit in 24"x36" format with map pocket, wet stamp, and date.


LEGEND:

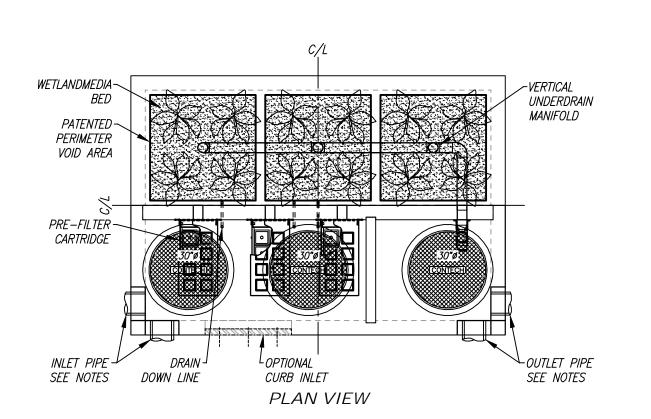


HUNSAKER & ASSOCIATES SAN DIEGO, INC

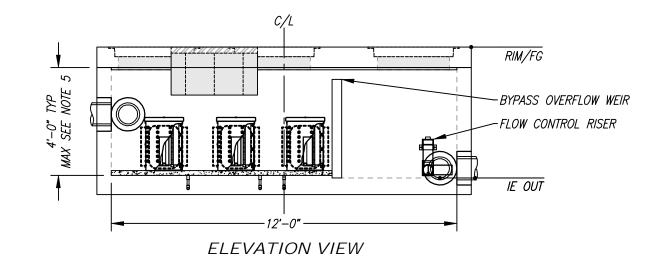

ENGINEERING San Diego, Ca 92121 SURVEYING PH(858)558-4500 FX(858)558-141



RISER ORIF	FICE CONFIGURAT
riser #	RISER 1
WQ ORIFICE(S)	8-0.5625" @ 0
WQ DEPTH	2.83'
LOW ORIFICE(S)	1-0.5" @ 2.83'
MIDDLE ORIFICE(S)	10-2" @ 4.75'
TOP ORIFICE(S)	12-4" @ 5.00'
EMERGENCY RISER	3'x4' @ 6.40'

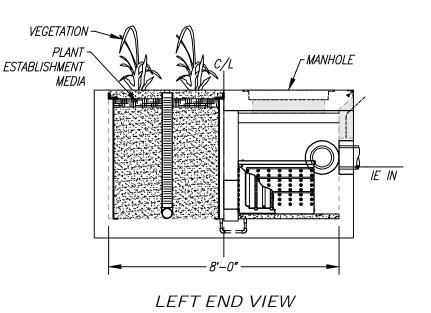


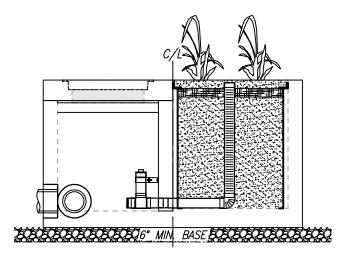
R:\1746\Hyd\TM\SWQMP\CAD\1746 HYD_HMP_SWQMP_DETAIL.dwg[]Oct-08-2024:16:21



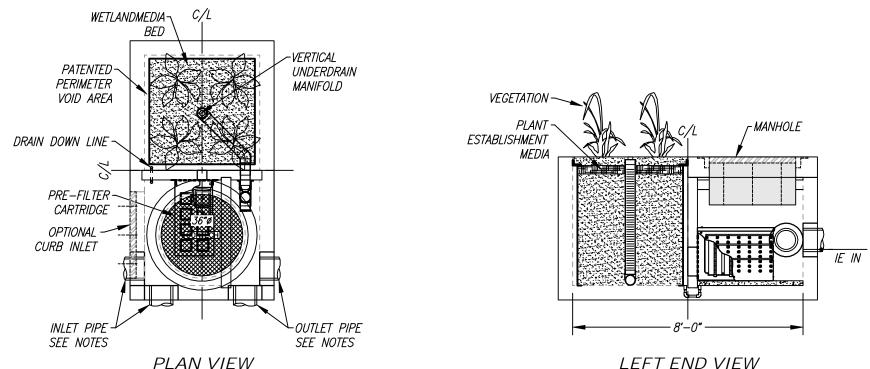
	SITE SPEC	IFIC DATA	
PROJECT NUMBER		TBD	
PROJECT NAME		OLIVE PARK	APARTMENTS
PROJECT LOCAT	'ON	OCEANS	SIDE, CA
STRUCTURE ID		BF-	-3–1
	TREATMENT	REQUIRED	
TREATMENT VOL	UME (CFS)		15,138
PRETREATMENT	LOADING RATE (GF	PM/SF)	TBD
WETLAND MEDIA LOADING RATE (GPM/SF)		0.26	
PEAK BYPASS REQUIRED (CFS) – IF APPLICABLE		IF APPLICABLE	N/A
PIPE DATA	<i>I.E</i> .	MATERIAL	DIAMETER
INLET PIPE 1	TBD	PVC	8"
INLET PIPE 2			
OUTLET PIPE	TBD	PVC	8"
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION	TBD	TBD	TBD
SURFACE LOAD			
NOTES:			

INSTALLATION NOTES


- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURER'S SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURER'S CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE FOR VERIFYING PROJECT ENGINEER'S RECOMMENDED BASE SPECIFICATIONS.
- 3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATERTIGHT PER MANUFACTURER'S STANDARD CONNECTION DETAIL. CONTRACTOR RESPONSIBLE FOR CONTACTING CONTECH FOR 4.
- ACTIVATION OF UNIT. MANUFACTURER'S WARRANTY IS VOID WITHOUT PROPER ACTIVATION BY A CONTECH REPRESENTATIVE. VERTICAL HEIGHT VARIES BASED ON SITE SPECIFIC 5.
- REQUIREMENTS.

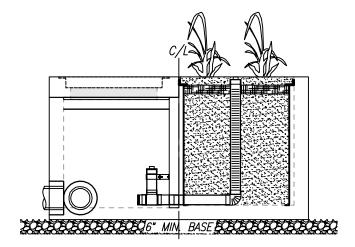


THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF CONTECH AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF CONTECH.



RIGHT END VIEW

MWS-L-8-12-V STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL


	SITE SPEC	IFIC DATA	
PROJECT NUMBER		TBD	
PROJECT NAME		OLIVE PARK APARTMENTS	
PROJECT LOCATION		OCEANSIDE, CA	
STRUCTURE ID		BF3-2	
	TREATMENT	REQUIRED	
TREATMENT VOLUME (CF)			6464
PRETREATMENT LOADING RATE (GPM/SF)			TBD
WETLAND MEDIA LOADING RATE (GPM/SF)			0.26
PEAK BYPASS REQUIRED (CFS) – IF APPLICABLE			N/A
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1	TBD	PVC	6"
INLET PIPE 2			
OUTLET PIPE	TBD	PVC	6"
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION	TBD	TBD	TBD
SURFACE LOAD			•
NOTES:			

INSTALLATION NOTES

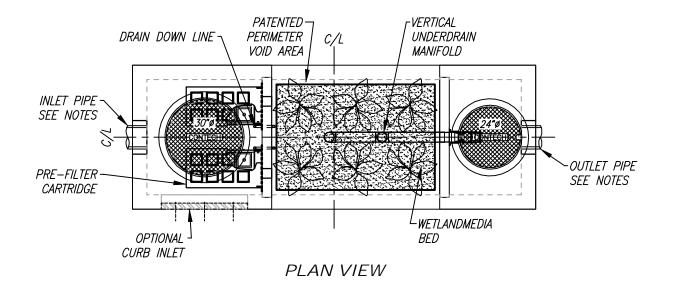
- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURER'S SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURER'S CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE FOR VERIFYING PROJECT ENGINEER'S RECOMMENDED BASE SPECIFICATIONS.
- 3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATERTIGHT PER MANUFACTURER'S STANDARD CONNECTION DETAIL.
- CONTRACTOR RESPONSIBLE FOR CONTACTING CONTECH FOR 4. ACTIVATION OF UNIT. MANUFACTURER'S WARRANTY IS VOID WITHOUT PROPER ACTIVATION BY A CONTECH REPRESENTATIVE. VERTICAL HEIGHT VARIES BASED ON SITE SPECIFIC 5.
- REQUIREMENTS.

C/L RIM/FG 5 TYP NOTE -BYPASS OVERFLOW WEIR FLOW CONTROL RISER '-0" SEE MAX IE OUT — 4'-0" — ELEVATION VIEW

PROPRIETARY AND CONFIDENTIAL:

VETLANDS

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF CONTECH AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF CONTECH.


LEFT END VIEW

RIGHT END VIEW

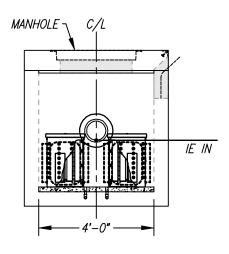
MWS-L-4-8-V STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL

	SITE SPEC	IFIC DATA	
PROJECT NUMBE	R	TE	BD
PROJECT NAME		OLIVE PARK	APARTMENTS
PROJECT LOCATION		OCEANS	NDE, CA
STRUCTURE ID		BF-	3–3
	TREATMENT	REQUIRED	
TREATMENT FLO	N (CFS)		0.144
PRETREATMENT	LOADING RATE (GF	PM/SF)	TBD
WETLAND MEDIA LOADING RATE (GPM/SF)			0.26
PEAK BYPASS R	REQUIRED (CFS) – IF APPLICABLE		TBD
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE	TBD	HDPE	18"
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION	TBD	TBD	TBD
		•	

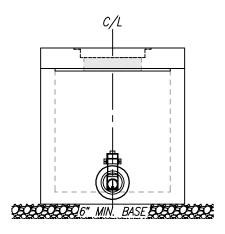
INSTALLATION NOTES

- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURER'S SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURER'S CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE FOR VERIFYING PROJECT ENGINEER'S RECOMMENDED BASE SPECIFICATIONS.
- 3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATERTIGHT PER MANUFACTURER'S STANDARD CONNECTION DETAIL.
- CONTRACTOR RESPONSIBLE FOR CONTACTING CONTECH FOR 4. ACTIVATION OF UNIT. MANUFACTURER'S WARRANTY IS VOID WITHOUT PROPER ACTIVATION BY A CONTECH REPRESENTATIVE. VERTICAL HEIGHT VARIES BASED ON SITE SPECIFIC 5.

REQUIREMENTS.

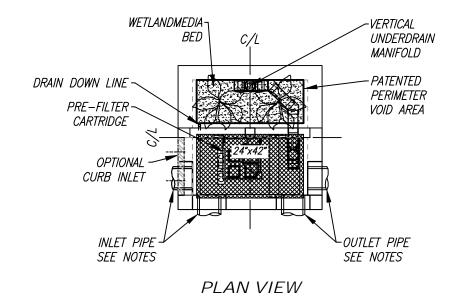


ELEVATION VIEW



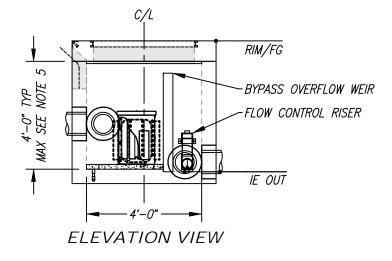
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF CONTECH AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF CONTECH.

LEFT END VIEW



RIGHT END VIEW

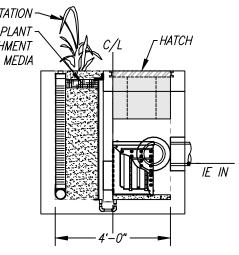
MWS-L-4-13-V STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL


SITE SPECIFIC DATA					
PROJECT NUMBL	ER	TBD			
PROJECT NAME		OLIVE PARK APARTMENTS			
PROJECT LOCAT	ION	OCEANS	SIDE, CA		
STRUCTURE ID		BF-	-3-4		
	TREATMENT	REQUIRED			
TREATMENT FLO	W (CFS)		0.052		
PRETREATMENT	LOADING RATE (GF	PM/SF)	TBD		
WETLAND MEDIA LOADING RATE (GPM/SF)			0.26		
PEAK BYPASS REQUIRED (CFS) – IF APPLICABLE			TBD		
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER		
INLET PIPE 1					
INLET PIPE 2					
OUTLET PIPE	TBD	HDPE	18"		
	PRETREATMENT BIOFILTRATION				
RIM ELEVATION	TBD	TBD	TBD		
SURFACE LOAD	SURFACE LOAD				
NOTES:					

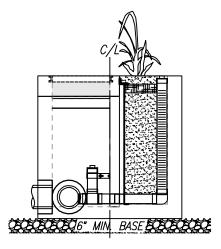
VEGETATION PLANT ESTABLISHMENT MEDIA

INSTALLATION NOTES

- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURER'S SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURER'S CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE FOR VERIFYING PROJECT ENGINEER'S RECOMMENDED BASE SPECIFICATIONS.
- 3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATERTIGHT PER MANUFACTURER'S STANDARD CONNECTION DETAIL.
- CONTRACTOR RESPONSIBLE FOR CONTACTING CONTECH FOR ACTIVATION OF UNIT. MANUFACTURER'S WARRANTY IS VOID WITHOUT PROPER ACTIVATION BY A CONTECH REPRESENTATIVE.
 VERTICAL HEIGHT VARIES BASED ON SITE SPECIFIC
- REQUIREMENTS.



PROPRIETARY AND CONFIDENTIAL:


ETLANDS

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF CONTECH AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF CONTECH.

LEFT END VIEW

RIGHT END VIEW

MWS-L-4-4-V STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL

PROJECT SUMMARY

CALCULATION DETAILS · LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 767 LF

STORAGE SUMMARY

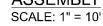
- STORAGE VOLUME REQUIRED = 40,000 CF
- PIPE STORAGE VOLUME = 29,518 CF
- BACKFILL STORAGE VOLUME = 10,756 CF
- TOTAL STORAGE PROVIDED = 40,274 CF
- STONE VOID = 40%

PIPE DETAILS

- DIAMETER = 84"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = PERFORATED
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 6"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"


<u>NOTES</u>

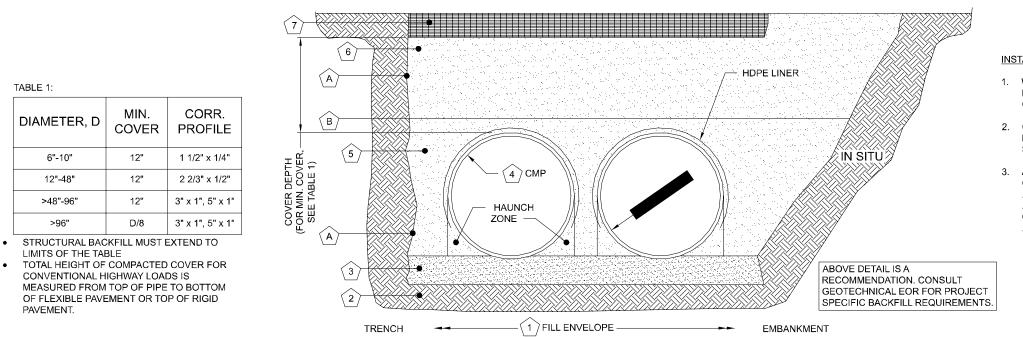
- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE
- DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS. The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contract Engineered Schultmer LC (Context). Neither this drawing nor any part thereof, may be used, reproduced or modified in any manner without the prior writem consent of Contech. Failure to comply is done at the user's own risk and Contech. Pailure to comply is done at the user's own risk and such use

DATE

If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as till owich progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.

-		
67'-0"		
		~ /
	ASSEMBL	Y

DYO47951 Olive Park


	ENGINEERED SOLUTIONS LLC
	www.ContechES.com
	9025 Centre Pointe Dr., Suite 400, West Chester, 0
BY	800-338-1122 513-645-7000 513-645-7
	BY

CINTECH

HMP-1

Apartments e-1 CA STEM	33155 DESIGNED: DYO CHECKED: DYO	Q. No.: DATE: 47951 B/7/2024 DRAWN: DYO APPROVED: DYO
STEM	SHEET NO.:	1

MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT

TABLE 2	PERFORATED	STANDARD

CMP RETENTION STANDARD BACKFILL SPECIFICATIONS

	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION	
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
2	FOUNDATION	AASHTO 26.5.2 - PER ENGINEER OF RECORD	PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDA	
3	BEDDING	AASHTO M 43: 3, 357, 4, 467, 5, 56, 57	ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLA MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEF AASHTO SOIL CLASSIFICATIONS A1, A2, OF	
4			CORRUGATED METAL PIPE	
5	BACKFILL	FREE-DRAINING, ANGULAR, NATURALLY OCCURRING WASHED-STONE PER AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 OR APPROVED EQUAL *	HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLA LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BAC ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL S CONVENTIONAL COMPACTION TESTING IS NOT PRACTICAL, THE MATERIAL SHALL I COMPACTOR. AREAS WITH HIGH WATER TABLE FLUCTUATIONS THAT INTERACT WITH THE PIP	CKFILL SHALL BE PLACED SUCH THAT THERE IS N SHOULD BE ADVANCED ALONG THE LENGTH OF T BE MECHANICALLY COMPACTED UNTIL NO FURTH
6	COVER MATERIAL UP	TO MIN. COVER - AASHTO M 145: A-1, A-2, A-3 AB(MIN. COVER - PER ENGINEER OF RECORD	OVE COVER MATERIAL MAY INCLUDE NON-BITUMIN	IOUS, GRANULAR ROADBASE MATERIAL WITHIN N
	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER PROJECT PLANS AND SPE	THE CMP. FINAL BACKFILL MATERIAL SELECTION CIFICATIONS PER THE ENGINEER OF RECORD.
Â	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED	O ON SIDES OF EXCAVATION TO PREVENT SOIL N
B	GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE L	AYER IS RECOMMENDED TO BE PLACED BETWEE
	NOTEO			

NOTES:

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5 INCLUDE CA-7, MIDOT 6AA, 6A, OR 5G, PROVIDED THEY MEET THE PARTICLE SIZES INDICATED.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Conteck Engineered Solutions LLC ('Contach'). Neither this drawing, nor any part threed, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.			ENGINEERED SOLUTIONS LLC	CMANTECH [®] CMP DETENTION SYSTEMS	DYO47951 Olive Park A West Storage
If discrepancies between the supplied information upon which			www.ContechES.com	CONTECH	Oceanside, C
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech			9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	DYODS	DETENTION SYS
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION BY	, 000-336-1122 313-043-7000 313-043-7993 FAA		

INSTALLATION NOTES

- 1. WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. AN HDPE MEMBRANE LINER WILL BE PLACED ON THE CROWN OF EACH PIPE TO PROVIDE AN IMPERMEABLE BARRIER AGAINST ENVIRONMENTAL CHANGES THAT MAY ADVERSELY AFFECT THE SYSTEM OVER TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL TECHNICAL DETAILS.

DTH (IN FEET) FOR INITIAL FILL ENVELOPE:
PIPE < 24": 3.0D
E 24" - 144": D + 4'0"
PE > 144": D + 10'0"

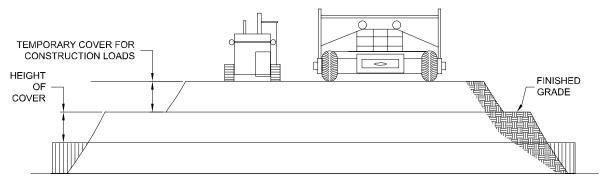
VENT THAT UNSUITABLE FOUNDATION MATERIALS ARE MATERIAL APPROVED BY THE ENGINEER OF RECORD.

/ELY LOOSE, NATIVE SUITABLE WELL GRADED GRANULAR LE OPEN GRADED GRANULAR BEDDING CONFORMING TO R AASHTO 26.3.8.1

ITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/-IS NO MORE THAN A TWO LIFT (16") DIFFERENTIAL BETWEEN IF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WHERE RTHER YIELDING OF MATERIAL IS OBSERVED UNDER THE

**IN

LE SEPARATION LAYER TO PREVENT SOIL MIGRATION.


IN MIN COVER LIMITS

ION AND COMPACTION REQUIREMENTS SHALL FOLLOW THE D.

L MIGRATION.

VEEN THE LAYERS TO PREVENT SOIL MIGRATION.

	PROJECT No.:	SEQ. I	No.:	DATE:
Apartments	33155	479	951	8/7/2024
	DESIGNED:		DRAW	'N:
-1	DYO			DYO
Α	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
. =				1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	AXLE LOADS (kips)					
INCHES	18-50	50-75	75-110	110-150		
	MINIMUM COVER (FT)					
12-42	2.0	2.5	3.0	3.0		
48-72	3.0	3.0	3.5	4.0		
78-120	3.0	3.5	4.0	4.0		
126-144	3.5	4.0	4.5	4.5		

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPT	TUAL
PURPOSES AND DO NOT REFLECT ANY	Y LOCAI
PREFERENCES OR REGULATIONS. PLE	EASE
CONTACT YOUR LOCAL CONTECH REF	P FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided	
as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this	

Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and		
Contech expressly disclaims any liability or responsibility for such use		
[
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported		
to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or	DATE	
inaccurate information supplied by others.		

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZAMENTE COATED: AASHTO M-245 OR ASTM A-762

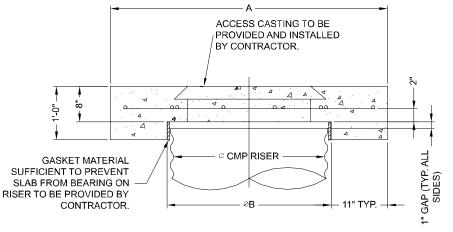
ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

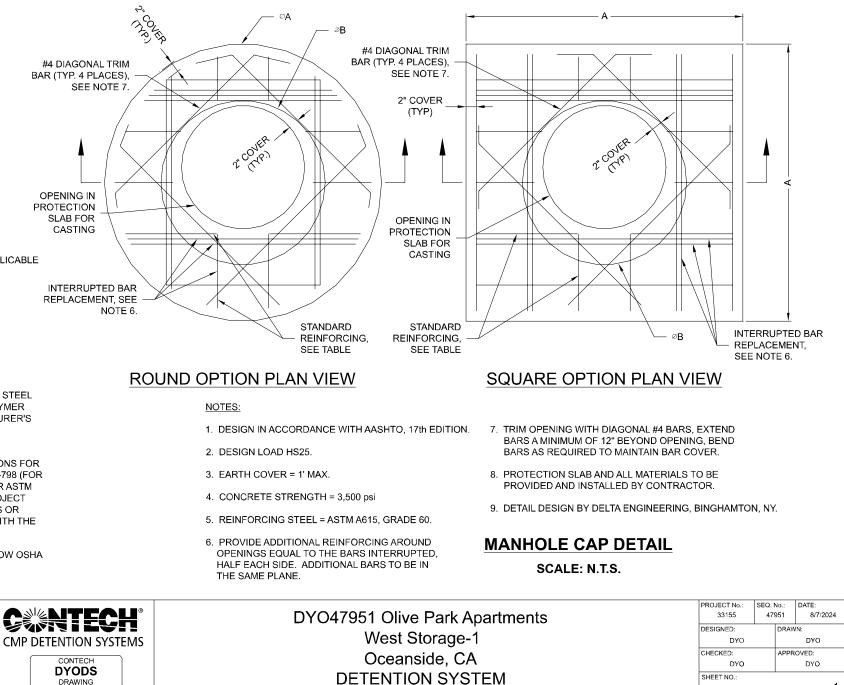
BY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL ARPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

- REQUIREMENTS
- INSTALLATION


SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**


> ENGINEERED SOLUTIONS LLC www.ContechES.com

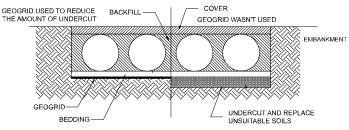
9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

800-338-1122 513-645-7000 513-645-7993 FAX

SECTION VIEW

[
	R	EINFO	RCING TABLE	
∅ CMP RISER	A	ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	⊘ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

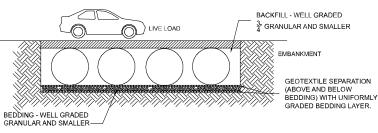
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

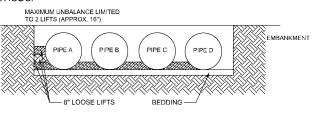
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

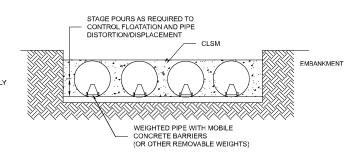
GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

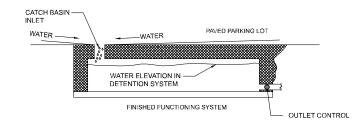
IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.


BACKFILL PLACEMENT

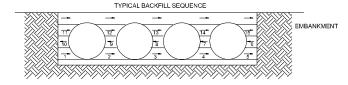
MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER. WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.


ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS REASON, IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY WEATHER. THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTIN TO DEVINCE THE PIPE.

20 MIL PE IMPERMEABLE	(12" FOR 12"0 - 96"0) 18" FOR 102: AND >)	
		LIMITS OF REQUIRED BACKFILL TBD'TYP

DYO47951 Olive Park A West Storage-Oceanside, C/ DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:	
Apartments	33155	479	951	8/7/2024	
	DESIGNED:		DRAW	N:	
-1	DYO			DYO	
A	CHECKED:		APPR	OVED:	
[,] A	DYO			DYO	
STEM	SHEET NO .:				
					1

PROJECT SUMMARY

CALCULATION DETAILS · LOADING = HS20/HS25

• APPROX. LINEAR FOOTAGE = 306 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 13,519 CF
- BACKFILL STORAGE VOLUME = 4,859 CF
- TOTAL STORAGE PROVIDED = 18,377 CF
- STONE VOID = 40%

PIPE DETAILS

- DIAMETER = 90"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = PERFORATED
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 9"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

<u>NOTES</u>

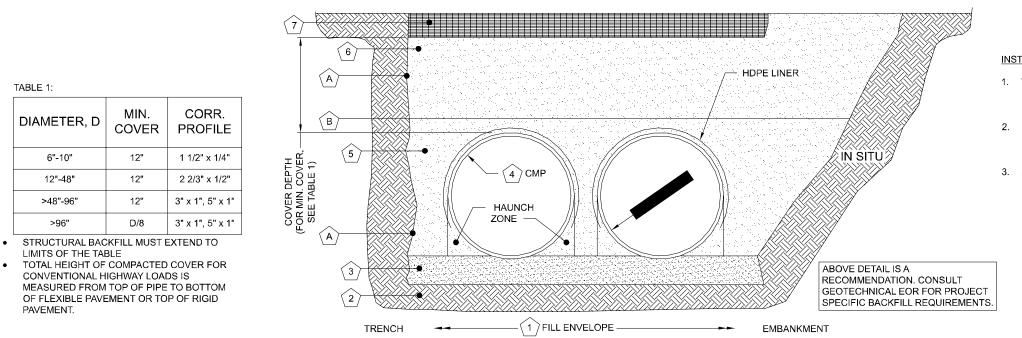
- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE. • QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO
- EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
- THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

		 1	00'-0" ————	
<u> </u>		111		
<u> </u>				

SCALE: 1" = 10'

NNOSNHO	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				
IC.YME	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				ENGI
SERSUEF	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				9025 Centre Poi
C:/U	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122

NTECH IGINEERED SOLUTIONS LLC www.ContechES.com e Pointe Dr., Suite 400, West Chester, OH 45069 513-645-7000 513-645-7993 FAX


CINTECH® CMP DETENTION SYSTEMS CONTECH DYODS DRAWING

DYO47954 Olive Park East Storage-Oceanside, C **DETENTION SYS**

HMP-2

-	1	1
		3
 -	1	1
	1	1
		ļ
	L	-

	PROJECT No .:	SEQ. N	No.:	DATE:	
Apartments	33155	479	954	8/7/202	4
	DESIGNED:		DRAW	'N:	
-2	DYO		DYO		
A	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				
					1

MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT

TABLE 2	PERFORATED	STANDARD

CMP RETENTION STANDARD BACKFILL SPECIFICATIONS

	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION				
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE ≤ 12": D + 16" PIPE > 12": 1.5D + 12"	MINIMUM EMBANKMENT WIDTI PIF PIPE 2 PIPE			
2	FOUNDATION	AASHTO 26.5.2 - PER ENGINEER OF RECORD	RD PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN T ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A				
3	BEDDING	AASHTO M 43: 3, 357, 4, 467, 5, 56, 57	ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLA MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEF AASHTO SOIL CLASSIFICATIONS A1, A2, OF				
4	4 CORRUGATED METAL PIPE						
5	BACKFILL	FREE-DRAINING, ANGULAR, NATURALLY OCCURRING WASHED-STONE PER AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 OR APPROVED EQUAL *	HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLA LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BAC ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL S CONVENTIONAL COMPACTION TESTING IS NOT PRACTICAL, THE MATERIAL SHALL I COMPACTOR. AREAS WITH HIGH WATER TABLE FLUCTUATIONS THAT INTERACT WITH THE PIP	CKFILL SHALL BE PLACED SUCH THAT THERE IS N SHOULD BE ADVANCED ALONG THE LENGTH OF T BE MECHANICALLY COMPACTED UNTIL NO FURTH			
6	COVER MATERIAL UP	TO MIN. COVER - AASHTO M 145: A-1, A-2, A-3 AB(MIN. COVER - PER ENGINEER OF RECORD	OVE COVER MATERIAL MAY INCLUDE NON-BITUMIN	IOUS, GRANULAR ROADBASE MATERIAL WITHIN N			
	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER PROJECT PLANS AND SPE	THE CMP. FINAL BACKFILL MATERIAL SELECTION CIFICATIONS PER THE ENGINEER OF RECORD.			
Â	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED	O ON SIDES OF EXCAVATION TO PREVENT SOIL N			
B	GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE L	AYER IS RECOMMENDED TO BE PLACED BETWEE			
	NOTEO						

NOTES:

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5 INCLUDE CA-7, MIDOT 6AA, 6A, OR 5G, PROVIDED THEY MEET THE PARTICLE SIZES INDICATED.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof. may be used, reproduced or				C INTECH	CENTECH ®	DYO47954 Olive Park Apartments	PROJECT No.: 33155	SEQ. No.: 47954	DATE: 8/7/2024
modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for						East Storage-2	DESIGNED: DYO	DRA	AWN:
such use.				www.ContechES.com		Oceanside, CA	CHECKED:	APP	PROVED:
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	DETENTION SYSTEM	DYO SHEET NO.:		DYO
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	DETENTION OF OTEN			1

INSTALLATION NOTES

- 1. WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. AN HDPE MEMBRANE LINER WILL BE PLACED ON THE CROWN OF EACH PIPE TO PROVIDE AN IMPERMEABLE BARRIER AGAINST ENVIRONMENTAL CHANGES THAT MAY ADVERSELY AFFECT THE SYSTEM OVER TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL TECHNICAL DETAILS.

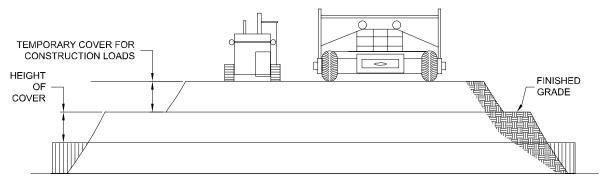
DTH (IN FEET) FOR INITIAL FILL ENVELOPE:
PIPE < 24": 3.0D
E 24" - 144": D + 4'0"
PE > 144": D + 10'0"

VENT THAT UNSUITABLE FOUNDATION MATERIALS ARE MATERIAL APPROVED BY THE ENGINEER OF RECORD.

/ELY LOOSE, NATIVE SUITABLE WELL GRADED GRANULAR LE OPEN GRADED GRANULAR BEDDING CONFORMING TO R AASHTO 26.3.8.1

ITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/-IS NO MORE THAN A TWO LIFT (16") DIFFERENTIAL BETWEEN IF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WHERE RTHER YIELDING OF MATERIAL IS OBSERVED UNDER THE

**IN


LE SEPARATION LAYER TO PREVENT SOIL MIGRATION.

IN MIN COVER LIMITS

ION AND COMPACTION REQUIREMENTS SHALL FOLLOW THE D.

L MIGRATION.

VEEN THE LAYERS TO PREVENT SOIL MIGRATION.

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	AXLE LOADS (kips)								
INCHES	18-50	50-75	75-110	110-150					
	MINIMUM COVER (FT)								
12-42	2.0	2.5	3.0	3.0					
48-72	3.0	3.0	3.5	4.0					
78-120	3.0	3.5	4.0	4.0					
126-144	3.5	4.0	4.5	4.5					

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPT	TUAL
PURPOSES AND DO NOT REFLECT ANY	Y LOCAI
PREFERENCES OR REGULATIONS. PLE	EASE
CONTACT YOUR LOCAL CONTECH REF	P FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided	
as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this	

Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and		
Contech expressly disclaims any liability or responsibility for		
such use.		
	1	
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported	1	
to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZAMENTE COATED: AASHTO M-245 OR ASTM A-762

800-338-1122

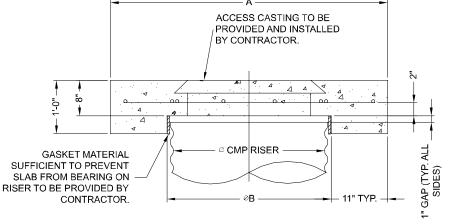
BY

ALUMINUM: AASHTO M-196 OR ASTM B-745

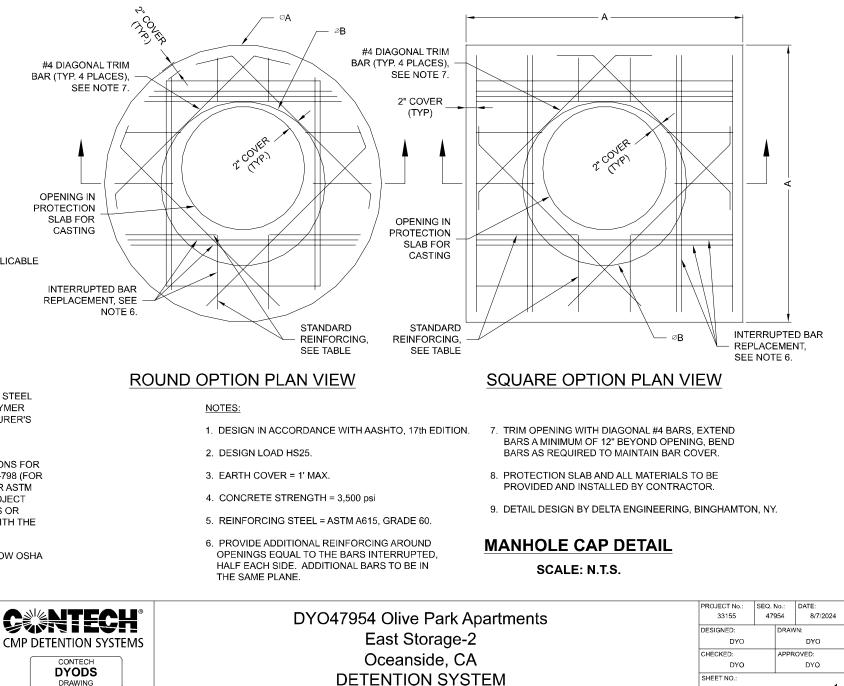
APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL ARPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

- REQUIREMENTS
- INSTALLATION


SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**


> ENGINEERED SOLUTIONS LLC www.ContechES.com

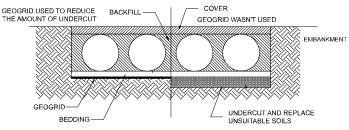
9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7000 513-645-7993 FAX

SECTION VIEW

	REINFORCING TABLE								
Ø CMP RISER	А	ØB	REINFORCING	**BEARING PRESSURE (PSF)					
24"	⊘ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780					
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530					
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350					
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210					
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100					

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

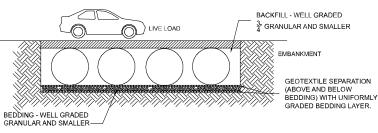
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

GEOMEMBRANE BARRIER

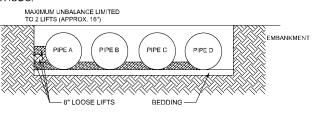
The design and informat as a service to the proje Contech Engineered So

drawing, nor any part the modified in any manner Contech. Failure to con

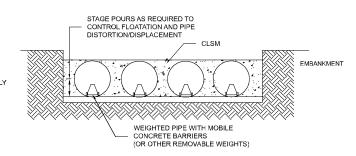
If discrepancies betwee the drawing is based at as site work progresses to Contech immediately accepts no liability for c


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

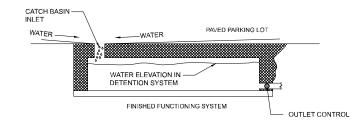
IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.


BACKFILL PLACEMENT

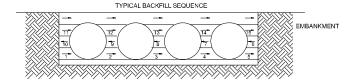
MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER. WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS REASON, IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY WEATHER. THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTIN THE OUTLET PIPE.

20 MIL PE IMPERMEABLE	(12" FOR 12"0 - 96"0) 18" FOR 102:: AND >)	
		LIMITS OF REQUIRED BACK/ILL TBD' TYP

mation shown on this drawing is provided roject owner, engineer and contractor by Solutions LLC ("Contech"). Neither this						
t thereof, may be used, reproduced or ner without the prior written consent of				C NTECH	C INTECH®	
comply is done at the user's own risk and isclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
reen the supplied information upon which				www.ContechES.com	CONTECH	
and actual field conditions are encountered ses, these discrepancies must be reported elv for re-evaluation of the design. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	DYODS	
r designs based on missing, incomplete or n supplied by others.	DATE	REVISION DESCRIPTION	ΒY	600-338-1122 513-645-7000 513-645-7993 FAX		

DYO47954 Olive Park A East Storage-Oceanside, C DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

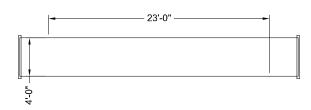
THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:
Apartments	33155	479	954	8/7/2024
	DESIGNED:		DRAW	N:
-2	DYO		DYO	
Α	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

PROJECT SUMMARY

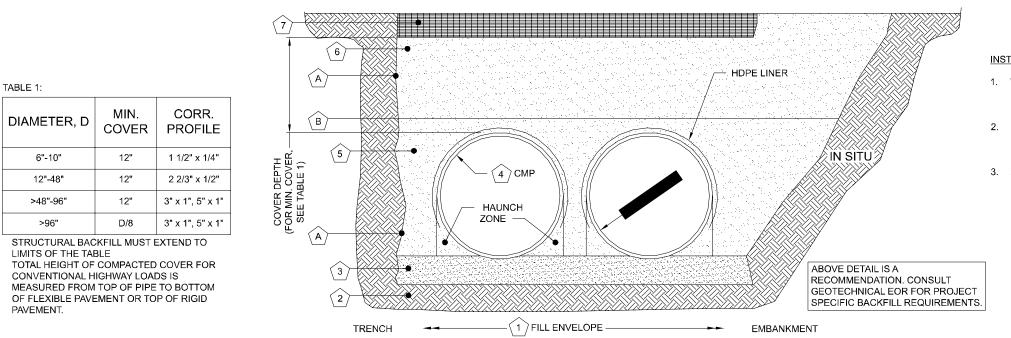
CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 29 LF

STORAGE SUMMARY


- STORAGE VOLUME REQUIRED = 550 CF
- PIPE STORAGE VOLUME = 364 CF
- BACKFILL STORAGE VOLUME = 226 CF
- TOTAL STORAGE PROVIDED = 591 CF
- STONE VOID = 40%

PIPE DETAILS

- DIAMETER = 48"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = PERFORATED
- BARREL SPACING = 24"


BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 12"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

	NOTES								
10/18/2019 10:02 AM	 ALL RISER AND STUB DIMENS CENTERLINE. ALL ELEVATION LOCATIONS OF RISERS AND II VERIFIED BY THE ENGINEER RELEASING FOR FABRICATIO ALL FITTINGS AND REINFORC ASTM A998. ALL RISERS AND STUBS ARE : AND 16 GAGE UNLESS OTHEF RISERS TO BE FIELD TRIMMEI QUANTITY OF PIPE SHOWN D EXTRA PIPE FOR CONNECTIN EXISTING PIPE OR DRAINAGE SYSTEM AS DETAILED PROVII AND/OR OUTLET PIPE STUB F EXISTING DRAINAGE FACILITI IS NEEDED IT IS THE RESPON CONTRACTOR. BAND TYPE TO BE DETERMIN THE PROJECT SUMMARY IS R DYODS DESIGN, QUANTITIES SHOULD BE VERIFIED UPON F APPROVAL. FOR EXAMPLE, TO NOT CONSIDER ALL VARIABLE AND ONLY ACCOUNTS FOR M ESTIMATED EXCAVATION FOC 	S, DIMENSIONS, NLETS, SHALL BI OF RECORD PRI DN. EMENT COMPLY 2 ² / ₃ " x ¹ / ₂ " CORRU RWISE NOTED. D TO GRADE. OES NOT PROVI IG THE SYSTEM SOR CONNECTIO ES NOMINAL IN FOR CONNECTIO ES. IF ADDITION ISIBILITY OF THE ED UPON FINAL EFLECTIVE OF T ARE APPROX. AI FINAL DESIGN AN OTAL EXCAVATION ES SUCH AS SHO ATERIAL WITHIN DTPRINT.	E OR TO WITH JGATION DE TO OUR ILET NN TO JAL PIPE E DESIGN. THE ND ND DOES DRING I THE						
10/18	THESE DRAWINGS ARE FOR C AND DO NOT REFLECT ANY LO								
DWG.	REGULATIONS. PLEASE CONT	FACT YOUR LOC						<u>ASSEMBLY</u>	
V10.E	CONTECH REP FOR MODIFIC	ATIONS.						SCALE: 1" = 10'	
2/EXPORTS/TEMPLATES/C	The design and information shown on this drawing is provided as a service to the project owner, sergineer and contractor by Contech Engineered Selutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, tegrouted or modified in any manner without the prior writem consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered to Contech immediately for re-evaluation of the design. Contech coepts in liability for designs based on masing, incomplete or		REVISION DESCRI	PTION BY	CONTRACTOR NOT CONTRACT OF CONTRACTOR OF CON	chES.com 100, West Chester, OH 45069	CMP DETENTION SYSTEMS CMP DETENTION SYSTEMS CONTECH DYODS DRAWING		DYO61024 Olive Park Ap East Storage-2 - CC Oceanside, CA DETENTION SYST
- L	inaccurate information supplied by others.	=			I				

	PROJECT No.:	SEQ. I	No.:	DATE:	
Park Apartments	33155	610	024	10/10/20	24
	DESIGNED:		DRAW	/N:	
e-2 - COPY	DYO		DYO		
de, CA	CHECKED:		APPR	OVED:	
ue, CA	DYO			DYO	
NSYSTEM	SHEET NO .:				
					1

MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT

TABLE 2	PERFORATED	STANDARD

•

CMP RETENTION STANDARD BACKFILL SPECIFICATIONS

	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION			
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE ≤ 12": D + 16" PIPE > 12": 1.5D + 12"	MINIMUM EMBANKMENT WIDTI PIF PIPE 2 PIPE		
2	FOUNDATION	AASHTO 26.5.2 - PER ENGINEER OF RECORD	PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDA			
3	BEDDING	AASHTO M 43: 3, 357, 4, 467, 5, 56, 57	ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PL/ MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEF AASHTO SOIL CLASSIFICATIONS A1, A2, OF			
4			CORRUGATED METAL PIPE	CORRUGATED METAL PIPE		
5	BACKFILL	FREE-DRAINING, ANGULAR, NATURALLY OCCURRING WASHED-STONE PER AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 OR APPROVED EQUAL *	HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLA LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BAC ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL S CONVENTIONAL COMPACTION TESTING IS NOT PRACTICAL, THE MATERIAL SHALL F COMPACTOR. AREAS WITH HIGH WATER TABLE FLUCTUATIONS THAT INTERACT WITH THE PIP	CKFILL SHALL BE PLACED SUCH THAT THERE IS N HOULD BE ADVANCED ALONG THE LENGTH OF T BE MECHANICALLY COMPACTED UNTIL NO FURTI		
6	COVER MATERIAL UP	TO MIN. COVER - AASHTO M 145: A-1, A-2, A-3 ABC MIN. COVER - PER ENGINEER OF RECORD	OVE COVER MATERIAL MAY INCLUDE NON-BITUMIN	OUS, GRANULAR ROADBASE MATERIAL WITHIN N		
	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER PROJECT PLANS AND SPE	THE CMP. FINAL BACKFILL MATERIAL SELECTION CIFICATIONS PER THE ENGINEER OF RECORD.		
Â	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED	O ON SIDES OF EXCAVATION TO PREVENT SOIL M		
B	GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE L	AYER IS RECOMMENDED TO BE PLACED BETWEE		
	NOTES					

NOTES:

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5 INCLUDE CA-7, MIDOT 6AA, 6A, OR 5G, PROVIDED THEY MEET THE PARTICLE SIZES INDICATED.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

The design and micrimitator shown of this drawing is phyload as service to the phyled owner, engineer and contractor by Cantech Engineered Solutions LLC ("Contech"). Neither this trawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech corpressly disclaims any liability or responsibility for ush use.						CONTECH® CMP DETENTION SYSTEMS	DYO61024 Olive Park East Storage-2 -	
f discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered					ww.ContechES.c	om est Chester, OH 45069		Oceanside, C
as site work progresses, these discrepancies must be reported o Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or naccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122	513-645-7000	513-645-7993 FAX	DYODS	DETENTION SYS

PORTS\TEMPLATES\CMP_V10.DWG 10/18/2019 10:02 AM

INSTALLATION NOTES

- 1. WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. AN HDPE MEMBRANE LINER WILL BE PLACED ON THE CROWN OF EACH PIPE TO PROVIDE AN IMPERMEABLE BARRIER AGAINST ENVIRONMENTAL CHANGES THAT MAY ADVERSELY AFFECT THE SYSTEM OVER TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL TECHNICAL DETAILS.

DTH (IN FEET) FOR INITIAL FILL ENVELOPE:
PIPE < 24": 3.0D
E 24" - 144": D + 4'0"
PE > 144": D + 10'0"

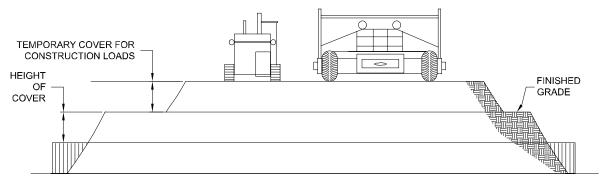
VENT THAT UNSUITABLE FOUNDATION MATERIALS ARE MATERIAL APPROVED BY THE ENGINEER OF RECORD.

/ELY LOOSE, NATIVE SUITABLE WELL GRADED GRANULAR LE OPEN GRADED GRANULAR BEDDING CONFORMING TO R AASHTO 26.3.8.1

ITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/-IS NO MORE THAN A TWO LIFT (16") DIFFERENTIAL BETWEEN IF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WHERE RTHER YIELDING OF MATERIAL IS OBSERVED UNDER THE

**IN

LE SEPARATION LAYER TO PREVENT SOIL MIGRATION.


IN MIN COVER LIMITS

ION AND COMPACTION REQUIREMENTS SHALL FOLLOW THE D.

L MIGRATION.

WEEN THE LAYERS TO PREVENT SOIL MIGRATION.

	PROJECT No.: SEQ. I		DATE:
24 Olive Park Apartments	33155	61024	10/10/2024
•	DESIGNED:	DR.	AWN:
st Storage-2 - COPY	DYO		DYO
Oceanside, CA	CHECKED:	AP	PROVED:
Oceanside, CA	DYO		DYO
TENTION SYSTEM	SHEET NO .:		
			1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	AXLE LOADS (kips)					
INCITES	18-50	50-75	75-110	110-150		
	MI	MINIMUM COVER (FT)				
12-42	2.0	2.5	3.0	3.0		
48-72	3.0	3.0	3.5	4.0		
78-120	3.0	3.5	4.0	4.0		
126-144	3.5	4.0	4.5	4.5		

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPTUAL	
PURPOSES AND DO NOT REFLECT ANY LOCA	٩L
PREFERENCES OR REGULATIONS. PLEASE	
CONTACT YOUR LOCAL CONTECH REP FOR	
MODIFICATIONS.	
The design and information shown on this drawing is provided	

as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use		
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZAMENTE COATED: AASHTO M-245 OR ASTM A-762

800-338-1122

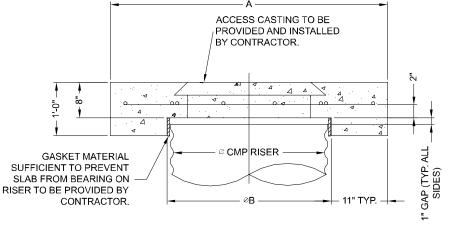
ΒY

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL ARPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

- REQUIREMENTS
- INSTALLATION


SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.


> ENGINEERED SOLUTIONS LLC www.ContechES.com

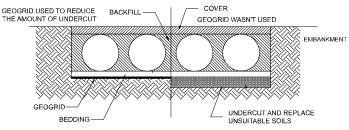
9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7000 513-645-7993 FAX

SECTION VIEW

REINFORCING TABLE						
Ø CMP RISER	А	ØB	REINFORCING	**BEARING PRESSURE (PSF)		
24"	⊘ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780		
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530		
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350		
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210		
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100		

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

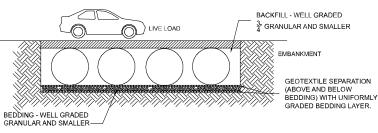
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

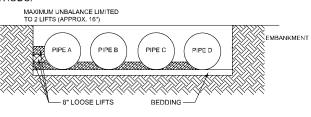
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

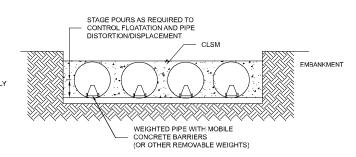
IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.

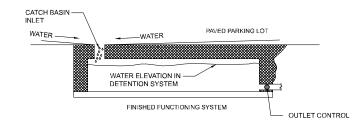

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

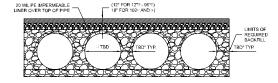
THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER

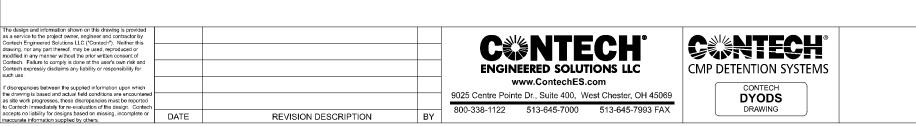
TYPICAL BACKFILL SEQUENCE

EMBANKMEN[®]

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

DYO61024 Olive Park East Storage-2 - 0 Oceanside, C DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.: SEQ. N		No.: DATE:		
Apartments	33155	610	024	10/10/20)24
•	DESIGNED:		DRAW	N:	
COPY	DYO		DYO		
A	CHECKED:		APPROVED:		
	DYO			DYO	
STEM	SHEET NO .:				
					1

STORMWATER MANAGEMENT INVESTIGATION

OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

AUGUST 7, 2024 PROJECT NO. G3035-52-01

PREPARED FOR:

CAPSTONE EQUITIES

GEOTECHNICAL E ENVIRONMENTAL E MATERIALS

Project No. G3035-52-01 August 7, 2024

CORPORATED

Capstone Equities 5600 W Jefferson Boulevard Los Angeles, California 90016

Attention: Mr. Brian Mikail

- Subject: STORM WATER MANAGEMENT INVESTIGATION OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA
- Reference: Update Geotechnical Report, Olive Park Apartments, Olive Drive, Oceanside, California, prepared by Geocon Incorporated, dated March 12, 2024 (Project No. G3035-52-01).

Dear Mr. Mikail

In accordance with the request of Mr. Spencer LaShells from Hunsaker & Associates Inc., we herein submit the results of our storm water management investigation for the property located west of Olive Drive in the City of Oceanside, California. We understand the City of Oceanside has requested that the infiltration feasibility be investigated for the site.

SITE AND PROJECT DESCRIPTION

The site is an approximately 43-acre, semi-rectangular-shaped property that is elongated in an east-west direction. The site is south of Oceanside Boulevard and the San Diego Northern Railway (SDNR) line, east of an undeveloped property, and north and west of existing residential subdivisions. Additionally, an eastern access road to the site from College Boulevard will be incorporated into the improvements of the development. The Geologic Map, Figure 1, shows the proposed development. The Existing Site Plans (Proposed Development and Access Road) shows the current site conditions.

Existing Site Plan-Proposed Development

Existing Site Plan-Access Road

Topographically, the site is located on slopes that descend northwest to Loma Alta Creek located along the north margin of the site. The DMA Plan, Figure 2, depicts the topography of the site with ascending natural slopes to the south with a maximum height of approximately 200 feet. The site is steeper on

the south and becomes flatter to the north. The gentle-gradient creek has a general west-flowing meandering orientation and has locally incised vertical embankments up to 10 feet high at the stream margins. A fill berm related to railroad improvements has been constructed along the northeast margin of the site. Elevations on site vary from a low of approximately 185 feet above Mean Sea Level (MSL) at Loma Alta Creek in the northwest corner of the site to 460 feet MSL at the top of the southeast slope.

SOIL AND GEOLOGIC CONDITIONS

We encountered five surficial soil unit and two geologic units at the site. The occurrence, distribution, and description of each unit encountered is shown on the Geologic Map, Figure 1, and on the boring and trench logs in Appendix A on the referenced report. The surficial soil and geologic units are described herein in order of increasing age. The surficial soils and geologic units are described herein in order of increasing age.

Undocumented Fill (Qudf)

Undocumented fill underlies the northern and western portions of the site. The northern fill areas are associated with a berm that was apparently graded to control water flow in Loma Alta Creek and support the existing rail line. The western undocumented fill area is associated with waterline backfill that traverses the site in a north-south direction. The fill material generally consists of soft, fine to medium, sandy clay with silt and has an estimated maximum thickness of 10 feet. The fill is not considered suitable for support of site development in its present condition and will require remedial grading.

Previously Placed Fill (Qpf)

Previously placed fill is present on the south and northeast portions of the property. The southern fill underlies residential building pads that bound the southern margin of the property along Wooster Drive. The southern fill likely consists of loose, silty, fine- to medium-grained sand, and is estimated to have a maximum thickness of about 25 feet at the top of slope. Improvements are not planned in the vicinity of the southern fill areas. Previously placed fill also underlies the residential development along Olive Drive adjacent to the northeastern corner of the site (as observed in Trench T-14 in the referenced report). The fill consists of loose, moist, clayey sand and is underlain by relatively thick topsoil.

Topsoil (Unmapped)

Topsoil typically blankets the site and consists of brown, sandy clay to sandy silt. Topsoil is generally on the order of 1 to 4 feet thick, but localized areas with greater thicknesses may exist. Due to its relatively thin thickness, topsoil is not shown on the Geologic Map, Figure 1.

Alluvium (Qal)

Alluvium exists on the northern portion of the site in the Loma Alta Creek drainage. The alluvial soil consists of soft, sandy to silty clay and loose silty to clayey sand. The alluvium is locally underlain by and interfingered with landslide deposits. We encountered alluvial materials up to approximately 15½ feet deep and likely extend deeper toward the north. A shallow groundwater table is likely to exist approximately 3 to 5 feet below existing grade in the area of the streambed at the northern portion of the site. The alluvium is compressible, possesses a "very low" to "high" expansion potential (expansion index of 130 or less), possibly subject to liquefaction, and may have low to high permeability. We expect some alluvium will remain in place on the western portion of the property due to grading limitations.

Landslide Deposits (Qls and Qsls)

We encountered and observed landslide deposits in many of the exploratory borings and trenches performed during this study and are mapped underlying the majority of the central and eastern portions of the site, including the areas of proposed development. The deepest landslide debris encountered is about 56 feet thick in Boring B-5. Borings B-6 and B-8 (in the referced report and west of the proposed development) were unable to penetrate the full extent of landslide debris to a depth of up to 54 feet; therefore, the landslide debris is likely thicker than 56 feet in some areas. The landslide debris is up to approximately 40 feet thick in the vicinity of the proposed development.

Our exploratory borings and field observations suggest portions of the property are underlain by a series of landslides which have occurred within the Santiago Formation. Debris within the larger landslides consists of highly disturbed to relatively intact blocks of sandstone, siltstone, and claystone. Bedding orientations display evidence of displacement and rotation. Portions of the older landslide debris contained secondary mineralization and fracture infilling suggesting that these deposits have been partially "healed." The slip surfaces were typically located within claystone beds generally parallel to the direction of regional dip. The mechanism for the large-scale landsliding was likely deep-seated block failure along weakened planes within the claystone beds.

The debris composing the smaller, more recent landslides generally consist of loose, moist, olive gray to grayish brown, silty and clayey sands, sandy and clayey silts, and silty to sandy clays. Recent landslide debris typically contains highly disturbed and jumbled bedding, numerous fractures, roots, and sheared and remolded clays.

Landslide deposits are typically unstable within cut slopes and may be susceptible to significant settlement. Therefore, the highly compressible portions of the landslide debris within the proposed development areas should be removed and recompacted during the remedial grading of the site. In general, landslide debris is suitable for reuse as compacted fill provided potentially expansive clay is properly mixed with sandy material where located within about 5 feet of proposed grade.

We observed an isolated area of surficial landslide debris (Qsls) within the previously placed fill areas in the southern portion of the site. The near-surface portions (within 6 feet of the slope face) of the fill slope at the southeast corner of the site have locally failed. Adjacent homeowners have "end dumped" vegetation and other debris over the top of the slope. These deposits are likely the cause of failure of uncompacted "end dump" fill and not indicative of the near-surface soil conditions present along the steep slope portions of the site. We did not perform exploratory borings and trenches in the steep slope portions of the proposed open space areas to the south of the proposed development due to access limitations created by the presence of sensitive habitat.

Santiago Formation (Tsa)

We encountered the middle Eocene-age Santiago Formation underlying surficial soil in the majority of the exploratory excavations performed at the site. The Santiago Formation underlies the majority of the steep slope areas located to the south of the proposed development. The Santiago Formation is generally composed of light colored, massive to poorly bedded, fine- to medium-grained sandstone interbedded with weak siltstone and claystone layers. Claystone beds within the Santiago Formation contain bedding plane shears and internal shearing, some of which displayed out-of-slope bedding orientations. Bedding plane shears can be a contributing factor to slope instability. Cut slopes exposing out-of-slope bedding plane shears will require slope stabilization measures.

The Santiago Formation is considered suitable for foundation and/or fill support. However, the claystone and siltstone units may be susceptible to landsliding and slope instability. Additionally, some sandstone units of the Santiago Formation are poorly cemented and susceptible to erosion. Materials generated from excavations within the silty and sandy portions of the Santiago Formation are suitable

for reuse as compacted fill. Claystone that is potentially expansive should be mixed with sandy material, as discussed herein.

Granitic Rock (Kgr)

Cretaceous-age granitic rock is mapped in the general vicinity of the site by Tan and Kennedy (1996) as the Green Valley Tonalite. We encountered granitic rock in Boring B-1 and in Trenches T-6, T-7, and T-11 through T-13 (in the referenced report). The granitic rock consists of yellowish brown to gray, moderately weak to moderately strong, highly to moderately weathered, and displayed a fine-to coarse-grained crystalline texture. Granitic rock is considered suitable for the support of structures and/or compacted fill.

STORM WATER MANAGEMENT INVESTIGATION

We understand storm water management devices will be used in accordance with the 2022 City of Oceanside BMP Design Manual. If not properly constructed, there is a potential for distress to improvements and properties located hydrologically down gradient or adjacent to these devices. Factors such as the amount of water to be detained, its residence time, and soil permeability have an important effect on seepage transmission and the potential adverse impacts that may occur if the storm water management features are not properly designed and constructed. We have not performed a hydrogeological study at the site. If infiltration of storm water runoff occurs, downstream properties may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts as a result of water infiltration.

Hydrologic Soil Group

The United States Department of Agriculture (USDA), Natural Resources Conservation Services, possesses general information regarding the existing soil conditions for areas within the United States. The USDA website also provides the Hydrologic Soil Group. The following table presents the descriptions of the hydrologic soil groups. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. In addition, the USDA website also provides an estimated saturated hydraulic conductivity for the existing soil.

HYDROLOGIC SOIL GROUP DEFINITIONS

Soil Group	Soil Group Definition
А	Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
В	Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.
С	Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.
D	Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The property is underlain by man-made previously placed fill and cemented stadium conglomerate and should be classified as Soil Group D. The following table presents the information from the USDA website for the subject property. The Hydrologic Soil Group Map presents output from the USDA website showing the limits of the soil units.

Map Unit Name	Map Unit Symbol	Approximate Percentage of Property	Hydrologic Soil Group	k _{sat} of Most Limiting Layer (Inches/ Hour)
Corralitos loamy sand, 0 to 5 percent slopes	CsB	10	А	5.95-19.98
Diablo clay, 15 to 30 percent slopes, eroded, warm MAAT	DaE2	2	С	0.06-0.20
Diablo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	DaF	4	С	0.06-0.20
Gaviota fine sandy loam, 30 to 50 percent slopes	GaF	27	D	1.98-5.95
Las Flores loamy fine sand, 9 to 15 percent slopes, eroded	LeD2	36	D	0.00-0.06
Salinas clay loam, 0 to 2 percent slopes, warm MAAT, MLRA 19	SbA	21	С	0.00-0.14

USDA WEB SOIL SURVEY – HYDROLOGIC SOIL GROUP*

*The areas of the property that possess fill materials should be considered to possess a Hydrologic Soil Group D.

Hydrologic Soil Group Map – Proposed Development

Hydrologic Soil Group Map – Access Road

In Situ Testing

The majority of the proposed development is underlain by landslide debris and landslide prone formational material. Additionally, groundwater within the alluvium is within 10 feet from existing grade and the proposed development will consist of fills greater than 5 feet across the entire site once the landslide debris is removed. Based on historic aerials, the access road appears to have been graded with fill and is adjacent to a slope down to the existing train tracks. Therefore, we did not perform infiltration tests within the granitic rock or Santiago Formation due to the proximity to groundwater, proposed fill depths, proximity to slopes, and geologic hazards that exist on site. Infiltration would be considered infeasible due to the presence of landslide debris across the site. If infiltration of storm water runoff occurs, downstream properties may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts because of water infiltration.

GEOTECHNICAL CONSIDERATIONS

Groundwater Elevations

We encountered groundwater during the previous field investigation in several of our borings at depths ranging from 9 to 45 feet below existing grade (elevation 183 to 199 feet MSL). Therefore, infiltration in these areas are considered infeasible.

Soil or Groundwater Contamination

We are unaware of contaminated soil or groundwater contamination on the property. Therefore, infiltration associated with this risk would be considered feasible.

Expansive Soils

Based on previous laboratory testing, the soil encountered in the field investigation is "non-expansive" (expansion index [EI] of 20 or less) and "expansive" (EI greater than 20) as defined by 2022 California Building Code (CBC) Section 1803.5.3. We expect most of the soil on site will have a "very low" to "medium" expansion potential (expansion index of 90 or less). Infiltration would be feasible when considering the expansion potential of the soil on the property.

Formational Soil Properties

The on-site landslides have occurred within the weak claystone and/or siltstone beds of the Santiago Formation. The lower portions of the landslide debris in the western portion of the site were observed to be saturated and prone to significant caving and seepage. Therefore, due to slope instability and weak claystone/siltstone beds in the Santiago Formation infiltration should be considered infeasible on site.

New or Existing Utilities

Utilities are present within the existing roadways to the east on Olive Drive. Full or partial infiltration should not be allowed in the areas of the utilities to help prevent potential damage/distress to improvements. Mitigation measures to prevent water from infiltrating the utilities consist of setbacks, installing cutoff walls around the utilities and installing subdrains and/or installing liners.

Existing and Planned Structures

Existing railroad tracks and residential structures exist to the north and west of the site, respectively. Water should not be allowed to infiltrate in areas where it could affect the existing and neighboring properties and existing and adjacent structures, improvements, and roadways. Mitigation for existing structures consists of not allowing water infiltration within a 1:1 plane from existing foundations and extending the infiltration areas at least 10 feet from the existing foundations and into formational materials.

CONCLUSIONS AND RECOMMENDATIONS

Storm Water Evaluation Narrative

As discussed herein, the property consisted of mostly landslide debris, fill materials, and Santiago Formation with slide prone weak claystone/siltstone beds. Additionally, we encountered groundwater in the alluvium materials within 10 feet from existing grade. In order to develop the site, the landslide materials will be removed and replaced with properly compacted fill. This would result in most of the site being underlain by fills greater than 5 feet subsequent to grading and site development. In our experience, fill does not possess infiltration rates appropriate with infiltration. Therefore, the areas where infiltration could potentially be feasible are limited based on existing structures, groundwater, fill greater than 5 feet, and slide prone formational materials. The potential for additional landsliding would increase if infiltration were allowed in the existing landslide debris or formational materials.

Storm Water Evaluation Conclusion

Based on the geologic conditions exhibited in the Santiago Formation, shallow groundwater, areas of the site underlain by landslide debris, proposed fills greater than 5 feet, and existing structures we opine full and partial infiltration on the property is considered infeasible and the property possesses a "No Infiltration" condition.

Storm Water Management Devices

Liners and subdrains should be incorporated into the design and construction of the planned storm water devices. The liners should be impermeable (e.g. High-density polyethylene, HDPE, with a thickness of about 30 mil or equivalent Polyvinyl Chloride, PVC) to prevent water migration. The subdrains should be perforated within the liner area, installed at the base and above the liner, be at least 3 inches in diameter and consist of Schedule 40 PVC pipe. The subdrains outside of the liner should consist of solid pipe. The penetration of the liners at the subdrains should be properly waterproofed. The subdrains should be connected to a proper outlet. The devices should also be installed in accordance with the manufacturer's recommendations.

Storm Water Standard Worksheets

We evaluated the proposed project with respect to the infiltration restrictions contained in Table D.1-1 in Appendix D of the City of Oceanside BMP Design Manual (see following table).

	Restriction Element	Is Element Applicable? (Yes/No)
	BMP is within 100' of Contaminated Soils	No
	BMP is within 100' of Industrial Activities Lacking Source Control	No
	BMP is within 100' of Well/Groundwater Basin	No
	BMP is within 50' of Septic Tanks/Leach Fields	No
	BMP is within 10' of Structures/Tanks/Walls	No
	BMP is within 10' of Sewer Utilities	No
Mandatory	BMP is within 10' of Groundwater Table	No
Considerations	BMP is within Hydric Soils	No
	BMP is within Highly Liquefiable Soils and has Connectivity to Structures	No
	BMP is within 1.5 Times the Height of Adjacent Steep Slopes (≥25%)	No
	City Staff has Assigned "Restricted" Infiltration Category	No

CONSIDERATIONS FOR GEOTECHNICAL ANALYSIS OF INFILTRATION RESTRICTIONS

	Restriction Element	Is Element Applicable? (Yes/No)
	BMP is within Predominantly Type D Soil	Yes
	BMP is within 10' of Property Line	No
Optional	BMP is within Fill Depths of ≥5′ (Existing or Proposed)	Yes
Considerations	BMP is within 10' of Underground Utilities	No
	BMP is within 250' of Ephemeral Stream	No
	Other (Provide detailed geotechnical support) – Landslide debris and slide prone formational materials (<i>See discussion herein)</i>	Yes
	Based on examination of the best available information, I have <u>not</u> identified any restrictions above.	
Result	Based on examination of the best available information, I have <u>identified</u> one or more restrictions above.	X Restricted

The BMP manual also has a worksheet (Table D.2-4 of Appendix D) that helps the project civil engineer estimate the factor of safety based on several factors. The following table describes the suitability assessment input parameters related to the geotechnical engineering aspects for the factor of safety determination.

Consideration	Consideration High Concern – 3 Points		Low Concern – 1 Point
Infiltration Test Method	Any	At least 2 tests of any kind within 50' of BMP	At least 4 tests within BMP footprint, OR Large/Small Scale Pilot Infiltration Testing over at least 5% of BMP footprint.
Soil Texture Class	Unknown, Silty, or Clayey	Loamy	Granular/Slightly Loamy
Site Variability	Unknown or High	Moderately Homogenous	Significantly Homogenous
Depth to Groundwater/ Obstruction	<5' below BMP	5-15' below BMP	>15' below BMP

GUIDANCE FOR DETERMINING INDIVIDUAL FACTOR VALUES – PART A

The following table presents the estimated safety factor values for the evaluation of the factor of safety. This table only presents the suitability assessment safety factor (Part A) of the worksheet. The project civil engineer should evaluate the safety factor for design (Part B) and use the combined safety factor for the design infiltration rate.

	Consideration	Assigned Weight (w)	Factor Value (v)	Product (p = w x v)
	Infiltration Testing Method	0.25	3	0.75
Suitability	Soil Texture Class	0.25	2	0.50
Assessment	Site Variability	0.25	3	0.75
(A)	Depth to Groundwater/Obstruction	0.25	2	0.50
	Suitability A	Assessment Safe	ety Factor, S _A = ∑p	2.5
	Pretreatment	*		*
Design	Resiliency	*	Refer to Table D.2-4	*
(B)	Compaction	*	0.2	*
		Design Safe	ety Factor, S _B = ∑p	*
	(Must be		Factor, $S = S_A \times S_B$ han or equal to 2)	*

DETERMINATION OF SAFETY FACTOR

*The civil engineer should evaluate the "Design (B)" factors and the Safety Factor, S.

We also included herein the original I-8 Form from previous submittals for consistency with the current submittal process. The DMA Plan, Figure 2, shows the setback areas as discussed herein. We opine infiltration is not feasible for this property.

If you have any questions regarding this correspondence, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Nikolas Garcia, EIT Senior Staff Engineer

NG:SFW:arm

(e-mail) Addressee

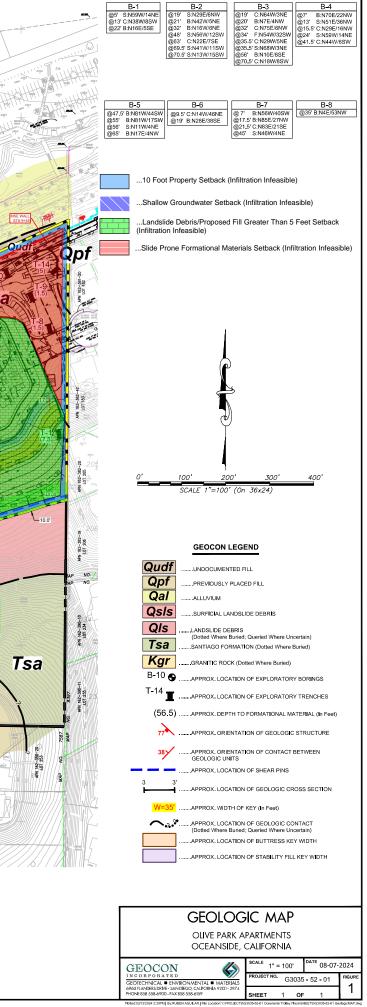
Shawn Foy Weedon, GE 2714 Vice President/Senior Engineer

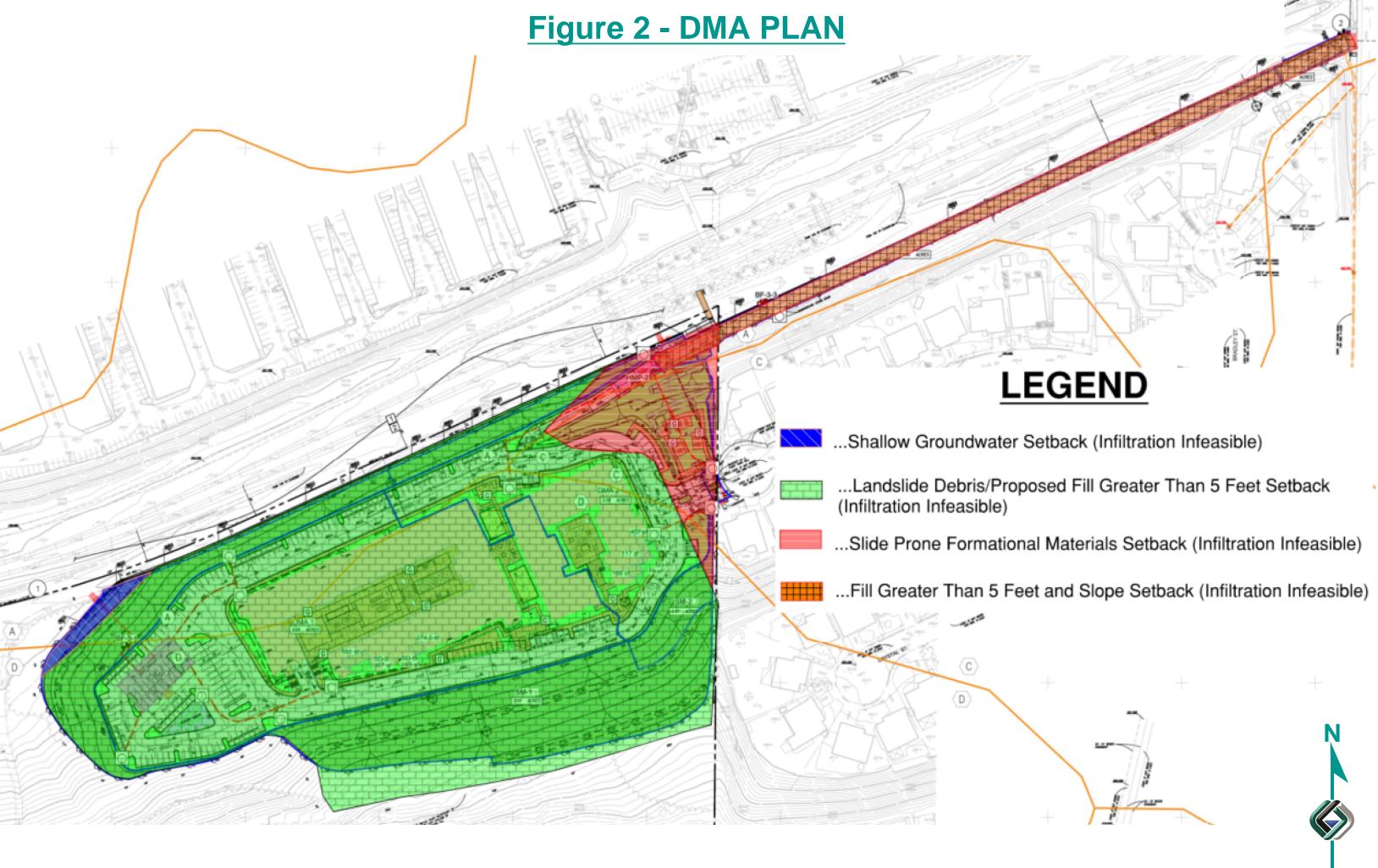
	Categorization of Infiltration Feasibility Condition		Form I-8				
Part 1 – Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?							
Criteria	Screening Question	Yes	No				
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		x				
groundwate 5 feet across rock or Sant	of the proposed development is underlain by landslide debris and landslide r within the alluvium is within 10 feet from existing grade and the proposed dev the entire site once the landslide debris is removed. Therefore, we did not pe iago Formation due to the proximity to groundwater, proposed fill depths, an yould be considered infeasible across the site.	velopment will o rform infiltratio	consist of fills greater than on tests within the granitic				
	e findings of studies; provide reference to studies, calculations, maps, data sou a source applicability.	rces, etc. Provi	de narrative discussion of				
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slopestability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on		x				
Provide bas	sis:						

The majority of the proposed development is underlain by landslide debris and landslide prone formational material. Additionally, groundwater within the alluvium is within 10 feet from existing grade and the proposed development will consist of fills greater than 5 feet across the entire site once the landslide debris is removed. Therefore, infiltration should be considered infeasible due to the risk of slope stability, fill thickness and groundwater mounding.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

	Worksheet C.4-1 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question		Х
Provide bas	is:		
	ered groundwater within the alluvium materials within 10 feet from ex rould not be allowed in these areas.	kisting grade. Tł	nerefore,
	dings of studies; provide reference to studies, calculations, maps, data source Irce applicability.	es, etc. Provide na	arrative discussion of
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question	x	
Provide bas			
	porated does not expect infiltration will cause water balance issues s creased discharge of contaminated groundwater to surface waters.	uch as seasonal	ity of ephemeral
	dings of studies; provide reference to studies, calculations, maps, data source Irce applicability.	es, etc. Provide na	arrative discussion of
Part 1 Result*	If all answers to rows 1 – 4 are " Yes " a full infiltration design is potentially feasible. The feasibility screening category is Full In If any answer from row 1-4 is " No ", infiltration may be possible extent but would not generally be feasible or desirable to ach	filtration le to some	No Full Infiltration


*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City to substantiate findings.


Part 2 – Pa	artial Infiltration vs. No Infiltration Feasibility Screening Criteria		
	iltration of water in any appreciable amount be physically feasil	ble without a	ny negative
	nces that cannot be reasonably mitigated?		, 0
•	, .		
Criteria	Screening Question	Yes	No
	Do soil and geologic conditions allow for infiltration in		
	any appreciable rate or volume? The response to this		х
5	Screening Question shall be based on a comprehensive		
	evaluation of the factors presented in Appendix C.2 and		
Provide ba	Appendix D.		
FI OVIUE Da	1515,		
	of the proposed development is underlain by landslide debris and landslide pro		
	within the alluvium is within 10 feet from existing grade and the proposed develo		-
feet across t	he entire site once the landslide debris is removed. Therefore, we did not perfo	orm infiltration te	ests within the granit
ock or Santia	go Formation due to the proximity to groundwater, proposed fill depths, and g	geologic hazards	that exist on site ar
nfiltration wo	uld be considered infeasible across the site.		
nfiltration wo	uld be considered infeasible across the site.		
ummarize fin	uld be considered infeasible across the site. Idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates.	es, etc. Provide r	narrative discussion
ummarize fin	idings of studies; provide reference to studies, calculations, maps, data source	es, etc. Provide r	narrative discussion
ummarize fin	idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed	es, etc. Provide r	narrative discussion (
ummarize fin tudy/data sor	idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope	es, etc. Provide r	
ummarize fin	ndings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other	es, etc. Provide r	narrative discussion
ummarize fin tudy/data sou	dings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable	es, etc. Provide r	
ummarize fin tudy/data sou 6	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be	es, etc. Provide r	
ummarize fin tudy/data sou 6	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be	es, etc. Provide r	
ummarize fin :udy/data sou 6 Provide ba	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be		X
ummarize fin :udy/data sou 6 Provide ba he majority c	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be asis:	one formational	X material. Additional
ummarize fin cudy/data sou 6 Provide ba he majority o roundwater v	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be stabilits: of the proposed development is underlain by landslide debris and landslide pro- within the alluvium is within 10 feet from existing grade and the proposed development	one formational opment will cons	X material. Additionall
ummarize fin :udy/data sou 6 Provide ba he majority o roundwater v feet across t	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be sisis: of the proposed development is underlain by landslide debris and landslide provide within the alluvium is within 10 feet from existing grade and the proposed development he entire site once the landslide debris is removed. Therefore, we did not perform	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additionall sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be sisis: of the proposed development is underlain by landslide debris and landslide provide within the alluvium is within 10 feet from existing grade and the proposed development he entire site once the landslide debris is removed. Therefore, we did not perform	one formational opment will cons orm infiltration te	X material. Additionall sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin :udy/data sou 6 Provide ba he majority o roundwater v feet across t pock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin :udy/data so 6 Provide ba he majority o roundwater v feet across t pock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data sou 6 Provide ba he majority o roundwater v feet across t ock or Santia nfiltration wo	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te geologic hazards	X material. Additional sist of fills greater the ests within the granit that exist on site an

	Worksheet C.4-1 Page 4 of 4		
Criteria	Screening Question	Yes	No
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the		Х
Provide ba	sis:		
	ered groundwater within the alluvium materials within 10 feet from be allowed in these areas.	existing grade. Th	erefore, infiltration
	ndings of studies; provide reference to studies, calculations, maps, data sou ource applicability and why it was not feasible to mitigate low infiltration rate		rrative discussion of
8	Can infiltration be allowed without violating downstream water rights ? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х	
Provide ba	sis:		
Geocon Incc Diego Count	orporated does not provide a study regarding water rights. However, y area.	these rights are n	ot typical in the San
	ndings of studies; provide reference to studies, calculations, maps, data sour ource applicability and why it was not feasible to mitigate low infiltration rate		rrative discussion of
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration des potentially feasible. The feasibility screening category is Partia If any answer from row 5-8 is no, then infiltration of any vo considered to be infeasible within the drainage area. The feas category is No Infiltration.	al Infiltration. lume is sibility screening	

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City to substantiate findings.

EL CORAZON OBC DISTRICT DMA CALCULATIONS

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

	Tabular S	Summary of I	DMAs				W	orksheet B-1		
DMA Unique	Type of	Area	Impervious	% Imp	Hydrologic	Area Weighted	Treated by	Proposed	Drains	
Identifier	Surface	(square feet)	Area		Soil Group	Runoff	(BMP ID)	Pollutant	(POC II	
			(square feet)			Coefficient		Control Type		
	ROOF	53792	53792	100%	A&D	0.90				
	CONCRETE/ASPHALT*	106810	106810	100%	A&D	0.90				
DMA 1	PLAYGROUND	1250	250	20%	D	0.26	BF-3-1	MWS Unit	1	
	DG	1639	0	0%	D	0.30				
	LANDSCAPE	21945	0	0%	A&D	0.10				
	ROOF	15202	15202	100%	D &C	0.90	BF-3-2			
DMA 2	CONCRETE/ASPHALT*	51883	51883	100%	A,C&D	0.90		MWS Unit	2 &1	
DIVIA 2	PLAYGROUND	1031	206	20%	D	0.26				
	LANDSCAPE	32792	0	0%	A,C&D	0.10				
	ROOF	0	0	100%	А	0.90	BF-3-3			
DMA 3	CONCRETE/ASPHALT	21008	21008	100%	A	0.90		MWS Unit	2&1	
	LANDSCAPE	1499	0	0%	А	0.10				
	ROOF	0	0	100%	А	0.90				
DMA 4	CONCRETE/ASPHALT	2523	2523	100%	A	0.90	BF-3-4	MWS Unit	3	
	LANDSCAPE	540	0	0%	A	0.10				
	ROOF	0	0	100%	A&D	0.90				
SM-1	CONCRETE/ASPHALT	896	896	100%	A&D	0.90	NA	Self-Mitigating	1	
	LANDSCAPE	105961	0	0%	A&D	0.10				
	ROOF	0	0	100%	A&D	0.90				
SM-2	CONCRETE/ASPHALT	0	0	100%	A&D	0.90	NA	Self-Mitigating	2&1	
	LANDSCAPE	20436	0	0%	A&D	0.10				
tal Disturbed Ar	ea =	439,208	252,571	186636						

186,636

	Summary of DMA Information (Must match Project description and SWQMP narrative)									
No. of DMAs	Total DMA	Total	%	Area	Design	Design	Design	Proposed		
	Area	Impervious	Impervious	Weighted	Captured Volume	Intensity Rate	Flow Rate	Pollutant	POC ID #	
	(acres)	Area (acres)		Runoff Coefficient	(CFT)	(In\hr)	(cfs)	Control Type		
DMA 1	4.26	3.69	87%	0.80	N/A	N/A	N/A	MWS Unit	1	
DMA 2	2.32	1.54	67%	0.63	N/A	N/A	N/A	MWS Unit	2 & 1	
DMA 3	0.52	0.48	93%	0.85	N/A	N/A	N/A	MWS Unit	2&1	
DMA 4	0.07	0.06	82%	0.76	N/A	N/A	N/A	MWS Unit	3	
SM-1	2.45	0.02	1%	0.00	N/A	N/A	N/A	Self-Mitigating	1	
SM-2	0.47	0.00	0%	0.04	N/A	N/A	N/A	sen-wittigating	2&1	
Σ = Note:	10.08	5.80	58% 4.28							

* Includes the Courtyard area

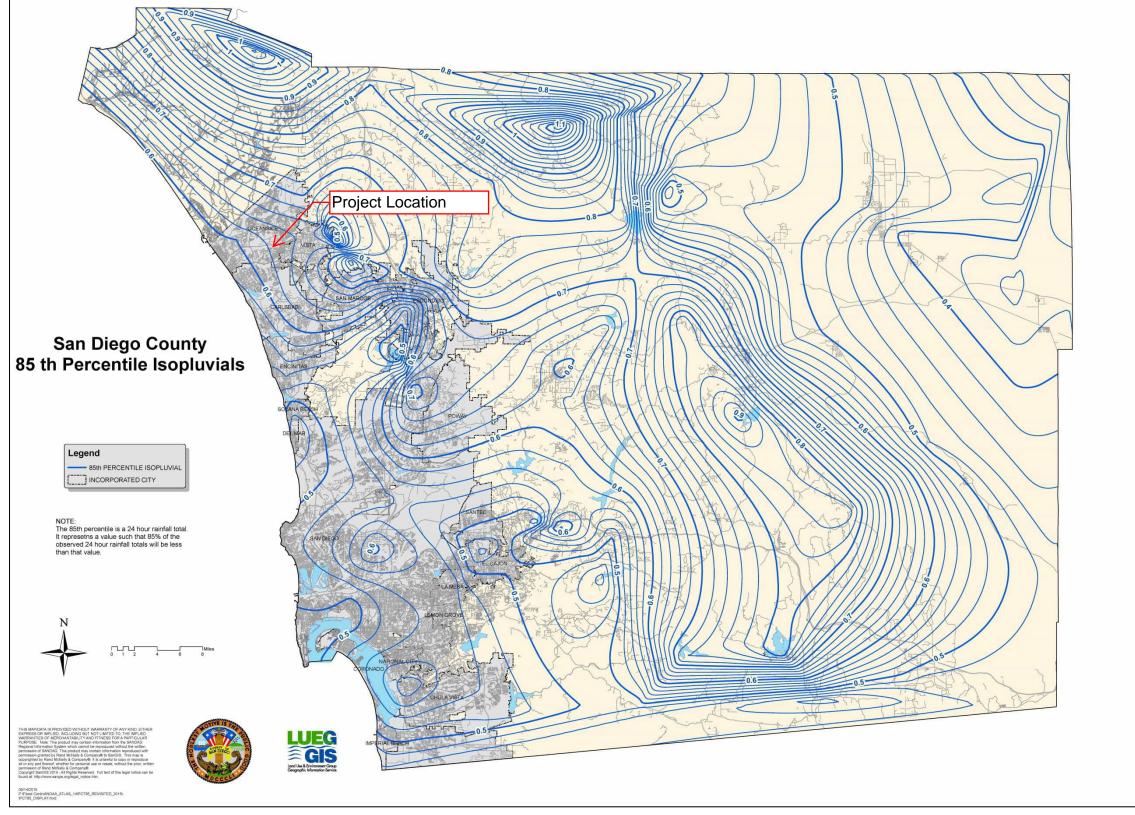


Figure B.1-1: 85th Percentile 24-hour Isopluvial Map

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

	1	Drainage Basin ID or Name	DIAL 4				
		Dialitage Dasifi iD of Name	DMA 1	DMA 2	DMA 3	DMA 4	unitless
	2	85th Percentile 24-hr Storm Depth	0.62	0.62	0.62	0.62	inches
	3	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	159,276	66,197	21,008	2,523	sq-ft
Standard	4	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)	1,639				sq-ft
ainage Basin	5	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)	22,003	32,886	1,499	540	sq-ft
Inputs	6	Natural Type A Soil Not Serving as Dispersion Area (C=0.10)					sq-ft
	7	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)					sq-ft
	8	Natural Type C Soil Not Serving as Dispersion Area (C=0.23)					sq-ft
	9	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)					sq-ft
	10	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	Yes	Yes	No	No	yes/no
	11	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)	1,576	1,095			sq-ft
	12	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)					sq-ft
	13	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)	942	730			sq-ft
Dispersion	14	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)					sq-ft
ea, Tree Well	15	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)					sq-ft
Rain Barrel	16	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)					sq-ft
(Optional)	17	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)					sq-ft
(Optional)	18	Number of Tree Wells Proposed per SD-A					#
	19	Average Mature Tree Canopy Diameter					ft
	20	Number of Rain Barrels Proposed per SD-E					#
	21	Average Rain Barrel Size					gal
	22	Total Tributary Area	185,436	100,908	22,507	3,063	sq-ft
nitial Runoff	23	Initial Runoff Factor for Standard Drainage Areas	0.80	0.63	0.85	0.76	unitless
	24	Initial Runoff Factor for Dispersed & Dispersion Areas	0.60	0.58	0.00	0.00	unitless
Calculation	25	Initial Weighted Runoff Factor	0.80	0.63	0.85	0.76	unitless
	26	Initial Design Capture Volume	7,665	3,285	988	120	cubic-fee
	27	Total Impervious Area Dispersed to Pervious Surface	1,576	1,095	0	0	sq-ft
	28	Total Pervious Dispersion Area	942	730	0	0	sq-ft
Dispersion	29	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	1.70	1.50	n/a	n/a	ratio
Area	30	Adjustment Factor for Dispersed & Dispersion Areas	0.00	0.00	1.00	1.00	ratio
1ulusulletits	31	Runoff Factor After Dispersion Techniques	0.79	0.62	0.85	0.76	unitless
-	32	Design Capture Volume After Dispersion Techniques	7,569	3,232	988	120	cubic-fee
	33	Total Tree Well Volume Reduction	0	0	0	0	cubic-fee
	34	Total Rain Barrel Volume Reduction	0	0	0	0	cubic-fee
~	35	Final Adjusted Runoff Factor	0.79	0.62	0.85	0.76	unitless
	36	Final Effective Tributary Area	146,494	62,563	19,131	2,328	sq-ft
	37	Initial Design Capture Volume Retained by Site Design Elements	96	53	0	0	cubic-fee
	38	Final Design Capture Volume Tributary to BMP	7,569	3,232	988	120	cubic-fee

Worksheet B-6.1

10/8/2024

Category	#	Description	i	ii	iii	iv	Units
	1	Drainage Basin ID or Name	DMA 1	DMA 2	DMA 3	DMA 4	unitless
	2	85th Percentile Rainfall Depth	0.62	0.62	0.62	0.62	inches
	3	Predominant NRCS Soil Type Within BMP Location	D	D	А	А	unitless
Basic Analysis	4	Is proposed BMP location Restricted or Unrestricted for Infiltration Activities?	Restricted	Restricted	Restricted	Restricted	unitless
	5	Nature of Restriction	Soil Type	Soil Type	Soil Type	Soil Type	unitless
	6	Do Minimum Retention Requirements Apply to this Project?	Yes	Yes	Yes	Yes	yes/no
	7	Are Habitable Structures Greater than 9 Stories Proposed?	No	No	No	No	yes/no
Advanced	8	Has Geotechnical Engineer Performed an Infiltration Analysis?	No	No	No	No	yes/no
Analysis	9	Design Infiltration Rate Recommended by Geotechnical Engineer					in/hr
	10	Design Infiltration Rate Used To Determine Retention Requirements	0.000	0.000	0.000	0.000	in/hr
Result	11	Percent of Average Annual Runoff that Must be Retained within DMA	1.5%	1.5%	1.5%	1.5%	percentage
Result	12	Fraction of DCV Requiring Retention	0.01	0.01	0.01	0.01	ratio
	13	Required Retention Volume	76	32	10	1	cubic-feet
No Warning Me	essage	<u></u>					

Automated Worksheet B.2: Retention Requirements (V2.0)

Automated Worksheet B.3: BMP Performance (V2.0)

Category	#	Description	i	ii	iii	iv	V	vi	vii	viii	ix	X	Units
J	1	Drainage Basin ID or Name	DMA 1	DMA 2	DMA 3	DMA 4	-	-	-	-	-	-	sq-ft
	2	Design Infiltration Rate Recommended	0.000	0.000	0.000	0.000	-		-	-	-	-	in/hr
	3	Design Capture Volume Tributary to BMP	7,569	3,232	988	120	-	-	-	-	-	-	cubic-feet
	4	Is BMP Vegetated or Unvegetated?											unitless
	5	Is BMP Impermeably Lined or Unlined?											unitless
	6	Does BMP Have an Underdrain?											unitless
	7	Does BMP Utilize Standard or Specialized Media?											unitless
	8	Provided Surface Area											sq-ft
BMP Inputs	9	Provided Surface Ponding Depth											inches
Divin Inputs	10	Provided Soil Media Thickness											inches
	11	Provided Gravel Thickness (Total Thickness)											inches
	12	Underdrain Offset											inches
	12	Diameter of Underdrain or Hydromod Orifice (Select Smallest)											inches
	14	Specialized Soil Media Filtration Rate											inches in/hr
	14	Specialized Soil Media Pore Space for Retention											unitless
	16												
		Specialized Soil Media Pore Space for Biofiltration											unitless
	17	Specialized Gravel Media Pore Space											unitless
	18	Volume Infiltrated Over 6 Hour Storm	0	0	0	0	0	0	0	0	0	0	cubic-feet
	19	Ponding Pore Space Available for Retention	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	unitless
	20	Soil Media Pore Space Available for Retention	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	unitless
Retention Calculations	21	Gravel Pore Space Available for Retention (Above Underdrain)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
	22	Gravel Pore Space Available for Retention (Below Underdrain)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
	23	Effective Retention Depth	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	inches
	24	Fraction of DCV Retained (Independent of Drawdown Time)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	25	Calculated Retention Storage Drawdown Time	0	0	0	0	0	0	0	0	0	0	hours
	26	Efficacy of Retention Processes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	27	Volume Retained by BMP (Considering Drawdown Time)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	28	Design Capture Volume Remaining for Biofiltration	7,569	3,232	988	120	0	0	0	0	0	0	cubic-feet
	29	Max Hydromod Flow Rate through Underdrain	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	cfs
	30	Max Soil Filtration Rate Allowed by Underdrain Orifice	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	in/hr
	31	Soil Media Filtration Rate per Specifications	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	in/hr
	32	Soil Media Filtration Rate to be used for Sizing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	in/hr
	33	Depth Biofiltered Over 6 Hour Storm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	inches
	34	Ponding Pore Space Available for Biofiltration	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
	35	Soil Media Pore Space Available for Biofiltration	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	unitless
	36	Gravel Pore Space Available for Biofiltration (Above Underdrain)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
Biofiltration	37	Effective Depth of Biofiltration Storage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	inches
Calculations	38	Drawdown Time for Surface Ponding	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	hours
	39	Drawdown Time for Effective Biofiltration Depth	0	0	0	0	0	0	0	0	0	0	hours
	40	Total Depth Biofiltered	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	inches
	40	Option 1 - Biofilter 1.50 DCV: Target Volume	11.354	4,848	1,482	180	0.00	0.00	0.00	0.00	0.00	0.00	cubic-feet
	41	Option 1 - Bioliter 1.50 DCV: Target Volume Option 1 - Provided Biofiltration Volume	0	4,848	0	0	0	0	0	0	0	0	cubic-feet
	42			2,424	741	90	0	0	0	0	0		
		Option 2 - Store 0.75 DCV: Target Volume	5,677				-	-	-	-	-	0	cubic-feet
	44	Option 2 - Provided Storage Volume	0	0	0	0	0	0	0	0	0	0	cubic-feet
	45	Portion of Biofiltration Performance Standard Satisfied	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	46	Do Site Design Elements and BMPs Satisfy Annual Retention Requirements?	Yes	Yes	No	No	-	-	-	-	-	-	yes/no
Result	47	Overall Portion of Performance Standard Satisfied (BMP Efficacy Factor)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	48	Deficit of Effectively Treated Stormwater	-7,569	-3.232	-988	-120	n/a	n/a	n/a	n/a	n/a	n/a	cubic-feet

Minimum annual retention criteria are not satisfied for each individual drainage area. Implement additional site design elements, increase structural BMP retention capacity, or demonstrate that such requirements are satisfied at the project-level. This BMP does not fully satisfy the performance standards for pollutant control for the drainage area.

Water quality for DMAs 1 through 4 will be met using proprietary biofiltration unit (Modular Wetland Units by Contech). BF-3-1 and BF-3-2 corresponding to DMAs 1 and 2 will be volume-based unit located downstream of an underground storage facility that will includes an outlet structure designed to regulate the flows entering the units and control the drawdown. BF-3-3 and BF-3-4 corresponding to DMAs 3 and 4 are curb-type and flow-based MWS units that have been sized using worksheet B-6.1.

Category	#	Description		İİ	iii	iv	V		vii	viii		X	Units
	1	Drainage Basin ID or Name	DMA 1	DMA 2									unitless
	2	85th Percentile 24-hr Storm Depth	0.62	0.62									inches
	3	Is Hydromodification Control Applicable?	No	No									yes/no
Standard	4	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)											sq-ft
standard rainage Basin	5	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)											sq-ft
Inputs	6	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)											sq-ft
mputs	7	Natural Type A Soil Not Serving as Dispersion Area (C=0.10)											sq-ft
	8	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)											sq-ft
	9	Natural Type C Soil Not Serving as Dispersion Area (C=0.23)											sq-ft
	10	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)											sq-ft
SSD-BMPs	11	Does Tributary Incorporate Dispersion and/or Rain Barrels?	Yes	Yes									yes/no
Proposed	12	Does Tributary Incorporate Tree Wells?	No	No									yes/no
	13	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)	1,576	1,095									sq-ft
	14	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
	15	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)	942	730									sq-ft
spersion Area Rain Barrel	16	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
(Optional)	17	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)											sq-ft
	18	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)											sq-ft
	19	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
	20	Number of Rain Barrels Proposed per SD-E											#
	21	Average Rain Barrel Size											gal
	22	Total Tributary Area	2,518	1,825	0	0	0	0	0	0	0	0	sq-ft
nitial Runoff	23	Initial Runoff Factor for Standard Drainage Areas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Factor	24	Initial Runoff Factor for Dispersed & Dispersion Areas	0.60	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Calculation	25	Initial Weighted Runoff Factor	0.60	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
	26	Initial Design Capture Volume	78	55	0	0	0	0	0	0	0	0	cubic-fe
	27	Total Impervious Area Dispersed to Pervious Surface	1,576	1,095	0	0	0	0	0	0	0	0	sq-ft
	28	Total Pervious Dispersion Area	942	730	0	0	0	0	0	0	0	0	sq-ft
spersion Area diustment &	29	Ratio of Dispersed Impervious Area to Pervious Dispersion Area for DCV Reduction	1.70	1.50	n/a	ratio							
Rain Barrel	30	Adjustment Factor for Dispersed & Dispersion Areas	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
Adjustment	31	Runoff Factor After Dispersion Techniques	0.00	0.00	n/a	unitless							
agastiment	32	Design Capture Volume After Dispersion Techniques	0	0	0	0	0	0	0	0	0	0	cubic-f
	33	Total Rain Barrel Volume Reduction	0	0	0	0	0	0	0	0	0	0	cubic-fe
	34	Final Adjusted Runoff Factor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Results	35	Final Effective Tributary Area	0	0	0	0	0	0	0	0	0	0	sq-ft
Results	36	Initial Design Capture Volume Retained by Dispersion Area and Rain Barrel(s)	78	55	0	0	0	0	0	0	0	0	cubic-f
	37	Remaining Design Capture Volume Tributary to Tree Well(s)	0	0	0	0	0	0	0	0	0	0	cubic-fe

	SSD-BMP Automated Worksheet I-2: Step 2. Dispersion Area Validation (V1.0)												
Category	#	Description	i	ii	iii	iv	V	Vİ	vii	viii	ix	X	Units
	1	Drainage Basin ID or Name	DMA 1	DMA 2		-		-	-	-	-	-	unitless
	2	Final Design Capture Volume (DCV)	0	0		-		-	-	-	-		cubic-feet
	3	Is Hydromodification Control Applicable?	No	No		-		-	-	-	-		yes/no
	4	Total Impervious Area Dispersed to Pervious Surface	1,576	1,095		-		-	-	-	-		sq-ft
Standard	5	Total Engineered Pervious Surface and/or Natural Soil Dispersion Area (Does Not Include Semi-Pervious Surfaces Serving as Dispersion Area)		730	÷	-	÷	-	-	-	-	-	sq-ft
Dispersion Area Inputs	6	Ratio of Dispersed Impervious Area to Total Engineered Pervious Surface and/or Natural Soil Dispersion Area		1.50	÷	-	+	-	-	-	-	-	unitless
	7	Dispersion Area Length (Length of Sheet Flow Across Dispersion Area)	10	10									feet
	8	Dispersion Area Slope	5.0	5.0									%
	9	Thickness of Amended Soil	0	0									inches
	10	How is Flow Dispersed Across Width of Dispersion Area (definitions below*)?	Roof Drains	Curb Cuts									unitless
	11	Is DCV Requirement Fully Satisfied by Dispersion Area?	Yes	Yes	-	-	-	-	-	-	-	-	yes/no
Results	12	Is Hydromodification Control Requirement Satisfied by Dispersion Area?	n/a	n/a	-	-	-	-	-	-	-	-	yes/no
Results	13	Are Dispersion Area Length, Slope, and Thickness of Amended Soil (when applicable) Adequate?	Yes	Yes	-	-	-	-	-	-	-	-	yes/no

Notes:

*How is Flow Dispersed Across Width of Pervious Dispersion Area? Sheet Flow: Flow arrives as sheet flow across the width of the adjacent impervious area

Flow is discharged from flow spreader(s) across the width of the pervious area Discharge from roof drains distributed across the width of the pervious area Spreader(s): Roof Drains:

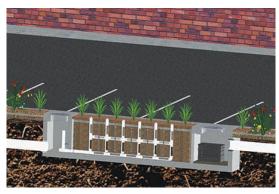
Discharge from curb cuts distributed across the width of the pervious area Other (Describe in PDP SWQMP) Curb Cuts:

Other:

DMA CALCULATIONS

	DMA 1	DMA 2	DMA 3	DMA4	Onsite Retention Volume
Required Retention Volume	76	32	10	1	118
Provided Retention Volume	96	53	0	0	149
Do Site Design Elements and BMPs Satisfy Annual Retention Requirements?	YES	YES	NO	NO	YES

Worksheet B-6.1


Annondiv B.	Storm Water Pollutant	Control Hydrologic (Calculations and Sizing Methods
Аррении В.		Control i Tyurologic C	alculations and sizing methods

	Flow-thru Design Flows (BF-3-3)	Worksheet B.6-1				
1	DCV	DCV	988	cubic-feet		
2	DCV retained	DCVretained	0	cubic-feet		
3	DCV biofiltered	DCVbiofiltered	0	cubic-feet		
4	DCV requiring flow-thru (Line 1 – Line 2 – 0.67*Line 3)	DCV flow-thru	0	cubic-feet		
5	Adjustment factor (Line 4 / Line 1)*	AF=	1	unitless		
6	Design rainfall intensity	i=	0.20	in/hr		
7	Area tributary to BMP (s)	A=	0.52	acres		
8	Area-weighted runoff factor (estimate using Appx B.2)	C=	0.85	unitless		
9	Calculate Flow Rate = AF x (C x i x A)	Q=	0.089	cfs		
10	Design Flow Rate (Appx F.2.2, BMP Manual) = 1.5Q	Q=	0.133	cfs		

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

	Flow-thru Design Flows (BF-3-4)	Wor	ksheet E	3.6-1
1	DCV	DCV	120	cubic-feet
2	DCV retained	DCVretained	0	cubic-feet
3	DCV biofiltered	DCVbiofiltered	0	cubic-feet
4	DCV requiring flow-thru (Line 1 – Line 2 – 0.67*Line 3)	DCV flow-thru	0	cubic-feet
5	Adjustment factor (Line 4 / Line 1)*	AF=	1	unitless
6	Design rainfall intensity	i=	0.20	in/hr
7	Area tributary to BMP (s)	A=	0.07	acres
8	Area-weighted runoff factor (estimate using Appx B.2)	C=	0.76	unitless
9	Calculate Flow Rate = AF x (C x i x A)	Q=	0.011	cfs
10	Design Flow Rate (Appx F.2.2, BMP Manual) = 1.5Q	Q=	0.016	cfs

MWS Linear | Sizing Options

Flow Based Sizing

The MWS Linear can be used in stand alone applications to meet treatment flow requirements. Since the MWS Linear is the only biofiltration system that can accept inflow pipes several feet below the surface it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

	Model #	Dimensions	WetlandMEDIA Surface Area	Treatment Flow Rate (cfs)
	MWS-L-4-4	4' x 4'	23 sq. ft.	0.052
	MWS-L-4-6	4' x 6'	32 sq. ft.	0.073
	MWS-L-4-8	4' x 8'	50 sq. ft.	0.115
	MWS-L-4-13	4' x 13'	63 sq. ft.	0.144
	MWS-L-4-15	4' x 15'	76 sq. ft.	0.175
	MWS-L-4-17	4' x 17'	90 sq. ft.	0.206
	MWS-L-4-19	4' x 19'	103 sq. ft.	0.237
_	MWS-L-4-21	4' x 21'	117 sq. ft.	0.268
	MWS-L-6-8	7′ x 9′	64 sq. ft.	0.147
	MWS-L-8-8	8' x 8'	100 sq. ft.	0.230
	MWS-L-8-12	8' x 12'	151 sq. ft.	0.346
	MWS-L-8-16	8' x 16'	201 sq. ft.	0.462
_	MWS-L-8-20	9' x 21'	252 sq. ft.	0.577
	MWS-L-8-24	9' x 25'	302 sq. ft.	0.693

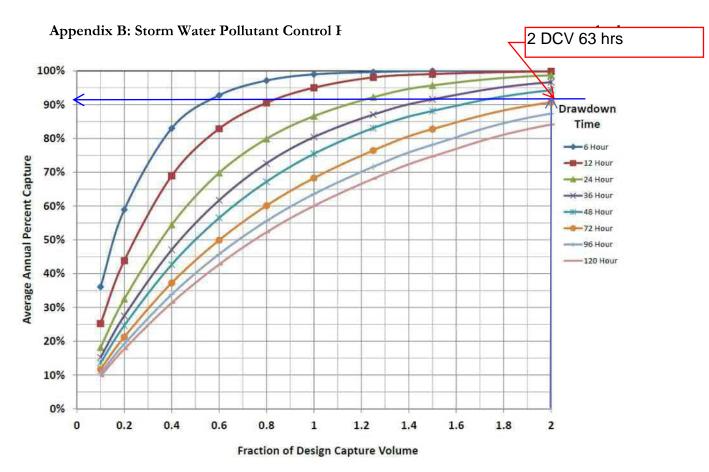


Figure B.3-1: Percent Capture Nomograph

Part 6) Determine the efficacy of the retention processes provided by the BMP. This value represents the portion of the pollutant control performance standard that is satisfied through retention processes of the BMP and is calculated as follows.

 $E_{R} = P_{C}/80\%$

BF-3-1 and BF-3-2 63 hrs DD, 2 DCV => 92% Average Annual Percent capture

Where:

E_R: Efficacy of retention processes (decimal) P_c: Average Annual Percent Capture (%)

Part 7) Determine the total volume retained by the proposed BMP.

V_{RBMP} = DCV x E_R Where: V_{RBMP}: Total volume retained by BMP (ft₃) DCV: Design capture volume (ft₃) E_R: Efficacy of retention processes (decimal)

Part 8) Determine the volume of storm water runoff still available for biofiltration treatment as shown

CMP-1 Discharge to MWS BF-3-1 Discharge vs Elevation Table

Discriary	e vs Elevation Table		
Low orifice:	0.5625 "	Top orifice:	0.625 "
Number:	8	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.40 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.56	0.00	0.00	0.026	0.031	0.026	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0256
0.33	7.11	0.00	0.00	0.038	2.023	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0376
0.50	10.67	0.00	1.92	0.047	23.644	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0467
0.67	14.22	2.42	5.12	0.054	118.943	0.054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0542
0.83	17.78	4.85	8.32	0.061	399.127	0.061	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0608
1.00	21.33	7.27	11.52	0.067	1053.340	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
1.17	24.89	9.70	14.72	0.072	2369.442	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0723
1.33	28.44	12.12	17.92	0.077	4754.788	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0773
1.50	32.00	14.55	21.12	0.082	8757.006	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0821
1.67	35.56	16.97	24.32	0.087	15084.775	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0866
1.83	39.11	19.39	27.52	0.091	24628.607	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0909
2.00	42.67	21.82	30.72	0.095	38481.619	0.095	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0950
2.17	46.22	24.24	33.92	0.099	57960.320	0.099	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0989
2.33	49.78	26.67	37.12	0.103	84625.382	0.103	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1027
2.50	53.33	29.09	40.32	0.106	120302.423	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1064
2.67	56.89	31.52	43.52	0.110	167102.785	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1099
2.83	60.44	33.94	46.72	0.113	227444.312	0.113	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1133

		CMP #1 St	age Storage						
	Input DCV			7,569					
	Input Factor			2	_				
) Ponding De		2.833		ft				
		evation value	e in relation to	o required W	Q volume				
HMP-2-A Sta									
depth	area	area (ac)	elevation	volume (cf)	volume (acft)				
0.00	3008.4	0.0691	0.00	0.0	0.00000				
0.17	3990.6	0.0916	0.17	611.1	0.01403				
0.33	4380.5	0.1006	0.33	1,310.7	0.03009				
0.50	4667.7	0.1072	0.50	2,065.7	0.04742				
0.67	4899.6	0.1125	0.67	2,863.6	0.06574				
0.83	5094.9	0.1170	0.83	3,696.9	0.08487				
1.00	5262.9	0.1208	1.00	4,560.4	0.10469				
1.17	5409.5	0.1242	1.17	5,450.0	0.12512				
1.33	5538.3	0.1271	1.33	6,362.6	0.14606				
1.50	5652.0	0.1298	1.50	7,295.3	0.16748				
1.67	5752.5	0.1321	1.67	8,245.8	0.18930				
1.83	5841.1	0.1341	1.83	9,212.1	0.21148				
2.00	5919.0	0.1359	2.00	10,192.3	0.23398				
2.17	5986.9	0.1374	2.17	11,184.6	0.25676				
2.33	6045.6	0.1388	2.33	12,187.4	0.27978				
2.50	6095.5	0.1399	2.50	13,199.3	0.30301				
2.67	6137.2	0.1409	2.67	14,218.8	0.32642				
2.83	6170.8	0.1417	2.83	15,244.5	0.34997				
3.00	6196.8	0.1423	3.00	16,275.3	0.37363				
3.17	6215.2	0.1427	3.17	17,309.7	0.39738				
3.33	6226.1	0.1429	3.33	18,346.6	0.42118				
3.50	6229.8	0.1430	3.50	19,384.7	0.44501				
3.67	6226.1	0.1429	3.67	20,422.8	0.46884				
3.83	6215.2	0.1427	3.83	21,459.7	0.49265				
4.00	6196.8	0.1423	4.00	22,494.1	0.51639				
4.17	6170.8	0.1417	4.17	23,524.8	0.54006				
4.33	6137.2	0.1409	4.33	24,550.6	0.56360				
4.50	6095.5	0.1399	4.50	25,570.1	0.58701				
4.67	6045.6	0.1388	4.67	26,582.0	0.61024				
4.83	5986.9	0.1374	4.83	27,584.8	0.63326				
5.00	5919.0	0.1359	5.00	28,577.1	0.65604				
5.17	5841.1	0.1341	5.17	29,557.2	0.67854				
5.33	5752.5	0.1321	5.33	30,523.5	0.70072				
5.50	5652.0	0.1298	5.50	31,474.1	0.72255				
5.67	5538.3	0.1271	5.67	32,406.8	0.74396				
5.83	5409.5	0.1242	5.83	33,319.4	0.76491				
6.00	5262.9	0.1208	6.00	34,209.0	0.78533				
6.17	5094.9	0.1170	6.17	35,072.5	0.80515				
6.33	4899.6	0.1125	6.33	35,905.8	0.82428				
6.50	4667.7	0.1072	6.50	36,703.7	0.84260				
6.67	4380.5	0.1006	6.67	37,458.6	0.85993				
6.83	3990.6	0.0916	6.83	38,158.3	0.87599				
7.00	3008.4	0.0691	7.00	38,769.4	0.89002				
7.17	3008.4	0.0691	7.17	39,270.8	0.90153				
7.33	3008.4	0.0691	7.33	39,772.2	0.91304				
7.50	3008.4	0.0691	7.50	40,273.6	0.92455				

Date: 8/7/2024 Project Name: West Storage-1 - 47951 (8-7-2024 21-27-19)

City / County: State:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs									
System Information	n	Backfill Information Pipe & Analysis Informat		ation					
Out-to-out length (ft):	107.0	Backfill Porosity (%):	40%	System Diameter (in):	84				
Out-to-out width (ft):	67.0	Depth Above Pipe (in):	6.0	Pipe Spacing (in):	36				
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2				
Number of Barrels (ea):	7.0	Width At Ends (ft):	1.0	System Invert (Elevation):	238				
		Width At Sides (ft):	1.0						

	Storage Volume Estimation										
Sys	tem		ре		one		System	Miscell			
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)		
0.00	238.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	3,008.4		
0.17	238.16	182.8	182.8	428.3	428.3	611.1	611.1	29.9%	3,990.6		
0.33	238.33	330.4	513.2	369.2	797.5	699.7	1,310.7	39.2%	4,380.5		
0.50	238.50	422.6	935.8	332.3	1,129.9	755.0	2,065.7	45.3%	4,667.7		
0.67	238.66	494.1	1,430.0	303.7	1,433.6	797.9	2,863.6	49.9%	4,899.6		
0.83	238.83	553.2	1,983.2	280.1	1,713.7	833.3	3,696.9	53.6%	5,094.9		
1.00	239.00	603.5	2,586.6	260.0	1,973.7	863.5	4,560.4	56.7%	5,262.9		
1.17	239.16	647.1	3,233.7	242.6	2,216.3	889.6	5,450.0	59.3%	5,409.5		
1.33	239.33	685.2	3,918.9	227.3	2,443.6	912.5	6,362.6	61.6%	5,538.3		
1.50	239.50	718.9	4,637.8	213.8	2,657.5	932.7	7,295.3	63.6%	5,652.0		
1.67	239.66	748.6	5,386.4	202.0	2,859.4	950.6	8,245.8	65.3%	5,752.5		
1.83	239.83	774.8	6,161.2	191.5	3,050.9	966.3	9,212.1	66.9%	5,841.1		
2.00	240.00	797.9	6,959.1	182.2	3,233.1	980.1	10,192.3	68.3%	5,919.0		
2.17	240.16	818.1	7,777.3	174.1	3,407.3	992.3	11,184.6	69.5%	5,986.9		
2.33	240.33	835.7	8,613.0	167.1	3,574.4	1,002.8	12,187.4	70.7%	6,045.6		
2.50	240.50	850.8	9,463.8	161.1	3,735.5	1,011.9	13,199.3	71.7%	6,095.5		
2.67	240.66	863.5	10,327.3	156.0	3,891.5	1,019.5	14,218.8	72.6%	6,137.2		
2.83	240.83	874.0	11,201.2	151.8	4,043.3	1,025.8	15,244.5	73.5%	6,170.8		
3.00	241.00	882.2	12,083.5	148.5	4,191.8	1,030.7	16,275.3	74.2%	6,196.8		
3.17	241.16	888.4	12,971.9	146.0	4,337.9	1.034.4	17,309.7	74.9%	6,215.2		
3.33	241.33	892.5	13,864.3	144.4	4,482.3	1,036.9	18,346.6	75.6%	6,226.1		
3.50	241.50	894.5	14,758.8	143.6	4,625.9	1,038.1	19,384.7	76.1%	6,229.8		
3.67	241.66	894.5	15,653.3	143.6	4,769.5	1,038.1	20,422.8	76.6%	6,226.1		
3.83	241.83	892.5	16,545.8	144.4	4,913.9	1,036.9	21,459.7	77.1%	6,215.2		
4.00	242.00	888.4	17,434.2	146.0	5,059.9	1,034.4	22,494.1	77.5%	6,196.8		
4.17	242.16	882.2	18,316.4	148.5	5,208.4	1,030.7	23,524.8	77.9%	6,170.8		
4.33	242.33	874.0	19,190.3	151.8	5,360.3	1,025.8	24,550.6	78.2%	6,137.2		
4.50	242.50	863.5	20,053.8	156.0	5,516.3	1,019.5	25,570.1	78.4%	6,095.5		
4.67	242.66	850.8	20,904.6	161.1	5,677.3	1,011.9	26,582.0	78.6%	6,045.6		
4.83	242.83	835.7	21,740.3	167.1	5,844.5	1,002.8	27,584.8	78.8%	5,986.9		
5.00	243.00	818.1	22,558.5	174.1	6,018.6	992.3	28,577.1	78.9%	5,919.0		
5.17	243.16	797.9	23,356.4	182.2	6,200.8	980.1	29,557.2	79.0%	5,841.1		
5.33	243.33	774.8	24,131.2	191.5	6,392.3	966.3	30,523.5	79.1%	5,752.5		
5.50	243.50	748.6	24,879.8	202.0	6,594.3	950.6	31,474.1	79.0%	5,652.0		
5.67	243.66	718.9	25.598.7	213.8	6.808.1	932.7	32,406.8	79.0%	5,538.3		
5.83	243.83	685.2	26,283.9	227.3	7,035.4	912.5	33,319.4	78.9%	5,409.5		
6.00	244.00	647.1	26,931.0	242.6	7,278.0	889.6	34,209.0	78.7%	5,262.9		
6.17	244.16	603.5	27,534.5	260.0	7,538.0	863.5	35,072.5	78.5%	5,094.9		
6.33	244.33	553.2	28,087.6	280.1	7,818.1	833.3	35,905.8	78.2%	4,899.6		
6.50	244.50	494.1	28,581.8	303.7	8,121.9	797.9	36,703.7	77.9%	4,667.7		
6.67	244.66	422.6	29,004.4	332.3	8,454.2	755.0	37,458.6	77.4%	4,380.5		
6.83	244.83	330.4	29,334.8	369.2	8,823.5	699.7	38,158.3	76.9%	3,990.6		
7.00	245.00	182.8	29,517.6	428.3	9,251.8	611.1	38,769.4	76.1%	3,008.4		
7.17	245.16	0.0	29,517.6	501.4	9,753.2	501.4	39,270.8	75.2%	3,008.4		
7.33	245.33	0.0	29,517.6	501.4	10,254.6	501.4	39,772.2	74.2%	3,008.4		
7.50	245.50	0.0	29,517.6	501.4	10,756.0	501.4	40,273.6	73.3%	3,008.4		

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawo	down @	2.83	ft=	62.68
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.026	611	6.64	62.68
0.17	0.032	700	6.15	56.05
0.33	0.042	755	4.98	49.90
0.50	0.050	798	4.40	44.92
0.67	0.058	833	4.02	40.52
0.83	0.064	863	3.76	36.50
1.00	0.070	890	3.55	32.74
1.17	0.075	913	3.39	29.19
1.33	0.080	933	3.25	25.80
1.50	0.084	951	3.13	22.55
1.67	0.089	966	3.02	19.42
1.83	0.093	980	2.93	16.40
2.00	0.097	992	2.84	13.47
2.17	0.101	1003	2.76	10.62
2.33	0.105	1012	2.69	7.86
2.50	0.108	1020	2.62	5.17
2.67	0.112	1026	2.55	2.55
2.83				

CMP-2 Discharge to MWS BF-3-2 Discharge vs Elevation Table

Discharge	e vs Elevation Table		
Low orifice:	0.525 "	Top orifice:	0.75 "
Number:	4	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.75 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.81	0.00	0.00	0.011	0.016	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0112
0.33	7.62	0.00	0.00	0.016	1.321	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0164
0.50	11.43	0.00	0.00	0.020	14.762	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0204
0.67	15.24	2.42	0.00	0.024	73.005	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0236
0.83	19.05	4.85	1.33	0.027	242.879	0.027	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0265
1.00	22.86	7.27	4.00	0.029	637.724	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0291
1.17	26.67	9.70	6.67	0.031	1429.734	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0315
1.33	30.48	12.12	9.33	0.034	2862.302	0.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0337
1.50	34.29	14.55	12.00	0.036	5262.368	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0358
1.67	38.10	16.97	14.67	0.038	9052.761	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0378
1.83	41.90	19.39	17.33	0.040	14764.544	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0396
2.00	45.71	21.82	20.00	0.041	23049.363	0.041	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0414
2.17	49.52	24.24	22.67	0.043	34691.785	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0431
2.33	53.33	26.67	25.33	0.045	50621.653	0.045	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0448
2.50	57.14	29.09	28.00	0.046	71926.420	0.046	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0463
2.67	60.95	31.52	30.67	0.048	99863.503	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0479
2.83	64.76	33.94	33.33	0.049	135872.625	0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0494
3.00	68.57	36.36	36.00	0.051	181588.157	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0508
3.17	72.38	38.79	38.67	0.052	238851.469	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0522

CMP #HMP-2 Stage Storage						
		CIVIP #HIVIP-				
	Input DCV		3,285			
	Input Factor			2.05		
) Ponding Dep		3.000			
		levation valu	e in relation t	o required WQ v	olume	
HMP-2-A Sta	5 5					
	Average			Consulation		
	Surface			Comulative	volume	
depth	area	area (ac)	elevation	volume (cf)	(acft)	
0.00	1244.4	0.0286	0.00	0.0	0.0	
0.17	1650.4	0.0379	0.17	252.7	0.00580	
0.33	1811.9	0.0416	0.33	542.1	0.01244	
0.50	1931.4	0.0443	0.50	854.4	0.01961	
0.67	2028.1	0.0466	0.67	1,184.6	0.02720	
0.83	2109.9	0.0484	0.83	1,529.6	0.03512	
1.00	2180.6	0.0501	1.00	1,887.3	0.04333	
1.17	2242.5	0.0515	1.17	2,256.0	0.05179	
1.33	2297.3	0.0527	1.33	2,634.4	0.06048	
1.50	2346.0	0.0539	1.50	3,021.5	0.06936	
1.67	2389.3	0.0549	1.67	3,416.1	0.07842	
1.83	2428.0	0.0557	1.83	3,817.6	0.08764	
2.00	2462.3	0.0565	2.00	4,225.2	0.09700	
2.17	2492.6	0.0572	2.17	4,638.2	0.10648	
2.33	2519.4	0.0578	2.33	5,055.9	0.11607	
2.50	2542.6	0.0584	2.50	5,477.8	0.12575	
2.67	2562.7	0.0588	2.67	5,903.3	0.13552	
2.83	2579.6	0.0592	2.83	6,331.8	0.14536	
3.00	2593.6	0.0595	3.00	6,763.0	0.15526	
3.17	2604.6	0.0598	3.17	7,196.2	0.16520	
3.33	2612.9	0.0600	3.33	7,631.0	0.17518	
3.50	2618.3	0.0601	3.50	8,067.0	0.18519	
3.67	2621.1	0.0602	3.67	8,503.7	0.19522	
3.83	2621.1	0.0602	3.83	8,940.5	0.20525	
4.00	2618.3	0.0601	4.00	9,377.2	0.21527	
4.17	2612.9	0.0600	4.17	9,813.2	0.22528	
4.33	2604.6	0.0598	4.33	10,248.0	0.23526	
4.50	2593.6	0.0595	4.50	10,681.2	0.24521	
4.67	2579.6	0.0592	4.67	11,112.4	0.25510	
4.83	2562.7	0.0588	4.83	11,540.9	0.26494	
5.00	2542.6	0.0584	5.00	11,966.4	0.27471	
5.17	2519.4	0.0578	5.17	12,388.3	0.28440	
5.33	2492.6	0.0572	5.33	12,806.0	0.29399	
5.50	2462.3	0.0565	5.50	13,219.0	0.30347	
5.67	2428.0	0.0557	5.67	13,626.6	0.31282	
5.83	2389.3	0.0549	5.83	14,028.1	0.32204	
6.00	2346.0	0.0539	6.00	14,422.7	0.33110	
6.17	2297.3	0.0527	6.17	14,809.8	0.33999	
6.33	2242.5	0.0515	6.33	15,188.2	0.34867	
6.50	2180.6	0.0501	6.50	15,556.9	0.35714	
6.67	2109.9	0.0484	6.67	15,914.6	0.36535	
6.83	2028.1	0.0466	6.83	16,259.6	0.37327	
7.00	1931.4	0.0443	7.00	16,589.8	0.38085	
7.17	1811.9	0.0416	7.17	16,902.1	0.38802	
7.33	1650.4	0.0379	7.33	17,191.5	0.39466	
7.50	1244.4	0.0286	7.50	17,444.2	0.40046	
7.67	1244.4	0.0286	7.67	17,651.6	0.40522	
7.83	1244.4	0.0286	7.83	17,859.0	0.40999	
8.00	1244.4	0.0286	8.00	18,066.4	0.41475	
8.17	1244.4	0.0286	8.17	18,273.8	0.41951	

Date: 8/7/2024 Project Name: East Storage-2 - 47954 (8-7-2024 0-5-24)

City / County: State:

Designed By: Company:

Telephone:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs						
System Information	1	Backfill Information		Pipe & Analysis Information		
Out-to-out length (ft):	100.0	Backfill Porosity (%):	40%	System Diameter (in):	90	
Out-to-out width (ft):	28.5	Depth Above Pipe (in):	9.0	Pipe Spacing (in):	36	
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2	
Number of Barrels (ea):	3.0	Width At Ends (ft):	1.0	System Invert (Elevation):	223.5	
		Width At Sides (ft):	1.0			

	Storage Volume Estimation								
Sys	stem		ре		one		System	Miscell	
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)
0.00	223.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	1,244.4
0.17	223.66	75.5	75.5	177.2	177.2	252.7	252.7	29.9%	1,650.4
0.33	223.83	136.6	212.1	152.7	329.9	289.4	542.1	39.1%	1,811.9
0.50	224.00	174.9	387.0	137.4	467.4	312.3	854.4	45.3%	1,931.4
0.67	224.16	204.7	591.7	125.5	592.9	330.2	1,184.6	49.9%	2,028.1
0.83	224.33	229.4	821.1	115.7	708.6	345.0	1,529.6	53.7%	2,109.9
1.00	224.50	250.5	1,071.5	107.2	815.8	357.7	1,887.3	56.8%	2,180.6
1.17	224.66	268.8	1,340.4	99.9	915.7	368.7	2,256.0	59.4%	2,242.5
1.33	224.83	285.0	1,625.4	93.4	1,009.0	378.4	2,634.4	61.7%	2,297.3
1.50	225.00	299.4	1,924.8	87.7	1,096.7	387.0	3,021.5	63.7%	2,346.0
1.67	225.16	312.1	2,236.9	82.5	1,179.2	394.7	3,416.1	65.5%	2,389.3
1.83	225.33	323.5	2,560.4	78.0	1,257.2	401.5	3,817.6	67.1%	2,428.0
2.00	225.50	333.6	2,894.0	74.0	1,331.2	407.6	4,225.2	68.5%	2,462.3
2.17	225.66	342.6	3,236.6	70.4	1,401.5	413.0	4,638.2	69.8%	2,492.6
2.33	225.83	350.5	3,587.2	67.2	1,468.7	417.7	5,055.9	71.0%	2,519.4
2.50	226.00	357.5	3,944.6	64.4	1,533.1	421.9	5,477.8	72.0%	2,542.6
2.67	226.16	363.5	4,308.1	62.0	1,595.2	425.5	5,903.3	73.0%	2,562.7
2.83	226.33	368.6	4,676.7	60.0	1,655.1	428.6	6,331.8	73.9%	2,579.6
3.00	226.50	372.9	5,049.6	58.2	1,713.3	431.1	6,763.0	74.7%	2,593.6
3.17	226.66	376.4	5,426.0	56.9	1,770.2	433.2	7,196.2	75.4%	2,604.6
3.33	226.83	379.1	5,805.1	55.8	1,826.0	434.8	7,631.0	76.1%	2,612.9
3.50	227.00	381.0	6,186.0	55.0	1,881.0	436.0	8,067.0	76.7%	2,618.3
3.67	227.16	382.1	6,568.1	54.6	1,935.6	436.7	8,503.7	77.2%	2,621.1
3.83	227.33	382.5	6,950.6	54.4	1,990.0	436.9	8,940.5	77.7%	2,621.1
4.00	227.50	382.1	7,332.7	54.6	2,044.5	436.7	9,377.2	78.2%	2,618.3
4.17	227.66	381.0	7,713.6	55.0	2,099.6	436.0	9,813.2	78.6%	2,612.9
4.33	227.83	379.1	8,092.7	55.8	2,155.3	434.8	10,248.0	79.0%	2,604.6
4.50	228.00	376.4	8,469.0	56.9	2,212.2	433.2	10,681.2	79.3%	2,593.6
4.67	228.16	372.9	8,841.9	58.2	2,270.4	431.1	11,112.4	79.6%	2,579.6
4.83	228.33	368.6	9,210.6	60.0	2,330.4	428.6	11,540.9	79.8%	2,562.7
5.00	228.50	363.5	9,574.0	62.0	2,392.4	425.5	11,966.4	80.0%	2,542.6
5.17	228.66	357.5	9,931.5	64.4	2,456.8	421.9	12,388.3	80.2%	2,519.4
5.33	228.83	350.5	10,282.0	67.2	2,524.0	417.7	12,806.0	80.3%	2,492.6
5.50	229.00	342.6	10,624.6	70.4	2,594.3	413.0	13,219.0	80.4%	2,462.3
5.67	229.16	333.6	10,958.3	74.0	2,668.3	407.6	13,626.6	80.4%	2,428.0
5.83	229.33	323.5	11,281.8	78.0	2,746.3	401.5	14,028.1	80.4%	2,389.3
6.00	229.50	312.1	11,593.9	82.5	2,828.8	394.7	14,422.7	80.4%	2,346.0
6.17	229.66	299.4	11,893.3	87.7	2,916.5	387.0	14,809.8	80.3%	2,297.3
6.33	229.83	285.0	12,178.3	93.4	3,009.9	378.4	15,188.2	80.2%	2,242.5
6.50	230.00	268.8	12,447.1	99.9	3,109.7	368.7	15,556.9	80.0%	2,180.6
6.67	230.16	250.5	12,697.6	107.2	3,217.0	357.7	15,914.6	79.8%	2,109.9
6.83	230.33	229.4	12,926.9	115.7	3,332.6	345.0	16,259.6	79.5%	2,028.1
7.00	230.50	204.7	13,131.6	125.5	3,458.2	330.2	16,589.8	79.2%	1,931.4
7.17	230.66	174.9	13,306.5	137.4	3,595.6	312.3	16,902.1	78.7%	1,811.9
7.33	230.83	136.6	13,443.1	152.7	3,748.3	289.4	17,191.5	78.2%	1,650.4
7.50	231.00	75.5	13,518.7	177.2	3,925.5	252.7	17,444.2	77.5%	1,244.4
7.67	231.16	0.0	13,518.7	207.4	4,132.9	207.4	17,651.6	76.6%	1,244.4
7.83	231.33	0.0	13,518.7	207.4	4,340.3	207.4	17,859.0	75.7%	1,244.4
8.00	231.50	0.0	13,518.7	207.4	4,547.7	207.4	18,066.4	74.8%	1,244.4
8.17	231.66	0.0	13,518.7	207.4	4,755.1	207.4	18,273.8	74.0%	1,244.4

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawdown @		3.00	ft=	62.00
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.011	253	6.27	62.00
0.17	0.014	289	5.82	55.74
0.33	0.018	312	4.72	49.92
0.50	0.022	330	4.17	45.20
0.67	0.025	345	3.82	41.03
0.83	0.028	358	3.57	37.21
1.00	0.030	369	3.38	33.64
1.17	0.033	378	3.22	30.26
1.33	0.035	387	3.09	27.03
1.50	0.037	395	2.98	23.94
1.67	0.039	402	2.88	20.96
1.83	0.041	408	2.79	18.07
2.00	0.042	413	2.71	15.28
2.17	0.044	418	2.64	12.56
2.33	0.046	422	2.57	9.92
2.50	0.047	425	2.51	7.35
2.67	0.049	429	2.45	4.84
2.83	0.050	431	2.39	2.39
3.00				

Volume based Sizing letter from Contech will be provided during Final Engineering.

63 Hr

Volume Based Sizing

Many states require treatment of a water quality volume and do not offer the option of flow based design. The MWS Linear and its unique horizontal flow makes it the only biofilter that can be used in volume based design installed downstream of ponds, detention basins, and underground storage systems.

Model #	Treatment Capacity (cu. ft.) @ 24-Hour Drain Down	Treatment Capacity (cu. ft.) (48-Hour Drain Down	a)
MWS-L-4-4	1140	2280	
MWS-L-4-6	1600	3200	
MWS-L-4-8	2518	5036 66	09
MWS-L-4-13	3131	6261	
MWS-L-4-15	3811	7623	
MWS-L-4-17	4492	8984	
MWS-L-4-19	5172	10345	
MWS-L-4-21	5853	11706	
MWS-L-6-8	3191	6382	
MWS-L-8-8	5036	10072	
MWS-L-8-12	7554	15109 19	,830
MWS-L-8-16	10073	20145	
MWS-L-8-20	12560	25120	
MWS-L-8-24	15108	30216	

Appendix F: Biofiltration Standard and Checklist

considerations to provide for continued effectiveness of pollutant and flow control functions.

Biofiltration Criteria Checklist

The applicant shall provide documentation of compliance with each criterion in this checklist as part of the project submittal. The right column of this checklist identifies the submittal information that is recommended to document compliance with each criterion. Biofiltration BMPs that substantially meet all aspects of Fact Sheets PR-1 or BF-1 should still use this checklist; however additional documentation (beyond what is already required for project submittal) should not be required.

1. Biofiltration BMPs shall be allowed to be used only as described in the BMP selection process based on a documented feasibility analysis.

Intent: This manual defines a specific prioritization of pollutant treatment BMPs, where BMPs that retain water (retained includes evapotranspired, infiltrated, and/or harvested and used) must be used before considering BMPs that have a biofiltered discharge to the MS4 or surface waters. Use of a biofiltration BMP in a manner in conflict with this prioritization (i.e., without a feasibility analysis justifying its use) is not permitted, regardless of the adequacy of the sizing and design of the system.

 \boxtimes

The project applicant has demonstrated that it is not technically feasible to retain the full Document feasibility analysis and findings in DCV onsite. Stormwater management investigation has been the submittal SWQMP per Appendix C.

2. Biofiltration BMPs must be sized using acceptable sizing methods.

Intent: The MS4 Permit and this manual defines specific sizing methods that must be used to size biofiltration BMPs. Sizing of biofiltration BMPs is a fundamental factor in the amount of storm water that can be treated and also influences volume and pollutant retention processes.

The project applicant has demonstrated that biofiltration BMPs are sized to meet one of

Submit sizing worksheets (Appendix B.5) or other equivalent documentation with the

The MWS BF-3-1 and BF-3-2 were sized to biofilter 2 DCV.within 63 hrs to treat 92% of the annual captured volume. For BF-3-3 Section F.2.2 of the BMP manual was used to design a flow based MWs unit.

3. Biofiltration BMPs must be sited and designed to achieve maximum feasible infiltration and evapotranspiration.

Intent: Various decisions about BMP placement and design influence how much water is retained via infiltration and evapotranspiration. The MS4 Permit requires that biofiltration BMPs achieve maximum feasible retention (evapotranspiration and infiltration) of storm water volume.

Min retention met on site using dispersion

	The biofiltration BMP is sited to allow for maximum infiltration of runoff volume based on the feasibility factors considered in site planning efforts. It is also designed to maximize evapotranspiration through the use of amended media and plants (biofiltration designs without amended media and plants may be permissible; see Item 5).	Document site planning and feasibility analyses in SWQMP per Section 5.4.
	For biofiltration BMPs categorized as "Partial Infiltration Condition" the infiltration storage depth in the biofiltration design has been selected to drain in 36 hours (+/-25%) or an alternative value shown to maximize infiltration on the site.	Included documentation of estimated infiltration rate per Appendix D; provide calculations using Appendix B.4 and B.5 to show that the infiltration storage depth meets this criterion. Note, depths that are too shallow or too deep may not be acceptable.
\boxtimes	For biofiltration BMP locations categorized as "Partial Infiltration Condition," the infiltration storage is over the entire bottom of the biofiltration BMP footprint.	Document on plans that the infiltration storage covers the entire bottom of the BMP (i.e., not just underdrain trenches); or an equivalent footprint elsewhere on the site.
	For biofiltration BMP locations categorized as "Partial Infiltration Condition," the sizing factor used for the infiltration storage area is not less than the minimum biofiltration BMP sizing factors calculated using Worksheet B.5.1 to achieve 40% average annual percent capture within the BMP or downstream of the BMP	Provide a table that compares the minimum sizing factor per Appendix B.5 to the provided sizing factor. Note: The infiltration storage area could be a separate storage feature located downstream of the biofiltration BMP, not necessarily within the same footprint.
\boxtimes	An impermeable liner or other hydraulic restriction layer is only used when needed to avoid geotechnical and/or subsurface contamination issues in locations identified as "No Infiltration Condition."	If using an impermeable liner or hydraulic restriction layer, provide documentation of feasibility findings per Appendix C that recommend the use of this feature.
	The use of "compact" biofiltration BMP design ² is permitted only in conditions identified as "No Infiltration Condition" and where site-specific documentation demonstrates that the use of larger footprint biofiltration BMPs would be infeasible.	Provide documentation of feasibility findings that recommend no infiltration is feasible. Provide site-specific information to demonstrate that a larger footprint biofiltration BMP would not be feasible.

² Compact biofiltration BMPs are defined as features with infiltration storage footprint less than the minimum sizing factors required to achieve 40% volume retention. Note that if a biofiltration BMP is accompanied by an infiltrating area downstream that has a footprint equal to at least the minimum sizing factors calculated using

4. Biofiltration BMPs must be designed with a hydraulic loading rate to maximize pollutant retention, preserve pollutant control processes, and minimize potential for pollutant washout.

Intent: Various decisions about biofiltration BMP design influence the degree to which pollutants are retained. The MS4 Permit requires that biofiltration BMPs achieve maximum feasible retention of storm water pollutants.

Media selected for the biofiltration BMP meets minimum quality and material specifications per 2021 City of San Diego Storm Water Standards or County BMP Design Manual, including the maximum allowable design filtration rate and minimum thickness of media.	Provide documentation that media meets the specifications in 2021 City of San Diego Storm Water Standards or County BMP Design Manual.
OR	
Alternatively, for proprietary designs and custom media mixes not meeting the media specifications contained in the 2021 City of San Diego Storm Water Standards or County BMP Design Manual, field scale testing data	Provide documentation of performance
are provided to demonstrate that proposed Fo media meets the pollutant treatment	r BMP design and pollutant removal a TAPE rtified for MWS unit has been provided In achment 1e
To the extent practicable, filtration rates are outlet controlled (e.g., via an underdrain and orifice/weir) instead of controlled by the infiltration rate of the media.	Include outlet control in designs or provide documentation of why outlet control is not practicable.
The water surface drains to at least 12 inches below the media surface within 24 hours from the end of storm event flow to preserve plant health and promote healthy soil structure.	Include calculations to demonstrate that drawdown rate is adequate. Surface ponding drawdown time greater than 24-hours but less than 96 hours may be allowed at the discretion of the City Engineer if certified by a landscape architect or agronomist.

Worksheet B.5.1 assuming a partial infiltration condition, then it is not considered to be a compact biofiltration BMP for the purpose of Item 4 of the checklist. For potential configurations with a higher rate biofiltration BMP upstream of an larger footprint infiltration area, the BMP would still need to comply with Item 5 of this checklist for pollutant treatment effectiveness.

Appendix F: Biofiltration Standard and Checklist

	If nutrients are a pollutant of concern, design of the biofiltration BMP follows nutrient- sensitive design criteria. Media gradation calculations or geotextile selection calculations demonstrate that migration of media between layers will be	Follow specifications for nutrient sensitive design in Fact Sheet BF-2. Or provide alternative documentation that nutrient treatment is addressed and potential for nutrient release is minimized. Follow specification for choking layer or geotextile in Fact Sheet PR-1 or BF-1. Or include calculations to demonstrate that
	prevented and permeability will be preserved.	choking layer is appropriately specified.
	Biofiltration BMPs must be designed to p support and maintain treatment processes Intent: Biological processes are an important elem	
	Plants have been selected to be tolerant of project climate, design ponding depths and the treatment media composition.	Provide documentation justifying plant selection. Refer to the plant list in Appendix E.20.
		ient processes. These vary as a function of logically available forms of nitrogen, phosphorus, and carbon are actively tak d are used for metabolic processes (i.e., energy production and growth). Nitr
into gen a remo storr down mate	the cells of the biofilm created within the subsurface wetland, and and phosphorus are actively taken up as nutrients that are vital fo ove metabolites from the media during and between storm events ms. Soil organisms in the wetland chamber can break down a wide in into carbon dioxide and water (Means and Hinchee 1994). Bacter erial, and accumulate metals in nodules within the cells. The MWS	logically available forms of nitrogen, phosphorus, and carbon are actively tak d are used for metabolic processes (i.e., energy production and growth). Nitr ir a number of cell functions, growth, and energy production. These processe s, making the media available to capture more nutrients from subsequent e array of organic compounds into less toxic forms or completely break them eria can also cause metals to precipitate out as salts, bind them within organi 5 is approved under TAPE protocol with and without plants meeting the mini- pment of a schmutzdecke (a biological layer) within this subsurface applicati
into gen a remo storr down mate	the cells of the biofilm created within the subsurface wetland, and and phosphorus are actively taken up as nutrients that are vital fo ove metabolites from the media during and between storm events ms. Soil organisms in the wetland chamber can break down a wide in into carbon dioxide and water (Means and Hinchee 1994). Bacte erial, and accumulate metals in nodules within the cells. The MWS n requirements set forth in the performance standard. The develo	logically available forms of nitrogen, phosphorus, and carbon are actively tak d are used for metabolic processes (i.e., energy production and growth). Nitr ir a number of cell functions, growth, and energy production. These processe s, making the media available to capture more nutrients from subsequent e array of organic compounds into less toxic forms or completely break them eria can also cause metals to precipitate out as salts, bind them within organi 5 is approved under TAPE protocol with and without plants meeting the mini- pment of a schmutzdecke (a biological layer) within this subsurface applicati
into gen a remo storr dowu mate mum creat	the cells of the biofilm created within the subsurface wetland, and and phosphorus are actively taken up as nutrients that are vital fo ove metabolites from the media during and between storm events ms. Soil organisms in the wetland chamber can break down a wide in into carbon dioxide and water (Means and Hinchee 1994). Bacte erial, and accumulate metals in nodules within the cells. The MWS in requirements set forth in the performance standard. The develo ites a diversity of microorganisms that meets the necessary require processes (e.g., biofilm in a subsurface flow	logically available forms of nitrogen, phosphorus, and carbon are actively tak d are used for metabolic processes (i.e., energy production and growth). Nitr r a number of cell functions, growth, and energy production. These processes s, making the media available to capture more nutrients from subsequent e array of organic compounds into less toxic forms or completely break them eria can also cause metals to precipitate out as salts, bind them within organic is approved under TAPE protocol with and without plants meeting the mini- pment of a schmutzdecke (a biological layer) within this subsurface application ement for biological activity. support effective treatment and how they will be sustained. rith a hydraulic loading rate to prevent BMP.
into gen a remo storr dowu mate mum creat	the cells of the biofilm created within the subsurface wetland, and and phosphorus are actively taken up as nutrients that are vital fo ove metabolites from the media during and between storm events ms. Soil organisms in the wetland chamber can break down a wide in into carbon dioxide and water (Means and Hinchee 1994). Bacter erial, and accumulate metals in nodules within the cells. The MWS in requirements set forth in the performance standard. The develo ites a diversity of microorganisms that meets the necessary require processes (e.g., biofilm in a subsurface flow wetland). Biofiltration BMPs must be designed w erosion, scour, and channeling within the Intent: Erosion, scour, and/or channeling can disc effectiveness. Scour protection has been provided for both sheet flow and pipe inflows to the BMP,	logically available forms of nitrogen, phosphorus, and carbon are actively tak d are used for metabolic processes (i.e., energy production and growth). Nitr r a number of cell functions, growth, and energy production. These processes s, making the media available to capture more nutrients from subsequent e array of organic compounds into less toxic forms or completely break them eria can also cause metals to precipitate out as salts, bind them within organic is approved under TAPE protocol with and without plants meeting the mini- pment of a schmutzdecke (a biological layer) within this subsurface application ement for biological activity. support effective treatment and how they will be sustained. rith a hydraulic loading rate to prevent BMP.

	For proprietary BMPs, the BMP is used in a manner consistent with manufacturer guidelines and conditions of its third-party certification ³ (i.e., maximum tributary area, maximum inflow velocities, etc., as applicable).	Provide copy of manufacturer recommendations and conditions of third- party certification.
F f I in	Biofiltration BMP must include operation blanning considerations for continued effi- functions. Intent: Biofiltration BMPs require regular main intended. Additionally, it is not possible to fores herefore plans must be in place to correct issues i The biofiltration BMP O&M plan describes	fectiveness of pollutant and flow control tenance in order provide ongoing function as see and avoid potential issues as part of design;
	specific inspection activities, regular/1 attachn maintenance activities and specific co- actions relating to scour, erosion, char media clogging, vegetation health, and inflow and outflow structures.	nent 3
	Adequate site area and features have been provided for BMP inspection and maintenance access.	Illustrate maintenance access routes, setbacks, maintenance features as needed on project water quality plans.
	For proprietary biofiltration BMPs, the BMP maintenance plan is consistent with manufacturer guidelines and conditions of its third-party certification (i.e., maintenance activities, frequencies).	Provide copy of manufacturer recommendations and conditions of third- party certification.

³ Certifications or verifications issued by the Washington Technology Acceptance Protocol-Ecology program and the New Jersey Corporation for Advanced Technology programs are typically accompanied by a set of guidelines regarding appropriate design and maintenance conditions that would be consistent with the certification/verification

January 2024

GENERAL USE LEVEL DESIGNATION FOR BASIC (TSS) METALS AND PHOSPHORUS TREATMENT

For

Contech Engineered Solutions, LLC (Contech) Modular Wetlands Linear

Ecology's Decision

Based on Modular Wetland Systems, Inc, application submissions, including the Technical Evaluation Report, dated April 1, 2014, Ecology hereby issues the following use level designation:

- 1. General Use Level Designation (GULD) for the Modular Wetlands Linear Stormwater Treatment System for Basic, Phosphorus, and Metals treatment
 - Sized at a hydraulic loading rate of:
 - 1 gallon per minute (gpm) per square foot (sq ft) of Wetland Cell Surface Area
 - Prefilter box (approved at either 22 inches or 33 inches tall)
 - 3.0 gpm/sq ft of prefilter box surface area for moderate pollutant loading rates (low to medium density residential basins).
 - 2.1 gpm/sq ft of prefilter box surface area for high pollutant loading rates (commercial and industrial basins).
- 2. Ecology approves the Modular Wetlands Linear Stormwater Treatment System units for Basic, Phosphorus, and Metals treatment at the hydraulic loading rate listed above. Designers shall calculate the water quality design flow rates using the following procedures:
 - Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute water quality treatment design flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology- approved continuous runoff model.

- Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute water quality treatment design flow rate as calculated using one of the three methods described in Chapter 2.7.6 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
- Entire State: For treatment installed downstream of detention, the water quality treatment design flow rate is the full 2-year release rate of the detention facility.
- 3. These use level designations have no expiration date but may be amended or revoked by Ecology, and are subject to the conditions specified below.

Ecology's Conditions of Use

Applicants shall comply with the following conditions:

- 1) Design, assemble, install, operate, and maintain the Modular Wetlands Linear Stormwater Treatment System units, in accordance with Contech's. applicable manuals and documents and the Ecology Decision.
- 2) Each site plan must undergo Contech review and approval before site installation. This ensures that site grading and slope are appropriate for use of a Modular Wetlands Linear Stormwater Treatment System unit.
- 3) Modular Wetlands Linear Stormwater Treatment System media shall conform to the specifications submitted to and approved by Ecology.
- 4) The applicant tested the Modular Wetlands Linear Stormwater Treatment System with an external bypass weir. This weir limited the depth of water flowing through the media, and therefore the active treatment area, to below the root zone of the plants. This GULD applies to Modular Wetlands Linear Stormwater Treatment Systems whether plants are included in the final product or not.
- 5) Maintenance: The required maintenance interval for stormwater treatment devices is often dependent upon the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of stormwater treatment technology.
 - Typically, Contech designs Modular Wetland systems for a target prefilter media life of 6 to 12 months.
 - Indications of the need for maintenance include effluent flow decreasing to below the design flow rate or decrease in treatment below required levels.
 - Owners/operators must inspect Modular Wetland systems for a minimum of twelve months from the start of post-construction operation to determine site-specific maintenance schedules and requirements. You must conduct inspections monthly during the wet season, and every other month during the dry season (According to the SWMMWW, the wet season in western Washington is October 1 to April 30. According to the SWMMEW, the wet

season in eastern Washington is October 1 to June 30). After the first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.

- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flowrate and/or a decrease in pollutant removal ability.
- When inspections are performed, the following findings typically serve as maintenance triggers:
 - Standing water remains in the vault between rain events, or
 - Bypass occurs during storms smaller than the design storm.
 - If excessive floatables (trash and debris) are present (but no standing water or excessive sedimentation), perform a minor maintenance consisting of gross solids removal, not prefilter media replacement.
 - Additional data collection will be used to create a correlation between pretreatment chamber sediment depth and pre-filter clogging (see *Issues to be Addressed by the Company* section below)
- 6) Discharges from the Modular Wetlands Linear Stormwater Treatment System units shall not cause or contribute to water quality standards violations in receiving waters.

Applicant:	Contech Engineered Solutions, LLC
Applicant's Address:	11815 NE Glenn Widing Dr. Portland, OR 97220

Application Documents:

Original Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., January 2011

Quality Assurance Project Plan: Modular Wetland System – Linear Treatment System Performance Monitoring Project, draft, January 2011

Revised Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., May 2011

Memorandum: Modular Wetland System-Linear GULD Application Supplementary Data, April 2014

Technical Evaluation Report: Modular Wetland System Stormwater Treatment System Performance Monitoring, April 2014

Applicant's Use Level Request:

• General Use Level Designation as a Basic, Metals, and Phosphorus treatment device in accordance with Ecology's Guidance for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) January 2011 Revision.

Applicant's Performance Claims:

- The Modular Wetlands Linear is capable of removing a minimum of 80-percent of TSS from stormwater with influent concentrations between 100 and 200 mg/L.
- The Modular Wetlands Linear is capable of removing a minimum of 50-percent of total phosphorus from stormwater with influent concentrations between 0.1 and 0.5 mg/L.
- The Modular Wetlands Linear is capable of removing a minimum 30-percent of dissolved copper from stormwater with influent concentrations between 0.005 and 0.020 mg/L.
- The Modular Wetlands Linear is capable of removing a minimum 60-percent of dissolved zinc from stormwater with influent concentrations between 0.02 and 0.30 mg/L.

Ecology's Recommendations:

• Contech has shown Ecology, through laboratory and field-testing, that the Modular Wetlands Linear Stormwater Treatment System filter system is capable of attaining Ecology's Basic, Phosphorus, and Metals treatment goals.

Findings of Fact:

Laboratory Testing

The Modular Wetlands Linear Stormwater Treatment System has the:

- Capability to remove 99 percent of total suspended solids (using Sil-Co-Sil 106) in a quarter-scale model with influent concentrations of 270 mg/L.
- Capability to remove 91 percent of total suspended solids (using Sil-Co-Sil 106) in laboratory conditions with influent concentrations of 84.6 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 93 percent of dissolved Copper in a quarter-scale model with influent concentrations of 0.757 mg/L.
- Capability to remove 79 percent of dissolved Copper in laboratory conditions with influent concentrations of 0.567 mg/L at a flow rate of 3.0 gpm per square foot of media.

- Capability to remove 80.5-percent of dissolved Zinc in a quarter-scale model with influent concentrations of 0.95 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 78-percent of dissolved Zinc in laboratory conditions with influent concentrations of 0.75 mg/L at a flow rate of 3.0 gpm per square foot of media.

Field Testing

- Modular Wetland Systems, Inc. conducted monitoring of an MWS-Linear (Model # MWS-L-4-13) from April 2012 through May 2013, at a transportation maintenance facility in Portland, Oregon. The manufacturer collected flow-weighted composite samples of the system's influent and effluent during 28 separate storm events. The system treated approximately 75 percent of the runoff from 53.5 inches of rainfall during the monitoring period. The applicant sized the system at 1 gpm/sq ft. (wetland media) and 3gpm/sq ft. (prefilter).
- Influent TSS concentrations for qualifying sampled storm events ranged from 20 to 339 mg/L. Average TSS removal for influent concentrations greater than 100 mg/L (n=7) averaged 85 percent. For influent concentrations in the range of 20-100 mg/L (n=18), the upper 95 percent confidence interval about the mean effluent concentration was 12.8 mg/L.
- Total phosphorus removal for 17 events with influent TP concentrations in the range of 0.1 to 0.5 mg/L averaged 65 percent. A bootstrap estimate of the lower 95 percent confidence limit (LCL95) of the mean total phosphorus reduction was 58 percent.
- The lower 95 percent confidence limit of the mean percent removal was 60.5 percent for dissolved zinc for influent concentrations in the range of 0.02 to 0.3 mg/L (n=11). The lower 95 percent confidence limit of the mean percent removal was 32.5 percent for dissolved copper for influent concentrations in the range of 0.005 to 0.02 mg/L (n=14) at flow rates up to 28 gpm (design flow rate 41 gpm). Laboratory test data augmented the data set, showing dissolved copper removal at the design flow rate of 41 gpm (93 percent reduction in influent dissolved copper of 0.757 mg/L).

Issues to be addressed by the Company:

- 1. Contech should collect maintenance and inspection data for the first year on all installations in the Northwest in order to assess standard maintenance requirements for various land uses in the region. Contech should use these data to establish required maintenance cycles.
- 2. Contech should collect pre-treatment chamber sediment depth data for the first year of operation for all installations in the Northwest. Contech will use these data to create a correlation between sediment depth and pre-filter clogging.

Technology Description:

Download at <u>https://www.conteches.com/modular-wetlands</u>

Contact Information:

Applicant:	Jeremiah Lehman
	Contech Engineered Solutions, LLC
	11815 NE Glenn Widing Dr.
	Portland, OR 97220
	Jeremiah.Lehman@ContechES.com
Applicant website:	http://www.conteches.com
Ecology web link: <u>http://wv</u>	vw.ecy.wa.gov/programs/wg/stormwater/newtech/index.html
Faclogy	Dougles C. Howig, D.E.
Ecology:	Douglas C. Howie, P.E.

Douglas C. Howie, P.E. Department of Ecology Water Quality Program (360) 870-0983 douglas.howie@ecy.wa.gov

Revision History

Date	Revision
June 2011	Original use-level-designation document
September 2012	Revised dates for TER and expiration
January 2013	Modified Design Storm Description, added Revision Table, added maintenance discussion, modified format in accordance with Ecology standard
December 2013	Updated name of Applicant
April 2014	Approved GULD designation for Basic, Phosphorus, and Enhanced treatment
December 2015	Updated GULD to document the acceptance of MWS – Linear Modular Wetland installations with or without the inclusion of plants
July 2017	Revised Manufacturer Contact Information (name, address, and email)
December 2019	Revised Manufacturer Contact Address
July 2021	Added additional prefilter sized at 33 inches
August 2021	Changed "Prefilter" to "Prefilter box"
November 2022	Changed Contacts to Contech ES
January 2024	Revised Dissolved Metals (Enhanced) to Metals

ATTACHMENT 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

□Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

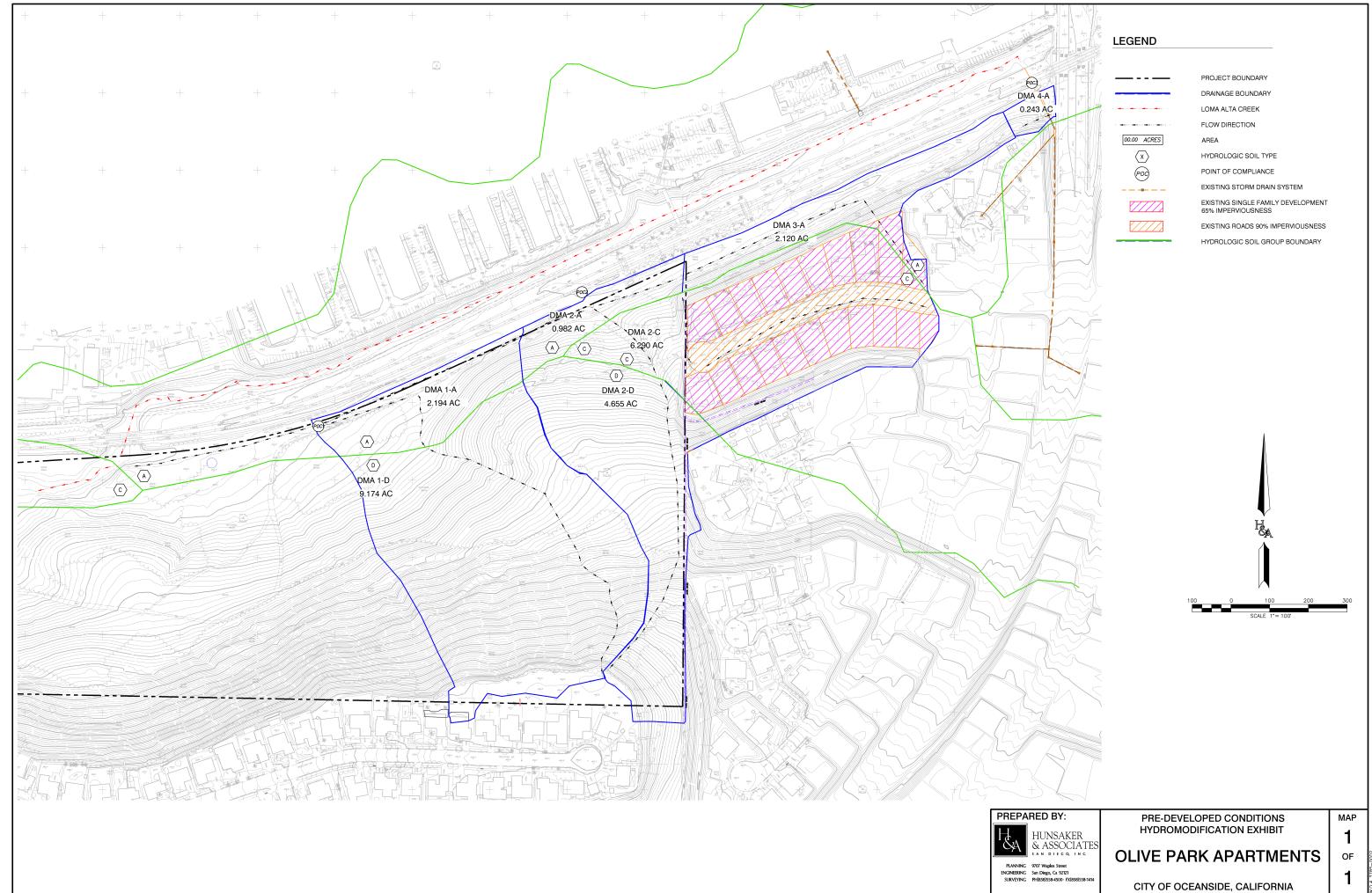
Indicate which Items are Included:

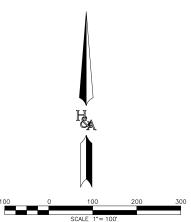
Attachment Sequence	Contents	Checklist
Attachment 2a	 Hydromodification Management Exhibit (Required) 	☑Included See Hydromodification Management Exhibit Checklist.
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional) See Section 6.2 of the BMP Design Manual.	 Exhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required) Optional analyses for Critical Coarse Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment Sensitivity to Coarse Sediment Sensitivity to Coarse Sediment Coarse Sediment Yield Areas Onsite
Attachment 2c	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	 Not performed Included Submitted as separate stand-alone document
Attachment 2d	Flow Control Facility Design and Structural BMP Drawdown Calculations (Required) Overflow Design Summary for each structural BMP See Chapter 6 and Appendix G of the BMP Design Manual	Included □Submitted as separate stand-alone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	 ☐Included ☑Not required because BMPs will drain in less than 96 hours

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

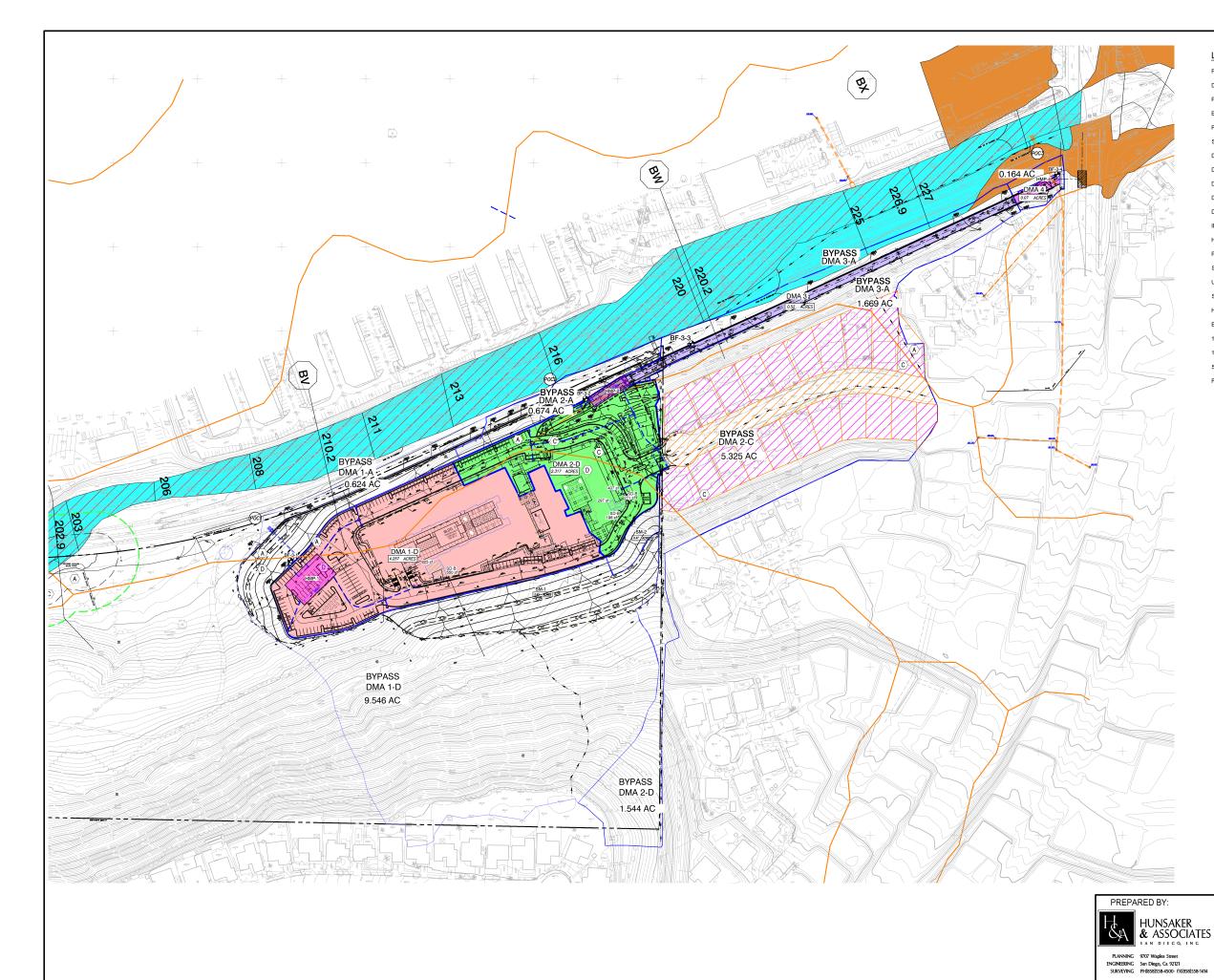
The Hydromodification Management Exhibit must identify:

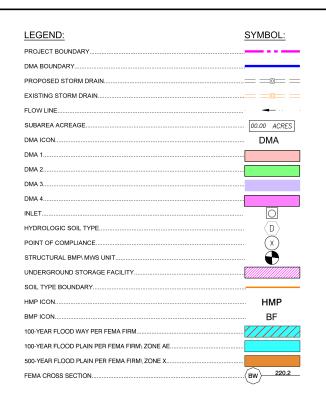
Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed design features and surface treatments used to minimize imperviousness
Point(s) of Compliance (POC) for Hydromodification Management
Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)
Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

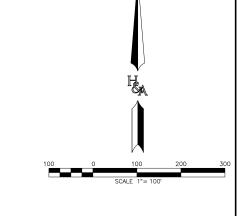

Please provide the Exhibit in 24"x36" format with map pocket, wet date, and stamp.

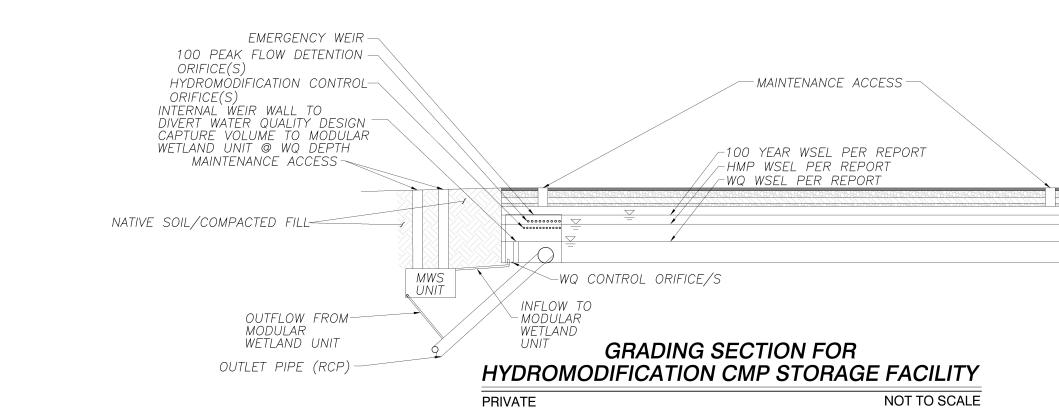

Placeholder – Hydromodification Management Exhibit

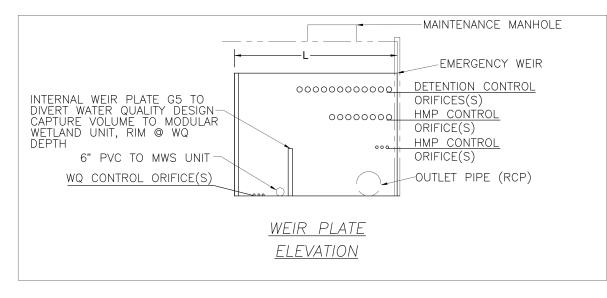
Replace placeholder with required exhibit.

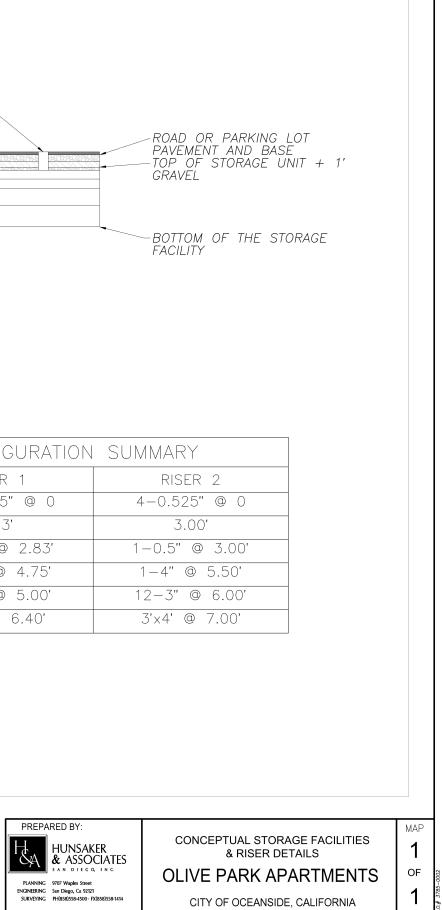







R:\1746\Hyd\TM\HMP\CAD\1746\$HMP-EX.dwg[]Aug-08-2024:17:58





RISER ORIF	FICE CONFIGURAT
riser #	RISER 1
WQ ORIFICE(S)	8-0.5625" @ 0
WQ DEPTH	2.83'
LOW ORIFICE(S)	1-0.5" @ 2.83'
MIDDLE ORIFICE(S)	10-2" @ 4.75'
TOP ORIFICE(S)	12-4" @ 5.00'
EMERGENCY RISER	3'x4' @ 6.40'

R:\1746\Hyd\TM\SWQMP\CAD\1746 HYD_HMP_SWQMP_DETAIL.dwg[]Oct-08-2024:16:21

Existing Impervious

ILEASE S

Backup exhibit to demonstrate existing impervious assumption.

15 A

5

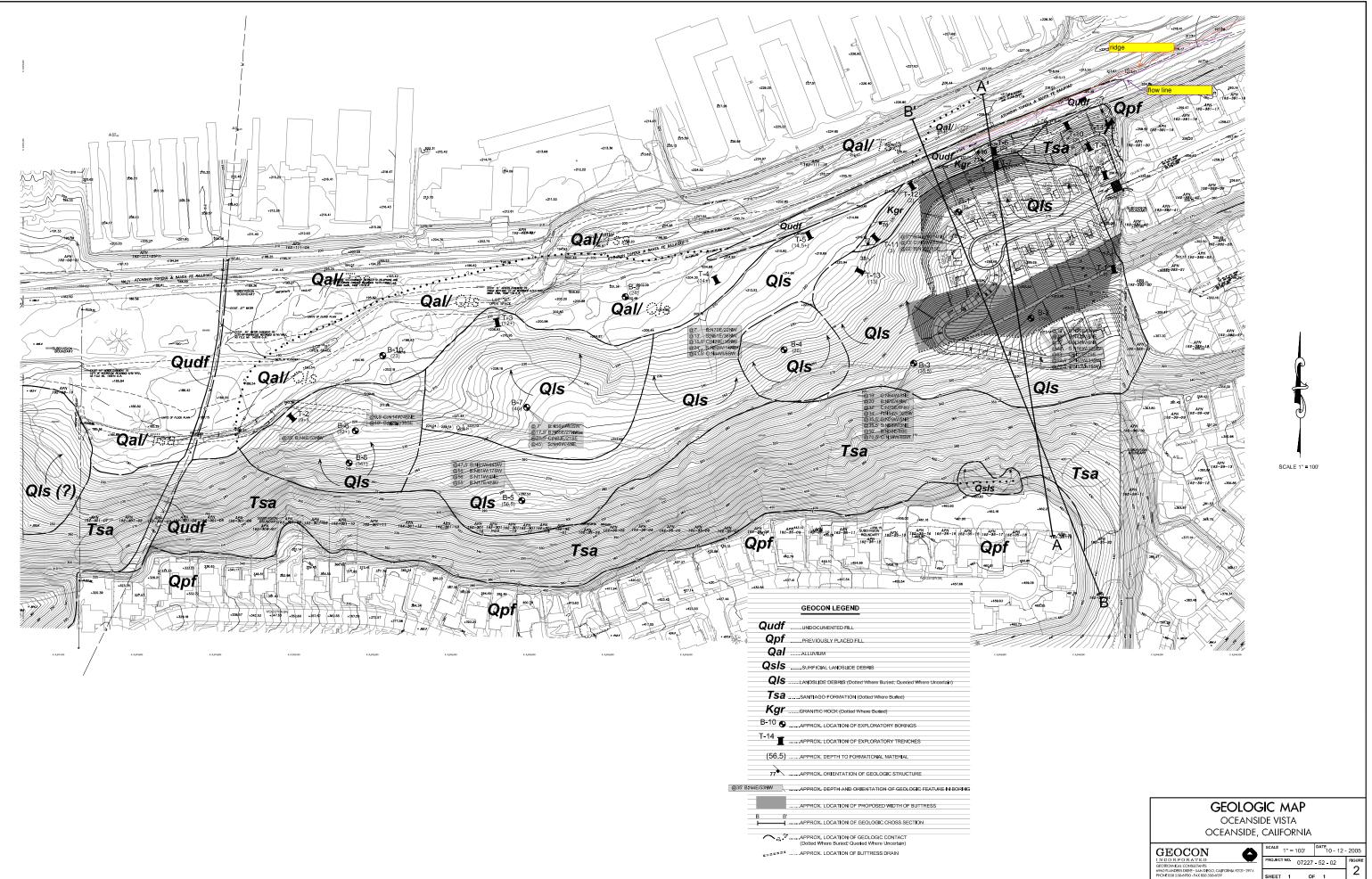
0

17 :5:

R Manage

Legend

College Blvd StationOlive Dr


College

500

Often Dr

Google Earth

© 2023 Google

Placeholder – WMAA Exhibit

Replace placeholder with required exhibit.

Placeholder – 6.2.1 Verification of GLUs Onsite (if applicable)

Replace placeholder with required calculations/documentation.

Leave placeholder intact if not applicable.

□Not Applicable

NOT APPLICABLE

Placeholder – 6.2.3 Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite (Optional)

Replace placeholder with required calculations/documentation.

Leave placeholder intact if not applicable.

Not Applicable

Placeholder – 6.3.4 Geomorphic Assessment of Receiving Channels (Optional)

Replace placeholder with required calculations/documentation.

Leave placeholder intact if not applicable.

Not Applicable

Placeholder - Flow Control Facility Design and Structural BMP Drawdown Calculations

Replace placeholder with required calculations/documentation.

See Chapter 6 and Appendix G of the BMP Design Manual

BMP Sizing Spreadsheet V3.0					
Project Name:	Olive Park Apartments				
Project Applicant:	CAPSTONE EQUITIES				
Jurisdiction:	City of Oceanside				
Parcel (APN):	1621110400				
Hydrologic Unit:	CARLSBAD				
Rain Gauge:	Oceanside				
Total Project Area (sf):	266,088				
Channel Susceptibility:	High				

BMP Sizing Spreadsheet V3.0

	BMP Sizing Spreadsheet V3.0							
Project Name:	Olive Park Apartments	Hydrologic Unit:	CARLSBAD					
Project Applicant:	CAPSTONE EQUITIES	Rain Gauge:	Oceanside					
Jurisdiction:	City of Oceanside	Total Project Area:	266,088					
Parcel (APN):	1621110400	Low Flow Threshold:	0.1Q2					
BMP Name:	HMP4	BMP Type:	Cistem					
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA					

		Ar	reas Draining to BMP			HMP Sizing Factors	Minimum BMP Size	
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)	
DMA4	3,063	D	Moderate	Mixed	0.9	0.12	344	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
						0	0	
BMP Tributary Area	3,063					Minimum BMP Size	344	
						Proposed BMP Size*	350	* Assumes standard configuration
								-
								-
				Standard Cistern	Depth (Overflow Elevation)	3.5	ft	4
					Depth (Overflow Elevation)		ft	1
				Minimum	Required Cistern Footprint)	98	CF	1

Notes:

1. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manu

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

	BMP Sizing Spreadsheet V3.0							
Project Name:	Olive Park Apartments	Hydrologic Unit:	CARLSBAD					
Project Applicant:	CAPSTONE EQUITIES	Rain Gauge:	Oceanside					
Jurisdiction:	City of Oceanside	Total Project Area:	266,088					
Parcel (APN):	1621110400	Low Flow Threshold:	0.1Q2					
BMP Name	HMP4	BMP Type:	Cistern					

DMA Name	Rain Gauge	Pre-deve Soil Type	loped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in ²)
DMA4	Oceanside	D	Moderate	0.575	0.070	0.004	0.06

3.50	0.004	0.06	0.28
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
IVIAX OFFICE Read	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in ²)	(in)

Provide Hand Calc.	0.003	0.05	0.250
Average outflow during	Max Orifice Outflow	Actual Orifice Area	Selected
surface drawdown	Wax Office Outflow	Actual Office Area	Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs) 86 hrs

CMP #4 Discharge HMP Riser Discharge vs Elevation Table

Discharge v	's Elevation Table			
Low orifice:	0.25 "	Top orifice:	1	
Number:	1	Number:	0	
Cg-low:	0.61	Cg-low:	3	
invert elev:	0.00 ft	invert elev:	1.00	ft
Middle orifice:	2 "	Emergency inlet:		
number of orif:	0	Rim height:	2.90 ft	
Cg-middle:	0.61	Riser Box D	3x4	
invert elev:	1.00 ft	Weir Length	3.14 ft	

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.17	8.00	0.00	0.00	0.001	0.070	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.33	16.00	0.00	0.00	0.001	3.723	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.50	24.00	0.00	0.00	0.001	32.236	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.67	32.00	0.00	0.00	0.001	144.148	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.83	40.00	0.00	0.00	0.002	454.986	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.00	48.00	0.00	0.00	0.002	1156.986	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.17	56.00	1.00	2.00	0.002	2538.816	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.33	64.00	2.00	4.00	0.002	5005.303	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.50	72.00	3.00	6.00	0.002	9097.150	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.67	80.00	4.00	8.00	0.002	15510.669	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.83	88.00	5.00	10.00	0.002	25117.495	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.00	96.00	6.00	12.00	0.002	38984.315	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.17	104.00	7.00	14.00	0.002	58392.588	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.33	112.00	8.00	16.00	0.003	84858.274	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.50	120.00	9.00	18.00	0.003	120151.551	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.67	128.00	10.00	20.00	0.003	166316.542	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.83	136.00	11.00	22.00	0.003	225691.037	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
3.00	144.00	12.00	24.00	0.003	300926.219	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.331	0.334
3.17	152.00	13.00	26.00	0.003	395006.385	0.003	0.000	0.000	0.000	0.000	0.000	0.000	1.440	1.443
3.33	160.00	14.00	28.00	0.003	511268.668	0.003	0.000	0.000	0.000	0.000	0.000	0.000	2.983	2.986
3.50	168.00	15.00	30.00	0.003	653422.765	0.003	0.000	0.000	0.000	0.000	0.000	0.000	4.860	4.863
3.67	176.16	16.02	32.04	0.003	829349.841	0.003	0.000	0.000	0.000	0.000	0.000	0.000	7.065	7.068
3.83	184.00	17.00	34.00	0.003	1032226.336	0.003	0.000	0.000	0.000	0.000	0.000	0.000	9.428	9.431
4.00	192.00	18.00	36.00	0.003	1278335.521	0.003	0.000	0.000	0.000	0.000	0.000	0.000	12.063	12.067
4.17	200.00	19.00	38.00	0.003	1569295.390	0.003	0.000	0.000	0.000	0.000	0.000	0.000	14.906	14.910
4.33	208.00	20.00	40.00	0.003	1910974.299	0.003	0.000	0.000	0.000	0.000	0.000	0.000	17.943	17.946
4.50	216.00	21.00	42.00	0.004	2309731.506	0.004	0.000	0.000	0.000	0.000	0.000	0.000	21.162	21.165
4.67	224.00	22.00	44.00	0.004	2772436.895	0.004	0.000	0.000	0.000	0.000	0.000	0.000	24.553	24.557
4.83	232.00	23.00	46.00	0.004	3306490.700	0.004	0.000	0.000	0.000	0.000	0.000	0.000	28.108	28.112
5.00	240.00	24.00	48.00	0.004	3919843.227	0.004	0.000	0.000	0.000	0.000	0.000	0.000	31.820	31.824

	CMP #4 Stage Storage									
	HMP Volume			350						
HM	P Ponding De	pth	2.667		ft					
Note: F	ind out the el	evation value	in relation to	o required W	Q volume					
HMP-2-A Sta	age Storage									
depth	area	area (ac)	elevation	volume (cf)	volume (acft)					
0.00	74.4	0.0017	0.00	0.0	0.00000					
0.17	102.2	0.0023	0.17	15.5	0.00036					
0.33	112.9	0.0026	0.33	33.5	0.00077					
0.50	120.4	0.0028	0.50	53.0	0.00122					
0.67	126.3	0.0029	0.67	73.6	0.00169					
0.83	130.9	0.0030	0.83	95.0	0.00218					
1.00	134.7	0.0031	1.00	117.1	0.00269					
1.17	137.7	0.0032	1.17	139.9	0.00321					
1.33	140.0	0.0032	1.33	163.0	0.00374					
1.50	141.8	0.0033	1.50	186.5	0.00428					
1.67	143.0	0.0033	1.67	210.2	0.00483					
1.83	143.8	0.0033	1.83	234.1	0.00538					
2.00	144.0	0.0033	2.00	258.1	0.00593					
2.17	143.8	0.0033	2.17	282.1	0.00648					
2.33	143.0	0.0033	2.33	306.0	0.00703					
2.50	141.8	0.0033	2.50	329.8	0.00757					
2.67	140.0	0.0032	2.67	353.3	0.00811					
2.83	137.7	0.0032	2.83	376.4	0.00864					
3.00	134.7	0.0031	3.00	399.1	0.00916					
3.17	130.9	0.0030	3.17	421.3	0.00967					
3.33	126.3	0.0029	3.33	442.7	0.01016					
3.50	120.4	0.0028	3.50	463.3	0.01064					
3.67	112.9	0.0026	3.67	482.8	0.01108					
3.83	102.2	0.0023	3.83	500.7	0.01150					
4.00	74.4	0.0017	4.00	516.3	0.01185					
4.17	74.4	0.0017	4.17	528.7	0.01214					
4.33	74.4	0.0017	4.33	541.1	0.01242					
4.50	74.4	0.0017	4.50	553.5	0.01271					
4.67	74.4	0.0017	4.67	565.9	0.01299					
4.83	74.4	0.0017	4.83	578.3	0.01327					
5.00	74.4	0.0017	5.00	590.7	0.01356					

Date: 10/10/2024 Project Name: East Storage-2 - COPY - 61024 (10-10-2024 18-3-52)

CMP: Underground Detention System Storage Volume Estimation

Designed By:

State:

City / County:

=Adjustable Input Cells

Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

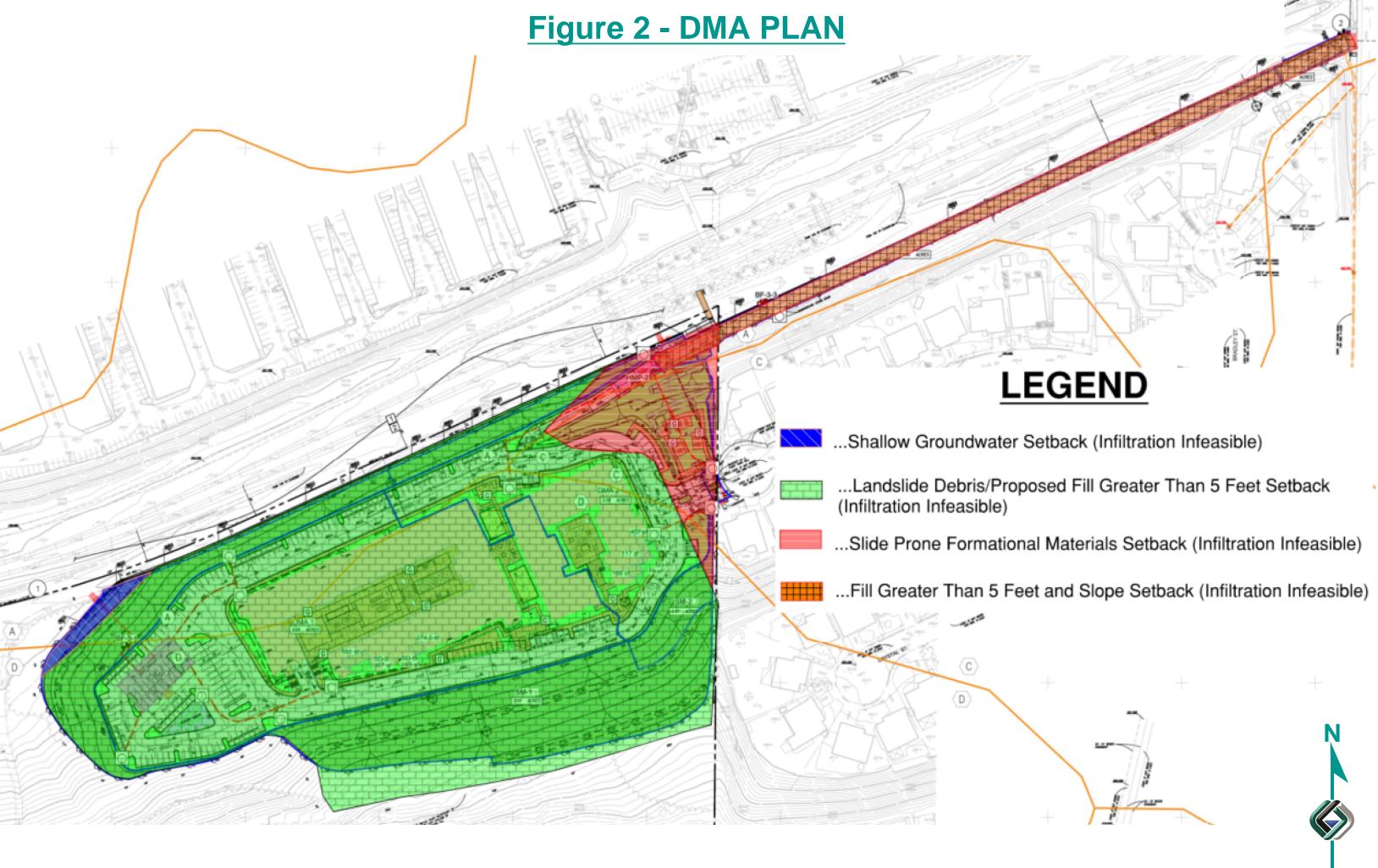
Summary of Inputs										
System Information	Information Backfill Information Pipe			Pipe & Analysis Informa	e & Analysis Information					
Out-to-out length (ft):	29.0	Backfill Porosity (%):	40%	System Diameter (in):	48					
Out-to-out width (ft):	4.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24					
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2					
Number of Barrels (ea):	1.0	Width At Ends (ft):	1.0	System Invert (Elevation):	331					
		Width At Sides (ft):	1.0							

			Stor	age Volur	ne Estima	tion			
Sys	stem		ре		Stone		System	Miscell	
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)
0.00	331.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	74.4
0.17	331.16	5.2	5.2	10.3	10.3	15.5	15.5	33.5%	102.2
0.33	331.33	9.3	14.5	8.7	19.0	18.0	33.5	43.3%	112.9
0.50	331.50	11.8	26.3	7.7	26.7	19.5	53.0	49.6%	120.4
0.67	331.66	13.6	39.9	6.9	33.6	20.6	73.6	54.3%	126.3
0.83	331.83	15.1	55.0	6.4	40.0	21.4	95.0	57.9%	130.9
1.00	332.00	16.2	71.2	5.9	45.9	22.1	117.1	60.8%	134.7
1.17	332.16	17.2	88.4	5.5	51.4	22.7	139.9	63.2%	137.7
1.33	332.33	17.9	106.3	5.2	56.7	23.1	163.0	65.2%	140.0
1.50	332.50	18.5	124.8	5.0	61.7	23.5	186.5	66.9%	141.8
1.67	332.66	18.9	143.7	4.8	66.5	23.7	210.2	68.4%	143.0
1.83	332.83	19.2	162.9	4.7	71.2	23.9	234.1	69.6%	143.8
2.00	333.00	19.3	182.2	4.7	75.9	24.0	258.1	70.6%	144.0
2.17	333.16	19.3	201.5	4.7	80.6	24.0	282.1	71.4%	143.8
2.33	333.33	19.2	220.7	4.7	85.3	23.9	306.0	72.1%	143.0
2.50	333.50	18.9	239.6	4.8	90.2	23.7	329.8	72.7%	141.8
2.67	333.66	18.5	258.1	5.0	95.2	23.5	353.3	73.1%	140.0
2.83	333.83	17.9	276.0	5.2	100.4	23.1	376.4	73.3%	137.7
3.00	334.00	17.2	293.2	5.5	105.9	22.7	399.1	73.5%	134.7
3.17	334.16	16.2	309.4	5.9	111.8	22.1	421.3	73.5%	130.9
3.33	334.33	15.1	324.5	6.4	118.2	21.4	442.7	73.3%	126.3
3.50	334.50	13.6	338.1	6.9	125.1	20.6	463.3	73.0%	120.4
3.67	334.66	11.8	349.9	7.7	132.8	19.5	482.8	72.5%	112.9
3.83	334.83	9.3	359.2	8.7	141.5	18.0	500.7	71.7%	102.2
4.00	335.00	5.2	364.4	10.3	151.8	15.5	516.3	70.6%	74.4
4.17	335.16	0.0	364.4	12.4	164.2	12.4	528.7	68.9%	74.4
4.33	335.33	0.0	364.4	12.4	176.6	12.4	541.1	67.4%	74.4
4.50	335.50	0.0	364.4	12.4	189.0	12.4	553.5	65.8%	74.4
4.67	335.66	0.0	364.4	12.4	201.4	12.4	565.9	64.4%	74.4
4.83	335.83	0.0	364.4	12.4	213.8	12.4	578.3	63.0%	74.4
5.00	336.00	0.0	364.4	12.4	226.2	12.4	590.7	61.7%	74.4

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

HMP-4 Dra	awdown @	5	ft=	85.68
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.000	16	13.07	85.68
0.17	0.000	18	15.15	72.61
0.33	0.001	19	6.73	57.46
0.50	0.001	21	5.40	50.73
0.67	0.001	21	4.73	45.33
0.83	0.001	22	4.29	40.60
1.00	0.002	23	3.97	36.30
1.17	0.002	23	3.72	32.33
1.33	0.002	23	3.51	28.61
1.50	0.002	24	3.33	25.09
1.67	0.002	24	3.17	21.76
1.83	0.002	24	3.03	18.58
2.00	0.002	24	2.89	15.56
2.17	0.002	24	2.76	12.66
2.33	0.002	24	2.64	9.90
2.50	0.003	23	2.52	7.26
2.67	0.003	23	2.40	4.74
2.83	0.003	23	2.28	2.33
3.00	0.168	22	0.04	0.05
3.17	0.888	21	0.01	0.01
3.33	2.214	21	0.00	0.01
3.50	3.924	19	0.00	0.00
3.67	5.965	18	0.00	0.00
3.83	8.250	16	0.00	0.00
4.00	10.749	12	0.00	0.00
4.17	13.488	12	0.00	0.00
4.33	16.428	12	0.00	0.00
4.50	19.556	12	0.00	0.00
4.67	22.861	12	0.00	0.00
4.83	26.334	12	0.00	0.00
5.00	29.968			

STORMWATER MANAGEMENT INVESTIGATION


OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

AUGUST 7, 2024 PROJECT NO. G3035-52-01

PREPARED FOR:

CAPSTONE EQUITIES

CMP-1 Discharge to MWS BF-3-1 Discharge vs Elevation Table

Discriary	e vs Elevation Table		
Low orifice:	0.5625 "	Top orifice:	0.625 "
Number:	8	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.40 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.56	0.00	0.00	0.026	0.031	0.026	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0256
0.33	7.11	0.00	0.00	0.038	2.023	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0376
0.50	10.67	0.00	1.92	0.047	23.644	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0467
0.67	14.22	2.42	5.12	0.054	118.943	0.054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0542
0.83	17.78	4.85	8.32	0.061	399.127	0.061	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0608
1.00	21.33	7.27	11.52	0.067	1053.340	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
1.17	24.89	9.70	14.72	0.072	2369.442	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0723
1.33	28.44	12.12	17.92	0.077	4754.788	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0773
1.50	32.00	14.55	21.12	0.082	8757.006	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0821
1.67	35.56	16.97	24.32	0.087	15084.775	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0866
1.83	39.11	19.39	27.52	0.091	24628.607	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0909
2.00	42.67	21.82	30.72	0.095	38481.619	0.095	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0950
2.17	46.22	24.24	33.92	0.099	57960.320	0.099	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0989
2.33	49.78	26.67	37.12	0.103	84625.382	0.103	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1027
2.50	53.33	29.09	40.32	0.106	120302.423	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1064
2.67	56.89	31.52	43.52	0.110	167102.785	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1099
2.83	60.44	33.94	46.72	0.113	227444.312	0.113	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1133

		CMP #1 St	age Storage							
	Input DCV			7,569						
	Input Factor			2	_					
) Ponding De		2.833		ft					
		evation value	e in relation to	o required W	Q volume					
HMP-2-A Sta										
depth	area	area (ac)	elevation	volume (cf)	volume (acft)					
0.00	3008.4	0.0691	0.00	0.0	0.00000					
0.17	3990.6	0.0916	0.17	611.1	0.01403					
0.33	4380.5	0.1006	0.33	1,310.7	0.03009					
0.50	4667.7	0.1072	0.50	2,065.7	0.04742					
0.67	4899.6	0.1125	0.67	2,863.6	0.06574					
0.83	5094.9	0.1170	0.83	3,696.9	0.08487					
1.00	5262.9	0.1208	1.00	4,560.4	0.10469					
1.17	5409.5	0.1242	1.17	5,450.0	0.12512					
1.33	5538.3	0.1271	1.33	6,362.6	0.14606					
1.50	5652.0	0.1298	1.50	7,295.3	0.16748					
1.67	5752.5	0.1321	1.67	8,245.8	0.18930					
1.83	5841.1	0.1341	1.83	9,212.1	0.21148					
2.00	5919.0	0.1359	2.00	10,192.3	0.23398					
2.17	5986.9	0.1374	2.17	11,184.6	0.25676					
2.33	6045.6	0.1388	2.33	12,187.4	0.27978					
2.50	6095.5	0.1399	2.50	13,199.3	0.30301					
2.67	6137.2	0.1409	2.67	14,218.8	0.32642					
2.83	6170.8	0.1417	2.83	15,244.5	0.34997					
3.00	6196.8	0.1423	3.00	16,275.3	0.37363					
3.17	6215.2	0.1427	3.17	17,309.7	0.39738					
3.33	6226.1	0.1429	3.33	18,346.6	0.42118					
3.50	6229.8	0.1430	3.50	19,384.7	0.44501					
3.67	6226.1	0.1429	3.67	20,422.8	0.46884					
3.83	6215.2	0.1427	3.83	21,459.7	0.49265					
4.00	6196.8	0.1423	4.00	22,494.1	0.51639					
4.17	6170.8	0.1417	4.17	23,524.8	0.54006					
4.33	6137.2	0.1409	4.33	24,550.6	0.56360					
4.50	6095.5	0.1399	4.50	25,570.1	0.58701					
4.67	6045.6	0.1388	4.67	26,582.0	0.61024					
4.83	5986.9	0.1374	4.83	27,584.8	0.63326					
5.00	5919.0	0.1359	5.00	28,577.1	0.65604					
5.17	5841.1	0.1341	5.17	29,557.2	0.67854					
5.33	5752.5	0.1321	5.33	30,523.5	0.70072					
5.50	5652.0	0.1298	5.50	31,474.1	0.72255					
5.67	5538.3	0.1271	5.67	32,406.8	0.74396					
5.83	5409.5	0.1242	5.83	33,319.4	0.76491					
6.00	5262.9	0.1208	6.00	34,209.0	0.78533					
6.17	5094.9	0.1170	6.17	35,072.5	0.80515					
6.33	4899.6	0.1125	6.33	35,905.8	0.82428					
6.50	4667.7	0.1072	6.50	36,703.7	0.84260					
6.67	4380.5	0.1006	6.67	37,458.6	0.85993					
6.83	3990.6	0.0916	6.83	38,158.3	0.87599					
7.00	3008.4	0.0691	7.00	38,769.4	0.89002					
7.17	3008.4	0.0691	7.17	39,270.8	0.90153					
7.33	3008.4	0.0691	7.33	39,772.2	0.91304					
7.50	3008.4	0.0691	7.50	40,273.6	0.92455					

Date: 8/7/2024 Project Name: West Storage-1 - 47951 (8-7-2024 21-27-19)

City / County: State:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Designed By: Company: Telephone:

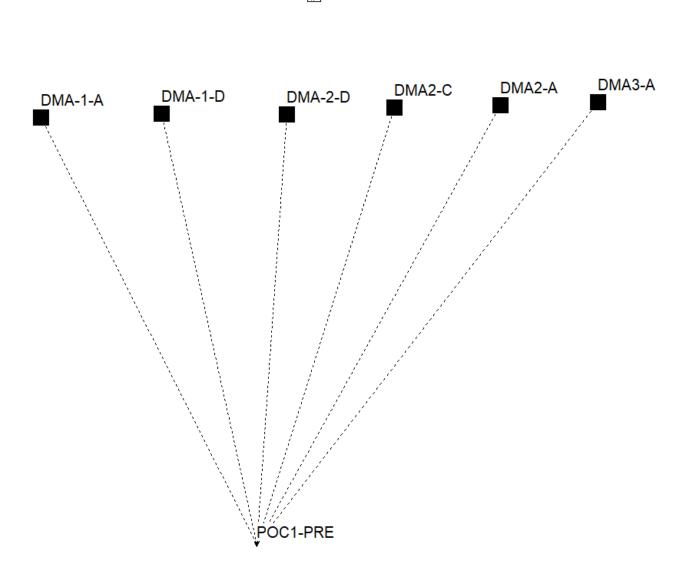
Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs									
System Information	n	Backfill Information		Pipe & Analysis Information					
Out-to-out length (ft):	107.0	Backfill Porosity (%):	40%	System Diameter (in):	84				
Out-to-out width (ft):	67.0	Depth Above Pipe (in):	6.0	Pipe Spacing (in):	36				
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2				
Number of Barrels (ea):	7.0	Width At Ends (ft):	1.0	System Invert (Elevation):	238				
		Width At Sides (ft):	1.0						

			Stor	age Volur	ne Estima	ition			
Sys	tem		ре		one		System	Miscell	
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)
0.00	238.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	3,008.4
0.17	238.16	182.8	182.8	428.3	428.3	611.1	611.1	29.9%	3,990.6
0.33	238.33	330.4	513.2	369.2	797.5	699.7	1,310.7	39.2%	4,380.5
0.50	238.50	422.6	935.8	332.3	1,129.9	755.0	2,065.7	45.3%	4,667.7
0.67	238.66	494.1	1,430.0	303.7	1,433.6	797.9	2,863.6	49.9%	4,899.6
0.83	238.83	553.2	1,983.2	280.1	1,713.7	833.3	3,696.9	53.6%	5,094.9
1.00	239.00	603.5	2,586.6	260.0	1,973.7	863.5	4,560.4	56.7%	5,262.9
1.17	239.16	647.1	3,233.7	242.6	2,216.3	889.6	5,450.0	59.3%	5,409.5
1.33	239.33	685.2	3,918.9	227.3	2,443.6	912.5	6,362.6	61.6%	5,538.3
1.50	239.50	718.9	4,637.8	213.8	2,657.5	932.7	7,295.3	63.6%	5,652.0
1.67	239.66	748.6	5,386.4	202.0	2,859.4	950.6	8,245.8	65.3%	5,752.5
1.83	239.83	774.8	6,161.2	191.5	3,050.9	966.3	9,212.1	66.9%	5,841.1
2.00	240.00	797.9	6,959.1	182.2	3,233.1	980.1	10,192.3	68.3%	5,919.0
2.17	240.16	818.1	7,777.3	174.1	3,407.3	992.3	11,184.6	69.5%	5,986.9
2.33	240.33	835.7	8,613.0	167.1	3,574.4	1,002.8	12,187.4	70.7%	6,045.6
2.50	240.50	850.8	9,463.8	161.1	3,735.5	1,011.9	13,199.3	71.7%	6,095.5
2.67	240.66	863.5	10,327.3	156.0	3,891.5	1,019.5	14,218.8	72.6%	6,137.2
2.83	240.83	874.0	11,201.2	151.8	4,043.3	1,025.8	15,244.5	73.5%	6,170.8
3.00	241.00	882.2	12,083.5	148.5	4,191.8	1,030.7	16,275.3	74.2%	6,196.8
3.17	241.16	888.4	12,971.9	146.0	4,337.9	1.034.4	17,309.7	74.9%	6,215.2
3.33	241.33	892.5	13,864.3	144.4	4,482.3	1,036.9	18,346.6	75.6%	6,226.1
3.50	241.50	894.5	14,758.8	143.6	4,625.9	1,038.1	19,384.7	76.1%	6,229.8
3.67	241.66	894.5	15,653.3	143.6	4,769.5	1,038.1	20,422.8	76.6%	6,226.1
3.83	241.83	892.5	16,545.8	144.4	4,913.9	1,036.9	21,459.7	77.1%	6,215.2
4.00	242.00	888.4	17,434.2	146.0	5,059.9	1,034.4	22,494.1	77.5%	6,196.8
4.17	242.16	882.2	18,316.4	148.5	5,208.4	1,030.7	23,524.8	77.9%	6,170.8
4.33	242.33	874.0	19,190.3	151.8	5,360.3	1,025.8	24,550.6	78.2%	6,137.2
4.50	242.50	863.5	20,053.8	156.0	5,516.3	1,019.5	25,570.1	78.4%	6,095.5
4.67	242.66	850.8	20,904.6	161.1	5,677.3	1,011.9	26,582.0	78.6%	6,045.6
4.83	242.83	835.7	21,740.3	167.1	5,844.5	1,002.8	27,584.8	78.8%	5,986.9
5.00	243.00	818.1	22,558.5	174.1	6,018.6	992.3	28,577.1	78.9%	5,919.0
5.17	243.16	797.9	23,356.4	182.2	6,200.8	980.1	29,557.2	79.0%	5,841.1
5.33	243.33	774.8	24,131.2	191.5	6,392.3	966.3	30,523.5	79.1%	5,752.5
5.50	243.50	748.6	24,879.8	202.0	6,594.3	950.6	31,474.1	79.0%	5,652.0
5.67	243.66	718.9	25.598.7	213.8	6.808.1	932.7	32,406.8	79.0%	5,538.3
5.83	243.83	685.2	26,283.9	227.3	7,035.4	912.5	33,319.4	78.9%	5,409.5
6.00	244.00	647.1	26,931.0	242.6	7,278.0	889.6	34,209.0	78.7%	5,262.9
6.17	244.16	603.5	27,534.5	260.0	7,538.0	863.5	35,072.5	78.5%	5,094.9
6.33	244.33	553.2	28,087.6	280.1	7,818.1	833.3	35,905.8	78.2%	4,899.6
6.50	244.50	494.1	28,581.8	303.7	8,121.9	797.9	36,703.7	77.9%	4,667.7
6.67	244.66	422.6	29,004.4	332.3	8,454.2	755.0	37,458.6	77.4%	4,380.5
6.83	244.83	330.4	29,334.8	369.2	8,823.5	699.7	38,158.3	76.9%	3,990.6
7.00	245.00	182.8	29,517.6	428.3	9,251.8	611.1	38,769.4	76.1%	3,008.4
7.17	245.16	0.0	29,517.6	501.4	9,753.2	501.4	39,270.8	75.2%	3,008.4
7.33	245.33	0.0	29,517.6	501.4	10,254.6	501.4	39,772.2	74.2%	3,008.4
7.50	245.50	0.0	29,517.6	501.4	10,756.0	501.4	40,273.6	73.3%	3,008.4

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawo	down @	2.83	ft=	62.68
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.026	611	6.64	62.68
0.17	0.032	700	6.15	56.05
0.33	0.042	755	4.98	49.90
0.50	0.050	798	4.40	44.92
0.67	0.058	833	4.02	40.52
0.83	0.064	863	3.76	36.50
1.00	0.070	890	3.55	32.74
1.17	0.075	913	3.39	29.19
1.33	0.080	933	3.25	25.80
1.50	0.084	951	3.13	22.55
1.67	0.089	966	3.02	19.42
1.83	0.093	980	2.93	16.40
2.00	0.097	992	2.84	13.47
2.17	0.101	1003	2.76	10.62
2.33	0.105	1012	2.69	7.86
2.50	0.108	1020	2.62	5.17
2.67	0.112	1026	2.55	2.55
2.83				


CMP #1 Discharge HMP Riser

Discharge v	s Elevation Table				
Low orifice:	0.50 "	Top orifice:		4 "	
Number:	1	Number:		12	
Cg-low:	0.61	Cg-low:	0.61		
invert elev:	2.83 ft	invert elev:		5.00 ft	
Middle orifice:	2 "	Emergency inlet:			
number of orif:	10	Rim height:	6.40 ft		
Cg-middle:	0.61	Riser Box D	3x4		
invert elev:	4.75 ft	Weir Length	14.00 ft		

Peak Flow
WQ+HMP

															WQ+HMP
h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir		Qpeak-top	Qtot	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0256
0.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0376
0.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0467
0.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0542
0.83	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0608
1.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
1.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0723
1.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0773
1.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0821
1.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0866
1.83	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0909
2.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0950
2.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0989
2.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1027
2.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1064
2.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1099
2.83	0.08	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1133
3.00	4.08	0.00	0.00	0.003	0.005	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.1192
3.17	8.08	0.00	0.00	0.004	0.422	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.1236
3.33	12.08	0.00	0.00	0.005	4.470	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.1276
3.50 3.67	16.08 20.16	0.00	0.00	0.005	21.637 72.690	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.1314
3.87	20.16	0.00	0.00	0.006	185.564	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.1351
4.00	24.08	0.00	0.00	0.007	414.035	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.1385
4.00	32.08	0.00	0.00	0.007	826.024	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.1419
4.17	32.08	0.00	0.00	0.008	1514.674	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.1452
4.55	40.08	0.00	0.00	0.008	2600.318	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.1484
4.50	40.08	0.00	0.00	0.009	4233.968	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.1516
4.83	44.08	0.50	0.00	0.009	6600.799	0.009	0.000	0.000	0.087	0.000	0.000	0.000	0.000	0.009	0.1340
5.00	52.08	1.50	0.00	0.010	9923.637	0.005	0.436	0.530	0.436	0.000	0.000	0.000	0.000	0.446	0.5965
5.17	56.08	2.50	0.50	0.010	14466.445	0.010	0.430	0.788	0.617	0.000	0.590	0.590	0.000	1.217	1.3701
5.33	60.08	3.50	1.00	0.010	20537.809	0.010	0.755	0.888	0.755	2.093	1.999	1.999	0.000	2.765	2.9209
5.50	64.08	4.50	1.50	0.011	28494.427	0.011	0.872	2.617	0.872	2.960	3.599	2.960	0.000	3.843	4.0007
5.67	68.08	5.50	2.00	0.011	38744.594	0.011	0.975	10.607	0.975	3.625	4.814	3.625	0.000	4.611	4.7715
5.83	72.08	6.50	2.50	0.011	51751.690	0.011	1.068	33.432	1.068	4.186	5.351	4.186	0.000	5.265	5.4280
6.00	76.08	7.50	3.00	0.012	68037.662	0.012	1.154	84.691	1.154	4.680	5.434	4.680	0.000	5.845	6.0102
6.17	80.08	8.50	3.50	0.012	88186.518	0.012	1.233	184.101	1.233	5.126	6.031	5.126	0.000	6.372	6.5391
6.33	84.08	9.50	4.00	0.012	112847.808	0.012	1.308	358.584	1.308	5.537	9.089	5.537	0.000	6.857	7.0272
6.50	88.08	10.50	4.50	0.012	142740.112	0.012	1.379	643.360	1.379	5.919	17.762	5.919	1.474	8.785	8.9570
6.67	92.08	11.50	5.00	0.013	178654.529	0.013	1.446	1083.034	1.446	6.278	36.645	6.278	6.420	14.157	14.3315
6.83	96.08	12.50	5.50	0.013	221458.160	0.013	1.510	1732.686	1.510	6.618	72.003	6.618	13.299	21.440	21.6166
7.00	100.08	13.50	6.00	0.014	272097.598	0.014	1.572	2658.962	1.572	6.941	132.003	6.941	21.667	30.194	30.3721
7.17	104.08	14.50	6.50	0.014	331602.411	0.014	1.631	3941.161	1.631	7.250	226.944	7.250	31.296	40.190	40.3710
7.33	108.08	15.50	7.00	0.014	401088.632	0.014	1.689	5672.326	1.689	7.546	369.491	7.546	42.037	51.285	51.4677
7.50	112.08	16.50	7.50	0.014	481762.245	0.014	1.744	7960.336	1.744	7.831	574.902	7.831	53.785	63.374	63.5587
							· · · ·								

HMP-2A D	rawdown @	7.5	ft=	91.23
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.019	611	9.02	91.23
0.17	0.032	700	6.15	82.20
0.33	0.042	755	4.98	76.05
0.50	0.050	798	4.40	71.07
0.67	0.058	833	4.02	66.68
0.83	0.064	863	3.76	62.65
1.00	0.070	890	3.55	58.90
1.17	0.075	913	3.39	55.34
1.33	0.080	933	3.25	51.95
1.50	0.084	951	3.13	48.70
1.67	0.089	966	3.02	45.57
1.83	0.093	980	2.93	42.55
2.00	0.097	992	2.84	39.62
2.17	0.101	1003	2.76	36.78
2.33	0.105	1012	2.69	34.02
2.50	0.108	1020	2.62	31.33
2.67	0.112	1026	2.55	28.71
2.83	0.116	1031	2.46	26.15
3.00	0.121	1034	2.37	23.69
3.17	0.126	1037	2.29	21.32
3.33	0.129	1038	2.23	19.03
3.50	0.133	1038	2.16	16.80
3.67	0.137	1037	2.11	14.64
3.83	0.140	1034	2.05	12.53
4.00	0.144	1031	1.99	10.49
4.17	0.147	1026	1.94	8.49
4.33	0.150	1020	1.89	6.55
4.50	0.153	1012	1.84	4.66
4.67	0.200	1003	1.40	2.83
4.83	0.421	992	0.66	1.43
5.00	0.983	980	0.28	0.78
5.17	2.145	966	0.13	0.50
5.33	3.461	951	0.08	0.37
5.50	4.386	933	0.06	0.30
5.67	5.100	913	0.05	0.24
5.83	5.719	890	0.04	0.19
6.00	6.275	863	0.04	0.14
6.17	6.783	833	0.03	0.11
6.33	7.992	798	0.03	0.07
6.50	11.644	755	0.02	0.04
6.67	17.974	700	0.01	0.03
6.83	25.994	611	0.01	0.02
7.00	35.372	501	0.00	0.01
7.17	45.919	501	0.00	0.01
7.33	57.513	501	0.00	0.00
7.50	31.779			

[TITLE] ;;Project Title/N OLIVE PARK APARTM			CT-UD-APT	-РКЕ. Г Пр				
[OPTIONS] ;; Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value CFS GREEN_AMPT KINWAVE DEPTH O NO E NO							
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP RULE_STEP								
I NERTI AL_DAMPI NG NORMAL_FLOW_LI MI FORCE_MAI N_EQUATI VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS								
[EVAPORATION] ;;Data Source	Parameters							
MONTHLY DRY_ONLY	0.06 0.08 0. NO	11 0. 15 0. 17	0. 19	0. 19 0.	18 0.1	5 0.11	0.08 0.06	
[RAINGAGES] ;;Name	Format Interv	val SCF Sour	се					
OCEANSI DE	INTENSITY 1:00	1.0 TIME	SERIES OC	EANSI DE-RA	AI N			
[SUBCATCHMENTS] ;;Name ;;	Rain Gage	Outlet	Area	%Imperv	Width	%SI ope	CurbLen SnowPack	
;Soil Type A DMA-1-A ;Soil type D	OCEANSI DE	POC1-PRE	1. 823	0	294	9. 59	0	
DMA-1-D	Oceansi de	poc1-pre	9. 174	0.3	1598	39	0	
;Soil Type D DMA-2-D	OCEANSI DE	POC1-PRE	4.655	0	680	25	0	
;Soil Type C DMA2-C	OCEANSI DE	POC1-PRe	6.29	46.3	1300	3	0	
;Soil Type A DMA2-A	OCEANSI DE	POC1-pre	0. 982	0	280	2. 31	0	
; Soil Type A, Soil							0	
[SUBAREAS]								

[SUBAREAS] ;;Subcatchment N-Imperv

N-Perv

S-Imperv S-Perv PctZero RouteTo

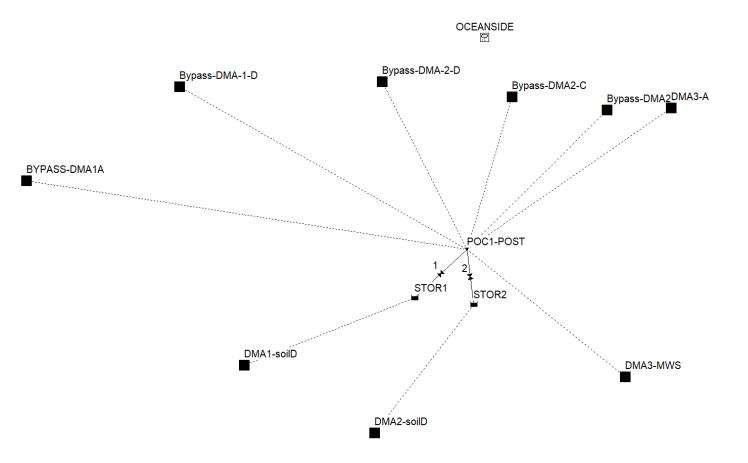
PctRouted

	POC1-OD-APT-PRE. i np									
	0. 012 0. 012 0. 012 0. 012 0. 012	0. 15	0.05 0.05 0.05 0.05 0.05	0. 1 0. 1	25 25 25 25 25	OUTLET OUTLET				
[INFILTRATION] ;;Subcatchment	Suction	Ksat	I MD							
;; DMA-1-A DMA-1-D DMA-2-D DMA2-C DMA2-A DMA3-A	1.5 9 9	0. 3 0. 025 0. 025 0. 075 0. 3 0. 3	0.3 0.33 0.33 0.32 0.3 0.3							
[OUTFALLS] ;;Name ;;	Elevation	Туре	Stage Da	ta	Gated	Route To				
;; POC1-PRE		FREE			NO					
[TIMESERIES] ;;Name	Date	Time	Val ue							
; ; OCEANSI DE-RAI N										
SUBCATCHMENTS AL NODES ALL LINKS ALL [TAGS] [MAP]										
DIMENSIONS 0.000 Units None	0.000 1000	0.000 100	00.000							
[COORDI NATES] ; ; Node	X-Coord		Y-Coord							
;; POC1-PRE			2332. 731							
[VERTI CES] ; ; Li nk ; ;	X-Coord		Y-Coord							
[Polygons] ;;Subcatchment										
DMA-1-A DMA-1-D DMA-2-D DMA-2-D	1705.508 3050.847 4461.709		7118. 644 7161. 017 7147. 614 7147. 614							
DMA2-C DMA2-A DMA3-A			7227. 113 7253. 521 7288. 732							
[SYMBOLS] ;;Gage ;;	X-Coord		Y-Coord							

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.014)

OLIVE PARK APARTMENTS - POC1 PRE-DEVELOPED

***** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **** Analysis Options Flow Units CFS Process Model s: Rainfall/Runoff YES RDI I NO Snowmelt NO Groundwater NO Flow Routing NO Water Quality NO Infiltration Method GREEN_AMPT Starting Date 08/28/1951 00:00:00 Ending Date 05/23/2008 23:00:00 Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00:12:00 Dry Time Step 03:00:00 ***** Vol ume Depth Runoff Quantity Continuity i nches acre-feet _ _ _ _ _ _ _ _____ Total Precipitation 1409.247 675.250 Evaporation Loss 51.639 24.743 Infiltration Loss 496.153 1035.471 Surface Runoff 333.460 159.779 Final Storage 0.011 0.005 Continuity Error (%) -0.804 **** Vol ume Vol ume Flow Routing Continuity acre-feet 10^6 gal ******* * * * * * * * * * * * * -----_____ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 333.459 108.663 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 333.459 108.663 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.000 **** Subcatchment Runoff Summarv *****


		Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff	Preci p	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	
		riccip	Ranon			Runorr	Ranot i	Runori	Runorr
				Page	I				

Dupoff Cooff								
Runoff Coeff Subcatchment CFS	in	in	in	in	in	in	in	10^6 gal
DMA-1-A 1.61 0.013	675.25	0.00	0. 66	666.54	0.00	8. 45	8. 45	0. 42
DMA-1-D 10. 27 0. 214	675.25	0.00	20. 54	517.15	1.80	143.01	144.80	36.07
DMA-2-D 5.20 0.209	675.25	0.00	20. 65	520. 45	0.00	141.00	141.00	17.82
DMA2-C 7.31 0.447	675.25	0.00	50.84	327.74	269.67	32. 31	301.98	51.58
DMA2-A 0.86 0.012	675.25	0.00	0.66	666.77	0.00	8. 18	8.18	0. 22
DMA3-A 1.95 0.066	675.25	0.00	6. 35	626.07	34.96	9. 31	44.26	2.55

 Analysis begun on:
 Wed Aug
 7
 10: 17: 43
 2024

 Analysis ended on:
 Wed Aug
 7
 10: 17: 57
 2024

 Total elapsed time:
 00: 00: 14
 10: 17: 57
 2024

[TITLE] ;;Project Title/Not			-UD-APT-P	ost.Inp				
OLIVE PARK APARTMEN [OPTIONS] ;; Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value CFS GREEN_AMPT KINWAVE DEPTH O NO NO	JEVELUPED						
START_DATE START_TI ME REPORT_START_DATE REPORT_START_TI ME END_DATE END_TI ME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTI NG_STEP RULE_STEP	08/28/1951 00: 00: 00 08/28/1951 00: 00: 00 05/23/2008 23: 00: 00 01/01 12/31 0 01: 00: 00 00: 12: 00 03: 00: 00 00: 01: 00 00: 00: 00							
I NERTI AL_DAMPI NG NORMAL_FLOW_LI MI TED FORCE_MAI N_EQUATI ON VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS								
;;		11 0 15 0 17	0.10	0 10 0	10 0 15	0 11	0.00	Q(
MONTHLY 0. DRY_ONLY NO		11 0.15 0.17	0.19	0.19 0. ⁻	18 0.15	0. 11	0.08 0	. 06
[RAINGAGES] ;;Name Fo	rmat Interva							
;;	TENSITY 1:00	1.0 TIMES	- ERIES OCE	ANSI DE-RA	IN			
[SUBCATCHMENTS] ;;Name Ra	in Gage	Outlet	Area	%Imperv	Width	%SI ope	CurbLen	SnowPack
;Soil type D+ the p Bypass-DMA-1-D OC	roposed slopes EANSIDE	in Soil A POC1-POST	9. 546	0. 29	832	33	0	
	EANSI DE	P0C1-P0ST	1.544	0	2363	25	0	
	EANSI DE	POC1-POST	5. 325	54.6	1300	1.18	0	
; Soil Type A, Soil T	EANSIDE ype A, reduced EANSIDE	POC1-POST conductivity (ex POC1-POST	0.674 isting co 1.669	0 mpacted u 7.5	280 npaved roa 275	2. 31 ad) 4. 28	0	
;Soil Type D DMA3-MWS OC DMA1-soilD OC DMA2-soilD OC	EANSI DE EANSI DE EANSI DE EANSI DE EANSI DE	POC1-POST stor1 stor2 POC1-POST	0. 517 4. 257 2. 317 0. 624	93. 3 90 68 0	845 950 675 91	2.5 1.5 1.5 3.54	0 0 0 0	

POC1-OD-APT-Post.inp

[SUBAREAS] ;;Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo	PctRouted		
Bypass-DMA-1-D Bypass-DMA-2-D Bypass-DMA2-C Bypass-DMA2-A DMA3-A DMA3-A DMA3-MWS DMA1-soi I D DMA2-soi I D BYPASS-DMA1A	0. 012 0. 012 0. 012 0. 012 0. 012 0. 012 0. 012 0. 012 0. 012 0. 012	0. 15 0. 15	0. 05 0. 05	0. 1 0. 1 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTLET OUTLET OUTLET OUTLET I MPERVI OUS I MPERVI OUS I MPERVI OUS OUTLET	100		
[INFILTRATION] ;;Subcatchment	Suction	Ksat	I MD						
;; Bypass-DMA-1-D Bypass-DMA-2-D Bypass-DMA2-C Bypass-DMA2-A DMA3-A DMA3-A DMA3-AWS DMA1-soi I D DMA2-soi I D BYPASS-DMA1A	9 9 6 1.5 1.5 9 9 9 9 1.5	0. 025 0. 025 0. 075 0. 3 0. 3 0. 0175 0. 0175 0. 0175 0. 3	0. 33 0. 33 0. 32 0. 3 0. 3 0. 3 0. 33 0. 33 0. 25 0. 3						
[OUTFALLS] ;;Name	Elevation		Stage Da		ted Route	То			
;; POC1-POST	0	FREE		NO					
[STORAGE] ;;Name Ksat IMD		MaxDepth		Shape	Curve Name/F	Params	N/A	Fevap	Psi
STOR1 STOR2	0		0 0	TABULAR TABULAR	Stor1 Stor2		0 0	0 0	
[OUTLETS] ;;Name	From Node	То	Node	Offset	Туре	QTabl	e/Qcoeff	Qexpon	Gated
;;									-
1	STOR1	POC	1-POST	0	TABULAR/D)EPTH Outle	et1		NO
2	STOR2	POC	1-P0ST	0	TABULAR/D	DEPTH Outle	et2		NO

[CURVES] ;;Name	Туре	X-Val ue	Y-Value
Outlet1	Rating	0.00	0.0000
Outlet1	5	0. 17	0.0256
Outlet1		0. 33	0.0376
Outlet1		0.50	0.0467
Outlet1		0. 67	0.0542
Outlet1		0.83	0.0608
Outlet1		1.00	0.0668
Outlet1		1. 17	0.0723
Outlet1		1.33	0.0773
Outlet1		1.50	0.0821
Outlet1		1.67	0.0866
Outlet1		1.83	0.0909
Outlet1		2.00	0.0950
Outlet1		2. 17	0.0989
Outlet1		2.33	0. 1027
Outlet1		2.50	0. 1064
Outlet1		2.67	0. 1099
Outlet1		2.83	0. 1133

Outl et1 Outl et1		$\begin{array}{c} 3. \ 00\\ 3. \ 17\\ 3. \ 33\\ 3. \ 50\\ 3. \ 67\\ 3. \ 83\\ 4. \ 00\\ 4. \ 17\\ 4. \ 33\\ 4. \ 50\\ 4. \ 67\\ 4. \ 83\\ 5. \ 00\\ 5. \ 17\\ 5. \ 33\\ 5. \ 50\\ 5. \ 67\\ 5. \ 83\\ 6. \ 00\\ 6. \ 17\\ 6. \ 33\\ 6. \ 50\\ 6. \ 67\\ 6. \ 83\\ 7. \ 00\\ 7. \ 17\\ 7. \ 33\\ 7. \ 50\\ \end{array}$	$\begin{array}{c} 0. \ 1192 \\ 0. \ 1236 \\ 0. \ 1276 \\ 0. \ 1276 \\ 0. \ 1276 \\ 0. \ 1276 \\ 0. \ 1276 \\ 0. \ 1385 \\ 0. \ 1385 \\ 0. \ 1385 \\ 0. \ 1419 \\ 0. \ 1452 \\ 0. \ 1484 \\ 0. \ 1516 \\ 0. \ 1452 \\ 0. \ 1484 \\ 0. \ 1516 \\ 0. \ 1452 \\ 0. \ 5965 \\ 1. \ 3701 \\ 2. \ 9209 \\ 4. \ 0007 \\ 4. \ 7715 \\ 5. \ 4280 \\ 6. \ 0102 \\ 6. \ 5391 \\ 7. \ 0272 \\ 8. \ 9570 \\ 14. \ 3315 \\ 21. \ 6166 \\ 30. \ 3721 \\ 40. \ 3710 \\ 51. \ 4677 \\ 63. \ 5587 \end{array}$
Outl et2 Outl et2	Rating	0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 3.50 3.67 3.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50 6.67 6.83	0.0000 0.0112 0.0164 0.0236 0.0265 0.0291 0.0315 0.037 0.0358 0.0378 0.0378 0.0396 0.0414 0.0431 0.0448 0.0431 0.0448 0.0431 0.0448 0.0463 0.0479 0.0448 0.0463 0.0479 0.0494 0.0508 0.0547 0.0573 0.0595 0.0616 0.0635 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0671 0.0688 0.0704 0.0720 0.0736 0.0751 0.0755 0.0780 0.0794 0.1186 0.1398 0.1558 0.6556 1.4973 1.9577 2.3241 2.6381

			POC
Outlet2		7.00	2.9173
Outlet2		7.17	6.3435
Outlet2		7.33	12. 3781
Outlet2		7.50	20. 1080
Outlet2		7.67	29. 3216
Outlet2		7.83	39. 1938
Outlet2		8.00	50.7508
Outlet2		8. 17	63.3117
;			
Stor1	Storage	0.00	3008.4
Stor1	0	0. 17	3990.6
Stor1		0. 33	4380.5
Stor1		0.50	4667.7
Stor1		0.67	4899.6
Stor1		0.83	5094.9
Stor1		1.00	5262.9
Stor1		1.17	5409.5
Stor1		1.33	5538.3
Stor1		1.50	5652.0
Stor1		1.67	5752.5
Stor1		1.83	5841.1
Stor1		2.00	5919.0
Stor1		2.17	5986.9
Stor1		2.33	6045.6
Stor1		2.50	6095.5
Stor1		2.67	6137.2
Stor1		2.83	6170.8
Stor1		3.00	6196.8
Stor1		3. 17	6215.2
Stor1		3.33	6226.1
Stor1		3.50	6229.8
Stor1		3.67	6226.1
Stor1		3.83	6215.2
Stor1		4.00	6196.8
Stor1		4.17	6170.8
Stor1		4.33	6137.2
Stor1		4.50	6095.5
Stor1		4.67	6045.6
Stor1		4.83	5986.9
Stor1		5.00	5919.0
Stor1		5.17	5841.1
Stor1		5.33	5752.5
Stor1		5.50	5652.0
Stor1		5.67	5538.3
Stor1		5.83	5409.5
Stor1		6.00	5262.9
Stor1		6. 17	5094.9
Stor1		6.33	4899.6
Stor1		6.50	4667.7
Stor1		6.67	4380.5
Stor1		6.83	3990.6
Stor1		7.00	3008.4
Stor1		7.17	3008.4
Stor1		7.33	3008.4
Stor1		7.50	3008.4
•			
Stor2	Storage	0.00	1244.4
Stor2		0. 17	1650.4
Stor2		0.33	1811.9
Stor2		0.50	1931.4
Stor2		0. 67	2028.1
Stor2		0.83	2109.9
Stor2		1.00	2180.6
Stor2		1.17	2242.5
Stor2		1.33	2297.3
Stor2		1.50	2346.0
Stor2		1.67	2389.3
Stor2		1.83	2428.0
Stor2		2.00	2462.3
Stor2		2.17	2492.6
Stor2		2.33	2519.4

			OD-APT
Stor2 Stor2	2.50 2.67	2542.6 2562.7	
Stor2	2.83	2579.6	
Stor2	3.00	2593.6	
Stor2 Stor2	3. 17 3. 33	2604.6 2612.9	
Stor2	3.50	2618.3	
Stor2	3.67	2621.1	
Stor2 Stor2	3.83 4.00	2621.1 2618.3	
Stor2	4. 17	2612.9	
Stor2	4.33	2604.6	
Stor2 Stor2	4.50 4.67	2593.6 2579.6	
Stor2	4.83	2562.7	
Stor2	5.00	2542.6	
Stor2 Stor2	5. 17 5. 33	2519. 4 2492. 6	
Stor2	5.50	2462.3	
Stor2	5.67	2428.0	
Stor2 Stor2	5.83 6.00	2389.3 2346.0	
Stor2	6. 17	2297.3	
Stor2	6.33	2242.5	
Stor2 Stor2	6.50 6.67	2180. 6 2109. 9	
Stor2	6.83	2028.1	
Stor2	7.00	1931.4	
Stor2 Stor2	7.17 7.33	1811. 9 1650. 4	
Stor2	7.50	1244. 4	
Stor2	7.67	1244.4	
Stor2 Stor2	7.83 8.00	1244.4 1244.4	
Stor2	8. 17	1244.4	
[TIMESERIES]			
;;Name	Date Time	Val ue	
OCEANSI DE-RAI N	FILE "OCEANSIDE.	orn"	
[REPORT] ;;Reporting Opti SUBCATCHMENTS AL NODES ALL LINKS ALL			
[TAGS]			
[MAP] DIMENSIONS 0.000 Units None	0.000 10000.000	10000. 000	
[COORDI NATES] ; ; Node	X-Coord	Y-Coord	
POC1-POST		4879. 386	
STOR1	3571.429		
STOR2	4579.832	3937.575	
[VERTICES]			
	X-Coord		
, , =============			
[Polygons] ;;Subcatchment	X-Coord	Y-Coord	
;;Bypass-DMA-1-D	-433, 996	7649. 186	
Bypass-DMA-2-D	3019. 892	7739.602	
Bypass-DMA-2-D Bypass-DMA-2-D Bypass-DMA2-C	3019.892	7739.602	
bypass-DMA2-C	JZZO. UYI	7478.992	Dado

Bypass-DMA2-A	6852.993	7253. 521	
DMA3-A	7944.542	7288.732	
DMA3-MWS	7160. 940	2712.477	
DMA1-soilD	669.078	2911.392	
DMA2-soilD	2893.309	1754.069	
BYPASS-DMA1A	-3039.474	6052.632	
[SYMBOLS] ;;Gage	X-Coord	Y-Coord	
, , daye 	X-0001 U	1-0001 u	
OCEANSI DE	4778. 107	8476. 331	

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.014)

OLIVE PARK APARTMENTS - POC1 PRE-DEVELOPED

***** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options Flow Units CFS Process Model s: Rainfall/Runoff YES RDI I NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date 08/28/1951 00:00:00 Ending Date 05/23/2008 23:00:00 Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00: 12: 00 Dry Time Step 03:00:00 Routing Time Step 60.00 sec ***** Volume Depth Runoff Quantity Continuity acre-feet i nches **** _____ _____ Total Precipitation 1489.658 675.250 Evaporation Loss 99.918 45.292 Infiltration Loss 807.673 366.112 Surface Runoff 594.273 269.379 Final Storage 0.033 0.015 Continuity Error (%) -0.822 ***** Vol ume Vol ume Flow Routing Continuity acre-feet 10^6 gal ****** -----_____ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 594.271 193.652 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 594.235 193.640 Flooding Loss 0.000 0.000 0.000 Evaporation Loss 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.008 0.003 Continuity Error (%) 0.005

Highest Flow Instability Indexes

All links are stable.

sec sec sec

Routing Time Step Summary		
Minimum Time Step	:	60.00
Average Time Step	:	60.00
Maximum Time Step	:	60.00
Percent in Steady State	:	0.00
Average Iterations per Step	:	1.00
Percent Not Converging	:	0.00

Subcatchment Runoff Summary

	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff								
Runoff Coeff	Preci p	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Subcatchment CFS	in	in	in	in	in	in	in	10^6 gal
Bypass-DMA-1-D 10.64 0.205	675.25	0.00	20. 39	521.41	1.73	136. 99	138.72	35.96
Bypass-DMA-2-D 1.73 0.228	675.25	0.00	19. 22	510.80	0.00	154. 22	154.22	6.47
Bypass-DMA2-C 6.22 0.509	675.25	0.00	59.13	277.43	316. 71	26.89	343.59	49.68
Bypass-DMA2-A 0.60 0.013	675.25	0.00	0.66	666.15	0.00	8.90	8.90	0.16
DMA3-A 1.49 0.076	675.25	0.00	8.03	617.03	44. 15	7.27	51.42	2.33
DMA3-MWS 0.62 0.831	675.25	0.00	94.63	31.25	561.09	13. 24	561.09	7.88
DMA1-soi I D 5. 10 0. 797	675.25	0.00	96.83	46.98	538.20	18. 82	538.20	62.21
DMA2-soi I D 2. 75 0. 679	675.25	0.00	79.60	145.51	458.23	63.76	458.23	28.83
BYPASS-DMA1A 0. 52 0. 011	675.25	0.00	0. 67	667.60	0.00	7.25	7.25	0. 12

* * * * * * * * * * * * * * * * * * *

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Feet
POC1-POST	OUTFALL	0. 00	0. 00	0. 00	0 00:00	0. 00
STOR1	STORAGE	0. 08	5. 51	5. 51	15835 21:01	5. 51
STOR2	STORAGE	0. 08	6. 60	6. 60	15835 21:01	6. 60

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
POC1-POST	OUTFALL	21.82	27.73	18857 17:01 Page 2	103	194	0.000

			POC1-OD-APT-Post.rpt			
STOR1	STORAGE	5.10	5. 10 18857 16: 49	62.2	62.2	0.009
STOR2	STORAGE	2.75	2. 75 18857 17: 01	28.8	28.8	0.011

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average Volume 1000 ft3	Avg Pcnt Ful I	Evap Pcnt Loss		Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
STOR1	0. 365	1	0	0	31. 505	78	15835 21:01	4. 05
STOR2	0. 173	1	0	0	15. 769	91	15835 21:01	2. 18

Outfall Loading Summary

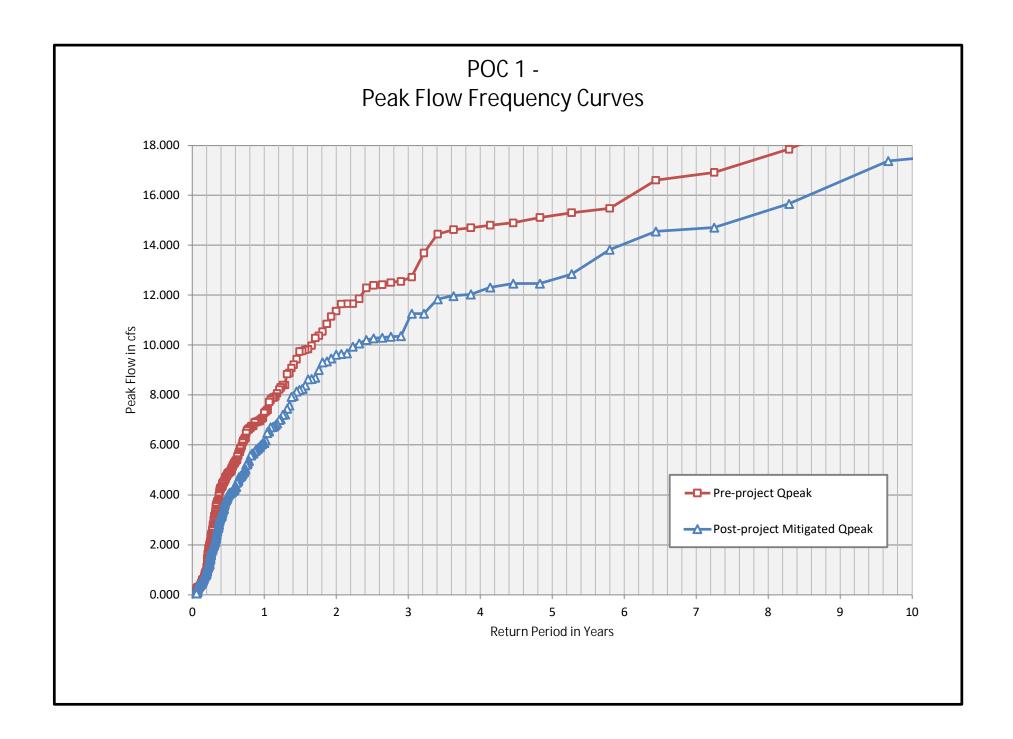
	Flow Freq	A∨g FI ow	Max FI ow	Total Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
P0C1-P0ST	11.60	0. 12	27.73	193. 626
System	11.60	0. 12	27.73	193.626

Link Flow Summary

Link	Туре	FI ow	Time of Max Occurrence days hr:min	Vel oc	Max/ Full Depth
1 2	DUMMY DUMMY		15835 21:01 15835 21:01		

Conduit Surcharge Summary

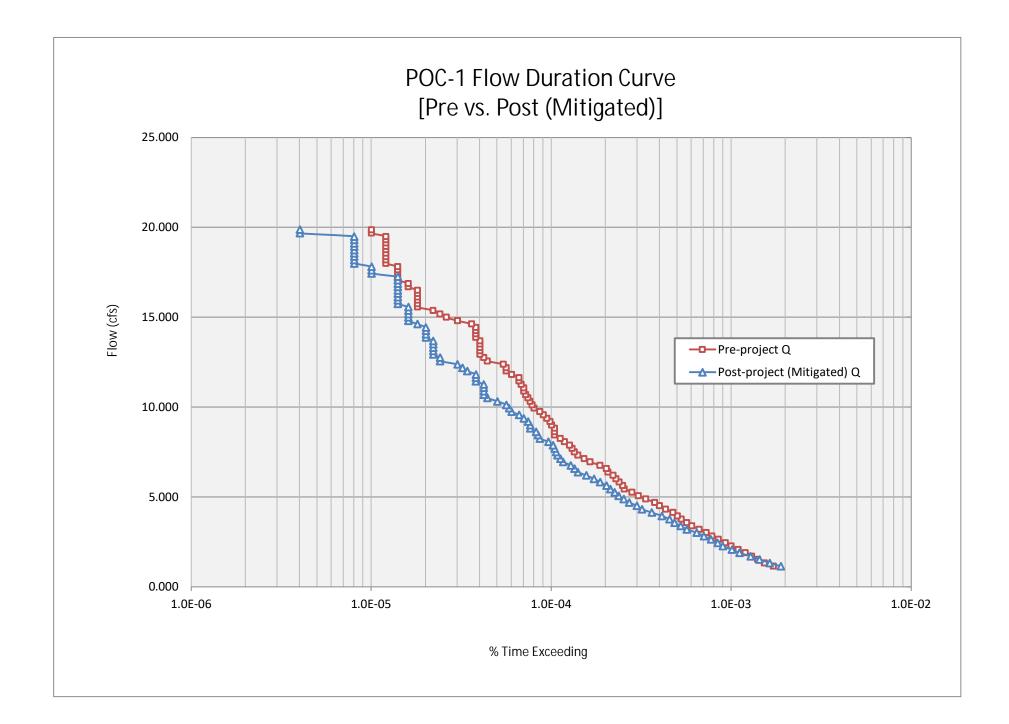
No conduits were surcharged.


 Analysis begun on:
 Thu Aug
 8
 15:51:25
 2024

 Analysis ended on:
 Thu Aug
 8
 15:52:02
 2024

 Total elapsed time:
 00:00:37

Peak Flow Frequency Summary


Return Period	Pre-project Qpeak (cfs)	Post-project - Mitigated Q (cfs)		
LF = 0.1xQ2	1.137	0.962		
2-year	11.367	9.620		
5-year	15.183	12.609		
10-year	19.866	17.460		

	Low-flow Threshold:	10%					
	0.1xQ2 (Pre):	1.137	cfs				
	Q10 (Pre):		cfs				
	Ordinate #:						
	Incremental Q (Pre):	0.18729	cfs I.				B4 00 5 5
	Total Hourly Data:	497375	hours			The proposed BMP:	PASSED
Interval	Pre-project Flow (cfs)	Pre-project Hours	Pre-project % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
0.000	1.137	855	1.72E-03	939	1.89E-03	109.82%	Pass
1	1.324	761	1.53E-03	814	1.64E-03	107%	Pass
2	1.511	698	1.40E-03	715	1.44E-03	102%	Pass
3	1.699	646	1.30E-03	638	1.28E-03	99%	Pass
4	1.886	597	1.20E-03	553	1.11E-03	93%	Pass
5	2.073	544	1.09E-03	502	1.01E-03	92%	Pass
7	2.260	498 462	1.00E-03 9.29E-04	447 419	8.99E-04 8.42E-04	90% 91%	Pass Pass
8	2.635	402	8.50E-04	384	7.72E-04	91%	Pass
9	2.822	390	7.84E-04	351	7.06E-04	90%	Pass
10	3.010	362	7.28E-04	320	6.43E-04	88%	Pass
11	3.197	331	6.65E-04	282	5.67E-04	85%	Pass
12	3.384	301	6.05E-04	261	5.25E-04	87%	Pass
13	3.571	282	5.67E-04	241	4.85E-04	85%	Pass
14	3.759	263	5.29E-04	226	4.54E-04	86%	Pass
15	3.946	250	5.03E-04	205	4.12E-04	82%	Pass
16	4.133	236	4.74E-04	180	3.62E-04	76%	Pass
17	4.321	215	4.32E-04	159	3.20E-04	74%	Pass
18 19	4.508	199 187	4.00E-04 3.76E-04	149 135	3.00E-04 2.71E-04	75% 72%	Pass Pass
20	4.883	167	3.36E-04	126	2.53E-04	75%	Pass
21	5.070	152	3.06E-04	118	2.37E-04	78%	Pass
22	5.257	140	2.81E-04	112	2.25E-04	80%	Pass
23	5.444	127	2.55E-04	106	2.13E-04	83%	Pass
24	5.632	124	2.49E-04	101	2.03E-04	81%	Pass
25	5.819	119	2.39E-04	93	1.87E-04	78%	Pass
26	6.006	114	2.29E-04	86	1.73E-04	75%	Pass
27	6.194	110	2.21E-04	78	1.57E-04	71%	Pass
28 29	6.381 6.568	103 101	2.07E-04 2.03E-04	70 67	1.41E-04 1.35E-04	68% 66%	Pass Pass
30	6.755	93	1.87E-04	64	1.29E-04	69%	Pass
31	6.943	82	1.65E-04	58	1.17E-04	71%	Pass
32	7.130	76	1.53E-04	56	1.13E-04	74%	Pass
33	7.317	70	1.41E-04	54	1.09E-04	77%	Pass
34	7.505	67	1.35E-04	53	1.07E-04	79%	Pass
35	7.692	65	1.31E-04	52	1.05E-04	80%	Pass
36	7.879	63	1.27E-04	51	1.03E-04	81%	Pass
37	8.066	59	1.19E-04	48	9.65E-05	81%	Pass
38 39	8.254	56 52	1.13E-04 1.05E-04	43 42	8.65E-05 8.44E-05	77% 81%	Pass Pass
40	8.628	52	1.05E-04	42	8.24E-05	79%	Pass
40	8.816	52	1.05E-04	38	7.64E-05	73%	Pass
42	9.003	50	1.01E-04	38	7.64E-05	76%	Pass
43	9.190	49	9.85E-05	37	7.44E-05	76%	Pass
44	9.378	47	9.45E-05	35	7.04E-05	74%	Pass
45	9.565	45	9.05E-05	33	6.63E-05	73%	Pass
46	9.752	43	8.65E-05	30	6.03E-05	70%	Pass
47	9.939	40	8.04E-05	29	5.83E-05	73%	Pass
48	10.127	39	7.84E-05	28	5.63E-05	72%	Pass
49 50	10.314	38 37	7.64E-05 7.44E-05	25 22	5.03E-05 4.42E-05	66% 59%	Pass Pass
51	10.501	36	7.24E-05	22	4.42E-03	58%	Pass
52	10.876	35	7.04E-05	21	4.22E-05	60%	Pass
53	11.063	35	7.04E-05	21	4.22E-05	60%	Pass
54	11.250	34	6.84E-05	21	4.22E-05	62%	Pass
55	11.438	33	6.63E-05	19	3.82E-05	58%	Pass
56	11.625	33	6.63E-05	19	3.82E-05	58%	Pass
57	11.812	30	6.03E-05	19	3.82E-05	63%	Pass
58	12.000	28	5.63E-05	17	3.42E-05	61%	Pass
59	12.187	28	5.63E-05	16	3.22E-05	57%	Pass
60 61	12.374	27 22	5.43E-05	15 12	3.02E-05	56%	Pass
61	12.561 12.749	22	4.42E-05 4.22E-05	12	2.41E-05 2.41E-05	55% 57%	Pass Pass
63	12.749	21	4.22E-05 4.02E-05	12	2.41E-05 2.21E-05	55%	Pass
64	13.123	20	4.02E-05	11	2.21E-05	55%	Pass
65	13.311	20	4.02E-05	11	2.21E-05	55%	Pass
66	13.498	20	4.02E-05	11	2.21E-05	55%	Pass

OPA

Interval	Pre-project Flow (cfs)	Pre-project Hours	Pre-project % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
67	13.685	20	4.02E-05	11	2.21E-05	55%	Pass
68	13.873	19	3.82E-05	10	2.01E-05	53%	Pass
69	14.060	19	3.82E-05	10	2.01E-05	53%	Pass
70	14.247	19	3.82E-05	10	2.01E-05	53%	Pass
71	14.434	19	3.82E-05	10	2.01E-05	53%	Pass
72	14.622	18	3.62E-05	9	1.81E-05	50%	Pass
73	14.809	15	3.02E-05	8	1.61E-05	53%	Pass
74	14.996	13	2.61E-05	8	1.61E-05	62%	Pass
75	15.184	12	2.41E-05	8	1.61E-05	67%	Pass
76	15.371	11	2.21E-05	8	1.61E-05	73%	Pass
77	15.558	9	1.81E-05	8	1.61E-05	89%	Pass
78	15.745	9	1.81E-05	7	1.41E-05	78%	Pass
79	15.933	9	1.81E-05	7	1.41E-05	78%	Pass
80	16.120	9	1.81E-05	7	1.41E-05	78%	Pass
81	16.307	9	1.81E-05	7	1.41E-05	78%	Pass
82	16.495	9	1.81E-05	7	1.41E-05	78%	Pass
83	16.682	8	1.61E-05	7	1.41E-05	88%	Pass
84	16.869	8	1.61E-05	7	1.41E-05	88%	Pass
85	17.056	7	1.41E-05	7	1.41E-05	100%	Pass
86	17.244	7	1.41E-05	7	1.41E-05	100%	Pass
87	17.431	7	1.41E-05	5	1.01E-05	71%	Pass
88	17.618	7	1.41E-05	5	1.01E-05	71%	Pass
89	17.806	7	1.41E-05	5	1.01E-05	71%	Pass
90	17.993	6	1.21E-05	4	8.04E-06	67%	Pass
91	18.180	6	1.21E-05	4	8.04E-06	67%	Pass
92	18.368	6	1.21E-05	4	8.04E-06	67%	Pass
93	18.555	6	1.21E-05	4	8.04E-06	67%	Pass
94	18.742	6	1.21E-05	4	8.04E-06	67%	Pass
95	18.929	6	1.21E-05	4	8.04E-06	67%	Pass
96	19.117	6	1.21E-05	4	8.04E-06	67%	Pass
97	19.304	6	1.21E-05	4	8.04E-06	67%	Pass
98	19.491	6	1.21E-05	4	8.04E-06	67%	Pass
99	19.679	5	1.01E-05	2	4.02E-06	40%	Pass
100	19.866	5	1.01E-05	2	4.02E-06	40%	Pass

CMP-2 Discharge to MWS BF-3-2 Discharge vs Elevation Table

Discharge	e vs Elevation Table		
Low orifice:	0.525 "	Top orifice:	0.75 "
Number:	4	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.75 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.81	0.00	0.00	0.011	0.016	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0112
0.33	7.62	0.00	0.00	0.016	1.321	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0164
0.50	11.43	0.00	0.00	0.020	14.762	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0204
0.67	15.24	2.42	0.00	0.024	73.005	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0236
0.83	19.05	4.85	1.33	0.027	242.879	0.027	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0265
1.00	22.86	7.27	4.00	0.029	637.724	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0291
1.17	26.67	9.70	6.67	0.031	1429.734	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0315
1.33	30.48	12.12	9.33	0.034	2862.302	0.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0337
1.50	34.29	14.55	12.00	0.036	5262.368	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0358
1.67	38.10	16.97	14.67	0.038	9052.761	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0378
1.83	41.90	19.39	17.33	0.040	14764.544	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0396
2.00	45.71	21.82	20.00	0.041	23049.363	0.041	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0414
2.17	49.52	24.24	22.67	0.043	34691.785	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0431
2.33	53.33	26.67	25.33	0.045	50621.653	0.045	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0448
2.50	57.14	29.09	28.00	0.046	71926.420	0.046	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0463
2.67	60.95	31.52	30.67	0.048	99863.503	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0479
2.83	64.76	33.94	33.33	0.049	135872.625	0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0494
3.00	68.57	36.36	36.00	0.051	181588.157	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0508
3.17	72.38	38.79	38.67	0.052	238851.469	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0522

			2 64 64		
		CIVIP #HIVIP-	2 Stage Stora		
	Input DCV			3,285	
	Input Factor			2.05	
) Ponding Dep		3.000		
		levation valu	e in relation t	o required WQ v	olume
HMP-2-A Sta	5 5				
	Average			Consulation	
	Surface			Comulative	volume
depth	area	area (ac)	elevation	volume (cf)	(acft)
0.00	1244.4	0.0286	0.00	0.0	0.0
0.17	1650.4	0.0379	0.17	252.7	0.00580
0.33	1811.9	0.0416	0.33	542.1	0.01244
0.50	1931.4	0.0443	0.50	854.4	0.01961
0.67	2028.1	0.0466	0.67	1,184.6	0.02720
0.83	2109.9	0.0484	0.83	1,529.6	0.03512
1.00	2180.6	0.0501	1.00	1,887.3	0.04333
1.17	2242.5	0.0515	1.17	2,256.0	0.05179
1.33	2297.3	0.0527	1.33	2,634.4	0.06048
1.50	2346.0	0.0539	1.50	3,021.5	0.06936
1.67	2389.3	0.0549	1.67	3,416.1	0.07842
1.83	2428.0	0.0557	1.83	3,817.6	0.08764
2.00	2462.3	0.0565	2.00	4,225.2	0.09700
2.17	2492.6	0.0572	2.17	4,638.2	0.10648
2.33	2519.4	0.0578	2.33	5,055.9	0.11607
2.50	2542.6	0.0584	2.50	5,477.8	0.12575
2.67	2562.7	0.0588	2.67	5,903.3	0.13552
2.83	2579.6	0.0592	2.83	6,331.8	0.14536
3.00	2593.6	0.0595	3.00	6,763.0	0.15526
3.17	2604.6	0.0598	3.17	7,196.2	0.16520
3.33	2612.9	0.0600	3.33	7,631.0	0.17518
3.50	2618.3	0.0601	3.50	8,067.0	0.18519
3.67	2621.1	0.0602	3.67	8,503.7	0.19522
3.83	2621.1	0.0602	3.83	8,940.5	0.20525
4.00	2618.3	0.0601	4.00	9,377.2	0.21527
4.17	2612.9	0.0600	4.17	9,813.2	0.22528
4.33	2604.6	0.0598	4.33	10,248.0	0.23526
4.50	2593.6	0.0595	4.50	10,681.2	0.24521
4.67	2579.6	0.0592	4.67	11,112.4	0.25510
4.83	2562.7	0.0588	4.83	11,540.9	0.26494
5.00	2542.6	0.0584	5.00	11,966.4	0.27471
5.17	2519.4	0.0578	5.17	12,388.3	0.28440
5.33	2492.6	0.0572	5.33	12,806.0	0.29399
5.50	2462.3	0.0565	5.50	13,219.0	0.30347
5.67	2428.0	0.0557	5.67	13,626.6	0.31282
5.83	2389.3	0.0549	5.83	14,028.1	0.32204
6.00	2346.0	0.0539	6.00	14,422.7	0.33110
6.17	2297.3	0.0527	6.17	14,809.8	0.33999
6.33	2242.5	0.0515	6.33	15,188.2	0.34867
6.50	2180.6	0.0501	6.50	15,556.9	0.35714
6.67	2109.9	0.0484	6.67	15,914.6	0.36535
6.83	2028.1	0.0466	6.83	16,259.6	0.37327
7.00	1931.4	0.0443	7.00	16,589.8	0.38085
7.17	1811.9	0.0416	7.17	16,902.1	0.38802
7.33	1650.4	0.0379	7.33	17,191.5	0.39466
7.50	1244.4	0.0286	7.50	17,444.2	0.40046
7.67	1244.4	0.0286	7.67	17,651.6	0.40522
7.83	1244.4	0.0286	7.83	17,859.0	0.40999
8.00	1244.4	0.0286	8.00	18,066.4	0.41475
8.17	1244.4	0.0286	8.17	18,273.8	0.41951

Date: 8/7/2024 Project Name: East Storage-2 - 47954 (8-7-2024 0-5-24)

City / County: State:

Designed By: Company:

Telephone:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

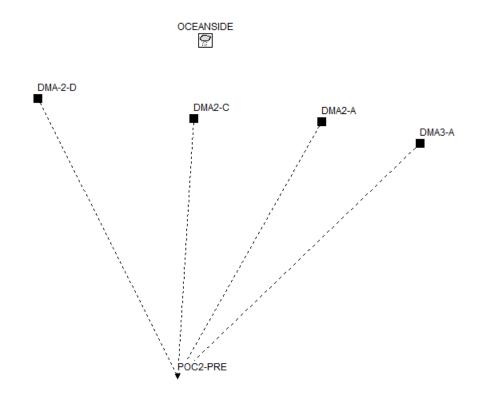
		Summary of Inp	outs		
System Information	1	Backfill Information	1	Pipe & Analysis Information	
Out-to-out length (ft):	100.0	Backfill Porosity (%):	Backfill Porosity (%): 40%		90
Out-to-out width (ft):	28.5	Depth Above Pipe (in):	9.0	Pipe Spacing (in):	36
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2
Number of Barrels (ea):	3.0	Width At Ends (ft):	1.0	System Invert (Elevation):	223.5
		Width At Sides (ft):	1.0		

			Stor	age Volur	ne Estima	ation			
Sys	stem		ре		one		System	Miscell	
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)
0.00	223.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	1,244.4
0.17	223.66	75.5	75.5	177.2	177.2	252.7	252.7	29.9%	1,650.4
0.33	223.83	136.6	212.1	152.7	329.9	289.4	542.1	39.1%	1,811.9
0.50	224.00	174.9	387.0	137.4	467.4	312.3	854.4	45.3%	1,931.4
0.67	224.16	204.7	591.7	125.5	592.9	330.2	1,184.6	49.9%	2,028.1
0.83	224.33	229.4	821.1	115.7	708.6	345.0	1,529.6	53.7%	2,109.9
1.00	224.50	250.5	1,071.5	107.2	815.8	357.7	1,887.3	56.8%	2,180.6
1.17	224.66	268.8	1,340.4	99.9	915.7	368.7	2,256.0	59.4%	2,242.5
1.33	224.83	285.0	1,625.4	93.4	1,009.0	378.4	2,634.4	61.7%	2,297.3
1.50	225.00	299.4	1,924.8	87.7	1,096.7	387.0	3,021.5	63.7%	2,346.0
1.67	225.16	312.1	2,236.9	82.5	1,179.2	394.7	3,416.1	65.5%	2,389.3
1.83	225.33	323.5	2,560.4	78.0	1,257.2	401.5	3,817.6	67.1%	2,428.0
2.00	225.50	333.6	2,894.0	74.0	1,331.2	407.6	4,225.2	68.5%	2,462.3
2.17	225.66	342.6	3,236.6	70.4	1,401.5	413.0	4,638.2	69.8%	2,492.6
2.33	225.83	350.5	3,587.2	67.2	1,468.7	417.7	5,055.9	71.0%	2,519.4
2.50	226.00	357.5	3,944.6	64.4	1,533.1	421.9	5,477.8	72.0%	2,542.6
2.67	226.16	363.5	4,308.1	62.0	1,595.2	425.5	5,903.3	73.0%	2,562.7
2.83	226.33	368.6	4,676.7	60.0	1,655.1	428.6	6,331.8	73.9%	2,579.6
3.00	226.50	372.9	5,049.6	58.2	1,713.3	431.1	6,763.0	74.7%	2,593.6
3.17	226.66	376.4	5,426.0	56.9	1,770.2	433.2	7,196.2	75.4%	2,604.6
3.33	226.83	379.1	5,805.1	55.8	1,826.0	434.8	7,631.0	76.1%	2,612.9
3.50	227.00	381.0	6,186.0	55.0	1,881.0	436.0	8,067.0	76.7%	2,618.3
3.67	227.16	382.1	6,568.1	54.6	1,935.6	436.7	8,503.7	77.2%	2,621.1
3.83	227.33	382.5	6,950.6	54.4	1,990.0	436.9	8,940.5	77.7%	2,621.1
4.00	227.50	382.1	7,332.7	54.6	2,044.5	436.7	9,377.2	78.2%	2,618.3
4.17	227.66	381.0	7,713.6	55.0	2,099.6	436.0	9,813.2	78.6%	2,612.9
4.33	227.83	379.1	8,092.7	55.8	2,155.3	434.8	10,248.0	79.0%	2,604.6
4.50	228.00	376.4	8,469.0	56.9	2,212.2	433.2	10,681.2	79.3%	2,593.6
4.67	228.16	372.9	8,841.9	58.2	2,270.4	431.1	11,112.4	79.6%	2,579.6
4.83	228.33	368.6	9,210.6	60.0	2,330.4	428.6	11,540.9	79.8%	2,562.7
5.00	228.50	363.5	9,574.0	62.0	2,392.4	425.5	11,966.4	80.0%	2,542.6
5.17	228.66	357.5	9,931.5	64.4	2,456.8	421.9	12,388.3	80.2%	2,519.4
5.33	228.83	350.5	10,282.0	67.2	2,524.0	417.7	12,806.0	80.3%	2,492.6
5.50	229.00	342.6	10,624.6	70.4	2,594.3	413.0	13,219.0	80.4%	2,462.3
5.67	229.16	333.6	10,958.3	74.0	2,668.3	407.6	13,626.6	80.4%	2,428.0
5.83	229.33	323.5	11,281.8	78.0	2,746.3	401.5	14,028.1	80.4%	2,389.3
6.00	229.50	312.1	11,593.9	82.5	2,828.8	394.7	14,422.7	80.4%	2,346.0
6.17	229.66	299.4	11,893.3	87.7	2,916.5	387.0	14,809.8	80.3%	2,297.3
6.33	229.83	285.0	12,178.3	93.4	3,009.9	378.4	15,188.2	80.2%	2,242.5
6.50	230.00	268.8	12,447.1	99.9	3,109.7	368.7	15,556.9	80.0%	2,180.6
6.67	230.16	250.5	12,697.6	107.2	3,217.0	357.7	15,914.6	79.8%	2,109.9
6.83	230.33	229.4	12,926.9	115.7	3,332.6	345.0	16,259.6	79.5%	2,028.1
7.00	230.50	204.7	13,131.6	125.5	3,458.2	330.2	16,589.8	79.2%	1,931.4
7.17	230.66	174.9	13,306.5	137.4	3,595.6	312.3	16,902.1	78.7%	1,811.9
7.33	230.83	136.6	13,443.1	152.7	3,748.3	289.4	17,191.5	78.2%	1,650.4
7.50	231.00	75.5	13,518.7	177.2	3,925.5	252.7	17,444.2	77.5%	1,244.4
7.67	231.16	0.0	13,518.7	207.4	4,132.9	207.4	17,651.6	76.6%	1,244.4
7.83	231.33	0.0	13,518.7	207.4	4,340.3	207.4	17,859.0	75.7%	1,244.4
8.00	231.50	0.0	13,518.7	207.4	4,547.7	207.4	18,066.4	74.8%	1,244.4
8.17	231.66	0.0	13,518.7	207.4	4,755.1	207.4	18,273.8	74.0%	1,244.4

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawo	down @	3.00	ft=	62.00
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.011	253	6.27	62.00
0.17	0.014	289	5.82	55.74
0.33	0.018	312	4.72	49.92
0.50	0.022	330	4.17	45.20
0.67	0.025	345	3.82	41.03
0.83	0.028	358	3.57	37.21
1.00	0.030	369	3.38	33.64
1.17	0.033	378	3.22	30.26
1.33	0.035	387	3.09	27.03
1.50	0.037	395	2.98	23.94
1.67	0.039	402	2.88	20.96
1.83	0.041	408	2.79	18.07
2.00	0.042	413	2.71	15.28
2.17	0.044	418	2.64	12.56
2.33	0.046	422	2.57	9.92
2.50	0.047	425	2.51	7.35
2.67	0.049	429	2.45	4.84
2.83	0.050	431	2.39	2.39
3.00				

CMP #HMP-2 Discharge HMP Riser Discharge vs Elevation Table


	Discharge vs Lievation
om orifice:	0.50 "

	Discharge vs Eleva	ition l'able		
Bottom orifice:	0.50 "			
Number:	1			
Cg-low:	0.61			
invert elev:	3.00 ft			
Low orifice:	1 "	Top orifice:	3 "	
Number:	4	Number:	16	
Cg-low:	0.61	Cg-low:	0.61	
invert elev:	5.50 ft	invert elev:	6.60 ft	
Middle orifice:	3 "	Emergency inlet	:	
number of orif:	12	Rim height:	7.00 ft	
Cg-middle:	0.61	Riser Box D	3x4	
invert elev:	6.00 ft	Weir Length	14.00 ft	

Pea	k Flow	

		11.05.1					<u> </u>	01 16		<u></u>			<u></u>						WQ+HMP
h	H/D-bot		H/D-mid	H/D-top	Qbot-orif	Qbot-weir	Qtot-bot	Qlow-orif	Qlow-weir	Qtot-low		Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top		Qtot	Qtot
(ft)		-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0112
0.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0164
0.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0204
0.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0236
0.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0265
1.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0291
1.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0315
1.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0337
1.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0358
1.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0378
1.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0396
2.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0414
2.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0431
2.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0448
2.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0463
2.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0479
2.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0494
3.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0508
3.17	4.00	0.00	0.00	0.00	0.003	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0522
3.33	8.00	0.00	0.00	0.00	0.004	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0536
3.50	12.00	0.00	0.00	0.00	0.005	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0549
3.67	16.00	0.00	0.00	0.00	0.005	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0562
3.83	20.00	0.00	0.00	0.00	0.006	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0575
4.00	24.00	0.00	0.00	0.00	0.007	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0587
4.17	28.00	0.00	0.00	0.00	0.007	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0599
4.33	32.00	0.00	0.00	0.00	0.008	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0611
4.50	36.00	0.00	0.00	0.00	0.008	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0623
4.67	40.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0634
4.83	44.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0646
5.00	48.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0657
5.17	52.00	0.00	0.00	0.00	0.010	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
5.33	56.00	0.00	0.00	0.00	0.010	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0678
5.50	60.00	0.00	0.00	0.00	0.011	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0689
5.67	64.00	2.00	0.00	0.00	0.011	0.00	0.002	0.038	0.050	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.1099
5.83	68.00	4.00	0.00	0.00	0.011	0.00	0.004	0.058	0.095	0.058	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.062	0.1328
6.00	72.00	6.00	0.00	0.00	0.012	0.06	0.012	0.072	1.375	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084	0.1558
6.17	76.00	8.00	0.67	0.00	0.012	0.40	0.012	0.084	8.971	0.084	0.589	0.486	0.486	0.000	0.000	0.000	0.000	0.583	0.6556
6.33	80.00	10.00	1.33	0.00	0.012	1.51	0.012	0.095	34.269	0.095	1.316	1.502	1.316	0.000	0.000	0.000	0.000	1.423	1.4973
6.50	84.00	12.00	2.00	0.00	0.012	4.31	0.012	0.105	97.420	0.105	1.766	2.345	1.766	0.000	0.000	0.000	0.000	1.883	1.9577
6.67	88.00	14.00	2.67	0.27	0.013	10.16	0.013	0.113	229.816	0.113	2.122	2.630	2.122	0.000	0.116	0.116	0.000	2.364	2.4401
6.83	92.00	16.00	3.33	0.93	0.013	21.06	0.013	0.121	476.546	0.121	2.427	2.766	2.427	1.265	1.160	1.160	0.000	3.722	3.7983
7.00	96.00	18.00	4.00	1.60	0.013	39.72	0.013	0.129	898.865	0.129	2.697	4.427	2.697	2.016	2.525	2.016	0.000	4.856	4.9335
7.17	100.00	20.00	4.67	2.27	0.014	69.68	0.014	0.136	1576.661	0.136	2.943	11.033	2.943	2.555	3.368	2.555	3.172	8.820	8.8986
7.33	104.00	22.00	5.33	2.93	0.014	115.39	0.014	0.143	2610.918	0.143	3.170	28.217	3.170	2.999	3.522	2.999	8.972	15.297	15.3768
7.50	108.00	24.00	6.00	3.60	0.014	182.35	0.014	0.149	4126.181	0.149	3.381	64.304	3.381	3.385	4.133	3.385	16.483	23.412	23.4926
7.67	112.08	26.04	6.68	4.28	0.014	279.47	0.014	0.156	6323.584	0.156	3.584	132.520	3.584	3.737	8.441	3.737	25.567	33.059	33.0591
7.83	115.92	27.96	7.32	4.92	0.015	404.91	0.015	0.162	9162.119	0.162	3.765	239.982	3.765	4.042	21.240	4.042	35.252	43.235	43.2353
8.00	120.00	30.00	8.00	5.60	0.015	583.75	0.015	0.167	13208.685	0.167	3.948	419.555	3.948	4.341	53.088	4.341	46.620	55.092	55.0921
8.17	124.08	32.04	8.68	6.28	0.015	820.71	0.015	0.173	18570.570	0.173	4.124	691.324	4.124	4.622	116.986	4.622	59.000	67.933	67.9333

HMP-2A D	rawdown @	8.17	ft=	95.50
Elevation	Q _{AVG} (CFS)	Δ V (CF)	$\Delta extsf{T}$ (HR)	Total T
0.00	0.011	253	6.27	95.50
0.17	0.014	289	5.82	89.23
0.33	0.018	312	4.72	83.41
0.50	0.022	330	4.17	78.69
0.67	0.025	345	3.82	74.52
0.83	0.028	358	3.57	70.70
1.00	0.030	369	3.38	67.13
1.17	0.033	378	3.22	63.75
1.33	0.035	387	3.09	60.52
1.50	0.037	395	2.98	57.43
1.67	0.039	402	2.88	54.45
1.83	0.041	408	2.79	51.57
2.00	0.042	413	2.71	48.77
2.17	0.044	418	2.64	46.06
2.33	0.046	422	2.57	43.41
2.50	0.047	425	2.51	40.84
2.67	0.049	429	2.45	38.33
2.83	0.050	431	2.39	35.88
3.00	0.051	433	2.34	33.49
3.17	0.053	435	2.28	31.16
3.33	0.054	436	2.23	28.87
3.50	0.056	437	2.18	26.64
3.67	0.057	437	2.14	24.45
3.83	0.058	437	2.09	22.32
4.00	0.059	436	2.04	20.23
4.17	0.061	435	2.00	18.19
4.33	0.062	433	1.95	16.19
4.50	0.063	431	1.91	14.24
4.67	0.064	429	1.86	12.34
4.83	0.065	425	1.81	10.48
5.00	0.066	422	1.77	8.66
5.17	0.067	418	1.72	6.89
5.33	0.068	413	1.68	5.17
5.50	0.089	408	1.27	3.49
5.67	0.121	402	0.92	2.23
5.83	0.144	395	0.76	1.31
6.00	0.406	387	0.26	0.55
6.17	1.076	378	0.10	0.28
6.33	1.727	369	0.06	0.18
6.50	2.199	358	0.05	0.13
6.67	3.119	345	0.03	0.08
6.83	4.366	330	0.02	0.05
7.00	6.916	312	0.01	0.03
7.17	12.138	289	0.01	0.02
7.33	19.435	253	0.00	0.01
7.50	28.276	207	0.00	0.01
7.67	38.147	207	0.00	0.00
7.83	49.164	207	0.00	0.00
8.00	61.513	207	0.00	0.00
8.17				

			PC	C2-OD-APT	-PRE. i np					
[TITLE] ;;Project Title/Note OLIVE PARK APARTMENT		2 PRE-DEVE	LOPED							
[OPTIONS] ;; Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value CFS GREEN_ KINWAV DEPTH O NO NO									
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP RULE_STEP	08/28/ 00:00: 08/28/ 00:00: 05/23/ 23:00: 01/01 12/31 0 01:00: 00:15: 04:00: 0:01:0 00:00:	00 1951 00 2008 00 00 00 00 00								
I NERTI AL_DAMPI NG NORMAL_FLOW_LI MI TED FORCE_MAI N_EQUATI ON VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS [EVAPORATI ON]		L								
	rameters 06 0.0		0. 15 0. 17	7 0.19	0. 19 0. ²	18 0. 1!	5 0.11	0.08 C	0. 06	
;;	rmat	Interval S								
OCEANSIDE INT [SUBCATCHMENTS]	TENSI TY	1:00 1	. O TIME	ESERIES OC	EANSI DE-RAI	I N				
;;	in Gage	Out 	l et	Area	%Imperv	Width	%SI ope	CurbLen	SnowPack	
;Soil Type D DMA-2-D OCE ;Soil Type C	EANSI DE	POC	2-PRE	4.655	0	680	25	0		
	EANSI DE	POC	2-PRE	6. 29	46.3	1300	3	0		
	EANSIDE ype A, r		2-PRE ductivity (e	0.982 existing c	0 compacted ur	280 npaved ro	2.31 oad)	0		
DMA3-A OCE	EANSIDE		2-PRE	2. 12	5.9	350	40	0		
[SUBAREAS] ;;Subcatchment N-I	Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Route	eTo Pc	tRouted		
DMA2-C 0.0	 012 012 012	0. 15 0. 15 0. 15	0. 05 0. 05 0. 05	0. 1 0. 10 0. 10	25 25 25 25	OUTLI OUTLI OUTLI	ET			

OUTLET

DMA2-A

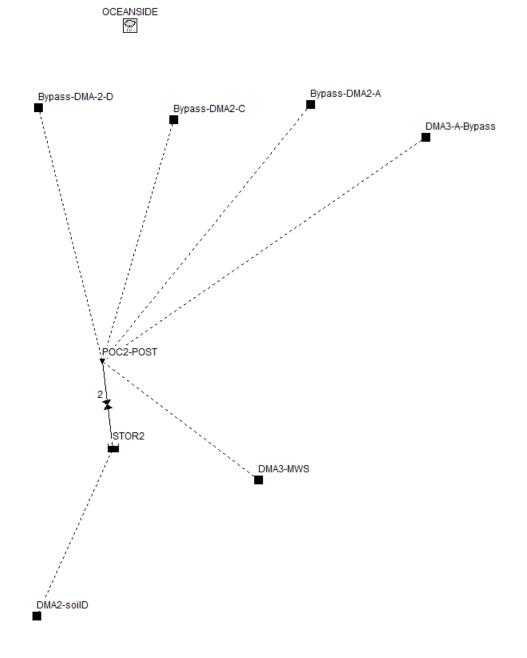
0.012 0.15 0.05

DMA3-A	0.012	0. 15	0.05	POC2-OD 0.10			OUTLET
[INFILTRATION] ;;Subcatchment ;;	Suction	Ksat	I MD				
	9 6	0. 025 0. 075 0. 3	0.33				
[OUTFALLS] ;;Name	Elevation	Туре	Stage [Data	Gated	Route	То
; ; POC2-PRE					NO		
[TIMESERIES] ;;Name ;;	Date	Time	Val ue				
;; OCEANSI DE-RAI N							
LINKS ALL [TAGS]							
NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES]							
LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES] ;; Node ;;	X-Coord		Y-Coord				
LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES] ;;Node	X-Coord 4462. 719 X-Coord		Y-Coord 4879. 386 Y-Coord				
LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES] ;; Node ;;	X-Coord 4462. 719 X-Coord X-Coord		Y-Coord 4879. 386 Y-Coord				
LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES] ;; Node ;;	X-Coord 4462. 719 X-Coord X-Coord		Y-Coord 4879. 386 Y-Coord				
LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 Units None [COORDINATES] ;; Node ;;	X-Coord 4462. 719 X-Coord X-Coord 2963. 183 2963. 183 4637. 767 6015. 439		Y-Coord 4879. 386 Y-Coord 				

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.014)

OLIVE PARK APARTMENTS - POC2 PRE-DEVELOPED

***** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * * * * * * * * * * * * * * * * Analysis Options Flow Units CFS Process Model s: Rainfall/Runoff YES RDI I NO Snowmelt NO Groundwater NO Flow Routing NO Water Quality NO Infiltration Method GREEN_AMPT Starting Date 08/28/1951 00:00:00 Ending Date 05/23/2008 23:00:00 Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00:15:00 Dry Time Step 04:00:00 ***** Vol ume Depth Runoff Quantity Continuity i nches acre-feet _ _ _ _ _ _ _ _____ Total Precipitation 790, 436 675.250 Evaporation Loss 36. 189 30.915 Infiltration Loss 538.854 460.329 Surface Runoff 222.798 190.331 Final Storage 0.011 0.009 Continuity Error (%) -0.938 **** Vol ume Vol ume Flow Routing Continuity acre-feet 10^6 gal ****** * * * * * * * * * * * * ----------Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 222.797 72.602 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 222.797 72.602 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.000 **** Subcatchment Runoff Summarv *****


Peak Runoff	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff	Preci p	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
			Page	1				

Runoff Coeff			POC2-OD-APT	-PRE.rpt				
Subcatchment CFS	in	in	in	in	in	in	in	10^6 gal
		0.00	21 //		0.00	142.04	140.04	17.0/
DMA-2-D 5.20 0.210	675.25	0.00	21.66	520.64	0.00	142.06	142.06	17.96
DMA2-C 7.31 0.450	675.25	0.00	50.78	327.58	270. 83	32.82	303.65	51.86
DMA2-A 0.86 0.012	675.25	0.00	0.66	666.83	0.00	8. 31	8.31	0. 22
DMA3-A 1.95 0.066	675.25	0.00	6. 31	626.12	34.92	9. 52	44.44	2.56

 Analysis begun on:
 Wed Aug
 7
 09: 18: 47
 2024

 Analysis ended on:
 Wed Aug
 7
 09: 19: 00
 2024

 Total elapsed time:
 00: 00: 13
 00: 00: 13
 00: 00: 13

[TITLE]		P0C2	-2-0D-AP	Γ-Post.inp				
;;Project Title/N OLIVE PARK APARTM		DEVELOPED						
[OPTIONS] ;;Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value CFS GREEN_AMPT KINWAVE DEPTH O NO NO							
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_DATE SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP RULE_STEP								
I NERTI AL_DAMPI NG NORMAL_FLOW_LI MI FORCE_MAI N_EQUATI VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS								
[EVAPORATION] ;;Data Source	Parameters							
MONTHLY	0.06 0.08 0. NO	11 0. 15 0. 17	0. 19	0.19 0.	18 0.1	5 0.11	0.08 C). 06
[RAI NGAGES] ; ; Name ; ;	Format Interv	al SCF Sour	се					
OCEANSI DE	INTENSITY 1:00	1.0 TIME	SERIES OC	EANSI DE-RA	I N			
[SUBCATCHMENTS] ;;Name ;;	Rain Gage	Outlet	Area	%Imperv	Width	%SI ope	CurbLen	SnowPack
;Soil Type D Bypass-DMA-2-D ;Soil Type C	OCEANSI DE	P0C2-P0ST	1. 544	0	236	25	0	
Bypass-DMA2-C ; Soil Type A	OCEANSI DE	POC2-POST	5.325	54.6	1300	1. 18	0	
Bypass-DMA2-A ; Soil Type A, Soil	Type A, reduced		xisting c				0	
51	OCEANSI DE OCEANSI DE	POC2-POST stor2	1. 669 2. 317	7.5 68	275 675	4. 28 1. 5	0 0	
;EVA to Flow base	ed MWS-bypass vau		0. 517			2.5	0	
[SUBAREAS] ;;Subcatchment			S-Perv	PctZero	e Rout	eTo Pc	tRouted	
;;								

			PC)C2-2-0D-AP	-Post.inp				
Bypass-DMA-2-D	0.012	0. 15	0.05	0. 1	25	OUTLET			
Bypass-DMA2-C	0.012	0. 15	0.05	0. 10	25	OUTLET			
Bypass-DMA2-A	0.012	0. 15	0.05	0.10	25	OUTLET			
DMA3-A-Bypass	0.012	0.15	0.05	0.10	25	OUTLET	100		
DMA2-soilD	0.012	0.15	0.05	0.10	25	I MPERVI OUS			
DMA3-MWS	0.012	0. 15	0.05	0.1	25	I MPERVI OUS	100		
[INFILTRATION]									
;;Subcatchment	Suction	Ksat	I MD						
;;									
Bypass-DMA-2-D	9	0. 025	0.33						
Bypass-DMA2-C	6	0.075	0.32						
Bypass-DMA2-A	1.5	0.3	0.3						
DMA3-A-Bypass	1.5	0.3	0.3						
DMA2-soilD	9	0.0175	0.25						
DMA3-MWS	9	0.0175	0.33						
[OUTFALLS]									
;;Name									
, , Nalle	Elevatior	п Туре	Stage Da	ita Ga	ted Route	То			
;;			Stage Da			To 			
	Elevatior 0	n Type FREE	Stage Da	ita Ga NC		To 			
;;			Stage Da			To 			
<pre>;; POC2-POST [STORAGE] ;; Name</pre>	0		Stage Da	NC	 		N/A	Fevap	Psi
POC2-POST [STORAGE]	0	FREE		NC			N/A	Fevap	Psi
<pre>;; POC2-POST [STORAGE] ;; Name</pre>	0	FREE		NC			N/A	Fevap	Psi
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;;	0 El ev.	FREE MaxDepth	I ni tDepth	NC Shape	Curve Name/P				Psi
<pre>;; POC2-POST [STORAGE] ;; Name</pre>	0 El ev.	FREE		NC			N/A 0	Fevap 0	Psi
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;; STOR2	0 El ev.	FREE MaxDepth	I ni tDepth	NC Shape	Curve Name/P				Psi
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;; STOR2 [OUTLETS]	0 El ev. 0	FREE MaxDepth 7.5	I ni tDepth	Shape TABULAR	Curve Name/P Stor2	arams	0	0	
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;; STOR2	0 El ev.	FREE MaxDepth 7.5	I ni tDepth	NC Shape	Curve Name/P	arams			Psi Gated
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;; STOR2 [OUTLETS]	0 El ev. 0	FREE MaxDepth 7.5	I ni tDepth	Shape TABULAR	Curve Name/P Stor2	arams	0	0	
;; POC2-POST [STORAGE] ;;Name Ksat IMD ;; STOR2 [OUTLETS]	0 El ev. 0	FREE MaxDepth 7.5	I ni tDepth	Shape TABULAR	Curve Name/P Stor2	arams QTabl	0 e/Qcoeff	0	

[CURVES]

; ; Name	Туре	X-Val ue	Y-Val ue
Outlet2	Rating	0.00	0.0000
Outlet2	0	0. 17	0.0112
Outlet2		0.33	0.0164
Outlet2		0.50	0.0204
Outlet2		0. 67	0.0236
Outlet2		0.83	0.0265
Outlet2		1.00	0.0291
Outlet2		1. 17	0.0315
Outlet2		1.33	0.0337
Outlet2		1.50	0.0358
Outlet2		1.67	0.0378
Outlet2		1.83	0.0396
Outlet2		2.00	0.0414
Outlet2		2.17	0.0431
Outlet2		2.33	0.0448
Outlet2		2.50	0.0463
Outlet2		2.67	0.0479
Outlet2		2.83	0.0494
Outlet2		3.00	0.0508
Outlet2		3.17	0.0547
Outlet2		3.33	0.0573
Outlet2		3.50	0.0595
Outlet2		3.67	0.0616
Outlet2		3.83	0.0635
Outlet2		4. 00 4. 17	0. 0653 0. 0671
Outlet2 Outlet2		4.17	0.0688
Outlet2		4. 33 4. 50	0.0704
Outlet2		4. 50	0.0720
Outlet2		4.83	0.0720
Outlet2		5.00	0.0751
0411012		0.00	0.0701

			P0C2-2-
Outlet2		5. 17	0.0765
Outlet2		5.33	0.0780
Outlet2		5.50 5.47	0.0794
Outlet2 Outlet2		5. 67 5. 83	0. 1186 0. 1398
Outlet2		6.00	0. 1558
Outlet2		6. 17	0. 6556
Outlet2		6.33	1. 4973
Outlet2		6.50	1. 9577
Outlet2		6.67	2.3241
Outlet2		6.83	2.6381
Outlet2		7.00	2.9173
Outlet2		7.17	6.3435
Outlet2		7.33	12. 3781
Outlet2		7.50	20.1080
Outlet2		7.67	29.3216
Outlet2 Outlet2		7.83 8.00	39. 1938 50. 7508
Outlet2		8.00 8.17	63. 3117
		0.17	05.5117
, Stor2	Storage	0.00	1244.4
Stor2	5	0. 17	1650.4
Stor2		0.33	1811.9
Stor2		0.50	1931.4
Stor2		0. 67	2028.1
Stor2		0.83	2109.9
Stor2		1.00	2180.6
Stor2		1.17	2242.5
Stor2		1.33	2297.3 2346.0
Stor2 Stor2		1. 50 1. 67	2340.0
Stor2		1.83	2428.0
Stor2		2.00	2462.3
Stor2		2.17	2492.6
Stor2		2.33	2519.4
Stor2		2.50	2542.6
Stor2		2.67	2562.7
Stor2		2.83	2579.6
Stor2		3.00	2593.6
Stor2		3.17	2604.6
Stor2 Stor2		3. 33 3. 50	2612.9 2618.3
Stor2		3. 67	2621.1
Stor2		3.83	2621.1
Stor2		4.00	2618.3
Stor2		4.17	2612.9
Stor2		4.33	2604.6
Stor2		4.50	2593.6
Stor2		4.67	2579.6
Stor2		4.83	2562.7
Stor2 Stor2		5. 00 5. 17	2542.6 2519.4
Stor2		5.33	2492.6
Stor2		5.50	2462.3
Stor2		5.67	2428.0
Stor2		5.83	2389.3
Stor2		6.00	2346.0
Stor2		6. 17	2297.3
Stor2		6.33	2242.5
Stor2		6.50	2180.6
Stor2		6.67	2109.9
Stor2		6.83	2028.1
Stor2		7. 00 7. 17	1931.4 1811 9
Stor2 Stor2		7. 17	1811. 9 1650. 4
Stor2		7.50	1244.4
Stor2		7.67	1244.4
Stor2		7.83	1244.4
Stor2		8.00	1244.4
Stor2		8. 17	1244.4

[TIMESERIES]
-------------	---

;;Name Date Time Value

OCEANSIDE-RAIN FILE "OCEANSIDE.prn"

[REPORT] ;;Reporting Options SUBCATCHMENTS ALL

SUBCATCHMENTS AL NODES ALL LINKS ALL

[TAGS]

[MAP]

DIMENSIONS 0.000 0.000 10000.000 10000.000 Units None

[COORDINATES]

; ; Node	X-Coord	Y-Coord
POC2-POST STOR2	4462. 719 4579. 832	4879. 386 3937. 575
[VERTI CES] ; ; Li nk ; ;	X-Coord	
[Polygons] ;;Subcatchment	X-Coord	Y-Coord
Bypass-DMA-2-D Bypass-DMA-2-D	3775.510	7611. 044 7611. 044
Bypass-DMA2-C	5228.091	7478.992
Bypass-DMA2-A DMA3-A-Bypass		7640. 845 7288. 732
DMA2-soi I D		2141. 454
DMA3-MWS	6144.366	3609. 155
[SYMBOLS]		
;;Gage	X-Coord	Y-Coord
; ; OCEANSI DE	4778. 107	8476. 331

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.014)

OLIVE PARK APARTMENTS - POC1 PRE-DEVELOPED

***** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options Flow Units CFS Process Model s: Rainfall/Runoff YES RDI I NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date 08/28/1951 00:00:00 Ending Date 05/23/2008 23:00:00 Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00:15:00 Dry Time Step 04:00:00 Routing Time Step 60.00 sec **** Volume Depth Runoff Quantity Continuity acre-feet i nches ***** _____ _____ Total Precipitation 675.250 677.838 Evaporation Loss 49.550 49.360 Infiltration Loss 342.646 341.337 Surface Runoff 292.490 291.373 Final Storage 0.019 0.018 Continuity Error (%) -1.013 ***** Vol ume Vol ume Flow Routing Continuity acre-feet 10^6 gal ****** _ _ _ _ _ _ _ _ _ _ -----Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 292.488 95.312 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 292.476 95.308 Flooding Loss 0.000 0.000 0.000 Evaporation Loss 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.002 0.001 Continuity Error (%) 0.004

Highest Flow Instability Indexes

All links are stable.

Routing Time Step Summary		
Minimum Time Step	:	60.00 sec
Average Time Step	:	60.00 sec
Maximum Time Step	:	60.00 sec

Percent	in Steady State	:	0.00
Average	Iterations per Step	:	1.00
Percent	Not Converging	:	0.00

Subcatchment Runoff Summary

Peak Runoff	Total	Total	Total	Total	Imperv	Perv	Total	Total
	Preci p	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment CFS	in	in	in	in	in	in	in	10^6 gal
Bypass-DMA-2-D 1.73 0.211	675.25	0.00	21. 12	519.76	0.00	142.48	142.48	5.97
Bypass-DMA2-C 6.22 0.512	675.25	0.00	58.98	277.33	318. 21	27.28	345.49	49.95
Bypass-DMA2-A 0.60 0.013	675.25	0.00	0. 65	666.20	0.00	9.06	9.06	0.17
DMA3-A-Bypass 1.49 0.076	675.25	0.00	8.00	617.08	44.18	7.37	51.55	2.34
DMA2-soi I D 2. 78 0. 682	675.25	0.00	79. 98	145.60	460. 72	64.47	460.72	28.99
DMA3-MWS 0. 62 0. 832	675.25	0.00	94.37	31.33	561.97	13.45	561.97	7.89

* * * * * * * * * * * * * * * * * * *

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Feet
POC2-POST	OUTFALL	0. 00	0. 00	0. 00	0 00: 00	0. 00
STOR2	STORAGE	0. 08	6. 68	6. 68	18857 17: 06	6. 64

Node Inflow Summary

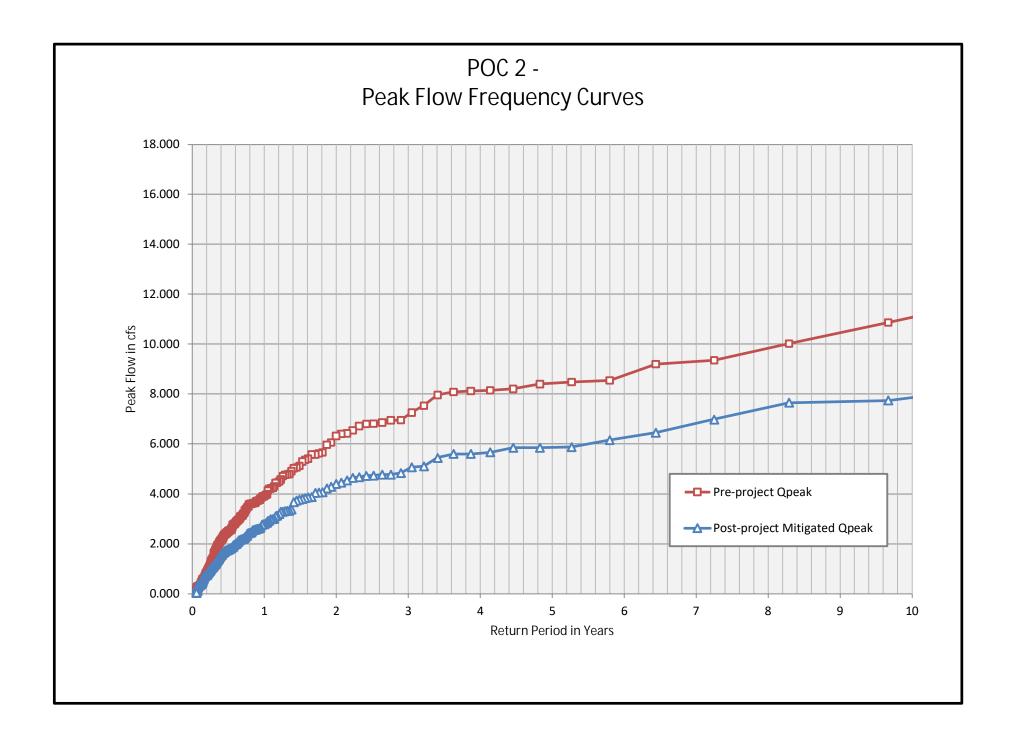
Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
POC2-POST	OUTFALL	10. 66	12. 95	18857 17: 01	66. 3	95. 3	0. 000
STOR2	STORAGE	2. 78	2. 78	18857 17: 01	29	29	0. 012

Node Flooding Summary

Storage Volume Summary

Storage Unit	Average Volume 1000 ft3	Pcnt	Evap Exfil Pcnt Pcnt Loss Loss	Maximur Volume 1000 ft:	e Pcr	nt C)ccur	f Max rence r:min	Maximum Outflow CFS
STOR2	0. 174	1	0 0	15. 940) 9	92 18	8857	17: 05	2. 35
**************************************	nary								
Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal					
POC2-POST	10.04	0. 07	12. 95	95. 300					
System	10. 04	0. 07	12. 95	95. 300					

Link	Туре	Maximum Flow CFS	Time of Max Occurrence days hr:mir	e Veloc	Max/ Full Flow	Max/ Full Depth			
2	DUMMY	2. 35	18857 17: ()6					


Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Thu Aug 8 15:51:30 2024 Analysis ended on: Thu Aug 8 15:52:02 2024 Total elapsed time: 00:00:32

Peak Flow Frequency Summary

Return Period	Pre-project Qpeak (cfs)	Post-project - Mitigated Q (cfs)
LF = 0.1xQ2	0.632	0.440
2-year	6.323	4.403
5-year	8.431	5.862
10-year	11.070	7.861

Pre-project Flow Pre-project % Post-project Post-project % Pre-project Hours Percentage Pass/Fail Interval (cfs) Time Exceeding Hours Time Exceeding 0.000 0.632 950 1.91E-03 1040 2.09E-03 109% Pass 1 0.737 816 1.64E-03 826 1.66E-03 101% Pass 2 0.841 738 1.48E-03 681 92% 1.37E-03 Pass 3 0.945 643 1.29E-03 557 1.12E-03 87% Pass 4 1.050 570 1.15E-03 485 9.75E-04 85% Pass 5 1.154 518 1.04E-03 416 8.36E-04 80% Pass 6 1.259 363 471 9.47E-04 7.30E-04 77% Pass 7 429 6.49E-04 1.363 8.63E-04 323 75% Pass 8 1.467 388 7.80E-04 285 5.73E-04 73% Pass 9 1.572 368 7.40E-04 255 5.13E-04 69% Pass 10 335 6.74E-04 222 1.676 4.46E-04 66% Pass 11 1.780 304 192 6.11E-04 3.86E-04 63% Pass 12 1.885 272 5.47E-04 171 3.44E-04 63% Pass 13 1.989 253 5.09E-04 151 3.04E-04 60% Pass 236 4.74E-04 57% 14 2.094 135 2.71E-04 Pass 15 2.198 220 4.42E-04 122 2.45E-04 55% Pass 16 2.302 206 4.14E-04 114 2.29E-04 55% Pass 3.84E-04 17 2.407 191 110 2.21E-04 58% Pass 100 59% 18 2.511 169 3.40E-04 2.01E-04 Pass 19 158 3.18E-04 89 1.79E-04 56% 2.615 Pass 20 2.720 149 3.00E-04 81 1.63E-04 54% Pass 21 2.824 137 2.75E-04 73 1.47E-04 53% Pass 22 2.929 126 2.53E-04 68 1.37E-04 54% Pass 23 3.033 120 2.41E-04 63 1.27E-04 53% Pass 24 3.137 114 2.29E-04 60 1.21E-04 53% Pass 25 108 2.17E-04 58 1.17E-04 3.242 54% Pass 3.346 26 105 2.11E-04 52 1.05E-04 50% Pass 27 3.450 101 2.03E-04 50 1.01E-04 50% Pass 28 3.555 97 1.95E-04 50 1.01E-04 52% Pass 29 3.659 86 1.73E-04 48 9.65E-05 56% Pass 30 3.764 82 45 9.05E-05 1.65E-04 55% Pass 31 3.868 73 1.47E-04 41 8.24E-05 56% Pass 32 3.972 69 1.39E-04 39 7.84E-05 57% Pass 33 4.077 1.33E-04 36 7.24E-05 55% 66 Pass 34 4.181 65 1.31E-04 36 7.24E-05 55% Pass 35 34 4.285 62 1.25E-04 6.84E-05 55% Pass 36 4.390 59 1.19E-04 34 6.84E-05 58% Pass 37 4.494 56 1.13E-04 31 6.23E-05 55% Pass 38 4.599 54 1.09E-04 30 6.03E-05 56% Pass 39 4.703 54 1.09E-04 28 5.63E-05 52% Pass 4.807 50 1.01E-04 4.42E-05 40 22 44% Pass 41 4.912 50 1.01E-04 21 4.22E-05 42% Pass 42 5.016 49 9.85E-05 21 4.22E-05 43% Pass 43 47 3.82E-05 40% 5.120 9.45E-05 19 Pass 45 44 5.225 9.05E-05 19 3.82E-05 42% Pass 45 5.329 42 8.44E-05 19 3.82E-05 45% Pass 46 5.434 40 8.04E-05 19 3.82E-05 48% Pass 47 5.538 40 8.04E-05 18 3.62E-05 45% Pass 48 5.642 37 7.44E-05 16 3.22E-05 43% Pass

The proposed BMP:

PASSED

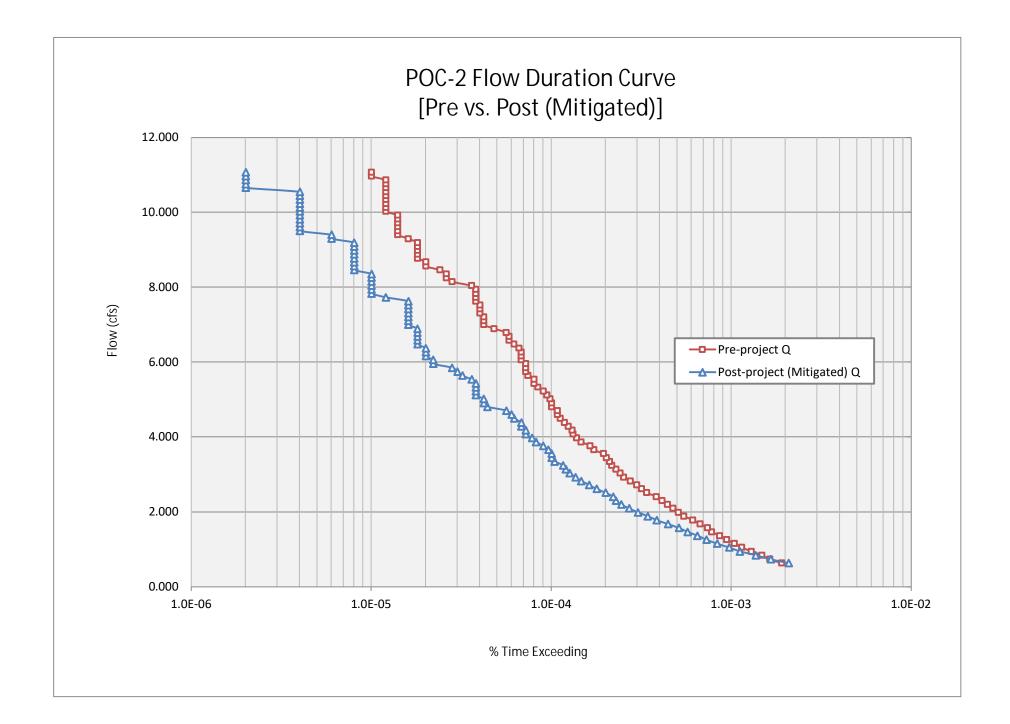
49

5.747

36

7.24E-05

15


3.02E-05

42%

Pass

OPA

Interval	Pre-project Flow (cfs)	Pre-project Hours	Pre-project % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
50	5.851	36	7.24E-05	14	2.81E-05	39%	Pass
51	5.955	36	7.24E-05	11	2.21E-05	31%	Pass
52	6.060	34	6.84E-05	11	2.21E-05	32%	Pass
53	6.164	34	6.84E-05	10	2.01E-05	29%	Pass
54	6.269	34	6.84E-05	10	2.01E-05	29%	Pass
55	6.373	33	6.63E-05	10	2.01E-05	30%	Pass
56	6.477	31	6.23E-05	9	1.81E-05	29%	Pass
57	6.582	29	5.83E-05	9	1.81E-05	31%	Pass
58	6.686	29	5.83E-05	9	1.81E-05	31%	Pass
59	6.790	28	5.63E-05	9	1.81E-05	32%	Pass
60	6.895	24	4.83E-05	9	1.81E-05	38%	Pass
61	6.999	21	4.22E-05	8	1.61E-05	38%	Pass
62	7.104	21	4.22E-05	8	1.61E-05	38%	Pass
63	7.208	21	4.22E-05	8	1.61E-05	38%	Pass
64	7.312	20	4.02E-05	8	1.61E-05	40%	Pass
65	7.417	20	4.02E-05	8	1.61E-05	40%	Pass
66	7.521	20	4.02E-05	8	1.61E-05	40%	Pass
67	7.625	19	3.82E-05	8	1.61E-05	42%	Pass
68	7.730	19	3.82E-05	6	1.21E-05	32%	Pass
69	7.834	19	3.82E-05	5	1.01E-05	26%	Pass
70	7.939	19	3.82E-05	5	1.01E-05	26%	Pass
70	8.043	19	3.62E-05	5	1.01E-05	28%	Pass
71	8.147	18	2.81E-05	5	1.01E-05	36%	
72		14		5			Pass
	8.252		2.61E-05		1.01E-05	38%	Pass
74	8.356	13	2.61E-05	5	1.01E-05	38%	Pass
75	8.460	12	2.41E-05	4	8.04E-06	33%	Pass
76	8.565	10	2.01E-05	4	8.04E-06	40%	Pass
77	8.669	10	2.01E-05	4	8.04E-06	40%	Pass
78	8.774	9	1.81E-05	4	8.04E-06	44%	Pass
79	8.878	9	1.81E-05	4	8.04E-06	44%	Pass
80	8.982	9	1.81E-05	4	8.04E-06	44%	Pass
81	9.087	9	1.81E-05	4	8.04E-06	44%	Pass
82	9.191	9	1.81E-05	4	8.04E-06	44%	Pass
83	9.295	8	1.61E-05	3	6.03E-06	38%	Pass
84	9.400	7	1.41E-05	3	6.03E-06	43%	Pass
85	9.504	7	1.41E-05	2	4.02E-06	29%	Pass
86	9.609	7	1.41E-05	2	4.02E-06	29%	Pass
87	9.713	7	1.41E-05	2	4.02E-06	29%	Pass
88	9.817	7	1.41E-05	2	4.02E-06	29%	Pass
89	9.922	7	1.41E-05	2	4.02E-06	29%	Pass
90	10.026	6	1.21E-05	2	4.02E-06	33%	Pass
91	10.130	6	1.21E-05	2	4.02E-06	33%	Pass
92	10.235	6	1.21E-05	2	4.02E-06	33%	Pass
93	10.339	6	1.21E-05	2	4.02E-06	33%	Pass
94	10.443	6	1.21E-05	2	4.02E-06	33%	Pass
95	10.548	6	1.21E-05	2	4.02E-06	33%	Pass
96	10.652	6	1.21E-05	1	2.01E-06	17%	Pass
97	10.757	6	1.21E-05	1	2.01E-06	17%	Pass
98	10.861	6	1.21E-05	1	2.01E-06	17%	Pass
99	10.965	5	1.01E-05	1	2.01E-06	20%	Pass
100	11.070	5	1.01E-05	1	2.01E-06	20%	Pass

Placeholder – **Vector Control Plan** (required when structural BMPs will drain in 96 hours) Replace placeholder with required documentation. Leave placeholder intact if not applicable. Not Applicable

ATTACHMENT 3 STRUCTURAL BMP MAINTENANCE INFORMATION

This is the cover sheet for Attachment 3.

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 3a	Structural BMP Maintenance Thresholds and Actions (Required)	☑Included See Structural BMP Maintenance Information Checklist.
Attachment 3b	Draft Maintenance Agreement (when applicable)	 ☑ Included ☑ Not Applicable

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Preliminary Design / Planning / CEQA level submittal:

• Attachment 3a must identify:

⊠Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual

• Attachment 3b is not required for preliminary design / planning / CEQA level submittal.

Final Design level submittal:

Attachment 3a must identify:

□ Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)

 \Box How to access the structural BMP(s) to inspect and perform maintenance

□ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)

 \Box Manufacturer and part number for proprietary parts of structural BMP(s) when applicable \boxtimes Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)

 \boxtimes Recommended equipment to perform maintenance

When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management Attachment 3b: For private entity operation and maintenance, Attachment 3b shall include a draft maintenance agreement in the local jurisdiction's standard format (PDP applicant to contact the City Engineer to obtain the current maintenance agreement forms).

Placeholder – Structural BMP Maintenance Information

Replace placeholder with required documentation.


Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- o Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
 - (5 minute average service time).
- o Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
 - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
 - (10-15 minute per cartridge average service time).
- o <u>Replace Drain Down Filter Media</u> average maintenance interval is 12 to 24 months.
 - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
 - (Service time varies).

System Diagram

Access to screening device, separation chamber and cartridge filter

Maintenance Procedures

Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Project Name								For Office Use Only			
Project Address (city) (Zip Code)									(Reviewed By)		
Owner / Management Company											
Contact Phone () -									(Date) Office personnel to count the left		
Inspector Name Date // Time									AM / PM		
Type of Inspection Routine Follow Up Complaint Storm S							Stor	m Event i	n Last 72-ho	ours? 🗌 No 🗌 Y	′es
Weather Condition Additional Notes											
			Ins	pectio	n Check	list					
Modular Wetland System Ty	pe (Curb,	Grate or L	IG Vault):			Size	e (22',	14' or e	etc.):		
Structural Integrity:								Yes	No	Comme	nts
Damage to pre-treatment access of pressure?	cover (manh	ole cover/gr	ate) or cannot be	opened	using norma	al lifting					
Damage to discharge chamber act pressure?	cess cover (manhole co	ver/grate) or cann	ot be op	ened using	normal liftin	ıg				
Does the MWS unit show signs of	structural c	leterioration	(cracks in the wa	ll, damag	e to frame)	?					
Is the inlet/outlet pipe or drain dow	n pipe dam	aged or othe	rwise not functior	ning prop	erly?						
Working Condition:											
Is there evidence of illicit discharge unit?	e or excessi	ve oil, greas	e, or other autom	obile fluid	ds entering a	and cloggin	ig the				
Is there standing water in inapprop	oriate areas	after a dry p	eriod?								
Is the filter insert (if applicable) at o	capacity and	d/or is there	an accumulation of	of debris/	trash on the	shelf syste	em?				
Does the depth of sediment/trash/ specify which one in the comments							f yes,				Depth:
Does the cartridge filter media nee	ed replacem	ent in pre-tre	atment chamber	and/or di	ischarge cha	amber?				Chamber:	
Any signs of improper functioning	in the discha	arge chambe	er? Note issues in	n comme	nts section.						
Other Inspection Items:											
Is there an accumulation of sedime	ent/trash/de	bris in the w	etland media (if a	pplicable)?						
Is it evident that the plants are alive and healthy (if applicable)? Please note Plant Information below.											
Is there a septic or foul odor comir	ng from insid	le the syster	n?								
Waste:	Yes No Recommended Maintenance					Plant Inform	nation				
Sediment / Silt / Clay			No	Cleaning	Needed					Damage to Plants	
Trash / Bags / Bottles	ash / Bags / Bottles Schedule Maintenance as Planned							Plant Replacement			
Green Waste / Leaves / Foliage	Breen Waste / Leaves / Foliage Needs Immediate Maintenance						Plant Trimming				

Additional Notes:

Maintenance Report

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Cleaning and Maintenance Report Modular Wetlands System

Project N	lame						For C	Office Use Only
Project A	ddress				(city)	(Zip Code)	(Revie	wed By)
Owner / Management Company							(Date)	
Contact				Phone ()	_	Office	e personnel to complete section to the left.
Inspecto	7 Name			Date	/	_/	Time	AM / PM
Type of I	nspection 🗌 Routir	ne 🗌 Follow Up	Complaint	Storm		Storm Event in	Last 72-hours?] No 🗌 Yes
Weather	Condition			Additiona	al Notes			
Site Map #				Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Operational Per Manufactures' Specifications (If not, why?)
	Lat: Long:	MWS Catch Basins						
	MWS Sedimentation Basin							
	Media Filter Condition							
		- Plant Condition						
		Drain Down Media Condition						
	Discharge Chamber Condition Drain Down Pipe Condition							
		Inlet and Outlet Pipe Condition						
Commer	its:							

ATTACHMENT 3b Maintenance Information for Underground Detention Basins (UDB-1 & UDB-2)

Maintenance should be conducted during dry weather when no flow is entering the system. Confined space entry is usually required to maintain the Underground Detention Basins. Only personnel that are OSHA Confined Space Entry trained and certified may enter underground structures. Once safety measures such as traffic control have been deployed, the access covers may be removed and the following activities may be conducted to complete maintenance. All access covers will be securely replaced following inspection and/or maintenance

Inspection Activity	Maintenance Indicator(s)	Field Measurement	Minimum Frequency of Inspection	Maintenance Activity	Minimum Maintenance Frequency
Inspect vault twice during the first wet season of operation	N/A	Visual inspection	Post-construction	Set cleaning frequency	Post-construction
Inspect for cracks and inlet/outlet area erosion Cracks or erosion present		Visual inspection	Semi-annually	Repair cracks/erosion. Consult engineers if immediate solution is not evident.	As needed
Inspect for litter, oil and grease from inlet/outlet areas	Litter, oil or grease present	Visual inspection	Beginning & end of rainy season	Remove litter, oil and grease	Semi-annually
Inspect for accumulated sediment	Sediment on the system floor exceeds 6"	Tape measure	Annually, prior to start of wet season	Remove sediment with vacuum truck. No jetting permitted to loosen sediment.	Bi-annually or as needed
Inspect for trash and debris	Trash and debris present	Visual inspection	Semi-annually	Remove trash and debris (e.g. via vacuum truck)	As needed
Inspect system for movement of modules	Spacing of modules exceeds ¾″	Tape measure	Semi-annually	Consult engineers	As needed
Inspect inlet and outlet for obstruction(s)	Obstruction is present	Visual inspection	Semi-annually	Remove obstruction	Semi-annually or as needed
Report drawdown rate	Drawdown rate exceeds 96 hours	Recording Device (pen & paper, voice recorder, etc.)	96 hours after wet weather	Remove any obstructions. Consult engineers if immediate solution not evident.	As needed

Contech® CMP Detention Inspection and Maintenance Guide

Underground stormwater detention and infiltration systems must be inspected and maintained at regular intervals for purposes of performance and longevity.

Inspection

Inspection is the key to effective maintenance of CMP detention systems and is easily performed. Contech recommends ongoing, quarterly inspections. The rate at which the system collects pollutants will depend more on site specific activities rather than the size or configuration of the system.

Inspections should be performed more often in equipment washdown areas, in climates where sanding and/or salting operations take place, and in other various instances in which one would expect higher accumulations of sediment or abrasive/corrosive conditions. A record of each inspection is to be maintained for the life of the system.

Maintenance

CMP detention systems should be cleaned when an inspection reveals accumulated sediment or trash is clogging the discharge orifice.

Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities. Contech suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orifice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.

Systems are to be rinsed, including above the spring line, annually soon after the spring thaw, and after any additional use of salting agents, as part of the maintenance program for all systems where salting agents may accumulate inside the pipe.

Maintaining an underground detention or infiltration system is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the cleanout during dry weather.

The foregoing inspection and maintenance efforts help ensure underground pipe systems used for stormwater storage continue to function as intended by identifying recommended regular inspection and maintenance practices. Inspection and maintenance related to the structural integrity of the pipe or the soundness of pipe joint connections is beyond the scope of this guide.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER. EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AWAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION

© 2017 Contech Engineered Solutions ILC

All rights reserved. Printed in USA.

CMP MAINTENANCE GUIDE 2/17 PDF

Contech[®] CMP Detention & Infiltration Maintenance Guide

Contech® CMP Detention

Underground stormwater detention/infiltration and retention systems must be properly inspected and maintained at regular intervals for purposes of performance and longevity.

Inspection

Inspection is the key to effective maintenance and is easily performed. Contech recommends ongoing quarterly inspections. The rate at which the system collects pollutants will depend more heavily on site specific activities rather than the size or configuration of the system. Inspections should be performed more often in equipment washdown areas, in climates where sanding and/or salting operations take place, and in various other instances in which higher accumulations of sediment or abrasive / corrosive conditions may exist. Inspection and maintenance records should be maintained for the life of the system.

Maintenance

Systems should be cleaned when inspection reveals that accumulated sediment or trash is clogging the discharge orifice. Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities. Contech suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orifice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.

If inspectors observe any salt or other corrosive substance concentrations or accumulations in the system, or if salt or other corrosive substance is used or prevalent near the system, it is recommended to rinse the system above the spring line annually between late spring and early summer as part of the maintenance program. This maintenance is required for infiltration systems. Excessive salting should be avoided and pavement should be sealed to reduce salt infiltration from the surface.

Maintaining an underground detention or retention system is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the cleanout during dry weather.

The foregoing inspection and maintenance efforts help ensure underground pipe systems used for stormwater storage continue to function as intended by identifying recommended regular inspection and maintenance practices. Inspection and maintenance related to the structural integrity of the pipe or the soundness of pipe joint connections is beyond the scope of this guide.

Inspection & Maintenance Log Sample Template

	" Diameter	System	Location: Anywhere, USA				
Date	Depth of Sediment	Accumulated Trash	Maintenance Performed	Maintenance Personnel	Comments		
12/01/10	2″	None	Removed Sediment	B. Johnson	Installed		
03/01/11	1"	Some	Removed Sediment and Trash	B. Johnson	Swept parking lot		
06/01/11	0″	None	None				
09/01/11	0"	Heavy	Removed Trash	S. Riley			
12/01/11	1″	None	Removed Sediment	S. Riley			
04/01/12	0″	None	None	S. Riley			
04/15/01	04/15/01 2		Removed Sediment and Trash	ACE Environmental Services			
			0				
	6						
	フ						

Support

Drawings and specifications are available at www.ContechES.com. Site-specific support is available from our engineers.

©2016 Contech Engineered Solutions LLC

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treatment products. For information, visit www.ContechES.com or call 800.338.1122.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

CMP[®] Maintenance Manual

CMP[®] Inspection & Maintenance

Inspection and maintenance of the CMP underground detention, retention, or infiltration system is vital for the performance and life cycle of the stormwater management system. All local, state, and federal permits and regulations must be followed for system compliance. Manway access locations are provided on each system for ease of ingress and egress for routine inspection and maintenance activities. Stormwater regulations require that most BMPs be inspected and maintained to ensure they are operating as designed and providing protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess the site specific conditions. Inspection after the first significant rainfall event and at semiannual intervals is typical. This is recommended because pollutant loading and pollutant characteristics can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding on roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years to ensure appropriate maintenance is provided. Without appropriate maintenance a BMP can exceed its storage capacity, become blocked, or damaged, which can negatively affect its continued performance.

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the underground detention, retention, or infiltration system:

- Contech Inspection and Maintenance Report Form
- Flashlight
- Manhole hook or appropriate tools to access hatches and covers
- Appropriate traffic control signage and procedures
- Measuring pole and/or tape measure
- Protective clothing and eye protection
- Note: Entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections of the system.

Inspection Steps

The key to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the CMP underground detention, retention, or infiltration system are quick and easy. As mentioned above, the first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long term inspection and maintenance interval requirements.

The CMP underground detention, retention, or infiltration system can be inspected though visual observation without entry into the system. All necessary pre-inspection steps must be carried out before inspection occurs, especially traffic control and other safety measures to protect the inspector and nearby pedestrians from any dangers associated with an open access hatch or manhole. Once these access covers have been safely opened, the inspection process can proceed:

- Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other information (see inspection form).
- Observe the upstream drainage area and look for sources of pollution, sediment, trash and debris.
- Observe the inside of the system through the access manholes. If minimal light is available and vision into the unit is impaired, utilize a flashlight to see inside the system and all of its modules.
- Look for any out of the ordinary obstructions in the inflow and outflow pipes. Check pipes for movement or leakage. Write down any observations on the inspection form.
- Observe any movement of modules.
- Observe concrete for cracks and signs of deterioration.
- In detention and retention systems inspect for any signs of leakage.
- In infiltration systems inspect for any signs of blockage or reasons that the soils are not infiltrating.
- Through observation and/or digital photographs, estimate the amount of floatable debris accumulated in the system. Record this information on the inspection form. Next, utilizing a tape measure or measuring stick, estimate the amount of sediment accumulated in the system. Sediment depth may vary throughout the system, depending on the flow path. Record this depth on the inspection form.
- Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

- Damaged inlet and outlet pipes.
- Obstructions in the system or its inlet or outlet.
- Excessive accumulation of floatables.
- Excessive accumulation of sediment of more than 6" in depth.
- Damaged joint sealant.

Maintenance Equipment

While maintenance can be done fully by hand it is recommended that a vacuum truck be utilized to minimize time requirements required to maintain the CMP underground detention, retention, or infiltration system:

- Contech Inspection and Maintenance Report Form
- Flashlight
- Manhole hook or appropriate tools to access hatches and covers
- Appropriate traffic control signage and procedures

- Measuring pole and/or tape measure
- Protective clothing and eye protection
- Vacuum truck
- Trash can
- Pressure washer
- Note: Entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections of the system. Entry into the system will be required if maintenance is required.

Maintenance Procedures

It is recommended that maintenance occurs at least three days after the most recent rain event to allow for drain down of the system and any upstream detention systems designed to drain down over an extended period of time. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Once all safety measures have been set up, cleaning of the system can proceed as follows:

• Using an extension on a boom on the vacuum truck, position the hose over the opened manway and lower into the system. Remove all floating debris, standing water (as needed) and sediment from the system. A power washer can be used to assist if sediments have become hardened and stuck to the walls and columns. Repeat the same procedure at each manway until the system has been fully maintained. Be sure not to pressure wash the infiltration area as it may scour. Pressure washing is acceptable for concrete base modules and base slabs only; do not use on systems with gravel bedding. Do not vacuum up the infiltration stone or wash accumulated solids into the stone via pressure washing.

If maintenance requires entry into the vault:

- Following rules for confined space entry use a gas meter to detect the presence of any hazardous gases. If hazardous gases are present do not enter the vault. Follow appropriate confined space procedures, such as utilizing venting system, to address the hazard. Once it is determined to be safe, enter utilizing appropriate entry equipment such as a ladder and tripod with harness.
- The last step is to close up and replace all manhole covers and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.

© 2022 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY

800-338-1122

www.conteches.com

ALL RIGHTS RESERVED. PRINTED IN THE USA.

CONTECH ENGINEERED SOLUTIONS LLC PROVIDES SITE SOLUTIONS FOR THE CIVIL ENGINEERING INDUSTRY. CONTECH'S PORTFOLIO INCLUDES BRIDGES, DRAINAGE, SANITARY SEWER, STORMWATER AND EARTH STABILIZATION PRODUCTS. FOR INFORMATION ON OTHER CONTECH DIVISION OFFERINGS, VISIT CONTECHES.COM OR CALL 800-338-1122.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

SUPPORT

DRAWINGS AND SPECIFICATIONS ARE AVAILABLE AT WWW.CONTECHES.COM

CMP Maintenance Manual 08/22

ATTACHMENT 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit

Details and specifications for construction of structural BMP(s)

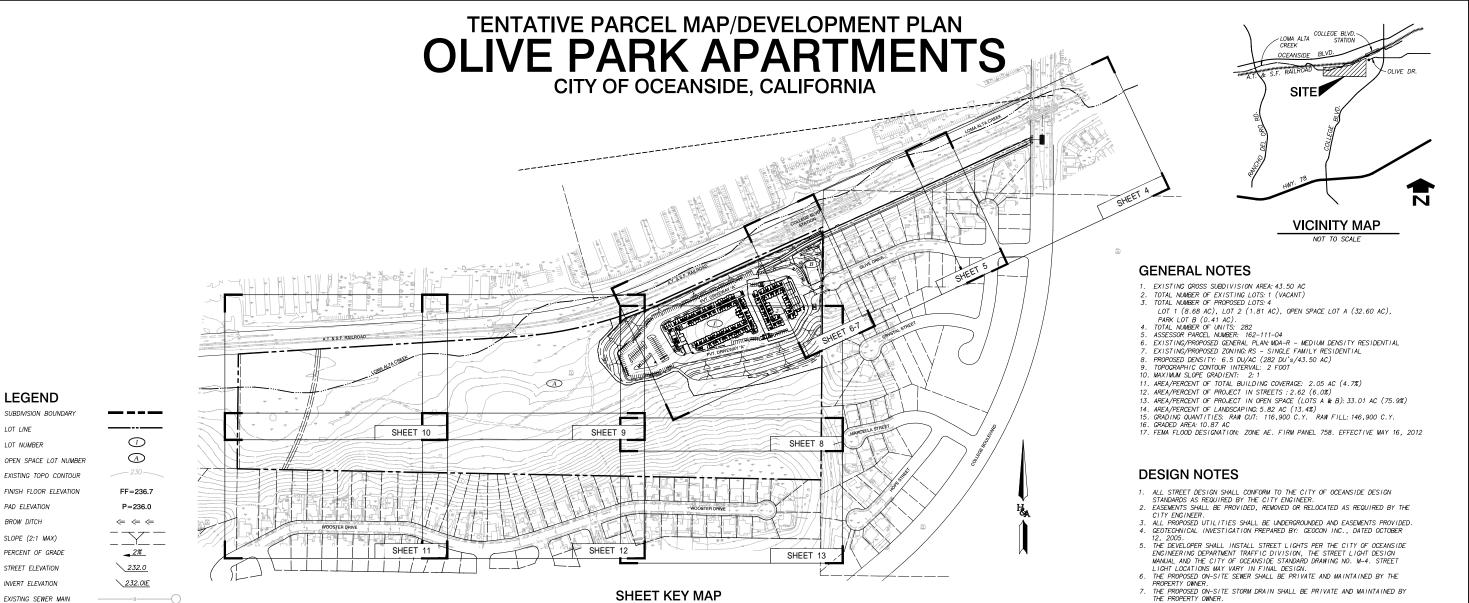
 \boxtimes Signage indicating the location and boundary of structural BMP(s) as required by the City Engineer

 \boxtimes How to access the structural BMP(s) to inspect and perform maintenance

 \boxtimes Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)

 \boxtimes Manufacturer and part number for proprietary parts of structural BMP(s) when applicable \boxtimes Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)

Recommended equipment to perform maintenance


 ☑ When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
 ☑ Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)

 $\boxtimes \mathsf{All}\ \mathsf{BMPs}\ \mathsf{must}\ \mathsf{be}\ \mathsf{fully}\ \mathsf{dimensioned}\ \mathsf{on}\ \mathsf{the}\ \mathsf{plans}$

⊠When propritery BMPs are used, site specific cross section with outflow, inflow and model number shall be provided. Broucher photocopies are not allowed.

Section 14

BASIS OF BEARINGS

THE BASIS OF BEARINGS IS CALIFORNIA STATE PLANE COORDINATE SYSTEM NAD 83, ZONE 6, EPOCH 2011.00 AND IS BASED ON GRID BEARING BETWEEN CITY OF OCEANSIDE GEODEDIC CONTROL NETWORK STATIONS NO. 1026 AND NO. 1036 PER RECORD OF SURVEY NO. 21787. I.E. NB2'00'07'W

TOPOGRAPHY SOURCE

TOPOGRAPHY USED FOR THIS TENTATIVE PARCEL MAP WAS FLOWN ON 1/15/2021 BY PHOTO GEODETIC CORPORATION, CONTROL PROVIDED BY HUNSAKER & ASSOCIATES SAN DIEGO, INC. A TIELD VERHICATION WAS PERFORMED BY HUNSAKER & ASSOCIATES SAN DIEGO, INC. ON 8/7/2024 WHICH VALIDATED THE DATUM AND CONTRINED THE ACCURACY OF THE TOPOGRAPHIC MAPPING PROVIDED PER SAID FLOWFI. NO SUBSTANTIAL VARIATIONS OR CHANGES IN FIELD CONDITIONS WERE WITNESSED DURING THE PERFORMANCE OF THE FIELD VERHICATION

PARKING SUMMARY

DEVELOPMENT STANDARD REGULATION PER OZO* & SDBL** PROPOSED PROJEC PROJECT PARKING (OZO 3103 & SDBL 65915(P)(3)): NO PARKING REQUIRED WHEN LOCATED WITHIN 1/2 MILE OF A MAJOR TRANSIT STOP 346 PARKING SPACES NO PARKING MINIMUM COMPLIES WITH OZO & SDBL 205 SURFACE SPACES® 141 PODIUM SPACES® REQUIRED COMPLIES WITH OZO AND WITH CAL-GREEN BUILDING CODE: 25% EVR (READY) OZO EV PARKING BASED ON "TOTAL 346 SPACES PROVIDED: REQUIRED PARKING SPACES" NO PARKING IS REQUIRED PER SDBL 65915(P)(3) WHEN LOCATED 25% EVR (READY) - 87 10% EVC (CAPABLE) - 35 ELECTRIC VEHICLE PARKING (OZO 3048) 10% EVC (CAPABIE) 5% EVI (INSTALLED) - 18 WITH IN 1/2 MILE OF A MAJOR TRANSIT STOP 5% EVI (INSTALLED) *OCEANSIDE ZONING ORDINANCE **STATE DENSITY BONUS LAW SURFACE PARKING INCLUDES 8 ACCESSIBLE SPACES PODIUM PARKING INCLUDES 6 ACCESSIBLE SPACES

BENCHMARK

CITY OF OCEANSIDE ROS 21787 POINT 1036. 2.5" BRASS DISK IN CURB INLET WITH TRIANGLE/PUNCH STAMPED "L.S. 7854", FLUSH. EL. 234.47 NAVD88

NOT TO SCALE

LEGAL DESCRIPTION

SEE SHEET 3

EASEMENTS

SEE SHEET 3

SAN DIEGO. CA 92126

OWNER

APPLICANT

OCEANSIDE TROLLEY PLACE, LLC 8495 REDWOOD CREEK LN

CAPSTONE EQUITIES 5455 WILSHIRE BLVD. SUITE 1012 LOS ANGELES, CA 90036 (310) 666-6860

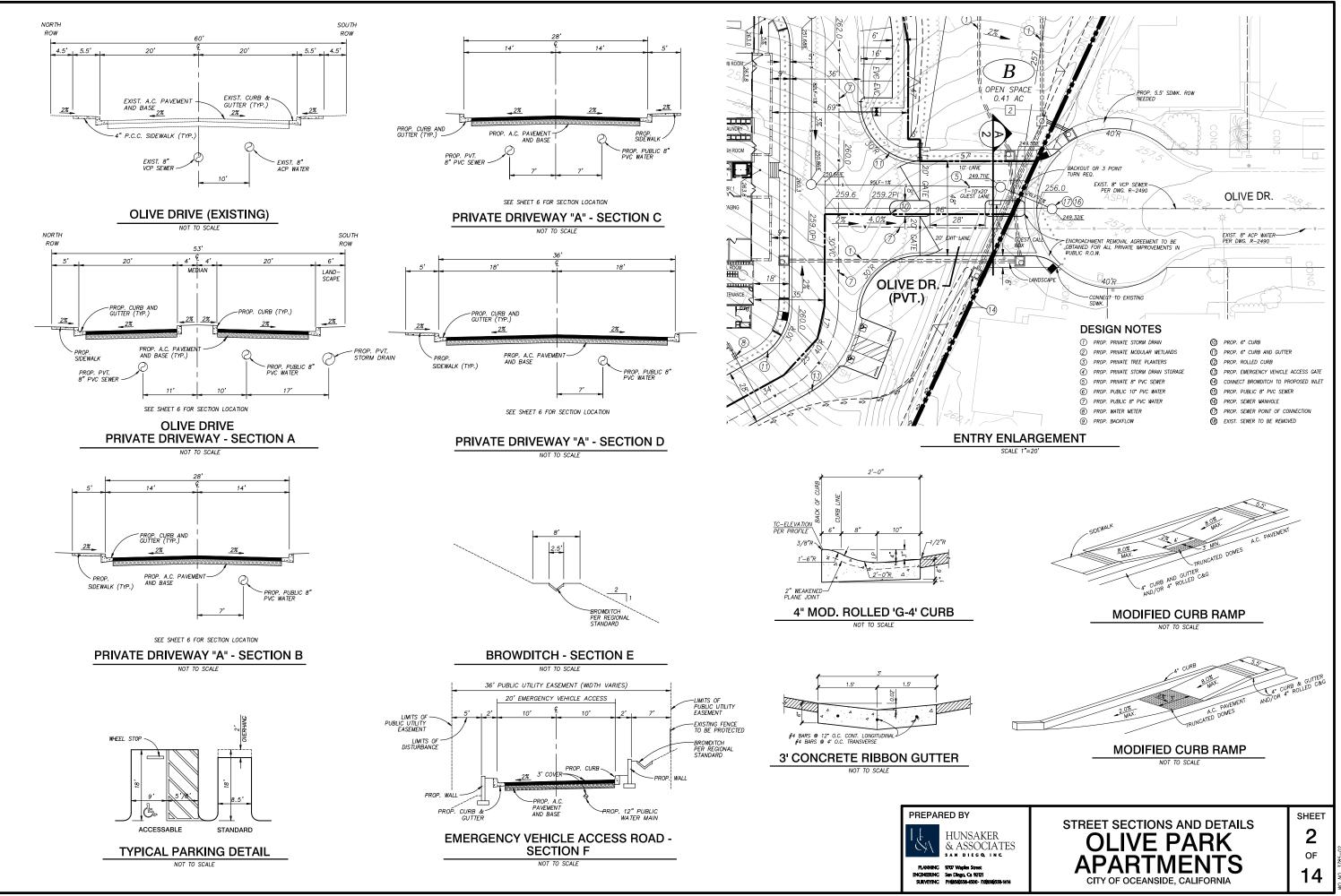
CIVIL ENGINEER

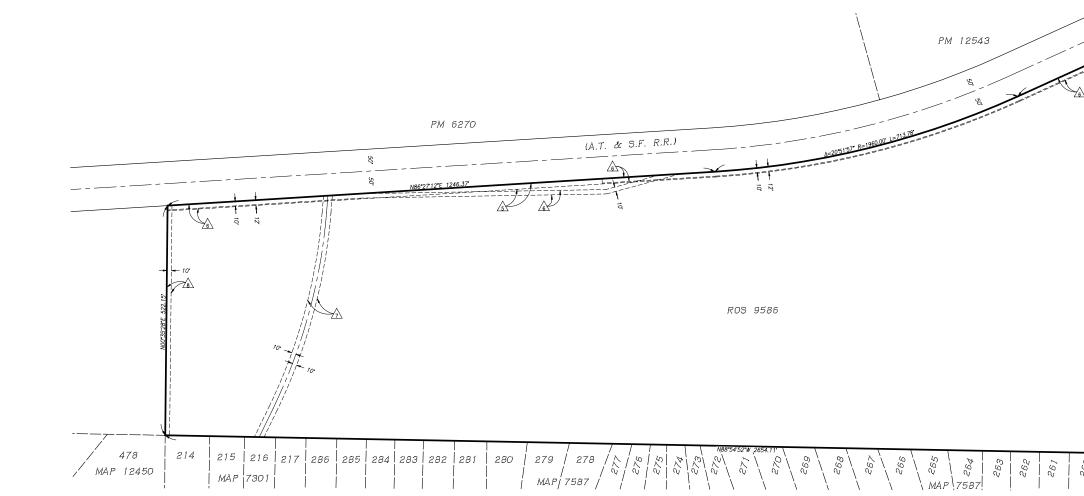
HUNSAKER & ASSOCIATES, SAN DIEGO, INC 9707 WAPLES STREET SAN DIEGO. CA 92121 (858) 558-4500

ALISA S. VIALPANDO R.C.E. 47945

DATE

LOT LINE LOT NUMBER OPEN SPACE LOT NUMBER EXISTING TOPO CONTOUR FINISH FLOOR ELEVATION PAD ELEVATION BROW DITCH SLOPE (2:1 MAX) PERCENT OF GRADE STREET ELEVATION INVERT FLEVATION EXISTING SEWER MAIN PROPOSED SEWER MAIN EXISTING WATER MAIN _____ W ____ PROPOSED WATER MAIN — — w — EXISTING FIRE HYDRANT bed PROPOSED FIRE HYDRANT EXISTING STORM DRAIN PROPOSED STORM DRAIN STREET LIGHT ~ ∽ DOWNSPOLIT LOCATION * RETAINING WALL _ _ _ _ _ TOP OF WALL ΤW FINISHED SURFACE FS ELECTRIC VEHICLE CAPABLE EVC ELECTRIC VEHICLE READY EVR EVI ELECTRIC VEHICLE INSTALLED 232 FEMA WATER LEVEL EXISTING EASEMENT \triangle 1 PROPOSED EASEMENT CURB & GUTTER LINE EXISTING SEWER MAIN


-


- PROPERTY OWNER. 7. THE PROPOSED ON-SITE STORM DRAIN SHALL BE PRIVATE AND MAINTAINED BY THE PROPOSED WATER SHALL BE INSTALLED PER CITY OF OCEANSIDE STANDARDS. ALL ON-SITE WATER IS PUBLIC. 9. FINISH GRADES ARE APPROXIMATE AND SUBJECT TO CHANGE IN FINAL DESIGN. 10. ALL FUTURE DRIVENYS AND COUNTRIC DESIGN SHALL BE DESIGNED IN COMPLIANCE WITH THE CITY OF OCEANSIDE ENGINEERS DESIGN STANDARDS. 11. THE PRESENT OR FUTURE ONWER/DEVELOPER SHALL INDEMNIFY AND SAVE CITY OF OCCANSIDE, ITS OFFICERS, ACENTS, AND EMPLOYEE HARWLESS FROM ANY AND ALL LIABILITIES, CLAIMS ARISING FROM ANY FLOODING THAT OCCURS ON THE SITE AND FLOODING THAT WAYED DISCHARGED FROM THIS SITE AND SITE AND PLODING THAT MAYED ON THAT OFFICERS ON THIS SITE AND FLOODING THAT MAYBE DISCHARGED FROM THIS SITE INTO ADJACENT PROPERTIES. 12. ALL SIDEWALK AND PATHWAYS SHALL BE ADA COMPLIANT. 13. DATUM: NAVD 88

SHEET INDEX

- SHEET 1 TITLE SHEET
- SHEET 2 STREET SECTIONS & DETAILS
- **BOUNDARY & ENCUMBRANCES** SHEET 3
- SHEET 4 13 TPM / DEVELOPMENT PLAN
- SHEET 14 PROPOSED PARCEL MAP

PREPAR	ED BY	REVISION			
1 t	HUNSAKER & ASSOCIATES		03/15/24 08/08/24	H&A H&A	
	9707 Waples Suset San Diego, Ca 92121 IH-(858)558-4500- FX(858)558-1414				
TITLE SHEET OLIVE PARK APARTMENTS CITY OF OCEANSIDE, CALIFORNIA				SHEET 1 0f 13	

TITLE REFERENCE

THIS SURVEY IS BASED ON THE COMMITMENT FOR TITLE INSURANCE ISSUED BY TICOR TITLE COMPANY AS ORDER NO. 00894200-995-CC1, EFFECTIVE DATE OF FEBRUARY 27, 2024; AMENDED MARCH 4, 2024.

LEGAL DESCRIPTION

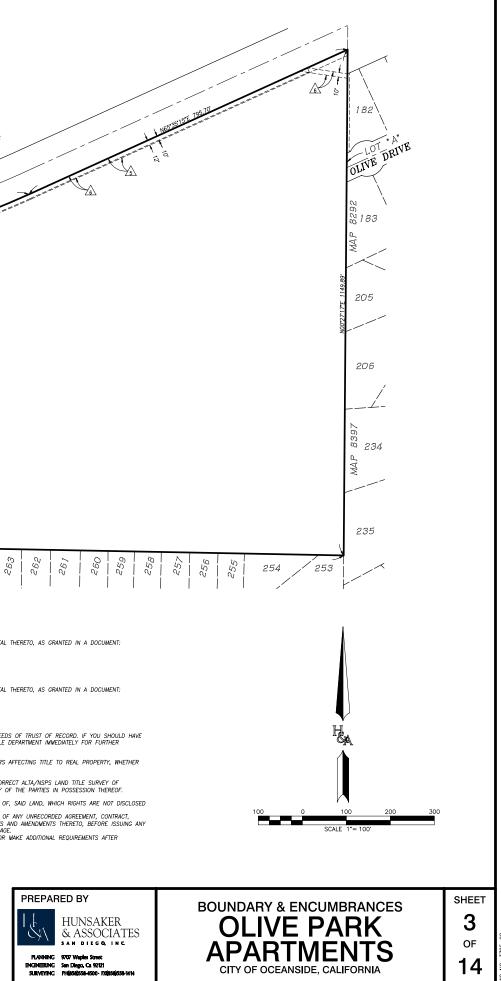
THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS:

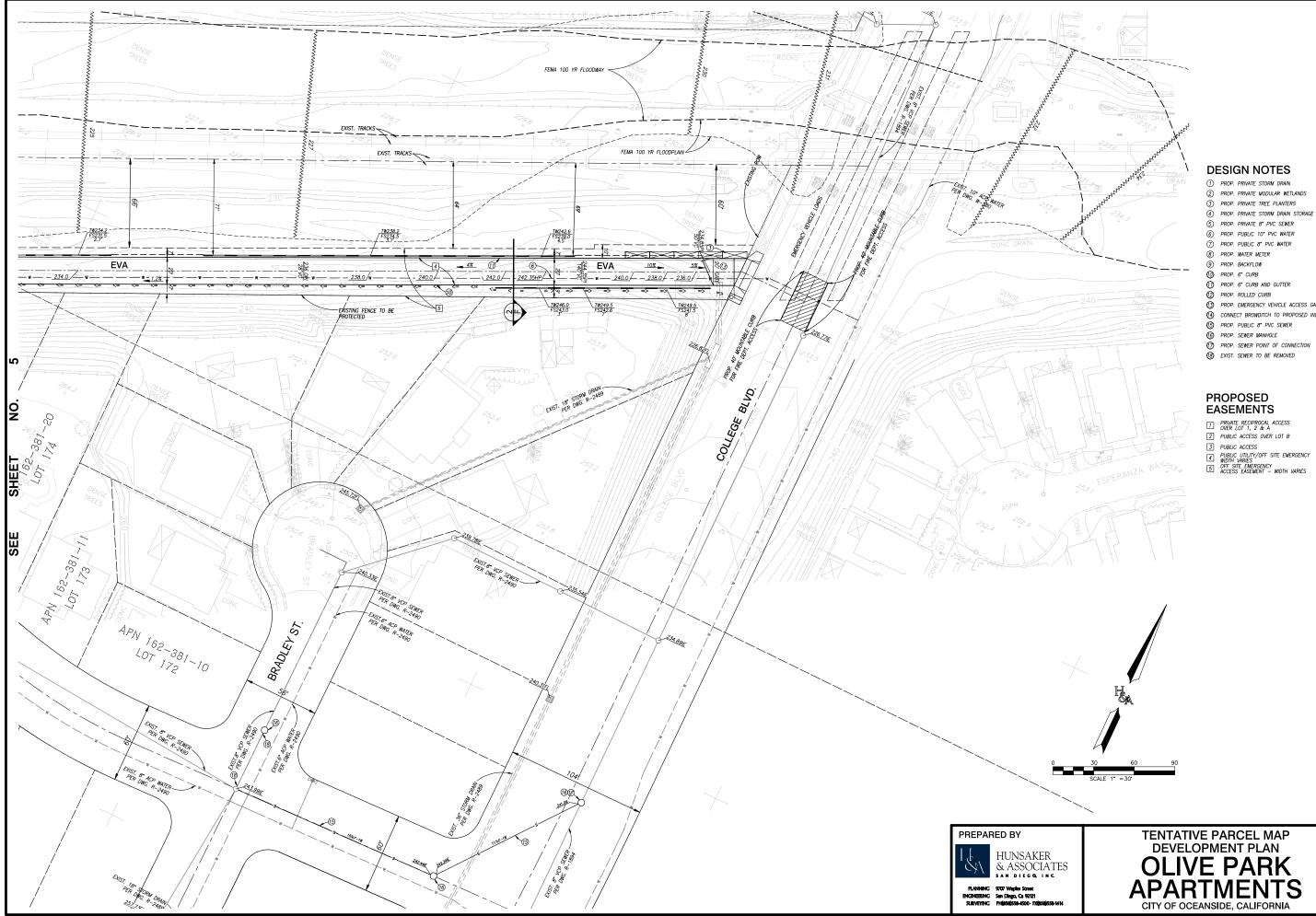
ALL THAT PORTION OF THE NORTH ONE-HALF OF THE SOUTHWEST QUARTER OF SECTION 22, TOWNSHIP 11 SOUTH, RANGE 4 WEST, SAN BERNARDINO MERIDAN, IN THE CITY OF OCCANSIDE, COUNTY OF SAN DIEGO, STATE OF CALIFORMA, ACCORDING TO UNITED STATES COVERNMENT SURVEY APPROVED DECEMBER 27, 1870, LING SOUTHEASTERY AND SOUTHEASTERY OF THE SOUTHERY AND SOUTHEASTERY LINES OF THAT CERTAIN 100.00 FOOT RIGHT OF WAY AS DESCRIBED IN DEED TO THE CALIFORMA CENTRAL RALWARY, RECORDED SEPTEMBER 22, 1887, IN BOOK 97, PAGE 241, OF DEEDS.

ASSESSOR PARCEL NO.

162-111-04

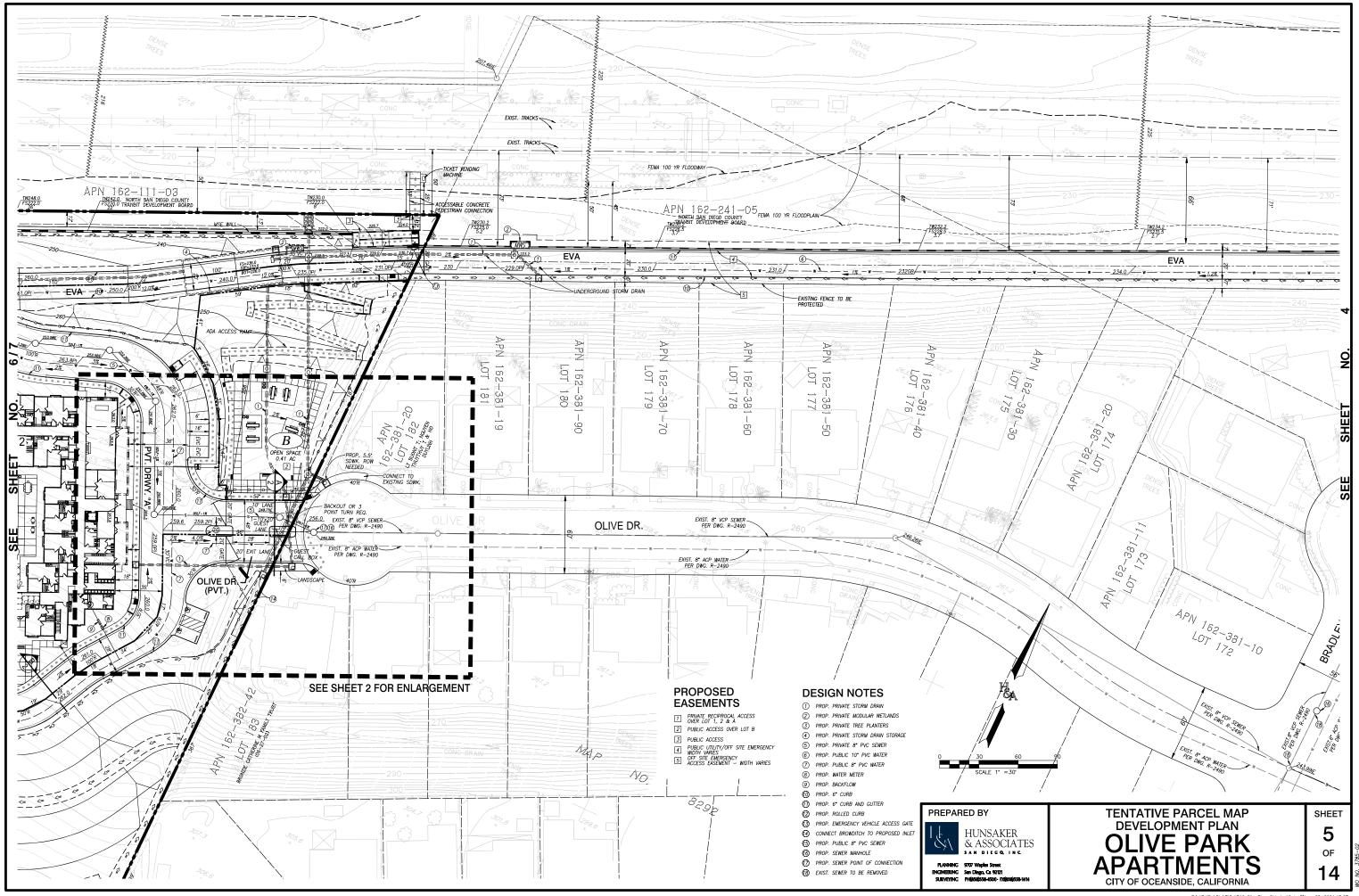
TITLE REPORT EXCEPTIONS

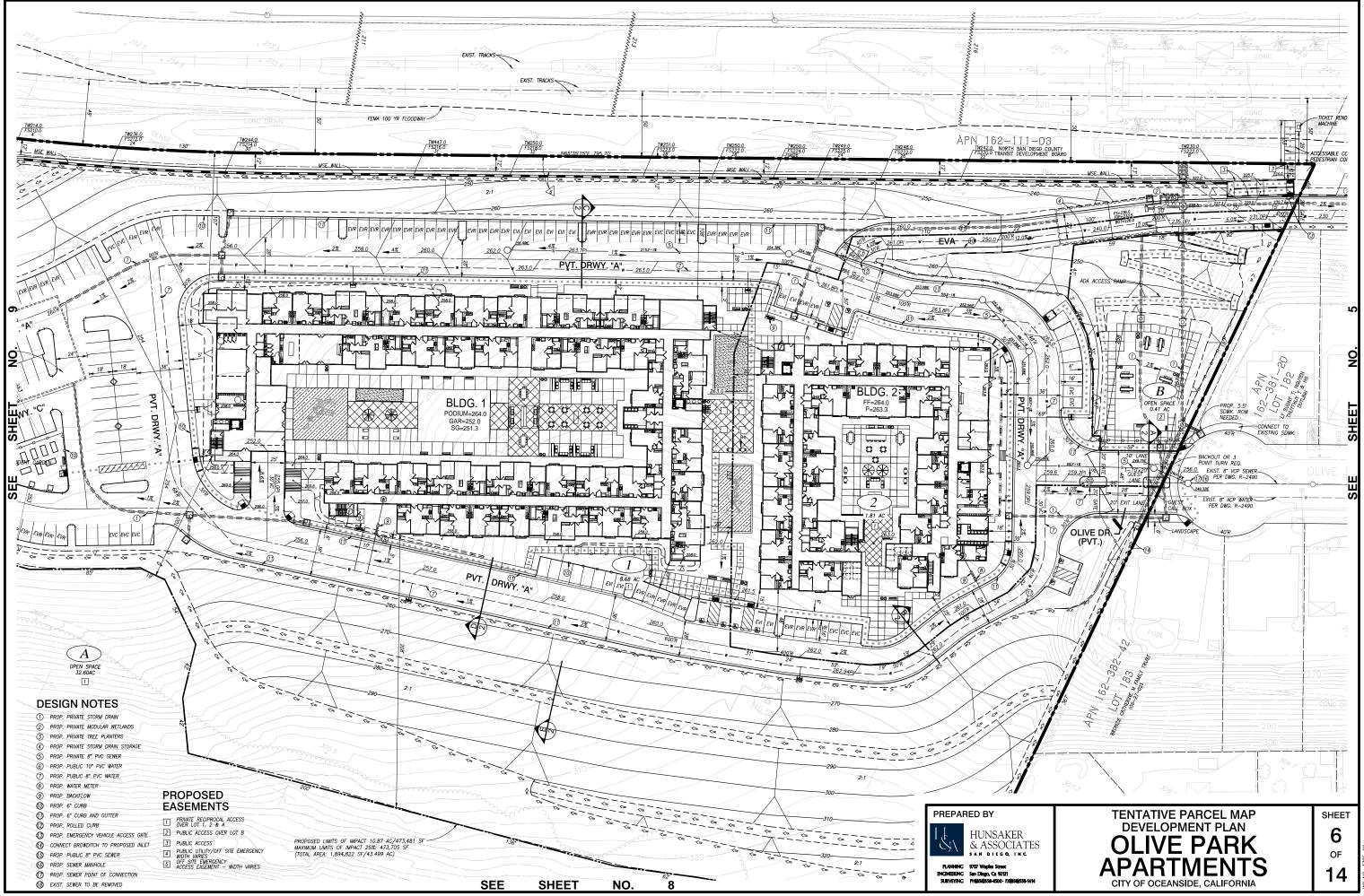

- 1. PROPERTY TAXES, WHICH ARE A LIEN NOT YET DUE AND PAYABLE, INCLUDING ANY ASSESSMENTS COLLECTED WITH TAXES TO BE LEVIED FOR THE FISCAL YEAR 2024-2025

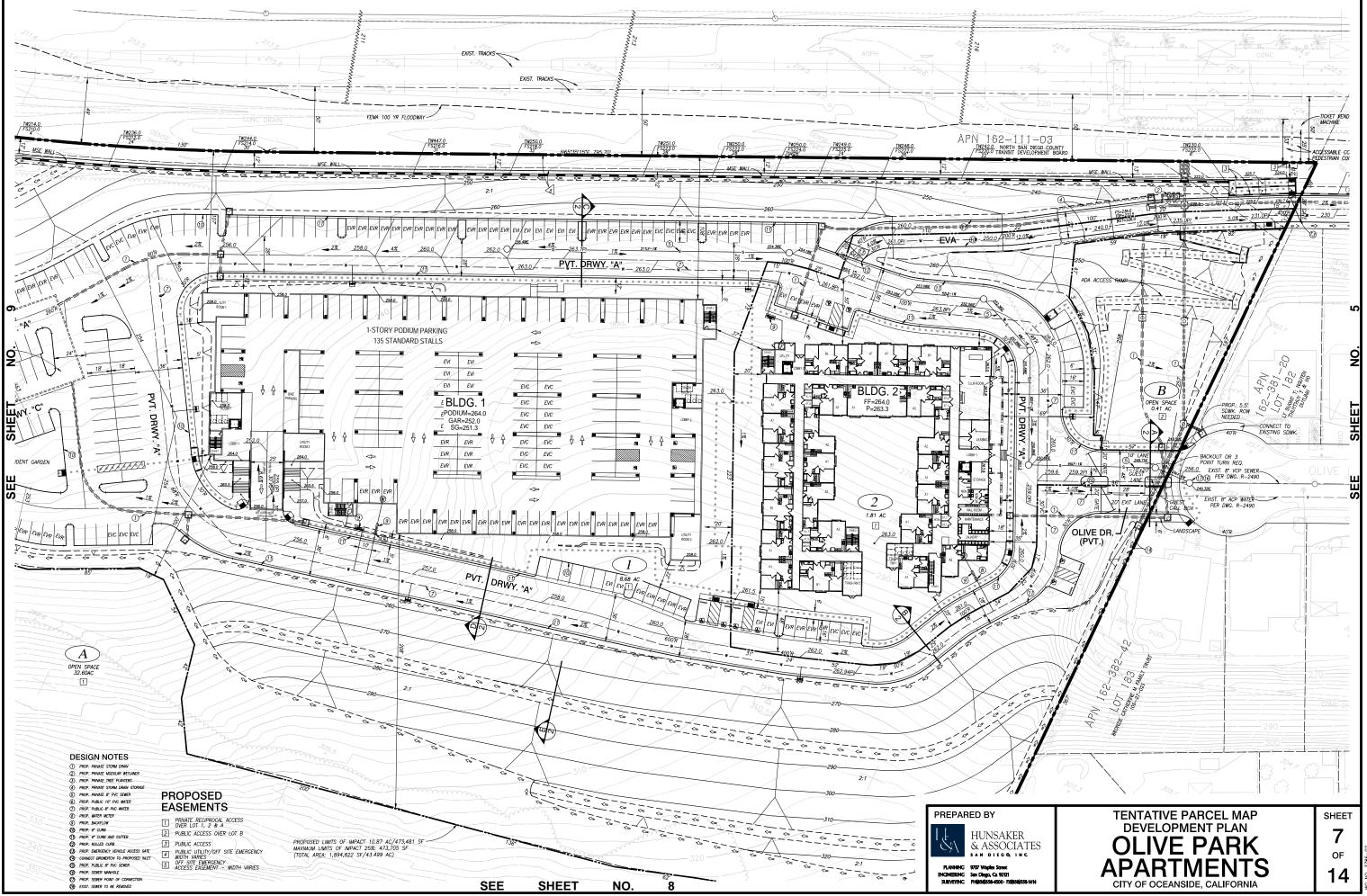

- 2. PROPERTY TAXES, INCLUDING ANY PERSONAL PROPERTY TAXES AND ANY ASSESSMENTS COLLECTED WITH TAXES, ARE AS FOLLOWS: TAX. IDENTIFICATION NO.: 162-111-04-00 FISCAL YEAR: 2023-2024 1ST. INSTALLMENT: \$7,780.29, PAID 2ND INSTALLMENT: \$7,780.29, PAID 2ND INSTALLMENT: \$7,780.29, OPEN (DELINQUENT AFTER APRIL 10) PENALTY AND COST: \$788.02 WILLEY MORE EXEMPTION: \$4NNE: 54NNE: HOMEOWNERS EXEMPTION: \$NONE CODE AREA: 07047
- 3. ANY LIENS OR OTHER ASSESSMENTS, BONDS, OR SPECIAL DISTRICT LIENS INCLUDING WITHOUT LIMITATION, COMMUNITY FACILITY DISTRICTS, THAT ARISE BY REASON OF ANY LOCAL, CITY, MUNICIPAL OR COUNTY PROJECT OR SPECIAL DISTRICT.
- 4. THE LIEN OF SUPPLEMENTAL OR ESCAPED ASSESSMENTS OF PROPERTY TAXES, IF ANY, MADE PURSUANT TO THE PROVISIONS OF CHAPTER 3.5 OR PART 2, CHAPTER 3, ARTICLES 3 AND 4 RESPECTIVELY (COMMENCING WITH SECTION 75) OF THE REVENUE AND TAXATION CODE OF THE STATE OF CALIFORNIA AS A RESULT OF THE TRANSFER OF TITLE TO THE VESTEE MANED IN SCHEDULE A; OR AS A RESULT OF CHANGES IN OWNERSHIP OR NEW CONSTRUCTION OCCURRING PRIOR TO DATE OF POLICY
- 5. WATER RIGHTS, CLAIMS OR TITLE TO WATER, WHETHER OR NOT DISCLOSED BY THE PUBLIC RECORDS.
- ▲ EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO, AS GRANTED IN A DOCUMENT: GRANTED TO: FRANK MOTTINO, ET UX. PURPOSE: ROAD AND INCIDENTAL PURPOSES RECORDING DATE: JUNE 27, 1930 RECORDING NO: BOOK 1788, PAGE 178, OF DEEDS AFFECTS: A PORTION OF THE LAND DESCRIBED HEREIN.

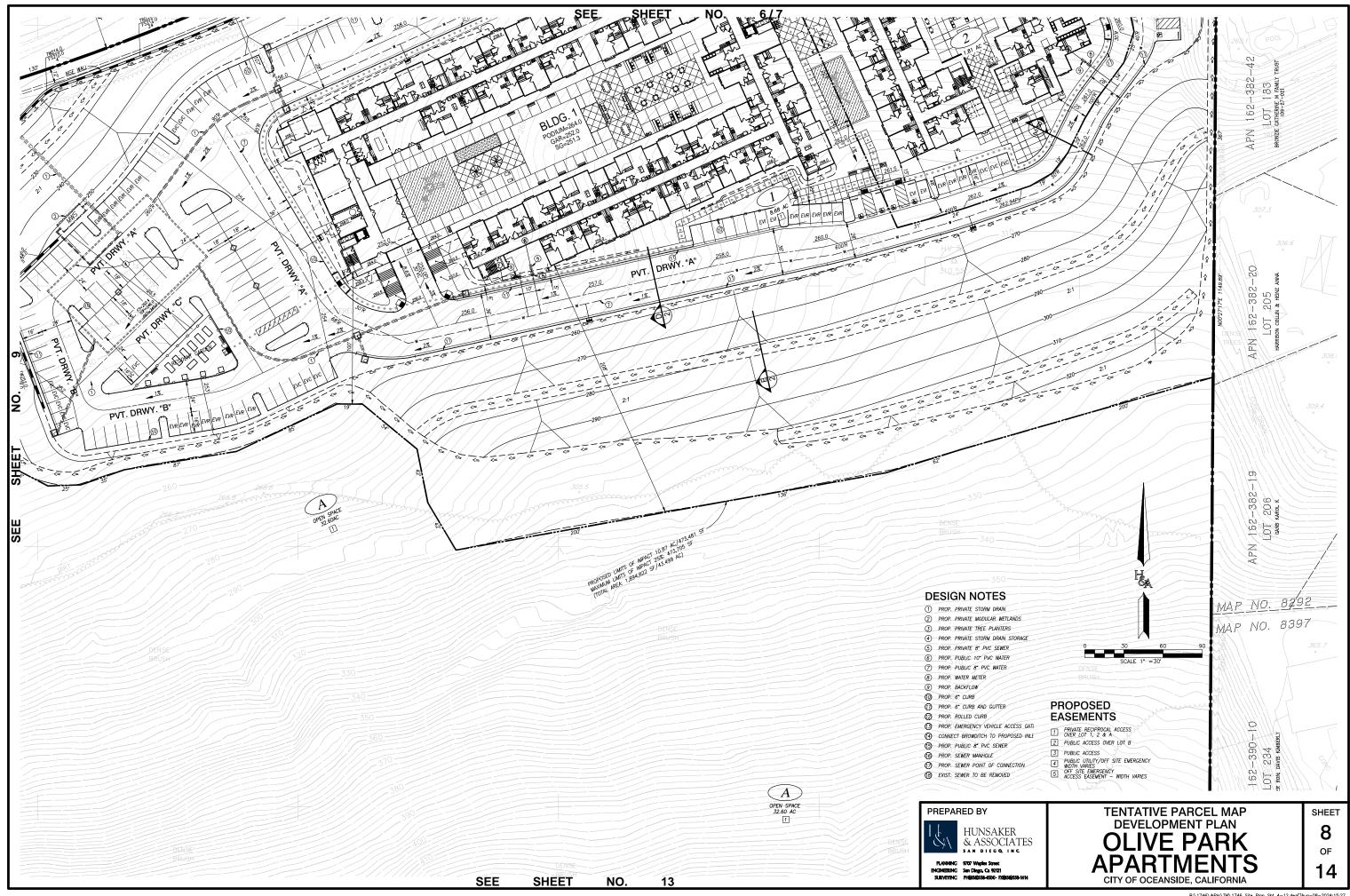
- ▲ EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO, AS GRANTED IN A DOCUMENT: GRANTED TO: THE PACIFIC TELEPHONE AND TELEGRAPH COMPANY PURPOSE: PUBLIC UTINES, INGRESS AND ECRESS RECORDING DATE: OCTOBER 21, 1954 RECORDING NO: BOOK 5406, PAGE 175, OF OFFICIAL RECORDS AFFECTS: A PORTION OF THE LAND DESCRIBED HEREIN.

TITLE REPORT EXCEPTIONS

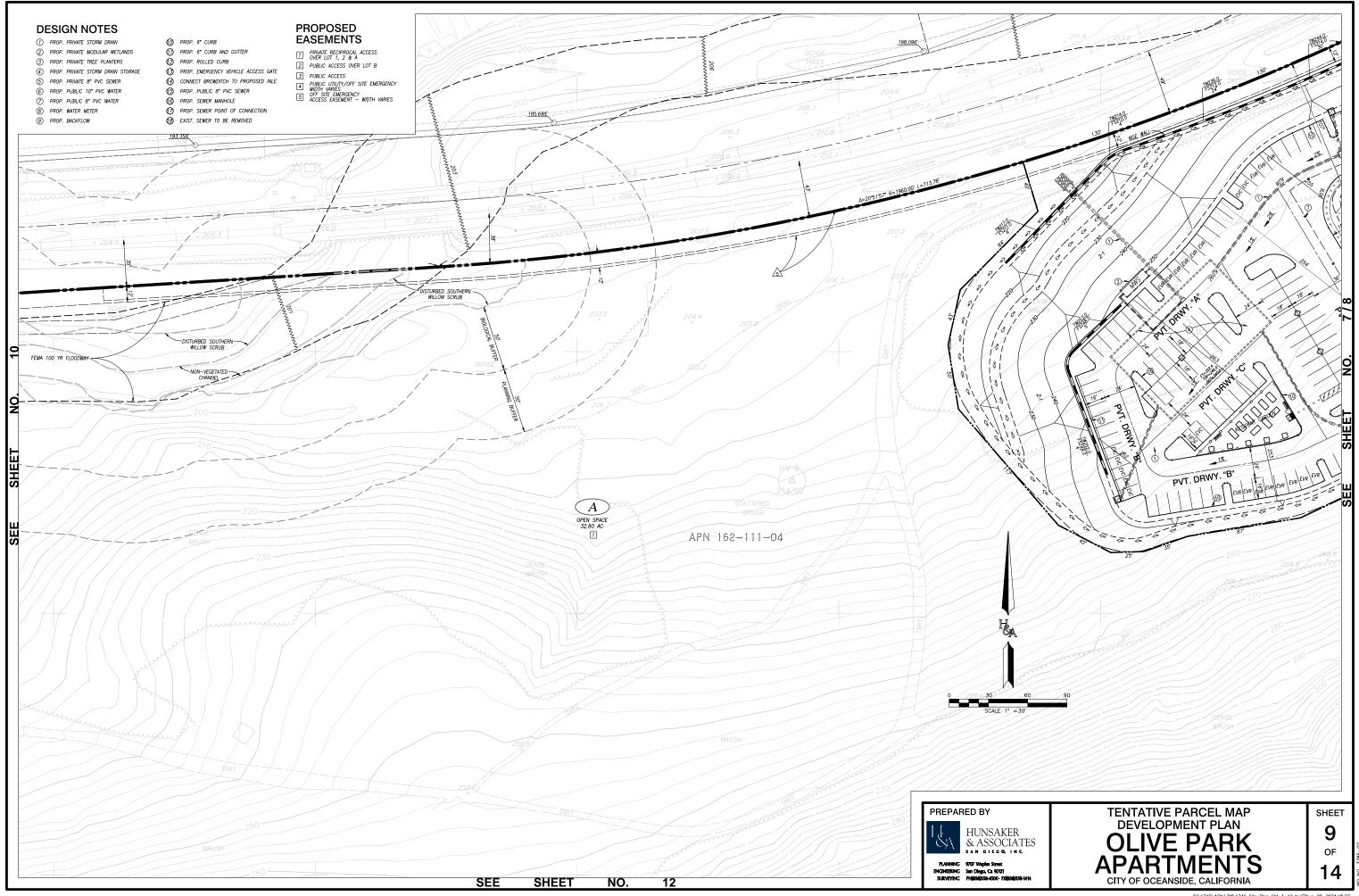

- EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO, AS GRANTED IN A DOCUMENT: GRANTED TO: CITY OF OCENNIST PURPOSE: WATER LINE RECORDING NO: 140278, OF OFTICAL RECORDS AFFECTS: A PORTION OF THE LAND DESCRIBED HEREIN. AFFECTS: A PORTION OF THE LAND DESCRIBED HEREIN.
- A EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO, AS GRANTED IN A DOCUMENT: GRANTED TO: THE CITY OF OCEANSIDE PURPOSE: SANITARY SEWER AND INCIDENTAL PURPOSES RECORDING DATE: JUNE 8, 1973 RECORDING NO: 145914. OF OFFICIAL RECORDS AFFECTS: A PORTION OF THE LAND DESCRIBED HEREIN.
- PLEASE BE ADVISED THAT OUR SEARCH DID NOT DISCLOSE ANY OPEN DEEDS OF TRUST OF RECORD. IF YOU SHOULD HAVE KNOWLEDGE OF ANY OUTSTANDING OBLIGATION, PLEASE CONTACT THE TITLE DEPARTMENT IMMEDIATELY FOR FURTHER REVIEW PRIOR TO CLOSING.
- 10. ANY EASEMENTS NOT DISCLOSED BY THE PUBLIC RECORDS AS TO MATTERS AFFECTING TITLE TO REAL PROPERTY, WHETHER OR NOT SAID EASEMENTS ARE VISIBLE AND APPARENT.
- 11. MATTERS WHICH MAY BE DISCLOSED BY AN INSPECTION AND/OR BY A CORRECT ALTA/NSPS LAND TITLE SURVEY OF SAID LAND THAT IS SATISFACTORY TO THE COMPANY, AND/OR BY INQUIRY OF THE PARTIES IN POSSESSION THEREOF
- 12. ANY RIGHTS OF THE PARTIES IN POSSESSION OF A PORTION OF, OR ALL OF, SAID LAND, WHICH RIGHTS ARE NOT DISCLOSED BY THE PUBLIC RECORDS. THE COMPANY WILL REQUIRE, FOR REVIEW, A FULL AND COMPLETE COPY OF ANY UNRECORDED AGREEMENT, CONTRACT, LICENSE AND/OR LASS, TOETHER WITH ALL SUPPLEMENTS, ASSIGNMENTS AND AMENDMENTS THERETO, BEFORE ISSUING ANY POLICY OF TITLE INSURANCE WITHOUT EXCEPTING THIS TEM FROM COVERAGE. THE COMPANY RESERVES THE RIGHT TO EXCEPT ADDITIONAL ITEMS AND/OR MAKE ADDITIONAL REQUIREMENTS AFTER REVIEWING SAID DOCUMENTS.

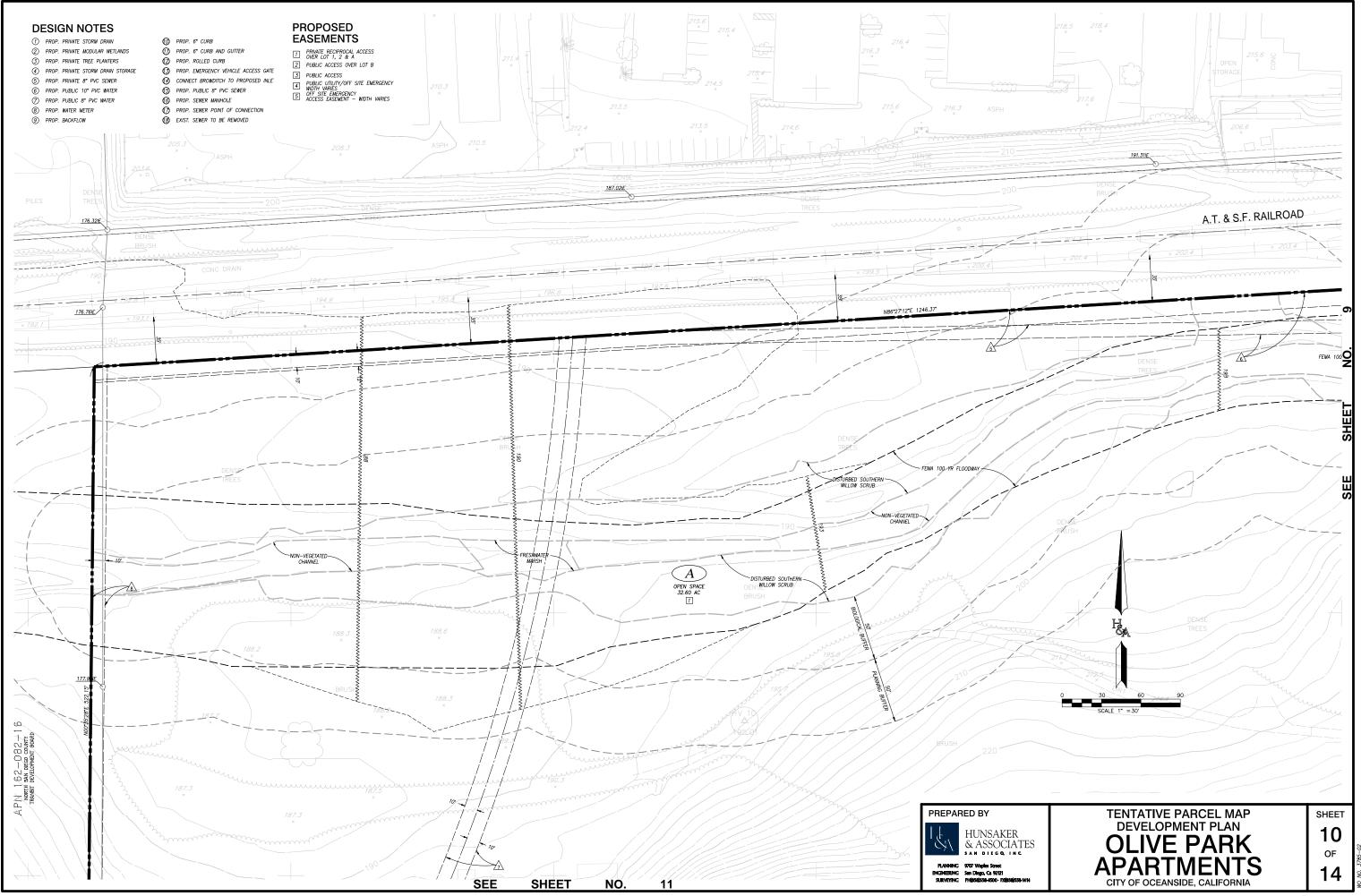


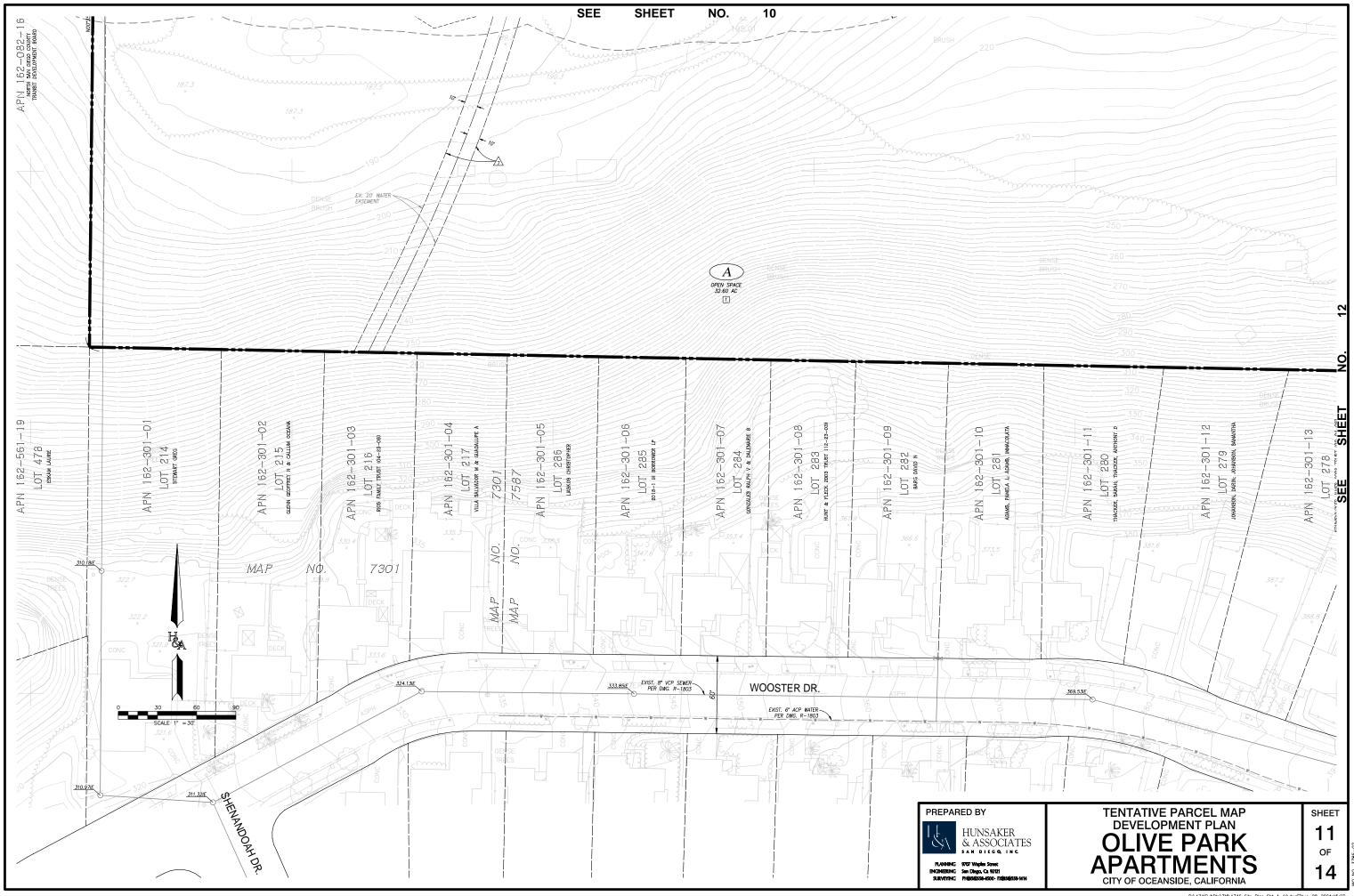


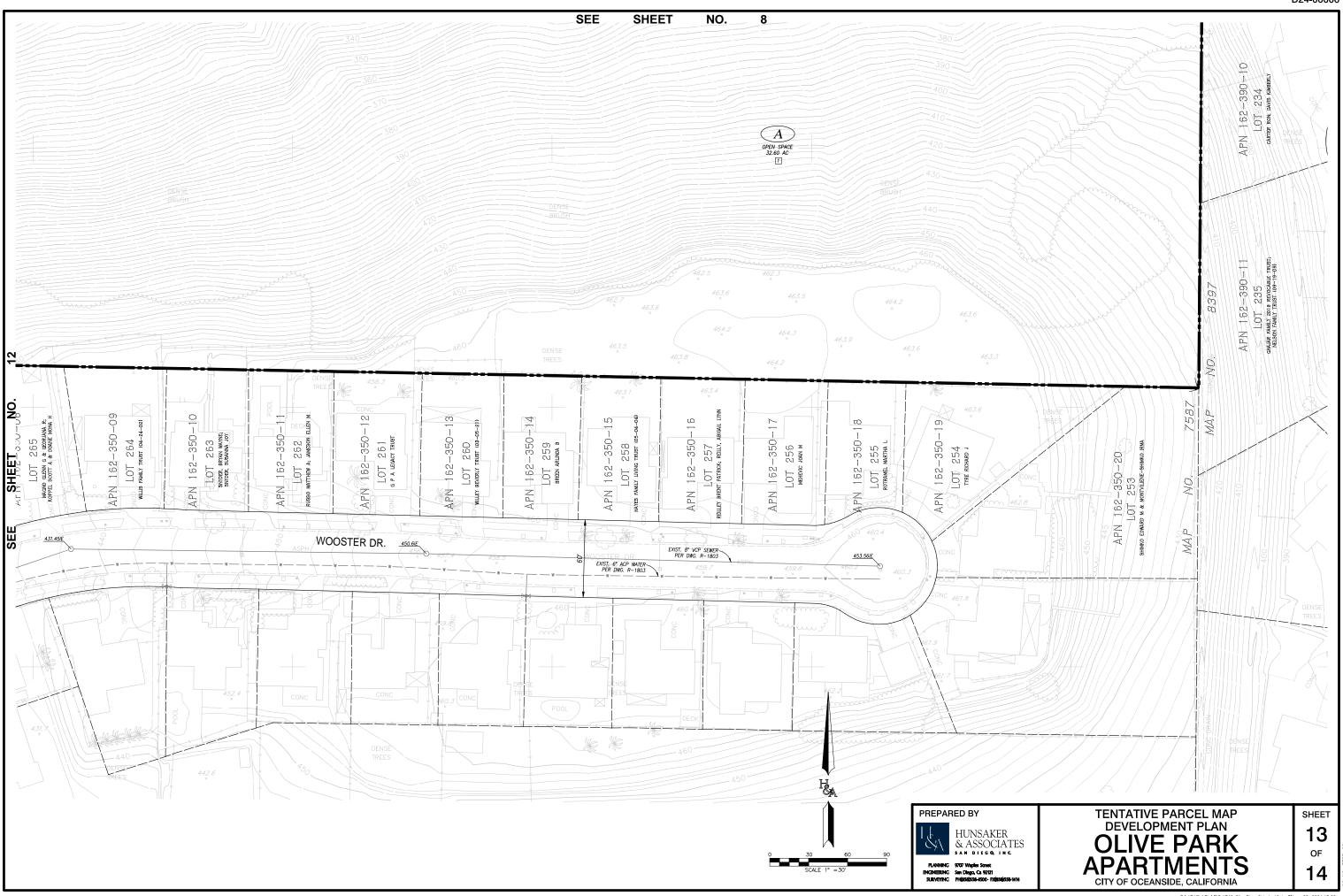

- PROP. EMERGENCY VEHICLE ACCESS GATE
- CONNECT BROWDITCH TO PROPOSED INLET

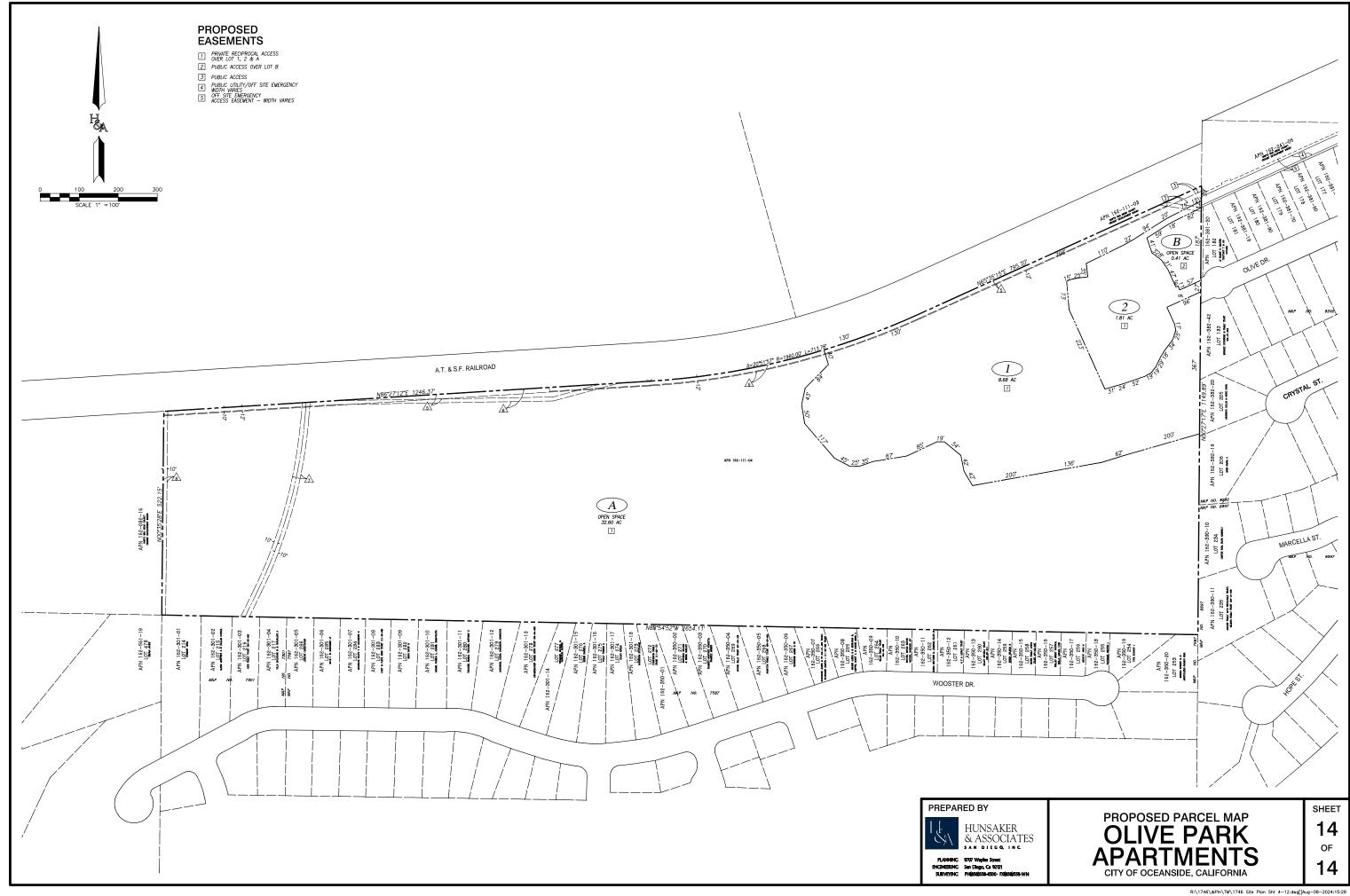
SHEET

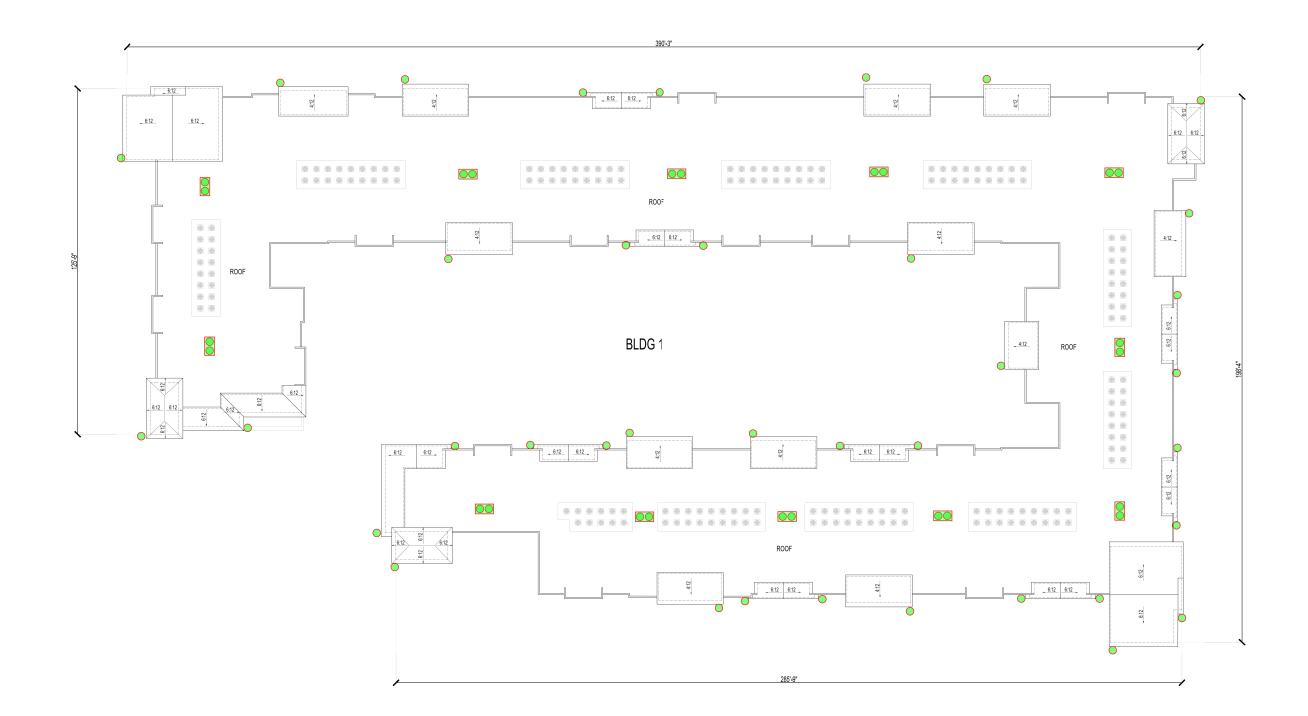




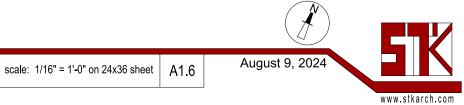



D24-00006





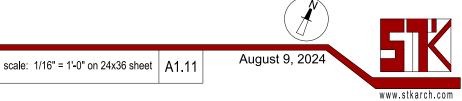
R:\1746\&PIn\TM\1746 Site Plan Sht 4-12.dwg[]Aug-08-2024:15:28

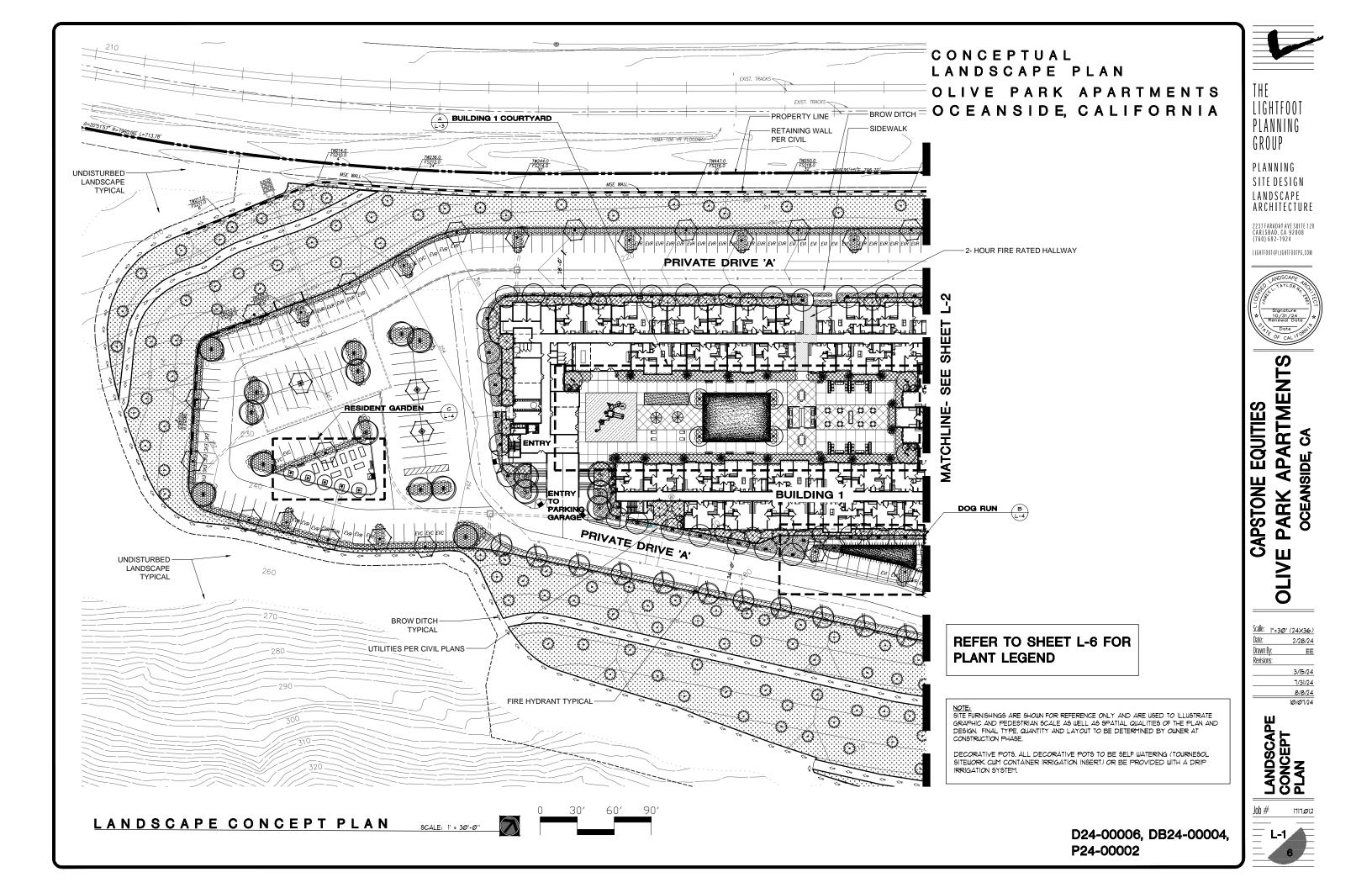




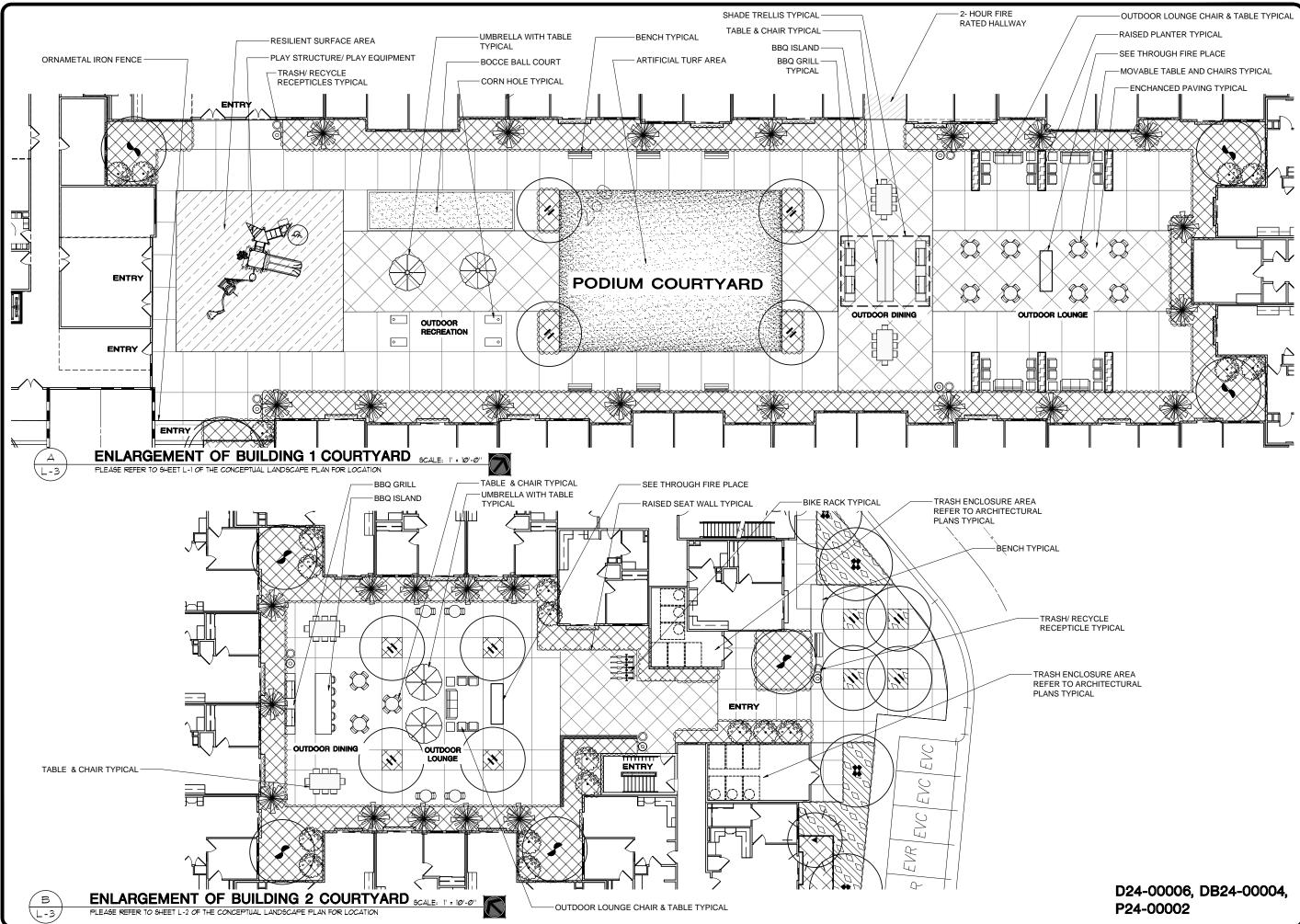
Olive Park Apartments

BUILDING 1 - ROOF PLAN

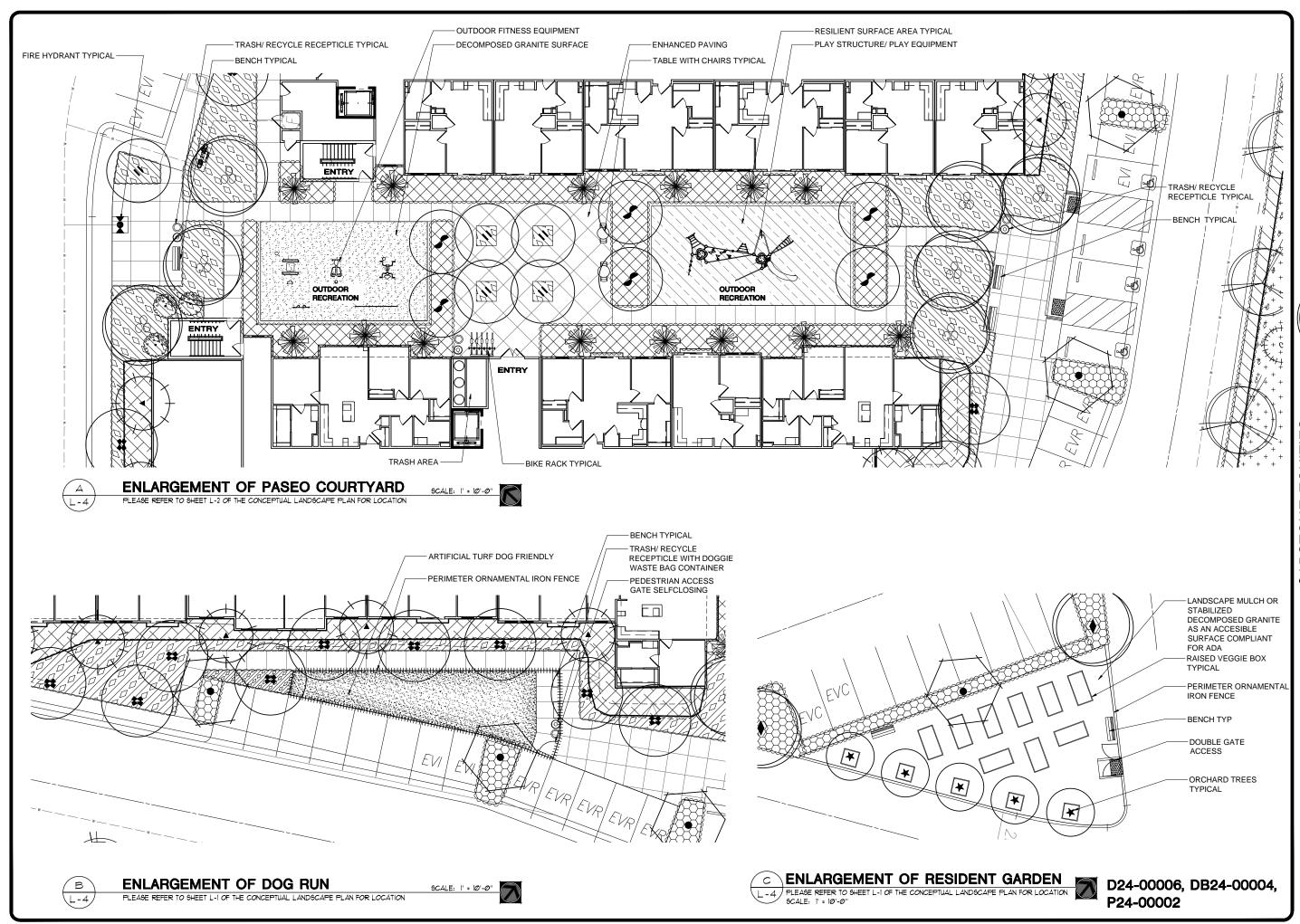

Capstone Equities



Olive Park Apartments Capstone Equities


BUILDING 2 - ROOF PLAN

THE LIGHTFOO PLANNING GROUP PLANNING SITE DESIGN LANDSCAPE ARCHITECTURE 2237 FARADAY AVE SUITE 120 Carlsbad, ca 92008 (760) 692-1924 LIGHTFOOT@LIGHTFOOTPG.COM 10/31/24 Renewal Date Date APARTMENTS VSIDE, CA EQUITIES **OCEANSIDE**, CAPSTONE PARK OLIVE Scale: |'=30' (24×36) Date: 2/28/24 Drawn By: EE Revisions: 3/15/24 7/31/24 8/8/24 10/07/24 LANDSCAPE CONCEPT PLAN




THE

I H E LIGHTFOOT PLANNING GROUP PLANNING SITE DESIGN LANDSCAPE ARCHITECTURE 2237 FARADAY AVE SUITE 120 Carlsbad, ca 92008 (760) 692-1924 LIGHTFOOT@LIGHTFOOTPG.COM Signature 10/31/24 Renewal Date Date ARK APARTMENTS oceanside, ca CAPSTONE EQUITIES PARK OLIVE Scale: 1"=10" (24×36) Date: 2/28/24 Drawn By: EE Revisions: 3/15/24 7/31/24 8/8/24 10/07/24 LANDSCAPE CONCEPT PLAN Job # 1717.Ø1.2

OLIVE

Scale: 1"=10" (24×36)

LANDSCAPE CONCEPT PLAN

L-5

Job #

2/28/24

3/15/24 7/31/24

8/8/24

10/07/24

1717.Ø1.2

EE

Date:

Drawn By:

Revisions:

CONCEPT PLANT PALETTE

4

۲

*

*

80

DESCRIPTION

andscape Areas

TOTAL PROJECT PERMEABLE AREA

Project Site Area

1/3 acre to 1 acre

Less than 1/3 acre

PERMEABLE SURFACE AREA

ROJECT SITE AREA (6.11 a.c.) @ 266,151.6 S.I

SMALL PROJECT TREE (MIN. SIZE 15" GAL) AGONIS FLEXUOSA / PEPPERMINT TREE ABUTUS X MARINA' / ARBUTUS STANDARD ERYOBOTRYA DEFLEXA STD. / BROZE LOQUAT • RHAPHIOLEPIS ' MAJESTIC BEAUTY' STD. /INDIAN HOWTHORN CERCIS CANADENSIS/ EASTERN REDBUD

TRANSITIONAL SLOPE TREE (MIN. SIZE 1,5 & 15 GAL.) PINUS TORREYANA / TORREY PINE PRUNUS ILCIFOLIA / HOLLY LEAF CHERRY QUERCUS AGRIFOLIA / HOLLY LEAF CHERRY QUERCUS AGRIFOLIA / COAST LIVE OAK QUERCUS ENGLEMANNII / ENGELMANN OA QUERCUS WISLIZENII / INTERIOR LIVE OAK

NARROW_TREE ACCENT CANOPY (MIN. SIZE 15" BOX) MAGNOLIA GRANDIFLORA 'LITTLE GEM'/ LITTLE GEM MAGNOLIA PODOCARPUS M. 'MAKI'/ SHRUBBY YEW AGONIS FLEXUOSA 'BURGUNDY'/ BURGUNDY PEPPERMINT WILLOW TECOMA STANS/ YELLOW BELLS

INTERIOR TREE ACCENT CANOPY (MIN. SIZE 15" BOX) ARBUTUS X 'MARINA' / ARBUTUS STANDARD MAGNOLIA GRANDIFLORA HYBRID / SO, MAGNOLIA HYBRID ERYOBOTRYA DEFLEXA STD. / BROZE LOQUAT

NARROW CANOPY TREE (MIN. SIZE 15" BOX) LYONOTHAMNUS F. ASPLENIFOLIUS / CATALINA IRONWOOD LOPHOSTEMON CONFERTUS/ BRISBANE BOXTREE

STREET_TREE (MIN. SIZE 24" BOX) PODOCARPUS GRACILIOR/ FERN PINE GEIJERA PARCIFLORA/ AUSTRALIAN WILLOW LOPHOSTEMON CONFERTUS (TRISTANIA) / BRISBANE BOX ARBUTUS X "MARINA" / ARBUTUS STANDARD PISTACIA CHINENSIS/ CHINESE PISTACHE

PROJECT_TREE_(MIN. SIZE 15" GAL) ARBUTUS X `MARINA` / ARBUTUS STANDARD METROSIDEROS EXCELSA / NEW ZEALAND CHRISTMAS TREE YMENOSPORUM ELAVUM/ SWEETSHADE PLATANUS RACEMOSA/ CALIFORNIA SYCAMORE

SCREEN_TREE/SHRUB (MIN, SIZE 15 GAL) SCHEFFLERA SPECIES / UMBRELLA TREE CALLISTEMON VIMINALIS 'SLIM' / SLIM WEEPING BOTTLEBRUSH \bigcirc PODOCARPUS ELONGATUS 'MONMAL' / ICEE BLUE YELLOW WOOD PITTOSPORUM T. 'SILVER SHEEN'/ VARIEGATED KOHUHU

RESIDENT GARDEN ORCHARD TREE (MIN. SIZE 15 GAL.) VARIETY OF CITRUS SPECIES

STREET TREE (MIN, SIZE 24" BOX) PODOCARPUS GRACILIOR/ FERN PINE GEIJERA PARCIFLORA/ AUSTRALIAN WILLOW LOPHOSTEMON CONFERTUS (TRISTANIA) / BRISBANE BOX ARBUTUS X 'MARINA' / ARBUTUS STANDARD PISTACIA CHINENSIS/ CHINESE PISTACHE

FOCAL POINT TREES AT INTERSECTIONS (MIN. SIZE 24" BOX) TIPUANA TIPU / TIPU TREE TIPUANA TIPU / TIPU TREE JACARANDA MIMOSIFOLIA / JACARANDA TABEBUJA IMPETIGINOSA / PINK TRUMPET TREE AGONIS FLEXUOSA / BURGUNDY/ BURGUNDY PEPPERMINT WILLOW BAUHINIA VARIEGATA/ ORCHID TREE

ACCENT LANDSCAPE AREA (MN. SIZE FLATS, 1, 5, 15 GAL.) ALOE X 'ALUWAYS RED' / ALOE CARISSA MACROCARPA 'GREEN CARPET' / GREEN CARPET NATAL PLUM CEANOTHUS THYRSIFLORUS 'DIAMOND HEIGHTS' / D.H. CEANOTHUS DIANELLA CAERULEA 'CLARITY BLUE' / DIANELLA DIANELLA TASMANICA 'VARIEGATA' / FLAX LILY ERIGERON KARVINSKIANUS 'PROFUSION' / SANTA BARBARA DAIS' I ANTANA SPP / I ANTANA LAN IANA SP?./ LAN IANA FURCRAEA FOETIDA 'NEDIOPICTA'/ GIANT FALSE AGAVE SENECIO VITALIS / BLUE CHALK FINGERS WESTRINGIA FRUTICOSA 'MUNDIT 'M/ LOW COAST ROSEMARY YUCCA FILAMENTOSA 'COLOR GUARD' / ADAM'S NEEDLE YUCCA PALLIDA / TWISTLEAF YUCCA CAREX DIVULSA/ CAREX MEADOW SEDGE MUHLENBERGIA SPP. / MUHLENBERGIA SALVIA LEUCANTHA 'SANTA BARBARA

PARKING LOT LANDSCAPE AREA (MIN. SIZE FLATS, 1, 5, GAL.) MUHLENBERGIA SPP. / MUHLENBERGIA SENECIO VITALIS / BLUE CHALK FINGERS LANTANA SPP. / LANTANA DIETES VARIEGATA/ VARIEGATED DIETES

PERMEABLE SURFACE AREA SUMMAR

Minimum Tree Canopy and Permeable Surface Area Requirements

Minimum Tree

Canopy Area

9%

7%

LANDSCAPE AREA (

63,677

63,677

266,152

24%

Minimum Permeable

Surface Area

16%

10%

CISTUS 'SUNSET' / SUNSET ROCKROSE

ARTIFICIAL TURF AS NOTED ON PLAN

K STAR

MANUFACTURE SLOPE (MIN. SIZE SEED, FLATS, 1, 5, 15 GAL.) ACACIA REDOLENS 'DESERT CARPET 'TM / BANK CATCLAW BACCHARIS PILULARIS 'TWIN PEAKS' / PROSTRATE COYOTE BRUSH CEANOTHUS | EUCODERMIS / CHAPARRAL WHITETHORN DENDROMECON HAREORDIL/ISLAND BUSH POPPY FREMONTODENDRON MEXICANUM / SOUTHERN FLANNEL BUSH PREMOVINDERVISION MEARABILM / SUCH TRAINEL BUSH HETERONGLES ARBUTHOLIA / TOYON LANTANA X 'NEW GOLD' / NEW GOLD LANTANA MALOSMA LAURINA / LAUREL SUMAC ROMNEYA COULTERI 'WHITE CLOUD' / WHITE CLOUD MATILIJA POPPY SALVIA X `ALLEN CHICKERING` / SAGE COTONEASTER DAMMERI 'LOWFAST' LOWFAST BEARBERRY COTONEASTER SPHAERALCEA AMBIGUA / DESERT GLOBEMALLOW TRICHOSTEMA LANATUM / WOOLLY BLUE CURLS ENCELIA CALIFORNICA/ CALIFORNIA ENECELIA CROCANTHEMUM SCOPARIUM/ PEAK RUSHROSE EPILOBIUM CANUM/ CALIFORNIA FUCHSIA ESCHSCHOLZIA CALIFORNICA/ CALIFORNIA POPPY ACHILLEA MILLEEOLIUM/ COMMON YARROW LASTHENIA GRACILIS/ NEEDLE GOLDEIELDS LUPINUS BICOLOR/ MINIATURE LUPI

PERIMETER PLANTING (MIN. SIZE FLATS, 1, 5, 15 GAL.) CALLISTEMON VIMINALIS 'BETTER JOHN' / DWARF WEEPING BOTTLE BRUSH BOUGAINVILLEA X 'ROSENKA' / BOUGAINVILLEA HESPERALOE PARVIFLORA HYBRIDS / RED YUCCA HYBRIDS CEANOTHUS GRISEUS HORIZONTALIS 'YANKEE POINT' / CALIFORNIA LILAC EREMOPHILA GLABRA 'MINGENEW GOLD' / EMU BUSH GALVEZIA SPECIOSA 'FIRECRACKER' / BUSH SNAPDRAGON GALOSZIA SPECIOSA FIRECRACKER / BUSH SNAPDRAGON MALOSMA LAURINA / LAUREL SUMAC WESTRINGIA FRUTICOSA 'WYNABBIE GEM' / WYNABBIE GEM COAST ROSEMARY SENECIO SERPENS / BLUE CHALKSTICKS LANTANA HYBRIDS/LANTANA LOMANDRA BREEZE/ LOMANDRA

INTERIOR COUTYARD PLANTING (MIN. SIZE FLATS, 1, 5, 15 GAL.) AGAVE DESMETTIANA 'VARIEGATA' / VARIEGATED AGAVE DIANELLA CAERULEA 'CLARITY BLUE' / DIANELLA DIANELLA CAERULEA 'CLARITY BLUE' / DIANELLA SENECIO MANDRALISCAE' BLUE FINGER DIANELLA TASMANICA VARIEGATA/ FLAX LILY CARISSA MACROCARPA 'GREEN CARPET / GREEN CARPET NATAL PLUM CEANOTHUS THYRSIFLORUS' DIAMOND HEIGHTS' / D.H CEANOTHUS TRACHELOSPERMUM JASMINOIDES/ STAR JASMINE DIACA AUNO VARIEGATA' / VARIEGATE DEREMINIK/ E VINCA MINOR 'VARIEGATA'/ VARIEGATED PERIWINKLE LEYMUS CONDENSATUS 'CANYON PRINCE' / BLUE RYE LOMANDRA LONGIFOLIA 'BREEZE'/ DWARF MAT RUSH ASPARAGUS DENSIFLORUS 'MYERS' / MYERS ASPARAGUS LANTANA SPECIES/ LANTANA ORMIUM TENAX SPP/ NEW ZEALAND FLAX ARIA CHILOENSIS / ORNAMENT

SHRUBS FOR SCREENING (MIN. SIZE 1, 5 GAL.) SANSEVIERIA TRIFASCIATA/ SNAKE PLANT JUNCUS PATENS/ MEXICAN RUSH EQUISETUM HYEMALE/ ROUGH HORSETAIL

OPENSPACE PLANTING (MIN. SIZE FLATS, 1, 5, 15 GAL.) YUCCA PALLIDA / TWISTLEAF YUCCA AGAVE ATTENUATA/ FOXTAIL AGAVE AGAVE AMERICANA/ CENTURY PLAN AGAVE AMERICANA/ CER ALOE SPP/ ALOE, CAREX DIVULSA/ CAREX AGAVE SPP./ AGAVE SPECIES HESPERALOE PARVIFLORA HYBRIDS / RED YUCCA HYBRIDS LANTANA SPP. CARISSA MACROCARPA 'GREEN CARPET' / GREEN CARPET NATAL PLUM YUCCA FILAMENTOSA 'COLOR GUARD' / ADAM'S NEEDLE MUHLENBERGIA SPP. / MUHLENBERGIA SALVIA LEUCANTHA 'SANTA BARBARA' TUS 'SUNSET' / SUNSET ROCKR

FOUNDATION PLANTING PERIMETER (MIN. SIZE FLATS, 1, 5, 15 GAL. ACACIA REDOLENS 'DESERT CARPET' TM / BANK CATCLAW BOUGAINVILLEA SPECIES / SHRUB FORM BOUGAINVILLEA

CEANOTHUS SPEICIES / CALIFORNIA LILAC CISTUS PULVERULENTUS 'SUNSET' / ROCKROSE LANTANA X 'NEW GOLD' / NEW GOLD LANTANA DAVIANA NEW GOLD THEW GOLD DAVIANA MALOMA LAURNA / LAUREL SUMAC METROSIDEROS COLLINA 'SPRINGFIRE' / NEW ZEALAND CHRISTMAS TREE SENECIO MTALIS / BLUE CHALK FINGERS WESTRINGIA FRUTICOSA 'MUNDI 'TM / LOW COAST ROSEMARY PHORMIUM TENAX SPP. / NEW ZEALAND FLAX PITTOSPORUM TENUIFOLIUM 'BEACH BALL' / TAWHIWHI MUHLENBERGIA SPP. / MUHLENBERGIA

LANDSCAPE CONCEPT DESIGN STATEMENT AND NOTES

THE LANDSCAPE EMBRACES THE DIVERSITY OF THE PROPECTIVE RESIDENTS OF THE SITE AND AIMS TO PROVIDE CURB APPEAL FOR BOTH THE PROJECT AND THE NEIGHBORHOOD AROUND IT. THE ARCHITECTURE FEATURES CLEAN GEOMETRIC LINES, AND A SIMPLE COLOR PALETTE IN SUPPORT OF A SPANISH ARCHITECTURAL STYLE. THE POTENTIAL OF HILLSIDE VIEWS FROM SOME OF THE RESIDENTIAL APARTMENT WINDOWS WILL MAKE THESE APARTMENTS A PARADISE TO LIVE AND RELAX. RESIDENTS WILL ALSO BE ABLE TO ENJOY PROPOSED AMENITIES LOCATED WITHIN THE PROJECT SITE OR WALK TO NEIGHBORING COMMERCIAL BUILDINGS. THE SOME SITE INCLUDE AMENITIES LIKE RESIDENTIAL GARDENING, OUTDOOR RECREATION ACTITIVES, OUTDOOR DINING, LOUNGE AND DOG RUN FOR PETS, OLIVE PARK APARTMENTS IS LOCATED NEAR OCEANSIDE BOULEVARD TRANSIT CENTER WHERE RESIDENTS CAN BE ABLE TO TAKE ADVANTAGE OF ECONOMICAL TRANSPORTATION WITHIN A COUPLE OF STEPS FROM THE SITE DESIGN FOR THE PROJECT EMBRACES LOW IMPACT DEVELOPMENT THAT COLLECT WATER UNDERGROUND. PLEASE REFER TO THE CIVIL ENGINEERING PLANS FOR INFORMATION.

THE LANDSCAPE DESIGN HELPS COMPLEMENT THE ARCHITECTURAL DESIGN. THE USE OF TREES AT FOCAL POINT HELPS ENGAGE RESIDENTS TO THE BEAUTY OF OLIVE PARK APARTMENTS, THE DUMPSTER ENCLOSURE ARE WITHIN THE INTERIOR TO THE BUILDINGS. BUILDING I DUMPSTER ENCLOSURE IS LOCATED AT THE GARAGE LEVEL PARKING, BUILDING 2 DUMPSTER ENCLOSURE IS LOCATED AT GROUND FLOOR LEVEL NEAR SOUTHSIDE OF THE BUILDING. PLEASE REFER TO DETAIL L-1, L-2 AND ARCHITECTURAL BUILDING PLAN SET FOR MORE INFORMATION.

TREES ARE AN IMPORTANT PART OF THE LANDSCAPE FOR THE PROJECT TREE LOCATIONS HAVE BEEN CAREFULLY SELECTED TO PROVIDE ACCENT AND SELECTIVE SCREENING AND SCALE TO THE BUILDING ALL TREES HAVE BEEN SELECTED FOR THEIR INUNDATION TOLERANCES AND TREATMENT QUALIFICATIONS AND ALL PROJECT TREES SHALL RESPECT CITY-REQUIRED ROOT BARRIER REQUIREMENTS AND CLEARANCES FOR FIRE APPARATUS, UTILITIES AND EASEMENTS

ENCELIA CALIFORNICA/ CALIFORNIA ENCEDED
OFFICIENTIA ENCED
OFFICIENTIA ENCED
OFFICIENTIA ENCED
OFFICIENTIA ALL PLANTINGS WILL BE GROUPED BY HYDROZONES 50 THAT THEY MAY BE IRRIGATED EFFICIENTLY AND IN ACCORDANCE WITH THE CITY'S WATER CONSERVATION ORDINANCE. THE LANDSCAPE IS DESIGNED WITH LOW

SUMMARY OF PROJECT DESIGN HIGHLIGHTS:

- PLANTS WITH HIGHER WATER REQUIREMENTS ARE SELECTIVELY PLACED IN HIGHLY VISIBLE AREAS.
- THE TREE PALETIE INCLUDES TREES SELECTED FOR THEIR SIZE FORM AND ORNAMENTAL QUALITIES RELATIVE TO THE ARCHITECTURE
- SITE AMENITIES INCLUDE, SEATING AREA FOR RESIDENTS, OUTDOOR GATHERING FOR RESIDENTS TO HANGOUT FROM A BUSY DAY
- TREES, SHRUBS AND VERTICAL ACCENT PLANTS WILL CONSIDER ACCENT, SCREENING AND SHADING QUALITIES (MICROCLIMATE MODIFICATION). TREE LOCATIONS SHALL OBSERVE ALL CLEARANCES TO UTILITIES AND EASEMENTS, AND ROOT BARRIERS SHALL BE EMPLOYED TO PROTECT HARDSCAPE AND UTILITIES PER OCEANSIDE STANDARDS. PROPOSED STORYWATER BMP PLANTER ARE HIGHLY ORNAMENTAL IN SPECIES COMPOSITION AND WILL BE IN CONFORMANCE WITH THE ENGINEER'S PLANS AND TREATMENT EXPECTATIONS.
- SPECIES WILL BE PLACED ACCORDING TO SOLAR EXPOSURE WINDOW LOCATIONS AND PLANTER SIZE AND LOCATION.

GENERAL NOTES: THIS CONCEPTUAL LANDSCAPE PLAN DIAGRAMMATICALLY SHOUS PLACEMENT OF PROPOSED PROJECT LANDSCAPING. CONSTRUCTION LANDSCAPE PLANS SHOU PLACEMENT OF TREES, SHRUBS AND GROUND COVERS. FINAL LANDSCAPE PLANS SHALL ACCURATELY SHOU PLACEMENT OF TREES, SHRUBS AND GROUNDCOVERS AND REQUIRED ROOTBARRIERS FOR TREES. THE LANDSCAPE ARCHITECT IS AWARE OF ALL UTILITY, SEWER AND STORM DRAIN EASEMENTS AND THE CITY OF OCEANSIDE POLICY WHICH PROHIBITS TREES AND STRUCTURES IN UTILITY EASEMENTS. TREE LOCATIONS SHALL BE PLACED ACCORDINGLY TO MEET THE CITY OF OCEANSIDE REQUIREMENTS. ALL PERTINENT UTILITY EASEMENTS ARE PER THE CIVIL ENGINEERING PLAN AND BASE SHEET INFORMATION. LANDSCAPE CONSTRUCTION PLANS SHALL SHOW ALL EASEMENTS THAT MAY AFFECT FINAL PLACEMENT OF

PROJECT TREES AND SHRUBS, BASED ON THE EASEMENT AND UTILITY INFORMATION RECEIVED FROM THE PROJECT ENGINEER

EXISTING CONDITIONS, EASEMENTS, WALLS, FENCES & TRASH ENCLOSURES:

REFER TO CIVIL ENGINEERING PLAN FOR LOCATION AND TYPES OF PROPOSED WALLS, UTILITES, EASEMENTS AND PROPERTY LINES.

COVERAGE FOR PLANTING AREAS SHOWN ON THE CONCEPTUAL PLAN. AUTOMATIC IRRIGATION SYSTEM SHALL BE INSTALLED AS REQUIRED TO PROVIDE COVERAGE FOR PLANTING AREAS SHOWN ON THE PLAN. LOW VOLUME IRRIGATION EQUIPMENT SHALL PROVIDE SUFFICIENT WATER FOR PLANT GROWTH WITH A MINIMUM WATER LOSS DUE TO WATER RUN-OFF. IRRIGATION SYSTEMS SHALL USE HIGH QUALITY, AUTOMATIC CONTROL VALVES, TIMERS AND OTHER NECESSARY EQUIPMENT FOR PROPER COVERAGE. CONTROLLER SHALL BE SMART CONTROLLER. ALL COMPONENTS SHALL BE OF NON-CORROSIVE MATERIAL AND ANY DRIP SYSTEM'S SHALL BE ADEQUATELY FILTERED AND REGULATED PER THE MANUFACTURER GUIDELINES, CLASS 315 PRESSURE OR SCHEDULE 40 MAINLINE SHALL BE BURIED TO A MINIMUM DEPTH OF 18". PVC LATERAL LINES SHALL BE BURIED 12" MINIMUM BELOW FINISH GRADE, ALL MAINLINE SHALL BE INSTALLED PER MANUFACTURER GUIDELINES, SPECIFICATIONS, AND ADHERE TO CODES AND GUIDELINES, ALL LANDSCAPE AND IRRIGATION IMPROVEMENTS SHALL BE INSTALLED PER THE PROVISIONS OF THE CITY OF OCEANSIDE WATER CONSERVATION ORDINANCE SECTION 3019, THE CITY OF OCEANSIDE LANDSCAPE DESIGN GUIDELINES AND SHALL BE CONSISTENT WITH CURRENT STORYWATER BMP/S.

PLANTING NOTES:

APPROPRIATE SOIL AMENDMENTS, FERTILIZERS, AND APPROPRIATE SUPPLEMENTS BASED UPON AN AGRICULTURAL SOILS ANALYSIS REPORT FROM SOIL SAMPLE TAKEN FROM THE SITE. GROUND COVERS OR BARK MULCH SHALL FILL IN BETWEEN THE SHRUBS TO PROTECT THE SOIL FROM EXCESSIVE SOLAR EXPOSURE, EVAPOTRANSPIRATION AND SURFACE WATER RUNOFF. ALL PLANTING AREAS SHALL BE MULCHED TO A DEPTH OF 3" TO HELP CONSERVE WATER, LOWER THE SOIL TEMPERATURE AND REDUCE WEED GROWTH. SHRUBS SHALL BE ALLOWED TO GROW INTO THEIR NATURAL FORMS WITHOUT SHEARING. ALL LANDSCAPE IMPROVEMENTS SHALL CONFORM TO THE CURRENT CITY OF OCEANGIDE GUIDELINES AS WELL AS ALL STREET TREES AND OTHER TREES SHALL SPATIAL REQUIREMENTS AND CLEARANCES.

GENERAL MAINTENANCE AND COMPLIANCE WITH ORDINANCE CODE 3049 URBAN FORESTRY PROGRAM

THE PROPETY OWER ASSOCIATION SHALL MAINTAIN THE COMMON LANDSCAPE AREAS, PROPOSED BMP'S, PUBLIC UTILITY EASEMENTS AND RIGHT OF WAY PLANTING. THE PROJECT SHALL COMPLY WITH CODE 3043 URBAN FORESTRY PROGRAM AND PROVIDE INFORMATION AND COMPLIANCE REGARDING REGULAR, SEASONAL AND EMERGENCY MAINTENANCE, TRASH ABATEMENT, IRRIGATION, TREE/PLANT CARE, TREE REPLACEMENT, INSECT AND DISEASE INFESTATION PREVENTION, INTEGRATED PEST MANAGEMENT AND APPROPRIATE RESPONSE PROCESSES. FAILURE TO COMPLY WITH MAINTENANCE IN A CONSISTENT MANNER WITH THE APPROVED (LTCMP) LANDSCAPE TREE CANOPY MANAGEMENT PLAN SHALL SUBJECT THE PROJECT TO CODE ENFORCEMENT ACTION. SEE ADDITIONAL NOTES FOR FIRE CODE COMPLIANCE. PROJECT SPECIFIC MAINTENANCE NOTES:

ALL REQUIRED LANDSCAPE AREAS ON-SITE AND WITHIN THE PUBLIC RIGHT-OF-WAY ALONG SEAGAZE DRIVE AND N. NEVADA STREET SHALL BE MAINTAINED BY THE OWNER AND SHALL BE INCLUDED IN THE CC4RS FOR THE PROJECT. LANDSCAPE AREAS SHALL BE MAINTAINED PER THE CITY OF OCEANSIDE REQUIREMENTS.

FIRE CODE COMPLIANCE

DEPARTMENT

SITE FURNISHINGS:

PROJECT APPROVAL.

IMPROVEMENT PLANS,

PROJECT STORM WATER MANAGEMENT PLAN (SWMP)

LANDSCAPING SHALL COMPLY WITH THE APPROVED STORMWATER MANAGEMENT PLAN AND MAINTENANCE SPECIFICATIONS AT CONSTRUCTION DRAWINGS, WITH ALL PLANTING SHOWN.

TREE PLACEMENT SHALL BE DETERMINED DURING THE CONSTRUCTION PHASE, BASED ON FINAL LOCATIONS OF UTILITIES, STREET LIGHTS AND EASEMENTS. STREET TREES AND OTHER TREES SHALL BE SPACED AS FOLLOWS:

A. 8' FROM TRANSFORMERS, CABLE AND PULL BOXES

- B. 5' FROM MAILBOXES
- C. 5' FROM FIRE HYDRANTS, ALL SIDES
- D. 10' FROM CENTERLINE OF ALL UTILITY LINES (W/O EASEMENT) SEWER WATER STORM
- DRAINS, DBL. CHECK DETECTORS, AIR RELIEF VALVES AND GAS LINES
- E. 10' FROM EASEMENT BOUNDARIES (SEWER, WATER, STORM DRAINS, ACCESS OR OTHER
- UTILITIES) F. 10' FROM DRIVEWAYS (UNLESS LINE OF SIGHT DETERMINED BY TRAFFIC DIVISION IS OTHERWISE
- G. 10' FROM DIRECTIONAL SIGNS
- H. 15' FROM STREETLIGHTS, OTHER UTILITY POLES, AD DETERMINED BY SPECIFICATIONS 1. STREET TREES SHALL BE PLANTED 3' OUTSIDE RIGHT-OF-WAY IF IT DOES NOT PROVIDE SPACE, SUBJECT TO THE CITY ENGINEER'S APPROVAL
- J. LINE OF SIGHT AT ARTERIALS, COLLECTOR AND LOCAL STREETS SHALL BE REVIEWED AND DETERMINED BY TRAFFIC ENGINEER. A MIN. OF 25' FROM STREET INTERSECTION
- SHOULD BE PROIVIDED OR AS OTHERWISE APPROVED BY THE TRAFFIC ENGINEER.
- K. 15' STREETLIGHT AND STOP SIGN OR CLEARANCE AS DETERMINED BY SPECIFICATIONS L. ALL CLEARANCES FOR FIRE VEHICLES SHALL BE MET AT CONSTRUCTION DWGS.

URBAN FORESTRY PROGRAM COMPLIANCE- CODE 3049

PROPOSED TREE CANOPY CALCULATION OLIVE APARTMENTS												
DESCRIPTION	CANOPY DIA. (FT)	CANOPY (SF.)	QUANTITY	EXTENSION (SF.								
Fruit Tree 🖌	8	50	5	250								
Narrow Tree 🖌	8	50	49	2450								
Large Trees 🖌	25	490	158	77420								
Medium Trees 🔺	16	201	95	19095								
Square Footage of Propo	sed Tree Canopy Area			99,215								
Proposed Canopy Area P	ercentage of Project Site	Area (6.11 ac.) @	266,151 SF.	37%								

 $\mbox{\sc x}$ Note: Information on mature dimensions of tree species was collected from

UFEI SELECT TREE WEB SITE FROM CALIFORNIA POLYTECHNIC STATE UNIVERSITY. https://selectree.calpoly.edu/

(TREE CANOPY CALCULATIONS DOES NOT INCLUDE TREES PROPOSED IN MANUFACTURED SLOPE OUTSIDE OF LIMIT AREA)

THE LANDSCAPE IMPROVEMENT PLAN SET AND INSTALLATION ARE REQUIRED TO IMPLEMENT APPROVED FIRE DEPARTMENT REGULATIONS, CODES AND STANDARDS AT THE TIME OF

TREES FOR THE PROJECT SHALL HAVE A MINIMUM VERTICAL CLEARANCE OF 13'-6" FROM TOP OF FIRE ACCESS ROADWAY TO LOWEST BRANCHES OF TREE AT MATURITY AND HAVE A MINIMUM OF 28' WIDTH CLEARANCE IN FIRE ACCESS ROADWAYS EXCEPT AS ACCEPTED BY THE OCEANSIDE FIRE

ALL EDG LOCATIONS SHALL BE SHOLN ON PLANS FOR REFERENCE, AND SHALL BE INSTALLED FROM CIVIL 4. A CLEAR PATH TO THE FIRE EQUIPMENT SHALL BE MAINTAINED

WITH A MINIMUM CLEARANCE OF 3' FROM ALL VEGETATION.

SITE FURNISHINGS ARE SHOWN FOR REFERENCE ONLY AND ARE USED TO ILLUSTRATE GRAPHIC AND PEDESTRIAN SCALE AS WELL AS SPATIAL QUALITIES OF THE PLAN AND DESIGN. FINAL TYPE, QUANTITY AND LAYOUT TO BE DETERMINED BY OWNER AT CONSTRUCTION PHASE.

D24-0006, DB24-0004, P24-00002

LIGHTFOO PLANNIN GROUP

PLANNING SITE DESIGN LANDSCAPE ARCHITECTURE

237 FARADAY AVE SULTE 121 CARLSBAD, CA 92008 (760) 692-1924

LIGHTFOOT@LIGHTFOOTPG.COM

Scale: AS N	OTED (24×36)
Date:	2/28/24
Drawn By:	EE
Revisions:	
	3/15/24
	7/31/24
	8/8/24
	10/07/24

ATTACHMENT 5 Drainage Report

This is the cover sheet for Attachment 5.

PRELIMINARY DRAINAGE STUDY for OLIVE PARK APARTMENTS

W.O. 3785-0002 APN # 162-111-04-00 Permit No.: D24-00006 City of Oceanside, California

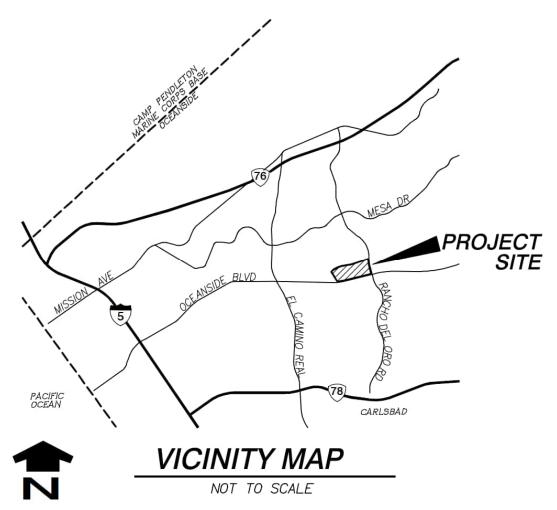
Prepared for: Capstone Equities 5455 Wilshire Blvd., Suite #1012 Los Angeles, CA 90036

Prepared by: Hunsaker & Associates – San Diego, inc. 9707 Waples St. San Diego, CA 92121 (858) 558-4500

Preparation / Revision Date: March 15, 2024, August 6, 2024, October 4, 2024

Hunsaker & Associates San Diego, Inc.

Alisa S. Vialpando, R.C.E. 47945. EXP. 12/31/2025 President


TABLE OF CONTENTS

Chapter 1 -	hapter 1 - Executive Summary 1.1 Introduction 1.2 Summary of Existing Conditions 1.3 Summary of Developed Condition 1.4 Summary of Results 1.5 Conclusion 1.6 References hapter 2 - Methodology hapter 3 – Hydrologic Model for Existing Conditions 3.1 100 Year Storm Existing Conditions hapter 4 – Hydrologic Model for Developed Conditions 4.1 100 Year Storm Developed Conditions 4.2 100 Year Storm Developed Conditions 4.3 Preliminary Rip Rap Sizing hapter 5 – Basin Attenuation Calculations hapter 6 – Hydrology Maps		
1.2 1.3 1.4 1.5	Summary of Existing Conditions Summary of Developed Condition Summary of Results Conclusion		
Chapter 2 -	Methodology	II	
Chapter 3 -	- Hydrologic Model for Existing Conditions	Ш	
3.1	100 Year Storm Existing Conditions		
Chapter 4 -	- Hydrologic Model for Developed Conditions	IV	
4.2	100 Year Storm Mitigated Developed Conditions		
Chapter 5 -	- Basin Attenuation Calculations	v	
Chapter 6 -	- Hydrology Maps	VI	
6.1 6.2 6.3	Existing Condition Hydrology Map Developed Condition Hydrology Map Sump Inlet Location Map		
Chapter 7 -	- Appendices	VII	
Арре	endix 1 Hydrologic Soil Information endix 2 Rainfall Isopluvial Maps endix 3 FEMA FIRMette		

CHAPTER 1 - EXECUTIVE SUMMARY

1.1 - Introduction

The project site is situated in the west of Olive Drive and north of Wooster Drive in Oceanside, California, as illustrated in the vicinity map below, designated by APN 162-111-04-00. Spanning roughly 43 acres, this semi-rectangular property extends eastwest, featuring a curved northern edge adjacent to the SDNR rail line. It's flanked by undeveloped land to the west and residential subdivisions to the south and east, with the Olive Drive cul-de-sac meeting its northeast corner. The proposed development occupies the northeastern corner of the site, while the remainder of the site will remain undeveloped.

This study aims to provide hydrology calculations to support the proposed residential development, focusing on estimating runoff for the 100-year frequency storm event and identifying the necessary storm drain infrastructure for safe stormwater conveyance. Stormwater runoff treatment is detailed in a separate document, the

'Stormwater Quality Management Plan for Oceanside Senior Affordable,' by Hunsaker & Associates, San Diego, dated October 2024."

1.2 – Summary of Existing Conditions

The site is situated on slopes descending northwest towards Loma Alta Creek, which borders the site's northern edge. The topographical contours show an increase in gradient from north to south. The creek, characterized by a gentle gradient, flows westward in a meandering pattern and features vertically incised embankments, with heights reaching up to 10 feet at certain points along its edges. A fill berm, constructed as part of railroad enhancements, is present along the site's northeast boundary. A level and graded pad in the southeast corner has been prepared to construct a residential development along Wooster Drive. The site's elevation ranges from approximately 185 feet above Mean Sea Level (MSL) at the northwest corner, near Loma Alta Creek, to 464 feet MSL at the graded pad.

Vegetation across the site varies significantly with the topography, including flat, intermediate, and steep slopes. In areas with flat slopes, the vegetation primarily consists of hydric (water-seeking) species, such as rushes and marsh-type plants, with several eucalyptus trees also dotting these areas. The intermediate slopes, which have undergone disking, are home to sparse, xeric (dry) vegetation. Meanwhile, the areas with steep slopes boast dense vegetation coverage, including species like mustard, sage, and cactuses.

The property can be accessed from College Boulevard via an existing unpaved driveway located to the northeast of the project. It is surrounded by residential developments to the east and south, an undeveloped property to the west, and the SDNR rail line along with Loma Alta Creek to the north. Loma Alta Creek, which flows in an east-west direction, enters the site to the west of the area slated for development, crossing under the rail lines and extending approximately 1280 feet through the property.

The proposed development occupies the northeastern corner of the site, while the remaining area is left undeveloped. The drainage study focuses on the eastern watersheds affected by the development. This analysis encompasses approximately 29.9 acres, featuring multiple points of discharge that converge at node 1, as identified in the maps, located near the north-central edge of the property boundary. The analysis further subdivides all areas tributary to node 1, as described below:

The project's hydrology includes approximately 7.8 acres of offsite run-on, originating from a neighboring single-family residential site to the east and a dirt access road off College Boulevard, south of the railroad. The single-family residential site drains westward through concrete street gutters, collecting runoff from an area of approximately 5.0 acres. The runoff gathers at a low point in an existing cul-de-sac and then enters the project through a curb opening, discharging into an existing ditch at node 106. This ditch flows northward and eventually merges with runoff from the dirt road at node 112.

Before reaching node 112, the ditch captures 1.18 acres of onsite runoff, converging with the flows from the neighboring residential site.

At node 114, a high point along College Boulevard divides the drainage areas, with runoff flowing both east and west.

The drainage flows westward, covering approximately 2.5 acres, and captures runoff from adjacent slopes before reaching node 112, where all flows converge.

From node 112, the drainage flows west along the railroad tracks toward node 1, which is part of the Loma Alta Creek Floodway. Along the way, it merges with onsite flows conveyed by the existing swales, slopes, and vegetation previously described, contributing approximately 20.9 acres to the analysis. The runoff continues westward through the undisturbed project boundary via earthen swales along the southern side of the railroad, ultimately flowing toward Loma Alta Creek's existing natural channel. This channel crosses beneath the railway line within the site and continues westward, eventually discharging into the Pacific Ocean at the mouth of Loma Alta Creek.

Runoff flowing east from node 114 contributes 0.24 acres to the analysis and is captured by an existing drainage structure located just south of the railroad tracks. The runoff is then conveyed via storm drain directly into Loma Alta Creek. For this drainage study, the area is modeled as being piped from node 137 (the structure) to node 1, ensuring that the analysis includes all contributing areas and assesses the overall impact of the development on the creek. See Appendix 4 for calculations of peak runoff in existing conditions.

According to the FEMA Flood Insurance Rate Map (FIRM 06073C0758G effective 05/16/2012) for this site, the disturbed area for the proposed project is in an unshaded Zone X, which is defined as "Areas determined to be outside the 500-year floodplain". Refer to the FIRMette Map in Appendix 1.

Per NRCS Soil report, the site consists of 10.7% Hydrologic Soil Group "A", 9.4% Hydrologic Soil Group "C", and 68.9% Hydrologic Soil Group "D". Refer to Appendix 2 for NRCS soils information, while the remaining area is impervious.

The runoff coefficient for each subarea was calculated based on soil type and impervious percentage using the formula from San Diego County Hydrology Manual Section 3.1.2

C = 0.90 x (% Impervious) + Cp x (1 - % Impervious)

Cp = Pervious Coefficient Runoff value for the soil type (per San Diego County Hydrology Manual Table 3.1)

Cp Soil A = 0.20, Cp Soil C = 0.30, Cp Soil D= 0.35 (soil type D has been used for areas that have been previously compacted)

Cp-Subarea = (Soil type A% * 0.20) + (Soil type C% * 0.3) + (Soil Type D% * 0.35)

Please refer to existing conditions AES Input Data spreadsheet in appendix 4 for each subarea runoff factor.

Table 1 below summarizes the 100-year existing condition peak flow at the downstream project boundary.

			Cannar							
Exhibit	Node Number on Exhibit	mber Location		C Area-Average Runoff Coefficient	Tc (min)	Q100-Year Peak Flow (cfs)				
1	1	Northwest of the site	29.86	0.390	14.20	49.81				
1	118.10	Northeast of the site	14.06	0.457	11.81	28.13				
1	138	East of '1'	13.41	0.351	10.37	22.41				
1	137	137 College Blvd.		0.24 0.38		0.62				

TABLE 1 - Summary of Existing Flows

<u> 1.3 – Proposed Conditions</u>

The proposed project will develop a single pad designated for two building structures, accommodating a total of 282 apartment units, complete with courtyards. The development plan includes private driveways, sidewalks, landscaping, parking spaces, and the necessary infrastructure and utilities typical for such a development. This infrastructure will have a dual storm drain system comprising pipes, inlets, catch basins, brow ditches, and cleanouts. One component of this dual system is designed to collect and convey the onsite 100-year runoff through the project area to the proposed underground storage facilities.

These facilities will attenuate and direct the runoff to the proposed structural pollutant control Best Management Practices (BMPs) to meet water quality requirements. The second component, the bypass storm drain system, aims to capture and convey the offsite flows along with a portion of the onsite flows from the undisturbed slopes directly to the existing northern channel.

To facilitate access to the site from College Blvd, the existing access road northeast of the site will be paved and improved as a gated emergency-only ingress/egress road. Additionally, a new connection to the cul-de-sac on Olive Drive, east of the site, is proposed.

The onsite runoff will be directed via a street curb and gutter system, captured by proposed inlets, and routed through the proposed storm drain system to the underground storage facilities (constructed of Corrugated Metal Pipe, CMP, or an approved equivalent). These facilities are designed to store the required water quality volume and to fulfill hydromodification and peak flow management requirements. Moreover, the underground storage will feature an outlet structure engineered to release the required water quality volume within the specified drawdown time to the downstream proprietary biofiltration BMPs. These outlet structures will attenuate the peak flows and aid in meeting flow control to address hydromodification requirements.

No development is proposed within the flood zone as designated by FEMA, except for an approximate 107-square-foot area allocated for an offsite, on-grade, publicly accessible concrete pedestrian connection to the existing concrete train station north of the site, which is situated within the floodway. This minor encroachment in the floodway has been evaluated, and it is considered to have a negligible impact due to its small footprint, the absence of hydraulic alterations, no offsite fill requirements, and its alignment with the existing grade.

The remainder of the accessible concrete pedestrian connection crosses an existing flow line outside the floodway and floodplain areas. Low-flow pipes will manage normal flows, while peak flows will overtop the crossing, following the natural drainage path.

A flow-based proprietary biofiltration BMP (Modular Wetlands System or equivalent) is planned for installation on the emergency-only ingress/egress road at its lowest point to address the water quality requirements for this area. Meanwhile, the proposed underground storage facilities will offer additional storage and over-detention capabilities to meet hydromodification and peak flow attenuation requirements at the point of compliance to mitigate the construction of the proposed emergency-only ingress/egress road.

Runoff from the northeast, small section of the emergency-only ingress/egress road will be directed to a flow-based MWS unit and an underground storage facility to address water quality, hydromodification, and peak flow attenuation for this area. The treated and mitigated flow from the underground storage facility will then connect to the existing storm drain, which leads to the catch basin located just south of the railroad tracks. From there, it will discharge into the existing storm drain that flows directly into Loma Alta Creek, similar to existing conditions, where it will travel west to merge with the treated and mitigated flows from the site.

For further details on the proposed water quality features of the site, refer to the Stormwater Quality Management Plan for the Olive Park Apartments (October 2024) prepared by Hunsaker & Associates San Diego, Inc.

The development occupies approximately 6.56 acres of the onsite area, which were existing slopes and swales and will now be streets and buildings. The drainage on the developed portions of the site will be conveyed via roof drains, curbs and gutters, area drains, curb inlets, and underground storm drains. As previously discussed, these flows will be mitigated before confluence with undisturbed flows.

Runoff from the western and southern undisturbed slopes will be diverted through proposed brow ditches directly into the northwestern discharge point. This system is tasked with conveying the aforementioned flows and the offsite flows (from Olive Drive) to their designated discharge points northeast and northwest of the site. They will combine with the onsite treated flows and proceed westerly to Loma Alta Creek. For calculations regarding the proposed condition runoff, see Appendix 4.

The total studied drainage area is 29.9 ac with 32% imperviousness. The runoff coefficient for each subarea was calculated based on soil type covering the area and impervious percentage using the formula from San Diego County Hydrology Manual Section 3.1.2 for the undisturbed areas, while the runoff coefficient for disturbed areas was calculated using soil type D and impervious percentage.

 $C= 0.90 \times (\% \text{ Impervious}) + Cp \times (1 - \% \text{ Impervious})$

Cp = Pervious Coefficient Runoff value for the soil type (per San Diego County Hydrology Manual Table 3.1)

Cp Soil A = 0.20, Cp Soil C = 0.30, Cp Soil D= 0.35 (soil D for disturbed areas)

Cp-Subarea = (Soil type A% * 0.20) + (Soil type C% * 0.3) + (Soil Type D% * 0.35)

Please refer to the proposed conditions AES Input Data spreadsheet in Appendix 4 for each subarea runoff factor.

Table 2 below summarizes the unmitigated 100-year proposed condition peak flow at the downstream project boundary.

Exhibit	Node Number on Exhibit	Discharge Location	Drainage Area (ac)	C Area-Average Runoff Coefficient	Tc (min)	Q100-Year Peak Flow (cfs)	
2	1	Northwest of the site	29.86	0.507	14.34	46.82	
2	143	Northeast of the site	11.91	0.572	11.29	28.63	
2	175	East of '1'	17.18	0.471	5.49	29.56	
2	137	College Blvd.	0.24	0.475	5.00	0.87	

TABLE 2 - Summary of Proposed Unmitigated Flows

Although the flow associated with the development of the *Olive Park Apartments project* did not increase at the very downstream discharge location, the proposed underground storage facilities required for hydromodification management will provide peak flow attenuation. The riser within these facilities has been designed with orifices along its height, maintaining a foot of freeboard above the 100-year water surface elevation (WSE).

Sizes and heights of orifices were determined to achieve outlet flow less than the predevelopment flow shown in Table 1 above. Please refer to Chapter 2.2 for methodology and Appendix 5 for detention Analysis.

The resultant discharge at Node 1 will continue westerly to comingle with Loma Alta Creek and ultimately discharge into the Pacific Ocean.

Since this project is subject to compliance with hydromodification requirements, the design of the storage\detention facilities has been coordinated with those calculations, which are part of the SWQMP for Olive Park Apartments.

Table 3 below summarizes the Q100 Mitigated flow at Node 1.

Exhibit	Node Number on Exhibit	Number Location		C Area-Average Runoff Coefficient	Tc (min)	Q100-Year Peak Flow (cfs)
2	1	Northwest of the site	29.86	0.507	14.39	36.88
2	143	Northeast of the site	11.91	0.572	11.29	27.37
2	175	East of '1'	17.18	0.471	26.12	17.11
2	137	College Blvd.	0.24	0.475	6.21	0.54

TABLE 3 - Summary of Mitigated Developed Flows

1.4 – Summary of Results

The conveyance of Q100 runoff flows through the proposed site required a dual storm drain system. One of the dual systems is an on-site storm drain system proposed to route flows to the proposed detention facilities to address water quality, hydromodification, and peak flow attenuation, while the second system is a bypassed storm drain to convey the offsite flows to the existing northern channel.

Storm drain system and hydraulic calculations will be conducted in the final engineering drainage study.

Rip rap is proposed at the storm drain discharge location to help dissipate outlet velocities to a non-erosive level. The design for the rip rap will be provided during final engineering. Preliminary sizing has been performed in Chapter 4 using the velocities determined with the Hydraflow Express extension.

Two volume-based proprietary biofiltration BMPs, along with two underground storage facilities, have been included in the site's design to address hydromodification, peak flow attenuation, and water quality requirements. A flow-based proprietary biofiltration BMP is proposed at the emergency-only ingress/egress road to meet water quality requirements for the portion of the road that cannot be routed to the storage facility. A small northeastern portion of the emergency-only ingress/egress road, which drains away from the site, will be routed to a flow-based proprietary biofiltration unit to address water quality, and to an underground storage facility to manage hydromodification and peak flow attenuation. Per the hydrologic and detention analysis conducted in this study, the detention analysis for the vaults is included in Appendix 5 of this report. The table below summarizes the flow reductions at the discharge location.

The flow from the site is attenuated to ensure that the post-developed flows will not exceed the capacity of the existing downstream drainage facilities (post-development flows compared to the pre-development flows at the point of compliance southwest corner of the project (POC-1/ Node 1). See Table 4 below.

Dis. Location	Pre- Area (ac)	Post- Area (ac)	Pre-: 100-Year Peak Flow (cfs)	Post-: 100-Year Unmit. Peak Flow (cfs)	0-Year Unmit. 100-Year Mit. Peak Flow Peak Flow		TC Post Unmit (min)	TC Post Mit (min)	Q100 Flow Difference (cfs)	
Northwest corner	29.86	29.86	49.81	47.35	36.88	14.20	14.34	14.39	-12.93	
Northeast of the site	14.06	11.91	28.13	28.63	27.37	11.81	11.29	11.29	-0.76	
East of '1'	13.41	17.18	22.41	29.56	17.11	10.37	5.49	26.12	-5.30	
College Blvd.	0.24	0.24	0.62	0.89	0.54	6.06	5.00	6.21	-0.08	

 TABLE 4 – Pre-development Condition vs. Post-development Condition

-Dis. Location: Discharge Location

-Pre : Pre-Developed Conditions

-Post. Unmit.: Post Developed Unmitigated Conditions

-Post. Mit.: Post Developed Mitigated Conditions

1.5 – Conclusion

The proposed development of *Olive Park Apartments* can be roughly graded and improved with a storm drain system to accommodate the expected ultimate flows from development. In addition, with the proposed drainage facilities such as curb inlets, storm drains, water quality, flow control, and detention facilities, runoff can be mitigated to accepted San Diego County and City of Oceanside standards.

The proposed project will not substantially alter the existing drainage pattern of the site. There will be a decrease in the peak discharge from the site. Therefore, the proposed project will not impact downstream properties or drainage facilities.

1.6 - References

- San Diego County Hydrology Manual, County of San Diego Department of Public Works Flood Control Division, June 2003.
- San Diego County Hydraulic Design Manual, County of San Diego Department of Public Works Flood Control Division, September 2014
- San Diego County Drainage Design Manual, County of San Diego Department of Public Works Flood Control Division, July 2005

Stormwater Quality Management Plan for Olive Park Apartments, Hunsaker & Associates San Diego, Inc., October 2024.

CHAPTER 2 METHODOLOGY

Rational Method Hydrologic Analysis

The Rational Method as described in the San Diego County Hydrology Manual, was used for the hydrologic calculations for this project. The Rational Method formula is expressed as follows:

Q = C | A

 $I = 7.44P_6T_c-0.645$

 $\mathsf{T}_{\mathsf{c}} = \mathsf{T}_{\mathsf{t}} + \mathsf{T}_{\mathsf{i}}$

 $T_t = D/V^*$

Where:

Q = Peak discharge, in cubic feet per second (cfs).

C = Runoff coefficient, proportion of the rainfall that runs off the surface. The C coefficient was obtained from Table 3-1 of the SDCHM. It has no units and is based on the soil group and the development type for the drainage sub-area.

A = Drainage area contributing to the design location (ac).

I = Average rainfall intensity (in/hr). The formula can be found on Figure 3-2 of the SDCHM.

 P_6 = 6-hour precipitation (in). This value was taken from the 6-hour isopluvial maps found in Appendix B of the SDCHM.

T = Time of concentration (min). The formula can be found on Figure 3-3 of the SDCHM.

 T_i = Initial time of concentration, from Table 3-2 (min).

 T_t = Travel time (min). Based on methods described in Chapter 3.1.4.2 of the SDCHM.

D = Longest flow path distance (ft).

S = Slope along the flow path (%).

V = Flow velocity(ft/sec).

*Assumed flow at top of 6" gutter.

To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes.

The procedure for the subarea summation model is as follows:

(1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea.

(2) Estimate an initial Tc by using the appropriate nomograph or overland flow velocity estimation.

(3) Using the initial Tc, determine the corresponding values of I. Then Q = C I A.

(4) Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration)

The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2010 computer subarea menu is as follows:

SUBAREA HYDROLOGIC PROCESS

- 1. Confluence analysis at node.
- 2. Initial subarea analysis (including time of concentration calculation).
- 3. Pipeflow travel time (computer estimated).
- 4. Pipeflow travel time (user specified).
- 5. Trapezoidal channel travel time.
- 6. Street flow analysis through subarea.
- 7. User specified information at node.
- 8. Addition of subarea runoff to main line.
- 9. V-gutter flow through area.
- 10. Copy main stream data to memory bank
- 11. Confluence main stream data with a memory bank
- 12. Clear a memory bank

At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape.

(1). If the collection streams have the same times of concentration, then the Q values are directly summed,

Qp = Qa + Qb; Tp = Ta = Tb

(2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows:

(i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities.

Qp = Qa + Qb (la/lb); Tp = Ta

(ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values.

Qp = Qb + Qa (Tb/Ta); Tp = Tb

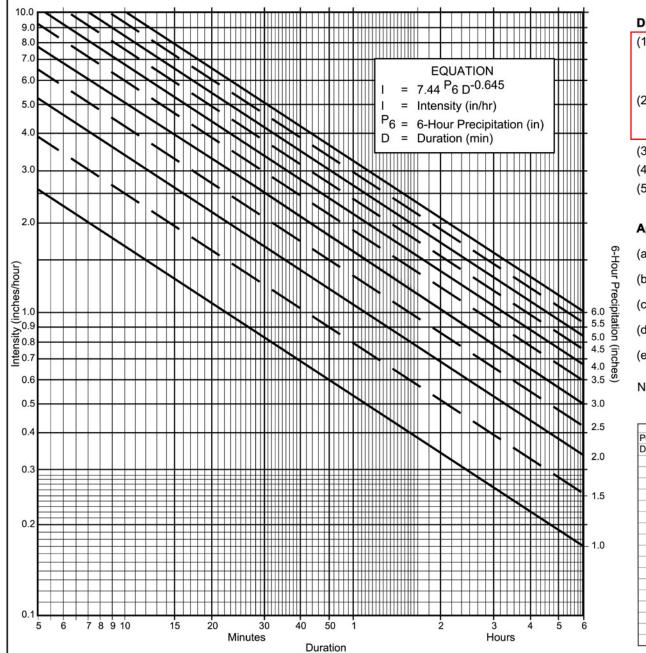
Design Storm - 100-year return interval

Land Use – Commercial;

Soil Type – Hydrologic soil groups A, C, and D are present within the drainage boundaries and a weighted average of the runoff coefficient is used based on drainage area and respective soil type.

Runoff Coefficient - In accordance with the County of San Diego standards, runoff coefficients were based on land use and soil type.

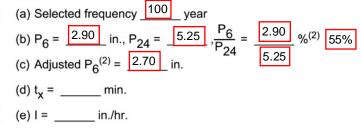
Rainfall Intensity - Initial time of concentration values were determined using the County of San Diego standards. The rainfall intensity-duration-frequency curve for the San Diego County was used to determine rainfall intensities

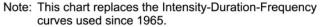

2.4 Detention

In order to provide adequate flood control, increases in peak flow rates at the outfall location for this site were mitigated using the proposed underground storage facilities (vaults).

The hydrology calculations discussed above provide peak flowrates for the vaults' inflow, which are entered into a separate program called RickRatHydro. The RickratHydro was used to produce an inflow hydrograph for the project drainage area to the vault, based on the area, time of concentration, P6 value, runoff coefficient, and peak flow rate.

Mitigation within the vault was modeled using SWMM 5.1. The Hydrograph that was generated from RickRatHydro was used as an input data for the inflows to the storage unit in the SWMM model. The riser was modeled using stage discharge table (Rating Curve in SWMM), and the volume was modeled using the storage stage table (Storage Curve), which represents the storage provided within the vault depth above excluding the water quality ponding depth.


The results from the SWMM model were used as input data (code 7) in the AES proposed condition model at the discharge location from the proposed vaults (Node 140 and 162), to generate the AES model for proposed mitigated flows.



Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	1	1	1	1	1	1	1	1	1	1	1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

3-1

- The storm frequency of peak discharges is the same as that of I for the given T_c .
- The fraction of rainfall that becomes runoff (or the runoff coefficient, C) is independent of I or precipitation zone number (PZN) condition (PZN Condition is discussed in Section 4.1.2.4).
- The peak rate of runoff is the only information produced by using the RM.

3.1.2 Runoff Coefficient

Table 3-1 lists the estimated runoff coefficients for urban areas. The concepts related to the runoff coefficient were evaluated in a report entitled *Evaluation, Rational Method "C" Values* (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report is available at San Diego County Department of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page.

The runoff coefficients are based on land use and soil type. Soil type can be determined from the soil type map provided in Appendix A. An appropriate runoff coefficient (C) for each type of land use in the subarea should be selected from this table and multiplied by the percentage of the total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient (Σ [CA]). Good engineering judgment should be used when applying the values presented in Table 3-1, as adjustments to these values may be appropriate based on site-specific characteristics. In any event, the impervious percentage (% Impervious) as given in the table, for any area, shall govern the selected value for C. The runoff coefficient can also be calculated for an area based on soil type and impervious percentage using the following formula:

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	5 of 26

$C = 0.90 \times (\% \text{ Impervious}) + C_p \times (1 - \% \text{ Impervious})$

Where: C_p = Pervious Coefficient Runoff Value for the soil type (shown in Table 3-1 as Undisturbed Natural Terrain/Permanent Open Space, 0% Impervious). Soil type can be determined from the soil type map provided in Appendix A.

The values in Table 3-1 are typical for most urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the local agency.

San Diego County Hydrology Manual Date: June 2003 Section:3Page:6 of 26

Laı	nd Use		Runoff Coefficient "C"								
		_		Soil T	ype						
NRCS Elements	County Elements	% IMPER.	Α	В	С	D					
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35					
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41					
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46					
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49					
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52					
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57					
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60					
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63					
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71					
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79					
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79					
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82					
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85					
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85					
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87					

Table 3-1RUNOFF COEFFICIENTS FOR URBAN AREAS

*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

CHAPTER 3

HYDROLOGIC MODEL FOR EXISTING CONDITIONS

CHAPTER 3

HYDROLOGIC MODEL FOR EXISTING CONDITIONS

3.1 – 100 Year Storm Event

									Existi	ng Condition								p
										NPUT DATA								
Nod	le #		Eleva	ation				Area (Ac)			Soil Type A Area	Soil Type C Area	Soil Type D			If Channe	el	If memory
From	То	Code	αU	Down	Length (ft)	Slope	total	Pervious	impervious	imperviousness	(ac)	(ac)	Area (ac)	C value	Base (ft)	Z:1	maning	Bank #
102	104	2	464.0	432.0	100	32.0%	0.17	0.17	0.00	0.00%	0.00	0.00	0.17	0.35				
104	106	5	432.0	256.5	850	20.7%	1.01	1.01	0.00	0.00%	0.00	0.09	0.92	0.35	5	3	0.015	
106	106	1																1 of 2
108	110	2	264.3	263.6	65	1.1%	0.14	0.05	0.09	65.00%	0.03	0.00	0.02	0.68				
110	106	6	263.6	256.5	717	1.0%	4.90	1.87	3.03	61.94%	0.04	1.78	0.05	0.67				
106	106	1																2 of 2
106	118	5	256.5	219.0	255	14.7%									5	2	0.015	
118	118	1																1 of 3
114	116	2	248.0	240.0	100	8.0%	0.17	0.17	0.00	0.00%	0.00	0.00	0.17	0.35				
116	112	5	240.0	223.0	845	2.0%	2.33	2.18	0.15	6.30%	0.00	0.00	2.18	0.38	10	4	0.023	
112	118	5	223.0	219.0	260	1.5%	0.25	0.25	0.00	0.00%	0.25	0.00	0.00	0.20	10	8	0.023	
118	118	1																2 of 3
120	122	2	464.0	418.0	100	46.0%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35				
122	124	5	418.0	280.0	624	22.1%	2.10	2.10	0.00	0.00%	0.00	0.00	2.10	0.35	20	40	0.03	
124	126	5	280.0	256.0	105	22.8%									18	8	0.04	
124	126	8					0.95	0.95	0.00	0.00%	0.00	0.00	0.95	0.35				
126	128	5	256.0	225.0	199	15.5%									10	8	0.04	
126	128	8					0.93	0.93	0.00	0.00%	0.00	0.93	0.00	0.30				
128	118	5	225.0	219.0	65	9.2%	0.41	0.41	0.00	0.00%	0.41	0.00	0.00	0.20	20	20	0.03	
118	118	1																3 of 3
118	118.1	5	219.0	217.0	180	1.1%	0.12	0.12	0.00	0.00%	0.12	0.00	0.00	0.20	10	8	0.023	
118.1	118.1	1																1 of 2
140	142	2	307.6	296.4	100	11.2%	0.05	0.05	0.00	0.00%	0.00	0.00	0.05	0.35				
142	144	5	296.4	246.0	250	20.2%	0.21	0.21	0.00	0.00%	0.00	0.00	0.21	0.35	20	8	0.04	
144	118.1	5	246.0	217.0	135	21.5%	0.22	0.22	0.00	0.00%	0.22	0.00	0.00	0.20	10	5	0.03	
118.1	118.1	1																2 of 2
118.1	1	5	217.0	204.0	750	1.7%									5	20	0.015	
1	1	1																1 of 3
114	137	2	245.0	235.0	100	10.0%	0.24	0.22	0.02	6.30%	0.00	0.00	0.22	0.38				
137	1	3	230.0	204.0	2400	1.1%												
137	1	1																2 of 3
132	134	2	463.8	448.0	100	15.8%	0.13	0.13	0.00	0.00%	0.00	0.00	0.13	0.35				
134	136	5	448.0	300.5	475	31.1%	7.66	7.64	0.02	0.31%	0.00	0.00	7.64	0.35	100	50	0.03	
136	138	5	300.5	229.3	338	21.0%									20	10	0.03	
136	138	8					5.62	5.62	0.00	0.00%	0.00	0.00	5.62	0.35				
138	1	5	229.3	204.0	610	4.1%	2.15	2.15	0.00	0.00%	2.15	0.00	0.00	0.20	20	50	0.023	
1	1	1																3 of 3
To	tal						29.86	26.55	3.31	11%	3.22	2.80	20.53	0.390				

Nodes correspond to existing dirt road. Although this subwatershed is within hydrologic soil types A and C, it is a man-made road and has been compaced. Soil type D has been assumed for these node processes.

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121 * OLIVE PARK APARTMENTS 100 YR EXISTING HYDROLOGY ANALYSIS * DLN 1746 W.O. 3785-0002 ***** FILE NAME: R: \1746\HYD\TM\DR\CALCS\AES\EX\100EX. DAT TIME/DATE OF STUDY: 17:18 10/04/2024 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) NO. (n) --- ---- ----- ------ ----- ----- -----20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 1 14.09.00.020/0.020/0.0200.501.500.03130.1250.016012.06.00.020/0.020/0.0200.501.500.03130.1250.0160 2 3 12.0 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 464.00 432.00 32.00 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.605 SUBAREA RUNOFF(CFS) = 0.390.17 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.39 FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 51

```
100EX. 0UT
```

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 257.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 850.00 CHANNEL SLOPE = 0.2059 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.265 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.34 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 5.36 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.64 Tc(MIN.) =8.91 SUBAREA AREA(ACRES) = 1.01 SUBAREA RUNOFF(CFS) = 1.86 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = 1.2PEAK FLOW RATE(CFS) = 2.17 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 6.55 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 106.00 = 950.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.915.26 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 1.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.17 FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6800 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.30 DOWNSTREAM ELEVATION(FEET) = 263.60 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.946 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.832 SUBAREA RUNOFF(CFS) = 0.65TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.65 FLOW PROCESS FROM NODE 110.00 TO NODE 106.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.60 DOWNSTREAM ELEVATION(FEET) = 256.50 STREET LENGTH(FEET) = 717.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH(FEET) = 12.53 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.52 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TRAVEL TIME(MIN.) = 4.74 Tc(MIN.) = 10.68 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.683 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6700 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.670 SUBAREA AREA (ACRES) =4.90TOTAL AREA (ACRES) =5.0 SUBAREA RUNOFF(CFS) = 15.37PEAK FLOW RATE(CFS) = 15.82END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.04 FLOW VELOCITY(FEET/SEC.) = 2.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 106.00 = 782.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.68 RAINFALL INTENSITY(INCH/HR) = 4.68 TOTAL STREAM AREA(ACRES) = 5.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.82 ** CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 8.915.26510.684.683 1 2.17 1.18 15.82 10.68 2 5.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 15.36 8.91 1 5.265 17.75 10.68 2 4.683 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.75 Tc(MIN.) = 10.68 TOTAL AREA(ACRES) = 6.2 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 106.00 = 950.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 118.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 256.50 DOWNSTREAM(FEET) = 219.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 250.00 CHANNEL SLOPE = 0.1500 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 17.75 FLOW VELOCITY(FEET/SEC.) = 13.54 FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 10.99 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 118.00 = 1200.00 FEET. FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 1

```
100EX. 0UT
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
_____
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.99
RAINFALL INTENSITY(INCH/HR) = 4.60
 TOTAL STREAM AREA(ACRES) =
                         6.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                17.75
FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
_____
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = . 3500
 S. C. S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 248.00
 DOWNSTREAM ELEVATION(FEET) = 240.00
ELEVATION DIFFERENCE(FEET) = 8.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.750
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.296
 SUBAREA RUNOFF(CFS) =0.37TOTAL AREA(ACRES) =0.17TOTAL RUNOFF(CFS) =
                                             0.37
FLOW PROCESS FROM NODE 116.00 TO NODE 112.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 240.00 DOWNSTREAM(FEET) = 223.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 845.00 CHANNEL SLOPE = 0.0201
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000
 MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.991
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = . 3800
 S. C. S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                           2.20
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.03
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 6.94
 Tc(MIN.) = 13.69
 SUBAREA AREA(ACRES) = 2.33
                            SUBAREA RUNOFF(CFS) = 3.53
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.378
 TOTAL AREA(ACRES) = 2.5
                              PEAK FLOW RATE(CFS) =
                                                   3.77
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 2.41
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 112.00 =
                                                945.00 FEET.
FLOW PROCESS FROM NODE 112.00 TO NODE 118.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 223.00 DOWNSTREAM(FEET) = 219.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 260.00 CHANNEL SLOPE = 0.0154
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000
 MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) =
                                        2.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.656
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = . 2000
 S. C. S. CURVE NUMBER (AMC II) = 0
                                         3.86
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.18
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 1.99
 Tc(MIN.) = 15.67
```

100EX. 0UT SUBAREA AREA(ACRES) = 0.25SUBAREA RUNOFF(CFS) = 0.18 AREA-AVERAGE RUNOFF COEFFICIENT = 0.362 TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 3.77 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.16 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.00 = 1205.00 FEET. ***** FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.67RAINFALL INTENSITY(INCH/HR) = 3.66 TOTAL STREAM AREA(ACRES) = 2.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.77 FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 464.00 DOWNSTREAM ELEVATION(FEET) = 418.00 ELEVATION DIFFERENCE(FEET) = 46.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605 SUBAREA RUNOFF(CFS) =0.23TOTAL AREA(ACRES) =0.10TOTAL RUNOFF(CFS) = 0.23 ****** FLOW PROCESS FROM NODE 122.00 TO NODE 124.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 418.00 DOWNSTREAM(FEET) = 280.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 624.00 CHANNEL SLOPE = 0.2212 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 40.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.848 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.04 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.70 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 3.86 Tc(MIN.) = 10.12SUBAREA RUNOFF(CFS) = 3.56 SUBAREA AREA (ACRES) = 2.10 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = 2.2 PEAK FLOW RATE(CFS) = 3.73 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 2.98 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 124.00 = 724.00 FEET. FLOW PROCESS FROM NODE 124.00 TO NODE 126.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 280.00 DOWNSTREAM(FEET) = 256.00 Page 5

100EX. 0UT CHANNEL LENGTH THRU SUBAREA (FEET) = 105.00 CHANNEL SLOPE = 0.2286 CHANNEL BASE(FEET) = 18.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.73FLOW VELOCITY(FEET/SEC.) = 2.81 FLOW DEPTH(FEET) = 0.07TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 10.75LONGEST FLOWPATH FROM NODE 120.00 TO NODE 126.00 = 829.00 FEET. FLOW PROCESS FROM NODE 124.00 TO NODE 126.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.664 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) =0.95SUBAREA RUNOFF(CFS) =1.55TOTAL AREA(ACRES) =3.1TOTAL RUNOFF(CFS) =5.7 5.14 TC(MIN.) = 10.75FLOW PROCESS FROM NODE 126.00 TO NODE 128.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 256.00 DOWNSTREAM(FEET) = 225.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 199.00 CHANNEL SLOPE = 0.1558 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.14FLOW VELOCITY(FEET/SEC.) = 3.51 FLOW DEPTH(FEET) = 0.13TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 11.69LONGEST FLOWPATH FROM NODE 120.00 TO NODE 128.00 = 1028.00 FEET. ***** FLOW PROCESS FROM NODE 126.00 TO NODE 128.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.418 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3000 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3386 SUBAREA AREA(ACRES) =0.93SUBAREA RUNOFF(CFS) =1.23TOTAL AREA(ACRES) =4.1TOTAL RUNOFF(CFS) =6.10 TC(MIN.) = 11.69FLOW PROCESS FROM NODE 128.00 TO NODE 118.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 225.00 DOWNSTREAM(FEET) = 219.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 65.00 CHANNEL SLOPE = 0.0923 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.331 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.28 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.97 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 12.06SUBAREA AREA(ACRES) = 0.41 SUBAREA RUNOFF(CFS) = 0.36AREA-AVERAGE RUNOFF COEFFICIENT = 0.326

100EX. 0UT TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 6.34 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 3.00 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 118.00 = 1093.00 FEET. ***** FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.06 RAINFALL INTENSITY(INCH/HR) = 4.33 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.34 ** CONFLUENCE DATA ** TC INTENSITY STREAM RUNOFF AREA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE)
 17. 75
 10. 99
 4. 598
 6. 22

 3. 77
 15. 67
 3. 656
 2. 75
 1 2 6.34 12.06 3 4.331 4.49 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC NUMBER (CFS) (MIN.) I NTENSI TY (INCH/HOUR) 26.17 10.99 4.598 1 25.96 12.06 2 4.331 23. 24 15. 67 3 3.656 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.17 Tc(MIN.) = TOTAL AREA(ACRES) = 13.5 10.99 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.00 = 1205.00 FEET. ***** FLOW PROCESS FROM NODE 118.00 TO NODE 118.10 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 219.00 DOWNSTREAM(FEET) = 217.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 180.00 CHANNEL SLOPE = 0.0111 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.390 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 26.23 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.67 AVERAGE FLOW DEPTH(FEET) = 0.51 TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 11.81SUBAREA RUNOFF(CFS) = 0.11 SUBAREA AREA(ACRES) = 0.12 AREA-AVERAGE RUNOFF COEFFICIENT = 0.462TOTAL AREA(ACRES) = 13.6 PEAK FLOW RATE(CFS) = 27.54 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 3.71 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.10 = 1385.00 FEET. FLOW PROCESS FROM NODE 118.10 TO NODE 118.10 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

```
100EX. 0UT
```

TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.81 RAINFALL INTENSITY(INCH/HR) = 4.39 TOTAL STREAM AREA(ACRES) = 13.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.54 ******* FLOW PROCESS FROM NODE 140.00 TO NODE 142.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 307.60 DOWNSTREAM ELEVATION(FEET) = 296.40 ELEVATION DIFFERENCE(FEET) = 11.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10. %, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605 SUBAREA RUNOFF(CFS) = 0.12TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0. 12 FLOW PROCESS FROM NODE 142.00 TO NODE 144.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 296.40 DOWNSTREAM(FEET) = 246.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 250.00 CHANNEL SLOPE = 0.2016 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.933 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.29 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16 AVERAGE FLOW DEPTH(FEET) = 0.01 TRAVEL TIME(MIN.) = 3.59 Tc(MIN.) =9.85 SUBAREA AREA(ACRES) = 0.21SUBAREA RUNOFF(CFS) = 0.36AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.45 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 144.00 = 350.00 FEET. FLOW PROCESS FROM NODE 144. 00 TO NODE 118. 10 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 246.00 DOWNSTREAM(FEET) = 217.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 135.00 CHANNEL SLOPE = 0.2148 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 5.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.595 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.55 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.96 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 11.00SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.20

100EX. 0UT AREA-AVERAGE RUNOFF COEFFICIENT = 0.281 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 0.50.62 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 2.21 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 118.10 = 485.00 FEET. ***** FLOW PROCESS FROM NODE 118.10 TO NODE 118.10 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.00RAINFALL INTENSITY (INCH/HR) = 4.60TOTAL STREAM AREA(ACRES) = 0.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.62 ** CONFLUENCE DATA ** STREAM RUNOFF Tc I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 11.81 4.390 27.54 13.58 1 2 0.62 11.00 4.595 0.48 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC NUMBER (CFS) (MIN.) I NTENSI TY (MIN.)(INCH/HOUR) 26.93 11.00 4.595 1 28.13 11.81 2 4.390 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.13 Tc(MIN.) = 11.81 TOTAL AREA(ACRES) = 14.1 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.10 = 1385.00 FEET. ***** FLOW PROCESS FROM NODE 118.10 TO NODE 1.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 217.00 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 750.00 CHANNEL SLOPE = 0.0173 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 20.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 28.13 2135.00 FEET. FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.20RAINFALL INTENSITY(INCH/HR) = 3.90TOTAL STREAM AREA(ACRES) = 14.06 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.13 FLOW PROCESS FROM NODE 114.00 TO NODE 137.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<

```
100EX. OUT
```

Page 10

```
*USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = . 3800
 S. C. S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                            100.00
 UPSTREAM ELEVATION(FEET) = 245.00
 DOWNSTREAM ELEVATION(FEET) = 235.00
 ELEVATION DIFFERENCE(FEET) =
                       10.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                              6.016
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION!
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.781
 SUBAREA RUNOFF(CFS) = 0.62
 TOTAL AREA(ACRES) =
                  0.24 TOTAL RUNOFF(CFS) =
                                         0.62
FLOW PROCESS FROM NODE 137.00 TO NODE
                                1.00 \text{ IS CODE} = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 230.00 DOWNSTREAM(FEET) = 204.00
 FLOW LENGTH(FEET) = 2400.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.23
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.62
 PIPE TRAVEL TIME(MIN.) = 12.40 Tc(MIN.) = 18.42
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE
                                 1.00 =
                                          2500.00 FEET.
******
 FLOW PROCESS FROM NODE 137.00 TO NODE
                                 1.00 IS CODE =
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.42
 RAINFALL INTENSITY(INCH/HR) = 3.30
 TOTAL STREAM AREA(ACRES) = 0.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.62
FLOW PROCESS FROM NODE 132.00 TO NODE 134.00 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
_____
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = . 3500
 S. C. S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                            100.00
 UPSTREAM ELEVATION(FEET) = 463.80
 DOWNSTREAM ELEVATION(FEET) =
                      448.00
 ELEVATION DIFFERENCE(FEET) =
                       15.80
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                             6.267
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION!
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605
 SUBAREA RUNOFF(CFS) = 0.30
                 0.13 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                         0.30
FLOW PROCESS FROM NODE 134.00 TO NODE 136.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 448.00 DOWNSTREAM(FEET) = 300.50
 CHANNEL LENGTH THRU SUBAREA (FEET) = 475.00 CHANNEL SLOPE = 0.3105
 CHANNEL BASE (FEET) = 100.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
                                     2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.105
```

100EX. 0UT *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.21 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.57 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.08 Tc(MIN.) = 9.34SUBAREA RUNOFF(CFS) = 13.69 SUBAREA AREA(ACRES) = 7.66AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = 7.8 PEAK FLOW RATE(CFS) = 13.92 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 3.33 LONGEST FLOWPATH FROM NODE 132.00 TO NODE 136.00 = 575.00 FEET. FLOW PROCESS FROM NODE 136.00 TO NODE 138.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 300.50 DOWNSTREAM(FEET) = 229.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 338.00 CHANNEL SLOPE = 0.2107 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 13.92FLOW VELOCITY(FEET/SEC.) = 5.51 FLOW DEPTH(FEET) = 0.12TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) = 10.37LONGEST FLOWPATH FROM NODE 132.00 TO NODE 138.00 = 913.00 FEET. FLOW PROCESS FROM NODE 136.00 TO NODE 138.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.774 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 9.39 TOTAL AREA(ACRES) = 13.4 TOTAL RUNOFF(CFS) = 22.41 TC(MIN.) = 10.37FLOW PROCESS FROM NODE 138.00 TO NODE 1.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 229.30 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00 CHANNEL SLOPE = 0.0415 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) = 2.00100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.117 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 23.29 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.80 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 2.67 Tc(MIN.) = 13.04SUBAREA AREA(ACRES) = 2.15SUBAREA RUNOFF(CFS) = 1.77AREA-AVERAGE RUNOFF COEFFICIENT = 0.329 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 15.6 22.41 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 3.70 LONGEST FLOWPATH FROM NODE 132.00 TO NODE 1.00 = 1523.00 FEET. *****

FLOW PROG	CESS FROM NO	DDE 1.	OO TO NODE	100EX.OUT 1.00 IS CODE	= 1
>>>>AND	COMPUTE VAL	RIOUS CONFI	REAM FOR CONFLU LUENCED STREAM	VALUES<<<<	
TOTAL NUM CONFLUENC TIME OF C RAINFALL TOTAL STR	MBER OF STRI CE VALUES US CONCENTRATION INTENSITY(I REAM AREA(AG	EAMS = 3 SED FOR INI DN(MIN.) = INCH/HR) = CRES) =	DEPENDENT STREA 13.04 4.12	M 3 ARE:	
** CONFLI	JENCE DATA ³	* *			
STREAM	RUNOFF	Тс	I NTENSI TY	AREA	
	(CFS)		(INCH/HOUR)		
1	28.13			14.06	
2	0.62		3.295	0.24	
3	22.41	13.04	4.117	15.56	
** PEAK F STREAM NUMBER 1 2	CE FORMULA (FLOW RATE T/ RUNOFF (CFS) 49.47 49.81 42.35	ABLE ** Tc (MIN.) 13.04	I NTENSI TY (I NCH/HOUR)		
3	42.35	18.42	3. 295		
PEAK FLOW TOTAL ARE LONGEST F	N RATE(CFS) EA(ACRES) = FLOWPATH FRO	= 49 29.0 DM NODE	9 114.00 TO NODE	= 14.20 1.00 =	
END OF S	TUDY SUMMARY	Y:	29.9 TC(MIN.) 49.81		

♠

Olive Park Apartments Preliminary Drainage Study

CHAPTER 4

HYDROLOGIC MODEL FOR DEVELOPED CONDITIONS

Olive Park Apartments Preliminary Drainage Study

CHAPTER 4

HYDROLOGIC MODEL FOR DEVELOPED CONDITIONS

4.1 – 100 Year Storm Event

										ed Condition								
			-						AES IN	IPUT DATA	-				_			
Node #		Code	Elev	ation	Length (ft)	Slope		Area (Ac)		imperviousness		Soil Type C Area	Soil Type D	C value		If Channe		If memory
From	То	couc	Up	Down	-		total	Pervious	impervious	•	(ac)	(ac)	Area (ac)		Base (ft)	Z:1	maning	Bank #
102	104	2	464.0	453.0	65	16.9%	0.11	0.11	0.00	0.00%	0.00	0.00	0.11	0.35				
104	106	5	453.0	254.0	850	23.4%	1.32	1.32	0.00	0.00%	0.00	0.02	1.30	0.35	5	3	0.015	
106	112	3	244.0	243.4	61	1.1%												
112	112	1																1 of 2
108	110	2	264.3	263.6	65	1.1%	0.14	0.05	0.09	65.00%	0.03	0.00	0.02	0.68				
110	112	6	263.6	256.5	717	1.0%	4.89	1.86	3.03	61.96%	0.04	1.77	0.05	0.67				
112	112	1																2 of 2
112	113	3	238.0	222.5	176	8.8%												
113	113	10																1
120	122	2	264.0	263.3	65	1.1%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				
122	124	6	263.3	256.0	384	1.9%	0.60	0.18	0.42	70.00%	0.00	0.00	0.18	0.74				
124	125	3	246.0	244.0	101	2.0%												
126	125	8					0.21	0.06	0.15	70.00%	0.00	0.00	0.06	0.74				
125	127	3	244.0	242.9	55	2.0%												
128	127	8					0.22	0.07	0.15	70.00%	0.00	0.00	0.07	0.74				
127	142	3	242.9	227.0	208	7.6%												
142	142	1																1 of 3
130	132	2	264.0	262.7	65	2.0%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				
132	134	6	262.7	260.5	111	2.0%	0.30	0.09	0.21	70.00%	0.00	0.00	0.09	0.74				
134	135	3	250.5	249.7	74	1.0%											1	
136	135	8					0.15	0.05	0.11	70.00%	0.00	0.00	0.05	0.74				
135	142	3	249.7	227.0	296	7.7%										1		
142	142	1				,.												2 of 3
138	140	2	263.0	262.3	65	1.1%	0.10	0.03	0.07	70.00%	0.00	0.00	0.03	0.74		1		
140	142	6	262.3	233.0	245	12.0%	0.55	0.17	0.39	70.00%	0.00	0.00	0.17	0.74				1
142	142	1																3 of 3
142	145	3	222.0	221.5	10	5.0%								1				
145	145	10		22115	10	51070												2
114	116	2	242.7	242.0	65	1.0%	0.1	0.10	0.00	0.00%	0.00	0.10	0.00	0.30				
114	118	5	242.0	235.3	758	0.9%	1.29	1.14	0.15	11.63%	0.62	0.52	0.00	0.32	2	2	0.015	
118	119	3	225.0	233.5	25	0.8%	1.25	1.14	0.15	11.0570	0.02	0.52	0.00	0.52		-	0.015	
118	119	8	225.0	224.0	25	0.070	0.53	0.03	0.50	95.00%	0.00	0.00	0.03	0.87			-	
110	113	3	224.8	223.0	180	1.0%	0.55	0.05	0.50	55.00%	0.00	0.00	0.05	0.07			-	
119	113	8	224.0	223.0	100	1.070	0.27	0.27	0.00	0.00%	0.00	0.00	0.27	0.35				'
113	113	11					0.27	0.27	0.00	0.00%	0.00	0.00	0.27	0.35				1
113	113	11						<u> </u>						1	+		+	1
113	113	3	223.0	221.5	140	1.1%		<u> </u>						l	+	<u> </u>	+	
115	145	11	223.0	221.3	140	1.170		<u> </u>						1	+		+	2
145	145	11						<u> </u>						1	+		+	2
145	143	3	221.5	220.0	90	1.7%		<u> </u>							+	<u> </u>	+	<u> </u>
145	143		221.3	220.0	50	1./70		<u> </u>							+	<u> </u>	+	1 of 2
		1	220.0	224.0	100	4.0%	0.12	0.12	0.00	0.00%	0.12	0.00	0.00	0.20	<u> </u>	<u> </u>		1012
139 141	141 143	2	238.0	234.0 220.0	100 1080	4.0% 1.3%	0.12	0.12	0.00	0.00%	0.12 0.81	0.00	0.00	0.20	10		0.023	+
141 143	143 143	5	234.0	220.0	UQU	1.5%	0.81	0.81	0.00	0.00%	18.0	0.00	0.00	0.20	10	8	0.023	2 of 2
143			220.0	204.0	950	1.7%	0.53	0.53	0.00	0.00%	0.53	0.00	0.00	0.20	-	20	0.015	2 01 2
	1	5	220.0	204.0	950	1.7%	0.53	0.53	0.00	0.00%	0.53	0.00	0.00	0.20	5	20	0.015	<u> </u>
1	1	10	264.0	262.5	65	2.20/	0.10	0.00	0.10	100.000/	0.00	0.00	0.00	0.00	L		-	1
146	148	2	264.0	262.5	65	2.3%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90			-	
148	150	6	262.5	255.0	507	1.5%	1.47	0.15	1.32	90.00%	0.00	0.00	0.15	0.85				
150	151	3	245.0	244.0	88	1.1%												
152	151	8					0.25	0.03	0.23	90.00%	0.00	0.00	0.03	0.85				
151	160	3	244.0	242.4	131	1.3%												4
160	160	1																1 of 3
162	164	2	264.0	263.4	65	1.0%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				
164	166	6	263.4	255.6	367	2.1%	0.72	0.07	0.65	90.00%	0.00	0.00	0.07	0.85				
166	167	3	245.6	245.2	17	2.4%												

									Propos	ed Condition								
										NPUT DATA								
Node #			Elev	ation				Area (Ac)			Soil Type A Area	Soil Type C Area	Soil Type D			If Channe	I	If memory
From	То	Code	Up	Down	Length (ft)	Slope	total	Pervious	impervious	imperviousness	(ac)	(ac)	Area (ac)	C value	Base (ft)	Z:1	maning	Bank #
168	167	8					0.21	0.02	0.19	90.00%	0.00	0.00	0.02	0.85				
167	160	3	251.0	244.0	119	5.9%												
160	160	1																2 of 3
172	174	2	255.8	255.0	65	1.2%	0.09	0.01	0.08	90.00%	0.00	0.00	0.01	0.85				
174	176	6	255.0	252.0	305	1.0%	1.32	0.13	1.19	90.00%	0.00	0.00	0.13	0.85				
176	160	3	248.0	244.0	63	6.3%												
160	160	1																3 of 3
160	175	3	220.0	209.5	112	9.4%												
173	175	8					0.42	0.42	0.00	0.00%	0.00	0.00	0.42	0.35				
175	175	10																3
178	180	2	464.0	442.0	65	33.8%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35	100		0.00	
180	182	5	442.0	312.0	394	33.0%	2.00	2.00	0.00	0.00%	0.00	0.00	2.00	0.25	100	50	0.03	┫────┤
180	182	8					2.08	2.08	0.00	0.00%	0.00	0.00	2.08	0.35		-	-	+
184	182 182	8					0.16	0.16	0.00	0.00%	0.00	0.00	0.16	0.35		-	-	1 of 2
182 186	182	1 2	464.2	463.5	65	1.1%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35	<u> </u>	+	+	1017
186	188	5	464.2	312.0	478	31.7%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.55	100	50	0.03	+
188	182	8	405.5	512.0	470	51.7%	2.88	2.88	0.00	0.00%	0.00	0.00	2.88	0.35	100	50	0.05	
188	182	ہ 1					2.00	2.00	0.00	0.00%	0.00	0.00	2.00	0.55				2 of 2
182	191	5	312.0	278.0	274	12.4%									3	3	0.015	2012
192	191	8	512.0	270.0	2/4	12.470	0.90	0.90	0.00	0.00%	0.00	0.00	0.90	0.35	5	5	0.015	
191	191	5	278.0	256.0	66	33.4%	0.50	0.50	0.00	0.0076	0.00	0.00	0.50	0.55	3	3	0.015	4
191	193	8	270.0	230.0	00	55.470	0.54	0.54	0.00	0.00%	0.00	0.00	0.54	0.35	5	5	0.015	4
193	195	5	256.0	244.0	242	5.0%	0.54	0.54	0.00	0.0076	0.00	0.00	0.54	0.55	3	3	0.015	+
195	195	1													-	-		1 of 2
196	198	2	470.0	461.0	65	13.8%	0.10	0.08	0.02	15.46%	0.00	0.00	0.08	0.42				
198	195	5	461.0	244.0	550	39.5%									14	10	0.03	
198	195	8					2.50	2.50	0.00	0.00%	0.00	0.00	2.50	0.35				
195	195	1																2 of 2
195	175	5	244.0	209.5	333	10.4%									3	2	0.015	
199	175	8					0.50	0.50	0.00	0.00%	0.00	0.00	0.50	0.35				
175	175	1																1 of 2
200	202	2	448.5	426.0	65	34.6%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35				
202	175	5	426.0	209.5	795	27.2%									80	50	0.03	
202	175	8					2.54	2.54	0.00	0.00%	0.28	0.00	2.26	0.33				
175	175	1																2 of 2
175	175	11																3
175	175	12																3
175	1	5	209.5	204.0	202	2.7%									10	8	0.03	
1	1	11													<u> </u>			1
1	1	12																1
1	1	1	245.6	225.6	100	40.00/	0.00	0.01	0.05	00.000/	0.00	0.00	0.01	0.05	 	+	+	1 of 2
131 133	133 137	2	245.0 231.0	235.0 230.0	100 35	10.0%	0.06	0.01	0.05	90.00%	0.00	0.00	0.01	0.85	 	+	+	╂────┤
			231.0	230.0	35		0.40	0.10	0.00	0.000/	0.00	0.00	0.10	0.25	 	+	+	╂────┤
133 137	137	8	230.0	204.0	2400	1.1%	0.18	0.18	0.00	0.00%	0.00	0.00	0.18	0.35				+
137	1	3	230.0	204.0	2400	1.1%												2 of 2
137	T	1						-							 	+	+	2012
To	tal						29.86	20.47	9.39	31.44%	2.52	2.33	15.64	0.507	+	+	1	╂───┤
10	Lai	I					29.80	20.47	9.39	51.44%	2.52	2.33	13.04	0.307	1			

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121 * OLIVE PARK APARTMENTS 100 YR PROPOSED DRAINAGE ANALYSIS * DLN 1746 W.O. 3785-0002 ***** FILE NAME: R: \1746\HYD\TM\DR\CALCS\AES\PR\100PR. DAT TIME/DATE OF STUDY: 14:30 10/11/2024 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) NO. (FT) (FT) (FT) (n) === 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 1 2 14.0 9.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 18.0 13.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 3 10.0 5.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.00 DOWNSTREAM ELEVATION(FEET) = 453.00 ELEVATION DIFFERENCE(FEET) = 11.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.29 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.29

100PR. 0UT FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 453.00 DOWNSTREAM(FEET) = 254.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = 0.2341 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.030 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.54 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) = 7.22SUBAREA RUNOFF(CFS) = 2.79 SUBAREA AREA(ACRES) = 1.32 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 1.4 3.02 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 8.09 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 106.00 = 915.00 FEET. ****** FLOW PROCESS FROM NODE 106.00 TO NODE 112.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 243.40 FLOW LENGTH (FEET) = 61.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.91 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.02 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 7.42 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 976.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.42 RAINFALL INTENSITY(INCH/HR) = 5.92 TOTAL STREAM AREA(ACRES) = 1.43 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.02 FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6800 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.30 DOWNSTREAM ELEVATION(FEET) = 263.60 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.946 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.832 SUBAREA RUNOFF(CFS) = 0.65TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.65

100PR. OUT FLOW PROCESS FROM NODE 110.00 TO NODE 112.00 IS CODE = 62_____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.60 DOWNSTREAM ELEVATION(FEET) = 256.50 STREET LENGTH(FEET) = 717.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH(FEET) = 12.53AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.52 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TRAVEL TIME(MIN.) = 4.74 Tc(MIN.) = 10.68 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.682 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6700 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.670 SUBAREA AREA(ACRES) = 4.89SUBAREA RUNOFF(CFS) = 15.34TOTAL AREA(ACRES) = 5.0PEAK FLOW RATE(CFS) = 15.79END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.04 FLOW VELOCITY(FEET/SEC.) = 2.93 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 112.00 = 782.00 FEET. ****** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.68 RAINFALL INTENSITY(INCH/HR) = 4.68TOTAL STREAM AREA(ACRES) = 5.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.79 ** CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.02 7.42 5.921 1.43 2 15.79 10.68 4.682 5.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (INCH/HOUR) (CFS) (MIN.)13.99 7.42 5.921 1 2 18.17 10. 68 4.682 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.17 Tc(MIN.) = 10.68 TOTAL AREA(ACRES) = 6.5 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 976.00 FEET.

100PR. 0UT FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 238.00 DOWNSTREAM(FEET) = 222.50 FLOW LENGTH (FEET) = 176.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.17PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 10.85 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 113.00 = 1152.00 FEET. FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 263.30 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.832 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 ***** FLOW PROCESS FROM NODE 122.00 TO NODE 124.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.30 DOWNSTREAM ELEVATION(FEET) = 256.00 STREET LENGTH(FEET) = 384.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.38 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30HALFSTREET FLOOD WIDTH(FEET) = 8.48 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.84 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84 STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 5.08 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.562 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.763

100PR. OUT SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.36 TOTAL AREA(ACRES) = 0.7PEAK FLOW RATE(CFS) = 4.04 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.66 FLOW VELOCITY(FEET/SEC.) = 3.22 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 120.00 TO NODE 124.00 = 449.0 1.09 124.00 = 449.00 FEET. FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 246.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH (FEET) = 101.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.04PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 5.33 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 125.00 = 550.00 FEET. FLOW PROCESS FROM NODE 126.00 TO NODE 125.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.335*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7576 SUBAREA AREA(ACRES) =0. 21SUBAREA RUNOFF(CFS) =1. 14TOTAL AREA(ACRES) =0. 9TOTAL RUNOFF(CFS) =5. 06 TC(MIN.) =5.33 ****** FLOW PROCESS FROM NODE 125.00 TO NODE 127.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 242.90 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.32 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.06PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 5.45 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 127.00 = 605.00 FEET. FLOW PROCESS FROM NODE 128.00 TO NODE 127.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.226 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7542 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 6.16 TC(MIN.) = 5.45FLOW PROCESS FROM NODE 127.00 TO NODE 142.00 IS CODE = 31 _____

100PR. 0UT >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 242.90 DOWNSTREAM(FEET) = 227.00 FLOW LENGTH (FEET) = 208.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6. 16 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 5.73 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 142.00 = 813.00 FEET. FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.73RAINFALL INTENSITY (INCH/HR) = 7.00TOTAL STREAM AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.16 FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 262.70 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE (FEET) = 1.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.304 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 FLOW PROCESS FROM NODE 132.00 TO NODE 134.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 3 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 262.70 DOWNSTREAM ELEVATION(FEET) = 260.45 STREET LENGTH(FEET) = 111.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DI STANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.54 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.80 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 0.70 Tc(MIN.) = 3.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.

100PR. 0UT *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.780 SUBAREA AREA(ACRES) =0.30SUBAREA RUNOFF(CFS) =1.70TOTAL AREA(ACRES) =0.4PEAK FLOW RATE(CFS) = 2.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38 FLOW VELOCITY(FEET/SEC.) = 2.91 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 134.00 = 176.00 FEET. ******* FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 250.45 DOWNSTREAM(FEET) = 249.70 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.66 ESTIMATED PIPE DIAMETER(INCH) = 18.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.38PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 3.27 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 135.00 = 250.00 FEET. FLOW PROCESS FROM NODE 136.00 TO NODE 135.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7718 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.86 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.24 TC(MIN.) =3.27 FLOW PROCESS FROM NODE 135.00 TO NODE 142.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 249.70 DOWNSTREAM(FEET) = 227.00 FLOW LENGTH(FEET) = 296.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.47ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.24PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 3.74 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 142.00 = 546.00 FEET. ****** FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.74 RAINFALL INTENSITY(INCH/HR) = 7.64 TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.24

100PR. 0UT ****** FLOW PROCESS FROM NODE 138.00 TO NODE 140.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 263.00 DOWNSTREAM ELEVATION(FEET) = 262.30 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.097 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.547 SUBAREA RUNOFF(CFS) = 0.56TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.56 FLOW PROCESS FROM NODE 140.00 TO NODE 142.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 262.30 DOWNSTREAM ELEVATION(FEET) = 233.00 STREET LENGTH(FEET) = 245.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1 97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.17 HALFSTREET FLOOD WIDTH(FEET) = 2.35 AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.68 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98 STREET FLOW TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 5.82 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.931 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.740 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.82 DEAK FLOW PATE(CES) = TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 3.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.21 FLOW VELOCITY(FEET/SEC.) = 5.65 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19 LONGEST FLOWPATH FROM NODE 138.00 TO NODE 142.00 = 310.00 FEET. ***** FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.82RAINFALL INTENSITY (INCH/HR) = 6.930.65 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY ARFA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 6.999 1 6.16 5.73 1.13 2 3.24 3.74 7.641 0.55 3 3.33 5.82 6.931 0.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** Тс STREAM RUNOFF I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 9.41 3.74 1 7.641 2 12.41 5.73 6.999 5.82 3 12.37 6.931 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.41 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3 5.73 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 142.00 = 813.00 FEET. FLOW PROCESS FROM NODE 142.00 TO NODE 145.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 221.50 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.95 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.41PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.74 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 = 823.00 FEET. ***** FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< _____ FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 242.70 242.00 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.326 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.509 SUBAREA RUNOFF(CFS) = 0.140.10 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.14 ****** FLOW PROCESS FROM NODE 116.00 TO NODE 118.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 242.00 DOWNSTREAM(FEET) = 235.30 CHANNEL LENGTH THRU SUBAREA (FEET) = 758.00 CHANNEL SLOPE = 0.0088 CHANNEL BASE (FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.540 *USER SPECIFIED(SUBAREA):

100PR. 0UT

100PR. 0UT USER-SPECIFIED RUNOFF COEFFICIENT = . 3300 S. C. S. CURVE NUMBER (AMC II) = 00.89 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.45 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 5.15 Tc(MIN.) = 16.48SUBAREA AREA(ACRES) = 1.29 SUBAREA RUNOFF(CFS) = 1.51AREA-AVERAGE RUNOFF COEFFICIENT = 0.328 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 1.61 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.94 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.00 = 823.00 FEET. FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 225.00 DOWNSTREAM(FEET) = 224.80 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.61PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 16.59LONGEST FLOWPATH FROM NODE 114.00 TO NODE 119.00 = 848.00 FEET. FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.525 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.4775 SUBAREA AREA(ACRES) = 0.53 SUBAREA RUNOFF(CFS) = 1.63 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) = 3.23 TC(MIN.) = 16.59FLOW PROCESS FROM NODE 119.00 TO NODE 113.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 224.80 DOWNSTREAM(FEET) = 223.00 FLOW LENGTH (FEET) = 180.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.04 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.23 PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 17.18 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 = 1028.00 FEET. FLOW PROCESS FROM NODE 119.00 TO NODE 113.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.446 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.4618 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.33

100PR. OUT

TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 3.49 TC(MIN.) =17.18 113.00 TO NODE FLOW PROCESS FROM NODE $113 \ 00 \ \text{LS} \ \text{CODF} = 11$ _____ >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< _____ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.49 17.18 3.446 2.19 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 = 1028.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.17 10.85 4.635 6.46 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 113.00 = 1152.00 FEET. ** PEAK FLOW RATE TABLE ** Тс RUNOFF STREAM I NTENSI TY NUMBER (CFS) (MIN.)(INCH/HOUR) 20.37 10.85 1 4.635 2 16.99 17.18 3.446 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.37 Tc(MIN.) = 10.85 TOTAL AREA(ACRES) = 8.6 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12 >>>>CLEAR MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 113.00 TO NODE 145.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 223.00 DOWNSTREAM(FEET) = 221.50 FLOW LENGTH (FEET) = 140.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.02 ESTIMATED PIPE DIAMETER(INCH) = 24.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.37PIPE TRAVEL TIME(MIN.) = 0.29Tc(MIN.) = 11.14 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 145.00 = 1292.00 FEET. FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 11_____ >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< _____ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY ARFA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.37 11.14 4.557 8.65 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 145.00 = 1292.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 12.41 5.74 6.989 1 2.33 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 = 823.00 FEET. ** PFAK FLOW RATE TABLE **

STREAM RUNOFF Тс I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 22.91 5.74 6.989 1 2 28.47 11.14 4.557 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.47Tc(MIN.) =11.14 TOTAL AREA(ACRES) = 11.0 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 12 _____ >>>>CLEAR MEMORY BANK # 2 <<<<< _____ FLOW PROCESS FROM NODE 145.00 TO NODE 143.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 221.50 DOWNSTREAM(FEET) = 220.00 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.47 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PI PE-FLOW(CFS) = 28.47 PIPE TRAVEL TIME(MIN.) = 0.14Tc(MIN.) = 11.29 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 143.00 = 1382.00 FEET. ****** FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.29RAINFALL INTENSITY(INCH/HR) = 4.52 TOTAL STREAM AREA(ACRES) = 10.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.47 FLOW PROCESS FROM NODE 139.00 TO NODE 141.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 238.00 DOWNSTREAM ELEVATION(FEET) = 234.00 ELEVATION DIFFERENCE(FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.206 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.822 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.12 FLOW PROCESS FROM NODE 141.00 TO NODE 143.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 234.00 DOWNSTREAM(FEET) = 220.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 1080.00 CHANNEL SLOPE = 0.0130 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.359 *USER SPECIFIED(SUBAREA):

100PR. 0UT

100PR. 0UT USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 00.32 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.87 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 20.71 Tc(MIN.) = 30.92SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) =0.38 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 0.44 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 0.87 LONGEST FLOWPATH FROM NODE 139.00 TO NODE 143.00 = 1180.00 FEET. ****** FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 30.92 RAINFALL INTENSITY(INCH/HR) = 2.36 TOTAL STREAM AREA(ACRES) = 0.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.44 ** CONFLUENCE DATA ** RUNOFF I NTENSI TY STREAM Tc AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 11.29 4.520 1 28.47 10.98 2 0.44 30. 92 2.359 0.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** RUNOFF Tc STRFAM I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 4. 520 1 28.63 11.29 15.30 30. 92 2 2.359 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.63 Tc(MIN.) = 11.29 TOTAL AREA(ACRES) = 11.9 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 143.00 = 1382.00 FEET. FLOW PROCESS FROM NODE 143.00 TO NODE 1.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 950.00 CHANNEL SLOPE = 0.0168 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.873 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 28.83 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 5.19 AVERAGE FLOW DEPTH(FEET) = 0.42 TRAVEL TIME(MIN.) = 3.05 Tc(MIN.) = 14.34SUBAREA AREA(ACRES) = 0.53SUBAREA RUNOFF(CFS) = 0.41AREA-AVERAGE RUNOFF COEFFICIENT = 0.557 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 12.428.63 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET/SEC.) = 5.19

100PR. 0UT LONGEST FLOWPATH FROM NODE 102.00 TO NODE 1.00 = 2332.00 FEET. FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 146.00 TO NODE 148.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 DOWNSTREAM ELEVATION (FEET) = 262.50 ELEVATION DIFFERENCE (FEET) = 1.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.196 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) =0.69TOTAL AREA(ACRES) =0.10TOTAL RUNOFF(CFS) = 0.69 FLOW PROCESS FROM NODE 148.00 TO NODE 150.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 3 USED) <<<<< UPSTREAM ELEVATION(FEET) = 262.50 DOWNSTREAM ELEVATION(FEET) = 255.00 STREET LENGTH(FEET) = 507.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00DI STANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH(FEET) = 12.74 AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 2.70 Tc(MIN.) = 4.89 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.853 SUBAREA AREA(ACRES) =1.47SUBAREA RUNOFF(CFS) =9.55TOTAL AREA(ACRES) =1.6PEAK FLOW RATE(CFS) = PEAK FLOW RATE(CFS) = 10.23 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.40 FLOW VELOCITY(FEET/SEC.) = 3.65 DEPTH*VELOCITY(FT*FT/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 150.00 = 572.00 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<

```
100PR. 0UT
```

ELEVATION DATA: UPSTREAM(FEET) = 245.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH(FEET) = 88.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.23PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 146.00 TO NODE 5.11 151.00 = 660.00 FEET. FLOW PROCESS FROM NODE 152.00 TO NODE 151.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.538 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.8527 SUBAREA AREA(ACRES) =0.25SUBAREA RUNOFF(CFS) =1.60TOTAL AREA(ACRES) =1.8TOTAL RUNOFF(CFS) =11.7 11.70 TC(MIN.) = 5.11FLOW PROCESS FROM NODE 151.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 242.40 FLOW LENGTH(FEET) = 131.00 MANNING'S N = 0.013DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.48 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.70 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 160.00 = 791.00 FFFT FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.40RAINFALL INTENSITY(INCH/HR) = 7.27 TOTAL STREAM AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.70 FLOW PROCESS FROM NODE 162.00 TO NODE 164.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 DOWNSTREAM ELEVATION(FEET) = 263.35 ELEVATION DIFFERENCE(FEET) = 0.65 SUBAREA OVERLAND TIME OF FLOW(MIN.) =2.789 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69

100PR. 0UT TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 FLOW PROCESS FROM NODE 164.00 TO NODE 166.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.35 DOWNSTREAM ELEVATION(FEET) = 255.60 STREET LENGTH(FEET) = 367.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.25 AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.97 STREET FLOW TRAVEL TIME(MIN.) = 1.97 Tc(MIN.) = 4.76 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.856 SUBAREA AREA(ACRES) = 0.72SUBAREA RUNOFF(CFS) = 4.68TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 5.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.79 FLOW VELOCITY(FEET/SEC.) = 3.56 DEPTH*VELOCITY(FT*FT/SEC.) = 1.29 LONGEST FLOWPATH FROM NODE 162.00 TO NODE 166.00 = 432.00 FEET. FLOW PROCESS FROM NODE 166.00 TO NODE 167.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 245.60 DOWNSTREAM(FEET) = 245.20 FLOW LENGTH(FEET) = 17.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.36PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 4.79 LONGEST FLOWPATH FROM NODE 162.00 TO NODE 167.00 = 449.00 FEET. FLOW PROCESS FROM NODE 168.00 TO NODE 167.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.641NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.8549 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 1.36 6.73 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) =

100PR. 0UT

TC(MIN.) = 4.79

FLOW PROCESS FROM NODE 167.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 251.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH(FEET) = 119.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.71 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.73PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 4.96 LONGEST FLOWPATH FROM NODE 162.00 TO NODE 160.00 = 568.00 FFFT. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 4.96RAINFALL INTENSITY(INCH/HR) = 7.64 TOTAL STREAM AREA(ACRES) = 1.03 7.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.73 FLOW PROCESS FROM NODE 172.00 TO NODE 174.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 255.80 DOWNSTREAM ELEVATION (FEET) = 255.00 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.315 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 62.31 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.58 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.58 FLOW PROCESS FROM NODE 174.00 TO NODE 176.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 255.00 DOWNSTREAM ELEVATION(FEET) = 252.00 STREET LENGTH(FEET) = 305.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00DI STANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200

100PR. 0UT **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.57 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32HALFSTREET FLOOD WIDTH(FEET) = 9 61 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70 STREET FLOW TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) = 5.63 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.077 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) =1.32SUBAREA RUNOFF(CFS) =7.94TOTAL AREA(ACRES) =1.4PEAK FLOW RATE(CFS) = 8.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.49 FLOW VELOCITY(FEET/SEC.) = 2.53 DEPTH*VELOCITY(FT*FT/SEC.) = 0 95 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 176.00 = 370.00 FEET. FLOW PROCESS FROM NODE 176.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 248.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH(FEET) = 63.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.83 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.48PIPE TRAVEL TIME(MIN.) = 0.08 TC(MIN.) = 5.71 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 160.00 = 433.00 FEET. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.71RAINFALL INTENSITY(INCH/HR) = 7.01TOTAL STREAM AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.48 ** CONFLUENCE DATA ** RUNOFF I NTENSI TY STREAM Тс AREA NUMBER (MIN.) (INCH/HOUR) (CFS) (ACRE) 1 11.70 5.40 7.272 1.82 2 6.73 4.96 7.641 1.03 3 8.48 5.71 7.011 1.41 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (CFS) (MIN.)(INCH/HOUR) 24.85 1 4.96 7.641 2 26.12 5.40 7.272 3 25.93 5.71 7.011 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.12 Tc(MIN.) = 5.40 TOTAL AREA(ACRES) = 4.3 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 160.00 = 791.00 FFFT.

100PR. 0UT FLOW PROCESS FROM NODE 160.00 TO NODE 175.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 209.50 FLOW LENGTH (FEET) = 112.00 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.40 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =26.12 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 146.00 TO NODE 5.49 Tc(MIN.) =175.00 = 903.00 FEET. FLOW PROCESS FROM NODE 173.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.190*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.8073 SUBAREA AREA(ACRES) =0.42SUBAREA RUNOFF(CFS) =1.06TOTAL AREA(ACRES) =4.7TOTAL RUNOFF(CFS) =27.16 TC(MIN.) = 5.49FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 10 _____ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<< FLOW PROCESS FROM NODE 178.00 TO NODE 180.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.00 DOWNSTREAM ELEVATION(FEET) = 442.00 ELEVATION DIFFERENCE(FEET) = 22.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.27TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.27 FLOW PROCESS FROM NODE 180.00 TO NODE 182.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 442.00 DOWNSTREAM(FEET) = 312.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 394.00 CHANNEL SLOPE = 0.3299 CHANNEL BASE (FEET) = 100.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.27 FLOW VELOCITY(FEET/SEC.) = 0.56 FLOW DEPTH(FEET) = 0.00 TRAVEL TIME(MIN.) = 11.82 Tc(MIN.) = 16.87LONGEST FLOWPATH FROM NODE 178.00 TO NODE 182.00 = 459.00 FEET. FLOW PROCESS FROM NODE 180.00 TO NODE 182.00 IS CODE = 81 _____

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.487 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) =2.08SUBAREA RUNOFF(CFS) =2.54TOTAL AREA(ACRES) =2.2TOTAL RUNOFF(CFS) =2.66 TC(MIN.) = 16.87****** FLOW PROCESS FROM NODE 184.00 TO NODE 182.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.487 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 2.86 TC(MIN.) = 16.87FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.87RAINFALL INTENSITY(INCH/HR) = 3.49TOTAL STREAM AREA(ACRES) = 2.34 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 FLOW PROCESS FROM NODE 186.00 TO NODE 188.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.20 DOWNSTREAM ELEVATION(FEET) = 463.50 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.618 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.701 SUBAREA RUNOFF(CFS) =0.16TOTAL AREA(ACRES) =0.10TOTAL AREA(ACRES) =0.10 0.16 FLOW PROCESS FROM NODE 188.00 TO NODE 182.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< -----ELEVATION DATA: UPSTREAM(FEET) = 463.50 DOWNSTREAM(FEET) = 312.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 478.00 CHANNEL SLOPE = 0.3169 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.16 FLOW VELOCITY(FEET/SEC.) = 0.57 FLOW DEPTH(FEET) = 0.00 TRAVEL TIME(MIN.) = 13.87 Tc(MIN.) = 24.49LONGEST FLOWPATH FROM NODE 186.00 TO NODE 182.00 = 543.00 FEET. FLOW PROCESS FROM NODE 188.00 TO NODE 182.00 IS CODE = 81 Page 20

100PR. 0UT

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.742 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) =2.88SUBAREA RUNOFF(CFS) =2.76TOTAL AREA(ACRES) =3.0TOTAL RUNOFF(CFS) =2.8 2.86 TC(MIN.) = 24.49****** FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.49RAINFALL INTENSITY(INCH/HR) = 2.74TOTAL STREAM AREA(ACRES) = 2.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 ** CONFLUENCE DATA ** RUNOFF STREAM Тс I NTENSI TY ARFA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 2.86 16. 87 3. 487 1 2.34 2.98 2 2.86 24.49 2.742 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY (CFS) NUMBER (MIN.) (INCH/HOUR) 4.83 16.87 3. 487 1 5.11 24.49 2 2.742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.11 Tc(MIN.) = 24.49 TOTAL AREA (ACRÈS) = 5.3 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 182.00 = 543.00 FEET. FLOW PROCESS FROM NODE 182.00 TO NODE 191.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 312.00 DOWNSTREAM(FEET) = 278.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 274.00 CHANNEL SLOPE = 0.1241 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.11 FLOW VELOCITY(FEET/SEC.) = 9.34 FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 24.98LONGEST FLOWPATH FROM NODE 186.00 TO NODE 191.00 = 817.00 FEET. FLOW PROCESS FROM NODE 192.00 TO NODE 191.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.707 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 0.85

100PR. OUT TOTAL AREA(ACRES) = 6.2 TOTAL RUNOFF(CFS) = 5.89 TC(MIN.) = 24.98FLOW PROCESS FROM NODE 191.00 TO NODE 193.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 278.00 DOWNSTREAM(FEET) = 256.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 66.00 CHANNEL SLOPE = 0.3333 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.89 FLOW VELOCITY(FEET/SEC.) = 13.74 FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 25.06 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 193.00 = 883.00 FFFT. FLOW PROCESS FROM NODE 194.00 TO NODE 193.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.702*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.54 SUBAREA RUNOFF(CFS) = 0.51 TOTAL AREA(ACRES) = 6.8 TOTAL RUNOFF(CFS) = 6.39 TC(MIN.) =25.06 FLOW PROCESS FROM NODE 193.00 TO NODE 195.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 256.00 DOWNSTREAM(FEET) = 244.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 242.00 CHANNEL SLOPE = 0.0496 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.39 FLOW VELOCITY(FEET/SEC.) = 7.39 FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 25.61 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 195.00 = 1125.00 FEET. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.61RAINFALL INTENSITY (INCH/HR) = 2.666.76 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.39 FLOW PROCESS FROM NODE 196.00 TO NODE 198.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 4200 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 470.00 DOWNSTREAM ELEVATION(FEET) = 461.00 ELEVATION DIFFERENCE(FEET) = 9.00

SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.581 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.32TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.32 ***** FLOW PROCESS FROM NODE 198.00 TO NODE 195.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 461.00 DOWNSTREAM(FEET) = 244.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 550.00 CHANNEL SLOPE = 0.3945 CHANNEL BASE (FEET) = 14.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.32 FLOW VELOCITY(FEET/SEC.) = 1.83 FLOW DEPTH(FEET) = 0.01TRAVEL TIME(MIN.) = 5.00 Tc(MIN.) = 9.58LONGEST FLOWPATH FROM NODE 196.00 TO NODE 195.00 = 615.00 FEET. FLOW PROCESS FROM NODE 198.00 TO NODE 195.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.022 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3527 SUBAREA AREA(ACRES) =2.50SUBAREA RUNOFF(CFS) =4.39TOTAL AREA(ACRES) =2.6TOTAL RUNOFF(CFS) =4.61 TC(MIN.) =9.58 FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.58 RAINFALL INTENSITY(INCH/HR) = 5.02TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.61 ** CONFLUENCE DATA ** RUNOFF I NTENSI TY STREAM Тс AREA NUMBER (MIN.) (INCH/HOUR) (CFS) (ACRE) 25.61 1 6.39 2.664 6.76 2 4.61 5.022 2.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc I NTENSI TY NUMBER (CFS) (MIN.)(INCH/HOUR) 1 8.00 9.58 5.022 8.84 25.61 2 2.664 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.84 Tc(MIN.) = 25.61 TOTAL AREA(ACRES) = 9.4 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 195.00 = 1125.00 FEET. FLOW PROCESS FROM NODE 195.00 TO NODE 175.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 209.50 CHANNEL LENGTH THRU SUBAREA (FEET) = 333.00 CHANNEL SLOPE = 0.1036 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.84 FLOW VELOCI TY (FEET/SEC.) = 10.91 FLOW DEPTH (FEET) = TRAVEL TIME (MIN.) = 0.51 Tc (MIN.) = 26.12 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 0.23 175.00 = 1458.00 FEET. FLOW PROCESS FROM NODE 199.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.631 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3507 SUBAREA AREA(ACRES) =0.50SUBAREA RUNOFF(CFS) =0.46TOTAL AREA(ACRES) =9.9TOTAL RUNOFF(CFS) =9.10 TC(MIN.) = 26.12FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 26.12 2.63 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 9.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.10 ****** FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 448.50 DOWNSTREAM ELEVATION(FEET) = 426.00 ELEVATION DIFFERENCE(FEET) = 22.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.27 0.10 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.27 FLOW PROCESS FROM NODE 202.00 TO NODE 175.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 209.50 CHANNEL LENGTH THRU SUBAREA (FEET) = 795.00 CHANNEL SLOPE = 0.2723 CHANNEL BASE (FEET) = 80.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.27 FLOW VELOCITY(FEET/SEC.) = 0.69 FLOW DEPTH(FEET) = 0.00 TRAVEL TIME(MIN.) = 19.08 Tc(MIN.) = 24.14 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 175.00 = 860.00 FFFT. Page 24

***** FLOW PROCESS FROM NODE 202.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.768 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3300 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3308 SUBAREA AREA(ACRES) = 2.54 SUBAREA RUNOFF(CFS) = 2.32 2.6 TOTAL RUNOFF (CFS) = TOTAL AREA(ACRES) = 2.42 TC(MIN.) = 24.14FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.14RAINFALL INTENSITY(INCH/HR) = 2.77 TOTAL STREAM AREA(ACRES) = 2.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.42 ** CONFLUENCE DATA ** STREAM RUNOFF Tc I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.10 26.12 2.631 9.86 2 2.42 2.64 24.14 2.768 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF I NTENSI TY Tc (INCH/HOUR) NUMBER (CFS) (MIN.)11.06 24.14 1 2.768 2 11.39 26.12 2.631 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.39Tc(MIN.) =26.12 TOTAL AREA(ACRES) = 12.5LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 1458.00 FEET. ***** FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 LS CODF = 11>>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<<<<< _____ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 11.39 26.12 2.631 12.50 1 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 1458.00 FEET. ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc I NTENSI TY AREA NUMBER (CFS) (MIN.)(INCH/HOUR) (ACRE) 27.16 5.49 7.190 1 4.68 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 175.00 = 903.00 FEET. ** PEAK FLOW RATE TABLE ** RUNOFF STREAM Тс I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 5.49 1 29.56 7.190 2.631 2 21.33 26.12

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 29.56 Tc(MIN.) = 5.49 TOTAL AREA(ACRES) = 17.2 ******* FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 12 _____ >>>>CLEAR MEMORY BANK # 3 <<<<< _____ FLOW PROCESS FROM NODE 175.00 TO NODE 1.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 209.50 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 202.00 CHANNEL SLOPE = 0.0272 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 29.56FLOW VELOCITY(FEET/SEC.) = 4.30 FLOW DEPTH(FEET) = 0.49TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 6.28LONGEST FLOWPATH FROM NODE 186.00 TO NODE 1.00 = 1660.00 FEET. ****** FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 11_____ >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< _____ ** MAIN STREAM CONFLUENCE DATA ** RUNOFF TC INTENSITY AREA STREAM (CFS) NUMBER (MIN.) (ACRE) (INCH/HOUR) 29.56 6.28 6. 598 17.18 1 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 1.00 = 1660.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** RUNOFF STREAM Tc I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 28.63 14.34 3.873 12.44 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 1.00 = 2332.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 42.09 6. 28 6.598 1 2 45.98 14.34 3.873 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.98Tc(MIN.) = 14.34 TOTAL AREA(ACRES) = 29.6 FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 12_____ >>>>CLEAR MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE =_____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.34 RAINFALL INTENSITY(INCH/HR) = 3.87 TOTAL STREAM AREA(ACRES) = 29.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 45.98

FLOW PROCESS FROM NODE 131.00 TO NODE 133.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED (SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00 UPSTREAM ELEVATION (FEET) = 245.00 DOWNSTREAM ELEVATION (FEET) = 235.00 ELEVATION DIFFERENCE (FEET) = 10.00 SUBAREA OVERLAND TIME OF FLOW (MIN.) = 2.089 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF (CFS) = 0.39 TOTAL AREA (ACRES) = 0.06 TOTAL RUNOFF (CFS) = 0.39
FLOW PROCESS FROM NODE 133. 00 TO NODE 137. 00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 231.00 DOWNSTREAM(FEET) = 230.00 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.96 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.39 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 2.24 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 137.00 = 135.00 FEET.
FLOW PROCESS FROM NODE 133.00 TO NODE 137.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED (SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4750 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.87 TC(MIN.) = 2.24
FLOW PROCESS FROM NODE 137. 00 TO NODE 1. 00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 230.00 DOWNSTREAM(FEET) = 204.00 FLOW LENGTH(FEET) = 2400.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.87 PIPE TRAVEL TIME(MIN.) = 11.24 Tc(MIN.) = 13.47 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 1.00 = 2535.00 FEET.
FLOW PROCESS FROM NODE 137. 00 TO NODE 1.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< Page 27

100PR. 0UT >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.47RAINFALL INTENSITY(INCH/HR) = 4.03 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.87 ** CONFLUENCE DATA ** Тс STREAM RUNOFF I NTENSI TY AREA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) 45.98 29.62 1 14.34 3.873 2 0.87 13.47 4.031 0.24 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Тс I NTENSI TY NUMBER (MIN.) (CFS) (INCH/HOUR) 1 44.08 13.47 4.031 2 46.82 14.34 3.873 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 46.82 Tc(MIN.) = 14.34 TOTAL AREA(ACRES) = 29.9 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 1.00 = 2535.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 29.9 TC(MIN.) =14.34 PEAK FLOW RATE(CFS) = 46.82_____ END OF RATIONAL METHOD ANALYSIS

♠

Olive Park Apartments Preliminary Drainage Study

CHAPTER 4

HYDROLOGIC MODEL FOR DEVELOPED CONDITIONS

4.2 – Mitigated 100 Year Storm Event

										itigated Condition								
										NPUT DATA		1		1				
From	de # To	Code	Up	ation Down	Length (ft)	Slope	total	Area (Ac)	impervious	imperviousness	Soil Type A Area (ac)	Soil Type C Area (ac)	Soil Type D Area (ac)	C value	Base (ft)	If Channe Z:1	maning	If memory Bank #
102	104	2	464.0	453.0	65	16.9%	0.11	0.11	0.00	0.00%	0.00	0.00	0.11	0.35	base (IL)	2.1	mannig	Ddlik #
102	104	5	453.0	254.0	850	23.4%	1.32	1.32	0.00	0.00%	0.00	0.02	1.30	0.35	5	3	0.015	
106	112	3	244.0	243.4	61	1.1%												
112	112	1																1 of 2
108	110	2	264.3	263.6	65	1.1%	0.14	0.05	0.09	65.00%	0.03	0.00	0.02	0.68				
110 112	112	6 1	263.6	256.5	717	1.0%	4.89	1.86	3.03	61.96%	0.04	1.77	0.05	0.67				2 of 2
112	112 113	3	238.0	222.5	176	8.8%						1						2 of 2
112	113	10	230.0	222.5	1/0	0.070				1								1
120	122	2	264.0	263.3	65	1.1%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				
122	124	6	263.3	256.0	384	1.9%	0.60	0.18	0.42	70.00%	0.00	0.00	0.18	0.74				
124	125	3	246.0	244.0	101	2.0%												
126	125	8					0.21	0.06	0.15	70.00%	0.00	0.00	0.06	0.74				
125	127	3	244.0	242.9	55	2.0%	0.00	0.07	0.45	70.000/		0.00	0.07	0.74				
128 127	127 142	8	242.9	227.0	208	7.6%	0.22	0.07	0.15	70.00%	0.00	0.00	0.07	0.74				
142	142	1	242.3	227.0	200	7.0%												1 of 3
130	132	2	264.0	262.7	65	2.0%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				1013
132	134	6	262.7	260.5	111	2.0%	0.30	0.09	0.21	70.00%	0.00	0.00	0.09	0.74				
134	135	3	250.5	249.7	74	1.0%												
136	135	8					0.15	0.05	0.11	70.00%	0.00	0.00	0.05	0.74				
135	142	3	249.7	227.0	296	7.7%												
142	142	1	262.0	262.2	65	4.40/	0.40	0.02	0.07	70.000/		0.00	0.02	0.74				2 of 3
138 140	140 142	2	263.0 262.3	262.3 233.0	65 245	1.1% 12.0%	0.10	0.03	0.07	70.00% 70.00%	0.00	0.00	0.03	0.74				
140	142	6	262.3	233.0	245	12.0%	0.55	0.17	0.39	70.00%	0.00	0.00	0.17	0.74				3 of 3
142	142		Q (0	CFS)	A (A	C)	TC (MIN)										5015
142	142	7	8.		2.3		=5.	73+2										
142	145	3	222.0	221.5	10	5.0%												
145	145	10																2
114	116	2	242.7	242.0	65	1.0%	0.1	0.10	0.00	0.00%	0.00	0.10	0.00	0.30				
116 116	118 118	5 8	242.0	235.3	758	0.9%	1.29	1.14	0.15	11.63%	0.62	0.52	0.00	0.32	2	2	0.015	
118	118	3	225.0	224.8	25	0.8%	1.29	1.14	0.15	11.03%	0.62	0.52	0.00	0.52				
118	119	8	225.0	224.0	25	0.070	0.53	0.03	0.50	95.00%	0.00	0.00	0.03	0.87				
119	113	3	224.8	223.0	180	1.0%												
119	113	8					0.27	0.27	0.00	0.00%	0.00	0.00	0.27	0.35				
113	113	11																1
113	113	12																1
113	145	3	223.0	221.5	140	1.1%		 	ł			┨────┤		l			+	_
145 145	145 145	11 12												<u> </u>			+	2
145	143	3	221.5	220.0	90	1.7%												2
143	143	1		220.0		1.7.70				1		1		1			1	1 of 2
139	141	2	238.0	234.0	100	4.0%	0.12	0.12	0.00	0.00%	0.12	0.00	0.00	0.20		<u>i </u>		
141	143	5	234.0	220.0	1080	1.3%	0.81	0.81	0.00	0.00%	0.81	0.00	0.00	0.20	10	8	0.023	
143	143	1																2 of 2
143	1	5	220.0	204.0	950	1.7%	0.53	0.53	0.00	0.00%	0.53	0.00	0.00	0.20	5	20	0.015	
1	1 148	10	264.0	262.5	65	2.20/	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				1
		2	264.0	262.5	65 507	2.3% 1.5%	0.10	0.00	0.10	100.00% 90.00%	0.00	0.00	0.00	0.90				
146	150	0	202.5			1.5%	1.47	0.15	1.52	50.00%	0.00	0.00	0.15	0.85				
146 148	150 151		245.0	244 0	88													1
146 148 150	151	3	245.0	244.0	88	1.1/0	0.25	0.03	0.23	90.00%	0.00	0.00	0.03	0.85				
146 148			245.0 244.0	244.0 242.4	131	1.1%	0.25	0.03	0.23	90.00%	0.00	0.00	0.03	0.85				
146 148 150 152	151 151	3 8			131	1.3%	0.25	0.03	0.23	90.00%	0.00	0.00	0.03	0.85				1 of 3
146 148 150 152 151 160 162	151 151 160 160 164	3 8 3 1 2	244.0	242.4 263.4	131 65	1.3%	0.10	0.00	0.10	100.00%	0.00	0.00	0.00	0.90				1 of 3
146 148 150 152 151 160	151 151 160 160	3 8 3 1	244.0	242.4	131	1.3%												1 of 3

									Proposed Mi	tigated Condition								
										IPUT DATA								
Nod	Node #		Eleva	ation	Length (ft)	Slope		Area (Ac))		Soil Type A	Soil Type C Area	Soil Type D	C value		If Channe		If memory
From	То	Code	Up	Down	Length (It)	Siope	total	Pervious	impervious	imperviousness	Area (ac)	(ac)	Area (ac)	C value	Base (ft)	Z:1	maning	Bank #
168	167	8					0.21	0.02	0.19	90.00%	0.00	0.00	0.02	0.85				
167	160	3	251.0	244.0	119	5.9%												
160	160	1																2 of 3
172	174	2	255.8	255.0	65	1.2%	0.09	0.01	0.08	90.00%	0.00	0.00	0.01	0.85				
174	176	6	255.0	252.0	305	1.0%	1.32	0.13	1.19	90.00%	0.00	0.00	0.13	0.85				
176	160	3	248.0	244.0	63	6.3%												2 - 6 2
160	160	1	0.1		A (A	C)	TC (MINI)							I			3 of 3
160	160	7	Q (CFS) 7 9.65		A (AC) 4.26		TC (MIN) =5.40+5											
160	175	3	220.0	209.5	112	9.4%	-3.4	+0+3						1	1	1	1	
173	175	8	220.0	205.5	112	5.470	0.42	0.42	0.00	0.00%	0.00	0.00	0.42	0.35				
175	175	10					0.72	0.72	0.00	0.0070	0.00	0.00	0.72	0.00	1	1	1	3
175	180	2	464.0	442.0	65	33.8%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35	1	1	1	
180	182	5	442.0	312.0	394	33.0%									100	50	0.03	
180	182	8					2.08	2.08	0.00	0.00%	0.00	0.00	2.08	0.35				
184	182	8					0.16	0.16	0.00	0.00%	0.00	0.00	0.16	0.35				
182	182	1													1			1 of 2
186	188	2	464.2	463.5	65	1.1%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35				
188	182	5	463.5	312.0	478	31.7%		L	L					L	100	50	0.03	
188	182	8					2.88	2.88	0.00	0.00%	0.00	0.00	2.88	0.35	I			
182	182	1	242.6	270.6	274	12 10/						┨────┤					0.047	2 of 2
182	191	5	312.0	278.0	274	12.4%	0.00	0.00	0.00	0.00%	0.00	0.00	0.00	0.25	3	3	0.015	
192 191	191 193	8	278.0	256.0	66	33.4%	0.90	0.90	0.00	0.00%	0.00	0.00	0.90	0.35	3	3	0.015	
191	193	8	278.0	256.0	00	55.4%	0.54	0.54	0.00	0.00%	0.00	0.00	0.54	0.35	3	3	0.015	
194	195	5	256.0	244.0	242	5.0%	0.34	0.34	0.00	0.00 %	0.00	0.00	0.34	0.55	3	3	0.015	
195	195	1	250.0	244.0	242	5.070									5	3	0.015	1 of 2
196	198	2	470.0	461.0	65	13.8%	0.10	0.08	0.02	15.46%	0.00	0.00	0.08	0.42				10.1
198	195	5	461.0	244.0	550	39.5%									14	10	0.03	
198	195	8					2.50	2.50	0.00	0.00%	0.00	0.00	2.50	0.35				
195	195	1																2 of 2
195	175	5	244.0	209.5	333	10.4%									3	2	0.015	
199	175	8					0.50	0.50	0.00	0.00%	0.00	0.00	0.50	0.35				
175	175	1																1 of 2
200	202	2	448.5	426.0	65	34.6%	0.10	0.10	0.00	0.00%	0.00	0.00	0.10	0.35				
202	175	5	426.0	209.5	795	27.2%									80	50	0.03	
202	175	8					2.54	2.54	0.00	0.00%	0.28	0.00	2.26	0.33				2.62
175 175	175 175	1 11																2 of 2
175	175	11																3
175	1/5	5	209.5	204.0	202	2.7%									10	8	0.03	3
1/5	1	11	200.0	204.0	202			1							10		0.00	1
1	1	12										1		i	1	1	1	1
1	1	1		l											1	İ.	1	1 of 2
131	133	2	245.0	235.0	100	10.0%	0.06	0.01	0.05	90.00%	0.00	0.00	0.01	0.85				
			Q (0	CFS)	A (A	C)	TC (MIN)										
133	133 133		7 0.12		0.06		=2+4											
133	137	3	231.0	230.0	35													
133	137	8					0.18	0.18	0.00	0.00%	0.00	0.00	0.18	0.35				
137	1	3	230.0	204.0	2400	1.1%									I			
137	1	1										ļ						2 of 2
			ļ				20.55	20.17	0.55		2		45.00	0.555	I	I	<u> </u>	
Tot	tal						29.86	20.47	9.39	31.44%	2.52	2.33	15.63	0.506			1	

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Di ego, CA 92121 * OLIVE PARK APARTMENTS 100 YR PROPOSED MITIGATED DRAINAGE ANALYSIS * DLN 1746 W.O. 3785-0002 ****** FILE NAME: R: \1746\HYD\TM\DR\CALCS\AES\MIT\100MIT. DAT TIME/DATE OF STUDY: 15:12 10/11/2024 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) NO. (FT) (FT) (FT) (n) === 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 1 2 14.0 9.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 13.0 0.020/0.020/0.020 0.50 18.0 1.50 0.0313 0.125 0.0150 3 10.0 5.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.00 DOWNSTREAM ELEVATION(FEET) = 453.00 ELEVATION DIFFERENCE(FEET) = 11.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.29TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.29

100MI T. OUT FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 453.00 DOWNSTREAM(FEET) = 254.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = 0.2341 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.030 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.54 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) = 7.22SUBAREA RUNOFF(CFS) = 2.79 SUBAREA AREA(ACRES) = 1.32 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 1.4 3.02 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 8.09 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 106.00 = 915.00 FEET. ****** FLOW PROCESS FROM NODE 106.00 TO NODE 112.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 243.40 FLOW LENGTH (FEET) = 61.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.91 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.02 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 7.42 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 976.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.42 RAINFALL INTENSITY(INCH/HR) = 5.92 TOTAL STREAM AREA(ACRES) = 1.43 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.02 FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6800 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.30 DOWNSTREAM ELEVATION(FEET) = 263.60 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.946 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.832 SUBAREA RUNOFF(CFS) = 0.65TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.65

100MI T. OUT FLOW PROCESS FROM NODE 110.00 TO NODE 112.00 IS CODE = 62_____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.60 DOWNSTREAM ELEVATION(FEET) = 256.50 STREET LENGTH(FEET) = 717.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH(FEET) = 12.53AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.52 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TRAVEL TIME(MIN.) = 4.74 Tc(MIN.) = 10.68 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.682 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6700 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.670 SUBAREA AREA(ACRES) = 4.89SUBAREA RUNOFF(CFS) = 15.34TOTAL AREA(ACRES) = 5.0PEAK FLOW RATE(CFS) = 15.79END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.04 FLOW VELOCITY(FEET/SEC.) = 2.93 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 112.00 = 782.00 FEET. ****** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.68 RAINFALL INTENSITY(INCH/HR) = 4.68TOTAL STREAM AREA(ACRES) = 5.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.79 ** CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.02 7.42 5.921 1.43 2 15.79 10.68 4.682 5.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (INCH/HOUR) (CFS) (MIN.)13.99 7.42 5.921 1 2 18.17 10. 68 4.682 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.17 Tc(MIN.) = 10.68 TOTAL AREA(ACRES) = 6.5 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 976.00 FEET.

100MI T. OUT FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 238.00 DOWNSTREAM(FEET) = 222.50 FLOW LENGTH (FEET) = 176.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.17PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 10.85 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 113.00 = 1152.00 FEET. FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 263.30 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.832 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 ***** FLOW PROCESS FROM NODE 122.00 TO NODE 124.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 263.30 DOWNSTREAM ELEVATION(FEET) = 256.00 STREET LENGTH(FEET) = 384.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.38 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30HALFSTREET FLOOD WIDTH(FEET) = 8.48 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.84 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84 STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 5.08 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.562 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.763

100MI T. OUT SUBAREA AREA (ACRES) =0.60SUBAREA RUNOFF (CFS) =3.36TOTAL AREA (ACRES) =0.7PEAK FLOW RATE (CFS) = TOTAL AREA(ACRES) = 0.7PEAK FLOW RATE(CFS) = 4.04 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.66 FLOW VELOCITY(FEET/SEC.) = 3.22 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 120.00 TO NODE 124.00 = 449.0 1.09 124.00 = 449.00 FEET. FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 246.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH (FEET) = 101.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.04PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 5.33 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 125.00 = 550.00 FEET. FLOW PROCESS FROM NODE 126.00 TO NODE 125.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.335*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7576 SUBAREA AREA(ACRES) =0. 21SUBAREA RUNOFF(CFS) =1. 14TOTAL AREA(ACRES) =0. 9TOTAL RUNOFF(CFS) =5. 06 TC(MIN.) =5.33 ****** FLOW PROCESS FROM NODE 125.00 TO NODE 127.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 242.90 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.32 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.06PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 5.45 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 127.00 = 605.00 FEET. FLOW PROCESS FROM NODE 128.00 TO NODE 127.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.226 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7542 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 6.16 TC(MIN.) = 5.45FLOW PROCESS FROM NODE 127.00 TO NODE 142.00 IS CODE = 31 _____

100MI T. OUT >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 242.90 DOWNSTREAM(FEET) = 227.00 FLOW LENGTH (FEET) = 208.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6. 16 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 5.73 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 142.00 = 813.00 FEET. FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.73RAINFALL INTENSITY (INCH/HR) = 7.00TOTAL STREAM AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.16 FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 262.70 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE (FEET) = 1.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.304 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 FLOW PROCESS FROM NODE 132.00 TO NODE 134.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 3 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 262.70 DOWNSTREAM ELEVATION(FEET) = 260.45 STREET LENGTH(FEET) = 111.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DI STANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.54 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.80 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 0.70 Tc(MIN.) = 3.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.

100MI T. OUT *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.780 SUBAREA AREA(ACRES) =0.30SUBAREA RUNOFF(CFS) =1.70TOTAL AREA(ACRES) =0.4PEAK FLOW RATE(CFS) = 2.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38 FLOW VELOCITY(FEET/SEC.) = 2.91 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 134.00 = 176.00 FEET. FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 250.45 DOWNSTREAM(FEET) = 249.70 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.66 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.38PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 3.27 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 135.00 = 250.00 FEET. FLOW PROCESS FROM NODE 136.00 TO NODE 135.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.7718 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.86 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.24 TC(MIN.) =3.27 FLOW PROCESS FROM NODE 135.00 TO NODE 142.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 249.70 DOWNSTREAM(FEET) = 227.00 FLOW LENGTH(FEET) = 296.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.47ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.24PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 130.00 TO NODE 3.74 142.00 = 546.00 FEET. ****** FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.74 RAINFALL INTENSITY(INCH/HR) = 7.64TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.24

100MI T. OUT ****** FLOW PROCESS FROM NODE 138.00 TO NODE 140.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 263.00 DOWNSTREAM ELEVATION(FEET) = 262.30 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.097 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.547 SUBAREA RUNOFF(CFS) = 0.56TOTAL AREA(ACRÈS) = 0.10 TOTAL RUNOFF(CFS) = 0.56 FLOW PROCESS FROM NODE 140.00 TO NODE 142.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION(FEET) = 262.30 DOWNSTREAM ELEVATION(FEET) = 233.00 STREET LENGTH(FEET) = 245.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1 97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.17 HALFSTREET FLOOD WIDTH(FEET) = 2.35 AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.68 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98 STREET FLOW TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 5.82 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.931 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.740 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.82 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 3.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.21 FLOW VELOCITY(FEET/SEC.) = 5.65 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19 LONGEST FLOWPATH FROM NODE 138.00 TO NODE 142.00 = 310.00 FEET. ***** FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.82RAINFALL INTENSITY (INCH/HR) = 6.930.65 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY ARFA

100MI T. OUT NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.16 5.73 6.999 1.13 3.24 3.74 2 7.641 0.55 3 3.33 5.82 6.931 0.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc I NTENSI TY NUMBER (CFS) (CFS)(MI N.)9.413.7412.415.7312.375.82 (MIN.) (INCH/HOUR) 1 7.641 6.999 2 3 6.931 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.41 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3 5.73 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 142.00 = 813.00 FEET. FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 7 _____ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<< _____ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.73 RAIN INTENSITY(INCH/HOUR) = 5.77 TOTAL AREA(ACRES) = 2.33 TOTAL RUNOFF(CFS) = 8.65 FLOW PROCESS FROM NODE 142.00 TO NODE 145.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 221.50 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =8.65 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.74 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 = 823.00 FEET. FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 10 _____ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< _____ FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 242.70 DOWNSTREAM ELEVATION(FEET) = 242.00 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.326 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.509 SUBAREA RUNOFF(CFS) = 0.14TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.14 ****** FLOW PROCESS FROM NODE 116.00 TO NODE 118.00 IS CODE = 51 _____

100MI T. OUT

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 242.00 DOWNSTREAM(FEET) = 235.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 758.00 CHANNEL SLOPE = 0.0088 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.540 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3300 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.89 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.45 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 5.15 Tc(MIN.) = 16.48SUBAREA RUNOFF(CFS) = 1.51 SUBAREA AREA(ACRES) = 1.29 AREA-AVERAGE RUNOFF COEFFICIENT = 0.328 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 1.4 1.61 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.94 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 118.00 = 823.00 FEET. FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 225.00 DOWNSTREAM(FEET) = 224.80 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.61 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 16.59LONGEST FLOWPATH FROM NODE 114.00 TO NODE 119.00 = 848.00 FFFT. ***** FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.525*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 8700 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.4775 SUBAREA AREA(ACRES) =0.53SUBAREA RUNOFF(CFS) =1.63TOTAL AREA(ACRES) =1.9TOTAL RUNOFF(CFS) =3.23 TC(MIN.) = 16.59FLOW PROCESS FROM NODE 119.00 TO NODE 113.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 224.80 DOWNSTREAM(FEET) = 223.00 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.04 ESTIMATED PIPE DIAMETER(INCH) = 18.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.23PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 17.18 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 = 1028.00 FEET. FLOW PROCESS FROM NODE 119.00 TO NODE 113.00 IS CODE = 81 Page 10

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.446 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4618 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 3.49 TC(MIN.) = 17.18
FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<<
<pre>** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.49 17.18 3.446 2.19 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 = 1028.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA</pre>
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.17 10.85 4.635 6.46 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 113.00 = 1152.00 FEET.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.37 10.85 4.635 2 16.99 17.18 3.446
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.37 Tc(MIN.) = 10.85 TOTAL AREA(ACRES) = 8.6
FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12
>>>>CLEAR MEMORY BANK # 1 <<<<

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 223.00 DOWNSTREAM(FEET) = 221.50 FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.02 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.37 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 11.14 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 145.00 = 1292.00 FEET.
FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 11
>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.37 11.14 4.557 8.65

100MI T. OUT LONGEST FLOWPATH FROM NODE 102.00 TO NODE 145.00 = 1292.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STRFAM RUNOFF Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 2.33 8.65 7.74 5.762 1 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 = 823.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Тс I NTENSI TY (MIN.) 7.74 11.14 NUMBER (CFS) (INCH/HOUR) 22.81 7.74 5.762 1 4.557 2 27.21 11.14 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.21 Tc(MIN.) = 11.14 TOTAL AREA(ACRES) = 11.0 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 12 _____ >>>>CLEAR MEMORY BANK # 2 <<<<< _____ FLOW PROCESS FROM NODE 145.00 TO NODE 143.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 221.50 DOWNSTREAM(FEET) = 220.00 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.05 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.21 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 11.29LONGEST FLOWPATH FROM NODE 102.00 TO NODE 143.00 = 1382.00 FFFT. FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.29 RAINFALL INTENSITY(INCH/HR) = 4.52TOTAL STREAM AREA(ACRES) = 10.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.21 FLOW PROCESS FROM NODE 139.00 TO NODE 141.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 238.00 DOWNSTREAM ELEVATION(FEET) = 234.00 ELEVATION DIFFERENCE(FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.206 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.822 SUBAREA RUNOFF(CFS) = 0.12TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.12 FLOW PROCESS FROM NODE 141.00 TO NODE 143.00 IS CODE = 51 _____

100MI T. OUT

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 234.00 DOWNSTREAM(FEET) = 220.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1080.00 CHANNEL SLOPE = 0.0130 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.023 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.359 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.32 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.87 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 20.71 Tc(MIN.) = 30.92SUBAREA RUNOFF(CFS) = 0.38 SUBAREA AREA (ACRES) = 0.81 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 0.9 0.44 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 0.87 LONGEST FLOWPATH FROM NODE 139.00 TO NODE 143.00 = 1180.00 FEET. ***** FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 30.92 RAINFALL INTENSITY(INCH/HR) = 2.36 TOTAL STREAM AREA(ACRES) = 0.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.44 ** CONFLUENCE DATA ** STRFAM RUNOFF Tc I NTENSI TY ARFA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) 11. 294. 51830. 922. 359 27.21 1 10.98 0.44 0.93 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY (MIN.) NUMBER (CFS) (INCH/HOUR) (CFS) (MIN.) 27.37 11.29 4.518 1 2 14.65 30.92 2.359 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.37 TOTAL AREA(ACRES) = 11.9 Tc(MIN.) = 11.29LONGEST FLOWPATH FROM NODE 102.00 TO NODE 143.00 = 1382.00 FEET. FLOW PROCESS FROM NODE 143.00 TO NODE 1.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 950.00 CHANNEL SLOPE = 0.0168 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.864 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 2000 S. C. S. CURVE NUMBER (AMC II) = 0TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.58

```
Page 13
```

100MI T. OUT TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 5.11 AVERAGE FLOW DEPTH(FEET) = 0.41 TRAVEL TIME(MIN.) = 3.10 Tc(MIN.) = 14.39SUBAREA RUNOFF(CFS) = 0.41SUBAREA AREA(ACRES) = 0.53AREA-AVERAGE RUNOFF COEFFICIENT = 0.537 TOTAL AREA(ACRES) = 12.4PEAK FLOW RATE(CFS) = 27.37 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET/SEC.) = 5.11 1.00 = LONGEST FLOWPATH FROM NODE 102.00 TO NODE 2332.00 FEET. FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< _____ ***** FLOW PROCESS FROM NODE 146.00 TO NODE 148.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 DOWNSTREAM ELEVATION(FEET) = 262.50 ELEVATION DIFFERENCE(FEET) = 1.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.196 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.69 FLOW PROCESS FROM NODE 148.00 TO NODE 150.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 3 USED) <<<<< UPSTREAM ELEVATION(FEET) = 262.50 DOWNSTREAM ELEVATION(FEET) = 255.00 STREET LENGTH(FEET) = 507.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH(FEET) = 12.74 AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 2.70 Tc(MIN.) = 4.89 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.641NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.853 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 9.55 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 10.231.6

END OF SUBAREA STREET FLOW HYDRAULICS:

100MI T. OUT DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.40 FLOW VELOCITY(FEET/SEC.) = 3.65 DEPTH*VELOCITY(FT*FT/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 150.00 = 572.00 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 245.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH (FEET) = 88.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =10. 23 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 5.11 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 151.00 = 660.00 FEET. FLOW PROCESS FROM NODE 152.00 TO NODE 151.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.538 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.8527 SUBAREA AREA(ACRES) =0. 25SUBAREA RUNOFF(CFS) =1. 60TOTAL AREA(ACRES) =1. 8TOTAL RUNOFF(CFS) =11. 70 TC(MIN.) = 5.11FLOW PROCESS FROM NODE 151.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 242.40 FLOW LENGTH(FEET) = 131.00 MANNING'S N = 0.013DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.48 ESTIMATED PIPE DIAMETER(INCH) = 21.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.70PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 160.00 = 791.00 FEET. ***** FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.40RAINFALL INTENSITY (INCH/HR) = 7.27TOTAL STREAM AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.70 FLOW PROCESS FROM NODE 162.00 TO NODE 164.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 9000 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 264.00 DOWNSTREAM ELEVATION(FEET) = 263.35

```
100MI T. OUT
```

ELEVATION DIFFERENCE (FEET) = 0.65 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.789 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) =0.69TOTAL AREA(ACRES) =0.10TOTAL RUNOFF(CFS) = 0.69 ****** FLOW PROCESS FROM NODE 164.00 TO NODE 166.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 263.35 DOWNSTREAM ELEVATION(FEET) = 255.60 STREET LENGTH(FEET) = 367.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.25 AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.97 STREET FLOW TRAVEL TIME(MIN.) = 1.97 Tc(MIN.) = 4.76 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.856 SUBAREA AREA(ACRES) =0.72SUBAREA RUNOFF(CFS) =4.68TOTAL AREA(ACRES) =0.8PEAK FLOW RATE(CFS) = 5.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.79 FLOW VELOCITY(FEET/SEC.) =3.56DEPTH*VELOCITY(FT*FT/SEC.) =1.29LONGEST FLOWPATH FROM NODE162.00TONODE166.00 =432.00 FLOW PROCESS FROM NODE 166.00 TO NODE 167.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 245.60 DOWNSTREAM(FEET) = 245.20 FLOW LENGTH (FEET) = 17.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =5.36 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 4.79 LONGEST FLOWPATH FROM NODE 162.00 TO NODE 167.00 = 449.00 FEET. FLOW PROCESS FROM NODE 168.00 TO NODE 167.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<

100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.8549 SUBAREA AREA(ACRES) =0. 21SUBAREA RUNOFF(CFS) =1. 36TOTAL AREA(ACRES) =1. 0TOTAL RUNOFF(CFS) =6. 7 6.73 TC(MIN.) =4.79 ****** FLOW PROCESS FROM NODE 167.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 251.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH(FEET) = 119.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.71 ESTIMATED PIPE DIAMETER(INCH) = 18.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =6.73 PIPE TRAVEL TIME(MIN.) = 0.17Tc(MIN.) = 4.96 LONGEST FLOWPATH FROM NODE 162.00 TO NODE 160.00 = 568.00 FEET. **** FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 4.967.64 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.73 FLOW PROCESS FROM NODE 172.00 TO NODE 174.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 255.80 DOWNSTREAM ELEVATION(FEET) = 255.00 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.315 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 62.31 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.58 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0 58 FLOW PROCESS FROM NODE 174.00 TO NODE 176.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 255.00 DOWNSTREAM ELEVATION(FEET) = 252.00 STREET LENGTH(FEET) = 305.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00

100MI T. OUT DI STANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.57 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32HALFSTREET FLOOD WIDTH(FEET) = 9.61 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70 STREET FLOW TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) = 5.63 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.077 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) = 1.32 SUBAREA RUNOFF(CFS) = 7.94 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 8.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.49 FLOW VELOCITY(FEET/SEC.) =2.53DEPTH*VELOCITY(FT*FT/SEC.) =0.95LONGEST FLOWPATH FROM NODE172.00TONODE176.00 =370.00FEET. ****** FLOW PROCESS FROM NODE 176.00 TO NODE 160.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 248.00 DOWNSTREAM(FEET) = 244.00 FLOW LENGTH (FEET) = 63.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.83ESTIMATED PIPE DIAMETER(INCH) = 18.00NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =8.48 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 5.71 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 160.00 = 433.00 FEET. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.71RAINFALL INTENSITY(INCH/HR) = 7.01 TOTAL STREAM AREA(ACRES) = 1.41 7.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.48 ** CONFLUENCE DATA ** Тс STREAM RUNOFF I NTENSI TY AREA NUMBER (MIN.) (INCH/HOUR) (CFS) (ACRE)
 11. 70
 5. 40
 7. 272

 6. 73
 4. 96
 7. 641
 1 1.82 2 1.03 3 8.48 5.71 7.011 1.41 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY

NUMBER

(CFS)

(MIN.) (INCH/HOUR)

7.641 1 24.85 4.96 2 26. 12 5.40 7.272 3 25.93 5.71 7.011 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.12 Tc(MIN.) = TOTAL AREA(ACRES) = 4.3 5.40 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 160.00 = 791.00 FEET. ****** 7 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = _____ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<< _____ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.40 RAIN INTENSITY(INCH/HOUR) = 4.76 TOTAL AREA(ACRES) = 4.26 TOTAL RUNOFF(CFS) = 9.65 FLOW PROCESS FROM NODE 160.00 TO NODE 175.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 209.50 FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.31 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.65PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 10.52LONGEST FLOWPATH FROM NODE 146.00 TO NODE 175.00 = 903.00 FEET. FLOW PROCESS FROM NODE 173.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.728 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.4642 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) = 0.70 TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 10.27 TC(MIN.) = 10.52FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 10 _____ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<< _____ FLOW PROCESS FROM NODE 178.00 TO NODE 180.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.00 DOWNSTREAM ELEVATION(FEET) = 442.00 ELEVATION DIFFERENCE(FEET) = 22.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.27

```
Page 19
```

100MI T. OUT

FLOW PROCESS FROM NODE 180.00 TO NODE 182.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 442.00 DOWNSTREAM(FEET) = 312.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 394.00 CHANNEL SLOPE = 0.3299 CHANNEL BASE (FEET) = 100.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00CHANNEL FLOW THRU SUBAREA(CFS) = 0.27 FLOW VELOCITY(FEET/SEC.) = 0.56 FLOW DEPTH(FEET) = 0.00TRAVEL TIME(MIN.) = 11.82 Tc(MIN.) = 16.87LONGEST FLOWPATH FROM NODE 178.00 TO NODE 182.00 = 459.00 FEET. FLOW PROCESS FROM NODE 180.00 TO NODE 182.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.487*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 2.08 SUBAREA RUNOFF(CFS) = 2.54 TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 2.66 TC(MIN.) = 16.87FLOW PROCESS FROM NODE 184.00 TO NODE 182.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.487 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 2.86 TC(MIN.) =16.87 ****** FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =16.87RAINFALL INTENSITY(INCH/HR) =3.49TOTAL STREAM AREA(ACRES) =2.34 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 FLOW PROCESS FROM NODE 186.00 TO NODE 188.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 464.20 4o3. 0. 70 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10. 618 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.701 SUBAREA RUNOFF(CFS) = 0.16

100MI T. OUT TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.16 FLOW PROCESS FROM NODE 188.00 TO NODE 182.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 463.50 DOWNSTREAM(FEET) = 312.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 478.00 CHANNEL SLOPE = 0.3169 CHANNEL BASE (FEET) = 100.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.16 FLOW VELOCITY(FEET/SEC.) = 0.57 FLOW DEPTH(FEET) = TRAVEL TIME(MIN.) = 13.87 Tc(MIN.) = 24.49 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 182.00 = 0.00 182.00 = 543.00 FEET. ****** FLOW PROCESS FROM NODE 188.00 TO NODE 182.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.742*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 2.88 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 2.86 TC(MIN.) = 24.49FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.49RAINFALL INTENSITY(INCH/HR) = 2.74TOTAL STREAM AREA(ACRES) = 2.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 ** CONFLUENCE DATA **

 ** UUNFLOENDE

 STREAM
 RUNOFF

 TC
 INTENSITY

 NUMBED
 (CFS)

 OT
 3 487

 AREA (ACRE)
 2. 86
 16. 87
 3. 487

 2. 86
 24. 49
 2. 742
 2.34 2 2.98 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 4.83 16.87 3.487 1 5.11 24.49 2 2.742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.11 Tc(MIN.) = TOTAL AREA(ACRES) = 5.3 24.49 5.3 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 182.00 = 543.00 FEET. FLOW PROCESS FROM NODE 182.00 TO NODE 191.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 312.00 DOWNSTREAM(FEET) = 278.00

100MI T. OUT CHANNEL LENGTH THRU SUBAREA (FEET) = 274.00 CHANNEL SLOPE = 0.1241 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 3.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.11FLOW VELOCITY(FEET/SEC.) = 9.34 FLOW DEPTH(FEET) = 0.16TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 24.98LONGEST FLOWPATH FROM NODE 186.00 TO NODE 191.00 = 8817.00 FEET. FLOW PROCESS FROM NODE 192.00 TO NODE 191.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.707 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) =0.90SUBAREA RUNOFF(CFS) =0.85TOTAL AREA(ACRES) =6.2TOTAL RUNOFF(CFS) =5.8 5.89 TC(MIN.) = 24.98FLOW PROCESS FROM NODE 191.00 TO NODE 193.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 278.00 DOWNSTREAM(FEET) = 256.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 66.00 CHANNEL SLOPE = 0.3333 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.89 FLOW VELOCITY(FEET/SEC.) = 13.74 FLOW DEPTH(FEET) = 0.13TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 25.06LONGEST FLOWPATH FROM NODE 186.00 TO NODE 193.00 = 883.00 FFFT. FLOW PROCESS FROM NODE 194.00 TO NODE 193.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.702 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA (ACRES) =0.54SUBAREA RUNOFF (CFS) =0.51TOTAL AREA (ACRES) =6.8TOTAL RUNOFF (CFS) =6.39TOTAL AREA (ACRES) =0.510.51 TC(MIN.) = 25.06FLOW PROCESS FROM NODE 193.00 TO NODE 195.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 256.00 DOWNSTREAM(FEET) = 244.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 242.00 CHANNEL SLOPE = 0.0496 $\mathsf{CHANNEL} \ \mathsf{BASE}(\mathsf{FEET}) = 3.00 \quad "\mathsf{Z}" \ \mathsf{FACTOR} = 3.000$ MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.39 FLOW VELOCITY(FEET/SEC.) = 7.39 FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 0.55 TC(MIN.) = 25.61 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 195.00 = 1125.00 FEET. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< _____

100MI T. OUT TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.61 RAINFALL INTENSITY(INCH/HR) = 2.66 TOTAL STREAM AREA(ACRES) = 6.76 6.39 PEAK FLOW RATE(CFS) AT CONFLUENCE = FLOW PROCESS FROM NODE 196.00 TO NODE 198.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 4200 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 470.00 DOWNSTREAM ELEVATION(FEET) = 461.00 ELEVATION DIFFERENCE(FEET) = 9.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.581 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.32 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.32 FLOW PROCESS FROM NODE 198.00 TO NODE 195.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 461.00 DOWNSTREAM(FEET) = 244.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 550.00 CHANNEL SLOPE = 0.3945 CHANNEL BASE(FEET) = 14.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.32 FLOW VELOCITY(FEET/SEC.) = 1.83 FLOW DEPTH(FEET) = 0.01 TRAVEL TIME(MIN.) = 5.00 Tc(MIN.) = 9.58LONGEST FLOWPATH FROM NODE 196.00 TO NODE 195.00 = 615.00 FEET. FLOW PROCESS FROM NODE 198.00 TO NODE 195.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.022 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3527 SUBAREA AREA(ACRES) =2.50SUBAREA RUNOFF(CFS) =4.39TOTAL AREA(ACRES) =2.6TOTAL RUNOFF(CFS) =4.4 4.61 TC(MIN.) = 9.58FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.58RAINFALL INTENSITY(INCH/HR) = 5.02TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.61 ** CONFLUENCE DATA ** RUNOFF TC INTENSITY STREAM ARFA NUMBER (MIN.) (INCH/HOUR) (CFS) (ACRE)

```
Page 23
```

100MI T. OUT 6. 39 25. 61 4. 61 9. 58 1 2.664 6.76 2 5.022 2.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Тс I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.00 9.58 5.022 25.61 2 8.84 2.664 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =8.84Tc(MIN.) =TOTAL AREA(ACRES) =9.4 25.61 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 195.00 = 1125.00 FFFT. FLOW PROCESS FROM NODE 195.00 TO NODE 175.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 244.00 DOWNSTREAM(FEET) = 209.50 CHANNEL LENGTH THRU SUBAREA (FEET) = 333.00 CHANNEL SLOPE = 0.1036 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.84FLOW VELOCITY(FEET/SEC.) = 10.91 FLOW DEPTH(FEET) = 0.23TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 26.12LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 1458.00 FEET. FLOW PROCESS FROM NODE 199.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.631*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3507 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.46 9.9 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 9.10 TC(MIN.) =26.12 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 26.12RAINFALL INTENSITY(INCH/HR) = 2.63 TOTAL STREAM AREA(ACRES) = 9.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.10 FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 448.50 DUWNSIREAM ELEVATION(FEET) =426.00ELEVATION DIFFERENCE(FEET) =22.50 DOWNSTREAM ELEVATION(FEET) = 426.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.052 Page 24

100MI T. OUT WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.590 SUBAREA RUNOFF(CFS) = 0.27TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.27 ****** FLOW PROCESS FROM NODE 202.00 TO NODE 175.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 209.50 CHANNEL LENGTH THRU SUBAREA (FEET) = 795.00 CHANNEL SLOPE = 0.2723 CHANNEL BASE(FEET) = 80.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.27 FLOW VELOCITY(FEET/SEC.) = 0.69 FLOW DEPTH(FEET) = 0.00TRAVEL TIME(MIN.) = 19.08 Tc(MIN.) = 24.14LONGEST FLOWPATH FROM NODE 200.00 TO NODE 175.00 = 860.00 FEET. FLOW PROCESS FROM NODE 202.00 TO NODE 175.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.768 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = . 3300 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3308 SUBAREA AREA(ACRES) =2.54SUBAREA RUNOFF(CFS) =2.32TOTAL AREA(ACRES) =2.6TOTAL RUNOFF(CFS) =2.42 TC(MIN.) = 24.14FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.14RAINFALL INTENSITY(INCH/HR) = 2.77TOTAL STREAM AREA(ACRES) = 2.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.42 ** CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY AREA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) (CFS) 9. 10 1 26.12 2.631 9.86 2 2.42 24.14 2.768 2.64 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 11.06 24.14 1 2.768 11.39 26.12 2 2.631 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.39 Tc(MIN.) = 26.12 TOTAL AREA(ACRES) = 12.5 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 1458.00 FEET. FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 11 ----->>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<<<<<

** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC I NTENSI TY ARFA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.39 26.12 2.631 12.50 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 175.00 = 1458.00 FEET. ** MEMORY BANK # 3 CONFLUENCE DATA ** RUNOFF STREAM Тс I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 10.27 1 10. 52 4. 728 4.68 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 175.00 = 903.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 14.86 10.52 4.728 2 17.11 26.12 2.631 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.11 Tc(MIN.) = 26.12 TOTAL AREA(ACRES) = 17.2 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 12_____ >>>>CLEAR MEMORY BANK # 3 <<<<< _____ ****** FLOW PROCESS FROM NODE 175.00 TO NODE 1.00 IS CODE = 51_____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 209.50 DOWNSTREAM(FEET) = 204.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 202.00 CHANNEL SLOPE = 0.0272 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 8.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 17.11 FLOW VELOCITY(FEET/SEC.) = 3.65 FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 0.92 Tc(MIN.) = 27.04LONGEST FLOWPATH FROM NODE 186.00 TO NODE 1.00 = 1660.00 FEET. FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 11 _____ >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< _____ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc I NTENSI TY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 17.11 1 27.04 2.572 17.18 LONGEST FLOWPATH FROM NODE 1.00 = 186.00 TO NODE 1660.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Тс I NTENSI TY ARFA NUMBER (CFS) (ACRE) (MIN.) (INCH/HOUR) 1 27.37 14.39 3.864 12.44 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 1.00 = 2332.00 FEET. ** PEAK FLOW RATE TABLE ** Тс STREAM RUNOFF I NTENSI TY NUMBER (CFS) (MIN.) (INCH/HOUR) 36.48 1 14.39 3.864 2 35.33 27.04 2.572 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 36.48 Tc(MIN.) = 14.39

TOTAL AREA(ACRES) = 29.6 **** FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 12_____ >>>>CLEAR MEMORY BANK # 1 <<<<< _____ FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.39RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 29.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 36.48 FLOW PROCESS FROM NODE 131.00 TO NODE 133.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S. C. S. CURVE NUMBER (AMC II) = 0INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 245.00 235.00 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = 10.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.089 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.641 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.39TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.39 ****** FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<< _____ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 6.00 RAIN INTENSITY(INCH/HOUR) = 6.79 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.12 ***** FLOW PROCESS FROM NODE 133.00 TO NODE 137.00 IS CODE = 31 ----->>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 231.00 DOWNSTREAM(FEET) = 230.00 FLOW LENGTH (FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.77 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0. 12 PIPE TRAVEL TIME(MIN.) = 0.21Tc(MIN.) =6.21 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 137.00 = 135.00 FEET. FLOW PROCESS FROM NODE 133.00 TO NODE 137.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.643*USER SPECIFIED(SUBAREA):

100MI T. OUT USER-SPECIFIED RUNOFF COEFFICIENT = . 3500 S. C. S. CURVE NUMBER (AMC II) = 0AREA-AVERAGE RUNOFF COEFFICIENT = 0.3361 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.42 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.54 TC(MIN.) =6.21 FLOW PROCESS FROM NODE 137.00 TO NODE 1.00 IS CODE = 31_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 230.00 DOWNSTREAM(FEET) = 204.00 FLOW LENGTH (FEET) = 2400.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.07ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =0.54 PIPE TRAVEL TIME(MIN.) = 13.01 Tc(MIN.) = 19.22LONGEST FLOWPATH FROM NODE 131.00 TO NODE 1.00 = 2535.00 FEET. ***** FLOW PROCESS FROM NODE 137.00 TO NODE 1.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.22 RAINFALL INTENSITY(INCH/HR) = 3.21 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.54 ** CONFLUENCE DATA ** STRFAM RUNOFF Тс I NTENSI TY ARFA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) 14.39 3.864 19.22 3.206 1 36.48 29.62 2 0.54 19. 22 3.206 0.24 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc I NTENSI TY (CFS) NUMBER (MIN.)(INCH/HOUR) 1 36.88 14.39 3.864 19.22 2 30.80 3.206 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 36.88 Tc(MIN.) = 14.39TOTAL AREA(ACRES) = 29.9 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 1.00 = 2535.00 FEET. _____ END OF STUDY SUMMARY: 29.9 TC(MIN.) = TOTAL AREA(ACRES) = 14.39 PEAK FLOW RATE(CFS) = 36.88 _____ _____

END OF RATIONAL METHOD ANALYSIS

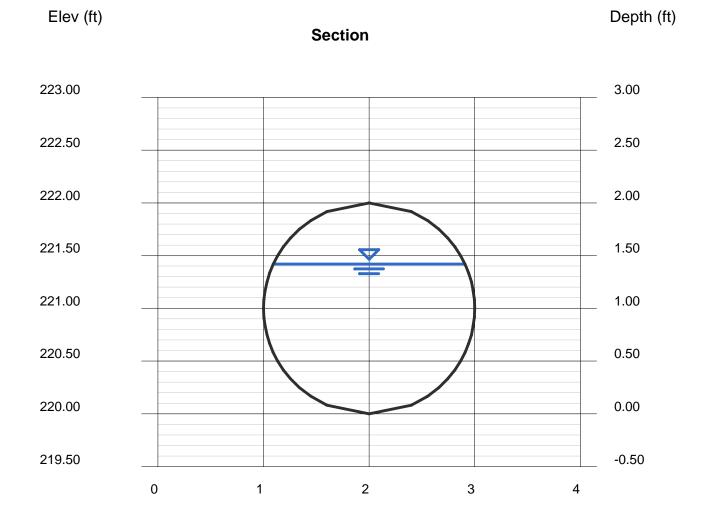
٨

Olive Park Apartments Preliminary Drainage Study

CHAPTER 4

HYDROLOGIC MODEL FOR DEVELOPED CONDITIONS

4.3 – Preliminary Rip Rap Sizing

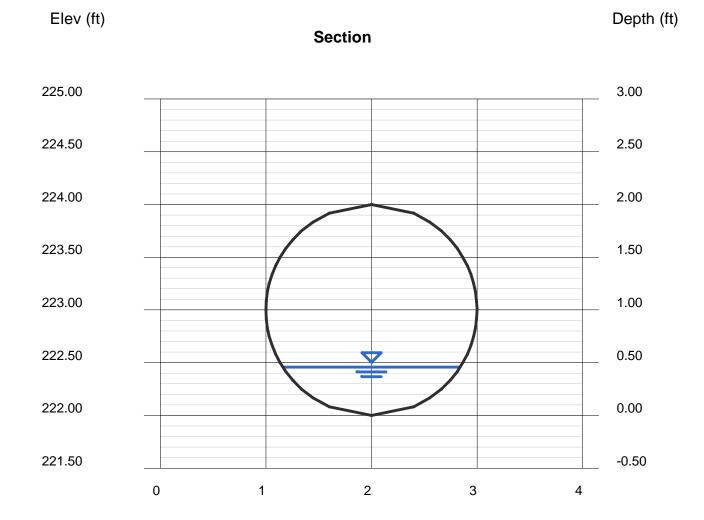

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

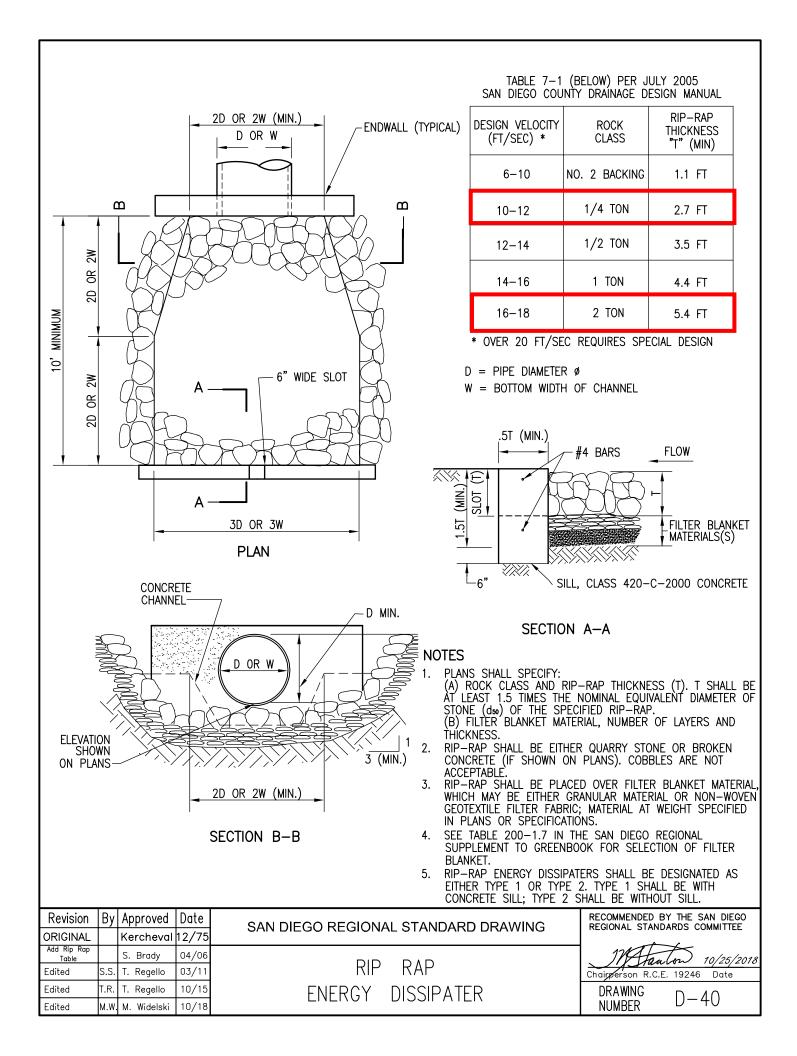
Monday, Oct 7 2024

Outfall @ Node 143 from 145

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.42
		Q (cfs)	= 27.21
		Area (sqft)	= 2.39
Invert Elev (ft)	= 220.00	Velocity (ft/s)	= 11.40
Slope (%)	= 2.00	Wetted Perim (ft)	= 4.01
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.82
		Top Width (ft)	= 1.81
Calculations		EGL (ft)	= 3.44
Compute by:	Known Q		
Known Q (cfs)	= 27.21		


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Thursday, Aug 8 2024

Outfall @ Node 175 from 160

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 0.46
		Q (cfs)	= 9.650
		Area (sqft)	= 0.55
Invert Elev (ft)	= 222.00	Velocity (ft/s)	= 17.47
Slope (%)	= 14.00	Wetted Perim (ft)	= 2.01
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.11
		Top Width (ft)	= 1.69
Calculations		EGL (ft)	= 5.20
Compute by:	Known Q		
Known Q (cfs)	= 9.65		

Reach (ft)

Olive Park Apartments Preliminary Drainage Study

CHAPTER 5

Basin Attenuation Calculations

STORAGE FACILITY 1 HYDROGRAPH

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 8/8/2024 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 6 MIN. 6 HOUR RAINFALL 2.9 INCHES BASIN AREA 4.26 ACRES RUNOFF COEFFICIENT 0.848 PEAK DISCHARGE 26.12 CFS

TIME (MIN) = 0 TIME (MIN) = 12 TIME (MIN) = 12 TIME (MIN) = 13 TIME (MIN) = 24 TIME (MIN) = 30 TIME (MIN) = 36 TIME (MIN) = 42 TIME (MIN) = 48 TIME (MIN) = 54 TIME (MIN) = 60 TIME (MIN) = 66 TIME (MIN) = 72 TIME (MIN) = 72 TIME (MIN) = 78 TIME (MIN) = 78 TIME (MIN) = 102 TIME (MIN) = 102 TIME (MIN) = 102 TIME (MIN) = 102 TIME (MIN) = 120 TIME (MIN) = 120 TIME (MIN) = 120 TIME (MIN) = 126 TIME (MIN) = 122 TIME (MIN) = 133 TIME (MIN) = 138 TIME (MIN) = 150 TIME (MIN) = 162 TIME (MIN) = 162 TIME (MIN) = 162 TIME (MIN) = 174 TIME (MIN) = 174 TIME (MIN) = 180 TIME (MIN) = 180 TIME (MIN) = 192 TIME (MIN) = 198 TIME (MIN) = 204 TIME (MIN) = 210 TIME (MIN) = 222 TIME (MIN) = 222	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 1.9 DISCHARGE (CFS) = 2.2 DISCHARGE (CFS) = 2.2 DISCHARGE (CFS) = 2.2 DISCHARGE (CFS) = 2.4 DISCHARGE (CFS) = 2.9 DISCHARGE (CFS) = 2.9 DISCHARGE (CFS) = 2.9
TIME (MIN) = 216 TIME (MIN) = 222	DISCHARGE (CFS) = 2.9
TIME (MIN) = 228	DISCHARGE (CFS) = 3.3
TIME (MIN) = 234	DISCHARGE (CFS) = 4.9
TIME (MIN) = 240	DISCHARGE (CFS) = 5.3
TIME (MIN) = 246	DISCHARGE (CFS) = 26.12
TIME (MIN) = 252	DISCHARGE (CFS) = 3.9
TIME (MIN) = 258	DISCHARGE (CFS) = 2.6
TIME (MIN) = 264	DISCHARGE (CFS) = 2
TIME (MIN) = 270	DISCHARGE (CFS) = 1.7
TIME (MIN) = 276	DISCHARGE (CFS) = 1.5
TIME (MIN) = 282	DISCHARGE (CFS) = 1.3
TIME (MIN) = 288	DISCHARGE (CFS) = 1.2
TIME $(MIN) = 294$	DISCHARGE (CFS) = 1.1
TIME (MIN) = 300	DISCHARGE (CFS) = 1
TIME (MIN) = 306	DISCHARGE (CFS) = 1
TIME $(MIN) = 312$	DISCHARGE (CFS) = 0.9
TIME (MIN) = 318	DISCHARGE (CFS) = 0.9
TIME (MIN) = 324	DISCHARGE (CFS) = 0.8
TIME (MIN) = 330	DISCHARGE (CFS) = 0.8
TIME (MIN) = 336	DISCHARGE (CFS) = 0.7
TIME $(MIN) = 342$	DISCHARGE (CFS) = 0.7
TIME (MIN) = 348	DISCHARGE (CFS) = 0.7
TIME (MIN) = 354	DISCHARGE (CFS) = 0.7
TIME (MIN) = 360	DISCHARGE (CFS) = 0.6
TIME (MIN) = 366	DISCHARGE (CFS) = 0

CMP-1 Discharge to MWS BF-3-1 Discharge vs Elevation Table

Discriary	e vs Elevation Table		
Low orifice:	0.5625 "	Top orifice:	0.625 "
Number:	8	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.40 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.56	0.00	0.00	0.026	0.031	0.026	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0256
0.33	7.11	0.00	0.00	0.038	2.023	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0376
0.50	10.67	0.00	1.92	0.047	23.644	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0467
0.67	14.22	2.42	5.12	0.054	118.943	0.054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0542
0.83	17.78	4.85	8.32	0.061	399.127	0.061	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0608
1.00	21.33	7.27	11.52	0.067	1053.340	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
1.17	24.89	9.70	14.72	0.072	2369.442	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0723
1.33	28.44	12.12	17.92	0.077	4754.788	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0773
1.50	32.00	14.55	21.12	0.082	8757.006	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0821
1.67	35.56	16.97	24.32	0.087	15084.775	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0866
1.83	39.11	19.39	27.52	0.091	24628.607	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0909
2.00	42.67	21.82	30.72	0.095	38481.619	0.095	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0950
2.17	46.22	24.24	33.92	0.099	57960.320	0.099	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0989
2.33	49.78	26.67	37.12	0.103	84625.382	0.103	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1027
2.50	53.33	29.09	40.32	0.106	120302.423	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1064
2.67	56.89	31.52	43.52	0.110	167102.785	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1099
2.83	60.44	33.94	46.72	0.113	227444.312	0.113	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1133
3.00	64.00	36.36	49.92	0.117	304072.128	0.117	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1166
3.17	67.56	38.79	53.12	0.120	400079.417	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1198
3.33	71.11	41.21	56.32	0.123	518928.201	0.123	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1230
3.50	74.67	43.64	59.52	0.126	664470.120	0.126	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1260
3.67	78.29	46.11	62.78	0.129	844844.376	0.129	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1291
3.83	81.78	48.48	65.92	0.132	1053112.667	0.132	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1319
4.00	85.33	50.91	69.12	0.135	1306051.664	0.135	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1348
4.17	88.89	53.33	72.32	0.138	1605402.088	0.138	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1376
4.33	92.44	55.76	75.52	0.140	1957275.340	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1403
4.50	96.00	58.18	78.72	0.143	2368297.110	0.143	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1430
4.67	99.56	60.61	81.92	0.146	2845628.153	0.146	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1456
4.83	103.11	63.03	85.12	0.148	3396985.073	0.148	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1482
5.00	106.67	65.45	88.32	0.151	4030661.095	0.151	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1508
5.17	110.22	67.88	91.52	0.153	4755546.849	0.153	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1533
5.33	113.78	70.30	94.72	0.156	5581151.145	0.156	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1557
5.50	117.33	72.73	97.92	0.158	6517621.754	0.158	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1582
5.67	120.89	75.15	101.12	0.161	7575766.186	0.161	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1605
5.83	124.44	77.58	104.32	0.163	8767072.466	0.163	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1629
6.00	128.00	80.00	107.52	0.165	10103729.919	0.165	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1652
6.17	131.56	82.42	110.72	0.168	11598649.940	0.168	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1675
6.33	135.11	84.85	113.92	0.170	13265486.781	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1698
6.50	138.67	87.27	117.12	0.172	15118658.325	0.172	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1720
6.67	142.22	89.70	120.32	0.174	17173366.863	0.174	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1742
6.83	145.78	92.12	123.52	0.176	19445619.877	0.176	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1764
7.00	149.33	94.55	126.72	0.179	21952250.818	0.179	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1785
7.17	152.89	96.97	129.92	0.181	24710939.881	0.181	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1806
7.33	156.44	99.39	133.12	0.183	27740234.786	0.183	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1827
7.50	160.00	101.82	136.32	0.185	31059571.558	0.185	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1848

		CMP #1 St	age Storage		
	Input DCV			7,569	
	Input Factor			2	_
) Ponding De		2.833		ft
		evation value	e in relation to	o required W	Q volume
HMP-2-A Sta					
depth	area	area (ac)	elevation	volume (cf)	volume (acft)
0.00	3008.4	0.0691	0.00	0.0	0.00000
0.17	3990.6	0.0916	0.17	611.1	0.01403
0.33	4380.5	0.1006	0.33	1,310.7	0.03009
0.50	4667.7	0.1072	0.50	2,065.7	0.04742
0.67	4899.6	0.1125	0.67	2,863.6	0.06574
0.83	5094.9	0.1170	0.83	3,696.9	0.08487
1.00	5262.9	0.1208	1.00	4,560.4	0.10469
1.17	5409.5	0.1242	1.17	5,450.0	0.12512
1.33	5538.3	0.1271	1.33	6,362.6	0.14606
1.50	5652.0	0.1298	1.50	7,295.3	0.16748
1.67	5752.5	0.1321	1.67	8,245.8	0.18930
1.83	5841.1	0.1341	1.83	9,212.1	0.21148
2.00	5919.0	0.1359	2.00	10,192.3	0.23398
2.17	5986.9	0.1374	2.17	11,184.6	0.25676
2.33	6045.6	0.1388	2.33	12,187.4	0.27978
2.50	6095.5	0.1399	2.50	13,199.3	0.30301
2.67	6137.2	0.1409	2.67	14,218.8	0.32642
2.83	6170.8	0.1417	2.83	15,244.5	0.34997
3.00	6196.8	0.1423	3.00	16,275.3	0.37363
3.17	6215.2	0.1427	3.17	17,309.7	0.39738
3.33	6226.1	0.1429	3.33	18,346.6	0.42118
3.50	6229.8	0.1430	3.50	19,384.7	0.44501
3.67	6226.1	0.1429	3.67	20,422.8	0.46884
3.83	6215.2	0.1427	3.83	21,459.7	0.49265
4.00	6196.8	0.1423	4.00	22,494.1	0.51639
4.17	6170.8	0.1417	4.17	23,524.8	0.54006
4.33	6137.2	0.1409	4.33	24,550.6	0.56360
4.50	6095.5	0.1399	4.50	25,570.1	0.58701
4.67	6045.6	0.1388	4.67	26,582.0	0.61024
4.83	5986.9	0.1374	4.83	27,584.8	0.63326
5.00	5919.0	0.1359	5.00	28,577.1	0.65604
5.17	5841.1	0.1341	5.17	29,557.2	0.67854
5.33	5752.5	0.1321	5.33	30,523.5	0.70072
5.50	5652.0	0.1298	5.50	31,474.1	0.72255
5.67	5538.3	0.1271	5.67	32,406.8	0.74396
5.83	5409.5	0.1242	5.83	33,319.4	0.76491
6.00	5262.9	0.1208	6.00	34,209.0	0.78533
6.17	5094.9	0.1170	6.17	35,072.5	0.80515
6.33	4899.6	0.1125	6.33	35,905.8	0.82428
6.50	4667.7	0.1072	6.50	36,703.7	0.84260
6.67	4380.5	0.1006	6.67	37,458.6	0.85993
6.83	3990.6	0.0916	6.83	38,158.3	0.87599
7.00	3008.4	0.0691	7.00	38,769.4	0.89002
7.17	3008.4	0.0691	7.17	39,270.8	0.90153
7.33	3008.4	0.0691	7.33	39,772.2	0.91304
7.50	3008.4	0.0691	7.50	40,273.6	0.92455

Date: 8/7/2024 Project Name: West Storage-1 - 47951 (8-7-2024 21-27-19)

City / County: State:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs										
System Information	n Backfill Information Pipe & Analysis Information			tion						
Out-to-out length (ft):	107.0	Backfill Porosity (%):	40%	System Diameter (in):	84					
Out-to-out width (ft):	67.0	Depth Above Pipe (in):	6.0	Pipe Spacing (in):	36					
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2					
Number of Barrels (ea):	7.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0					
		Width At Sides (ft):	1.0							

	Storage Volume Estimation										
Sys	stem		ре		one		System	Miscell			
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)		
0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	3,008.4		
0.17	0.16	182.8	182.8	428.3	428.3	611.1	611.1	29.9%	3,990.6		
0.33	0.33	330.4	513.2	369.2	797.5	699.7	1,310.7	39.2%	4,380.5		
0.50	0.50	422.6	935.8	332.3	1,129.9	755.0	2,065.7	45.3%	4,667.7		
0.67	0.66	494.1	1,430.0	303.7	1,433.6	797.9	2,863.6	49.9%	4,899.6		
0.83	0.83	553.2	1,983.2	280.1	1,713.7	833.3	3,696.9	53.6%	5,094.9		
1.00	1.00	603.5	2,586.6	260.0	1,973.7	863.5	4,560.4	56.7%	5,262.9		
1.17	1.16	647.1	3,233.7	242.6	2,216.3	889.6	5,450.0	59.3%	5,409.5		
1.33	1.33	685.2	3,918.9	227.3	2,443.6	912.5	6,362.6	61.6%	5,538.3		
1.50	1.50	718.9	4,637.8	213.8	2,657.5	932.7	7,295.3	63.6%	5,652.0		
1.67	1.66	748.6	5,386.4	202.0	2,859.4	950.6	8,245.8	65.3%	5,752.5		
1.83	1.83	774.8	6,161.2	191.5	3,050.9	966.3	9,212.1	66.9%	5,841.1		
2.00	2.00	797.9	6,959.1	182.2	3,233.1	980.1	10,192.3	68.3%	5,919.0		
2.17	2.16	818.1	7,777.3	174.1	3,407.3	992.3	11,184.6	69.5%	5,986.9		
2.33	2.33	835.7	8,613.0	167.1	3,574.4	1,002.8	12,187.4	70.7%	6,045.6		
2.50	2.50	850.8	9,463.8	161.1	3,735.5	1,011.9	13,199.3	71.7%	6,095.5		
2.67	2.66	863.5	10,327.3	156.0	3,891.5	1,019.5	14,218.8	72.6%	6,137.2		
2.83	2.83	874.0	11,201.2	151.8	4,043.3	1,025.8	15,244.5	73.5%	6,170.8		
3.00	3.00	882.2	12,083.5	148.5	4,191.8	1,030.7	16,275.3	74.2%	6,196.8		
3.17	3.16	888.4	12,971.9	146.0	4,337.9	1,034.4	17,309.7	74.9%	6,215.2		
3.33	3.33	892.5	13,864.3	144.4	4,482.3	1,036.9	18,346.6	75.6%	6,226.1		
3.50	3.50	894.5	14,758.8	143.6	4,625.9	1,038.1	19,384.7	76.1%	6,229.8		
3.67	3.66	894.5	15,653.3	143.6	4,769.5	1,038.1	20,422.8	76.6%	6,226.1		
3.83	3.83	892.5	16,545.8	143.0	4,913.9	1,036.9	21,459.7	77.1%	6,215.2		
4.00	4.00	888.4	17,434.2	146.0	5,059.9	1,034.4	22,494.1	77.5%	6,196.8		
4.17	4.16	882.2	18,316.4	148.5	5,208.4	1,030.7	23,524.8	77.9%	6,170.8		
4.33	4.33	874.0	19,190.3	151.8	5,360.3	1,025.8	24,550.6	78.2%	6,137.2		
4.50	4.50	863.5	20,053.8	156.0	5,516.3	1,019.5	25,570.1	78.4%	6,095.5		
4.67	4.66	850.8	20,904.6	161.1	5,677.3	1,011.9	26,582.0	78.6%	6,045.6		
4.83	4.83	835.7	21,740.3	167.1	5,844.5	1,002.8	27,584.8	78.8%	5,986.9		
5.00	5.00	818.1	22,558.5	174.1	6,018.6	992.3	28,577.1	78.9%	5,919.0		
5.17	5.16	797.9	23,356.4	182.2	6,200.8	980.1	29,557.2	79.0%	5,841.1		
5.33	5.33	774.8	24,131.2	191.5	6,392.3	966.3	30,523.5	79.1%	5,752.5		
5.50	5.50	748.6	24,879.8	202.0	6,594.3	950.6	31,474.1	79.0%	5,652.0		
5.67	5.66	718.9	25,598.7	213.8	6,808.1	932.7	32,406.8	79.0%	5,538.3		
5.83	5.83	685.2	26,283.9	227.3	7,035.4	912.5	33,319.4	78.9%	5,409.5		
6.00	6.00	647.1	26,931.0	242.6	7,278.0	889.6	34,209.0	78.7%	5,262.9		
6.17	6.16	603.5	27,534.5	260.0	7,538.0	863.5	35,072.5	78.5%	5,094.9		
6.33	6.33	553.2	28,087.6	280.1	7,818.1	833.3	35,905.8	78.2%	4,899.6		
6.50	6.50	494.1	28,581.8	303.7	8,121.9	797.9	36,703.7	77.9%	4,667.7		
6.67	6.66	422.6	29,004.4	332.3	8,454.2	755.0	37,458.6	77.4%	4,380.5		
6.83	6.83	330.4	29,334.8	369.2	8,823.5	699.7	38,158.3	76.9%	3,990.6		
7.00	7.00	182.8	29,517.6	428.3	9,251.8	611.1	38,769.4	76.1%	3,008.4		
7.00	7.16	0.0	29,517.6	501.4	9,753.2	501.4	39,270.8	75.2%	3,008.4		
7.33	7.33	0.0	29,517.6	501.4	10,254.6	501.4	39,772.2	74.2%	3,008.4		
7.50	7.50	0.0	29,517.6	501.4	10,756.0	501.4	40,273.6	73.3%	3,008.4		
1.50	1.50	0.0	23,317.0	501.4	10,750.0	501.4	40,27 3.0	10.070	3,000.4		

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawo	down @	2.83	ft=	62.68
Elevation	Q _{AVG} (CFS)	$\Delta {f V}$ (CF)	Δ T (HR)	Total T
0.00	0.026	611	6.64	62.68
0.17	0.032	700	6.15	56.05
0.33	0.042	755	4.98	49.90
0.50	0.050	798	4.40	44.92
0.67	0.058	833	4.02	40.52
0.83	0.064	863	3.76	36.50
1.00	0.070	890	3.55	32.74
1.17	0.075	913	3.39	29.19
1.33	0.080	933	3.25	25.80
1.50	0.084	951	3.13	22.55
1.67	0.089	966	3.02	19.42
1.83	0.093	980	2.93	16.40
2.00	0.097	992	2.84	13.47
2.17	0.101	1003	2.76	10.62
2.33	0.105	1012	2.69	7.86
2.50	0.108	1020	2.62	5.17
2.67	0.112	1026	2.55	2.55
2.83				

CMP #1 Discharge HMP Riser

Discharge v	s Elevation Table			
Low orifice:	0.50 "	Top orifice:		4 "
Number:	1	Number:		12
Cg-low:	0.61	Cg-low:	(0.61
invert elev:	2.83 ft	invert elev:	!	5.00 ft
Middle orifice:	2 "	Emergency inlet:		
number of orif:	10	Rim height:	6.40 ft	
Cg-middle:	0.61	Riser Box D	3x4	
invert elev:	4.75 ft	Weir Length	14.00 ft	

Peak Flow
WQ+HMP

															WQ+HMP
h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir		Qpeak-top	Qtot	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0256
0.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0376
0.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0467
0.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0542
0.83	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0608
1.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
1.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0723
1.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0773
1.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0821
1.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0866
1.83	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0909
2.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0950
2.17	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0989
2.33	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1027
2.50	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1064
2.67	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1099
2.83	0.08	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1133
3.00	4.08	0.00	0.00	0.003	0.005	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.1192
3.17	8.08	0.00	0.00	0.004	0.422	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.1236
3.33	12.08	0.00	0.00	0.005	4.470	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.1276
3.50 3.67	16.08 20.16	0.00	0.00	0.005	21.637 72.690	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.1314
3.87	20.16	0.00	0.00	0.006	185.564	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.1351
4.00	24.08	0.00	0.00	0.007	414.035	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.1385
4.00	32.08	0.00	0.00	0.007	826.024	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.1419
4.17	32.08	0.00	0.00	0.008	1514.674	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.1452
4.55	40.08	0.00	0.00	0.008	2600.318	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.1484
4.50	40.08	0.00	0.00	0.009	4233.968	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.1516
4.83	44.08	0.50	0.00	0.009	6600.799	0.009	0.000	0.000	0.087	0.000	0.000	0.000	0.000	0.009	0.1340
5.00	52.08	1.50	0.00	0.010	9923.637	0.005	0.436	0.530	0.436	0.000	0.000	0.000	0.000	0.446	0.5965
5.17	56.08	2.50	0.50	0.010	14466.445	0.010	0.430	0.788	0.617	0.000	0.590	0.590	0.000	1.217	1.3701
5.33	60.08	3.50	1.00	0.010	20537.809	0.010	0.755	0.888	0.755	2.093	1.999	1.999	0.000	2.765	2.9209
5.50	64.08	4.50	1.50	0.011	28494.427	0.011	0.872	2.617	0.872	2.960	3.599	2.960	0.000	3.843	4.0007
5.67	68.08	5.50	2.00	0.011	38744.594	0.011	0.975	10.607	0.975	3.625	4.814	3.625	0.000	4.611	4.7715
5.83	72.08	6.50	2.50	0.011	51751.690	0.011	1.068	33.432	1.068	4.186	5.351	4.186	0.000	5.265	5.4280
6.00	76.08	7.50	3.00	0.012	68037.662	0.012	1.154	84.691	1.154	4.680	5.434	4.680	0.000	5.845	6.0102
6.17	80.08	8.50	3.50	0.012	88186.518	0.012	1.233	184.101	1.233	5.126	6.031	5.126	0.000	6.372	6.5391
6.33	84.08	9.50	4.00	0.012	112847.808	0.012	1.308	358.584	1.308	5.537	9.089	5.537	0.000	6.857	7.0272
6.50	88.08	10.50	4.50	0.012	142740.112	0.012	1.379	643.360	1.379	5.919	17.762	5.919	1.474	8.785	8.9570
6.67	92.08	11.50	5.00	0.013	178654.529	0.013	1.446	1083.034	1.446	6.278	36.645	6.278	6.420	14.157	14.3315
6.83	96.08	12.50	5.50	0.013	221458.160	0.013	1.510	1732.686	1.510	6.618	72.003	6.618	13.299	21.440	21.6166
7.00	100.08	13.50	6.00	0.014	272097.598	0.014	1.572	2658.962	1.572	6.941	132.003	6.941	21.667	30.194	30.3721
7.17	104.08	14.50	6.50	0.014	331602.411	0.014	1.631	3941.161	1.631	7.250	226.944	7.250	31.296	40.190	40.3710
7.33	108.08	15.50	7.00	0.014	401088.632	0.014	1.689	5672.326	1.689	7.546	369.491	7.546	42.037	51.285	51.4677
7.50	112.08	16.50	7.50	0.014	481762.245	0.014	1.744	7960.336	1.744	7.831	574.902	7.831	53.785	63.374	63.5587
							· · · ·								

HMP-2A D	rawdown @	7.5	ft=	91.23
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.019	611	9.02	91.23
0.17	0.032	700	6.15	82.20
0.33	0.042	755	4.98	76.05
0.50	0.050	798	4.40	71.07
0.67	0.058	833	4.02	66.68
0.83	0.064	863	3.76	62.65
1.00	0.070	890	3.55	58.90
1.17	0.075	913	3.39	55.34
1.33	0.080	933	3.25	51.95
1.50	0.084	951	3.13	48.70
1.67	0.089	966	3.02	45.57
1.83	0.093	980	2.93	42.55
2.00	0.097	992	2.84	39.62
2.17	0.101	1003	2.76	36.78
2.33	0.105	1012	2.69	34.02
2.50	0.108	1020	2.62	31.33
2.67	0.112	1026	2.55	28.71
2.83	0.116	1031	2.46	26.15
3.00	0.121	1034	2.37	23.69
3.17	0.126	1037	2.29	21.32
3.33	0.129	1038	2.23	19.03
3.50	0.133	1038	2.16	16.80
3.67	0.137	1037	2.11	14.64
3.83	0.140	1034	2.05	12.53
4.00	0.144	1031	1.99	10.49
4.17	0.147	1026	1.94	8.49
4.33	0.150	1020	1.89	6.55
4.50	0.153	1012	1.84	4.66
4.67	0.200	1003	1.40	2.83
4.83	0.421	992	0.66	1.43
5.00	0.983	980	0.28	0.78
5.17	2.145	966	0.13	0.50
5.33	3.461	951	0.08	0.37
5.50	4.386	933	0.06	0.30
5.67	5.100	913	0.05	0.24
5.83	5.719	890	0.04	0.19
6.00	6.275	863	0.04	0.14
6.17	6.783	833	0.03	0.11
6.33	7.992	798	0.03	0.07
6.50	11.644	755	0.02	0.04
6.67	17.974	700	0.01	0.03
6.83	25.994	611	0.01	0.02
7.00	35.372	501	0.00	0.01
7.17	45.919	501	0.00	0.01
7.33	57.513	501	0.00	0.00
7.50	31.779			

STORAGE FACILITY 2 HYDROGRAPH

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 10/7/2024 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 6 MIN. 6 HOUR RAINFALL 2.9 INCHES BASIN AREA 2.33 ACRES RUNOFF COEFFICIENT 0.75 PEAK DISCHARGE 12.41 CFS

TIME (MIN) = 0 TIME (MIN) = 12 TIME (MIN) = 12 TIME (MIN) = 13 TIME (MIN) = 30 TIME (MIN) = 30 TIME (MIN) = 36 TIME (MIN) = 42 TIME (MIN) = 42 TIME (MIN) = 48 TIME (MIN) = 60 TIME (MIN) = 60 TIME (MIN) = 72 TIME (MIN) = 72 TIME (MIN) = 72 TIME (MIN) = 72 TIME (MIN) = 102 TIME (MIN) = 114 TIME (MIN) = 120 TIME (MIN) = 120 TIME (MIN) = 120 TIME (MIN) = 132 TIME (MIN) = 132 TIME (MIN) = 132 TIME (MIN) = 132 TIME (MIN) = 1312 TIME (MIN) = 136 TIME (MIN) = 150 TIME (MIN) = 150 TIME (MIN) = 150 TIME (MIN) = 150 TIME (MIN) = 162 TIME (MIN) = 162 TIME (MIN) = 163 TIME (MIN) = 163 TIME (MIN) = 163 TIME (MIN) = 164 TIME (MIN) = 163 TIME (MIN) = 162 TIME (MIN) = 120 TIME (MIN) = 204 TIME (MIN) = 210 TIME (MIN) = 210 TIME (MIN) = 221 TIME (MIN) = 221 TIME (MIN) = 223 TIME (MIN) = 246 TIME (MIN) = 246 TIME (MIN) = 246 TIME (MIN) = 270 TIME (MIN) = 283 TIME (MIN) = 270 TIME (MIN) = 271 TIME (MIN) = 271 TIME (MIN) = 270 TIME (MIN) = 270	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.3 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 D
TIME (MIN) = 306 TIME (MIN) = 312 TIME (MIN) = 318 TIME (MIN) = 324	DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4

CMP-2 Discharge to MWS BF-3-2 Discharge vs Elevation Table

Discharge	e vs Elevation Table		
Low orifice:	0.525 "	Top orifice:	0.75 "
Number:	4	Number:	0
Cg-low:	0.61	Cg-low:	0.61
invert elev:	0.00 ft	invert elev:	0.75 ft

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	3.81	0.00	0.00	0.011	0.016	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0112
0.33	7.62	0.00	0.00	0.016	1.321	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0164
0.50	11.43	0.00	0.00	0.020	14.762	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0204
0.67	15.24	2.42	0.00	0.024	73.005	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0236
0.83	19.05	4.85	1.33	0.027	242.879	0.027	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0265
1.00	22.86	7.27	4.00	0.029	637.724	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0291
1.17	26.67	9.70	6.67	0.031	1429.734	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0315
1.33	30.48	12.12	9.33	0.034	2862.302	0.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0337
1.50	34.29	14.55	12.00	0.036	5262.368	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0358
1.67	38.10	16.97	14.67	0.038	9052.761	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0378
1.83	41.90	19.39	17.33	0.040	14764.544	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0396
2.00	45.71	21.82	20.00	0.041	23049.363	0.041	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0414
2.17	49.52	24.24	22.67	0.043	34691.785	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0431
2.33	53.33	26.67	25.33	0.045	50621.653	0.045	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0448
2.50	57.14	29.09	28.00	0.046	71926.420	0.046	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0463
2.67	60.95	31.52	30.67	0.048	99863.503	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0479
2.83	64.76	33.94	33.33	0.049	135872.625	0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0494
3.00	68.57	36.36	36.00	0.051	181588.157	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0508
3.17	72.38	38.79	38.67	0.052	238851.469	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0522

CMP #HMP-2 Stage Storage											
		CIVIP #HIVIP-									
	Input DCV		3,285								
	Input Factor			2.05							
) Ponding Dep		3.000 ft e in relation to required WQ volume								
		levation valu	e in relation t	o required WQ v	olume						
HMP-2-A Sta	5 5										
	Average			Consulation							
	Surface			Comulative	volume						
depth	area	area (ac)	elevation	volume (cf)	(acft)						
0.00	1244.4	0.0286	0.00	0.0	0.0						
0.17	1650.4	0.0379	0.17	252.7	0.00580						
0.33	1811.9	0.0416	0.33	542.1	0.01244						
0.50	1931.4	0.0443	0.50	854.4	0.01961						
0.67	2028.1	0.0466	0.67	1,184.6	0.02720						
0.83	2109.9	0.0484	0.83	1,529.6	0.03512						
1.00	2180.6	0.0501	1.00	1,887.3	0.04333						
1.17	2242.5	0.0515	1.17	2,256.0	0.05179						
1.33	2297.3	0.0527	1.33	2,634.4	0.06048						
1.50	2346.0	0.0539	1.50	3,021.5	0.06936						
1.67	2389.3	0.0549	1.67	3,416.1	0.07842						
1.83	2428.0	0.0557	1.83	3,817.6	0.08764						
2.00	2462.3	0.0565	2.00	4,225.2	0.09700						
2.17	2492.6	0.0572	2.17	4,638.2	0.10648						
2.33	2519.4	0.0578	2.33	5,055.9	0.11607						
2.50	2542.6	0.0584	2.50	5,477.8	0.12575						
2.67	2562.7	0.0588	2.67	5,903.3	0.13552						
2.83	2579.6	0.0592	2.83	6,331.8	0.14536						
3.00	2593.6	0.0595	3.00	6,763.0	0.15526						
3.17	2604.6	0.0598	3.17	7,196.2	0.16520						
3.33	2612.9	0.0600	3.33	7,631.0	0.17518						
3.50	2618.3	0.0601	3.50	8,067.0	0.18519						
3.67	2621.1	0.0602	3.67	8,503.7	0.19522						
3.83	2621.1	0.0602	3.83	8,940.5	0.20525						
4.00	2618.3	0.0601	4.00	9,377.2	0.21527						
4.17	2612.9	0.0600	4.17	9,813.2	0.22528						
4.33	2604.6	0.0598	4.33	10,248.0	0.23526						
4.50	2593.6	0.0595	4.50	10,681.2	0.24521						
4.67	2579.6	0.0592	4.67	11,112.4	0.25510						
4.83	2562.7	0.0588	4.83	11,540.9	0.26494						
5.00	2542.6	0.0584	5.00	11,966.4	0.27471						
5.17	2519.4	0.0578	5.17	12,388.3	0.28440						
5.33	2492.6	0.0572	5.33	12,806.0	0.29399						
5.50	2462.3	0.0565	5.50	13,219.0	0.30347						
5.67	2428.0	0.0557	5.67	13,626.6	0.31282						
5.83	2389.3	0.0549	5.83	14,028.1	0.32204						
6.00	2346.0	0.0539	6.00	14,422.7	0.33110						
6.17	2297.3	0.0527	6.17	14,809.8	0.33999						
6.33	2242.5	0.0515	6.33	15,188.2	0.34867						
6.50	2180.6	0.0501	6.50	15,556.9	0.35714						
6.67	2109.9	0.0484	6.67	15,914.6	0.36535						
6.83	2028.1	0.0466	6.83	16,259.6	0.37327						
7.00	1931.4	0.0443	7.00	16,589.8	0.38085						
7.17	1811.9	0.0416	7.17	16,902.1	0.38802						
7.33	1650.4	0.0379	7.33	17,191.5	0.39466						
7.50	1244.4	0.0286	7.50	17,444.2	0.40046						
7.67	1244.4	0.0286	7.67	17,651.6	0.40522						
7.83	1244.4	0.0286	7.83	17,859.0	0.40999						
8.00	1244.4	0.0286	8.00	18,066.4	0.41475						
8.17	1244.4	0.0286	8.17	18,273.8	0.41951						

Date: 8/7/2024 Project Name: East Storage-2 - 47954 (8-7-2024 0-5-24)

City / County: State:

CMP: Underground Detention System Storage Volume Estimation

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs											
System Information	1	Backfill Information	1	Pipe & Analysis Information							
Out-to-out length (ft):	100.0	Backfill Porosity (%):	40%	System Diameter (in):	90						
Out-to-out width (ft):	28.5	Depth Above Pipe (in):	9.0	Pipe Spacing (in):	36						
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2						
Number of Barrels (ea):	3.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0						
		Width At Sides (ft):	1.0								

	Storage Volume Estimation											
Sys	stem		ре		one		System		aneous			
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)			
0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	1,244.4			
0.17	0.16	75.5	75.5	177.2	177.2	252.7	252.7	29.9%	1,650.4			
0.33	0.33	136.6	212.1	152.7	329.9	289.4	542.1	39.1%	1,811.9			
0.50	0.50	174.9	387.0	137.4	467.4	312.3	854.4	45.3%	1,931.4			
0.67	0.66	204.7	591.7	125.5	592.9	330.2	1,184.6	49.9%	2,028.1			
0.83	0.83	229.4	821.1	115.7	708.6	345.0	1,529.6	53.7%	2,109.9			
1.00	1.00	250.5	1,071.5	107.2	815.8	357.7	1,887.3	56.8%	2,180.6			
1.17	1.16	268.8	1,340.4	99.9	915.7	368.7	2,256.0	59.4%	2,242.5			
1.33	1.33	285.0	1,625.4	93.4	1,009.0	378.4	2,634.4	61.7%	2,297.3			
1.50	1.50	299.4	1,924.8	87.7	1,096.7	387.0	3,021.5	63.7%	2,346.0			
1.67	1.66	312.1	2,236.9	82.5	1,179.2	394.7	3,416.1	65.5%	2,389.3			
1.83	1.83	323.5	2,560.4	78.0	1,257.2	401.5	3,817.6	67.1%	2,428.0			
2.00	2.00	333.6	2,894.0	74.0	1,331.2	407.6	4,225.2	68.5%	2,462.3			
2.17	2.16	342.6	3,236.6	70.4	1,401.5	413.0	4,638.2	69.8%	2,492.6			
2.33	2.33	350.5	3,587.2	67.2	1,468.7	417.7	5,055.9	71.0%	2,519.4			
2.50	2.50	357.5	3,944.6	64.4	1,533.1	421.9	5,477.8	72.0%	2,542.6			
2.67	2.66	363.5	4,308.1	62.0	1,595.2	425.5	5,903.3	73.0%	2,562.7			
2.83	2.83	368.6	4,676.7	60.0	1,655.1	428.6	6,331.8	73.9%	2,579.6			
3.00	3.00	372.9	5,049.6	58.2	1,713.3	431.1	6,763.0	74.7%	2,593.6			
3.17	3.16	376.4	5,426.0	56.9	1,770.2	433.2	7,196.2	75.4%	2,604.6			
3.33	3.33	379.1	5,805.1	55.8	1,826.0	434.8	7,631.0	76.1%	2,612.9			
3.50	3.50	381.0	6,186.0	55.0	1,881.0	436.0	8,067.0	76.7%	2,618.3			
3.67	3.66	382.1	6,568.1	54.6	1,935.6	436.7	8,503.7	77.2%	2,621.1			
3.83	3.83	382.5	6,950.6	54.4	1,990.0	436.9	8,940.5	77.7%	2,621.1			
4.00	4.00	382.1	7,332.7	54.6	2,044.5	436.7	9,377.2	78.2%	2,618.3			
4.17	4.16	381.0	7,713.6	55.0	2,099.6	436.0	9,813.2	78.6%	2,612.9			
4.33	4.33	379.1	8,092.7	55.8	2,155.3	434.8	10,248.0	79.0%	2,604.6			
4.50	4.50	376.4	8,469.0	56.9	2,212.2	433.2	10,681.2	79.3%	2,593.6			
4.67	4.66	372.9	8,841.9	58.2	2,270.4	431.1	11,112.4	79.6%	2,579.6			
4.83	4.83	368.6	9,210.6	60.0	2,330.4	428.6	11,540.9	79.8%	2,562.7			
5.00	5.00 5.16	363.5 357.5	9,574.0	62.0 64.4	2,392.4	425.5 421.9	11,966.4 12,388.3	80.0% 80.2%	2,542.6			
5.17 5.33	5.33	350.5	9,931.5 10,282.0	67.2	2,456.8 2,524.0	421.9	12,806.0	80.2%	2,519.4 2,492.6			
5.50	5.50	350.5 342.6	10,282.0	70.4	2,524.0 2,594.3	417.7	13,219.0	80.3% 80.4%	2,492.0			
5.67	5.66	333.6	10,958.3	70.4	2,594.3	413.0	13,626.6	80.4%	2,402.3			
5.83	5.83	323.5	11,281.8	74.0	2,746.3	407.8	14,028.1	80.4%	2,389.3			
6.00	6.00	312.1	11,593.9	82.5	2,828.8	394.7	14,422.7	80.4%	2,346.0			
6.17	6.16	299.4	11,893.3	87.7	2,916.5	387.0	14,809.8	80.3%	2,297.3			
6.33	6.33	285.0	12,178.3	93.4	3,009.9	378.4	15,188.2	80.2%	2,242.5			
6.50	6.50	268.8	12,447.1	99.9	3,109.7	368.7	15,556.9	80.0%	2,180.6			
6.67	6.66	250.5	12,697.6	107.2	3,217.0	357.7	15,914.6	79.8%	2,109.9			
6.83	6.83	229.4	12,926.9	115.7	3,332.6	345.0	16,259.6	79.5%	2,028.1			
7.00	7.00	204.7	13,131.6	125.5	3,458.2	330.2	16,589.8	79.2%	1,931.4			
7.17	7.16	174.9	13,306.5	137.4	3,595.6	312.3	16,902.1	78.7%	1,811.9			
7.33	7.33	136.6	13,443.1	152.7	3,748.3	289.4	17,191.5	78.2%	1,650.4			
7.50	7.50	75.5	13,518.7	177.2	3,925.5	252.7	17,444.2	77.5%	1,244.4			
7.67	7.66	0.0	13,518.7	207.4	4,132.9	207.4	17,651.6	76.6%	1,244.4			
7.83	7.83	0.0	13,518.7	207.4	4,340.3	207.4	17,859.0	75.7%	1,244.4			
8.00	8.00	0.0	13,518.7	207.4	4,547.7	207.4	18,066.4	74.8%	1,244.4			
8.17	8.16	0.0	13,518.7	207.4	4,755.1	207.4	18,273.8	74.0%	1,244.4			

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

WQ Drawo	down @	3.00	ft=	62.00
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.011	253	6.27	62.00
0.17	0.014	289	5.82	55.74
0.33	0.018	312	4.72	49.92
0.50	0.022	330	4.17	45.20
0.67	0.025	345	3.82	41.03
0.83	0.028	358	3.57	37.21
1.00	0.030	369	3.38	33.64
1.17	0.033	378	3.22	30.26
1.33	0.035	387	3.09	27.03
1.50	0.037	395	2.98	23.94
1.67	0.039	402	2.88	20.96
1.83	0.041	408	2.79	18.07
2.00	0.042	413	2.71	15.28
2.17	0.044	418	2.64	12.56
2.33	0.046	422	2.57	9.92
2.50	0.047	425	2.51	7.35
2.67	0.049	429	2.45	4.84
2.83	0.050	431	2.39	2.39
3.00				

CMP #HMP-2 Discharge HMP Riser Discharge vs Elevation Table

	Discharge vs Lievation
om orifice:	0.50 "

	Discharge vs Eleva	ition l'able		
Bottom orifice:	0.50 "			
Number:	1			
Cg-low:	0.61			
invert elev:	3.00 ft			
Low orifice:	1 "	Top orifice:	3 "	
Number:	4	Number:	16	
Cg-low:	0.61	Cg-low:	0.61	
invert elev:	5.50 ft	invert elev:	6.60 ft	
Middle orifice:	3 "	Emergency inlet	:	
number of orif:	12	Rim height:	7.00 ft	
Cg-middle:	0.61	Riser Box D	3x4	
invert elev:	6.00 ft	Weir Length	14.00 ft	

Pea	k Flow	

· · · · · ·		11.05.1					<u> </u>	01 16		<u></u>			<u></u>						WQ+HMP
h	H/D-bot		H/D-mid	H/D-top	Qbot-orif	Qbot-weir	Qtot-bot	Qlow-orif	Qlow-weir	Qtot-low		Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top		Qtot	Qtot
(ft)		-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
0.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0112
0.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0164
0.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0204
0.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0236
0.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0265
1.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0291
1.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0315
1.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0337
1.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0358
1.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0378
1.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0396
2.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0414
2.17	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0431
2.33	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0448
2.50	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0463
2.67	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0479
2.83	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0494
3.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0508
3.17	4.00	0.00	0.00	0.00	0.003	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0522
3.33	8.00	0.00	0.00	0.00	0.004	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0536
3.50	12.00	0.00	0.00	0.00	0.005	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0549
3.67	16.00	0.00	0.00	0.00	0.005	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0562
3.83	20.00	0.00	0.00	0.00	0.006	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0575
4.00	24.00	0.00	0.00	0.00	0.007	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0587
4.17	28.00	0.00	0.00	0.00	0.007	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0599
4.33	32.00	0.00	0.00	0.00	0.008	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0611
4.50	36.00	0.00	0.00	0.00	0.008	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0623
4.67	40.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0634
4.83	44.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0646
5.00	48.00	0.00	0.00	0.00	0.009	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0657
5.17	52.00	0.00	0.00	0.00	0.010	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0668
5.33	56.00	0.00	0.00	0.00	0.010	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0678
5.50	60.00	0.00	0.00	0.00	0.011	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0689
5.67	64.00	2.00	0.00	0.00	0.011	0.00	0.002	0.038	0.050	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.1099
5.83	68.00	4.00	0.00	0.00	0.011	0.00	0.004	0.058	0.095	0.058	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.062	0.1328
6.00	72.00	6.00	0.00	0.00	0.012	0.06	0.012	0.072	1.375	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084	0.1558
6.17	76.00	8.00	0.67	0.00	0.012	0.40	0.012	0.084	8.971	0.084	0.589	0.486	0.486	0.000	0.000	0.000	0.000	0.583	0.6556
6.33	80.00	10.00	1.33	0.00	0.012	1.51	0.012	0.095	34.269	0.095	1.316	1.502	1.316	0.000	0.000	0.000	0.000	1.423	1.4973
6.50	84.00	12.00	2.00	0.00	0.012	4.31	0.012	0.105	97.420	0.105	1.766	2.345	1.766	0.000	0.000	0.000	0.000	1.883	1.9577
6.67	88.00	14.00	2.67	0.27	0.013	10.16	0.013	0.113	229.816	0.113	2.122	2.630	2.122	0.000	0.116	0.116	0.000	2.364	2.4401
6.83	92.00	16.00	3.33	0.93	0.013	21.06	0.013	0.121	476.546	0.121	2.427	2.766	2.427	1.265	1.160	1.160	0.000	3.722	3.7983
7.00	96.00	18.00	4.00	1.60	0.013	39.72	0.013	0.129	898.865	0.129	2.697	4.427	2.697	2.016	2.525	2.016	0.000	4.856	4.9335
7.17	100.00	20.00	4.67	2.27	0.014	69.68	0.014	0.136	1576.661	0.136	2.943	11.033	2.943	2.555	3.368	2.555	3.172	8.820	8.8986
7.33	104.00	22.00	5.33	2.93	0.014	115.39	0.014	0.143	2610.918	0.143	3.170	28.217	3.170	2.999	3.522	2.999	8.972	15.297	15.3768
7.50	108.00	24.00	6.00	3.60	0.014	182.35	0.014	0.149	4126.181	0.149	3.381	64.304	3.381	3.385	4.133	3.385	16.483	23.412	23.4926
7.67	112.08	26.04	6.68	4.28	0.014	279.47	0.014	0.156	6323.584	0.156	3.584	132.520	3.584	3.737	8.441	3.737	25.567	33.059	33.0591
7.83	115.92	27.96	7.32	4.92	0.015	404.91	0.015	0.162	9162.119	0.162	3.765	239.982	3.765	4.042	21.240	4.042	35.252	43.235	43.2353
8.00	120.00	30.00	8.00	5.60	0.015	583.75	0.015	0.167	13208.685	0.167	3.948	419.555	3.948	4.341	53.088	4.341	46.620	55.092	55.0921
8.17	124.08	32.04	8.68	6.28	0.015	820.71	0.015	0.173	18570.570	0.173	4.124	691.324	4.124	4.622	116.986	4.622	59.000	67.933	67.9333

HMP-2A D	rawdown @	8.17	ft=	95.50
Elevation	Q _{AVG} (CFS)	Δ V (CF)	$\Delta extsf{T}$ (HR)	Total T
0.00	0.011	253	6.27	95.50
0.17	0.014	289	5.82	89.23
0.33	0.018	312	4.72	83.41
0.50	0.022	330	4.17	78.69
0.67	0.025	345	3.82	74.52
0.83	0.028	358	3.57	70.70
1.00	0.030	369	3.38	67.13
1.17	0.033	378	3.22	63.75
1.33	0.035	387	3.09	60.52
1.50	0.037	395	2.98	57.43
1.67	0.039	402	2.88	54.45
1.83	0.041	408	2.79	51.57
2.00	0.042	413	2.71	48.77
2.17	0.044	418	2.64	46.06
2.33	0.046	422	2.57	43.41
2.50	0.047	425	2.51	40.84
2.67	0.049	429	2.45	38.33
2.83	0.050	431	2.39	35.88
3.00	0.051	433	2.34	33.49
3.17	0.053	435	2.28	31.16
3.33	0.054	436	2.23	28.87
3.50	0.056	437	2.18	26.64
3.67	0.057	437	2.14	24.45
3.83	0.058	437	2.09	22.32
4.00	0.059	436	2.04	20.23
4.17	0.061	435	2.00	18.19
4.33	0.062	433	1.95	16.19
4.50	0.063	431	1.91	14.24
4.67	0.064	429	1.86	12.34
4.83	0.065	425	1.81	10.48
5.00	0.066	422	1.77	8.66
5.17	0.067	418	1.72	6.89
5.33	0.068	413	1.68	5.17
5.50	0.089	408	1.27	3.49
5.67	0.121	402	0.92	2.23
5.83	0.144	395	0.76	1.31
6.00	0.406	387	0.26	0.55
6.17	1.076	378	0.10	0.28
6.33	1.727	369	0.06	0.18
6.50	2.199	358	0.05	0.13
6.67	3.119	345	0.03	0.08
6.83	4.366	330	0.02	0.05
7.00	6.916	312	0.01	0.03
7.17	12.138	289	0.01	0.02
7.33	19.435	253	0.00	0.01
7.50	28.276	207	0.00	0.01
7.67	38.147	207	0.00	0.00
7.83	49.164	207	0.00	0.00
8.00	61.513	207	0.00	0.00
8.17				

Rational Method Hydrograph Calculations for Storage Facility #4

		Q ₁₀₀ =	0.39	cfs				
		Tc=	5	min	C=	0.85		
#= 7		P _{100,6} =	2.9	in	A=	0.06	acres	
		14*P6*D^645)	(I*D/60)	(V1-V0)	(∆ V/∆ T)	(Q=ciA)		(Re-ordered)
#	D (MIN)	I (IN/HR)	VOL (IN)	∆VOL (IN)	I (INCR) (IN/HR)	Q (CFS)	VOL (CF)	ORDINATE (CFS)
	()	0.00	. ,	0.64	7.64	0.39	117	(СГЗ)
0 1	0 5	0.00 7.64	0.00 0.64	0.04	2.13	0.39	33	0.009
2	10	4.89	0.81	0.13	1.51	0.08	23	0.009
3	15	3.76	0.94	0.10	1.21	0.06	19	0.009
4	20	3.12	1.04	0.09	1.03	0.05	16	0.009
5	25	2.71	1.13	0.08	0.90	0.05	14	0.009
6	30	2.41	1.20	0.07	0.81	0.04	12	0.009
7	35	2.18	1.27	0.06	0.74	0.04	11	0.010
8	40	2.00	1.33	0.06	0.68	0.03	10	0.010
9	45	1.85	1.39	0.05	0.64	0.03	10	0.010
10	50	1.73	1.44	0.05	0.60	0.03	9	0.010
11	55	1.63	1.49	0.05	0.56	0.03	9	0.010
12	60	1.54	1.54	0.04	0.53	0.03	8	0.010
13	65	1.46	1.58	0.04	0.51	0.03	8	0.011
14	70	1.39	1.62	0.04	0.48	0.02	7	0.011
15	75	1.33	1.67	0.04	0.46	0.02	7	0.011
16	80	1.28	1.70	0.04	0.44	0.02	7	0.011
17	85	1.23	1.74	0.04	0.43	0.02	7	0.011
18	90	1.18	1.78	0.03	0.41	0.02	6	0.012
19	95	1.14	1.81	0.03	0.40	0.02	6	0.012
20	100	1.11	1.84	0.03	0.39	0.02	6	0.012
21	105	1.07	1.88	0.03	0.37	0.02	6	0.013
22	110	1.04	1.91	0.03	0.36	0.02	6	0.013
23	115	1.01	1.94	0.03	0.35	0.02	5	0.013
24	120	0.98	1.97	0.03	0.34	0.02	5	0.013
25	125	0.96	2.00	0.03	0.34	0.02	5	0.014
26	130	0.93	2.02	0.03	0.33	0.02	5	0.014
27	135	0.91	2.05	0.03	0.32	0.02	5 5	0.015
28 29	140 145	0.89	2.08	0.03	0.31	0.02	5 5	0.015
29 30	145	0.87 0.85	2.10 2.13	0.03 0.02	0.31 0.30	0.02 0.02	5 5	0.016 0.016
31	155	0.83	2.15	0.02	0.30	0.02	4	0.017
32	160	0.82	2.13	0.02	0.29	0.01	4	0.017
33	165	0.80	2.20	0.02	0.28	0.01	4	0.018
34	170	0.79	2.23	0.02	0.28	0.01	4	0.019
35	175	0.77	2.25	0.02	0.27	0.01	4	0.020
36	180	0.76	2.27	0.02	0.27	0.01	4	0.020
37	185	0.74	2.29	0.02	0.26	0.01	4	0.020
38	190	0.73	2.32	0.02	0.26	0.01	4	0.023
39	195	0.72	2.34	0.02	0.25	0.01	4	0.025
40	200	0.71	2.36	0.02	0.25	0.01	4	0.026
41	205	0.70	2.38	0.02	0.25	0.01	4	0.029

Rational Method Hydrograph Calculations for Storage Facility #4

45 225 0.66 2.46 0.02 0.23 0.01 4 46 230 0.65 2.48 0.02 0.23 0.01 3	0.053 0.077
472350.642.500.020.220.013482400.632.520.020.220.013	0.109
492450.622.530.020.220.013502500.612.550.020.220.013512550.602.570.020.210.013	0.390 0.062 0.041
51 265 0.60 2.57 0.62 0.21 0.01 3 52 260 0.60 2.59 0.02 0.21 0.01 3 53 265 0.59 2.61 0.02 0.21 0.01 3	0.032
542700.582.620.020.210.013552750.582.640.020.200.013	0.024 0.021
562800.572.660.020.200.013572850.562.670.020.200.013582900.562.690.020.200.013	0.019 0.018
58 290 0.56 2.69 0.02 0.20 0.01 3 59 295 0.55 2.71 0.02 0.19 0.01 3 60 300 0.54 2.72 0.02 0.19 0.01 3	0.016 0.015 0.014
613050.542.740.020.190.013623100.532.760.020.190.013	0.014 0.013
63 315 0.53 2.77 0.02 0.19 0.01 3 64 320 0.52 2.79 0.02 0.18 0.01 3	0.012
653250.522.800.020.180.013663300.512.820.020.180.013673350.512.830.010.180.013	0.011 0.011 0.010
68 340 0.50 2.85 0.01 0.18 0.01 3 69 345 0.50 2.86 0.01 0.18 0.01 3	0.010
70 350 0.49 2.88 0.01 0.17 0.01 3 71 355 0.49 2.89 0.01 0.17 0.01 3	0.010 0.009
	0.009 bic feet re-feet

CMP #4 Discharge HMP Riser Discharge vs Elevation Table

Discharge v	's Elevation Table			
Low orifice:	0.25 "	Top orifice:	1	
Number:	1	Number:	0	
Cg-low:	0.61	Cg-low:	3	
invert elev:	0.00 ft	invert elev:	1.00	ft
Middle orifice:	2 "	Emergency inlet:		
number of orif:	0	Rim height:	2.90 ft	
Cg-middle:	0.61	Riser Box D	3x4	
invert elev:	1.00 ft	Weir Length	3.14 ft	

h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qpeak-top	Qtot
(ft)	-	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.17	8.00	0.00	0.00	0.001	0.070	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.33	16.00	0.00	0.00	0.001	3.723	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.50	24.00	0.00	0.00	0.001	32.236	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.67	32.00	0.00	0.00	0.001	144.148	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.83	40.00	0.00	0.00	0.002	454.986	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.00	48.00	0.00	0.00	0.002	1156.986	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.17	56.00	1.00	2.00	0.002	2538.816	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.33	64.00	2.00	4.00	0.002	5005.303	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.50	72.00	3.00	6.00	0.002	9097.150	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.67	80.00	4.00	8.00	0.002	15510.669	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
1.83	88.00	5.00	10.00	0.002	25117.495	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.00	96.00	6.00	12.00	0.002	38984.315	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.17	104.00	7.00	14.00	0.002	58392.588	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
2.33	112.00	8.00	16.00	0.003	84858.274	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.50	120.00	9.00	18.00	0.003	120151.551	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.67	128.00	10.00	20.00	0.003	166316.542	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2.83	136.00	11.00	22.00	0.003	225691.037	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
3.00	144.00	12.00	24.00	0.003	300926.219	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.331	0.334
3.17	152.00	13.00	26.00	0.003	395006.385	0.003	0.000	0.000	0.000	0.000	0.000	0.000	1.440	1.443
3.33	160.00	14.00	28.00	0.003	511268.668	0.003	0.000	0.000	0.000	0.000	0.000	0.000	2.983	2.986
3.50	168.00	15.00	30.00	0.003	653422.765	0.003	0.000	0.000	0.000	0.000	0.000	0.000	4.860	4.863
3.67	176.16	16.02	32.04	0.003	829349.841	0.003	0.000	0.000	0.000	0.000	0.000	0.000	7.065	7.068
3.83	184.00	17.00	34.00	0.003	1032226.336	0.003	0.000	0.000	0.000	0.000	0.000	0.000	9.428	9.431
4.00	192.00	18.00	36.00	0.003	1278335.521	0.003	0.000	0.000	0.000	0.000	0.000	0.000	12.063	12.067
4.17	200.00	19.00	38.00	0.003	1569295.390	0.003	0.000	0.000	0.000	0.000	0.000	0.000	14.906	14.910
4.33	208.00	20.00	40.00	0.003	1910974.299	0.003	0.000	0.000	0.000	0.000	0.000	0.000	17.943	17.946
4.50	216.00	21.00	42.00	0.004	2309731.506	0.004	0.000	0.000	0.000	0.000	0.000	0.000	21.162	21.165
4.67	224.00	22.00	44.00	0.004	2772436.895	0.004	0.000	0.000	0.000	0.000	0.000	0.000	24.553	24.557
4.83	232.00	23.00	46.00	0.004	3306490.700	0.004	0.000	0.000	0.000	0.000	0.000	0.000	28.108	28.112
5.00	240.00	24.00	48.00	0.004	3919843.227	0.004	0.000	0.000	0.000	0.000	0.000	0.000	31.820	31.824

		CMP #4 St	age Storage					
	HMP Volume			350				
HM	P Ponding De	pth	2.667		ft			
Note: F	ind out the el	evation value	in relation to	o required W	Q volume			
HMP-2-A Sta	age Storage							
depth	area	area (ac)	elevation	volume (cf)	volume (acft)			
0.00	74.4	0.0017	0.00	0.0	0.00000			
0.17	102.2	0.0023	0.17	15.5	0.00036			
0.33	112.9	0.0026	0.33	33.5	0.00077			
0.50	120.4	0.0028	0.50	53.0	0.00122			
0.67	126.3	0.0029	0.67	73.6	0.00169			
0.83	130.9	0.0030	0.83	95.0	0.00218			
1.00	134.7	0.0031	1.00	117.1	0.00269			
1.17	137.7	0.0032	1.17	139.9	0.00321			
1.33	140.0	0.0032	1.33	163.0	0.00374			
1.50	141.8	0.0033	1.50	186.5	0.00428			
1.67	143.0	0.0033	1.67	210.2	0.00483			
1.83	143.8	0.0033	1.83	234.1	0.00538			
2.00	144.0	0.0033	2.00	258.1	0.00593			
2.17	143.8	0.0033	2.17	282.1	0.00648			
2.33	143.0	0.0033	2.33	306.0	0.00703			
2.50	141.8	0.0033	2.50	329.8	0.00757			
2.67	140.0	0.0032	2.67	353.3	0.00811			
2.83	137.7	0.0032	2.83	376.4	0.00864			
3.00	134.7	0.0031	3.00	399.1	0.00916			
3.17	130.9	0.0030	3.17	421.3	0.00967			
3.33	126.3	0.0029	3.33	442.7	0.01016			
3.50	120.4	0.0028	3.50	463.3	0.01064			
3.67	112.9	0.0026	3.67	482.8	0.01108			
3.83	102.2	0.0023	3.83	500.7	0.01150			
4.00	74.4	0.0017	4.00	516.3	0.01185			
4.17	74.4	0.0017	4.17	528.7	0.01214			
4.33	74.4	0.0017	4.33	541.1	0.01242			
4.50	74.4	0.0017	4.50	553.5	0.01271			
4.67	74.4	0.0017	4.67	565.9	0.01299			
4.83	74.4	0.0017	4.83	578.3	0.01327			
5.00	74.4	0.0017	5.00	590.7	0.01356			

Date: 10/10/2024 Project Name: East Storage-2 - COPY - 61024 (10-10-2024 18-3-52)

CMP: Underground Detention System Storage Volume Estimation

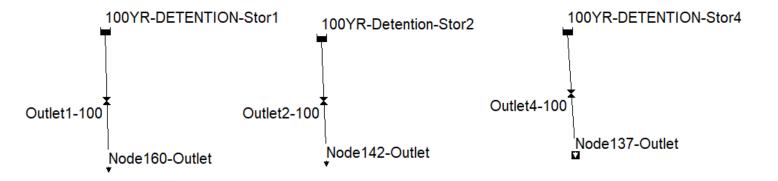
Designed By:

State:

City / County:

=Adjustable Input Cells

Company: Telephone:


Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs									
System Information		Backfill Information		Pipe & Analysis Information					
Out-to-out length (ft):	29.0	Backfill Porosity (%):	40%	System Diameter (in):	48				
Out-to-out width (ft):	4.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24				
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	0.0	Incremental Analysis (in):	2				
Number of Barrels (ea):	1.0	Width At Ends (ft):	1.0	System Invert (Elevation):	331				
		Width At Sides (ft):	1.0						

Storage Volume Estimation										
Sys	stem		ре		Stone		Total System		Miscellaneous	
Depth (ft)	Elevation (ft)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Incremental Storage (cf)	Cumulative Storage (cf)	Percent Open Storage (%)	Ave. Surface Area (sf)	
0.00	331.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	74.4	
0.17	331.16	5.2	5.2	10.3	10.3	15.5	15.5	33.5%	102.2	
0.33	331.33	9.3	14.5	8.7	19.0	18.0	33.5	43.3%	112.9	
0.50	331.50	11.8	26.3	7.7	26.7	19.5	53.0	49.6%	120.4	
0.67	331.66	13.6	39.9	6.9	33.6	20.6	73.6	54.3%	126.3	
0.83	331.83	15.1	55.0	6.4	40.0	21.4	95.0	57.9%	130.9	
1.00	332.00	16.2	71.2	5.9	45.9	22.1	117.1	60.8%	134.7	
1.17	332.16	17.2	88.4	5.5	51.4	22.7	139.9	63.2%	137.7	
1.33	332.33	17.9	106.3	5.2	56.7	23.1	163.0	65.2%	140.0	
1.50	332.50	18.5	124.8	5.0	61.7	23.5	186.5	66.9%	141.8	
1.67	332.66	18.9	143.7	4.8	66.5	23.7	210.2	68.4%	143.0	
1.83	332.83	19.2	162.9	4.7	71.2	23.9	234.1	69.6%	143.8	
2.00	333.00	19.3	182.2	4.7	75.9	24.0	258.1	70.6%	144.0	
2.17	333.16	19.3	201.5	4.7	80.6	24.0	282.1	71.4%	143.8	
2.33	333.33	19.2	220.7	4.7	85.3	23.9	306.0	72.1%	143.0	
2.50	333.50	18.9	239.6	4.8	90.2	23.7	329.8	72.7%	141.8	
2.67	333.66	18.5	258.1	5.0	95.2	23.5	353.3	73.1%	140.0	
2.83	333.83	17.9	276.0	5.2	100.4	23.1	376.4	73.3%	137.7	
3.00	334.00	17.2	293.2	5.5	105.9	22.7	399.1	73.5%	134.7	
3.17	334.16	16.2	309.4	5.9	111.8	22.1	421.3	73.5%	130.9	
3.33	334.33	15.1	324.5	6.4	118.2	21.4	442.7	73.3%	126.3	
3.50	334.50	13.6	338.1	6.9	125.1	20.6	463.3	73.0%	120.4	
3.67	334.66	11.8	349.9	7.7	132.8	19.5	482.8	72.5%	112.9	
3.83	334.83	9.3	359.2	8.7	141.5	18.0	500.7	71.7%	102.2	
4.00	335.00	5.2	364.4	10.3	151.8	15.5	516.3	70.6%	74.4	
4.17	335.16	0.0	364.4	12.4	164.2	12.4	528.7	68.9%	74.4	
4.33	335.33	0.0	364.4	12.4	176.6	12.4	541.1	67.4%	74.4	
4.50	335.50	0.0	364.4	12.4	189.0	12.4	553.5	65.8%	74.4	
4.67	335.66	0.0	364.4	12.4	201.4	12.4	565.9	64.4%	74.4	
4.83	335.83	0.0	364.4	12.4	213.8	12.4	578.3	63.0%	74.4	
5.00	336.00	0.0	364.4	12.4	226.2	12.4	590.7	61.7%	74.4	

These results are submitted to you as a guideline only, without liability on the part of CONTECH Engineered Solutions, LLC for accuracy or suitability to any particular application, and are subject to your verification.

HMP-4 Dra	awdown @	5	ft=	85.68
Elevation	Q _{AVG} (CFS)	Δ V (CF)	Δ T (HR)	Total T
0.00	0.000	16	13.07	85.68
0.17	0.000	18	15.15	72.61
0.33	0.001	19	6.73	57.46
0.50	0.001	21	5.40	50.73
0.67	0.001	21	4.73	45.33
0.83	0.001	22	4.29	40.60
1.00	0.002	23	3.97	36.30
1.17	0.002	23	3.72	32.33
1.33	0.002	23	3.51	28.61
1.50	0.002	24	3.33	25.09
1.67	0.002	24	3.17	21.76
1.83	0.002	24	3.03	18.58
2.00	0.002	24	2.89	15.56
2.17	0.002	24	2.76	12.66
2.33	0.002	24	2.64	9.90
2.50	0.003	23	2.52	7.26
2.67	0.003	23	2.40	4.74
2.83	0.003	23	2.28	2.33
3.00	0.168	22	0.04	0.05
3.17	0.888	21	0.01	0.01
3.33	2.214	21	0.00	0.01
3.50	3.924	19	0.00	0.00
3.67	5.965	18	0.00	0.00
3.83	8.250	16	0.00	0.00
4.00	10.749	12	0.00	0.00
4.17	13.488	12	0.00	0.00
4.33	16.428	12	0.00	0.00
4.50	19.556	12	0.00	0.00
4.67	22.861	12	0.00	0.00
4.83	26.334	12	0.00	0.00
5.00	29.968			

		Olive Park Detent	i on. i np		
[TITLE] ;;Project Title/N OLIVE PARK APARTM	Notes MENTS - POC1 PRE-DEVELOPI	ED			
[OPTIONS] ;; Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value CFS GREEN_AMPT KINWAVE DEPTH O NO E NO				
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP RULE_STEP					
I NERTI AL_DAMPI NG NORMAL_FLOW_LI MI T FORCE_MAI N_EQUATI VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS					
[EVAPORATION] ;;Data Source	Parameters				
MONTHLY DRY_ONLY	0.06 0.08 0.11 0. NO	15 0.17 0.19 0.	19 0. 18 0. 15	0.11 0.08	0.06
[OUTFALLS] ;;Name	Elevation Type S	tage Data Gated	Route To		
Node160-Outlet Node142-Outlet	0 FREE 0 FREE 0 FREE	NO NO NO			
Ksat IMD	Elev. MaxDepth Ini [.]	tDepth Shape Cu		N/A	Fevap Psi
100YR-DETENTION-S 100YR-Detention-S 100YR-DETENTION-S	Stor1 0 7.5 Stor2 0 7.5		Stor1 Stor2 Stor4		0 0 0 0 0 0
[OUTLETS] ;;Name	From Node To Node	e Offset	Туре	QTabl e/Qcoeff	Qexpon Gated
	100YR-DETENTION-Stor1 No			PTH Outlet1	

		Olive Park	Detention.i	np	
Outlet2-100 NO	100YR-Detention-Stor2	Node142-Outlet	0	TABULAR/DEPTH	Outlet2
Outlet4-100 NO	100YR-DETENTION-Stor4	Node137-Outlet	0	TABULAR/DEPTH	Outlet4

[INFLOWS]

;;Node	Consti tuent	Time Series	Туре	Mfactor	Sfactor	Baseline Pattern
;;	Stor1 FLOW	100YR-Node1	60-inflow	FLOW	1.0	1. 0
100YR-Detention-	Stor2 FLOW	100YR-Node1	42-Inflow	FLOW	1.0	1.0
100YR-DETENTI ON-	Stor4 FLOW	100YR-Node1	37-Inflow	FLOW	1.0	1.0

[CURVES]

;;Name	Туре	X-Val ue	Y-Val ue
[CURVES] ;; Name ;;	Type Rating	0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50	0.0000 0.0256 0.0376 0.0467 0.0542 0.0608 0.0668 0.0723 0.0773 0.0821 0.0866 0.0909 0.0950 0.0950 0.0989 0.1027 0.1064 0.1099 0.1133 0.1192 0.1236 0.1276 0.1314 0.1351 0.1385 0.1419 0.1452 0.1419 0.1452 0.1484 0.1516 0.1546 0.2445 0.5965 1.3701 2.9209 4.0007 4.7715 5.4280 6.0102 6.5391 7.0272 8.9570
Outlet1 Outlet1 Outlet1 Outlet1 Outlet1 Outlet1 Outlet1		6. 67 6. 83 7. 00 7. 17 7. 33 7. 50	14. 3315 21. 6166 30. 3721 40. 3710 51. 4677 63. 5587
; Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2 Outlet2	Rating	0. 00 0. 17 0. 33 0. 50 0. 67 0. 83 1. 00 1. 17 1. 33	0. 0000 0. 0112 0. 0164 0. 0204 0. 0236 0. 0265 0. 0291 0. 0315 0. 0337

			01 i v
Outlet2		1.50	0.0358
Outlet2		1.67	0.0378
Outlet2		1.83	0.0396
Outlet2		2.00	0.0414
Outlet2		2.17	0.0431
Outlet2		2.33	0.0448
Outlet2		2.50	0.0463
Outlet2		2.67	0.0479
Outlet2		2.83	0.0494
Outlet2		3.00	0.0508
Outlet2		3.17	0.0522
Outlet2		3.33	0.0536
Outlet2		3.50	0.0549
Outlet2		3.67	0.0562
Outlet2		3.83	0.0575
Outlet2		4.00	0.0587
Outlet2		4. 17	0.0599
Outlet2		4. 33	0.0611
Outlet2		4.50	0.0623
Outlet2		4.67	0.0634
Outlet2		4.83	0.0646
Outlet2		5.00	0.0657
Outlet2		5. 17	0.0668
Outlet2		5.33	0.0678
Outlet2		5.50	0.0689
		5.67	
Outlet2			0.1099
Outlet2		5.83	0. 1328
Outlet2		6.00	0. 1558
Outlet2		6. 17	0.6556
Outlet2		6.33	1.4973
Outlet2		6.50	1.9577
Outlet2		6. 67	2. 4401
Outlet2		6.83	3. 7983
Outlet2		7.00	4.9335
Outlet2		7.17	8.8986
Outlet2		7.33	15. 3768
Outlet2		7.50	23. 4926
Outlet2		7.67	33.0591
Outlet2			
0utlot2		7.83	43.2353
Outlet2		7.83 8.00	43. 2353 55. 0921
Outlet2 Outlet2 ;		7.83	43.2353
Outlet2 ;	Rating	7.83 8.00 8.17	43. 2353 55. 0921
Outlet2 ; Outlet4	Rating	7.83 8.00 8.17 0.00	43. 2353 55. 0921 67. 9333 0. 000
Outlet2 ; Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17	43. 2353 55. 0921 67. 9333 0. 000 0. 001
Outlet2 ; Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rati ng	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rati ng	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002
Outlet2 ; Outlet4	Rati ng	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0.
Outlet2 ; Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4 Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002
Outlet2 ; Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0.
Outlet2 ; Outlet4	Rating	7.83 8.00 8.17 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0.
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83 \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0. 003
Outl et2 ; Outl et4 Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 334\\ \end{array}$
Outl et2 ; Outl et4 Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17 \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0. 003
Outl et2 ; Outl et4 Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33 \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0.
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50 \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0.
Outl et2 ; Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0.
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83 \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$
Outl et2 ; Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ \end{array}$	43. 2353 55. 0921 67. 9333 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 003 0.
Outl et2 ; Outl et4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83 \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83\\ 4.00\\ 4.17\\ \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83\\ 4.00\\ 4.17\\ 4.33\\ \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$
Outlet2 ; Outlet4	Rating	$\begin{array}{c} 7.83\\ 8.00\\ 8.17\\ \hline 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83\\ 4.00\\ 4.17\\ \end{array}$	$\begin{array}{c} 43.\ 2353\\ 55.\ 0921\\ 67.\ 9333\\ \hline 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 003\\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 003\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$

Olive Park Detention.inp

Outlet4 Outlet4		4. 83 5. 00	01 i v 28. 112 31. 824
; Stor1 Stor	Storage	0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50	3008.4 3990.6 4380.5 4667.7 4899.6 5094.9 5262.9 5409.5 5538.3 5652.0 5752.5 5841.1 5919.0 5986.9 6045.6 6095.5 6137.2 6170.8 6125.2 6126.1 6229.8 6226.1 6226.1 6226.2 6137.2 6196.8 6137.2 6196.8 6137.2 6196.8 6137.2 6196.8 6137.2 6045.6 5986.9 5045.6 5986.9 5045.6 5986.9 5919.0 5841.1 5752.5 5652.0 538.3 5409.5 5262.9 5045.6 5986.9 5919.0 538.3 5409.5 5262.9 5094.9 4899.6 4667.7 4380.5 3008.4 3008.4 3008.4 3008.4 3008.4
Stor2 Stor2	Storage	0. 00 0. 17 0. 33 0. 50 0. 67 0. 83 1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33	1244. 4 1650. 4 1811. 9 1931. 4 2028. 1 2109. 9 2180. 6 2242. 5 2297. 3 2346. 0 2389. 3 2428. 0 2462. 3 2492. 6 2519. 4 2542. 6 2519. 4 2542. 6 2562. 7 2579. 6 2593. 6 2604. 6 2612. 9

Stor2			ULLVE
51012		3.50	2618.3
Stor2		3.67	2621.1
Stor2		3.83	2621.1
Stor2		4.00	2618.3
Stor2		4. 17	2612.9
			2604.6
Stor2		4.33	
Stor2		4.50	2593.6
Stor2		4.67	2579.6
Stor2		4.83	2562.7
Stor2		5.00	2542.6
Stor2		5. 17	2519.4
Stor2		5.33	2492.6
Stor2		5.50	2462.3
Stor2			2428.0
		5.67	
Stor2		5.83	2389.3
Stor2		6.00	2346.0
Stor2		6. 17	2297.3
Stor2		6. 33	2242.5
Stor2		6.50	2180.6
Stor2		6.67	2109.9
Stor2		6.83	2028.1
Stor2		7.00	1931.4
Stor2		7.17	1811.9
Stor2		7.33	1650.4
Stor2		7.50	1244.4
Stor2		7.67	1244.4
Stor2		7.83	1244.4
Stor2		8.00	1244.4
Stor2		8. 17	1244.4
, Stor4	Storage	0.00	74.4
	Storage		
Stor4		0. 17	102.2
Stor4		0.33	112.9
Stor4		0.50	120. 4
Stor4		0.67	126. 3
Stor4		0.83	130.9
Stor4		0. 83 1. 00	130. 9 134. 7
Stor4		1.00	134.7
Stor4 Stor4		1. 00 1. 17	134. 7 137. 7
Stor4 Stor4 Stor4		1.00 1.17 1.33	134. 7 137. 7 140. 0
Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33 1.50	134. 7 137. 7 140. 0 141. 8
Stor4 Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33	134. 7 137. 7 140. 0
Stor4 Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33 1.50 1.67	134. 7 137. 7 140. 0 141. 8
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33 1.50 1.67 1.83	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 143. 0 141. 8
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0 137. 7
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0 137. 7 134. 7
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0 137. 7
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0 137. 7 134. 7
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 143. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3
Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50 \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67 \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83 \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67 \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00 \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ 4.\ 67\\ 4.\ 83\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ 4.\ 67\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4 74.4
Stor4 Stor4		$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ 4.\ 67\\ 4.\ 83\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4 74.4
Stor4 St		$\begin{array}{c} 1. \ 00\\ 1. \ 17\\ 1. \ 33\\ 1. \ 50\\ 1. \ 67\\ 1. \ 83\\ 2. \ 00\\ 2. \ 17\\ 2. \ 33\\ 2. \ 50\\ 2. \ 67\\ 2. \ 83\\ 3. \ 00\\ 3. \ 17\\ 3. \ 33\\ 3. \ 50\\ 3. \ 67\\ 3. \ 83\\ 4. \ 00\\ 4. \ 17\\ 4. \ 33\\ 4. \ 50\\ 4. \ 67\\ 4. \ 83\\ 5. \ 00\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4 74.4 74.4
Stor4 Stor4	Date	$\begin{array}{c} 1.\ 00\\ 1.\ 17\\ 1.\ 33\\ 1.\ 50\\ 1.\ 67\\ 1.\ 83\\ 2.\ 00\\ 2.\ 17\\ 2.\ 33\\ 2.\ 50\\ 2.\ 67\\ 2.\ 83\\ 3.\ 00\\ 3.\ 17\\ 3.\ 33\\ 3.\ 50\\ 3.\ 67\\ 3.\ 83\\ 4.\ 00\\ 4.\ 17\\ 4.\ 33\\ 4.\ 50\\ 4.\ 67\\ 4.\ 83\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4 74.4
Stor4 St	Date	$\begin{array}{c} 1. \ 00\\ 1. \ 17\\ 1. \ 33\\ 1. \ 50\\ 1. \ 67\\ 1. \ 83\\ 2. \ 00\\ 2. \ 17\\ 2. \ 33\\ 2. \ 50\\ 2. \ 67\\ 2. \ 83\\ 3. \ 00\\ 3. \ 17\\ 3. \ 33\\ 3. \ 50\\ 3. \ 67\\ 3. \ 83\\ 4. \ 00\\ 4. \ 17\\ 4. \ 33\\ 4. \ 50\\ 4. \ 67\\ 4. \ 83\\ 5. \ 00\\ \end{array}$	134.7 137.7 140.0 141.8 143.0 143.8 144.0 143.8 144.0 143.8 143.0 141.8 140.0 137.7 134.7 130.9 126.3 120.4 112.9 102.2 74.4 74.4 74.4 74.4 74.4 74.4
Stor4 St		1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 4
Stor4 St	flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 74 74. 74
Stor4 St	flow 8/28/1 flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 3 75 76 76 76 76 76 76 76 76 76 76
Stor4 St	flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 3 0 0 0 0 0 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Stor4 St	flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 3 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Stor4 St	flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 3 0 0 0 0 0 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Stor4 St	flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1 flow 8/28/1	1. 00 1. 17 1. 33 1. 50 1. 67 1. 83 2. 00 2. 17 2. 33 2. 50 2. 67 2. 83 3. 00 3. 17 3. 33 3. 50 3. 67 3. 83 4. 00 4. 17 4. 33 4. 50 4. 67 4. 83 5. 00 Ti me 951 5: 00 951 5: 06 951 5: 12 951 5: 18 951 5: 24	134. 7 137. 7 140. 0 141. 8 143. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 143. 8 144. 0 141. 8 140. 0 137. 7 134. 7 130. 9 126. 3 120. 4 112. 9 102. 2 74. 4 74. 3 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1

			0live
100YR-Node142-Inflow		5:36	0.3
100YR-Node142-Inflow 100YR-Node142-Inflow		5: 42 5: 48	0.3 0.3
100YR-Node142-Inflow		5:54	0.3
100YR-Node142-Inflow		6:00	0.4
100YR-Node142-Inflow		6:06	0.4
100YR-Node142-Inflow		6: 12	0.4
100YR-Node142-Inflow	8/28/1951	6: 18	0.4
100YR-Node142-Inflow	8/28/1951	6:24	0.4
100YR-Node142-Inflow		6: 30	0.4
100YR-Node142-Inflow		6:36	0.4
100YR-Node142-Inflow		6: 42	0.4
100YR-Node142-Inflow 100YR-Node142-Inflow		6: 48 6: 54	0.4 0.4
100YR-Node142-Inflow		7:00	0.4 0.5
100YR-Node142-Inflow		7:06	0.5
100YR-Node142-Inflow		7:12	0.5
100YR-Node142-Inflow	8/28/1951	7:18	0.5
100YR-Node142-Inflow		7:24	0.5
100YR-Node142-Inflow		7:30	0.6
100YR-Node142-Inflow		7:36	0.6
100YR-Node142-Inflow 100YR-Node142-Inflow		7: 42 7: 48	0.6 0.6
100YR-Node142-Inflow		7:54	0.0
100YR-Node142-Inflow		8:00	0.7
100YR-Node142-Inflow		8:06	0.8
100YR-Node142-Inflow	8/28/1951	8: 12	0.8
100YR-Node142-Inflow	8/28/1951	8: 18	0.9
100YR-Node142-Inflow		8:24	0.9
100YR-Node142-Inflow		8:30	1.1
100YR-Node142-Inflow 100YR-Node142-Inflow	8/28/1951 8/28/1951	8: 36 8: 42	1.1 1.4
100YR-Node142-Inflow	8/28/1951	8:42	1.4
100YR-Node142-Inflow	8/28/1951	8: 54	2.4
100YR-Node142-Inflow		9:00	2.8
100YR-Node142-Inflow	8/28/1951	9:06	12.41
100YR-Node142-Inflow		9: 12	1.9
100YR-Node142-Inflow		9:18	1.3
100YR-Node142-Inflow		9:24	1
100YR-Node142-Inflow 100YR-Node142-Inflow	8/28/1951 8/28/1951	9: 30 9: 36	0. 8 0. 7
100YR-Node142-Inflow	8/28/1951	9:42	0.6
100YR-Node142-Infl ow		9:48	0.6
100YR-Node142-Inflow	8/28/1951	9:54	0.5
100YR-Node142-Inflow		10:00	0.5
100YR-Node142-Inflow		10:06	0.5
100YR-Node142-Inflow		10:12	0.4
100YR-Node142-Inflow 100YR-Node142-Inflow	8/28/1951 8/28/1951	10: 18 10: 24	0.4 0.4
100YR-Node142-Inflow	8/28/1951	10: 24	0.4
100YR-Node142-Inflow	8/28/1951	10:36	0.4
100YR-Node142-Inflow	8/28/1951	10: 42	0.3
100YR-Node142-Inflow		10: 48	0.3
100YR-Node142-Inflow		10: 54	0.3
100YR-Node142-Inflow	8/28/1951	11:00	0.3
100YR-Node142-Inflow	8/28/1951	11:06	0
, 100YR-Node160-inflow	8/28/1951	5:00	0
100YR-Node160-inflow	8/28/1951	5:06	0.6
100YR-Node160-inflow	8/28/1951	5: 12	0.6
100YR-Node160-inflow	8/28/1951	5: 18	0.6
100YR-Node160-inflow	8/28/1951	5:24	0.7
100YR-Node160-inflow	8/28/1951	5:30	0.7
100YR-Node160-inflow	8/28/1951	5:36	0.7
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	5: 42 5: 48	0. 7 0. 7
100YR-Node160-inflow	8/28/1951	5:54	0.7
100YR-Node160-inflow		6:00	0.7
100YR-Node160-inflow	8/28/1951	6:06	0.8
100YR-Node160-inflow		6: 12	0.8
100YR-Node160-inflow	8/28/1951	6: 18	0.8

			01 i ve
100YR-Node160-inflow		6:24	0.8
100YR-Node160-inflow		6: 30	0.8
100YR-Node160-inflow 100YR-Node160-inflow		6: 36 6: 42	0.8 0.9
100YR-Node160-inflow	8/28/1951	6: 48	0.9
100YR-Node160-i nfl ow	8/28/1951	6: 54	0.9
100YR-Node160-inflow	8/28/1951	7:00	0.9
100YR-Node160-inflow	8/28/1951	7:06	1
100YR-Node160-inflow	8/28/1951	7:12	1
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	7: 18 7: 24	1.1 1.1
100YR-Node160-inflow	8/28/1951	7:24	1. 1
100YR-Node160-i nfl ow	8/28/1951	7:36	1.2
100YR-Node160-inflow	8/28/1951	7:42	1.2
100YR-Node160-inflow	8/28/1951	7:48	1.3
100YR-Node160-inflow	8/28/1951	7: 54 8: 00	1.4
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	8:00 8:06	1.4 1.6
100YR-Node160-inflow	8/28/1951	8:12	1.6
100YR-Node160-inflow	8/28/1951	8: 18	1.8
100YR-Node160-inflow	8/28/1951	8:24	1.9
100YR-Node160-inflow	8/28/1951	8:30	2.2
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	8: 36 8: 42	2.4 2.9
100YR-Node160-inflow	8/28/1951	8: 48	2.9 3.3
100YR-Node160-i nfl ow	8/28/1951	8:54	4.9
100YR-Node160-inflow	8/28/1951	9:00	5.3
100YR-Node160-inflow	8/28/1951	9:06	26.12
100YR-Node160-inflow	8/28/1951	9:12	3.9
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	9: 18 9: 24	2.6 2
100YR-Node160-inflow	8/28/1951	9:30	1.7
100YR-Node160-inflow	8/28/1951	9:36	1.5
100YR-Node160-inflow	8/28/1951	9: 42	1.3
100YR-Node160-inflow	8/28/1951	9:48	1.2
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951 8/28/1951	9: 54 10: 00	1.1 1
100YR-Node160-inflow	8/28/1951	10:00	1
100YR-Node160-i nfl ow		10: 12	0.9
100YR-Node160-inflow		10: 18	0.9
100YR-Node160-inflow	8/28/1951	10: 24	0.8
100YR-Node160-inflow	8/28/1951	10: 30 10: 36	0. 8 0. 7
100YR-Node160-inflow 100YR-Node160-inflow	8/28/1951	10: 30	0.7
100YR-Node160-i nfl ow		10:48	0.7
100YR-Node160-inflow	8/28/1951	10: 54	0.7
100YR-Node160-inflow	8/28/1951	11:00	0.6
100YR-Node160-inflow	8/28/1951	11:06	0
, 100YR-Node137-Inflow	8/28/1951	5:00	0
100YR-Node137-Inflow	8/28/1951	5:05	0.009
100YR-Node137-Inflow	8/28/1951	5:10	0.009
100YR-Node137-Inflow	8/28/1951	5:15	0.009
100YR-Node137-Inflow	8/28/1951	5:20	0.009
100YR-Node137-Inflow 100YR-Node137-Inflow	8/28/1951 8/28/1951	5: 25 5: 30	0. 009 0. 010
100YR-Node137-Inflow	8/28/1951	5:35	0.010
100YR-Node137-Inflow	8/28/1951	5: 40	0.010
100YR-Node137-Inflow	8/28/1951	5:45	0.010
100YR-Node137-Inflow	8/28/1951	5:50	0.010
100YR-Node137-Inflow 100YR-Node137-Inflow	8/28/1951 8/28/1951	5: 55 6: 00	0. 010 0. 011
100YR-Node137-Inflow	8/28/1951	6:00 6:05	0.011
100YR-Node137-Inflow	8/28/1951	6: 10	0.011
100YR-Node137-Inflow	8/28/1951	6: 15	0.011
100YR-Node137-Inflow	8/28/1951	6:20	0.011
100YR-Node137-Inflow	8/28/1951	6:25	0.012
100YR-Node137-Inflow 100YR-Node137-Inflow		6: 30 6: 35	0. 012 0. 012
100YR-Node137-Inflow		6: 40	0.012
100YR-Node137-Infl ow		6: 45	0.013

Olive Park Detention.inp

		01.1.40	Dork	Detention	. i nn
100YR-Node137-Infl ow 8/28/1951 100YR-Node137-Infl ow 8/28/195	6: 50 6: 55 7: 00 7: 05 7: 10 7: 15 7: 20 7: 25 7: 30 7: 35 7: 40 7: 45 7: 50 7: 55 8: 00 8: 05 8: 10 8: 15 8: 20 8: 25 8: 30 8: 35 8: 40 8: 45 8: 50 8: 55 9: 00 9: 05 9: 10 9: 15 9: 20 9: 25 9: 30 9: 35 9: 40 9: 45 9: 50 9: 55 10: 00 10: 25 10: 30 10: 35 10: 40 10: 55 11: 00	0.013 0.013 0.013 0.014 0.014 0.015 0.015 0.015 0.016 0.017 0.017 0.017 0.020 0.010 0.010 0.010 0.009 0.009 0.009			
;;Reporting Options SUBCATCHMENTS ALL NODES ALL LINKS ALL					
[TAGS]					
[MAP] DIMENSIONS 0.000 0.000 10000.00 Units None	0 10000.000				
[COORDI NATES]	V Coor	d			

;;Node X-Coord Y-Coord ;;----------_ -----Node160-Outlet 10749.559 5634.921 Node142-Outlet 13166. 954 5697.074 Node137-Outlet 15920. 826 5800.344 100YR-DETENTION-Stor1 10705.467 7169.312

	on-Stor2 13106.713 ON-Stor4 15834.768	Olive Park Detention.ii 7091.222 7168.675	np
[VERTICES]	X Coord	V Coord	

; ; LI NK	X-Coord	Y-Coord
;;		

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.014)

OLIVE PARK APARTMENTS - POC1 PRE-DEVELOPED

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Flow Units	CFS
Process Models:	
Rainfall/Runoff	NO
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	NO
Water Quality	NO
Flow Routing Method	KINWAVE
Starting Date	08/28/1951 00:00:00
Ending Date	08/28/1951 23:00:00
Antecedent Dry Days	0.0
Report Time Step	01:00:00
Routing Time Step	60.00 sec

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	1.300	0. 424
External Outflow	1.050	0. 342
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.504	0. 164
Final Stored Volume	0.752	0. 245
Continuity Error (%)	0. 113	

Highest Flow Instability Indexes

All links are stable.

Routing Time Step Summary

Minimum T	Time Step	:	59.00 sec
Average T	Time Step	:	60.00 sec
Maximum T	Time Step	:	60.00 sec
Percent i	n Steady State	:	0.00
Average I	terations per Step	:	1.00
Percent N	lot Converging	:	0.00

* * * * * * * * * * * * * * * * * *

Node Depth Summary

	0live	Park	Detenti	on.	rpt
--	-------	------	---------	-----	-----

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time of Max Occurrence days hr:min	Reported Max Depth Feet
Node160-Outlet	OUTFALL	0.00	0.00	0.00	0 00:00	0.00
Node142-Outlet	OUTFALL	0.00	0.00	0.00	0 00:00	0.00
Node137-Outlet	OUTFALL	0.00	0.00	0.00	0 00:00	0.00
100YR-DETENTION-Sto	or1 STORAGE	3.90	6.52	6.52	0 09:12	5.18
100YR-Detention-Sto	or2 STORAGE	4.53	7.16	7.16	0 09:09	6.15
100YR-DETENTION-Sto	or4 STORAGE	1.62	2.89	2.89	0 09:05	2.84

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Occu	of Max urrence hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
 Node160-Outlet	OUTFALL	0.00	9.65		09:12		0.236	0.000
Node142-Outlet	OUTFALL	0.00	8.65	0	09:09	0	0.104	0.000
Node137-Outlet	OUTFALL	0.00	0.12	0	09:05	0	0.00202	0.000
100YR-DETENTION-St	or1 STORAGE	26.12	26.12	e	09:07	0.283	0.396	0.097
100YR-Detention-St	or2 STORAGE	12.41	12.41	e	09:07	0.137	0.187	0.140
100YR-DETENTION-St	or4 STORAGE	0.39	0.39	e	09:01	0.00398	0.00398	0.389

Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average Volume 1000 ft3	5		Exfi I Pcnt Loss	Maximum Volume 1000 ft3	Max Pcnt Ful I	Time of Ma Occurrend days hr:mi	ce Outflow	I
100YR-DETENTION-Stor1 100YR-Detention-Stor2 100YR-DETENTION-Stor4	10.703	54 61 36	0 0 0	0 0 0	36. 780 16. 876 0. 383	91 97 65	0 09: 0 09: 0 09: 0 09:	. 09 8. 6	5

Outfall Loading Summary

Outfall Node	Flow	A∨g	Max	Total
	Freq	FI ow	FI ow	Volume
	Pcnt	CFS	CFS	10^6 gal
Node160-Outlet	100. 00	0. 38	9.65	0. 236
Node142-Outlet	100. 00	0. 17	8.65	0. 104
Node137-Outlet	75. 87	0. 00	0.12	0. 002
System	91.96	0. 55	0. 12	0. 342

Link Flow Summary

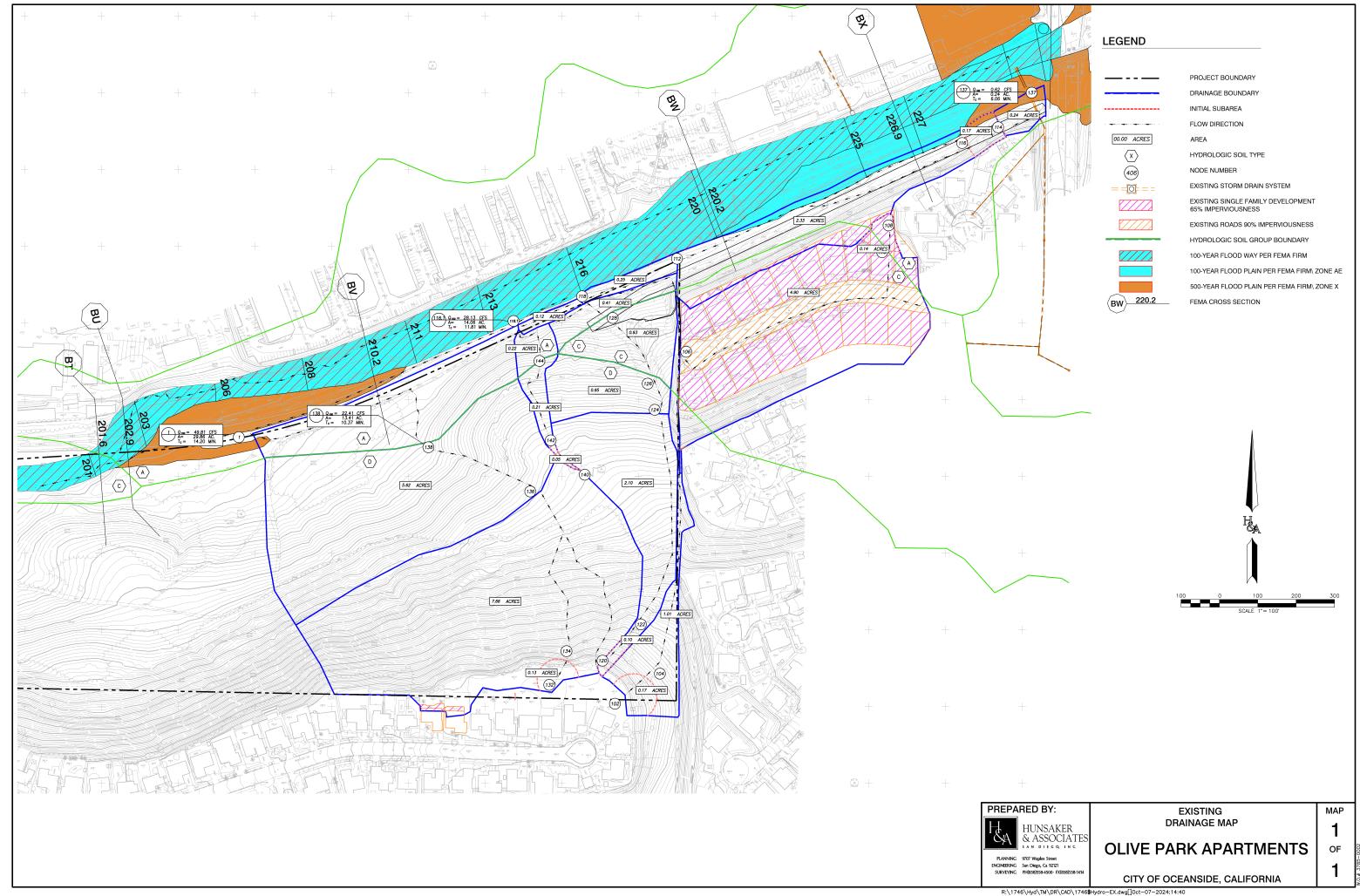
Olive Park Detention.rpt

Link	Туре	FI ow	Time of Max Occurrence days hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
Outlet1-100 Outlet2-100 Outlet4-100	DUMMY DUMMY DUMMY	9. 65 8. 65 0. 12	0 09:12 0 09:09 0 09:05			

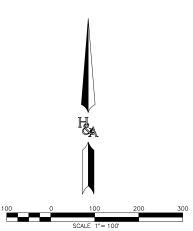
Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on:	Fri	0ct 1	1 15:11:38 2024
Analysis ended on:	Fri	0ct 1	1 15:11:38 2024
Total elapsed time:	< 1	sec	

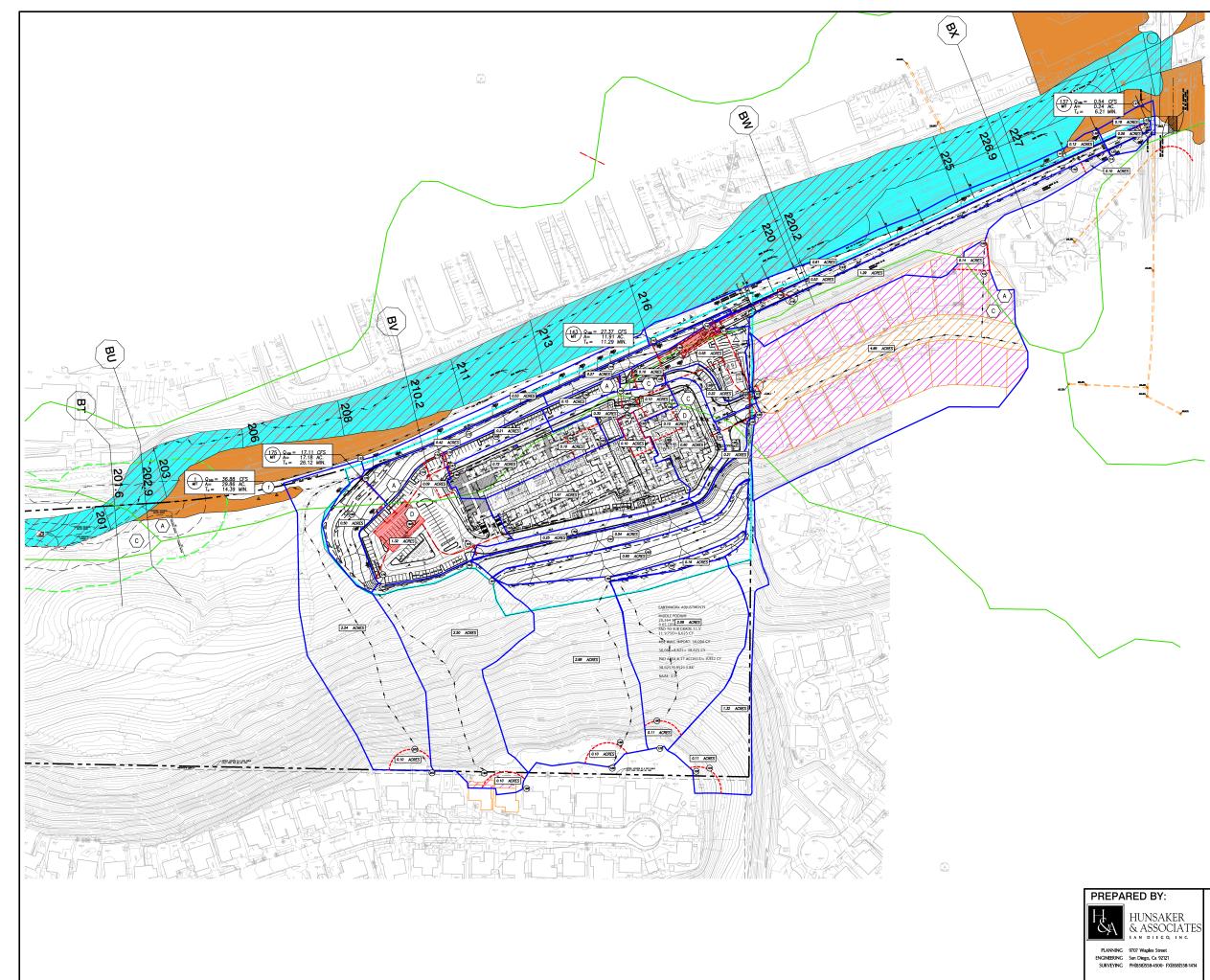

CHAPTER 6

HYDROLOGY MAPS


CHAPTER 6

HYDROLOGY MAPS

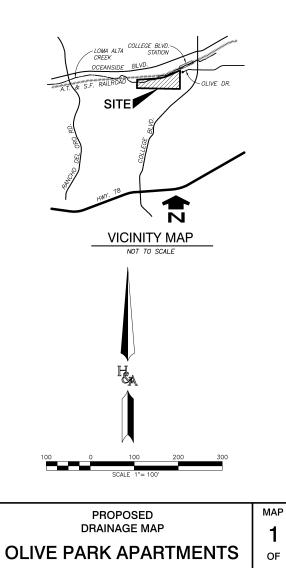
6.1 – Existing Condition Hydrology Map


LEGEND				
00.00 ACRES				
(X) (406)				
(406)				
(BW) <u>220.2</u>				

CHAPTER 6

HYDROLOGY MAPS

6.2 – Developed Condition Hydrology Map

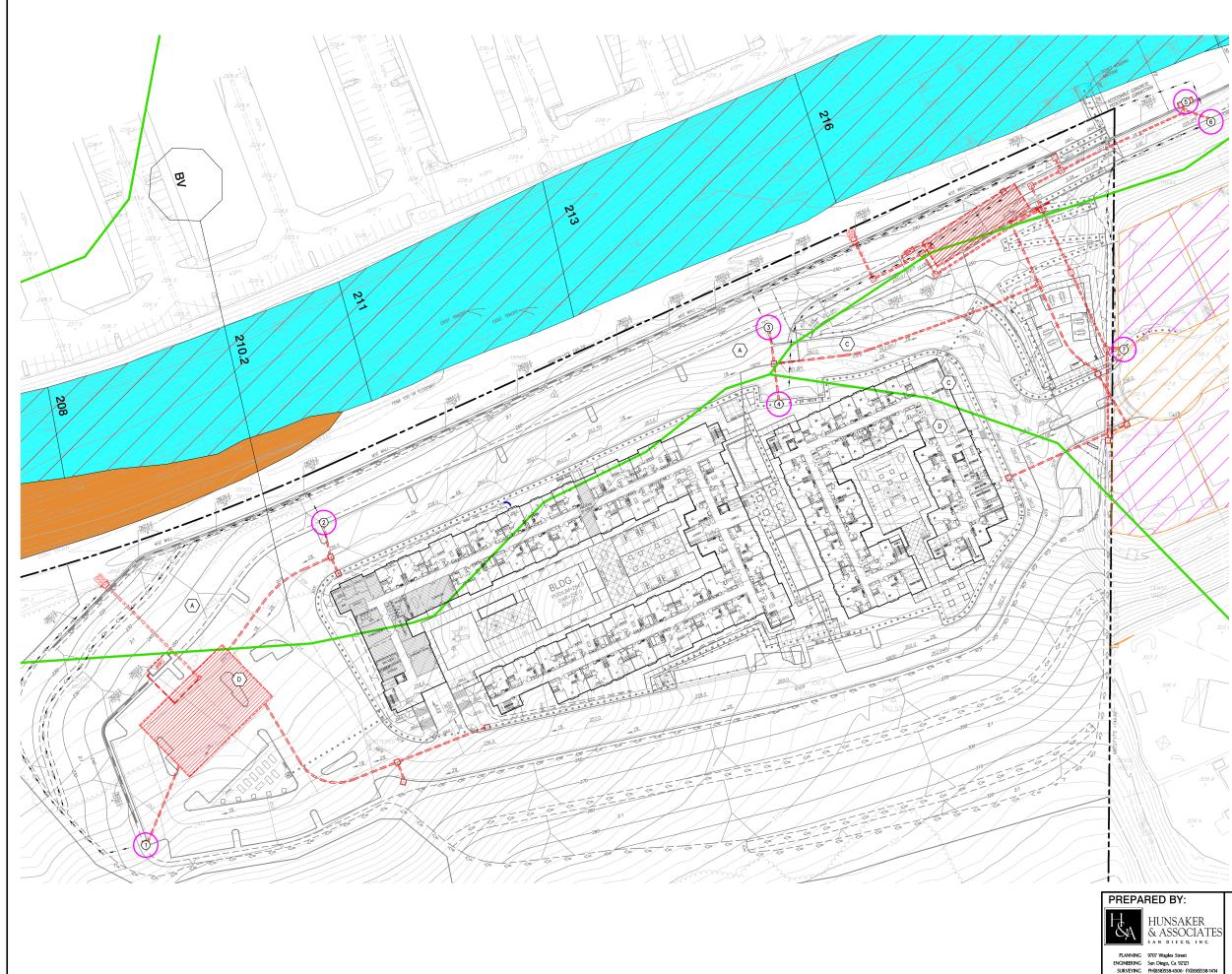

R:\1746\Hyd\TM\DR\CAD\1746**\$**Hydro-PR.dwg[]Oct-11-2024:15:14

LEGEND

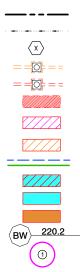
• • • •
00.00 ACRES
(X) (406)
406
==0===
==0===
(BW) 220.2
\sim ()

DRAINAGE BOUNDARY INITIAL SUBAREA FLOW DIRECTION AREA HYDROLOGIC SOIL TYPE NODE NUMBER EXISTING STORM DRAIN SYSTEM PROPOSED STORM DRAIN SYSTEM DETENTION STORAGE FACILITY EXISTING SINGLE FAMILY DEVELOPMENT 65% IMPERVIOUSNESS EXISTING ROADS 90% IMPERVIOUSNESS HYDROLOGIC SOIL GROUP BOUNDARY 100-YEAR FLOOD WAY PER FEMA FIRM 100-YEAR FLOOD PLAIN PER FEMA FIRM\ ZONE AE 500-YEAR FLOOD PLAIN PER FEMA FIRM\ ZONE X FEMA CROSS SECTION INLET LOCATIONS

PROJECT BOUNDARY


1

CITY OF OCEANSIDE, CALIFORNIA


CHAPTER 6

HYDROLOGY MAPS

6.3 – Sump Inlet Location Map

LEGEND

PROJECT BOUNDARY

EMERGENCY FLOW PATH

HYDROLOGIC SOIL TYPE

EXISTING STORM DRAIN SYSTEM

PROPOSED STORM DRAIN SYSTEM

DETENTION STORAGE FACILITY

EXISTING SINGLE FAMILY DEVELOPMENT 65% IMPERVIOUSNESS

EXISTING ROADS 90% IMPERVIOUSNESS

HYDROLOGIC SOIL GROUP BOUNDARY

100-YEAR FLOOD WAY PER FEMA FIRM

100-YEAR FLOOD PLAIN PER FEMA FIRM\ ZONE AE

500-YEAR FLOOD PLAIN PER FEMA FIRM\ ZONE X

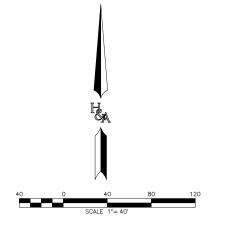
FEMA CROSS SECTION

PROPOSED SUMP INLET LOCATIONS

SUMP LOCATION AND EMERGENCY PATH DESCRIPTION:

1. THIS SUMP COLLECTS 8.48 CFS. THIS RUNOFF WILL OVERTOP THE CURB AND DRAIN INTO THE BROW DITCH DOWNSTREAM BEFORE IMPACTING ANY SURROUNDING STRUCTURES.

2. THIS SUMP COLLECTS 1.36 CFS. THE RUNOFF IS NOT LARGE ENOUGH TO OVERTOP THE CURB OR THE STREET CROWN. PONDING IN THIS AREA WOULD NOT AFFECT ANY SURROUNDING STRUCTURES. IF ADDITIONAL RUNOFF REACHED THIS POINT, THE FLOWS WOULD DRAIN DOWN THE SLOPE AND DISCHARGE INTO THE BROW DITCH, AS SHOWN.


3. THIS SUMP COLLECTS 0.86 CFS. LIKE SUMP #2, THE RUNOFF WOULD POND IN THIS LOCATION WITHOUT NEGATIVELY IMPACTING NEARBY STRUCTURES. ANY ADDITIONAL RUNOFF WOULD DRAIN DOWN THE SLOPE, AS SHOWN.

4. THIS SUMP COLLECTS 2.38 CFS. WHILE THE RUNOFF IS NOT ENOUGH TO OVERTOP THE CURB, A PORTION WOULD FLOW OVER THE ROAD'S CROWN AND COULD EITHER ENTER SUMP #3 OR DRAIN TO A DOWNSTREAM ON-GRADE INLET, AS SHOWN.

5. THIS SUMP COLLECTS 1.63 CFS. THIS RUNOFF IS INSUFFICIENT TO OVERTOP THE CURB OR THE STREET CROWN, PONDING IN THIS AREA WOULD NOT IMPACT ANY SURROUNDING STRUCTURES. IF ADDITIONAL RUNOFF REACHED THIS POINT, THE FLOWS WOULD OVERTOP THE CURB AND BEGIN FLOWING INTO THE CATCH BASIN AT SUMP #6.

6. THIS SUMP COLLECTS 1.61 CFS. THE RUNOFF IS NOT LARGE ENOUGH TO OVERTOP THE DITCH. STORMWATER WOULD POND AT THIS LOCATION WITHOUT IMPACTING NEARBY STRUCTURES. IF ANY ADDITIONAL FLOWS LARGE ENOUGH TO OVERTOP THE DITCH REACH THIS LOCATION, THE RUNOFF WILL DRAIN INTO THE STREET. THE PROPOSED MWS UNITS WOULD NOT HAVE ENOUGH CAPACITY THE STREET. THE PROPOSED MWS UNITS WOULD NOT HAVE ENOUGH CAPACITY TO CAPTURE THIS RUNOFF. RESULTING IN PONDING THAT COULD OVERTOP THE CURB AND DISCHARGE THROUGH AN EMERGENCY OPENING ON THE PROPOSED RETAINING WALL.

7. THIS SUMP COLLECTS 15.79 CFS FROM THE EXISTING DEVELOPMENT. THE EXISTING CUL-DE-SAC AND PROPOSED SUMP INLET WILL HAVE SUFFICIENT CAPACITY TO CAPTURE THIS RUNOFF. IF THE INLET WERE TO FAIL, THE FLOWS WOULD OVERTOP THE CUBE AND DRAIN INTO THE EXERT OF PAIL, THE FLOWS WOULD OVERTOP THE CUBE AND DRAIN INTO THE EXISTING BROW DITCH, LIKE CURRENT CONDITIONS. THE EXISTING DITCH WILL BE REMOVED AND REROUTED WITH A PROPOSED DITCH OF THE SAME HYDRAULIC GEOMETRY. THIS NEW DITCH WILL DIRECT ALL FLOWS TO A PROPOSED CATCH BASIN WITH TWO OPENINGS, AS SHOWN.

PROPOSED SUMP INLET LOCATIONS **OLIVE PARK APARTMENTS**

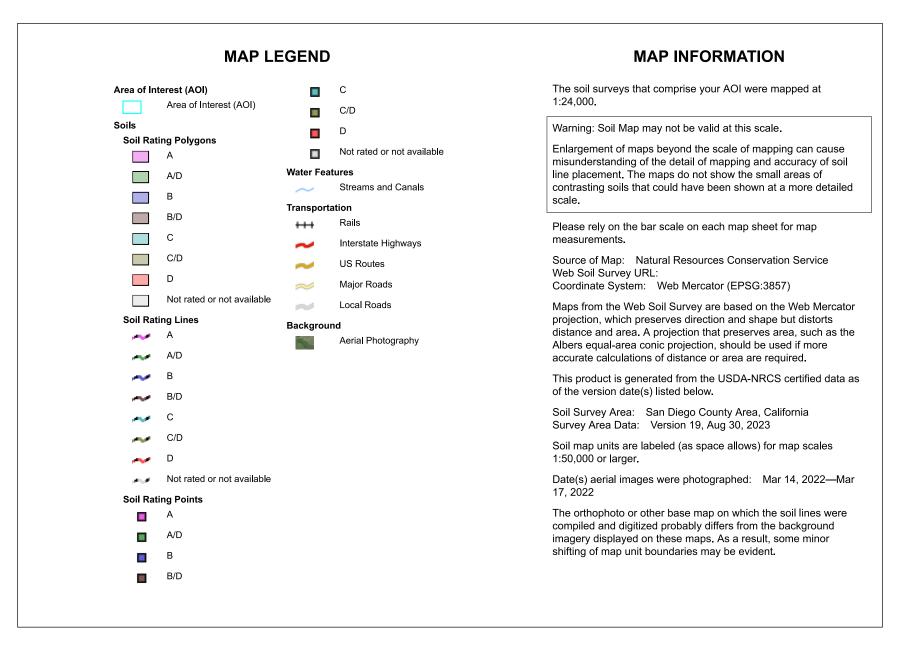
CITY OF OCEANSIDE, CALIFORNIA

OF

MAP

R:\1746\Hyd\TM\DR\CAD\1746**\$**SD Exhibit.dwg[]Oct-07-2024:16:32

CHAPTER 7 APPENDICES


APPENDIX 1 Hydrologic Soil Information

Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
CsB	Corralitos loamy sand, 0 to 5 percent slopes	A	3.7	8.5%	
DaE2	Diablo clay, 15 to 30 percent slopes, eroded, warm MAAT	С	1.0	2.3%	
DaF	Diablo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	C	0.9	2.0%	
GaF	Gaviota fine sandy loam, 30 to 50 percent slopes	D	14.2	32.3%	
LeC2	Las Flores loamy fine sand, 5 to 9 percent slopes, eroded	D	0.3	0.7%	
LeD2	Las Flores loamy fine sand, 9 to 15 percent slopes, eroded	D	15.6	35.6%	
SbA	Salinas clay loam, 0 to 2 percent slopes, warm MAAT, MLRA 19	С	8.2	18.6%	
Totals for Area of Interest			43.9	100.0%	

Description

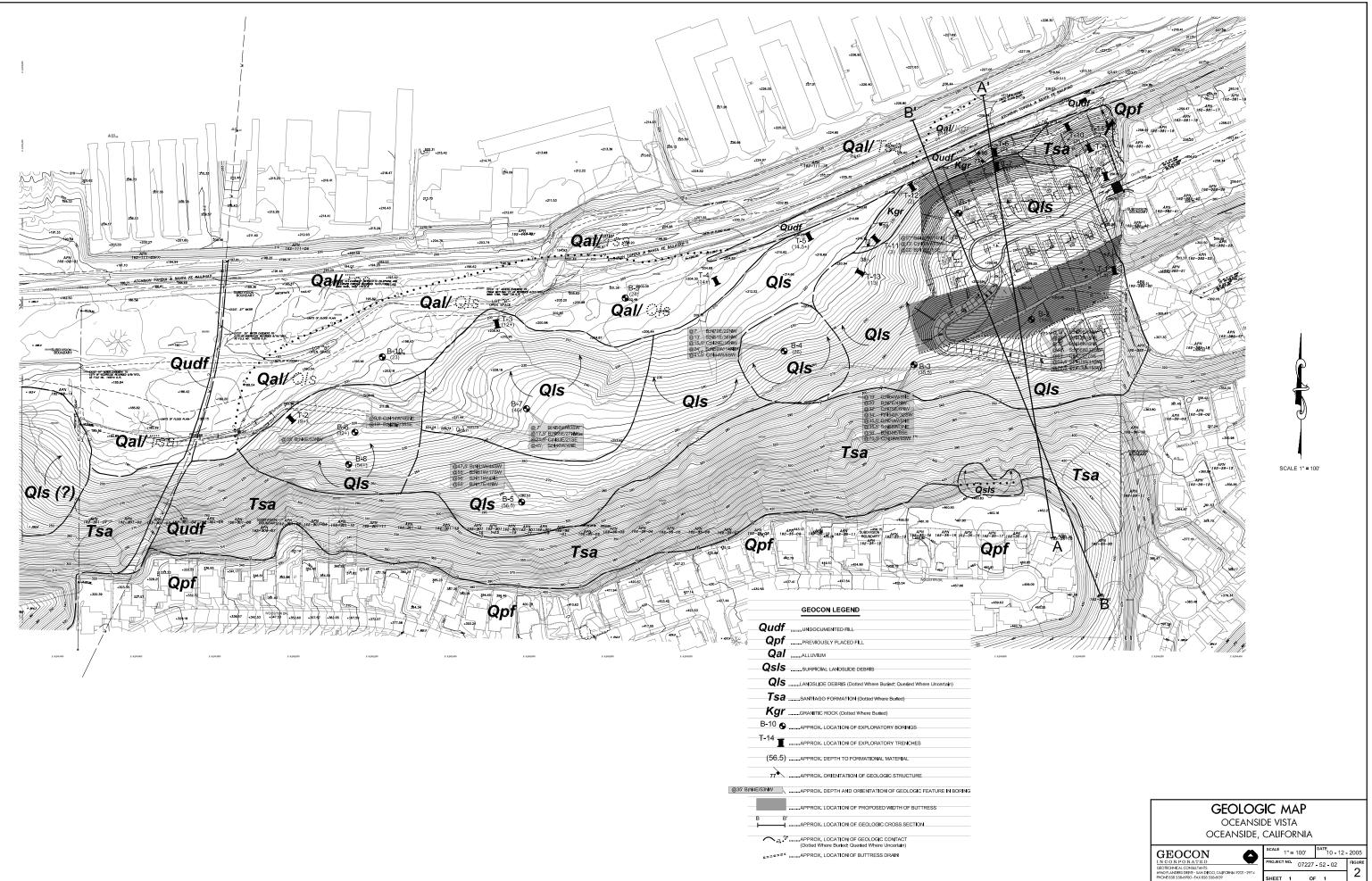
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

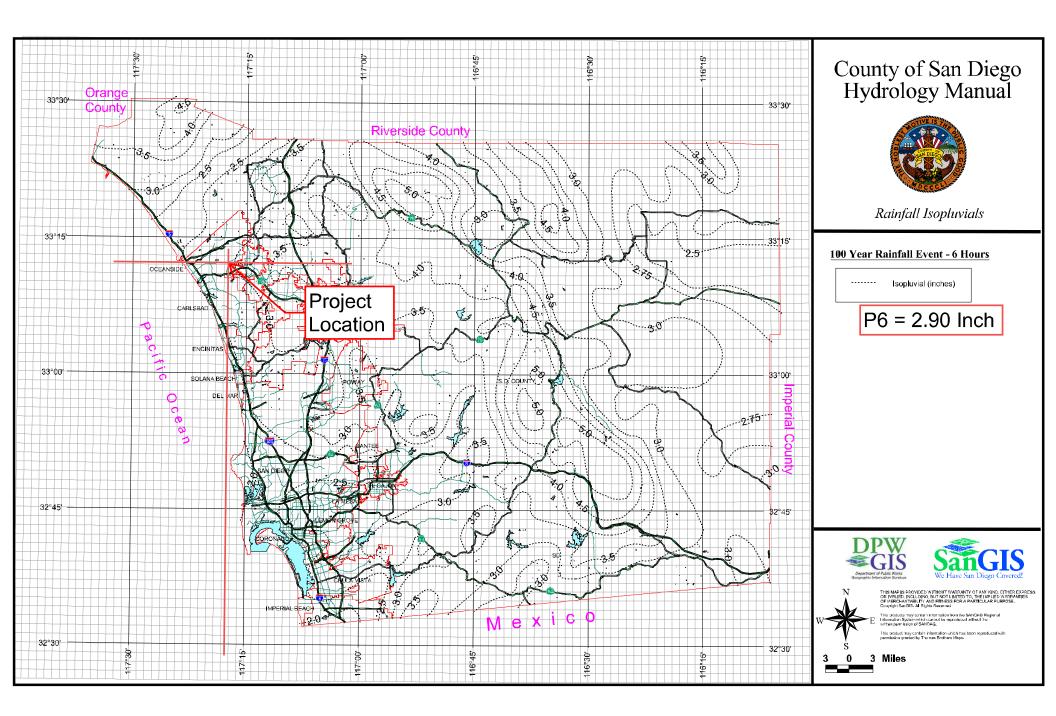
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

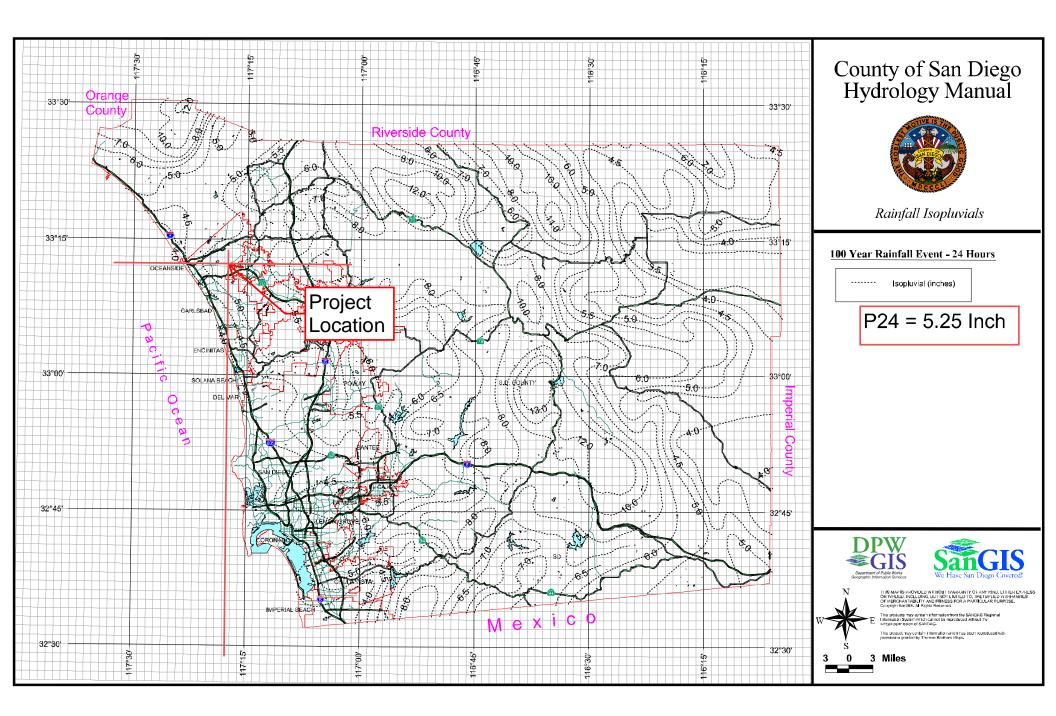
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX 2 Rainfall Isopluvial Map

APPENDIX 3 FEMA FIRMette

National Flood Hazard Layer FIRMette

250

500

1,000

1.500

2.000

Legend

117°17'53"W 33°12'29"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF AREA OF MINIMAL FLOOD HAZARD FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES IIIII Levee, Dike, or Floodwall OCEANSIDE, CITY OF 060294 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study T11S R04W 2 T11S R04W S21 Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 060 FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available Ш MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/15/2024 at 8:56 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 117°17'16"W 33°11'59"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes.

Basemap Imagery Source: USGS National Map 2023

ATTACHMENT 6 Geotechnical and Groundwater Investigation Report

This is the cover sheet for Attachment 6.

UPDATE GEOTECHNICAL INVESTIGATION

OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

MARCH 12, 2024 REVISED OCTOBER 21, 2024 PROJECT NO. G3035-52-01

PREPARED FOR:

CAPSTONE EQUITIES

GEOTECHNICAL E ENVIRONMENTAL E MATERIALS

Project No. G3035-52-01 March 12, 2024 Revised October 21, 2024

Capstone Equities 5600 W Jefferson Boulevard Los Angeles, California 90016

Attention: Mr. Brian Mikail

Subject: UPDATE GEOTECHNICAL INVESTIGATION OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

Dear Mr. Mikail:

In accordance with your request and authorization of our original Proposal No. LG-22452 dated September 22, 2022 and subsequent change orders, we herein submit the results of our update geotechnical investigation for the subject project. We performed our investigation to evaluate the underlying soil and geologic conditions and potential geologic hazards, and to assist in the design of the proposed building and associated improvements.

The accompanying report contains the results of our study and conclusions and recommendations pertaining to geotechnical aspects of the proposed project. The site is suitable for the proposed buildings and improvements provided the recommendations of this report are incorporated into the design and construction of the planned project.

Should you have questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Nikolas Garcia, EIT Senior Staff Engineer

Rupert S. Adams CEG 2561

NG:ML:RSA:SFW:kv

(e-mail) Addressee

Shawn Foy Weedon GE 2714

TABLE OF CONTENTS

1.	PURPOSE AND SCOPE	1
2.	SITE AND PROJECT DESCRIPTION	2
3.	GEOLOGIC SETTING	3
4.	SOIL AND GEOLOGIC CONDITIONS.4.1Undocumented Fill (Qudf)4.2Previously Placed Fill (Qpf)4.3Topsoil (Unmapped)4.4Colluvium (Qcol)4.5Alluvium (Qal)4.6Landslide Deposits (Qls)4.7Santiago Formation (Tsa)4.8Granitic Rock (Kgr)	5 5 5 6 7
5.	GROUNDWATER	7
6.	GEOLOGIC STRUCTURE 6.1 Landslide Stratigraphy 6.2 Landslide Geometry	9
7.	GEOLOGIC HAZARDS7.1Regional Faulting and Seismicity7.2Liquefaction7.3Storm Surge, Tsunamis, and Seiches7.4Settlement Due to Fill Loads7.5Mitigation of Compressible Soils7.6Slope Stability7.7Landslides7.8Debris Flows	10 12 12 12 14 16 16
8.	CONCLUSIONS AND RECOMMENDATIONS	19 21 22 24 26 32 33 35 37 39 41 44 45 53 57 59

TABLE OF CONTENTS (CONCLUDED)

LIMITATIONS AND UNIFORMITY OF CONDITIONS

MAPS AND ILLUSTRATIONS Figure 1, Geologic Map Figure 2, Geologic Cross Sections Figure 3, Landslide Overlay

APPENDIX A FIELD INVESTIGATION

APPENDIX B LABORATORY TESTING

APPENDIX C PREVIOUS BORINGS AND LABORATORY

APPENDIX D SLOPE STABILITY ANALYSES

APPENDIX E RECOMMENDED GRADING SPECIFICATIONS

LIST OF REFERENCES

UPDATE GEOTECHNICAL INVESTIGATION

1. PURPOSE AND SCOPE

This report contains the results of our update geotechnical investigation for the proposed affordable housing project located west of Olive Drive and north of Wooster Drive in the City of Oceanside, California (see Vicinity Map).

Vicinity Map

The purpose of this update geotechnical investigation is to evaluate the surface and subsurface soil conditions and general site geology, and to identify geotechnical constraints that may affect development of the property including faulting, liquefaction and seismic shaking based on the 2022 CBC seismic design criteria. In addition, we provided recommendations for remedial grading, shallow foundations, concrete slab-on-grade, concrete flatwork, pavement and retaining walls. We also reviewed the following plans and reports during preparation of this report:

- 1. *Site Plan, Olive Drive, Oceanside, California,* prepared by Hunsaker & Associates, dated March 7, 2024.
- 2. Soil and Geologic Investigation for: Westwind, Oceanside, California, prepared by Geocon Incorporated, dated July 1, 1985 (File No. D-3453-M02).

- 3. *Geotechnical Investigation, Oceanside Vista, Oceanside, California,* prepared by Geocon Incorporated, dated October 12, 2005 (Project No. 07227-52-02).
- 4. *Preliminary Geotechnical Evaluation for: Oceanside Vista Residential Development, Oceanside, California,* prepared by GeoTek, Inc., dated March 21, 2007 (Project No. 3129SD3)

The scope of this update investigation included reviewing readily available published and unpublished geologic literature (see List of References), performing engineering analyses and preparing this report. We also drilled 3 large diameter borings to a maximum depth of 100 feet and excavated 5 exploratory trenches to a maximum depth of approximately 8 feet. Appendix A presents the exploratory boring and trench logs and details of the field investigation. The details of the laboratory tests and a summary of the test results are shown in Appendix B and on the boring logs in Appendix A. Appendix C presents previous exploratory excavations and laboratory data. Appendix D presents our slope stability analysis.

2. SITE AND PROJECT DESCRIPTION

The site is an approximately 43-acre, east-west oriented, semi-rectangular-shaped property. The site is south of Oceanside Boulevard and the North County Transit District (NCTD) Sprinter line, east of an undeveloped property, and north and west of existing residential subdivisions. The Existing Site Plan shows the current site conditions.

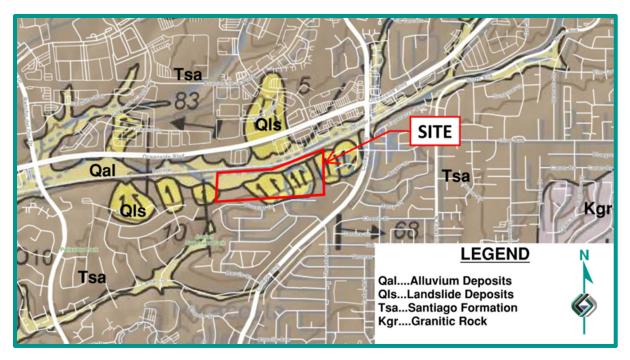
Existing Site Plan

Topographically, the site is located on slopes that descend northwest to Loma Alta Creek located along the north margin of the site. The Geologic Map, Figure 1, depicts the topography of the site with ascending natural slopes to the south with a maximum height of approximately 200 feet. The site is steeper on the south and becomes flatter to the north. The gentle-gradient creek has a general westflowing meandering orientation and has locally incised vertical embankments up to 10 feet high at the stream margins. A fill berm related to railroad improvements has been constructed along the northeast margin of the site. Elevations on site vary from a low of approximately 185 feet above Mean Sea Level (MSL) at Loma Alta Creek in the northwest corner of the site to 460 feet MSL at the top of the southeast slope.

We understand the project will consist of constructing a new affordable housing complex that includes two 4-story buildings, surface parking with accommodating flatwork, utilities and landscaping. Storm water BMPs are planned on the west side of the property within the proposed parking lot.

The locations, site descriptions, and proposed development are based on our site reconnaissance, review of published geologic literature, field investigations, and discussions with project personnel. If development plans differ from those described herein, Geocon Incorporated should be contacted for review of the plans and possible revisions to this report.

3. GEOLOGIC SETTING


Regionally, the site is in the Peninsular Ranges geomorphic province. The province is bounded by the Transverse Ranges to the north, the San Jacinto Fault Zone on the east, the Pacific Ocean coastline on the west, and the Baja California on the south. The province is characterized by elongated northwest-trending mountain ridges separated by straight-sided sediment-filled valleys. The northwest trend is further reflected in the direction of the dominant geologic structural features of the province that are northwest to west-northwest trending folds and faults, such as the nearby Rose Canyon fault zone.

Locally, the site is within the coastal plain of San Diego County. The coastal plain is underlain by a thick sequence of relatively undisturbed and non-conformable sedimentary bedrock units that thicken to the west and range in age from Upper Cretaceous age through the Pleistocene age which have been deposited on Cretaceous to Jurassic age igneous and volcanic bedrock. Geomorphically, the coastal plain is characterized by a series of 21, stair-stepped marine terraces (younger to the west) that have been dissected by west flowing rivers. The coastal plain is a relatively stable block that is dissected by

relatively few faults consisting of the potentially active La Nacion Fault Zone and the active Rose Canyon Fault Zone.

The site is located on the western portion of the coastal plain. Marine sedimentary units make up the geologic sequence encountered on the site overlain by surficial deposits. Geomorphically, the site is located within the southern limits of an east-west flowing drainage channel. The Eocene-age Santiago Formation is mapped within the upper slopes in the southern portion of the site and underlies the landslide deposits in the central portion of the site and the alluvium in the northern portion the site. Cretaceous-age granitic rock is exposed in limited areas along the northern property boundary and is documented as underlying the Santiago Formation in some large diameter borings. The Regional Geologic Map shows the geologic units in the area of the site.

Regional Geologic Map

4. SOIL AND GEOLOGIC CONDITIONS

We encountered six surficial soil units (consisting of undocumented fill, previously placed fill, topsoil, alluvium, colluvium and landslide debris) and two formational units (consisting of the Santiago Formation and granitic rock) at the site. The occurrence, distribution, and description of each unit encountered is shown on the Geologic Map, Figure 1 and on the boring and trench logs in Appendix A.

The Geologic Cross-Sections, Figure 2, show the approximate subsurface relationship between the geologic units. We prepared the geologic cross-sections using interpolation between exploratory excavations and observations; therefore, actual geotechnical conditions may vary from those illustrated and should be considered approximate. The surficial soil and geologic units are described herein in order of increasing age.

4.1 Undocumented Fill (Qudf)

Undocumented fill underlies the northern and western portions of the site. The northern fill areas are associated with a berm that was apparently graded to control water flow in Loma Alta Creek and support the existing rail line. The western undocumented fill area is associated with waterline backfill that traverses the site in a north-south direction. The fill material generally consists of soft, fine to medium, sandy clay with silt and has an estimated maximum thickness of 10 feet. The fill is not considered suitable for support of site development in its present condition and will require remedial grading.

4.2 Previously Placed Fill (Qpf)

Previously placed fill is present on the south and northeast portions of the property. The southern fill underlies residential building pads that bound the southern margin of the property along Wooster Drive. The southern fill likely consists of loose, silty, fine- to medium-grained sand, and is estimated to have a maximum thickness of about 25 feet at the top of slope. Improvements are not planned in the vicinity of the southern fill areas. Previously placed fill also underlies the residential development along Olive Drive adjacent to the northeastern corner of the site (as observed in Trench T-14). The fill consists of loose, moist, clayey sand and is underlain by relatively thick topsoil. The fill is not considered suitable for support of the proposed fill and structural loads.

4.3 Topsoil (Unmapped)

Topsoil typically blankets the site and consists of brown, sandy clay to sandy silt. Topsoil is generally on the order of 1 to 4 feet thick, but localized areas with greater thicknesses may exist. The topsoil is unsuitable for support of site development in its present condition and will require remedial grading.

4.4 Colluvium (Qcol)

Colluvium, coincident with thinner topsoil deposits, consisting of brown to reddish brown, clayey sand and sandy clay, is mapped along toe of slope areas capping landslide deposits, weathered Santiago

Formation or alluvium. Colluvium up to 10 feet thick was also logged by several authors in some large diameter borings, where it was interpreted as post-landslide graben infill. Colluvium is unsuitable for support of site development in its present condition and will require remedial grading.

4.5 Alluvium (Qal)

Alluvium is mapped on the northern portion of the site in the Loma Alta Creek drainage. The alluvial soil consists of soft, sandy to silty clay and loose silty to clayey sand. The alluvium is locally underlain by and interfingered with landslide deposits and colluvium. We encountered alluvial materials up to approximately 15½ feet deep and likely extend deeper toward the north. A shallow groundwater table is likely to exist approximately 3 to 5 feet below existing grade in the area of the streambed at the northern portion of the site. The alluvium is compressible, possesses a "very low" to "high" expansion potential (expansion index of 130 or less), possibly subject to liquefaction, and may have low to high permeability. The alluvium is not considered suitable for support of site development in its present condition and will require remedial grading. We expect some alluvium will remain in place on the western portion of the property due to grading limitations.

4.6 Landslide Deposits (Qls)

We encountered and observed landslide deposits in the exploratory borings and trenches performed for this update report. Landslide deposits are mapped underlying most of the central and eastern portions of the site, including the areas of proposed development. Based on our review of previous boring logs by Geocon (1985, 2005) and by Geotek (2007), and logging of new large diameter borings (B-11 through B-13) and exploratory trenches (T-15A-F through T-19), landslide deposits generally consist of disturbed to relatively intact blocks of sandstone, siltstone, and claystone. Due to weathering, this stratigraphy is less apparent in test pits excavated around the perimeter of mapped landslides or in low lying areas where landslide deposits are capped by colluvium or alluvium.

Landslide deposits are typically unstable within cut slopes and may be susceptible to significant settlement. Therefore, the highly compressible portions of the landslide debris within the proposed development areas should be removed and recompacted during the remedial grading of the site. In general, landslide debris is suitable for reuse as compacted fill provided potentially expansive clay is properly mixed with sandy material where located within about 5 feet of proposed grade.

4.7 Santiago Formation (Tsa)

We encountered the middle Eocene-age Santiago Formation underlying surficial soil in the majority of the exploratory excavations performed at the site. The Santiago Formation underlies the majority of the steep slope areas located to the south of the proposed development. The Santiago Formation is generally composed of light colored, massive to poorly bedded, fine- to medium-grained sandstone interbedded with weak siltstone and claystone layers. Claystone beds within the Santiago Formation contain bedding plane shears and internal shearing, some of which displayed out-of-slope bedding orientations. Bedding plane shears can be a contributing factor to slope instability. Cut slopes exposing out-of-slope bedding plane shears will require slope stabilization measures.

The Santiago Formation is considered suitable for foundation and/or fill support. However, the claystone and siltstone units may be susceptible to landsliding and slope instability. Additionally, some sandstone units of the Santiago Formation are poorly cemented and susceptible to erosion. Materials generated from excavations within the silty and sandy portions of the Santiago Formation are suitable for reuse as compacted fill. Claystone that is potentially expansive should be mixed with sandy material, as discussed herein.

4.8 Granitic Rock (Kgr)

Cretaceous-age granitic rock is mapped in the general vicinity of the site by Tan and Kennedy (1996) as the Green Valley Tonalite. We encountered granitic rock in Borings B-1 and B-2 (Geocon, 1985), Boring B-1 (Geocon, 2005) and in Trenches T-6, T-7, T-11 through T-13, and T-15 through T-19. Granitic rock was also encountered (but incorrectly identified on the boring logs) in borings GTB-1, GTB-2, GTB-7, and GTB-8 (Geotek, 2007). Based on drill rig performance, it is likely that refusal occurred on granitic rock in Borings B-11 and B-13 (Geocon, 2024) even though it was not logged or identified in cuttings.

The granitic rock consists of yellowish brown to gray, moderately weak to moderately strong, highly to moderately weathered, and displayed a fine-to coarse-grained crystalline texture. Granitic rock is considered suitable for the support of structures and/or compacted fill.

5. **GROUNDWATER**

We encountered groundwater during the previous field investigation in several of our borings at depths ranging from 9 to 45 feet below existing grade (elevation 183 to 199 feet MSL) as shown in the following table.

Boring No.	Date Recorded	Approximate Depth of Groundwater Below Existing Grade (feet)	Approximate Elevation of Groundwater (feet, MSL)
В-6	5/23/2005	24	199
В-7	5/20/2005	44	197
В-8	5/24/2005	45	189
В-9	5/25/2005	13	189
B-10	5/25/2005	15	183
T-3	5/09/2005	10	194
T-4	5/09/2005	9	198

RECORDED GROUNDWATER ELEVATION

However, we did not encounter groundwater within the proposed development area of the subject site but expect possible groundwater on the north side of the proposed west parking lot near Trench T-4. The use of dewatering techniques may be necessary if heavy seepage or excavations below the groundwater elevation occur. It is not uncommon for groundwater or seepage conditions to develop where none previously existed. Groundwater and seepage is dependent on seasonal precipitation, irrigation, land use, among other factors, and varies as a result. Proper surface drainage will be important to future performance of the project.

Groundwater could have potentially changed over the past 20 years. However, the proposed development is situated within the higher elevation side of the site and groundwater was not encountered within the proposed development during the current and previous field studies. Additionally, within the proposed buildings the landslide debris is going to be removed and replaced with properly compacted fill.

6. **GEOLOGIC STRUCTURE**

Mapping by Tan and Kennedy (1996) indicates that on a regional basis, the Santiago Formation in the vicinity of the site is inclined down to the west and northwest between 5 to 10 degrees. This orientation is unfavorable for north-facing slopes. Review of available structural data collected in new and historical borings generally confirms mapping by Tan and Kennedy (1996); however, for reasons discussed herein, use of some of the previous structural data recorded at the site has resulted in mis-interpretation of site geology.

6.1 Landslide Stratigraphy

The primary mechanism for landsliding at the site is deep-seated block failure along weakened planes (i.e., bedding plane shears [BPSs]) that are present within claystone beds. Utilizing the new, 100-footdeep boring B-12 as a 'type section', three, relatively continuous, moderately fissured claystone beds with associated BPSs, varying between approximately 2 and 5 feet thick, can be correlated with older borings across the site to help define subsurface landslide geometry. Our current geologic model identifies the claystone bed occurring at a depth of 34 feet (elevation 277 feet MSL) as containing the basal rupture surface of the large landslide mass underlying the proposed building areas. Some older boring logs identify a claystone bed logged in B-12 (Geocon, 2024) at 22 feet (elevation 285 feet MSL) as the bottom of the landslide, as there is evidence of shearing and movement along remolded clay seam at the higher elevation. The lowest claystone bed at 78 feet (elevation 231 feet MSL) does not correlate with other borings drilled in the main landslide area. However, the claystone bed at 78 feet does correlate with the basal rupture surface of the smaller landslide underlying the parking area, identified in borings B-3 and B-4 (Geocon, 2005) and GTB-3 (Geotek, 2007).

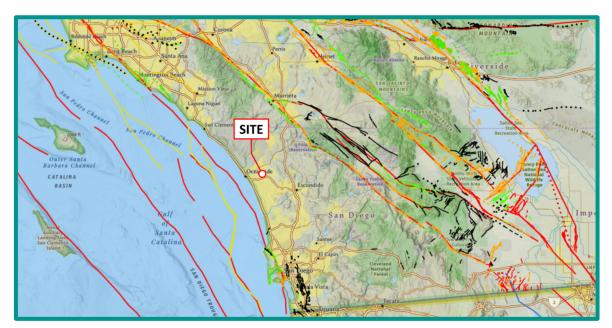
Geologic interpretation previously presented by Geocon (1985) suggested that shearing at the bottom of the landslide also occurred in some areas along the contact between the Santiago Formation and the underlying granitic rock. This was not observed in recent large diameter borings; however, landslide deposits overlie granitic rock in some areas along the northern property boundary. The shape of the angular unconformity between the granitic rock and the Santiago Formation is not clearly defined, but field evidence indicates that the shape and inclination of the unconformity may have partially controlled landsliding in the eastern portion of the site.

6.2 Landslide Geometry

Previous efforts to model site geologic structure and landslide geometry have utilized apparent dips derived from bed-specific measurements taken in large diameter borings to draw geologic cross-sections. This method is better suited for use in well-bedded geologic formations dipping more than 10 degrees where accurate structural attitudes can be collected. Bedding attitudes recorded on undulatory beds that are close to horizontal are usually incorrect, as the dip or the dip direction cannot be properly identified in a 30-inch diameter hole. The preferred method for defining landslide geometry (and geologic structure below the landslide) in massive to poorly bedded formations with dips less than 10 degrees, is to create structure contours from multiple piercing points through the basal slide surface. Utilizing the structure contouring technique, the local geologic structure under the site generally dips northwards (plus or minus 20 degrees from north) at inclinations between 4 and 8

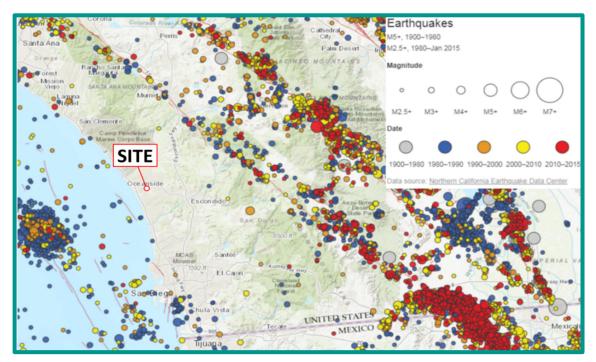
degrees. This interpretation is supported by calculating the mean apparent dip along Geologic Cross-Sections 1-1' through 3-3', using only structural measurements taken below the basal slide plane.

We prepared Geologic Cross-Sections 1-1' through 4-4' to help show correlations between the claystone beds identified in Boring B-12 (Geocon 2024) and the bottom of landslides underlying the proposed development area using the structural geology principals discussed herein. Some historical borings were terminated at elevations too shallow to pierce the bottom of the landslide including Borings B-5 and B-6 (Geocon, 1985).


7. **GEOLOGIC HAZARDS**

7.1 Regional Faulting and Seismicity

A review of the referenced geologic materials and our knowledge of the general area indicate that the site is not underlain by active, potentially active, or inactive faults. An active fault is defined by the California Geological Survey (CGS) as a fault showing evidence for activity within the last 11,700 years. The site is not located within a State of California Earthquake Fault Zone.


The USGS has developed a program to evaluate the approximate location of faulting in the area of properties. The following figure shows the location of the existing faulting in the San Diego County and Southern California region. The fault traces are shown as solid, dashed and dotted that represent well-constrained, moderately constrained and inferred, respectively. The fault line colors represent faults with ages less than 150 years (red), 15,000 years (orange), 130,000 years (green), 750,000 years (blue) and 1.6 million years (black).

Faults in Southern California

The San Diego County and Southern California region is seismically active. The following figure presents the occurrence of earthquakes with a magnitude greater than 2.5 from the period of 1900 through 2015 according to the Bay Area Earthquake Alliance website.

Earthquakes in Southern California

Considerations important in seismic design include the frequency and duration of motion and the soil conditions underlying the site. Seismic design of structures should be evaluated in accordance with the California Building Code (CBC) guidelines currently adopted by the local agency.

7.2 Liquefaction

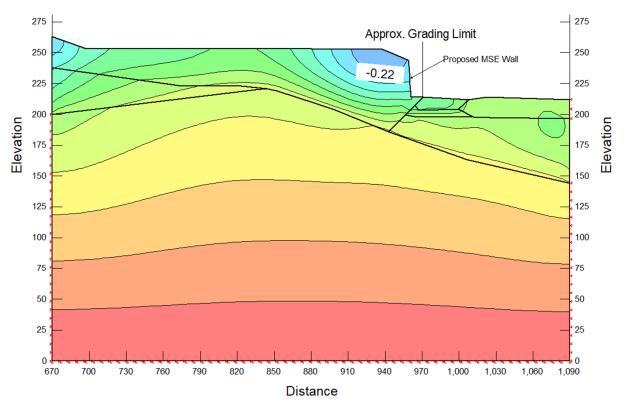
Liquefaction typically occurs when a site is located in a zone with seismic activity, onsite soils are cohesionless, groundwater is encountered within 50 feet of the surface, and soil relative densities are less than about 70 percent. If all four previous criteria are met, a seismic event could result in a rapid pore water pressure increase from the earthquake-generated ground accelerations. The groundwater table was not encountered underlying the portions of the property where development is planned; therefore, the potential for liquefaction occurring at the site within the proposed improvement areas is considered to be very low.

7.3 Storm Surge, Tsunamis, and Seiches

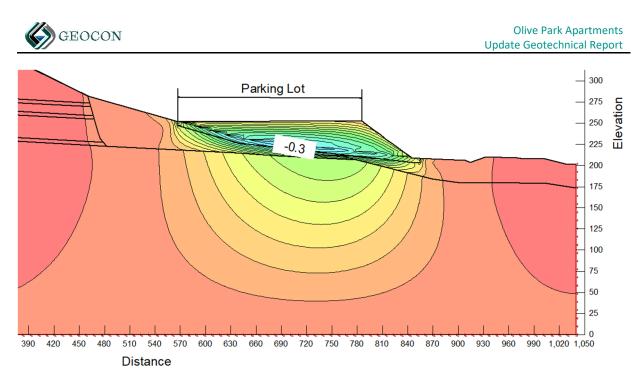
Storm surges are large ocean waves that sweep across coastal areas when storms make landfall. Storm surges can cause inundation, severe erosion and backwater flooding along the water front. The site is located over 5 miles from the Pacific Ocean and is at an elevation of about 185 feet or greater above Mean Sea Level (MSL). Therefore, the potential of storm surges affecting the site is considered low.

A tsunami is a series of long period waves generated in the ocean by a sudden displacement of large volumes of water. Causes of tsunamis include underwater earthquakes, volcanic eruptions, or offshore slope failures. The potential for the site to be affected by a tsunami is negligible due to the distance from the Pacific Ocean and the site elevation.

A seiche is a run-up of water within a lake or embayment triggered by fault- or landslide-induced ground displacement. The site is not located in the vicinity of or downstream from such bodies of water. Therefore, the risk of seiches affecting the site is negligible.


7.4 Settlement Due to Fill Loads

We understand new fill will be placed to achieve proposed grades with depths ranging from 10 to 60 feet. The increased weight due to the anticipated fill load is expected to cause settlement due to the underlying compressible landslide debris and alluvial soils, where left in place. We expect the compressible materials underneath the proposed building's footprint will be removed and replaced with properly compacted fill, as discussed herein. However, we expect approximately 20 feet of



compressible material will be left in place underneath the proposed western parking lot and in the western portion of the north retaining wall due to grading and/or temporary slope limitations.

The amount of settlement that could occur is a function of how thick the fill layer is, how compressible the existing layer is, and the magnitude of the new vertical load (weight of new fill or future building loads). We performed a settlement evaluation using Geostudio2018 (SigmaW). Based on laboratory test results and engineering analyses, we estimate theoretical maximum settlements of up to 3 inches (0.22 feet) and 3.6 (0.3 feet) inches for the retaining wall and western parking lot, respectively. The following figures present the computer output of our static condition settlement analyses for the retaining wall and parking lot (with settlements indicated in feet).

Vertical Settlement Analysis – Western Portion of Retaining Wall

Vertical Settlement Analysis – Western Parking Lot

Deep foundations are the most effective means of reducing the ultimate settlement potential of proposed structures to a negligible amount. Recommendations for deep foundations can be provided upon request. The settlement due to the weight of the fill should be considered in the design of improvements and adjacent flatwork. Additionally, the total and differential settlement should be incorporated into the design for pavement areas and retaining walls (where applicable). Placing the fill during construction and waiting for the settlement to occur would also help reduce the potential for distress. Settlement monitors can be installed to determine when the consolidation has stabilized and should be installed as discussed herein. We can provide additional mitigation options (including wick drains, surcharging, etc.) if being considered by the design team and once design plans are available.

7.5 Mitigation of Compressible Soils

Based on our analysis discussed herein, we estimate a potential for up to approximately 5.5 inches of settlement due to fill loads in the western parking lot subsequent to remedial grading. We expect mitigation of soil will be necessary for settlement-sensitive structures. The effects of differential settlement of utilities and improvements, including pavement and flatwork, can be mitigated by designing to accommodate for the differential movement using the settlement values presented herein. Several alternatives are generally available for mitigation including deep foundations, ground improvements and structural mitigation.

Based on the grading plans, we expect fills ranging from 0 to 40 feet will be placed in the area of the western parking lot. Therefore, we expect the total and differential settlements due to fill loads will be about 5.5 inches. The utilities should be designed with flexible connections to incorporate these settlements.

Ground improvement techniques mitigate compressible soils by densifying existing soil using aggregate piers, deep dynamic compaction, compaction grouting, soil mixing or other densification method. We do not recommend that deep dynamic compaction be used for densification due to the proximity of adjacent residential homes and the limited influence depth of the method in fine grained materials. In addition, compaction grouting may not be economical due to the expected depth and the area of the required improvements.

Soil-cement mixing is a soil improvement technique of mechanically blending a cementitious binder into existing unsuitable soils to create load bearing columns. As the soil mixing tool is advanced into the ground, cement-based slurry is pumped through the hollow stem of the shaft and injected into the soil through jets located on the backside of the leading rotating mixing blades. The mixing blades on the tool mix the soil with the slurry. Injection and mixing will continue to design depth. When design depth is reached, the mixing tool is withdrawn, leaving behind stabilized soil mix columns. Soil mix piles are typically designed and installed by a specialty geotechnical contractor. Soil mix piles should derive support in the competent Santiago Formation or Granitic Rock.

Rammed aggregate pier systems are a ground improvement technique that provides a densified column of aggregate surrounded by a stiffened soil matrix. The aggregate piers are constructed by applying direct vertical ramming energy to densely compact aggregate to form a high stiffness engineered soil column within the foundation zone and increased lateral strength to the surrounding soil. Aggregate pier systems are typically designed and installed by a specialty geotechnical contractor.

The remedial grading can be reduced to the upper 3 to 4 feet of the existing soil if ground improvements (cement-mixing or rammed aggregate piers) are selected. Additional grading may be required after the ground improvements process to reestablish the building pad.

The mitigation could be limited to the foundation areas of the storm drain vault as determined by the specialty contractor. We can provide additional recommendations for the ground improvement techniques when the improvement has been selected.

7.6 Slope Stability

Slope stability analyses for deep seated failure are discussed in the Recommendations section of this report and the computer output analyses is presented in Appendix D. The southern slope consists of a backscarp of a landslide and landslide debris is located on the site. The Santiago Formation possesses weak claystone/siltstone beds that generally create slope instability. We performed a slope stability evaluation for the existing and proposed slope configurations as discussed in this report. Shear pins and buttresses will be required to stabilize the southern slope in the areas of the proposed building as discussed herein.

Slope stability analyses for the proposed buttress fill slopes with inclinations as steep as 2:1 (horizontal: vertical) indicate a calculated factor of safety of at least 1.5 under static conditions for surficial failure. The following table presents the surficial slope stability analysis for the existing siltstone in the Santiago Formation and proposed fill slope sloping conditions.

Devenuetor	Value		
Parameter	Existing	Proposed	
Slope Height, H	8	8	
Vertical Depth of Saturation, Z	5 Feet	5 Feet	
Slope Inclination, I (Horizontal to Vertical)	2.3:1 (23.5 Degrees)	2:1 (26.6 Degrees)	
Total Soil Unit Weight, γ	125 pcf	125 pcf	
Water Unit Weight, γ _w	62.4 pcf	62.4 pcf	
Friction Angle, f	28 Degrees	28 Degrees	
Cohesion, C	200 psf	300 psf	
Factor of Safety = (C+(γ + γ_w)Zcos ² I tanf)/(γ ZsinI cosI)	1.50	1.73	

SURFICIAL SLOPE STABILITY EVALUATION

Slopes should be landscaped with drought-tolerant vegetation having variable root depths and requiring minimal landscape irrigation. In addition, slopes should be drained and properly maintained to reduce erosion.

7.7 Landslides

Referenced information and the results of our subsurface investigation indicate that the majority of the northern half of the site is underlain by landslides. Landslide deposits are described herein and the

approximate extent of landslide deposits is presented on the Geologic Map and in the Geologic Cross Sections, Figures 1 and 2. We encountered landslides deposits to a depth of approximately 56 feet during our field investigation and generally thin toward the northern portion of the site.

Topographically, the site shows lobate features, topographic benches, deflected and depressed drainages, and local low areas, which are features indicative of landsliding. These topographic features indicate most of the intermediate slopes are affected by landslides. Topographic expression and our geologic mapping suggests the upper portions of the steep slopes along the south margin of the property are composed of Santiago Formation and likely represent a "backscarp" to deeper landslides that underlie the intermediate slopes. The backscarp areas are clearly evident on the 1953 aerial photographs as steep slopes with a prominent break in slope denoting the "heads" of the landslide debris. To aid in our interpretation of landslide morphology, we reviewed a color anaglyph created from AXN-8M-66 and -67, which are part of the 1953 aerial photograph flight series covering San Diego County. Given that the site has never been developed, historical topographic maps with wider contour intervals are less useful for interpretation of landslide morphology when compared to the site topography provided by the project civil engineer.

The backscarp areas have been subject to subsequent erosion which has likely removed the previously existing landslide debris along the lower portions of these steep slopes. The "toes" of the larger landslides extend into the active creek drainage and are typically overlain by alluvium. Smaller and more recent landslides have developed within the larger-scale landslide debris. The on-site landslides have occurred within the weak claystone and/or siltstone beds of the Santiago Formation. The lower portions of the landslide debris in the western portion of the site were observed to be saturated and prone to significant caving and seepage. The landslide debris should be removed and recompacted or stabilized by remedial grading measures, as described herein.

Based on our review of predevelopment aerial photographs and site topographic maps, we estimated the southern limit of landslide debris and is therefore queried on the Geologic Cross-Sections, Figure 2. Additionally, the presence of thick colluvial deposits in Borings B-12 (Geocon, 1985), B-3 (Geocon, 2005), and B-5 (Geocon, 1985) above landslide deposits is interpreted as graben infill which would indicate the southerly limit of the landslide headscarp area.

Figure 3 depicts an overlay of landslide limits taken from the following reports: Geocon (1985), Geocon (2005), Geotek (2007), and Geocon (03/2024 and 08/2024). The published landslide boundary interpretations shown in Figure 3 are congruent with the accepted geomorphic principal that the

headscarp of an ancient landslide is generally coincident with a break-in-slope separating hummocky or convrex-rounded terrain from steeper slopes behind the headscarp. Three of the four southern landslide limit interpretations shown on Figure 3 partially overlap. The fourth interpretation (Geocon; 2005 and 03/2024) is between 30 and 50 feet of the next closest limit line. The southern landslide limit matches our mapped field conditions and closely matches previous interpretations.

7.8 Debris Flows

Debris flows are rapid downslope movements of surficial soil resulting from the failure of unconsolidated sediments along steep slopes. Debris flows generally occur within colluvial deposits and may be triggered by over-saturation during periods of heavy rainfall or due to seismic shaking. Slopes that are at particular risk include those with relatively thick colluvial deposits and relatively thin or denuded vegetative cover on slopes composed of low permeability formational material (Turner and Schuster, 1996). The steep slope portions of the site were observed during our geologic reconnaissance to contain relatively thin deposits of colluvium and relatively thick, native vegetation overlying slopes composed of relatively permeable sandstone formational material. We encountered colluvium within the landslide debris along the shallower intermediate slopes in the central portion of the site. Due to lack of high-risk factors, the relatively large distance from the steep slopes to the proposed areas of development, and the results of our analysis of shallow slope stability, we opine the slopes along the southern portion of the site do not pose a significant debris flow hazard to the proposed development.

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 General

8.1.1 We did not encounter soil or geologic conditions during our exploration that would preclude the proposed development, provided the recommendations presented herein are followed and implemented during design and construction. We will provide supplemental recommendations if we observe variable or undesirable conditions during construction, or if the proposed construction will differ from that anticipated herein. The following table summarizes our conclusions and recommendations for the proposed project.

Attribute	Conclusion/Recommendations	
	Strong Seismic Shaking	
Existing Geologic Hazards	Settlement	
	Slope Stability	
	Undocumented Fill (Requiring Remedial Grading)	
	Landslide Debris (Requiring Remedial Grading)	
Existing Geologic Units	Alluvium/Topsoil/Colluvium (Requiring Remedial Grading)	
	Santiago Formation (Suitable for Support)	
	Granitic Rock (Suitable for Support)	
Groundwater	Not Encountered Within the Proposed Development	
Groundwater	May Be Encountered During Deep Utility Excavations	
Seepage	May Be Encountered During Landslide Removals	
Excavations	Surficial Soil – Moderate to Difficult	
Excavations	Rock – Difficult to Non-Rippable	
Expansion Index	130 or Less	
Water-Soluble Sulfate Content	"SO"	
Drainage	Maintain Drainage As Discussed Herein	

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

8.1.2 Potential geologic hazards exist at the site including unstable slopes and seismic shaking. Existing landslides have been mapped at the site by the State of California and were observed during our subsurface investigation. Proposed cut slopes and building pads are susceptible to hazards associated with future landslides, slope instability and settlement, if not properly stabilized, as discussed herein.

- 8.1.3 The undocumented fill, landslide debris, and alluvium are potentially compressible and unsuitable in their present condition for the support of compacted fill or settlement-sensitive improvements. Remedial grading of these materials should be performed as discussed herein. Weak claystone/siltstone beds, bedding plane shears and unfavorable bedding orientations are common within the Santiago Formation. Slopes with calculated factors of safety less than 1.5 should be stabilized as recommended herein. Formational materials of the Santiago Formation and granitic rock are considered suitable for the support of proposed fill and structural loads.
- 8.1.4 We encountered groundwater at a depth of approximately 7 to 13 feet below the existing ground surface (approximate elevation of 1 to 5 feet above MSL) on the western portion of the property (not in the proposed development area). Groundwater will likely have a significant influence on construction of deep utilities and subterranean structures (if proposed in the alluvium areas). Dewatering will likely be required for excavations below the fluctuating groundwater elevation and preliminary recommendations are provided herein. However, we do not expect we will encounter groundwater during the construction of the proposed building. We may encounter groundwater during the installation of improvements that extend to the west of the proposed development area where alluvium is present.
- 8.1.5 We expect the surficial soils to be rippable with moderate effort to proposed finish grades using conventional grading equipment. The rippability of the granitic rock is variable and ranges between moderate to difficult. We do not expect a rock blasting program will be required for the proposed grading operations due to the limited cut areas within the rock areas. However, the grading contractor should be prepared to handle localized strong rock areas and rock corestones, if encountered.
- 8.1.6 The majority of the existing slopes and proposed cut slopes will be subject to potential slope instability and will require extensive remedial grading measures. Appendix D presents the results of our slope stability analyses.
- 8.1.7 Proper drainage should be maintained in order to preserve the engineering properties of the fill in both the building pads and slope areas. Recommendations for site drainage are provided herein.

- 8.1.8 We will prepare a storm water management investigation under a separate report to help evaluate the potential for infiltration on the property. The project civil engineer should use that report to help design the storm water management devices.
- 8.1.9 Based on our review of the project plans, we opine the planned development can be constructed in accordance with our recommendations provided herein. We do not expect the planned development will destabilize or result in settlement of adjacent properties if properly constructed.
- 8.1.10 Canyon subdrains will not be required on this project. However, surface settlement monuments may be used to utilized to determine when the fill and consolidation settlement has stabilized as discussed herein.

8.2 Excavation and Soil Characteristics

- 8.2.1 Excavation of the in-situ soil should be possible with moderate to heavy effort using conventional heavy-duty equipment. Excavation of the formational materials will require heavy to very heavy effort and may generate oversized material using conventional heavy-duty equipment during the grading operations. Oversized rock (rocks greater than 12 inches in dimension) may be generated with the granitic rock materials that can be incorporated into landscape use or deep compacted fill areas, if available. The grading and improvement contractors should review this report and evaluate the proper equipment to use for the planned excavations. Based on the proposed grading plans, deep excavations into the granitic material are not expected; therefore, a seismic study for excavation characteristics are not necessary.
- 8.2.2 The soil encountered in the field investigation is "expansive" (expansion index [EI] greater than 20) as defined by 2022 California Building Code (CBC) Section 1803.5.3. We expect most of the soil encountered possess a "very low" to "high" expansion potential (EI of 130 or less) in accordance with ASTM D 4829. The following presents soil classifications based on the expansion index.

Expansion Index (EI)	ASTM D 4829 Expansion Classification	2022 CBC Expansion Classification
0 – 20	Very Low	Non-Expansive
21 – 50	Low	
51 – 90	Medium	Fundadina
91 – 130	High	Expansive
Greater Than 130	Very High	

EXPANSION CLASSIFICATION BASED ON EXPANSION INDEX

- 8.2.3 We performed laboratory tests on samples of the site materials to evaluate the percentage of water-soluble sulfate content. Appendix B presents results of the laboratory water-soluble sulfate content tests. The test results indicate the on-site materials at the locations tested possess "S0" sulfate exposure to concrete structures as defined by 2022 CBC Section 1904 and ACI 318-19 Chapter 19.
- 8.2.4 Geocon Incorporated does not practice in the field of corrosion engineering. Therefore, further evaluation by a corrosion engineer may be performed if improvements susceptible to corrosion are planned.

8.3 Slope Stability Analyses

- 8.3.1 We performed slope stability analyses using the two-dimensional computer program *GeoStudio* created by Geo-Slope International Ltd. We calculated the factor of safety for the planned slopes for rotational-mode and block-mode analyses using the Spencer's method. Output of the computer program including the calculated factor of safety and the failure surface is presented in Appendix C.
- 8.3.2 We used average drained direct shear, fully softened, residual strength parameters and Stark Correlations (2023) based on laboratory tests and our experience with similar soil types in nearby areas for the slope stability analyses. Our calculations indicate the proposed slopes, constructed of on-site materials, should have calculated factors of safety (FOS) of at least 1.5 and 1.1 under static and seismic conditions, respectively for deep-seated failure and a FOS of at least 1.5 for shallow sloughing conditions when the recommendations of this report are followed.

- 8.3.3 We selected Cross-Sections 1-1', 2-2', and 3-3' to perform the slope stability analyses. Appendix D presents the results of the slope stability analyses. Based on our analyses, the existing southern slopes possess a factor of safety of less than 1.5 and stabilization techniques will be required. A factor of safety of at least 1.5 is currently required by the City of Oceanside for all slopes that could affect proposed and existing structures.
- 8.3.4 Shear pins for the proposed southern slope will be required to provide an adequate factor of safety due to the presence of weak claystone/siltstone layers and landslide debris. The approximate location of the shear pins are shown on the Geologic Map, Figure 1, and Geologic Cross Sections, Figures 2 and 3. The shear pins should be designed by a structural engineer familiar with the design process. A more detailed discussion of the shear pins in provided in the following section.
- 8.3.5 In addition, slope buttresses will be required north of the planned shear pins to increase the local stability of the proposed slopes. Buttress widths ranging from 20 to 50 feet should be constructed along the southern edge of the plan development as shown on the Geologic Map, Figure 1. Based on our analyses, the slope will possess a factor of safety of at least 1.5 and 1.1 subsequent to the construction of the shear pins and buttresses for static and seismic conditions, respectively.
- 8.3.6 Planned buttress keyways and proposed subdrains should be surveyed during construction with their approximate locations depicted on the Geologic Map. We based the buttress widths and depths on the results of the slope stability analyses. The buttresses will require drains located at the heel of the buttress and will be as-built and surveyed by the project civil engineer.
- 8.3.7 Excavations including buttresses, shear keys, and stability fills should be observed during grading by an engineering geologist with Geocon to evaluate whether soil and geologic conditions do not differ significantly from those expected or identified in this report.
- 8.3.8 We performed the slope stability analyses based on the interpretation of geologic conditions encountered during our field investigation. We should evaluate the geologic conditions during the grading operations to check if the conditions observed during grading are consistent with our interpretations. Additional slope stability analyses and modifications to the proposed buttresses may be required during the grading operations.

- 8.3.9 The buttress excavations are not planned adjacent to existing improvements or residences. If excavation failures were to occur, we expect the failures would be limited to within the property limits and outside improvements/structures would not be affected. In addition, the grading contractor would be required to remove the volume of soil that failed and evaluate the additional excavation procedures.
- 8.3.10 We selected Cross Sections 1-1' and 2-2' to perform the slope stability analyses for temporary conditions as described in the following table. A minimum factor of safety of 1.25 is currently required by the City of Oceanside for temporary slope stability conditions. A temporary backcut ranging from of 1.3:1 to 1.5:1 (horizontal to vertical) with slot cutting would be required in the area of Geologic Cross Sections 1-1' and 2-2' to achieve an adequate factor of safety.

Cross- Section	File Name	Condition of Slope Stability Analyses	Slot Cut Elevation Feet (MSL)	Calculated Factor of Safety
1-1'	1,Temporary backcut for 50-foot-buttress, below shear pin (100 kips/foot), 1.5:1 slope, block-mode analysis along BPS, static condition		280	1.26
2-2'	2', Case 10_2-2'- Temp Slot Cut Temporary backcut for 20-foot-buttress, 1.3:1 slope, below shear pin (115 kips/foot), block-mode analysis along BPS, static condition		261	1.25

SUMMARY OF SLOPE STABILITY ANALYSES FOR TEMPORARY EXCAVATIONS

8.3.11 Slopes should be landscaped with drought-tolerant vegetation having variable root depths and requiring minimal landscape irrigation. In addition, slopes should be drained and properly maintained to reduce erosion.

8.4 Slope Stabilization – Shear Pins

8.4.1 Based on our slope stability analyses for Cross-Sections 1-1' and 2-2' shear pins will be required to increase the factor of safety to at least 1.5 for the southern slope. A buttress will also be required north and below the shear pins to help stabilize the landslide debris and weak clay/siltstone layers.

- 8.4.2 We expect the shear pins will need to be installed on the southern slope prior to the grading operations for the building pads due to the potential slope instability.
- 8.4.3 We applied a shear load at the location of the bedding plane shear (BPS) within the crosssections to calculate the load required to possess a factor of safety of at least 1.5. Based on our analyses, the resistive shear load ranges from at least 100 kips per linear foot (kpf) to 115 kpf and will be required for calculated Geologic Cross-Sections 1-1' and 2-2' (see Appendix D).
- 8.4.4 After we calculated the load required, we adjusted the pin location including the length above and below the shear plane, to calculate a factor of safety of at least 1.5 above and below the pin. The following table presents the calculated shear pin characteristics.

Cross- Section	Calculated Minimum Shear Resistance (Kips/Foot)	Top of Pin Elevation (Feet, MSL)	Base of Pin Elevation (Feet)	Total Length of Pin (Feet)	Estimated Elevation of BPS (Feet)
1-1'	100	320	254	66	264
2-2'	115	307	250	57	265

SHEAR PIN CHARACTERISTICS

*Based on the planned layout of the property (see Geologic Map, Figure 1).

- 8.4.5 The portion of the drilled excavation above the pin (elevations higher than the top of pin listed in the previous table) may be backfilled with lean concrete slurry.
- 8.4.6 A licensed structural engineer should be retained to design the required structural elements of the pins as discussed herein.
- 8.4.7 Geocon Incorporated should observe the drilling operations and perform down-hole observations to confirm that the pins are placed in the proper location and the geologic conditions are similar to those expected. Adjustments in the depth of the pins may be necessary based on the conditions encountered. The client should consider performing large diameter drilling in the locations of the proposed shear pins to confirm design assumption prior to contractor arriving on site.

8.5 Grading

- 8.5.1 Grading should be performed in accordance with the recommendations provided in this report, the Recommended Grading Specifications contained in Appendix E and the local grading ordinance. Geocon Incorporated should observe the grading operations on a full-time basis and provide testing during the fill placement.
- 8.5.2 Prior to commencing grading, a preconstruction conference should be held at the site with the agency inspector, owner or developer, grading contractor, civil engineer, and geotechnical engineer in attendance. Special soil handling and/or the grading plans can be discussed at that time.
- 8.5.3 The sequencing of the grading and slope stabilization operations should be evaluated by the grading contractor and design team due to the potential instability of the temporary slopes. We expect the shear pins will need to be installed on the southern slope prior to the grading operations for the building pads.
- 8.5.4 Site preparation should begin with the removal of deleterious material, debris, and vegetation. The depth of vegetation removal should be such that material exposed in cut areas or soil to be used as fill is relatively free of organic matter. Material generated during stripping and/or site demolition should be exported from the site. Asphalt and concrete should not be mixed with the fill soil unless approved by the Geotechnical Engineer.
- 8.5.5 Abandoned foundations, buried utilities (if encountered) and our previous exploratory excavations should be removed and the resultant depressions and/or trenches should be backfilled with properly compacted material as part of the remedial grading.
- 8.5.6 **Proposed Buildings:** Undocumented fill, landslide debris, colluvium and alluvium within the proposed building pads should be excavated to expose firm/competent formational materials. We expect the surficial soil can be removed in the areas of the proposed buildings and the structures can be supported on a shallow foundation system. In addition, the buildings pads should be undercut where formational materials are located near the surface at least 3 feet below proposed grade and 2 feet below proposed foundations and replaced with properly compacted fill, whichever results in a deeper excavation. Prior to fill soil being placed, the existing ground surface should be scarified, moisture conditioned as necessary, and compacted to a depth of at least 12 inches. Deeper excavations may be required if

saturated or loose fill soil is encountered. The base of the excavations should extend laterally equal to the depth of the excavation below proposed grade such that the surficial materials are removed below a 1:1 plane that extends down from the proposed building envelopes. A representative of Geocon should be on-site during excavations to evaluate the limits of the remedial grading.

- 8.5.7 North Retaining Wall: We anticipate up to 30 feet of alluvium and landslide debris below the western portion of the proposed northern retaining wall. We understand the proposed grading is limited to 10 feet outside (north) of the proposed wall. Therefore, full removal of the existing surficial soil may be infeasible due to the property line constraints or possible groundwater within the western portion of the retaining wall area. The excavations can be limited to the underlying formational materials. The Geologic Cross-Sections, Figure 2, show the expected grading limits with the excavations beginning 10 feet outside of the proposed retaining walls. We expect some of the surficial soil will remain in place due to the limited excavations and the walls will be designed as discussed herein. The resulting excavations should be backfilled with properly compacted fill to proposed grades.
- 8.5.8 Western Parking and Improvement Areas: The existing soil in the upper 5 feet of the proposed improvement areas should be excavated and properly compacted fill should be placed. The excavations can be limited to competent formational materials, where encountered.
- 8.5.9 Storm Drain Vault Option 1 Remedial Grading: Undocumented fill, landslide debris. Colluvium and alluvium within the storm drain vault area should be excavated to expose firm/competent formational materials. The base of the excavations should extend laterally equal to the depth of the excavation below proposed grade such that the surficial materials are removed below a 1:1 plane that extends down from the proposed vault envelope. The limits of the removal are presented on the Geologic Map, Figure 1. A representative of Geocon should be on-site during excavations to evaluate the limits of the remedial grading. This option increases the potential for backcut failures due to the existing landslide debris.
- 8.5.10 Storm Drain Vault Option 2 Ground Improvements: To help reduce the potential for backcut failures, the storm drain vault can be supported on ground improvements. If the storm drain vault will be supported on shallow or mat foundation system over improved ground (i.e. deep soil mixing, rammed aggregate piers), the upper 5 feet of existing materials

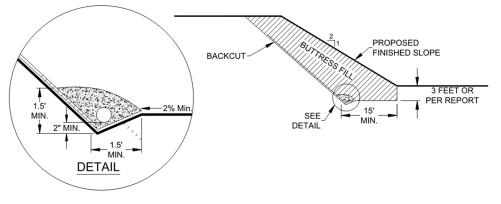
and 3 feet below the proposed grade (whichever results in a deeper excavation) should be excavated and properly compacted fill should be placed. The excavations should extend at least 10 feet laterally outside of the proposed foundation zones. Deeper excavations may be required in areas where loose or saturated materials are encountered. The remedial grading should be performed after completion of ground improvement operations for aggregate piers and prior to construction of soil mix columns.

Area	Remedial Grading Excavation Recommendations		
	Excavate Landslide Debris to Formational Materials		
Building Pads	Undercut at Least 3 Feet Below Proposed Pad Grade or 2 Feet Below Footings, Whichever is Greater		
Retaining Wall	Begin Excavation 10 Feet Outside of Wall and Excavate to Formational Materials Where Feasible		
	Option 1: Excavate Landslide Debris to Formational Materials		
Storm Drain Vault	Option 2: Excavate Upper 5 Feet or 3 Feet Below Proposed Grade Prior to Installing Ground Improvements		
Site Development	Process Upper 5 Feet of Existing Materials		
	Excavate Laterally Equal to the Depth of the Excavation Below Proposed Grade Such that the Surficial Materials Are Removed Below a 1:1 Plane that Extends Down from the Proposed Building Envelopes		
Lateral Grading Limits	Storm Drain Vault: Excavate Outside A 1:1 Plane Outside The Area Or At Least 5 Feet Outside Area If Ground Improvements Are Used		
	Minimum 10 Feet Outside of Buildings		
	Minimum 2 Feet Outside of Improvement Areas		
Exposed Excavation Bottoms	Scarify Upper 12 Inches and Recompact		
Exposed Excavation Bottoms	Slope 1% to Adjacent Street or Deeper Fill		

SUMMARY OF REMEDIAL GRADING RECOMMENDATIONS

8.5.11 The site should then be brought to final subgrade elevations with fill compacted in layers as recommended in the following table. In general, the existing soil is suitable for use from a geotechnical engineering standpoint as fill if relatively free from vegetation, debris and other deleterious material. Layers of fill should be about 6 to 8 inches in loose thickness and no thicker than will allow for adequate bonding and compaction. Fill materials placed below optimum moisture content may require additional moisture conditioning prior to placing additional fill.

Fill Location	Relative Compaction*	Relative Moisture Content*
Upper 40 Feet of Grading		
Utility/Retaining Wall Backfill	90% of Laboratory Maximum Dry Density	Near to Slightly Above Optimum
Sidewalk and Curb/Gutter Subgrade	Maximum Dry Density	Optimum
Deeper Than 40 Feet of Grading	92% of Laboratory Maximum Dry Density	Near to Slightly Above Optimum
Pavement and Cross-Gutter Subgrade	95% of Laboratory	Near to Slightly Above
Base Materials	Maximum Dry Density	Optimum

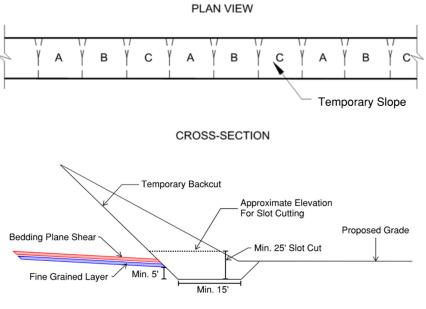

SUMMARY OF COMPACTED FILL RECOMMENDATIONS

*In accordance with ASTM D 1557.

- 8.5.12 The upper 3 feet of all building pads should be composed of properly compacted fill with a "very low" to "medium" expansion potential (EI of 90 or less), where possible. Fill with an expansion index greater than 90 should be placed at least 3 feet below finish grade at the maximum extent practical. In addition, formational materials with an expansion index greater than 90 should be undercut at least 3 feet below finish-pad grade and replaced with soil with soil possessing a "very low" to "medium" expansion potential. Cobbles or concretions greater than 1 foot in maximum dimension should not be placed within 10 feet of finish grade or 3 feet of the deepest utility. Cobbles and concretions greater than 6 inches in maximum dimension should not be placed within 3 feet of finish grade.
- 8.5.13 Slope stability analyses utilizing drained direct shear strength parameters based on our experience with similar soil types in nearby areas and laboratory test results indicates the proposed southern slope will require shear pins and buttressing to obtain a factor of safety of at least 1.5. The slope is shown on the Geologic Map, Figure 1, should be graded with a buttress varying from approximately 20 to 50 feet wide at the base. The minimum design buttress widths are shown on the Geologic Cross-Sections, Figure 2.
- 8.5.14 The Typical Buttress/Stability Fill Detail should be used for design and construction of slopes. The backcut for the buttress should commence at least 10 feet from the top of the proposed finish-graded slope and should extend at least 5 feet below adjacent pad grade or below the bedding plane shear/claystone layer, to a maximum depth of 15 feet below finish-pad grade. The base of the key should be slopes at least 5 percent to the drain, into slope. Elevations of the base of the buttress are shown on the Geologic Map and Cross-Sections, Figures 1 and 2.

Buttress and stability fill excavations must be approved by our certified engineering geologist, and surveyed by the project civil engineer prior to fill placement.

Typical Buttress/Stability Fill Detail


- 8.5.15 The slope backcut should be in accordance with OSHA requirements. Based on our analyses, we expect a slope of 2:1 or flatter will be required for stability purposes. Chimney drains should be installed along the backcut that are 4 feet wide, 20-foot on center and provide dual-sided drainage. Closer spacing may be required where seepage is encountered. The collector pipe at the base of the backcut should consists of a minimum 6-inch diameter, perforated, Schedule 40 PVC pipe drained at a minimum of 1%. The pipe should be surrounded by ¾-inch gravel wrapped in an approved filter fabric (Mirafi 140N or equivalent).
- 8.5.16 Cut slope excavations including buttresses and shear keys should be observed during grading operations to check that soil and geologic conditions do not differ significantly from those expected. During the construction of buttresses, there is a risk that the temporary backcut slopes will become unstable. This risk can be reduced by grading the buttress fill in short segments and/or flattening the inclination of the temporary slope. Temporary backcut slopes should be excavated and fill placed as soon as possible to help prevent slope backcut failures.
- 8.5.17 Slot cutting of the buttress excavations will likely be necessary to provide an adequate temporary factor of safety during grading. The top of the slot cut should be at an elevation of 25 feet above the design base of the buttress as shown on Cross-sections 1-1' and 2-2', Figure 2. The slot cut should then extend a minimum of 5 feet into the sandy portion of the

formational materials. Each slot should be no wider than 50 feet (or as determined by the grading contractor) and the excavation should extend to the base of the keyway which should be graded as shown in the typical buttress/stability fill detail herein. This may require reduced slot cut lengths if loose or otherwise unstable soil is encountered. The contractor should be aware that there is an inherent risk to slot-cutting as movement of near vertical excavations can cause stress relief features and vertical ground settlement outside of the excavation. The grading contractor should be prepared to take necessary steps to provide lateral stability/temporary buttressing if slot cut sidewalls experience instability. The slot-cutting should be perform using the A-B-C Method (excavate the soil and place compacted fill in the A Areas, then the B areas, then the C areas). The following table presents the summary of the slot cutting elevations.

SUMMARY OF SLOT CUTTING ELEVATIONS

Cross-Section	ction Approximate Top Elevation Approximate Botton of Slot Cut (Feet , MSL) of Slot Cut (Feet	
1-1'	280	255
2-2'	261	240

Slot-Cutting Overexcavation Detail

8.5.18 The outer 15 feet (or a distance equal to the height of the slope, whichever is less) of slopes should be composed of properly compacted granular "soil" fill to reduce the potential for

surficial sloughing. In general, soil with an expansion index of 90 or less or at least 35 percent sand-size particles should be acceptable as "soil" fill. Soil of questionable strength to satisfy surficial stability should be tested in the laboratory for acceptable drained shear strength. The use of cohesionless soil in the outer portion of fill slopes should be avoided. Fill slopes should be overbuilt 2 feet and cut back or be compacted by backrolling with a loaded sheepsfoot roller at vertical intervals not to exceed 4 feet and should be track-walked at the completion of each slope such that the fill is compacted to a dry density of at least 90 percent of the laboratory maximum dry density near to slightly above optimum moisture content to the face of the finished sloped.

8.5.19 Import fill (if necessary) should consist of the characteristics presented in the following table. Geocon Incorporated should be notified of the import soil source and should perform laboratory testing of import soil prior to its arrival at the site to determine its suitability as fill material.

Soil Characteristic	Values
Expansion Potential	"Very Low" to "Medium" (Expansion Index of 90 or Less)
Derticle Size	Maximum Dimension Less Than 3 Inches
Particle Size	Generally Free of Debris

SUMMARY OF IMPORT FILL RECOMMENDATIONS

8.6 Earthwork Grading Factors

8.6.1 Estimates of shrink-swell factors are based on comparing laboratory compaction tests with the density of the material in its natural state and experience with similar soil types. Variations in natural soil density and compacted fill render shrinkage value estimates very approximate. As an example, the contractor can compact fill to a density of 90 percent or higher of the laboratory maximum dry density. Thus, the contractor has at least a 10 percent range of control over the fill volume. Based on the work performed to date and considering the discussion herein, the earthwork factors in the following table may be used as a basis for estimating how much the on-site soils may shrink or swell when removed from their natural state and placed as compacted fill.

SHRINKAGE AND BULK FACTORS

Soil Unit	Shrink/Bulk Factor
Surficial Soil (Fill/Topsoil/Colluvium/Qal/Qls)	10-15% Shrink
Santiago Formation (Tsa)	3-5% Bulk

8.7 Temporary Excavations

- 8.7.1 The recommendations included herein are provided for stable excavations. It is the responsibility of the contractor and their competent person to ensure all excavations, temporary slopes and trenches are properly constructed and maintained in accordance with applicable OSHA guidelines in order to maintain safety and the stability of the excavations and adjacent improvements. These excavations should not be allowed to become saturated or to dry out. Surcharge loads should not be permitted to a distance equal to the height of the excavation from the top of the excavation. The top of the excavation should be a minimum of 15 feet from the edge of existing improvements. Excavations steeper than those recommended or closer than 15 feet from an existing surface improvement should be shored in accordance with applicable OSHA codes and regulations.
- 8.7.2 The stability of the excavations is dependent on the design and construction of the shoring system and site conditions. Therefore, Geocon Incorporated cannot be responsible for site safety and the stability of the proposed excavations.
- 8.7.3 The property possesses landslide debris that typically has a tendency to possess stability issues. The underground contractors should be ready to provide shoring or flatten temporary excavation inclinations if localized instability is encountered.

8.8 Seismic Design Criteria – 2022 California Building Code

8.8.1 The following table summarizes site-specific design criteria obtained from the 2022 California Building Code (CBC; Based on the 2021 International Building Code [IBC] and ASCE 7-16), Chapter 16 Structural Design, Section 1613 Earthquake Loads. We used the computer program U.S. Seismic Design Maps, provided by the Structural Engineers Association (SEA) to calculate the seismic design parameters. The short spectral response uses a period of 0.2 second. We evaluated the Site Class based on the discussion in Section 1613.2.2 of the 2022 CBC and Table 20.3-1 of ASCE 7-16. The values presented herein are for the risk-targeted

maximum considered earthquake (MCE_R). Sites designated as Site Class D, E and F may require additional analyses if requested by the project structural engineer and client.

Parameter	Value	2022 CBC Reference
Site Class	D	Section 1613.2.2
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _s	0.928g	Figure 1613.2.1(1)
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.343g	Figure 1613.2.1(3)
Site Coefficient, F _A	1.129	Table 1613.2.3(1)
Site Coefficient, F _v	1.957*	Table 1613.2.3(2)
Site Class Modified MCE _R Spectral Response Acceleration (short), S _{MS}	1.047g	Section 1613.2.3 (Eqn 16-20)
Site Class Modified MCE_R Spectral Response Acceleration – (1 sec), S_{M1}	0671g*	Section 1613.2.3 (Eqn 16-21)
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.698g	Section 1613.2.4 (Eqn 16-22)
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.447g*	Section 1613.2.4 (Eqn 16-23)

2022 CBC SEISMIC DESIGN PARAMETERS

*See following paragraph.

- 8.8.2 Using the code-based values presented in the previous table, in lieu of a performing a ground motion hazard analysis, requires the exceptions outlined in ASCE 7-16 Section 11.4.8 be followed by the project structural engineer. Per Section 11.4.8 of ASCE/SEI 7-16, a ground motion hazard analysis should be performed for projects for Site Class "D" sites with S1 greater than 0.2g. Section 11.4.8 also provides exceptions which indicates that the ground motion hazard analysis may be waived provided the exceptions are followed. Supplement 3 of ASCE 7-16 provides an exception stating that that the GMHA may be waived provided that the parameter S_{M1} is increased by 50% for all applications of S_{M1}. The values for parameters S_{M1} and S_{D1} presented herein above have **not** been increased in accordance with Supplement 3 of ASCE 7-16.
- 8.8.3 The following table presents the mapped maximum considered geometric mean (MCE_G) seismic design parameters for projects located in Seismic Design Categories of D through F in accordance with ASCE 7-16.

Parameter	Value	ASCE 7-16 Reference
Mapped MCE _G Peak Ground Acceleration, PGA	0.402g	Figure 22-9
Site Coefficient, F _{PGA}	1.198	Table 11.8-1
Site Class Modified MCE _G Peak Ground Acceleration, PGA _M	0.482g	Section 11.8.3 (Eqn 11.8-1)

ASCE 7-16 PEAK GROUND ACCELERATION

- 8.8.4 Conformance to the criteria in this section for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur in the event of a large earthquake. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.
- 8.8.5 The project structural engineer and architect should evaluate the appropriate Risk Category and Seismic Design Category for the planned structures. The values presented herein assume a Risk Category of II and resulting in a Seismic Design Category D. The following table summarizes of the risk categories in accordance with ASCE 7-16.

Risk Category	Building Use	Examples
I	Low risk to Human Life at Failure	Barn, Storage Shelter
П	Nominal Risk to Human Life at Failure (Buildings Not Designated as I, III or IV)	Residential, Commercial and Industrial Buildings
Ш	Substantial Risk to Human Life at Failure	Theaters, Lecture Halls, Dining Halls, Schools, Prisons, Small Healthcare Facilities, Infrastructure Plants, Storage for Explosives/Toxins
IV	Essential Facilities	Hazardous Material Facilities, Hospitals, Fire and Rescue, Emergency Shelters, Police Stations, Power Stations, Aviation Control Facilities, National Defense, Water Storage

ASCE 7-16 RISK CATEGORIES

8.9 Fill Settlement

8.9.1 Fill soil, even if properly compacted, will experience settlement over the lifetime of the improvements that it supports. The ultimate settlement potential of the fill is a function of

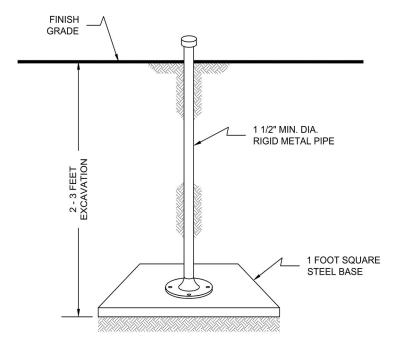
the soil classification, placement relative compaction, and subsequent increases in the soil moisture content.

- 8.9.2 Building 1 and 2 will be underlain by a maximum fill thickness of about 50 and 25 feet, respectively. The settlement of compacted fill is expected to continue over a relatively extended time period resulting from both gravity loading and hydrocompression upon wetting from rainfall and/or landscape irrigation.
- 8.9.3 Due to the variable fill thickness, a potential for differential settlement across the proposed buildings exist and special foundation design may be consideration. Based on measured settlement of similar fill depths on other sites and the time period since the fill was placed, we estimate that maximum settlement of the compacted fill will be approximately 0.4 percent for the proposed compacted fills.
- 8.9.4 The following table presents the estimated total and differential fill thickness and settlements of the building pads for the proposed pad grades provided on the referenced plans. These settlement magnitudes should be considered in design of the foundation system and adjacent flatwork that connects to the proposed buildings.

Building	Maximum Depth of Fill Beneath Structure (Feet)	Maximum Fill Differential (Feet)	Estimated Maximum Settlement (Inches)	Estimated Differential Settlement (Inches)	Length of Differential Settlement (Feet)	Estimated Maximum Angular Distortion
Building 1	50	45	2.4	2.2	380	1/700
Building 2	25	20	1.2	1.0	180	1/950

EXPECTED DIFFERENTIAL SETTLEMENT OF FILL SOIL

8.9.5 Deep foundations such as driven piles or drilled piers are the most effective means of reducing the ultimate settlement potential of the proposed structures to a negligible amount. Alternatively, ground improvements and/or highly reinforced shallow foundation systems and slabs-on-grade may be used for support of the buildings; however, the shallow foundation systems would not eliminate the potential for cosmetic distress related to differential settlement of the underlying fill. Some cosmetic distress cannot be avoided and should be expected over the life of the structure as a result of long-term differential



settlement. The owner, tenants, and future owners should be made aware that cosmetic distress, including separation of caulking at wall joints, small non-structural wall panel cracks, and separation of concrete flatwork is likely to occur. This discussion in no way describes latent defects to the building's structure nor foundation, nor allows them to be common place. We understand the settlements and angular rotation values are within normal design ranges and are within "standard practice" values. We can provide additional recommendations when a structural engineer begins their design and if they require additional design parameters or recommendations to support the planned structure.

8.10 Settlement Monuments

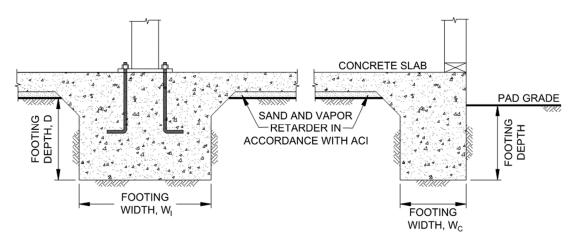
- 8.10.1 We expect fill settlement and settlement due to fill loads over compressible materials will occur after remedial grading operations for the proposed development. Based on our recommendations, surficial soil will be left in place on the western portion of the site below the proposed parking area. We recommended a settlement program for this area for the proposed improvements and can occur for 6 months.
- 8.10.2 Therefore, settlement monitoring using plate and surface settlement monuments will be required as discussed herein to evaluate when the settlement has stabilized, and further improvements may proceed. The Geologic Map, Figure 1, presents the approximate locations of the proposed settlement monuments. However, we will evaluate the number, locations, and type of settlement monuments during grading operations based on the final limits or removals performed.
- 8.10.3 Surface settlement monuments should be installed at finished grade after the placement of fill in areas where compressible surficial materials will be left in place to monitor settlement movement of the underlying fill and surficial materials thereafter. A typical surface settlement monument detail is presented herein.

Surface Settlement Monument Detail

- 8.10.4 The project surveyor should record the movements of the surface settlement monuments every two weeks until data indicates that the rate of primary fill and left in place surficial material soil compression is essentially non-detrimental (settlement monument data with a relatively level plateau) to proposed improvements. When we receive two to three data points of settlement values that show a relatively level settlement slope on the graphs, the construction of the building and surrounding improvements can begin.
- 8.10.5 The City of Oceanside requires at least 6 months of monitoring unless documented evidence of the completion of primary settlement is provided. The settlement timeframe can be reduced, as necessary, during the settlement evaluation process. The settlement due to primary consolidation will be considered to have ceased when survey readings show a relatively level plateau of settlement data over 4 consecutive weekly readings. At that time, Geocon can prepare a report recommending for submittal for city approval. Improvements that are sensitive to the estimated settlements may be installed after the monitoring program shows the primary consolidation is relatively complete. Based on our experience, we expect the monuments will require monitoring for roughly 150 days. At that time, we expect development can begin for settlement-sensitive underground utilities with less than one percent gradient along with construction of the building and improvements. Underground utilities with a

gradient of one percent or greater will not have a waiting period and can start construction after finish grade is achieved. Underground wet utilities should not be installed until finish grade is achieved, as excessive settlements will occur with the placement of compacted fills. We will evaluate the location of the settlement monuments subsequent to the grading operations. There will be no monitoring or waiting time for improvements that are not underlain by compressible materials or have less that 20 feet within the eastern end of the site.

8.11 Shallow Foundations


8.11.1 The proposed structure can be supported on a shallow foundation system founded in the compacted fill. Foundations for the structure should consist of continuous strip footings and/or isolated spread footings and should be designed using the parameters in the following table.

Parameter	Value
Minimum Continuous Foundation Width, W _c	12 Inches
Minimum Isolated Foundation Width, WI	24 Inches
Minimum Foundation Depth, D	24 Inches Below Lowest Adjacent Grade
Minimum Steel Reinforcement	4 No. 5 Bars, 2 Top and 2 Bottom
Allowable Bearing Capacity	2,500 psf
Bearing Capacity Increase	500 psf per Foot of Depth
Bearing Capacity Increase	300 psf per Foot of Width
Maximum Allowable Bearing Capacity	4,000 psf
Estimated Total Settlement	1 Inch
Estimated Differential Settlement	½ Inch in 40 Feet
Footing Size Used for Settlement	8-Foot Square
Design Expansion Index	50 or Less

SUMMARY OF FOUNDATION RECOMMENDATIONS

8.11.2 The foundations should be embedded in accordance with the recommendations herein and the Wall/Column Footing Dimension Detail. The embedment depths should be measured from the lowest adjacent pad grade for both interior and exterior footings. Footings should be deepened such that the bottom outside edge of the footing is at least 7 feet horizontally from the face of the slope (unless designed with a post-tensioned foundation system as discussed herein).

Wall/Column Footing Dimension Detail

- 8.11.3 The bearing capacity values presented herein are for dead plus live loads and may be increased by one-third when considering transient loads due to wind or seismic forces.
- 8.11.4 Where buildings or other improvements are planned near the top of a slope steeper than 3:1 (horizontal: vertical), special foundations and/or design considerations are recommended due to the tendency for lateral soil movement to occur.
 - For fill slopes less than 20 feet high, building footings should be deepened such that the bottom outside edge of the footing is at least 7 feet horizontally from the face of the slope.
 - When located next to a descending 3:1 (horizontal: vertical) fill slope or steeper, the foundations should be extended to a depth where the minimum horizontal distance is equal to H/3 (where H equals the vertical distance from the top of the fill slope to the base of the fill soil) with a minimum of 7 feet but need not exceed 40 feet. The horizontal distance is measured from the outer, deepest edge of the footing to the face of the slope. An acceptable alternative to deepening the footings would be the use of a post-tensioned slab and foundation system or increased footing and slab reinforcement. Specific design parameters or recommendations for either of these alternatives can be provided once the building location and fill slope geometry have been determined.
 - If swimming pools are planned, Geocon Incorporated should be contacted for a review of specific site conditions.
 - Although other improvements, which are relatively rigid or brittle, such as concrete flatwork or masonry walls, may experience some distress if located near the top of a slope, it is generally not economical to mitigate this potential. It may be possible,

however, to incorporate design measures that would permit some lateral soil movement without causing extensive distress. Geocon Incorporated should be consulted for specific recommendations.

- 8.11.5 We should observe the foundation excavations prior to the placement of reinforcing steel and concrete to check that the exposed soil conditions are similar to those expected and that they have been extended to the appropriate bearing strata. Foundation modifications may be required if unexpected soil conditions are encountered.
- 8.11.6 Geocon Incorporated should be consulted to provide additional design parameters as required by the structural engineer.

8.12 Concrete Slabs-On-Grade

8.12.1 Concrete slabs-on-grade for the structures should be constructed using the parameters presented in the following table.

Parameter	Value
Minimum Concrete Slab Thickness	5 Inches
Minimum Steel Reinforcement	No. 3 Bars 24 Inches on Center, Both Directions
Typical Slab Underlayment	3 to 4 Inches of Sand/Gravel/Base
Design Expansion Index	90 or Less

MINIMUM CONCRETE SLAB-ON-GRADE RECOMMENDATIONS

- 8.12.2 Slabs that may receive moisture-sensitive floor coverings or may be used to store moisturesensitive materials should be underlain by a vapor retarder. The vapor retarder design should be consistent with the guidelines presented in the American Concrete Institute's (ACI) *Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials* (ACI 302.2R-06). In addition, the membrane should be installed in accordance with manufacturer's recommendations and ASTM requirements and installed in a manner that prevents puncture. The vapor retarder used should be specified by the project architect or developer based on the type of floor covering that will be installed and if the structure will possess a humidity controlled environment.
- 8.12.3 The bedding sand thickness should be determined by the project foundation engineer, architect, and/or developer. It is common to have 3 to 4 inches of sand for 5-inch and 4-inch

thick slabs, respectively, in the southern California region. However, we should be contacted to provide recommendations if the bedding sand is thicker than 6 inches. The foundation design engineer should provide appropriate concrete mix design criteria and curing measures to assure proper curing of the slab by reducing the potential for rapid moisture loss and subsequent cracking and/or slab curl. We suggest that the foundation design engineer present the concrete mix design and proper curing methods on the foundation plans. It is critical that the foundation contractor understands and follows the recommendations presented on the foundation plans.

- 8.12.4 Some projects remove the sand layer below the slab in parking structure areas. This is acceptable from a geotechnical engineering standpoint; however, relatively minor cracks could form due to differential curing. Therefore, the structural engineer and/or the concrete contractor should provide recommendations for proper curing techniques to help prevent cracking.
- 8.12.5 Concrete slabs should be provided with adequate crack-control joints, construction joints and/or expansion joints to reduce unsightly shrinkage cracking. The design of joints should consider criteria of the American Concrete Institute (ACI) when establishing crack-control spacing. Crack-control joints should be spaced at intervals no greater than 12 feet. Additional steel reinforcing, concrete admixtures and/or closer crack control joint spacing should be considered where concrete-exposed finished floors are planned.
- 8.12.6 Special subgrade presaturation is not deemed necessary prior to placing concrete; however, the exposed foundation and slab subgrade soil should be moisturized to maintain a moist condition as would be expected in any such concrete placement.
- 8.12.7 The concrete slab-on-grade recommendations are based on soil support characteristics only. The project structural engineer should evaluate the structural requirements of the concrete slabs for supporting expected loads.
- 8.12.8 The recommendations of this report are intended to reduce the potential for cracking of slabs due to expansive soil (if present), differential settlement of existing soil or soil with varying thicknesses. However, even with the incorporation of the recommendations presented herein, foundations, stucco walls, and slabs-on-grade placed on such conditions may still exhibit some cracking due to soil movement and/or shrinkage. The occurrence of

concrete shrinkage cracks is independent of the supporting soil characteristics. Their occurrence may be reduced and/or controlled by limiting the slump of the concrete, proper concrete placement and curing, and by the placement of crack control joints at periodic intervals, in particular, where re-entrant slab corners occur.

8.13 Exterior Concrete Flatwork

8.13.1 Exterior concrete flatwork not subject to vehicular traffic should be constructed in accordance with the recommendations presented in the following table. The recommended steel reinforcement would help reduce the potential for cracking.

Expansion Index, El	Minimum Steel Reinforcement* Options	Minimum Thickness
EI <u><</u> 90	No. 3 Bars 18 inches on center, Both Directions	4 Inches
EI <u><</u> 130	No. 4 Bars 12 inches on center, Both Directions	4 Inches

MINIMUM CONCRETE FLATWORK RECOMMENDATIONS

*In excess of 8 feet square.

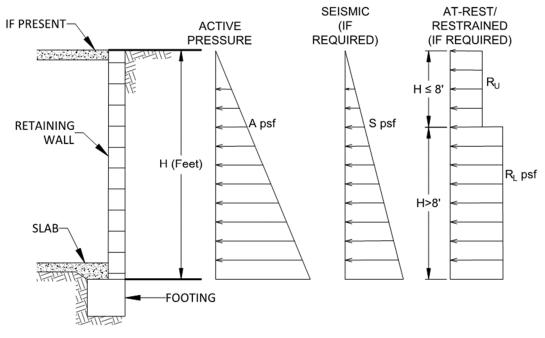
- 8.13.2 The subgrade soil should be properly moisturized and compacted prior to the placement of steel and concrete. The subgrade soil should be compacted to a dry density of at least 90 percent of the laboratory maximum dry density near to slightly above optimum moisture content in accordance with ASTM D 1557.
- 8.13.3 Even with the incorporation of the recommendations of this report, the exterior concrete flatwork has a potential to experience some uplift due to expansive soil beneath grade. The steel reinforcement should overlap continuously in flatwork to reduce the potential for vertical offsets within flatwork. Additionally, flatwork should be structurally connected to the curbs, where possible, to reduce the potential for offsets between the curbs and the flatwork.
- 8.13.4 Concrete flatwork should be provided with crack control joints to reduce and/or control shrinkage cracking. Crack control spacing should be determined by the project structural engineer based upon the slab thickness and intended usage. Criteria of the American Concrete Institute (ACI) should be taken into consideration when establishing crack control spacing. Subgrade soil for exterior slabs not subjected to vehicle loads should be compacted

in accordance with criteria presented in the grading section prior to concrete placement. Subgrade soil should be properly compacted and the moisture content of subgrade soil should be verified prior to placing concrete. Base materials will not be required below concrete improvements.

- 8.13.5 Where exterior flatwork abuts the structure at entrant or exit points, the exterior slab should be dowelled into the structure's foundation stemwall. This recommendation is intended to reduce the potential for differential elevations that could result from differential settlement or minor heave of the flatwork. Dowelling details should be designed by the project structural engineer.
- 8.13.6 The recommendations presented herein are intended to reduce the potential for cracking of exterior slabs as a result of differential movement. However, even with the incorporation of the recommendations presented herein, slabs-on-grade will still crack. The occurrence of concrete shrinkage cracks is independent of the soil supporting characteristics. Their occurrence may be reduced and/or controlled by limiting the slump of the concrete, the use of crack control joints and proper concrete placement and curing. Crack control joints should be spaced at intervals no greater than 12 feet. Literature provided by the Portland Concrete Association (PCA) and American Concrete Institute (ACI) present recommendations for proper construction.

8.14 Conventional Retaining Walls

8.14.1 We understand that conventional and a subterranean garage walls may be planned for the site with a maximum height of about 10 feet. Retaining walls should be designed using the values presented in the following table. Soil with an expansion index (EI) of greater than 50 should not be used as backfill material behind retaining walls.

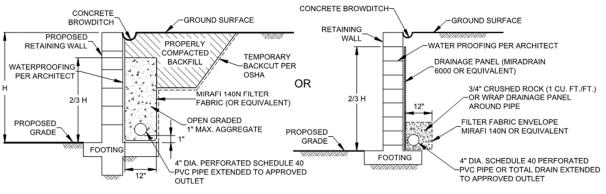


RETAINING WALL DESIGN RECOMMENDATIONS

Parameter	Value
Active Soil Pressure, A (Fluid Density, Level Backfill)	40 pcf
Active Soil Pressure, A (Fluid Density, 2:1 Sloping Backfill)	55 pcf
Seismic Pressure, S	15H psf
At-Rest/Restrained Walls Additional Uniform Pressure, R_U (0 to 8 Feet High)	7H psf
At-Rest/Restrained Walls Additional Uniform Pressure, RL (8+ Feet High)	13H psf
Expected Expansion Index for the Subject Property	EI <u><</u> 90

H equals the height of the retaining portion of the wall

8.14.2 The project retaining walls should be designed as shown in the Retaining Wall Loading Diagram.


Retaining Wall Loading Diagram

8.14.3 Unrestrained walls are those that are allowed to rotate more than 0.001H (where H equals the height of the retaining portion of the wall) at the top of the wall. Where walls are restrained from movement at the top (at-rest condition), an additional uniform pressure should be applied to the wall. For retaining walls subject to vehicular loads within a

horizontal distance equal to two-thirds the wall height, a surcharge equivalent to 2 feet of fill soil should be added to the upper 10 feet of the retaining wall.

- 8.14.4 The structural engineer should determine the Seismic Design Category for the project in accordance with Section 1613 of the 2022 CBC or Section 11.6 of ASCE 7-16. For structures assigned to Seismic Design Category of D, E, or F, retaining walls that support more than 6 feet of backfill should be designed with seismic lateral pressure in accordance with Section 1803.5.12 of the 2022 CBC. The seismic load is dependent on the retained height where H is the height of the wall, in feet, and the calculated loads result in pounds per square foot (psf) exerted at the base of the wall and zero at the top of the wall.
- 8.14.5 Retaining walls should be designed to ensure stability against overturning sliding, and excessive foundation pressure. Where a keyway is extended below the wall base with the intent to engage passive pressure and enhance sliding stability, it is not necessary to consider active pressure on the keyway.
- 8.14.6 Drainage openings through the base of the wall (weep holes) should not be used where the seepage could be a nuisance or otherwise adversely affect the property adjacent to the base of the wall. The recommendations herein assume a properly compacted granular (El of 90 or less) free-draining backfill material with no hydrostatic forces or imposed surcharge load. The retaining wall should be properly drained as shown in the Typical Retaining Wall Drainage Detail. If conditions different than those described are expected, or if specific drainage details are desired, Geocon Incorporated should be contacted for additional recommendations.

Typical Retaining Wall Drainage Detail

- 8.14.7 The retaining walls may be designed using either the active and restrained (at-rest) loading condition or the active and seismic loading condition as suggested by the structural engineer. Typically, it appears the design of the restrained condition for retaining wall loading may be adequate for the seismic design of the retaining walls. However, the active earth pressure combined with the seismic design load should be reviewed and also considered in the design of the retaining walls.
- 8.14.8 In general, wall foundations should be designed using the parameters presented in the following table. The proximity of the foundation to the top of a slope steeper than 3:1 could impact the allowable soil bearing pressure. Therefore, retaining wall foundations should be deepened such that the bottom outside edge of the footing is at least 7 feet horizontally from the face of the slope.

Parameter	Value
Minimum Retaining Wall Foundation Width	12 Inches
Minimum Retaining Wall Foundation Depth	12 Inches
Minimum Steel Reinforcement	Per Structural Engineer
Allowable Bearing Capacity	2,000 psf
Estimated Total Settlement	1 Inch
Estimated Differential Settlement	1/2 Inch in 40 Feet

SUMMARY OF RETAINING WALL FOUNDATION RECOMMENDATIONS

- 8.14.9 The recommendations presented herein are generally applicable to the design of rigid concrete or masonry retaining walls. In the event that other types of walls (such as mechanically stabilized earth [MSE] walls, soil nail walls, or soldier pile walls) are planned, Geocon Incorporated should be consulted for additional recommendations.
- 8.14.10 It is common to see retaining walls constructed in the areas of the elevator pits. The retaining walls should be properly drained and designed in accordance with the recommendations presented herein. If the elevator pit walls are not drained, the walls should be designed with an increased active pressure with an equivalent fluid density of 90 pcf. It is also common to see seepage and water collection within the elevator pit. The pit should be designed and properly waterproofed to prevent seepage and water migration into the elevator pit.

- 8.14.11 Unrestrained walls will move laterally when backfilled and loading is applied. The amount of lateral deflection is dependent on the wall height, the type of soil used for backfill, and loads acting on the wall. The retaining walls and improvements above the retaining walls should be designed to incorporate an appropriate amount of lateral deflection as determined by the structural engineer.
- 8.14.12 Soil contemplated for use as retaining wall backfill, including import materials, should be identified in the field prior to backfill. At that time, Geocon Incorporated should obtain samples for laboratory testing to evaluate its suitability. Modified lateral earth pressures may be necessary if the backfill soil does not meet the required expansion index or shear strength. City or regional standard wall designs, if used, are based on a specific active lateral earth pressure and/or soil friction angle. In this regard, on-site soil to be used as backfill may or may not meet the values for standard wall designs. Geocon Incorporated should be consulted to assess the suitability of the on-site soil for use as wall backfill if standard wall designs will be used.

8.15 Mechanically Stabilized Earth (MSE) Retaining Walls

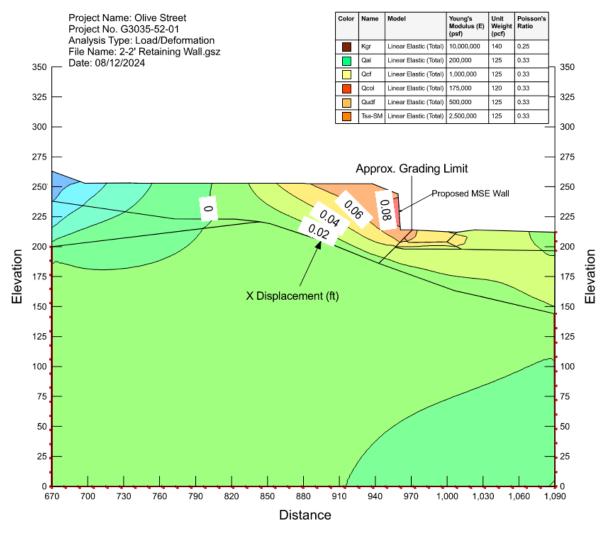
- 8.15.1 We understand a Mechanized stabilized earth (MSE) retaining wall will be used on the northern edge of the property. MSE retaining walls are alternative walls that consist of modular block facing units with geogrid reinforced earth behind the block. The reinforcement grid attaches to the block units and is typically placed at specified vertical intervals and embedment lengths. The grid length and spacing will be determined by the wall designer. The designer should also check that sufficient horizontal distance exists to install the grids without having to excavate into the slope as the slope face consists of very strong rock material or rock fill.
- 8.15.2 We expect the MSE wall footing will be embedded in properly compacted fill over formational materials from Sta 3+85-9+48. From Sta 0+00-3+85 the wall footing will be embedded into properly compacted fill with a potential of 15 to 20 feet of landslide debris being left in place at Sta 0+00 and thinning out to a full removal at Sta 3+85. The settlement and stability analyses are presented herein.
- 8.15.3 The geotechnical parameters listed in the following table can be used for preliminary design of the MSE walls. We understand that a combination of onsite soil and import soil will be used as backfill material behind the walls. Once the import source has been determined,

laboratory testing should be performed to check that the shear strength parameters used in the design of the MSE walls meet the required strength within the reinforced zone.

Parameter	Soil Source	Reinforced Zone	Retained Zone	Foundation Zone
Angle of Internal	On-Site	26 Degrees	26 Degrees	26 Degrees
Friction	Select Sand Grading	30 Degrees	30 Degrees	30 Degrees
Cohesion	On-Site and Select Grading	200 psf	200 psf	200 psf
Wet Unit Density	On-Site and Select Grading	125 pcf	125 pcf	125 pcf

GEOTECHNICAL PARAMETERS FOR MSE WALLS

- 8.15.4 The soil parameters presented in the previous table are based on our experience and direct shear-strength tests performed during the geotechnical investigation and represent some of the on-site materials. The wet unit density values can be used for design but actual in-place densities may range from approximately 90 to 135 pounds per cubic foot. Geocon has no way of knowing which materials will actually be used as backfill behind the wall during construction. It is up to the wall designers to use their judgment in selection of the design parameters. As such, once backfill materials have been selected and/or stockpiled, sufficient shear tests should be conducted on samples of the proposed backfill materials to check that they conform to actual design values. Results should be provided to the designer to reevaluate stability of the walls. Dependent upon test results, the designer may require modifications to the original wall design (e.g., longer reinforcement embedment lengths and/or steel reinforcement).
- 8.15.5 The foundation zone is the area where the footing is embedded, the reinforced zone is the area of the backfill that possesses the reinforcing fabric, and the retained zone is the area behind the reinforced zone.
- 8.15.6 The MSE wall foundations should be designed using the values in the following table. The walls should be deepened such that the bottom outside edge of the footing is at least 7 feet horizontally from the face of the slope.


Parameter	Value	
Minimum Retaining Wall Foundation Width	12 Inches	
Minimum Retaining Wall Foundation Depth	12 Inches	
Bearing Capacity	2,000 psf	
Popring Conscitu Increase	500 psf per Foot of Depth	
Bearing Capacity Increase	300 psf per Foot of Width	
Maximum Bearing Capacity	3,500 psf	
Estimated Total and Differential Settlement	1 Inch (Stations 3+80 to 9+40)	
Estimated Total and Differential Settlement	3 Inches (Stations 0+00 to 3+80)	

SUMMARY OF MSE RETAINING WALL FOUNDATION RECOMMENDATIONS

*Settlement associated with 35-foot fill height

- 8.15.7 MSE retaining walls can be designed for a differential settlement of up to 1 percent in accordance with Section 12.3.4 of the *Design Manual for Segmental Retaining Walls, 3rd Edition.* The settlement values presented herein show the proposed MSE retaining walls should be designed using a differential settlement of 1 inches in 40 feet (about 0.2 percent) for the wall from Stations 3+80 to 9+40 and 3 inches in 40 feet (about 0.6 percent) for the wall from Stations 0+00 to 3+80. Therefore, we opine the MSE walls will be able to tolerate the proposed settlements based on the calculated estimates from SigmaW. We can provide additional recommendations if the MSE retaining wall designer requests additional support for the proposed walls.
- 8.15.8 We performed a lateral deflection analysis using SigmaW that resulted in a calculated maximum lateral movement of about 1 inch (0.08 feet) for the wall as shown in the following lateral Deflection Analysis.

8.15.9 We will perform testing and observation services during grading operations and retaining wall backfill operations. Backfill materials within the reinforced zone should be compacted to a dry density of at least 90 percent of the laboratory maximum dry density near to slightly above optimum moisture content in accordance with ASTM D 1557. This is applicable to the entire embedment width of the reinforcement. Typically, wall designers specify no heavy compaction equipment within 3 feet of the face of the wall. However, smaller equipment (e.g., walk-behind, self-driven compactors or hand whackers) can be used to compact the materials without causing deformation of the wall. If the designer specifies no compactive effort for this zone, the materials are essentially not properly compacted and the reinforcement grid within the uncompacted zone should not be relied upon for

reinforcement, and overall embedment lengths will have to be increased to account for the difference.

- 8.15.10 Select backfill materials may be required to be in accordance with the MSE retaining wall system. Materials as outlined in the specifications of the retaining wall plans may be generated and stockpiled during grading, if encountered, or may require import. Geocon should perform laboratory tests during the backfill materials to check that soil properties are in accordance with the retaining wall plans and specifications.
- 8.15.11 The wall should be provided with a drainage system sufficient to prevent excessive seepage through the wall and the base of the wall, thus preventing hydrostatic pressures behind the wall.
- 8.15.12 Geosynthetic reinforcement must elongate to develop full tensile resistance. This elongation generally results in movement at the top of the wall. The amount of movement is dependent on the height of the wall (e.g., higher walls rotate more) and the type of reinforcing grid used. In addition, over time the reinforcement grid has been known to exhibit creep (sometimes as much as 5 percent) and can undergo additional movement. Given this condition, the owner should be aware that structures and pavement placed within the reinforced and retained zones of the wall may undergo movement.
- 8.15.13 The MSE wall contractor should provide the estimated deformation of wall and adjacent ground in associated with wall construction. The calculated horizontal and vertical deformations should be determined by the wall designer. The estimated movements should be provided to the project structural engineer to determine if the planned improvements can tolerate the expected movements.
- 8.15.14 The MSE wall designer/contractor should review this report, including the slope stability requirements, and incorporate our recommendations as presented herein. We should be provided the plans for the MSE walls to check if they are in conformance with our recommendations prior to issuance of a permit and construction.

8.16 Lateral Loading

8.16.1 The values in the following table should be used to help design the proposed structures and improvements to resist lateral loads for the design of footings or shear keys. The allowable

passive pressure assumes a horizontal surface extending at least 5 feet, or three times the surface generating the passive pressure, whichever is greater. The upper 12 inches of material in areas not protected by floor slabs or pavement should not be included in design for passive resistance.

Parameter	Value
Passive Pressure Fluid Density	300 pcf
Coefficient of Friction (Concrete and Soil)	0.35
Coefficient of Friction (Along Vapor Barrier)	0.2 to 0.25*

SUMMARY OF LATERAL LOAD DESIGN RECOMMENDATIONS

*Per manufacturer's recommendations.

8.16.2 The passive and frictional resistant loads can be combined for design purposes. The lateral passive pressures may be increased by one-third when considering transient loads due to wind or seismic forces.

8.17 **Preliminary Pavement Recommendations**

8.17.1 We calculated the flexible pavement sections in general conformance with the *Caltrans Method of Flexible Pavement Design* (Highway Design Manual, Section 608.4) using an estimated Traffic Index (TI) of 5.0, 5.5, 6.0, and 7.0 for parking stalls, driveways, medium truck traffic areas, and heavy truck traffic areas, respectively. The project civil engineer and owner should review the pavement designations to determine appropriate locations for pavement thickness. The final pavement sections for the parking lot should be based on the R-Value of the subgrade soil encountered at final subgrade elevation. We have assumed an R-Value of 15 (based on previous testing) and 78 for the subgrade soil and base materials, respectively, for the purposes of this preliminary analysis. The following table presents the preliminary flexible pavement sections.

	Assumed Assumed		Asphalt Concrete Thickness (Inches)		
Location	Traffic Index	Subgrade R-Value	3	3 ½	4
	muex	N-Value	Class 2 Aggregate Base (Inches)		
Parking Stalls for Automobiles and Light-Duty Vehicles	5.0	15	8	7	6
Driveways for Automobiles and Light-Duty Vehicles	5.5	15	10	9	8
Medium Truck Traffic Areas	6.0	15		11	10
Driveways for Heavy Truck Traffic	7.0	15			13

PRELIMINARY FLEXIBLE PAVEMENT SECTION

- 8.17.2 Prior to placing base materials, the upper 12 inches of the subgrade soil should be scarified, moisture conditioned as necessary, and recompacted to a dry density of at least 95 percent of the laboratory maximum dry density near to slightly above optimum moisture content as determined by ASTM D 1557. Similarly, the base material should be compacted to a dry density of at least 95 percent of the laboratory maximum dry density maximum dry density near to slightly above optimum moisture content. Asphalt concrete should be compacted to a density of at least 95 percent of the laboratory Hveem density in accordance with ASTM D 2726.
- 8.17.3 Base materials should conform to Section 26-1.02B of the *Standard Specifications for The State of California Department of Transportation (Caltrans)* with a ¾-inch maximum size aggregate. Asphalt concrete should conform to Section 203-6 of the *Standard Specifications for Public Works Construction (Greenbook)*.
- 8.17.4 The base thickness can be reduced if the subgrade can be compacted to 95 percent of the laboratory maximum dry density near to slightly above optimum moisture content and a reinforcement geogrid is used during the installation of the pavement. In areas where reinforcement geogrid is placed due to pumping subgrade or not being able to achieve 95 percent of the laboratory maximum dry density then the base cannot be reduced and the full section should be installed. Geocon should be contact for additional recommendations if alternate design parameters are requested. In are

8.17.5 A rigid Portland cement concrete (PCC) pavement section should be placed in roadway aprons and cross gutters. We calculated the rigid pavement section in general conformance with the procedure recommended by the American Concrete Institute report ACI 330-21 *Commercial Concrete Parking Lots and Site Paving Design and Construction – Guide.* We used the following traffic categories and design parameters used for the calculations for 20-year design life.

TRAFFIC CATEGORIES

Traffic Category	Description	Reliability (%)	Slabs Cracked at End of Design Life (%)
А	Car Parking Areas and Access Lanes	60	15
В	Entrance and Truck Service Lanes	60	15
E	Garbage or Fire Truck Lane	75	15

8.17.6 We used the parameters presented in the following table to calculate the pavement design sections. We should be contacted to provide updated design sections, if necessary.

RIGID PAVEMENT DESIGN PARAMETERS

Design Parameter	Design Value
Modulus of Subgrade Reaction, k	100 pci
Modulus of Rupture for Concrete, M _R	500 psi
Concrete Compressive Strength	3,000 psi
Concrete Modulus of Elasticity, E	3,150,000 psi

8.17.7 Based on the criteria presented herein, the PCC pavement sections should have the following minimum thicknesses for the applicable traffic category.

Traffic Category	Trucks Per Day	Portland Cement Concrete, T (Inches)
A = Car Parking Areas and Access Lanes	10	6
B = Entrance and Truck Service Lanes	10	6
E = Garbage or Fire Truck Lanes	5	6½

RIGID VEHICULAR PAVEMENT RECOMMENDATIONS

- 8.17.8 The PCC vehicular pavement should be placed over a minimum of 6 inches of aggregate base, per City of Oceanside, over subgrade soil both compacted to a dry density of at least 95 percent of the laboratory maximum dry density near to slightly above optimum moisture content. The garbage truck pad should be large enough such that all wheels are on the concrete pad during the loading operations.
- 8.17.9 Adequate joint spacing should be incorporated into the design and construction of the rigid pavement in accordance with the following table.

Pavement Thickness, T (Inches)	Maximum Joint Spacing (Feet)
4 <t<5< td=""><td>10</td></t<5<>	10
5 <u><</u> T<6	12.5
6 <u><</u> T	15

MAXIMUM JOINT SPACING

8.17.10 The rigid pavement should also be designed and constructed incorporating the following parameters.

Subject	Value	
	1.2 Times Slab Thickness Adjacent to Structures	
Thickonod Edgo	1.5 Times Slab Thickness Adjacent to Soil	
Thickened Edge	Minimum Increase of 2 Inches	
	4 Feet Wide	
Crack Control Joint Donth	Early Entry Sawn = T/6 to T/5, 1.25 Inch Minimum	
Crack Control Joint Depth	Conventional (Tooled or Conventional Sawing) = T/4 to T/3	
Crack Control Joint Width	¼-Inch for Sealed Joints and Per Sealer Manufacturer's Recommendations	
	1 / ₁₆ - to 1 / ₄ -Inch is Common for Unsealed Joints	

ADDITIONAL RIGID PAVEMENT RECOMMENDATIONS

8.17.11 Reinforcing steel will not be necessary within the concrete for geotechnical purposes with the possible exception of dowels at construction joints as discussed herein.

- 8.17.12 To control the location and spread of concrete shrinkage cracks, crack-control joints (weakened plane joints) should be included in the design of the concrete pavement slab. Crack-control joints should be sealed with an appropriate sealant to prevent the migration of water through the control joint to the subgrade materials. The depth of the crack-control joints should be in accordance with the referenced ACI guide.
- 8.17.13 To provide load transfer between adjacent pavement slab sections, a butt-type construction joint should be constructed. The butt-type joint should be thickened by at least 20 percent at the edge and taper back at least 4 feet from the face of the slab.
- 8.17.14 Concrete curb/gutter should be placed on soil subgrade compacted to a dry density of at least 90 percent of the laboratory maximum dry density near to slightly above optimum moisture content. Cross-gutters that receive vehicular traffic should be placed on a minimum of 6 inches of Class II Base, unless the subgrade soils have an expansion index of 20 or less, per City of Oceanside, over subgrade soil both compacted to a dry density of at least 95 percent of the laboratory maximum dry density near to slightly above optimum moisture content. Where flatwork is located directly adjacent to the curb/gutter, the concrete flatwork should be structurally connected to the curbs to help reduce the potential for offsets between the curbs and the flatwork.

8.18 Site Drainage and Moisture Protection

- 8.18.1 Adequate site drainage is critical to reduce the potential for differential soil movement, erosion and subsurface seepage. Under no circumstances should water be allowed to pond adjacent to footings. The site should be graded and maintained such that surface drainage is directed away from structures in accordance with 2022 CBC 1804.4 or other applicable standards. In addition, surface drainage should be directed away from the top of slopes into swales or other controlled drainage devices. Roof and pavement drainage should be directed into conduits that carry runoff away from the proposed structure.
- 8.18.2 We understand a storm drain vault will be constructed underneath the western parking lot. We expect that up to 20 feet of compressible material may be left in place underneath the storm drain vault if remedial grading measures or ground improvements are not performed. The amount of settlement that could occur is a function of how thick the layer is, how compressible the layer is and the magnitude of the new vertical load (weight of new fill or vault loads). Based on laboratory test results and engineering analyses, we estimate

theoretical maximum settlements of up to 1½ inches and 3½ inches and the following table presents the settlement values of the vault. As previously discussed, these settlements can be mitigated with remedial grading (excavating the landslide debris to expose the underlying formational materials and placing compacted fill) or ground improvements (soil mixing or rammed aggregate piers).

STORM VAULT SETTLEMENTS

Vault Location	Settlement (Inches)
Northeast & Northwest Corners	3½
Southeast Corner	2
Southwest Corner	1½

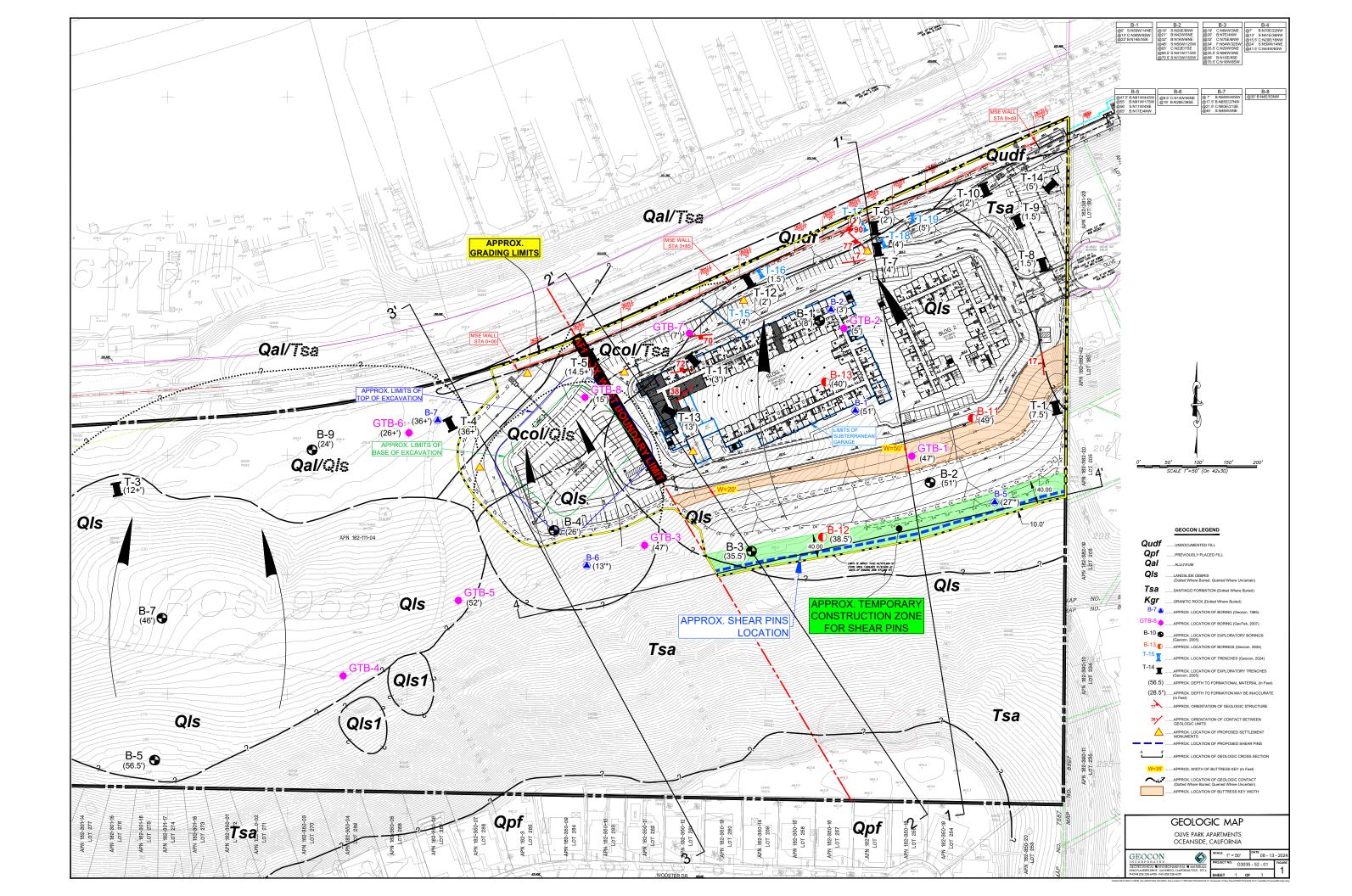
- 8.18.3 In the case of basement walls or building walls retaining landscaping areas, a water-proofing system should be used on the wall and joints, and a Miradrain drainage panel (or similar) should be placed over the waterproofing. The project architect or civil engineer should provide detailed specifications on the plans for all waterproofing and drainage.
- 8.18.4 Underground utilities should be leak free. Utility and irrigation lines should be checked periodically for leaks and detected leaks should be repaired promptly. Detrimental soil movement could occur if water is allowed to infiltrate the soil for prolonged periods of time.
- 8.18.5 Landscaping planters adjacent to paved areas are not recommended due to the potential for surface or irrigation water to infiltrate the pavement's subgrade and base course. Area drains to collect excess irrigation water and transmit it to drainage structures or impervious above-grade planter boxes can be used. In addition, where landscaping is planned adjacent to the pavement, construction of a cutoff wall along the edge of the pavement that extends at least 6 inches below the bottom of the base material should be considered.
- 8.18.6 We should prepare a storm water infiltration feasibility report of storm water management devices are planned.

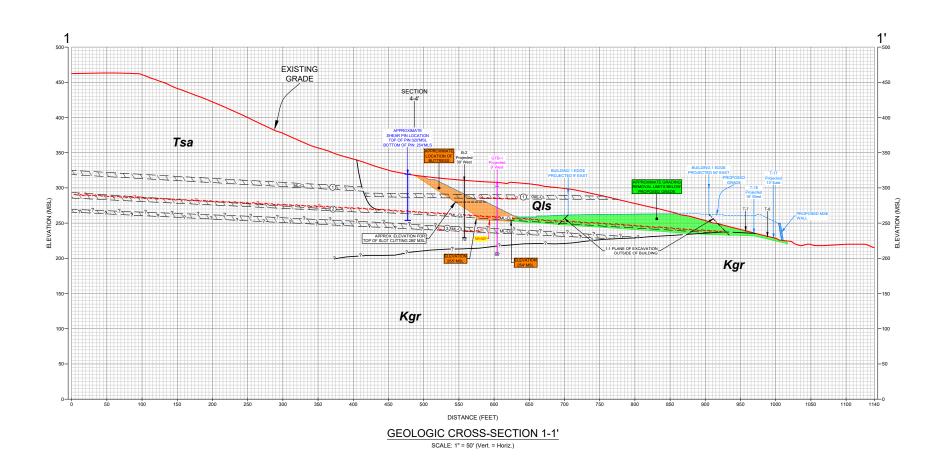
8.19 Grading and Foundation Plan Review

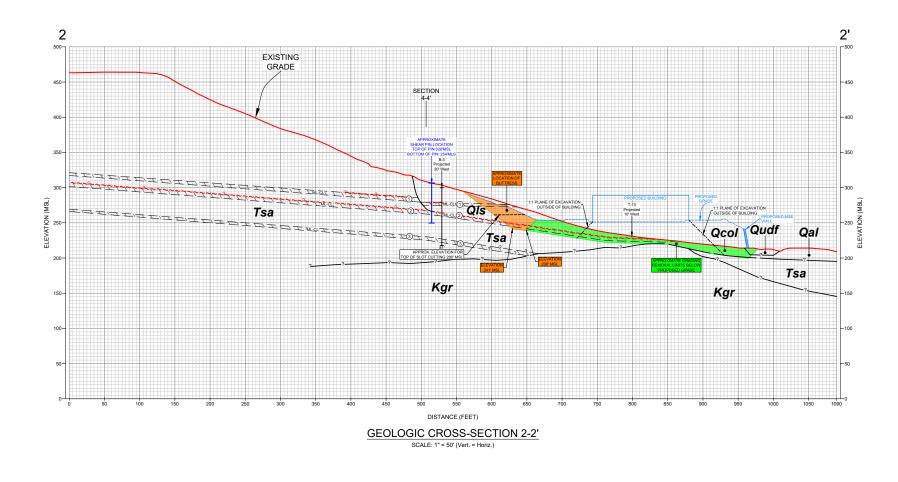
8.19.1 Geocon Incorporated should review the grading and building foundation plans for the project prior to final design submittal to evaluate if additional analyses and/or recommendations are required.

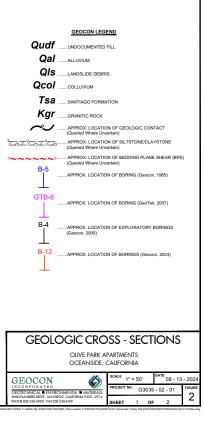
8.20 Testing and Observation Services During Construction

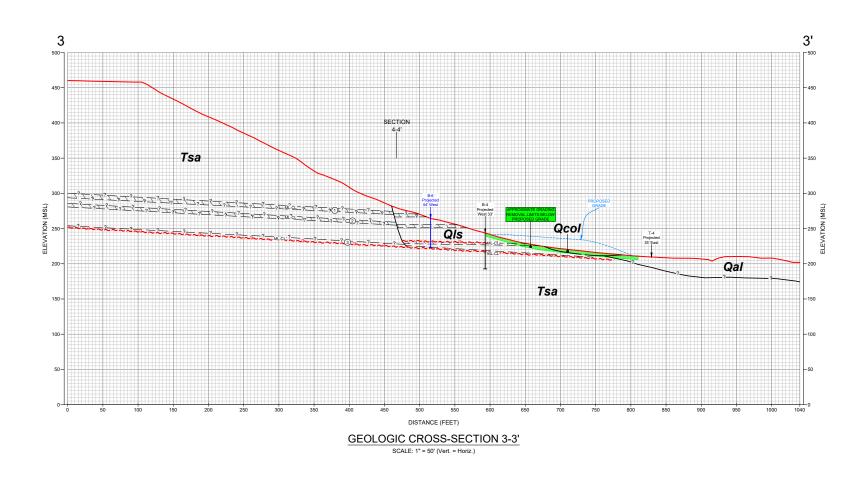
8.20.1 Geocon Incorporated should provide geotechnical testing and observation services during the grading operations, foundation construction, utility installation, retaining wall backfill and pavement installation. The following table presents the typical geotechnical observations we would expect for the proposed improvements.

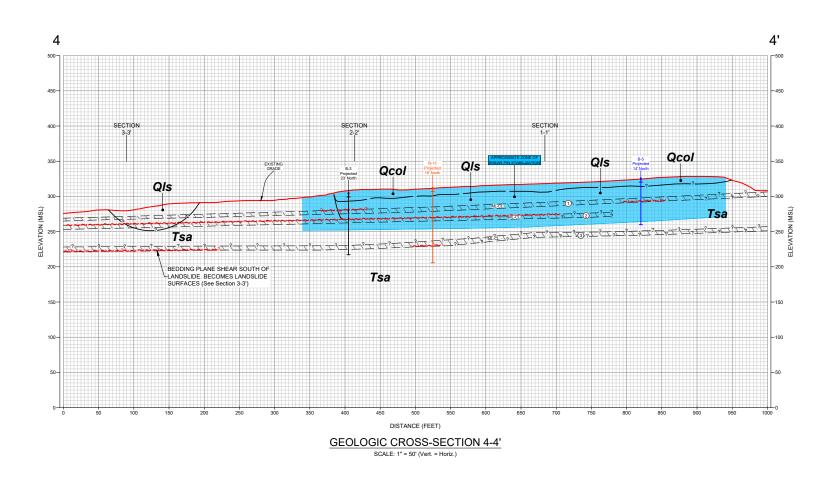

Construction Phase	Observations	Expected Time Frame
Ground Modification	Installation	Full Time (Including Confirmation Logging of Select Drilled Shafts)
	Base of Removal	Part Time During Removals
Grading	Geologic Logging	Part Time to Full Time
	Fill Placement and Soil Compaction	Full Time
Foundations	Foundation Excavation Observations	Full Time
Shear Pins	Drilling Operations for Pins	Full Time
Utility Backfill	Fill Placement and Soil Compaction	Part Time to Full Time
Retaining Wall Backfill	Fill Placement and Soil Compaction	Part Time to Full Time
Subgrade for Sidewalks, Curb/Gutter and Pavement	Soil Compaction	Part Time
	Base Placement and Compaction	Part Time
Pavement Construction	Asphalt Concrete Placement and Compaction	Full Time

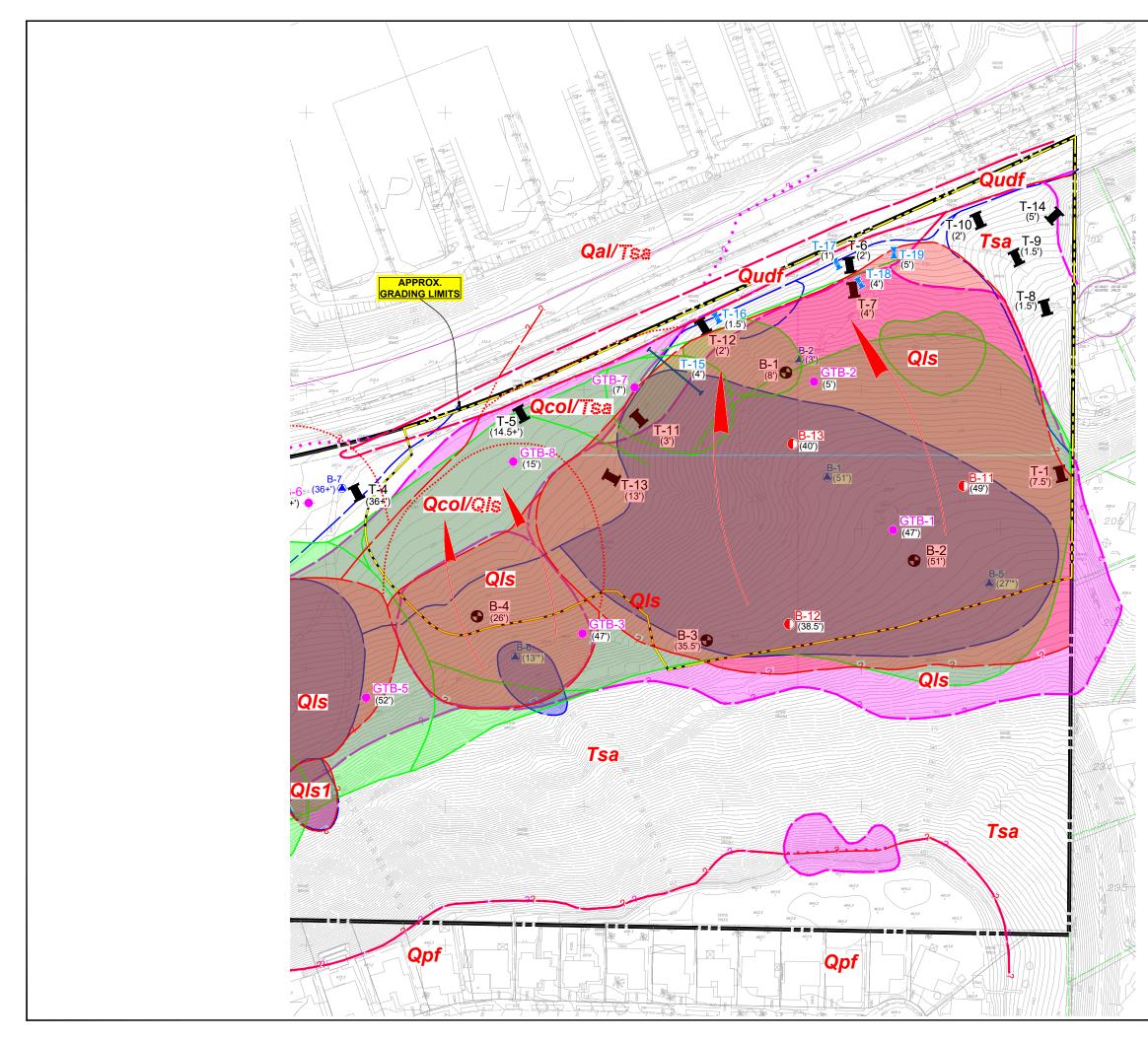

EXPECTED GEOTECHNICAL TESTING AND OBSERVATION SERVICES

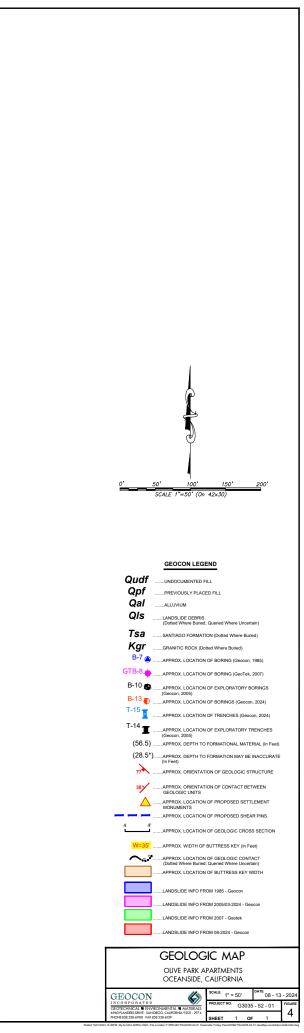



LIMITATIONS AND UNIFORMITY OF CONDITIONS


- 1. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.
- 2. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon Incorporated.
- 3. This report is issued with the understanding that it is the responsibility of the owner or his representative to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
- 4. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.







APPENDIX A FIELD INVESTIGATION

Geocon has performed several historical field investigations at the site. Our investigations were performed in June, 1985, and included excavation of 6 large diameter borings and 2 small diameter borings, Between May 9 and May 25, 2005, and included 10 exploratory borings and 14 exploratory trenches and July 11 through July 13, 2024 that consisted of the excavation of 3 exploratory borings and 5 exploratory trenches. Borings B-1 through B-8 and B-11 through B-13 were excavated to a maximum depth of approximately 100 feet with an EZ-Bore drill rig with a 30-inch-diameter bucket auger. Borings B-9 and B-10 were excavated to a maximum depth of approximately to a maximum depth of approximately 58 feet below existing grade using a CME-75 drill rig equipped with 8-inch diameter hollow stem augers. The exploratory trenches were excavated to a maximum depth of approximately 18 feet using a JD 555 track-mounted backhoe equipped with a 24-inch wide bucket. The Geologic Map, figure 1, shows the approximate locations of the current exploratory excavations for this study. We located the borings and trenches in the field using a measuring tape and existing reference points; therefore, actual boring locations may deviate slightly. The exploratory logs are presented herein.

We obtained soil samples during our subsurface exploration in the borings using either a California sampler or a Standard Penetration Test (SPT) sampler. Both samplers are composed of steel and are driven to obtain ring samples. The California sampler has an inside diameter of 2.5 inches and an outside diameter of 3 inches. Up to 18 rings are placed inside the sampler that is 2.4 inches in diameter and 1 inch in height. The SPT sampler has an inside diameter of 1.5 inches and an outside diameter of 2 inches. We obtained ring samples at appropriate intervals, placed them in moisture-tight containers, and transported them to the laboratory for testing. We also obtained bulk samples for laboratory testing. The type of sample is noted on the exploratory boring logs.

For the small diameter borings, the sampler was driven 18 inches into the bottom of the excavations with the use of an automatic hammer and the use of A rods. The sampler is connected to the A rods and driven into the bottom of the excavation using a 140-pound hammer with a 30-inch drop. Blow counts are recorded for every 6 inches the sampler is driven. The penetration resistances shown on the boring logs are shown in terms of blows per foot. The values indicated on the boring logs are the sum of the last 12 inches of the sampler if driven 18 inches. If the sampler was not driven for 18 inches, an approximate value is calculated in term of blows per foot or the final 6-inch interval is reported. These values are not to be taken as N-values, adjustments have not been applied.

For the large diameter borings, the samplers were driven 12 inches into the bottom of the excavations with the use of a telescoping Kelly bar. The weight of the Kelly bar (3,500 lbs. maximum) drives the sampler and varies with depth. The height of drop is usually 12 inches. Blow counts are recorded for every 12 inches the sampler is driven. The penetration resistance values shown on the boring logs are shown in terms of blows per foot. These values are not to be taken as N-values; adjustments have not been applied. Elevations shown on the boring logs were determined either from a topographic map or by using a benchmark. Each excavation was backfilled unless otherwise noted.

We visually examined, classified, and logged the soil encountered in the borings in general accordance with American Society for Testing and Materials (ASTM) practice for Description and Identification of Soils (Visual-Manual Procedure D 2488). The logs depict the soil and geologic conditions observed and the depth at which samples were obtained.

DEPTH IN	SAMPLE	ПТНОГОСУ	GROUNDWATER	SOIL CLASS	BORING B 1	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NO.		ROUNI	(USCS)	ELEV. (MSL.) 259' DATE COMPLETED 05-10-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENET RESIS (BLOV	DRY D (P.	MOIS
			0			-		
0 -		Z1 2 k			MATERIAL DESCRIPTION LANDSLIDE DEBRIS			
2 -				SC+CL	Loose and stiff, moist, grayish brown to brownish gray, Clayey and Silty SAND and Sandy CLAY; jumbled texture; thin roots and rock fragments; pockets of clay material in sandy matrix; layer of fat sheared clay at 5 feet approximately 1/2" to 1" thick (S: N59W/14NE)	-		
4 -						-		
- 6 -	B1-1 B1-6		<	CI	Stiff, moist, olive gray, Silty to fine Sandy CLAY; highly fractured and sheared with internal polished surfaces and iron oxide mineralization		99.9	24.7
- 8				CL		-		
- 10 -					SANTIAGO FORMATION Hard, damp, light olive gray, Sandy to Clayey SILTSTONE; moderately to strongly indurated; few joints; overall intact and undisturbed	-		
10 -	B1-2			ML	-B: N38W/8SW	6/12"	116.4	11.6
- 14			·		Dense, damp, light gray, Silty, fine- to medium-grained SANDSTONE; moderately cemented; micaceous; massive bedding; intact	+ -		
- 16 -	B1-3		0 0 0 0			8/9" 	129.4	7.5
- 18 -			0 0 0 0		-Very dense; drilling using down-crowds	-		
20 -	B1-4		。 。 。	SM		8/6"	122.2	5.7
22 -			0 0 0 0		-Strongly cemented; some cross bedding; B:N16E/5SE	-		
24 -			0 0 0 0		-Very dense and very strongly cemented along basal contact -Contact irregular to dipping approximately 18° NW	-		
26 - -			-		GRANITIC ROCK Moderately hard, damp, grayish brown to light gray, GRANITIC ROCK; fine- to coarse-grained crystalline texture; moderately weathered; high-angle	-		
28 -		+ + + + + +	-		jointing	-		
iaur	<u>∣ </u>					1	0723	7-52-02.G

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... SAMPLING UNSUCCESSFUL

... DISTURBED OR BAG SAMPLE

SAMPLE SYMBOLS

... STANDARD PENETRATION TEST

... CHUNK SAMPLE

... DRIVE SAMPLE (UNDISTURBED)

▼ ... WATER TABLE OR SEEPAGE

PROJECT NO.	07227-52-02
-------------	-------------

1100201	1 110. 0722		_									
DEPTH		λЭG	GROUNDWATER	SOIL	BORING B	1				PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОGY	MDN	CLASS (USCS)	ELEV. (MSL.)	259'	DATE CO	MPLETED	05-10-2005	JETR/ SIST/ -OWS	Y DEN (P.C.I	OISTI
			GROI		EQUIPMENT	3	0-INCH DIAMETI	ER BUCKET A	UGER	PEN RE (BI	DR	COM
						MATI	ERIAL DESCRIF	PTION				
- 30 -	B1-5	+ +								15/6"	124.0	6.4
- 32 -		+ + - + ·										
		+ +										
						N Backfilled	IG TERMINATED o groundwater enco with 45 cu. ft. of b uttings in alternatin	ountered pentonite and soi				
Figure Log of	e A-1, f Boring	B 1	, P	age 2	of 2						07227	7-52-02.GPJ
SAMD	LE SYMB	าร		SAMP	LING UNSUCCESSFUL	ſ	STANDARD PENE	TRATION TEST	DRIVE S	AMPLE (UND	STURBED)	
SAIVIP		JLO			IRBED OR BAG SAMPLE		CHUNK SAMPLE		👤 WATER	TABLE OR SE	EPAGE	

DEDTU			BORING B 2	TION VCE		ЗE (%)
DEPTH IN SAMPLE FEET NO.		SOIL CLASS (USCS)	ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN RE (BI	DR	≥o
0			MATERIAL DESCRIPTION			
		CL	LANDSLIDE DEBRIS Stiff, moist, dark brown, fine, Sandy CLAY; porous; moderate topsoil development; thin roots	-		
4 - - B2-1 6 -		SC	Medium dense, moist, mottled olive, reddish and grayish brown, Clayey, fine SAND; jumbled texture; thin roots; no distinguishable bedding; scattered carbonate pods; abundant fractures, generally healed with manganese and iron oxide mineralization	 2/12" 	115.9	14.5
8 - 10 - 12 - 12 -			Medium dense, moist, gray with mottled yellowish brown, Silty, fine to medium SAND; structureless; few coarse grains and pieces of charcoal	 	115.9	11.2
		SM	-Loose; mixed with pods of olive clay; decomposed pods of organic material; sand becomes fine to coarse grained; jumbled mixture of disturbed sand and silt beds displaying offset along randomly oriented fractures	 	112.9	14.:
18 - B2-4 20 - B2-15 B2-5			-Encountered layers of (weathered) sheared fat, gray-green clay; undulates with scour approximately 1/2 inch thick; undulating with general orientation of S: N29E/6NW; common slickensides; probably main slip surface (potential shear surface if undercut)	3/12"	111.5	14.3
22		CL	SANTIAGO FORMATION Very stiff, most, olive to greenish gray, fat CLAYSTONE; highly fractured with abundant polished and slickensided shear surfaces; manganese oxide mineralization and sheared clay between claystone fragments B: N42W/5NE	-		
26 – –			Hard, moist, olive gray, Clayey, SILTSTONE; moderately indurated; some fractures; overall intact and undisturbed		109.8	19.3
28 -		ML	-Marked increase in degree of induration; few fractures	-		
igure A-2, .og of Boring E	3 2,	Page 1	of 3		0722	7-52-02.0
SAMPLE SYMBOL		SAMF		AMPLE (UND		

	ATER	BORING B 2	IION (.) :T.)))	3E (%)
DEPTH IN SAMPLE 00 FEET NO. H		ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	SOIL CLASS (USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENI RES (BL(DRY (I	MOD
		MATERIAL DESCRIPTION			
30 B2-7			14/12"	105.5	13.9
32 -		Grades to dense, damp, gray to olive gray, Silty, fine-grained SANDSTONE; moderately cemented. B:N16W/6NE			·
34 -		-Becomes white; massive at 34 feet	-		
- B2-8			15/9" 	126.0	7.2
38 -			-		
	SM		-		
40 – B2-9	5111		_ 15/9"		
42 -		-Few pods of olive green, subrounded claystone with sandstone matrix	-		
			_		
46 –		-Becomes strongly cemented; common claystone pods; probably rip-up clasts	-		
		Abrupt contact between SANDSTONE and CLAYSTONE, C: N56W/12SW			
50 - B2-10	CL	slightly undulating; sandstone is reddish brown in a layer approximately 1/2 inch thick; polished, slickensided shear surface along base of sandstone unit continuous around hole (bedding plane shear); sandstone very moist and	- - 11/12"	120.5	13.9
	-+	weakly cemented within 1 foot of contact. Hard, damp, olive gray, fine-grained Sandy CLAYSTONE at 50 feet			
52 -	ML	Grades to hard, damp, olive gray, fine-grained Sandy SILTSTONE; moderately to strongly indurated	[L
54 –		Very dense, damp, light gray to white, Silty, fine- to coarse-grained SANDSTONE; moderately to strongly cemented; massive			
56 - B2-11	SM		_ 15/7" _	123.9	8.7
58 -			F		
					<u> </u>
Figure A-2, .og of Boring B 2,	Page 2 d	of 3		07227	7-52-02.0
			AMPLE (UNDI	STURBED)	

DEPTH		βGY	ATER	SOIL	BORING B 2	NCE NCE FT.)	SITY .)	RE (%)
IN FEET	SAMPLE NO.	ПТНОГОGY	GROUNDWATER	CLASS (USCS)	ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GROI	()	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN RE (BI	DR	≥o
60 -					MATERIAL DESCRIPTION			
- 62 -			0 0 0 0 0	SM	-Abrupt contact between SANDSTONE and Clayey SILTSTONE at 63 feet; sandstone yellowish to reddish within 3 inches of contact C: N22E/7SE.	-		
64 -			•	ML	Hard, damp, olive gray, Clayey SILTSTONE; strongly indurated	-		
66 -	B2-12				Und down dod roddiok owy fot CLAVSTONE: strangly inducted	30/11"	122.7	11.2
-				СН	Hard, damp, dark reddish gray, fat CLAYSTONE; strongly indurated; polished internal surfaces	-		
68 – –				CL	Hard, damp, reddish gray, CLAYSTONE; highly fragmented and fractured; yellow clay film along polished surfaces; shearing generally high-angle and discontinuous.			
70 –	B2-13 B2-14				-CLAYSTONE shattered to crushed within a 9-inch thick zone; becomes soft and sheared with remolded clays and polished slickensided surfaces; layer continuous around hole; S: N14W/11SW; (bedding plane shear) abundant	-30/10"	132.9	8.4
72 -				L	yellowish to reddish brown iron oxide mineralization Basal contact with very hard, damp, mottled gray and yellowish to reddish brown, Clayey SILTSTONE; strongly indurated, laminated locally; no	-		
74 -				M	evidence of shearing or displacement	-		
76 –				ML		-		
78 -						-		
80 -		PIKK						
					BORING TERMINATED AT 80 FEET No groundwater encountered Backfilled with 69 cu. ft. of bentonite and soil cuttings in alternating layers			
igure	A-2, Boring			ade 3 4	of 3		07227	7-52-02.0
Jy U	DOUID	2 מן	, r			AMPLE (UND		

DEPTH		OGY	GROUNDWATER	SOIL	BORING B 3	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ПТНОLОGY	VDN	CLASS (USCS)	ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005	JETR. SIST/ OWS	Y DEI (P.C.	OIST
			GROI		EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN BI	DR	≥ö
0 -					MATERIAL DESCRIPTION			
2 -					LANDSLIDE DEBRIS Soft to stiff, most, dark brown, fine Sandy CLAY; porous with thin roots; moderately well developed topsoil in upper foot; probably within graben zone of upper slide	-		
4 -	B3-1			CL	-Grades to clayey sand; common carbonate pods and stringers	- - 1	116.8	13.4
- 8					Loose, moist, light grayish brown, Clayey and Silty, fine to medium SAND	-		
10 -	B3-2				with pods of olive clay; jumbled texture; chaotic and discontinuous bedding; displaced beds of silt and clay	_ 	115.1	9.9
12 – –	B3-3			SM	-Scattered pieces of organic material and carbon -Discontinuous beds of fat claystone and siltstone displaced and dipping 28°	-		
14 – –	B3-4		/ /	τ	NW -Approximately 2- to 4-inch thick, partially remolded sandy clay B:		116.5	13.
16 – – 18 –				SM	olive clay -Becomes very moist and fractured; undulating contact C: N63W/3NE	- -		
20 -	D2.5		/ 	·	-Basal contact of upper slide; some sheared clays and yellow-green 			
- 22 -	B3-5			ML	Moderately hard, moist, olive gray, Silty CLAYSTONE; internal fracturing			14.
_ 24 —				CL	and shearing with polished surfaces and slickensides	-		
_ 26 _	B3-6		₹— - 		Very stiff, moist, olive gray, Clayey SILTSTONE; fractured		113.9	15.
28 -				ML	Discordant, undulating basal contact	-		
igure	A-3	[····		SM	Medium dense, light gray, fine SAND; red and yellow banding; some		0722	7-52-02.0
	Boring	gВ 3	, P	age 1 o	of 3		0.22	

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

... DISTURBED OR BAG SAMPLE

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОБҮ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 3 ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			Π		MATERIAL DESCRIPTION			
- 30 - - 32 - 	B3-7		-	SM	manganese oxide and carbonate mineralization -Medium dense to dense, moist, light gray, Silty, fine to coarse SAND; through going thin clay-filled fractures; pods of greenish clay -At 32 feet: continuous 2 to 4 inch bed of sandy siltstone B: N79E/6NW -At 33 feet: discontinuous bed of fractured gray CLAYSTONE within sandstone beds	 	119.6	10.5
- 34 - 	B3-8				-Along contact: yellow to red mineralization; beds displaced approximately 4 inches on fracture F: N54W/32S; C: N29W/5NE; 3 inch thick layer of	-		
- 36 - - 38 -	5-6			CL	crushed, remolded clay with shears and slickensides S: N68W/3NE / SANTIAGO FORMATION Hard, moist, olive green, fat CLAYSTONE, internally sheared with polished surfaces and manganese oxide mineralization	_ 7/12" _ _	106.3	20.3
 - 40 -	В3-9			ML	Dense, damp, olive gray, Clayey SILTSTONE; strongly indurated; intact	+ -		
 - 42 -	Б3-9				Dense, damp, light olive gray, Silty, fine-grained SANDSTONE; massive and undisturbed; moderately cemented	_ 15/10"	119.0	13.0
 - 44 -					-Becomes fine- to coarse-grained	_		
- 46 - - 48 -	B3-10				-Fine- to medium-grained, very light gray	15/16"	131.0	6.4
	B3-11			SM	-Light gray, silty sandstone	- - 15/9"	129.6	6.5
 - 52 —					-Becomes hard and strongly cemented; difficult drilling using down-crowds	-		
- 54 -						_		
- 56 -					-Beds with common claystone fragments B: N10E/8SE	_		
- 58 -						-		
Figure Loa of	A-3, Boring	<u></u> .	<u> </u>	age 2 d	of 3	I	0722	7-52-02.GP

SAMPLE SYMBOLS Image: Sampling unsuccessful image: Sample image: Sam

		75	TER		BORING B 3		≻ Li a	Ш
DEPTH IN FEET	SAMPLE NO.	ПТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE
			GROI	(0000)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN (BL	DR	ΞÖ
60 -					MATERIAL DESCRIPTION			
-	B3-12		* * *		Very dense, damp, light gray, Silty, fine- to coarse-grained SANDSTONE; pods of olive claystone; overall massive and intact; moderately cemented	_ 30/8"	112.7	6.
62 -			• • •			-		
64 -			• • •					
66 -			。 。 。	SM	-Cross bedded; fine- to medium-grained	-		
- 68 -			* * * *		-Pods of iron oxide mineralization	-		
70 -	B3-13		。 。 。		-Abrupt basal contact between silty sandstone and siltstone C: N18W/8SW			
- 72 -				ML	Hard, damp, olive gray, Clayey SILTSTONE; strongly indurated	_28/12" _	113.9	16
- 74 - -					Hard, damp, dark gray with mottled dark reddish brown, Silty CLAYSTONE; moderately to strongly indurated; local, randomly oriented, polished internal surfaces with some manganese oxide mineralization; no	- - -		
76 - -				CL	evidence of remolding or displacement	-		
78 -					Hard, damp, greenish gray, Clayey SILTSTONE; strongly indurated	+ -		
80 -	B3-14			ML		28/12"	114.6	15
-					BORING TERMINATED AT 80 FEET No groundwater encountered Backfilled with 69 cu. ft. of bentonite and soil cuttings in alternating layers			
gure	A-3, f Boring	1					0722	7-52-02

SAMPLE SYMBOLS

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

		<u>کر</u>	TER		BORING B 4	Ú, E ON	Σ	(%) (%)
DEPTH IN FEET	SAMPLE NO.	гітногобу	GROUNDWATER	SOIL CLASS	ELEV. (MSL.) 243' DATE COMPLETED 05-20-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE
			GROU	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN RES (BL	DRY)	M C
					MATERIAL DESCRIPTION			
0 - 2 -					LANDSLIDE DEBRIS Stiff, damp to moist, dark grayish brown, fine to medium Sandy CLAY; pods of carbonate; porous with thin roots; graben zone backfilled with colluvial material; krotovina; some small pieces of charcoal	-		
4 -				CL		-		
- 6 -	B4-1					 	115.9	9.5
- 8 -				۰ <u>– </u>	-B: N70E/22NW	-		
10 -	B4-2			SM	generally structureless	2/12"	114.0	10.
12 -					-Common small charcoal fragments; iron oxide mineralization at 12 feet	-		
14 —			, — — , ,	Τ \ SP	-Thick layer of remolded and sheared clay; some slickensides; <u>S: N51E/36NW; basal slip surface of upper recent slide</u> Displaced bed of fine- to medium-grained SANDSTONE approximately 2 feet			
16 -	B4-3		, 	 \ \	thick on south side of hole and completely sheared away on north side; microfaulting and crossbedding common within sandstone bed; undulating basal contact C: N29E/16NW		112.0	-17.
18 -				CL-ML	Fractured to shattered beds of very stiff, olive gray, Clayey SILTSTONE and Silty CLAYSTONE	-		
20 -	B4-4			~	Very stiff, moist, olive gray, fat CLAYSTONE, internally sheared with 	3/12"	110.0	18.
22 -				CL-ML	internally sheared with evidence of displacement	-		
24 -			, 	SC	Approximately 6 to 12 inch thick bed of white SANDSTONE displaced			
- 26 -	B4-9 B4-5			¦ СН	approximately 6 inches along approximately 2 inch thick sheared and remolded clay seam S: N59W/14NE; undulating contact with iron oxide	_ 2/12"	108.9	17.
- 28 -				ML	-Base of slide debris at 26 feet within sheared and remolded fat CLAY SANTIAGO FORMATION Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated; weakly jointed to relatively intact; no displacement	-		
_					jointed to relatively indee, no displacement	-		
	e A-4, f Boring		D	200 1 4	of 2		0722	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

DEPTH		ЭGҮ	GROUNDWATER	SOIL	BORING B 4	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОGY	MDN	CLASS (USCS)	ELEV. (MSL.) 243' DATE COMPLETED 05-20-2005	IETR/ SIST/ OWS	Y DEN (P.C.I	OISTI
			GROI	(0000)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN RG (BL	DR	ΞÖ
30 -					MATERIAL DESCRIPTION			
30 - 32 -	B4-6			CL+ML	Hard, damp, olive gray, Silty CLAYSTONE and Clayey SILTSTONE, mottled with reddish brown; strongly indurated; few joints; gradational contact	8/12"	119.6	14.0
34 – –					Dense, moist, light olive gray, Silty, fine-grained SANDSTONE; moderately cemented; massive			
36 – –			0 0 0 0	SM	-Grades to fine- to coarse-grained, very light gray sandstone at 36 feet	-		
38 - - 40 -			0 0 0 0 0					
-	B4-7		。 。 。		-Slightly undulating contact; iron oxide mineralization along contact	10/10"	123.3	10.2
42 -				`	C: N44W/6SW Hard, moist, olive gray, Clayey SILTSTONE and Silty CLAYSTONE	-		
44 -				CL+ML	interbeds; strongly indurated; weakly jointed with some polishing and manganese oxide along joint surfaces	-		
46 – –					Very dense, damp, light gray to gray, Silty, fine-grained SANDSTONE; massive and moderately to strongly cemented			
48 -			0 0 0 0	SM		-		
50 -	B4-8		• • •			10/10"	121.7	12.2
					BORING TERMINATED AT 51 FEET No groundwater encountered Backfilled with soil cuttings and 55 cu. ft. of bentonite in alternating layers			
laura	 ⊋ A-4,						0700	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... SAMPLING UNSUCCESSFUL

... DISTURBED OR BAG SAMPLE

SAMPLE SYMBOLS

... STANDARD PENETRATION TEST

... CHUNK SAMPLE

... DRIVE SAMPLE (UNDISTURBED)

▼ ... WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 5 ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0				SC	LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; thin roots; carbonate pods and stringers	-		
4 -					Loose, moist, light brown to light olive brown, Silty, fine to medium SAND; porous; common krotovina; generally structureless; few gravel and charcoal	+ -		
_	B5-1					2/12"	108.5	6.4
6 –						-		
8 -					-Common thin, clay-filled fractures	-		
10 -	B5-2					- 1/12"		
- 12 -								
-						-		
14 -								
16 -	B5-3			SM		_ 1/12"	93.4	9.1
- 18 -					-Relict structure in disturbed sand beds B: N86E/23SE; some sandstone and	-		
-					claystone fragments in matrix of silty fine sand	-		
20 -	B5-4					_ 1/12"	97.8	8.0
22 -						-		
24 -						-		
- 26 -	B5-5					_ 1/12"	99.1	9.0
20 -					-Minor caving; hole belled to 48-inch diameter; increase in sandstone and claystone fragments	-		
28 -								
iguro							0700	7 50 00 /
ogure	e A-5, f Boring	1 R 5	P	200 1 A	of 3		0722	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

... DISTURBED OR BAG SAMPLE

		75	TER		BORING B 5	UN EON	Τ	Щ
DEPTH IN	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS	ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	
FEET		Ē	BROUI	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENE RES (BL(DRY (F	NO NO
			ľ		MATERIAL DESCRIPTION			
30 -	B5-6		$\left \right $		MATERIAL DESCRIPTION	3/12"	101.4	7.3
- 32 -					-Mottled yellowish brown to light gray; abundant thin fractures backfilled	-		
52 -					with carbonate and clay; highly disturbed bedding with random and discontinuous orientations; some relatively intact blocks of sandstone and	-		
34 -					claystone generally less than 6-inch diameter	-		
- 36 -	B5-7					3/12"	99.0	9.
- 30						_		
38 -						-		
-						-		
40 -	B5-8					4/12"	108.8	10
42 -						-		
_				SM	-Displaced sheared and elongated beds of siltstone and claystone off set along abundant thin fractures; dip approximately 65° S; overall chaotic structure	-		
44 –	DC 0				abundant unin fractures, up approximately 05 'S, overan chabite su deture		116.1	12
46 -	B5-9					- 6/12"	116.1	13
-					-Displaced bed of sandstone B: N81W/44SW	-		
48 -					-Becomes increasingly moist; medium dense; and light gray to grayish brown			
50 -	B5-10				-Twisted and rotated block of light gray sandstone in matrix of yellowish	6/12"	108.9	14
-					brown sand; block approximately 2 foot diameter and containing stratification oriented nearly vertical	-		
52 – –								
54 -						-		
 56	B5-11				-Sheared and elongated bed of yellowish brown sandy silt; very moist; B: N81W/17SW; bed thinned from 6 inches to 1 inch from north to south at 55	12/12"	112.1	17.
- 50	B5-16			Т- С Н	BASAL SLIP SURFACE; approximately 3 inch thick layer of remolded and sheared fat gray CLAY with abundant polished slickensided surfaces; very	-		
58 -					well defined; S: N11W/4NE SANTIAGO FORMATION	<u> </u>		
_				ML	Hard, moist, dark olive gray, Silty CLAYSTONE; strongly indurated; some sheared and polished internal surfaces; randomly oriented	-		

Log of Boring B 5, Page 2 of 3

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
	🕅 DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN	SAMPLE	гітногоду	GROUNDWATER	SOIL CLASS	BORING B 5	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NO.	OHTI-	OUNE	(USCS)	ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005	ENETI RESIS ^T BLOW	RY DI (P.C	MOIS
			GR		EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	I L L L L L L L L L L L L L L L L L L L	Ω	0
60 -		иин			MATERIAL DESCRIPTION			
_	B5-12			ML	Hard, damp, olive gray, Clayey to Sandy SILTSTONE; strongly indurated; intact and well-bedded; no indications of shearing or offset	12/10"	113.1	16.8
62 -			, , , ,	SM	Dense, moist, light olive gray, Silty, fine-grained SANDSTONE; moderately cemented	-		
64 -					Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated			
- 66 -	B5-13			ML	B: N17E/4NW	7/12" 	113.9	15.7
- 68 - -					Becomes interbedded Sandy SILTSTONE and Silty SANDSTONE; moderately cemented; generally well-bedded and intact; beds 1 to 2 feet thick; few interbeds of strongly indurated claystone	 - -		
70 – –	B5-14					15/10"	125.3	11.5
72 -						-		
74 –				SM+ML		-		
76 -						-		
- 78 -						-		
- 80 -	B5-15			CL	Hard, moist, dark olive gray, Silty CLAYSTONE; strongly indurated; no evidence of shearing	25/10"	112.7	15.5
_		*/*/*/			BORING TERMINATED AT 81 FEET No groundwater encountered Backfilled with alternating layers of soil cuttings and 69 cu. ft. of bentonite			
igure	A-5, Boring					1	0722	7-52-02.0

... CHUNK SAMPLE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... STANDARD PENETRATION TEST

... DRIVE SAMPLE (UNDISTURBED)

▼ ... WATER TABLE OR SEEPAGE

... SAMPLING UNSUCCESSFUL

... DISTURBED OR BAG SAMPLE

SAMPLE SYMBOLS

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) 223' DATE COMPLETED 05-23-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0 2				SC	LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; thin roots and pods to stringers of carbonate; porous; moderate topsoil development	-		
4 -	B6-1			SM-ML	Loose, moist, grayish brown, Silty, fine SAND to Sandy SILT; abundant carbonate-filled fractures; porous; few pieces of charcoal	2/12"	115.9	9.8
 8				SM	Loose, moist, light gray, Silty, fine to coarse SAND and SANDSTONE fragments; some elongated and sheared beds of claystone; high-angle dip	-		
10 – – 12 –	B6-2				Displaced contact between SAND unit and SILT/CLAY units; displaced along series of stepped fractures; approximately 4 feet of vertical displacement; C: N14W/46NE; fractures high-angle to near vertical; thin bed of sheared, elongated claystone underlying contact		106.4	5.4
	B6-3			CL-ML	-Becomes displaced beds of olive gray sandy to clayey siltstone with abundant fractures -Siltstone fragments in a matrix of sheared and crushed clay and silt	 	119.7	13.2
18 - - 20 -	B6-4				-Chaotic mixture of crushed siltstone, sandstone, and claystone fragments; generally structureless at 18 feet -Beds of claystone and sandstone displaced along high-angle fractures; vertical offset approximately 2 1/2 feet B: N28E/38SE; material crushed and rubbly on downthrown blocks	_ _ _ 2/12"	112.1	14.7
22 - - 24 - -	B6-5		 		Becomes loose, moist, light gray to white, Silty, fine to coarse SAND; some claystone fragments; disturbed sandstone beds offset by significant fractures; groundwater at 24 feet; hole belled and caving Loose, moist to wet, olive gray, Silty, fine to medium SAND	 2/12"	114.9	13.4
26 – 28 – 				SM	-Unable to proceed down-hole logging deeper than 24 feet due to groundwater table and caving	-		
igure	A-6, f Boring						0722	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

PROJEC	T NO. 072	27-52-0	2								
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6	223' DATE CO 30-INCH DIAMET	_	05-23-2005 GER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
						MATERIAL DESCRI	PTION				
- 30 -	B6-6								7/12"	117.9	14.8
				SM					-		
- 32 -					Backfilled wit	BORING TERMINATED Groundwater encounter alternating layers of soil cu	ed at 24 feet	a of bentonite			
Figure	e A-6,									07227	-52-02.GPJ
Log o	f Boring	јВ 6	, P	age 2 d	of 2						
				SAMP	LING UNSUCCESSFUL	STANDARD PENE	TRATION TEST	DRIVE S	AMPLE (UNDI	STURBED)	
SAMF	PLE SYMB	OLS			IRBED OR BAG SAMPLE			WATER			
					NOLD ON DAG SAWIFLE				TADLE UR SE	LIAGE	

DEPTH IN FEET	SAMPLE NO.	КЭОТОНТІ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) 241' DATE COMPLETED 05-20-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			U					
0 -		1. 1.	\vdash		MATERIAL DESCRIPTION LANDSLIDE DEBRIS			
- 2 - -					Loose, damp, dark brown, Clayey, fine to medium SAND; weakly developed topsoil in upper 9 inches; porous with thin roots -Loose, damp, light gray, silty, fine to medium SAND to Sandy SILT; common carbonate stringers and krotovina; some fragments of sandstone and claystone	-		
4 -				SM-ML		-		
- 6 -	B7-1				Common blocks of the three distances and some determines and some distances in a more time of some d	2/12"	109.6	13.4
_					-Common blocks of shattered claystone and sandstone in a matrix of sand and silt; few void spaces at 6 feet -Highly displaced and tilted bed of shattered claystone <u>B: N56W/40SW; internal stratification</u>	_		
8 -				~===	Loose, damp, light gray, Silty, fine SAND; generally structureless; common thin, high-angle fractures; scattered fragments of claystone	-		
10 -	B7-2		-			2/12"	102.8	9.4
12 -			-		-Tilted and displaced block of silty sandstone with beds generally dipping toward the north at relatively high angles; common fractures	-		
14 -						-		
- 16 -	B7-3			SM	-Broken block of cemented sandstone; fragments displaced approximately 2 feet -No sample recovery in layer of strongly cemented sandstone fragments at 15	5/12"		
_					-Flor sample recovery in layer of strongry cemented sandstone magnetics at 15 feet -Elongated and highly disturbed bed of sheared claystone	-		
18 -					B: N85E/27NW at 17.5 feet -Loose, moist, light gray, fine to coarse SAND with fragments of claystone	-		
20 -	B7-4				and sandstone; generally disturbed and structureless -Block of white sandstone displaced approximately 1.5 feet to the south along fractures at 20 feet	3/12"	103.3	3.7
22 -				τ	<u>-Undulating contact C: N83E/21SE at 21.5 feet</u> Fractured and sheared beds of Silty CLAYSTONE in a matrix of sand and	 -		
_					clay	-		
24 -	D7 5			SC+CL	-Chaotic mixture of sheared and displaced sandstone and claystone beds; common iron oxide mineralization infilling fractures and between blocks	- 2/12"	1115	16 (
26 -	B7-5					_ 2/12"	111.5	16.8
- 28 -]		Becomes more intact; disturbed beds of Clayey SILTSTONE and Silty CLAYSTONE	-		- ·
						_		
igure .og of	e A-7, f Boring	а В 7	, P	age 1 d	of 3		0722	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE NO.	гітногоду	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) 241' DATE COMPLETED 05-20-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GRO		EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEr RE	DR	≥o
- 30 -					MATERIAL DESCRIPTION			
	B7-6			ML+CL	-Approximately 6 inch thick bed of loose sand and sandstone fragments; undulating and irregular contact	_ 3/12"	107.5	19.8
- 32 - - 34 -					Disturbed and sheared beds of Silty CLAYSTONE; polished surfaces and slickensides; manganese and iron oxide mineralization	-		
 - 36 -	B7-7						109.4	17.2
 - 38 -				CL		-		
- 40 - 	B7-8				-Stiff, moist, olive gray, silty claystone beds; disturbed and sheared -Becomes wet and shattered to crushed; pods of carbonate; abundant		100.9	22.9
- 42 -			-		remolded and polished surfaces; dark gray and fat	-		
- 44 - 	B7-9		_		-Water seeping from abundant fractures	_ _ 6/12"	109.3	19.6
- 46 -	B7-12			СН	Abrupt and very well defined slip surface S: N46W/4NE; sliphtly undulating approximately 3 inch thick seam in highly remolded, polished and slickensided fat CLAY; base of slide debris at approximately 46 feet; slip	_		
- 48 -				SM-ML	surface within beds of fat claystone SANTIAGO FORMATION Dense, damp, light olive gray, Silty, fine-grained SANDSTONE to fine-grained Sandy SILTSTONE; moderately cemented; some minor water	-		
- 50 -	B7-10				seeping from thin fractures	10/10"	121.3	12.4
- 52 - - 54 -					Dense, moist to wet, light gray, Silty, fine- to medium-grained SANDSTONE; massive; moderately cemented; relatively intact and undisturbed			
- 54 - - 56 -				SM		-		
					-Grades fine- to coarse-grained	-		
						-		
Figure	• A-7 .	<u> </u> *°°°°°°					0722	7-52-02.GF

Log of Boring B 7, Page 2 of 3

 SAMPLE SYMBOLS
 Image: Sampling unsuccessful image: Sample image: Sam

PROJEC	T NO. 072	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĠY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) 241' DATE COMPLETED 05-20-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			Γ		MATERIAL DESCRIPTION			
- 60 -	B7-11	°•°•°•°				20/6"	119.0	9.1
					BORING TERMINATED AT 60.5 FEET Seepage encountered at 44 feet Backfilled with alternating layers of soil cuttings and 60 cu. ft. of bentonite			-52-02.GPJ
Figure Log o	f Borinę	gВ7	, P	age 3 d	of 3		07227	-J2-U2.UPJ
		<u></u>		SAMP	LING UNSUCCESSFUL	SAMPLE (UND	ISTURBED)	
SAMF	PLE SYMB	OLS				R TABLE OR SE		

DEPTH	SAMPLE	OGY	GROUNDWATER	SOIL	BORING B 8	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE
IN FEET	NO.	ГІТНОГОGY	NDN	CLASS (USCS)	ELEV. (MSL.) 234' DATE COMPLETED 05-24-2005	JETR SIST, OWS	Y DEI (P.C.	OIST
			GROI	(,	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEN RE (BI	DR	≥¢
0 -					MATERIAL DESCRIPTION			
2 -	B8-1				LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; porous with thin roots	-		
4 -						_		
6 -				SC	-Abundant carbonate pods and stringers; medium dense; probably colluvium-infilled graben zone of slide	-		
8 -						-		
10 -					-Common roots; loose and porous	-		
12 -					Loose, moist, light grayish brown, Silty, fine to medium SAND; mottled with dark gray; common krotovina; porous	-		
14 -						-		
16 –					-Scattered fragments of sandstone and claystone; few pieces of charcoal	-		
18 -						-		
20 -				SM+CL		-		
22 –					-Jumbled texture; thin clay-filled fractured; scattered blocks of sandstone and	-		
24 –					claystone generally less than 6-inch diameter, continued pieces of charcoal; yellowish brown to light olive gray	-		
26 -						-		
28 -								
	e A-8, f Boring		D	200 1 4			0722	7-52-02

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

▼ ... WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE NO.	КЛОНОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 8 ELEV. (MSL.) 234' DATE COMPLETED 05-24-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
30 -					MATERIAL DESCRIPTION			
- 32 -						-		
				SM	-Displaced sandstone beds; highly fractured to shattered; elongated layer of carbon-rich material along bedding surface B: N4E/53NW	-		
36 -						_		
38 -					-Becomes light gray	-		
 40					Becomes jumbled mixture of Sandstone and Claystone fragments in a matrix of Silty SAND; carbonate pods; pieces of charcoal; few shattered sandstone blocks; structureless; wet			+
42 -						-		
			<u> </u>	SM+SC	-Hole completely caved to 44 feet; abundant seepage; unable to continue down-hole logging	-		
46 -						_		
48 -						-		
- 50 -					Mixture of olive gray clay and Claystone fragments in a matrix of SAND and SANDSTONE fragments; sheared and remolded clay seams	-		+ — — ·
52 – –				CL+SM		-		
54 —		r - 2° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			BORING TERMINATED AT 54 FEET Seepage encountered at 45 feet Caving 44 to 54 feet Backfilled with 54 cu. ft. of bentonite and soil cuttings in alternating layers			
igure	A-8, Boring			ane ? /	of 2		0722	7-52-02.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... CHUNK SAMPLE

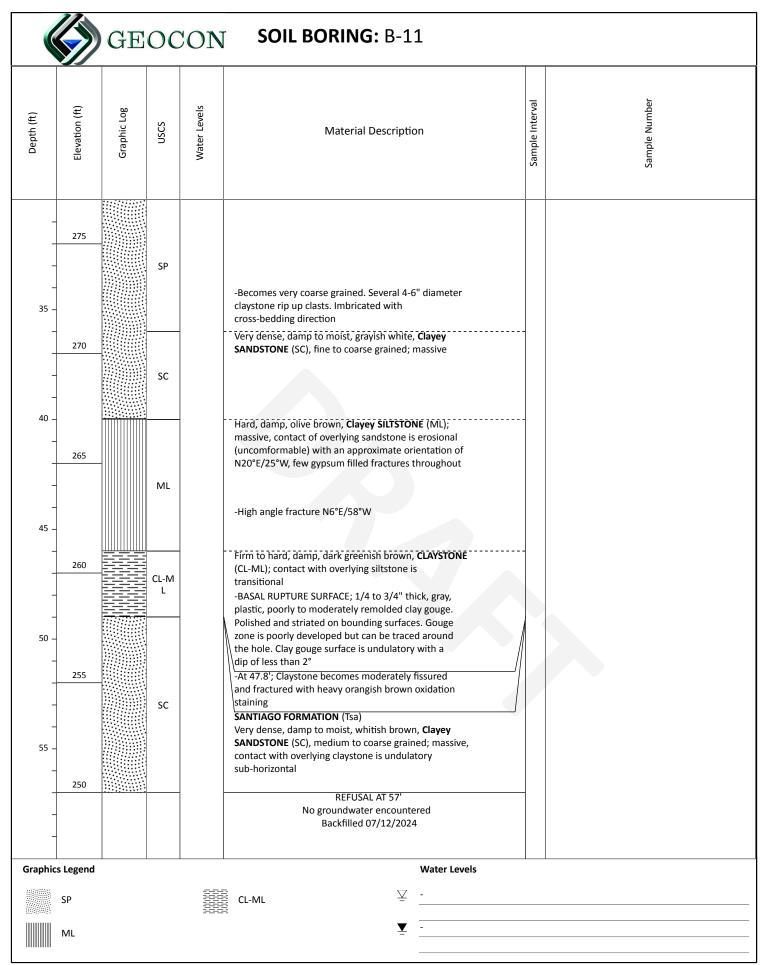
▼ ... WATER TABLE OR SEEPAGE

... DISTURBED OR BAG SAMPLE

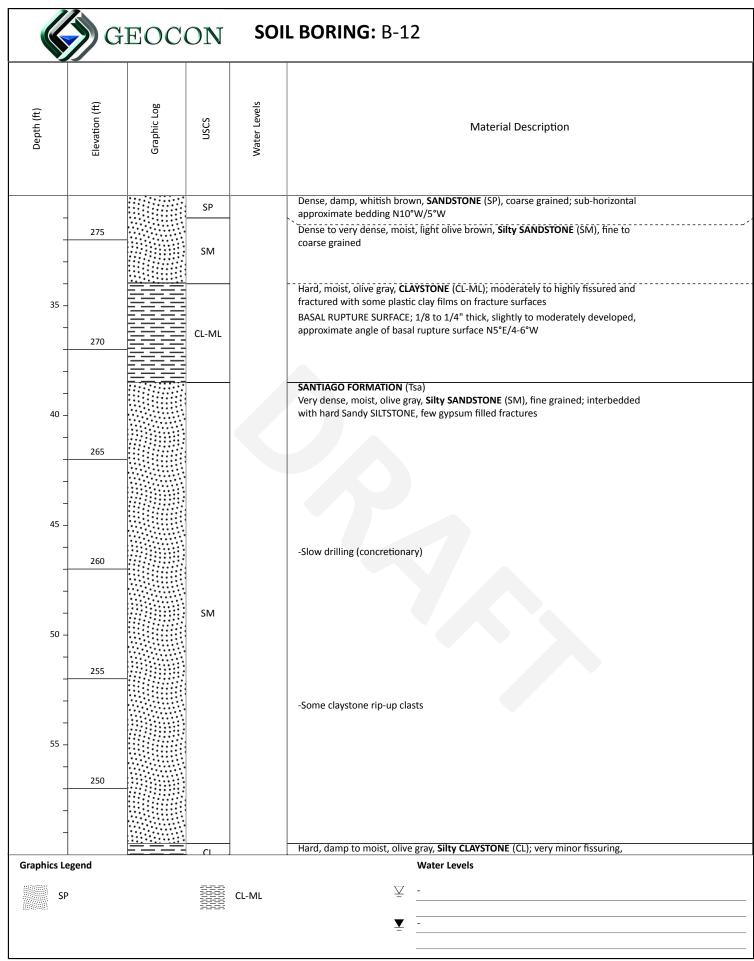
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) 202' DATE COMPLETED 05-25-2005 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER BY: N. ASH	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
<u>^</u>					MATERIAL DESCRIPTION			
- 0 - - 2 - 					ALLUVIUM Very stiff, moist, dark brown, fine, Sandy CLAY; porous with thin roots and scattered pieces of organic material; interlayers of medium dense, moist, gray, clayey, fine sand	_		
- 4 -	B9-2 B9-1			CL+SC		- - 19	102.5	22.3
- 6 - - 8 -						-		
 - 10 -	B9-3				Medium dense, moist, brownish gray, Clayey, fine to medium SAND; porous, scattered pockets of clay	 10		
- 12 -	∎ - -		Ţ	SC	-Encountered groundwater table at 13 feet	-		
- 14 - - 16 -	B9-4				LANDSLIDE DEBRIS Loose, saturated, olive gray, Silty, fine to coarse SAND; jumbled texture	- - 11 -	106.5	19.6
 - 18 - 	-			SM		-		
- 20 - - 22 -	B9-5					- 7 		
	-		· · · · · · · · · · · · · · · · · · ·		SANTIAGO FORMATION Dense, wet, light gray, Silty, fine- to coarse-grained SANDSTONE; weakly	-		
- 26 - 	B9-6		> > > > > > >	SM	cemented	30 		
- 28 -			> > > >	-		_		
Figure	e A-9,						0722	7-52-02.GP

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MATERIAL DESCRIPTION Hard, moist, light gray to olive gray, fine-grained Sandy to Clayey SILTSTONE; scattered iron oxide staining Medium dense to dense, wet, light olive gray, Clayey and Silty, fine to coarse SAND Hard, moist, olive to olive gray, fine-grained Sandy SILTSTONE; weakly indurated	59 	98.9	23.4
$ \begin{array}{c} & B 9 - 7 \\ & 32 \\ & - \\ & 34 \\ & - \\ & 34 \\ & - \\ & 36 \\ & - \\ & - \\ & 38 \\ & - \\ & - \\ & 38 \\ & - $	SILTSTONE; scattered iron oxide staining Medium dense to dense, wet, light olive gray, Clayey and Silty, fine to coarse SAND Hard, moist, olive to olive gray, fine-grained Sandy SILTSTONE; weakly	- - - - - - - -		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAND Hard, moist, olive to olive gray, fine-grained Sandy SILTSTONE; weakly	- - -	107.6	20.6
$ \begin{array}{c} & & & \\ & & & $		- - - - 31		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- - 31		r — —
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ		
- 46 - - 48 - - 50 - 	Dense to hard, moist, olive to greenish gray, fine-grained Sandy CLAYSTONE to Clayey SANDSTONE; weakly indurated and cemented	- 		
 - 50	CENTOTONE to Chayley Shird Do Tone, weakly induced and complete	- 42 	100.5	23.9
		-		
- >-		28		
	Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated			
B9-12 ML B9-12		_ 50/5" _	111.3	16.6
+ + + - + - + - + - + - + - + - +	GRANITIC ROCK	- 50/1"		
	Hard, moist, gray, GRANITIC ROCK; moderately weathered; fine- to coarse-grained crystalline texture -No recovery at 58 feet			

SAMPLE SYMBOLS Image: Sampling unsuccessful Image

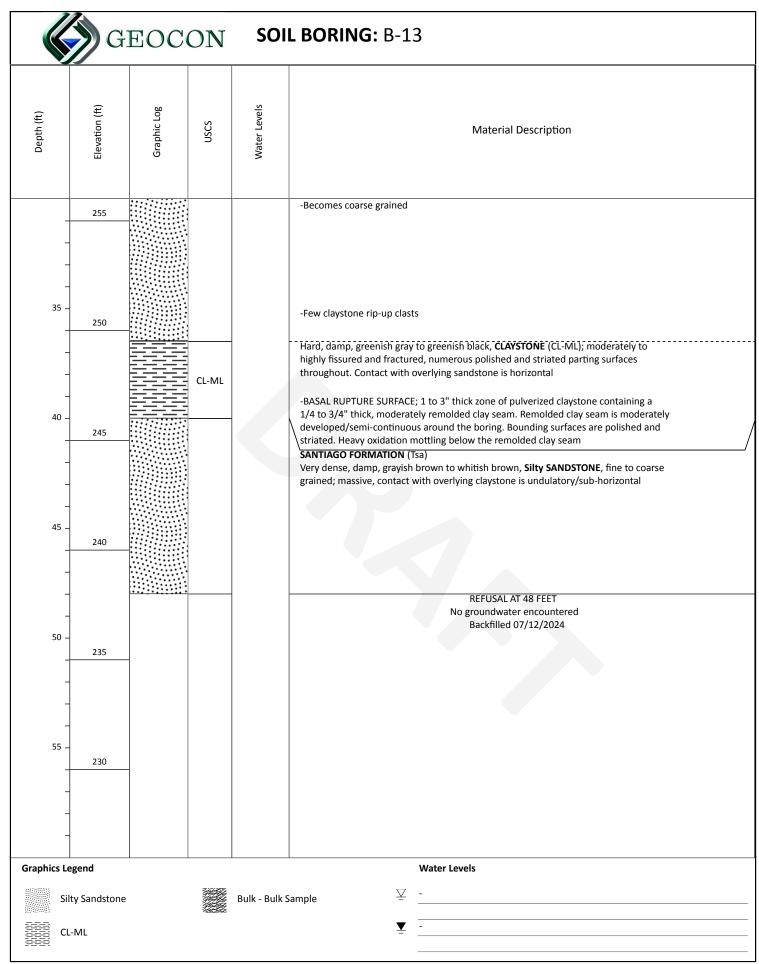

PROJEC	I NO. 0722	7-52-0	Z									
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY GROUNDWATER		LITHOLOGY		MPLE ASON NO.		SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) 202' DATE COMPLETED 05-25-2005 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER BY: N. ASH	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			+									
					MATERIAL DESCRIPTION BORING TERMINATED AT 58.5 FEET Groundwater encountered at 13 feet Backfilled with 20.5 cu. ft. of bentonite slurry							
Figure Log o	Figure A-9, 07227-52-02.GPJ Log of Boring B 9, Page 3 of 3											
SAMPLE SYMBOLS				_	SAMPLE (UNDIS		E					

PROJEC	T NO. 0722	27-52-02	2					
DEPTH IN	SAMPLE	AMPLE NO.		SOIL CLASS	BORING B 10 ELEV. (MSL.) 198' DATE COMPLETED 05-25-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NO.			(USCS)		ENET	лку I (Р	MOIE
			GROUNDWATER		EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER BY: N. ASH	<u> </u>	_	
- 0 -	B10-1	X.A. 52			MATERIAL DESCRIPTION			
	Б10-1				ALLUVIUM Loose, moist, dark brown, Clayey and Silty, fine to medium SAND; porous with thin roots	_		
						-		
- 4 -				SM+SC				
- 6 -	B10-2				-Wet	- 10 -	100.6	21.9
		$\left(\right) \left(\left) \left(\right) \left(\right) \left(\right) \left(\right) \left(\right) \left(\left) \left(\right) \left(\right) \left(\right) \left(\right) \left(\right) \left(\right) \left(\right) \left(\left) \left(\right) \left(\right) \left(\right) \left(\right) \left(\left(\right) \left(\right) \left(\left(\right) \left(\right) \left(\left(\right) \left(\left(\right) \left(\right) \left(\left(\right) \left(\left(\right) \left(\left(\right) \left$				-		
- 8 -					Medium dense, moist, dark brown to mottled grayish brown, Clayey, fine to medium SAND; some carbonate pods; porous	-		
- 10 - 	B10-3	3				- 18	104.0	20.3
- 12 -				SC		-		
 - 14 -						-		
	B10-4		Ţ		-Encountered groundwater at 15 feet	-		
- 16 - 					LANDSLIDE DEBRIS Loose to medium dense, wet, olive gray, Silty, fine to medium SAND; pods of carbonate	_ 15 _	104.5	21.9
- 18 -				SM		_		
- 20 -	B10-5				-Loose to medium dense, saturated, fine- to coarse-grained	- 32		
	B10-5					-		
- 22 -				SM	Dense, moist, light gray, Silty, fine- to medium-grained SANDSTONE; carbonate-filled fractures			
- 24 -					SANTIAGO FORMATION Dense, moist, light olive gray, Silty, fine-grained SANDSTONE to fine-grained Sandy SILTSTONE; moderately cemented	_		
 - 26 -	B10-6			SM-ML	me-granicu sandy SIL IS I ONE, mouchaichy cementen	74/11"	114.2	15.3
						-		
- 28 -						-		
Figure A-10, 07227-52-02.GPJ Log of Boring B 10, Page 1 of 2								
SAMPLE SYMBOLS				IRBED OR BAG SAMPLE T WATER			ε	


DEPTH IN FEET	SAMPLE NO.	ЛОТОНЦА	GROUNDWATER	SOIL CLASS (USCS)	BORING B 10 ELEV. (MSL.) 198' DATE COMPLETED 05-25-2005 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER BY: N. ASH	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
30 -					MATERIAL DESCRIPTION				
32 –	B10-7		· · · ·		Dense, moist, light gray, Silty, fine- to coarse-grained SANDSTONE; weakly cemented; slightly micaceous	74 			
34 – – 36 –	B10-8		· · · · · · · · · · · · · · · · · · ·	· · · ·	SM	-Moderately cemented	- - 50/6" -	117.4	13.4
						-			
_	B10-9		-		Hard, moist, olive gray, Clayey to fine-grained Sandy SILTSTONE; strongly indurated; some iron oxide mineralization	_ 50/5" 	111.5	15.4	
42 – 44 –	B10-10			ML	-Refusal to penetration at 43.5 feet	_ 			
					BORING TERMINATED AT 44 FEET Groundwater encountered at 15 feet Backfilled with 15 cu. ft. of bentonite slurry				
Figure A-10, 07227-52-02.GPJ Log of Boring B 10, Page 2 of 2 07227-52-02.GPJ									
SAMPLE SYMBOLS Image 2 of 2 Image 2 of 2 Image 2 of 2 SAMPLE SYMBOLS Image 2 of 2 Image 2 of 2 Image 2 of 2 Image 2 of 2 Image 2 of 2 SAMPLE SYMBOLS Image 2 of 2 Image 2 of 2 Image 2 of 2									

		GE(C	ON			SOI	L BC	DRING NUMBER: B - 11 Page 1 of 2			
							• · - ···					
		Park Apar				CLIENT Capstone Equities						
		ER G303				-	FLOCATION Olive D					
	-	07/12/20			PLETED 07/12/2024		D ELEVATION ~307'		NORTHING			
CONTR	ACTOR	Dave's Dri	lling			GROUN	D WATER LEVELS:		EASTING			
METHO	D HSA						INITIALLY ENCOUN	ITERE	D N/A			
LOGGEI	D BY R. <i>I</i>	Adams				. <u> </u>	AFTER 15 MIN N/					
NOTES HAMMER WEIGHT / DROP _ / -												
Depth (ft)	Elevation (ft)	Graphic Log	USCS	Water Levels	Material D	escription		Sample Interval	Sample Number			
	307				LANDSLIDE DEBRIS (Qls)							
-	305		SC		Hard, dry, brown to reddish brow	n, Clayey S	AND					
- - 5 - -	300		SM		(SC); few rock fragments Dense, damp, pale yellowish brow SANDSTONE (SM), fine to coarse chunks of claystone up to 8" in w clay-infilled fractures (near vertic	grained; ab idth, some al)						
- - 10 -	-		sc	-	Dense, damp, yellowish brown, C (SC), fine to coarse grained; few r surfaces	; few roots on fracture						
-	295		CL		Firm, moist, grayish brown, Sand (CL); no remolding	y CLAYSTOP						
- - 15 - -	290		CL-M L		Soft to Firm, damp, greenish gray CLAYSTONE (CL-ML); highly fract brecciated, weakly fissured with striated parting surfaces; no rem observed	ured and few polishe olded clay s	d,					
- - 20 -	-		ML		 Claystone becomes less brecciat Hard, damp, olive brown, Sandy fine grained; massive, contact wi claystone is undulatory (subhoriz 	SILTSTONE th overlying						
-	285		sc		Very dense, damp to moist, pale yellowish brown to whitish brown, Clayey SANDSTONE (SC), fine to coarse grained; massive, few infilled fractures							
- 25 - - - -	- 280		SP	-	Very dense, damp to moist, whitish brown, SANDSTONE (SP), medium to coarse grained; moderately cross-bedded, trace silt and clay							
Graphic	s Legend					v	/ater Levels					
	SC				CL	<u> </u>						
	SM				ML	₹ - - -						

	GI	EOC	DN				SOIL	BORING NUMBER				
									Page 1 of 4			
PROJECT	Olive Park	Apartments				LOGGED BY R. Adams						
PROJECT N		33035-52-01				LATITU	IDE / LONGITUDE _33.2	0242, -117.28951				
DATE STAR	RTED 07/1	1/2024		LETED 07/1	11/2024	DEPTH	100'	SURFACE ELEVATION ~3	307'			
CONTRAC	TOR Dave	's Drilling				GROU	ND WATER LEVELS:	WATER ENCOUNTER N/	Ά			
METHOD	HSA											
RIG TYPE	EZ Bore		BORIN	G DIAMETE	R 30 in							
HAMMER	TYPE -					WATE	RENCOUNTER N/A					
Depth (ft)	200 Elevation (ft)	Graphic Log	uscs	Water Levels			Material De	scription				
		1/////			COLLUVIUM (Qcc							
- - - 5 - - - - -	305		SC		krotovina, minor	carbonate	y SAND (SC), fine grained; development. Probable g	few claystone fragments, few raben infill.				
10 - - -	295		SM		(SM), fine to coar sub-vertical clay f	nse, damp se graineo illed fract	l; some claystone fragmen ures	owish brown, Silty SANDSTONE ts up to 5" in width, few thin,				
15 -	-			-	sub-vertical, clay	filled fract	ures	grained; minor offset along				
- - - 20 -	290		SP		Very dense, damp coarse cross-beds	to moist	pale yellowish brown, SA	NDSTONE (SP); few very				
- - 25 - - - - -	285		CL-ML		fractured with po	ckets of s	ay, CLAYSTONE (CL-ML); m oft clay throughout, few ro ed contact with overlying :	otlets along clay-filled				
Graphics L	egend						Water Levels					
iiiii so	C			CL-ML		$\bar{\Delta}$	-					
st	М					Ŧ	-					



GEOCON	J SOI	L BORING: B-12
Depth (ft) Elevation (ft) Graphic Log USCS	Water Levels	Material Description
245 CL		Hard, damp to moist, olive gray, Silty CLAYSTONE (CL); very minor fissuring, upper contact: N25°W/8°W, some oxidation staining Very dense, moist, olive gray, Silty to Clayey SANDSTONE (SC-SM), fine to medium grained, with gravel; few gypsum filled fractures, massive
65 - SC-SM SC-SM	м	
70 ML 75		Hard, moist, olive gray, Sandy SILTSTONE (ML); upper contact is horizontal, waxy texture -Becomes moderately fissured with few pockets of soft clay
230 230 80 - 230 CL-M		Hard, moist, olive gray, Silty CLAYSTONE (CL-ML); highly fissured and brecclated -BEDDING PLANE SHEAR; 1/8" to 1/4" thick, moderately remolded plastic clay gouge, BPS is bifurcated/offset along fracture. Polished on bounding surfaces approximate attitude N45°E/4°N
		Hard, moist, olive gray, Clayey SILTSTONE ; 1.4' thick siltstone bed; horizontal
		-High angle fracture with clay infill; fracture orientation N65°E/40°S
Graphics Legend		Water Levels
CL	ML	∑
SC-SM	Clayey Silts	tone – –

GEO0	CON	SOI	L BORING: B-12
Depth (ft) Elevation (ft) Graphic Log	uscs	Water Levels	Material Description
$ \begin{array}{c} 215 \\ 95 \\ 210 \\ 210 \\ 210 \\ 210 \\ 205 \\ 100 \\ 205 \\ 105 \\ 200 \\ 105 \\ 105 \\ 115 \\ 195 \\ 115 \\ 190 \\ 100 \\ 1$			TOTAL DEPTH 100 FEET Logged to 97 feet No groundwater encountered Backfilled 07/11/2024
			Water Levels

PROJECT_Olive Park Apartments LOGGED BY R. Adams PROJECT_NUMBER_G3035-52-01 LATITUDE / LONGITUDE 33.20313, -117.28951	Page 1 of 2
PROJECT NUMBER G3035-52-01 LATITUDE / LONGITUDE 33.20313, -117.28951	
DATE STARTED 07/12/2024 COMPLETED 07/12/2024 DEPTH 48' SURFACE ELEV	VATION _ 286'
CONTRACTOR Dave's Drilling GROUND WATER LEVELS: WATER ENCOURD	UNTER N/A
METHOD HSA	
RIG TYPE EZ Bore BORING DIAMETER 30 in	
HAMMER TYPE	
Depth (ft) Classical depth (ft) Depth (ft) Depth (ft) Material Description 286 286	
285 CL Colluvium (Qcol) Stiff, dry to damp, brown, Sandy CLAY (CL)	
5	d offset:
¹⁵	
20 - 265 Stiff to hard, damp, greenish gray, CLAYSTONE (CL); weakly to moderately fiss no remolding, slightly brecciated Very dense, damp to moist, grayish white, Silty SANDSTONE (SM), fine to coa grained; trace clay, massive with some cross-bedding, contact with overlying claystone is horizontal	arse
25 - 260 Dense, damp, dark brown to dark reddish-brown, Silty SANDSTONE , fine to co	narse
grained; convoluted cross-bedding	
Graphics Legend Water Levels	
CL ♀	
SM Y -	

г

PROJEC	T NO. 0722	27-52-0	2							
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 1 ELEV. (MSL.) 300' DATE COMPLETED 05-09-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)		
			GROL	(0505)	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PEN RES (BL	DRY)	M ON ON ON ON ON ON ON ON ON ON ON ON ON		
					MATERIAL DESCRIPTION					
- 0 - - 2 -				CI.	LANDSLIDE DEBRIS Soft, moist, dark brown to grayish brown, fine Sandy CLAY; moderate topsoil development; common thin roots	-				
 _ 4 _ 				CL CH	Stiff, moist, brownish to olive gray, fine Sandy fat CLAY; abundant slickensided sheared surfaces; carbonate mineralization; scattered roots; overall jumbled texture; fractured claystone blocks S: N5W/17SW			 		
- 6 -		•••••			SANTIAGO FORMATION	-				
- 8 - - 10 -				SM+SC	Dense, moist, light olive gray, fine- to medium-grained Silty to locally Clayey SANDSTONE; moderately cemented; weakly jointed; generally massive and undisturbed	-				
					TRENCH TERMINATED AT 11 FEET No groundwater encountered					
	e A-11, f Trencl	n T 1	, P	age 1 o	of 1		0722	7-52-02.GPJ		
Log of Trench T 1, Page 1 of 1 SAMPLE SYMBOLS										

DEPTH IN		ß	ATEF	SOIL	TRENCH T 2	FT.)	SITY (.	JRE T (%)
FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	CLASS (USCS)	ELEV. (MSL.) 195' DATE COMPLETED 05-09-2	9002 PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GRO		EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	BEI (B	DR	≥O
- 0 -					MATERIAL DESCRIPTION			
				CL	LANDSLIDE DEBRIS Soft, moist, brown to grayish brown, fine Sandy CLAY; moderate topso development; abundant thin roots	il – –		
 - 4 - 6 - 6 - 8			1	CH+SC	Medium dense and stiff, moist, light gray to olive gray, fat CLAY and C to Silty SAND; jumbled texture; chaotic structure; some fragments of sandstone and claystone; clayey areas sheared and slickensided; back-robeds generally dipping at low to moderate angles into hillside	-		
					TRENCH TERMINATED AT 9 FEET No groundwater encountered			
Figure Log of	A-12, Trencl	יד 2	, P	age 1 d	f1		0722	7-52-02.GP
_	LE SYMB				NG UNSUCCESSFUL STANDARD PENETRATION TEST BED OR BAG SAMPLE CHUNK SAMPLE	. DRIVE SAMPLE (UND	ISTURBED)	

DEPTH		GY	NTER		TRENCH T 3	TION TION) SITY	ЧЕ (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.) 204' DATE COMPLETED 05-09-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GROL	(0000)	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	- PEN (BL	DRY	ž O
0 -					MATERIAL DESCRIPTION			
2 -				CL	LANDSLIDE DEBRIS Soft, moist, dark brown, fine Sandy CLAY; abundant roots and porosity	-		
- 4 -					Loose, moist to wet, yellowish brown to light olive gray, Silty to Clayey SAND; highly disturbed, chaotic texture, some fragments of sandstone; few roots			
6 8 -				SM+SC		-		
8 – 10 –			Ţ		-Very loose and saturated; walls of trench highly prone to caving; abundant	-		
- 12 -					seepage TRENCH TERMINATED AT 12 FEET			
igure	A-13,						0722	7-52-02.0
og of	f Trencl	η Τ 3	, P	age 1 d	of 1			
SAMP	LE SYMB	OLS		SAMP	LING UNSUCCESSFUL □ STANDARD PENETRATION TEST □ DRIVE RBED OR BAG SAMPLE	SAMPLE (UNDI	STURBED)	

1		1	-						1		
		7	TER		TRENCH T	4			ON CE T.)	Σ	E (%)
DEPTH IN	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS	ELEV. (MSL.)	207'	DATE COMPLETED	05-09-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET		Ē	ROUN	(USCS)	EQUIPMENT		JD 450 TRACK-MOUNTED BA		PENE RES (BLC	DRY (F	CON
			U								
- 0 -		7-1-1	\vdash		ALLUVIUM		ERIAL DESCRIPTION				
							, Clayey, fine SAND; porous; com	nmon roots	-		
- 2 -									-		
-				SC					-		
- 4 -									-		
		1/1	\square		LANDSLIDI						
- 6 -					Loose, wet, o Sandy CLAY	live gray to g	grayish brown, Clayey to Silty, fin- mbled texture and chaotic structure	e SAND and e	-		
									-		
- 8 -			∎								
- 10 -				SM+SC					_		
					-Saturated; ab	oundant seep	age; caving of trench walls		_		
- 12 -									-		
									-		
- 14 -			\vdash			TREN	CH TERMINATED AT 14 FEET				
							Seepage at 9 feet				
Figure	A-14,		_	-						07227	7-52-02.GPJ
Log of	f Trench	ד 1 T	, P	age 1	of 1						
SAMP	LE SYMB	OLS			LING UNSUCCESSFUL	F	STANDARD PENETRATION TEST		Sample (UNDI		
1				🕅 DISTL	IRBED OR BAG SAMPLE		CHUNK SAMPLE	🔻 WATER	TABLE OR SE	EPAGE	

PROJECT	ΓNO. 0722	27-52-02	2								
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 5 ELEV. (MSL.) 212' DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)			
					MATERIAL DESCRIPTION						
- 0 - - 2 - - 2 - - 4 -				SC	LANDSLIDE DEBRIS Loose, moist, dark gray, Clayey, fine SAND; porous; thin roots; weakly developed topsoil in upper 2 feet	-					
- 6 - - 8 - - 10 - - 12 - - 12 - - 14 -				SM+SC	Loose, moist to wet, olive gray, Clayey to Silty, fine to coarse SAND; jumbled texture; chaotic structure; some clayey sandstone fragments in sandy matrix						
					TRENCH TERMINATED AT 14.5 FEET No groundwater encountered						
Figure	A-15,	יד ה	Þ	ane 1 4	of 1		0722	7-52-02.GPJ			
_	Log of Trench T 5, Page 1 of 1 SAMPLE SYMBOLS										

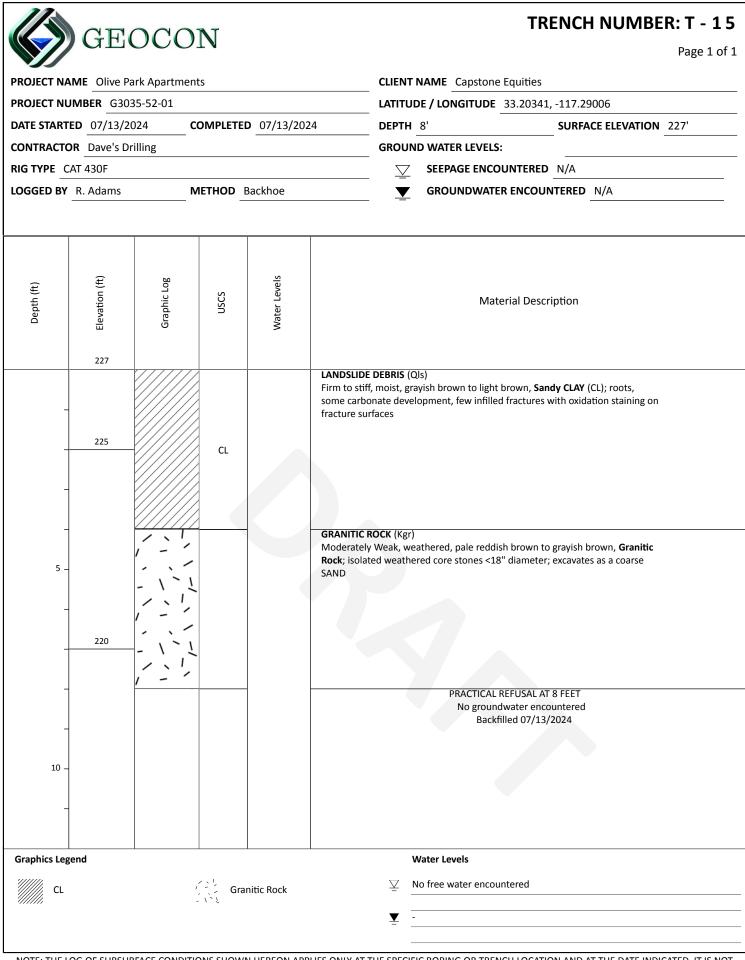
í			-	-				
DEPTH		ГІТНОLОGY	GROUNDWATER	SOIL	TRENCH T 6	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	NO		NDN	CLASS (USCS)	ELEV. (MSL.) 226' DATE COMPLETED 05-10-2005	NETR/ SISTA	Y DEN (P.C.F	OISTU NTEN
			GROI	, , ,	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PEN RE (BI	DR	ĕO
					MATERIAL DESCRIPTION			
- 0 -		///			TOPSOIL Loose to medium dense, dry to damp, Clayey SAND			
- 2 -				SC		[
 - 4 -	×		-		GRANITIC ROCK Moderately hard, moist, tan to gray, GRANITIC ROCK; highly weathered; moderately fractured; damp to dry; light green clay on fracture surfaces	-		
	T6-1	+ +				Ļ		
- 6 -		+++			-At 5 feet J: N37E/vertical	-		
		+ +			A + 7 C - + LNICOW/770W	-		
- 8 -		+ +			-At 7 feet J:N53W/77SW	-		
		- + ·				-		
Figure	• A-16 ,				TRENCH TERMINATED AT 9.5 FEET No groundwater encountered No caving		07227	7-52-02.GPJ
Log of	f Trench	n T 6	, P	age 1				
SAMPLE SYMBOLS Image: missing unsuccessful image: missing unsuccessf								

í			1						
			ы		TRENCH T	7		~	
DEPTH		G	ATE	SOIL			NCE 1.)	ί LIS C	RЕ (%
IN	SAMPLE	OLC	DW	CLASS	ELEV. (MSL.)	240' DATE COMPLETED 05-10-2005	STA WS/	C.F	STU EN1
FEET	NO.	ГІТНОГОGY	GROUNDWATER	(USCS)			RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GR(EQUIPMENT	JD 450 TRACK-MOUNTED BACKHOE	ш —	D	O
						MATERIAL DESCRIPTION			
- 0 -		/././.			LANDSLID	E DEBRIS			
			2		Loose to meet topsoil develo	dium dense, dry to damp, dark gray, Clayey SAND; moderate			
- 2 -		(/ / /	1	SC	_	se, moist, light gray brown; scattered flecks of black organics;			
						llel to slope; grades to very light gray with medium gray brown			
- 4 -) FORMATION			
						 very light gray, fine- to medium-grained Silty SANDSTONE; nickly slightly weathered 			
- 6 -				SM	massive to th				
				5111					
- 8 -			,	_	-Becomes da -C: 80E/5-10	urk brown at 7.5 feet			
Ŭ		+ +			GRANITIC	ROCK			
				\setminus		hard, damp to moist, greenish gray with abundant orange ANITIC ROCK; highly weathered			
				\	stanning, GKA	TRENCH TERMINATED AT 9 FEET			
						No groundwater encountered			
						No caving			
Figure	e A-17,							07227	-52-02.GPJ
Log of	f Trench	η T 7	, P	age 1	of 1				
				SAMP	LING UNSUCCESSFUL	STANDARD PENETRATION TEST DRIVE SAMPL	LE (UNDIS	TURBED)	
SAMPLE SYMBOLS					IRBED OR BAG SAMPLE				

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

	07227-52	-02								
IN	PLE 0. ■PLE	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 8 ELEV. (MSL.) 254' DATE COMPLETED 05-10-20 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)			
		+		MATERIAL DESCRIPTION						
- 0 +		•/.		TOPSOIL						
· -		/	SC	Medium dense, dry to damp, dark gray, Clayey SAND						
2 -			SM	SANTIAGO FORMATION Dense, damp, very light gray, Silty SANDSTONE; fine- to medium-grain moderately weathered; massive; moderately cemented	ed;					
4 - T8	-1			-Slightly weathered at 4 feet	F					
Figure A-	18, Dach T			TRENCH TERMINATED AT 5 FEET No groundwater encountered		07227	7-52-02.G			
Log of Tre	ench T	8, P	age 1 o	of 1						
	YMBOLS				DRIVE SAMPLE (UND	ISTURBED)				
SAMPLE SYMBOLS SAMPLING UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE SAMPLE (UNDISTURBED) X DISTURBED OR BAG SAMPLE X CHUNK SAMPLE X WATER TABLE OR SEEPAGE										

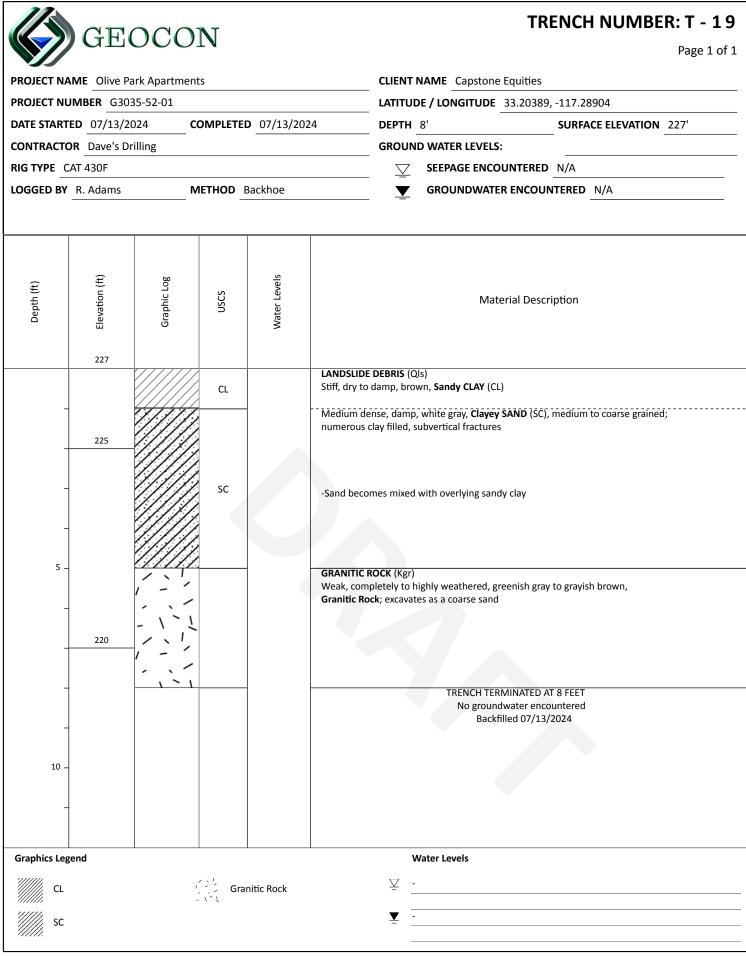
DEPTH IN FEET SAMPLE NO. YOUNDOUS SOIL CLASS (USCS) TRENCH T 9 ELEV. (MSL.) DATE COMPLETED 05-10-2005 VUVYLSYSMOTBURST 100 - 2005 0 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE Image: Complete transmission of the transmissing transmission of the transmission of the transmissio	MOISTURE CONTENT (%)
0 TOPSOIL - - SM Medium dense, dry to damp, dark gray-brown, Silty SAND - - - SANTIAGO FORMATION	
0 TOPSOIL - - SM Medium dense, dry to damp, dark gray-brown, Silty SAND - - - SANTIAGO FORMATION	
- 2 - SANTIAGO FORMATION	
- - - - fine- to medium-grained; moderately weathered, slightly fractured; moderately cemented; massive - 4 - SM fine- to medium-grained; moderately weathered; fine roots; dark brown staining at 4 feet	
Figure A-19,	227-52-02.GPJ
Log of Trench T 9, Page 1 of 1	
SAMPLE SYMBOLS Image: mail and mail an))


DEPTH		GΥ	ATER		TRENCH T	10			rion NCE =T.)	ытҮ)	RE . (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.)	228'	DATE COMPLETED	05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GRO		EQUIPMENT		JD 450 TRACK-MOUNTED BAC	KHOE	BEI (B	DR	≥ 0 0 ≤
			Γ			MA	TERIAL DESCRIPTION				
- 0 -					TOPSOIL Medium dens	e dry to da	amp, dark gray, Silty SAND				
- 2 -				SM		-					
<u> </u>			2 2			e, moist, ve	ery light pale brown, SANDSTONE;	massive;	-		
- 4 -			, ,		-	-	cemented; moderately weathered weathered; slightly moist at 4 feet		-		
			> >		, er jBuc Br	wy, siiBiitiy	"earlored, singling monet at 1 ree		-		
- 6 -			> >	SP					-		
))						-		
- 8 -			> >								
- 10 -			> >								
	T10.1 8		T	~===	<u>Moderate see</u>	epage at 11	feet				
- 12 -	T10-1		> >	SM	Dense, damp, trace clay	greenish m	nedium gray, Silty, fine to medium S.	ANDSTONE;	-		
-			, 	<u></u>	-Refusal at 13	feet	NCH TERMINATED AT 13 FEET	/	-		
						IKEP	Seepage at 11 feet				
Figure	A-20.									07227	7-52-02.GPJ
Log of	f Trench	n T 10), F	Page 1	of 1						
SAMP	LE SYMB	OLS					STANDARD PENETRATION TEST				
				🕅 DISTL	IRBED OR BAG SAMPLE		CHUNK SAMPLE	👤 WATER	I ABLE OR SE	EPAGE	

· · · · · ·		-	-					
		ž	TER		TRENCH T 11	CE CE	Σ	Е (%)
DEPTH IN	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS	ELEV. (MSL.) 226' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	110.	Ē	SROUN	(USCS)	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENE RES (BLO	DRY (F	OM
					MATERIAL DESCRIPTION	-		
- 0 -			┢		TOPSOIL			
			4	SC	Medium dense, damp, dark gray, Clayey SAND	-		
- 2 -				50				
- 4 -		++++			GRANITIC ROCK Moderately hard, slightly moist, light gray brown with orange staining,	_		
		+ +			GRANITIC ROCK; highly weathered, highly fractured	-		
- 6 -		+ +			-At 6 feet J: N70E/72NW; J: N72E/70SE	-		
		+ +				-		
					TRENCH TERMINATED AT 7.5 FEET No groundwater encountered			
Figure	A-21.						0722	7-52-02.GPJ
Log of	f Trench	n T 1 1	1, F	Page 1	of 1			
SAMP	PLE SYMB	OLS				SAMPLE (UND		
				KX3 DISIC		R TABLE OR SI	LLFAGE	

(1	-								
DEPTH		OGY	GROUNDWATER	SOIL	TRENCH T	12			PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОGY	NDN	CLASS (USCS)	ELEV. (MSL.)	220'	DATE COMPLE	TED 05-10-2005	LOWS	Y DEN (P.C.I	IOISTI NTEN
			GRO		EQUIPMENT	J	0 450 TRACK-MOUNTI	ED BACKHOE	- BE (B	DR	≥o
						MATE	RIAL DESCRIPTION				
- 0 -				SC	TOPSOIL Medium den	se, slightly moi	st, dark gray, Clayey SA	ND	-		
- 2 - - 4 - - 6 -			-		ROCK; high	hard, damp, ligh ly weathered; s	nt gray brown with orang cattered hard rounded no - to coarse-grained crysta	odules (some nodules,	-		
Figure	A-22,						H TERMINATED AT 7			0722	7-52-02.GPJ
	f Trench		2, F	_			STANDARD PENETRATION		SAMPLE (UND		
SAMP	PLE SYMB	OLS			LING UNSUCCESSFUL	_			SAMPLE (UND		

		_≻	ĒR		TRENCH T 13	N N N C	≿	ы Ш
DEPTH	SAMPLE	ГІТНОГОGY	WAT	SOIL		RATIC ANC	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	NO.	I PE	ΩΝΓ	CLASS (USCS)	ELEV. (MSL.) 228' DATE COMPLETED 05-10-2005	SIST OW	E C. E C.	OIST
			GROUNDWATER	(0000)	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DR	Σġ
0 -					MATERIAL DESCRIPTION			
2 -				CL	LANDSLIDE DEBRIS Stiff, moist, dark brown, Sandy CLAY; porous with roots and krotovina; moderate topsoil development	-		
					Loose, moist, light olive gray, Silty, fine to medium SAND; common			
4 -				SM	clay-filled; high-angle fractures			
			╞┤		Stiff, moist, dark olive gray; Sandy, fat CLAY; pockets of silty sand and	F		
6 –					granitic rock fragments; highly fractured and sheared; chaotic bedding orientations B: N35E/38NW -Carbonate and iron oxide mineralization between sand and clay beds	-		
8 -				СН		-		
10 -	T13-1					-		
12 -						-		
_					-At 13 feet, contact roughly horizontal, undulatory	-		
14 -		+ +	╞─┤	1	GRANITIC ROCK Moderately hard to hard, damp, light to medium brown, GRANITIC ROCK; /			
					moderately weathered TRENCH TERMINATED AT 14 FEET			
					No groundwater encountered			
					No caving			
	A-23,	<u> </u>				I	0722	7-52-02.
og of	f Trencl	h T 1:	3, F	age 1				
SAMP	PLE SYMB	OLS				AMPLE (UNDI	STURBED)	
		-		🕅 DISTL	IRBED OR BAG SAMPLE 🛛 🖳 CHUNK SAMPLE 💆 WATER	TABLE OR SE	EPAGE	


		_	ËR		TRENCH T 14	N N N N N	≿	(%
DEPTH IN	SAMPLE	ГІТНОГОGY	GROUNDWATER	SOIL CLASS		PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NO.	LITHO	soun	(USCS)	ELEV. (MSL.) 238' DATE COMPLETED 05-10-2005	PENET RESIS (BLO)	DRY D (P.	MOIS
			ß		EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE			_
0 -		7.7						
				SC	PREVIOUSLY PLACED FILL Loose, moist, grayish brown, Clayey, fine to medium SAND; few gravels	-		
2 -				CL	TOPSOIL Stiff, moist, dark brown, fine Sandy CLAY; few gravels; common roots; porous	-		
- 6 -				СН	SANTIAGO FORMATION Very stiff, moist, dark olive gray, fine Sandy, fat CLAY; highly weathered and some shearing	-		
8 -					Medium dense, moist, light olive gray, Clayey and Silty, SANDSTONE; fine- to medium-grained; very weakly cemented; massive bedding	<u>+</u>		
10 -						-		
12 -				SM-SC		-		
14 – –						-		
16 – –			, , , ,		-Becomes dense; fine-grained and clayey	-		
18 -		<u>, , , , , , , , , , , , , , , , , , , </u>			TRENCH TERMINATED AT 18 FEET No groundwater encountered No caving			
	A-24,						0722	7-52-02.0
.og of	f Trench	n T 14	1, F	Page 1				
SAMP	LE SYMB	OLS			LING UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S IRBED OR BAG SAMPLE WATER	SAMPLE (UND		

	GE	OCO:	N					TRENCH NUMBE	
									Page 1 of 1
PROJECT NA	AME Olive P	ark Apartment	S			CLIENT NA	ME Capstone Equi	ties	
PROJECT NU	JMBER G30	35-52-01				LATITUDE /	LONGITUDE 33.2	0363, -117.28987	
DATE START	ED 07/13/2	.024 C	OMPLETED	07/13/202	24	DEPTH 7'		SURFACE ELEVATION	223'
CONTRACTO	DR Dave's D	rilling					VATER LEVELS:		
RIG TYPE C	CAT 430F					<u> </u>	EEPAGE ENCOUNTE	ERED N/A	
LOGGED BY	R. Adams	Μ	IETHOD E	Backhoe			ROUNDWATER EN	COUNTERED N/A	
			_			_			
Depth (ft)	(t) Elevation (t	Graphic Log	uscs	Water Levels			Material I	Description	
-	-		CL			l, dry to moist,	dark brown to black,	Sandy CLAY (CL)	
- - 5 - -	220					oderately weak	c, completely to highly ock; excavates as a Sil TRENCH TERMINA		
- - 10 -	215	_					No groundwate Backfilled O	r encountered	
Graphics Leg	gend				1	Wate	er Levels		
CL			Gran	nitic Rock		⊻ - ⊻ -			

	CF	OCO	NT					TRENCH NUMBER: T - 17
	GE							Page 1 of 1
PROJECT NA	AME Olive P	ark Apartmen	S			CLIENT N	IAME Capstone Equit	ties
PROJECT NU	JMBER G30	35-52-01				LATITUD	E / LONGITUDE 33.20	0385, -117.28931
DATE START	ED 07/13/2	.024 C	OMPLETED	07/13/202	24	DEPTH	3'	SURFACE ELEVATION 228'
CONTRACTO	DR Dave's D	rolling				GROUNE	WATER LEVELS:	
RIG TYPE C	CAT 430F					$\underline{\nabla}$	SEEPAGE ENCOUNTE	RED N/A
LOGGED BY	R. Adams	N		ackhoe		Ţ	GROUNDWATER ENG	COUNTERED N/A
Depth (ft)	(tj) Elevation	Graphic Log	uscs	Water Levels			Material [Description
			CL		COLLUVIUN Hard, drv. d		brown, Sandy CLAY (CL)	
	225				GRANITIC F	ROCK ly weathere	d, orangish brown, Grani TRENCH TERMINAT No groundwater Backfilled 0	TED AT 3 FEET r encountered
Graphics Leg	gend		I			w	ater Levels	
////// CL		,	Grar	nitic Rock		<u> </u>		
		-	1.1					
						⊻		

GEOCON						TRENCH NUMBER: T - 18 Page 1 of 1			
PROJECT NA	MF Olive P	ark Apartment	s		CLIEN	TNAME Capstone Equities	s		
	JMBER G30					UDE / LONGITUDE 33.203			
	ED 07/13/2		OMPLETE	o 07/13/20			SURFACE ELEVATION 238'		
	DR Dave's D					IND WATER LEVELS:			
RIG TYPE C						SEEPAGE ENCOUNTER	ED N/A		
LOGGED BY	R. Adams	Μ	ETHOD E	Backhoe		-			
						-			
Depth (ft)	Elevation (ft)	Graphic Log	uscs	Water Levels		Material De	scription		
	235		CL		Medium dense, da highly irregular cor rock, fractures tern GRANITIC ROCK (K	nr, brown, Sandy CLAY (CL) pp, grayish white, Silty SAND (2) act with inclusions of colluviur inate at contact r) p highly weathered, Granitic R d	n along contact with granitic ock ; excavates to a Silty, D AT 6 FEET ncountered		
10 -									
Graphics Leg	gend					Water Levels			
CL SM		, - -	Gran	nitic Rock	⊻ ₹				

APPENDIX B LABORATORY TESTING

We performed laboratory tests in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. We tested selected soil samples for in-place dry density/moisture content, maximum density/optimum moisture content, expansion index, water-soluble sulfate, Atterberg limits, R-Value, unconfined compressive strength, consolidation, gradation and direct shear strength. The results of our current laboratory tests are presented herein. The in-place dry density and moisture content of the samples tested are presented on the boring logs in Appendix A.

SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS ASTM D 1557

Sample No.	Description	Maximum Dry Density (pcf)	Optimum Moisture Content (% dry wt.)	
B3-3	Olive brown, Silty, fine SAND	124.0	10.1	
T13-1	Dark olive gray, Sandy, CLAY	117.8	14.9	

SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS ASTM D 3080

Sample	Dry Density	Moisture C	Content (%)	Unit Cohesion	Angle of
No.	(pcf)	Initial	Initial Final		Shear Resistance (degrees)
B1-1	99.9	24.7	30.8	275	20
B1-3	129.4	7.5	11.1	1300	29
B1-5	124.0	6.4	13.1	1000	51
B1-6*				250	13
B2-6	109.8	19.3	23.9	200	30
B3-8	106.3	20.3	26.9	475	22
B4-7	119.0	8.8	13.8	800	35
B5-2	102.7	8.8	20.7	0	35
B7-9**	109.3	19.6	27.7	250	13
B7-10	119.9	11.1	18.8	900	31
B7-12*				50	15

*Samples were remolded into a paste to obtain fully softened values.

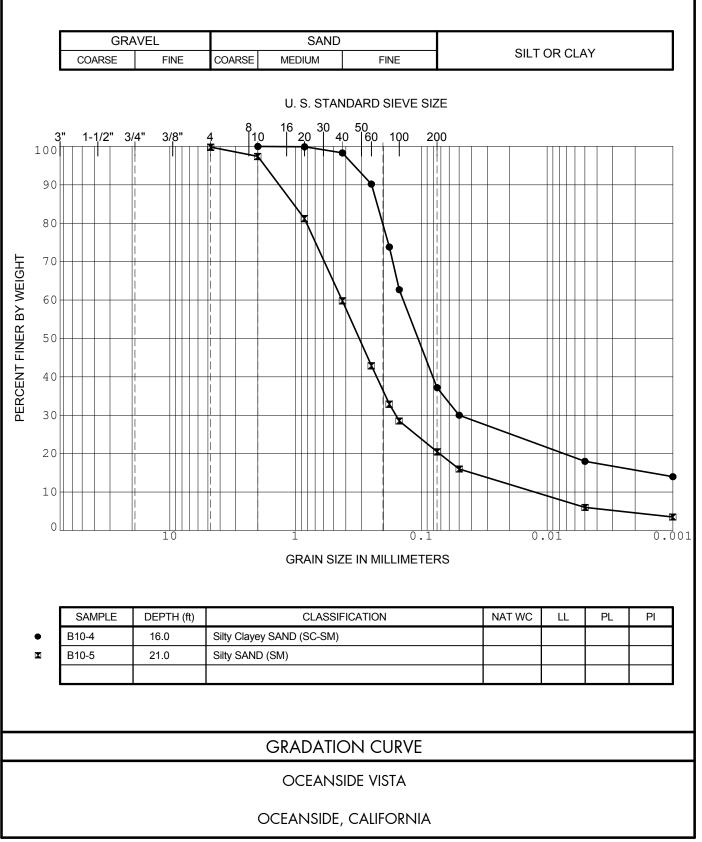
**Residual Shear

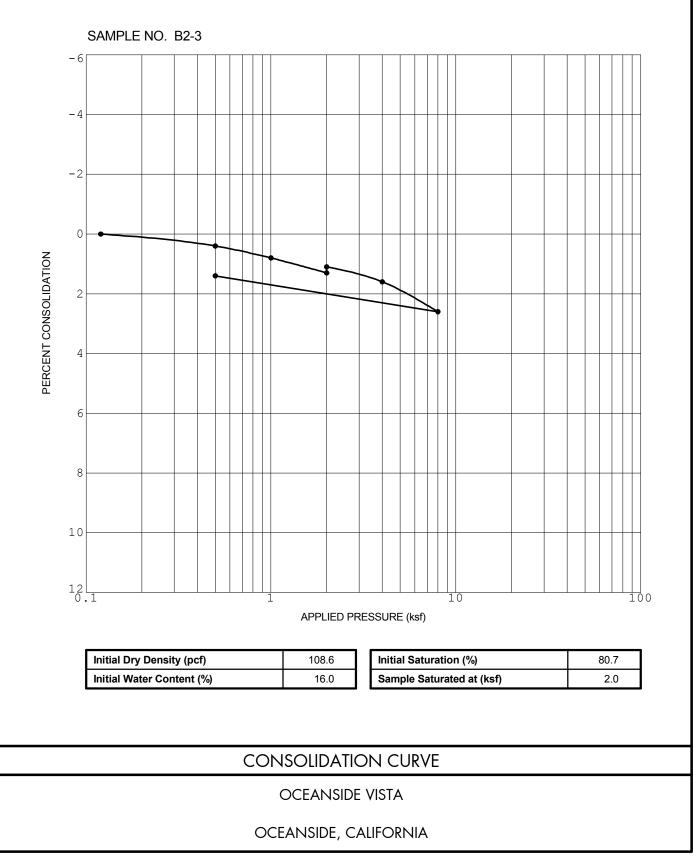
SUMMARY OF LABORATORY EXPANSION INDEX TEST RESULTS ASTM D 4829

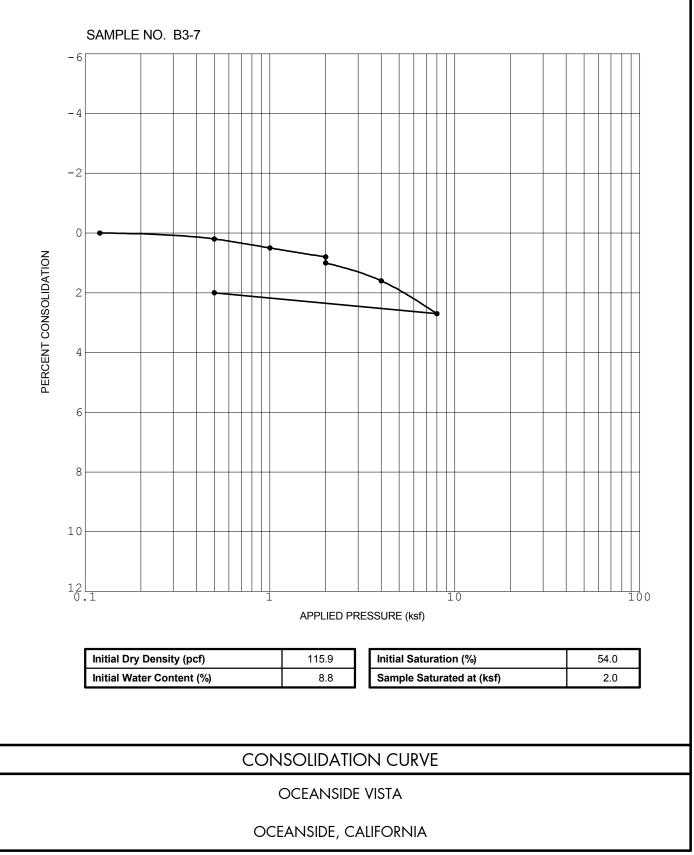
Comolo	Moisture C	Content (%)	Dry	Furgesien	2022 CBC	ASTM Soil	
Sample No.	Before Test	After Test		Expansion Index	Expansion Classification	Expansion Classification	
B3-3	11.4	20.3	105.8	28	Expansive	Low	
T10-1	11.8	22.4	105.5	35	Expansive	Low	
T13-1	14.3	26.9	95.1	25	Expansive	Low	

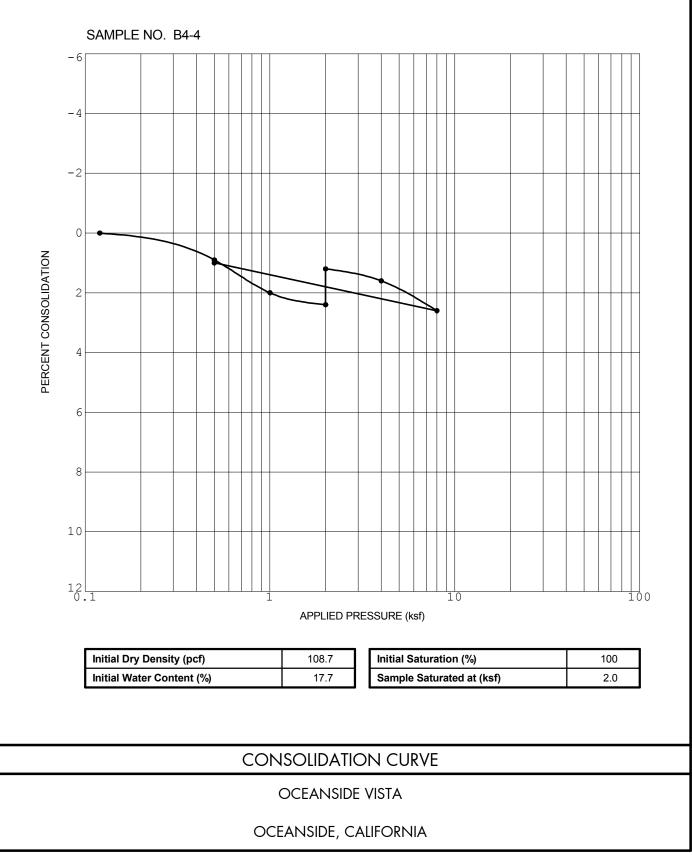
SUMMARY OF LABORATORY WATER-SOLUBLE SULFATE TEST RESULTS CALIFORNIA TEST NO. 417

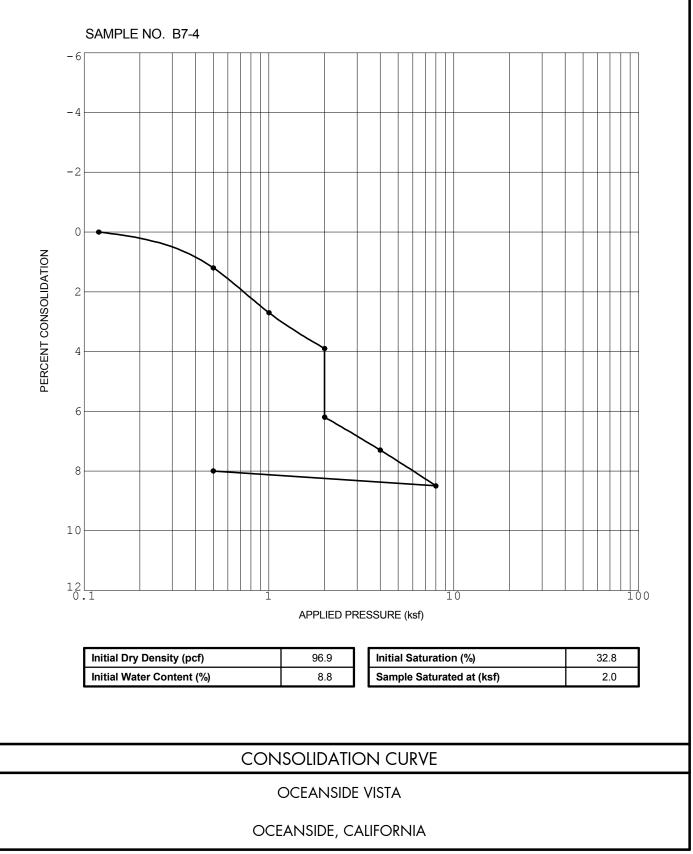
Sample No.	Depth (feet)	Geologic Unit	Water-Soluble Sulfate (%)	ACI 318 Sulfate Exposure
T10-1	11-13	Tsa	0.011	SO
T13-1	10-12	Qls	0.005	SO

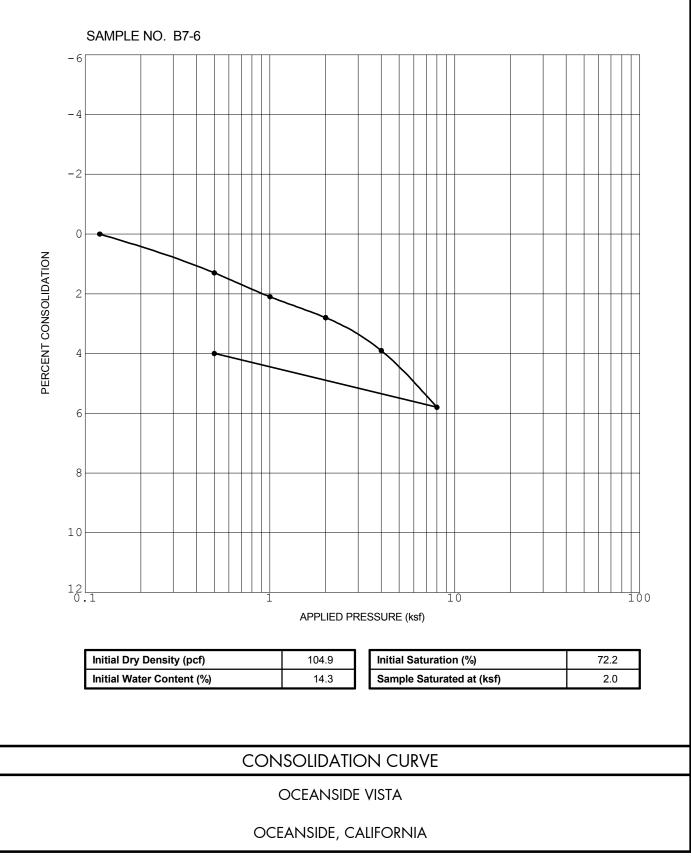

SUMMARY OF LABORATORY RESISTANCE VALUE (R-VALUE) TEST RESULTS ASTM D 2844

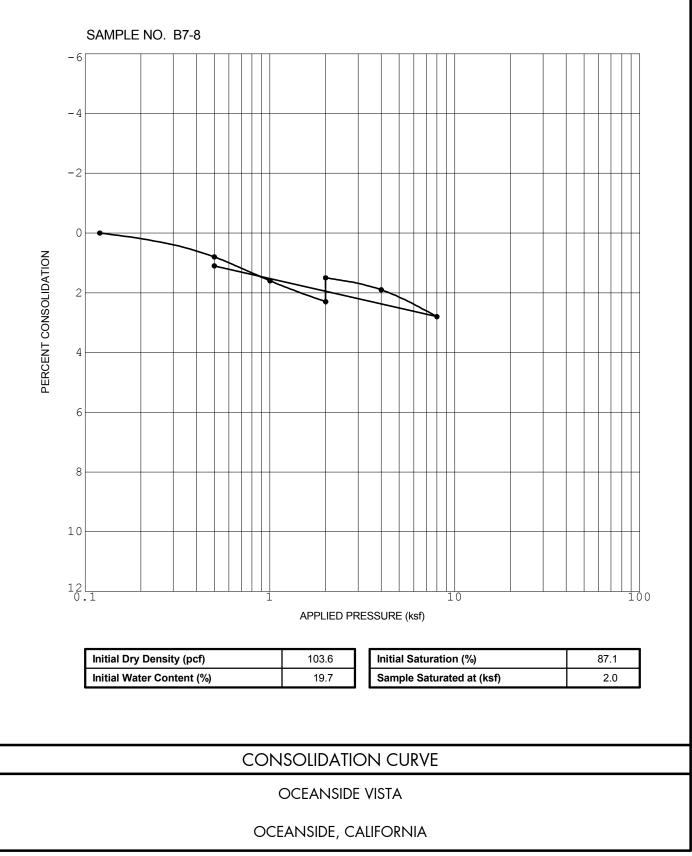

Sample No.	Depth (Feet)	Description (Geologic Unit)	R-Value
B3-3	10-15	Olive brown, Silty, fine SAND (Qls)	18
T10-1	11-13	Olive gray, Silty, fine to medium SAND (Tsa)	15
T13-1	10-12	Dark olive gray, Sandy, CLAY (Qls)	23

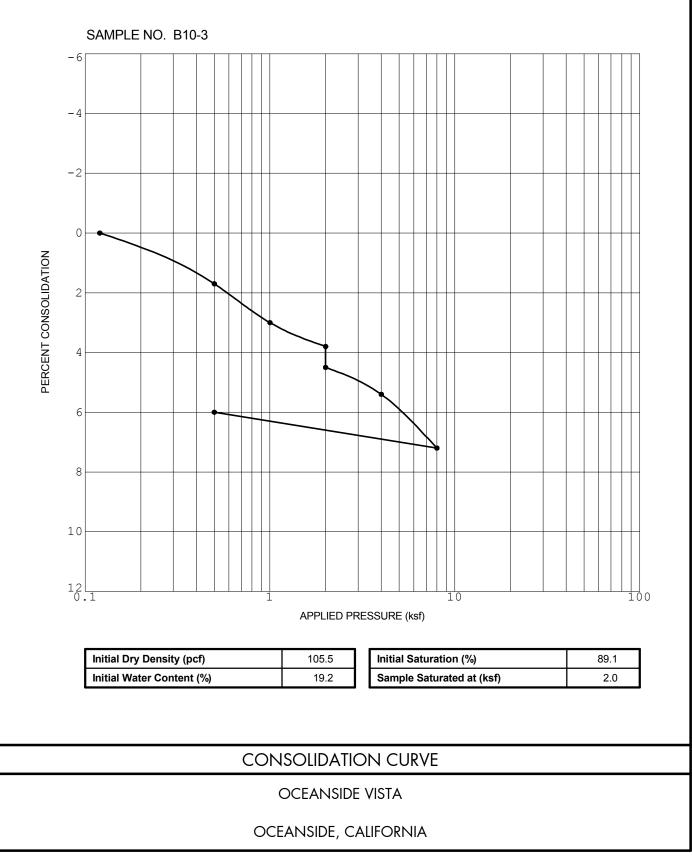

SUMMARY OF LABORATORY PLASTICITY INDEX TEST RESULTS ASTM D 4318

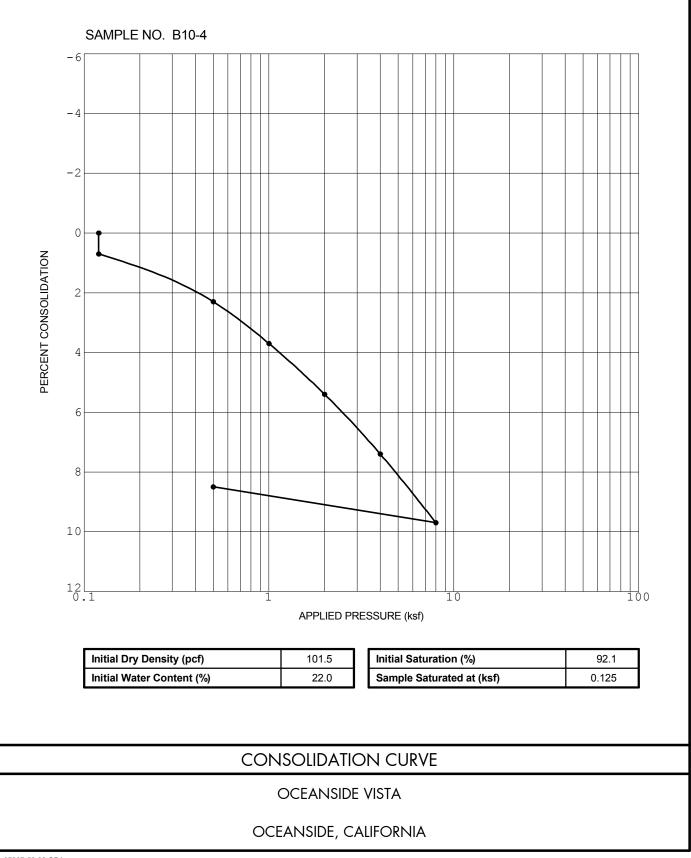

Sample No.	Depth (Feet)	Geologic Unit	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification
B1-6	6	Qls	63	22	41	СН
B7-12	45	Qls	55	32	23	МН

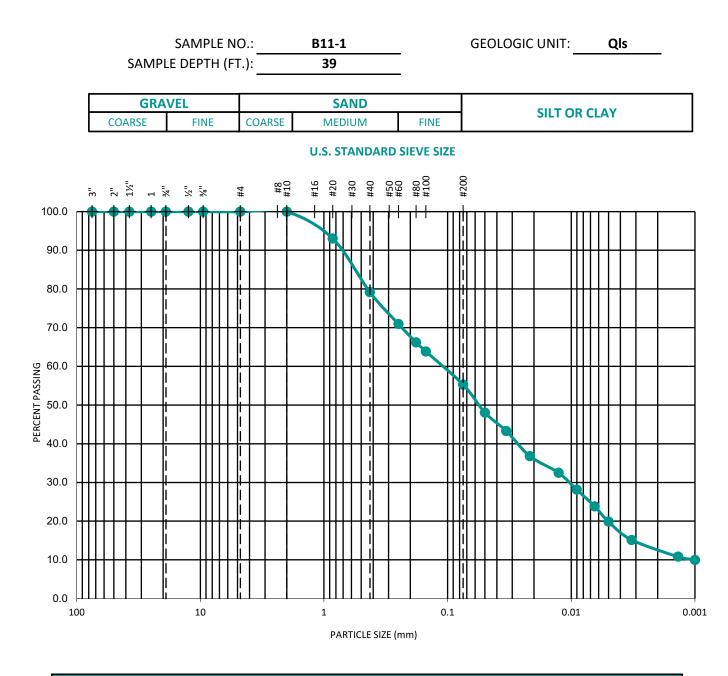






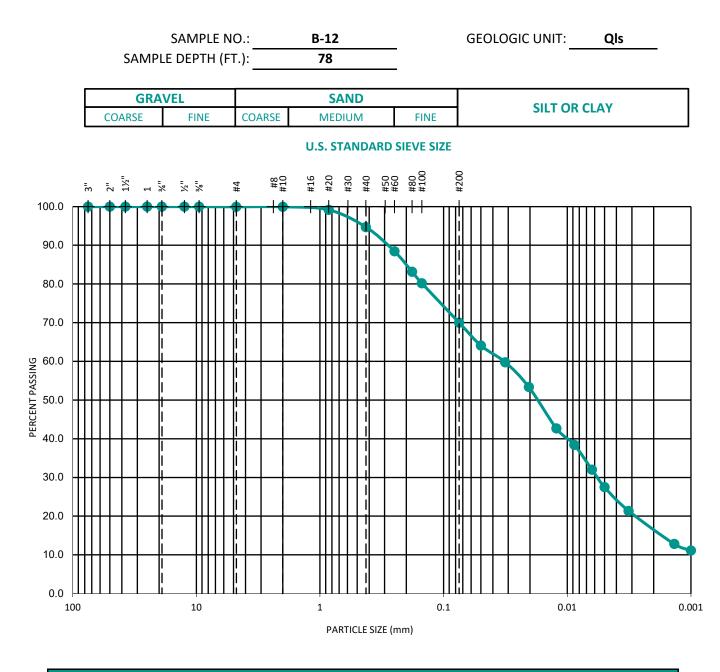






07227-52-02.GPJ

TEST DATA								
D ₁₀ (n	nm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	Cu	SOIL DESCRIPTION		
0.001	.01	0.01058	0.11618	1.0	115.4	Sandy SILT		

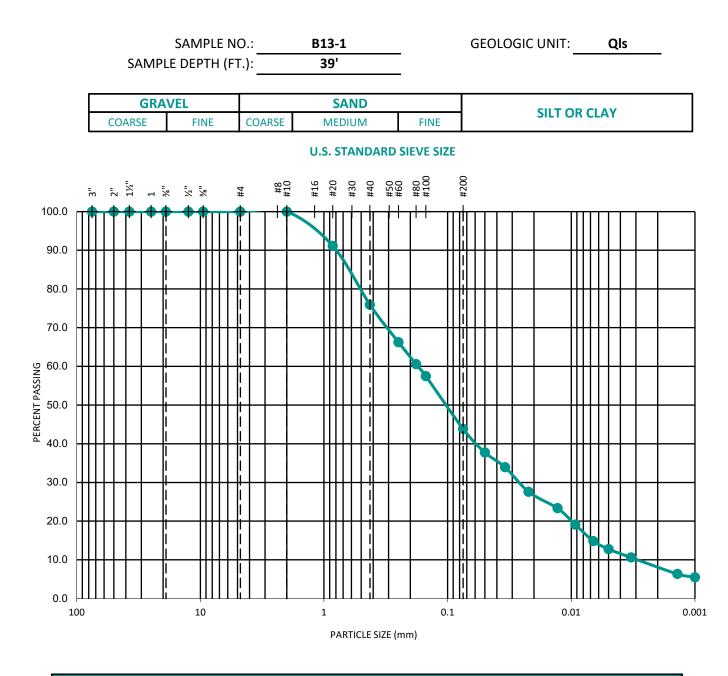


GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 SIEVE ANALYSES - ASTM D 135 & D 422

OLIVE PARK APARTMENTS

PROJECT NO.: G3035-52-01

I	TEST DATA									
ſ	D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	Cu	SOIL DESCRIPTION				
ſ		0.00573	0.03271			SILT with sand				


GEOCON INCORPORATED

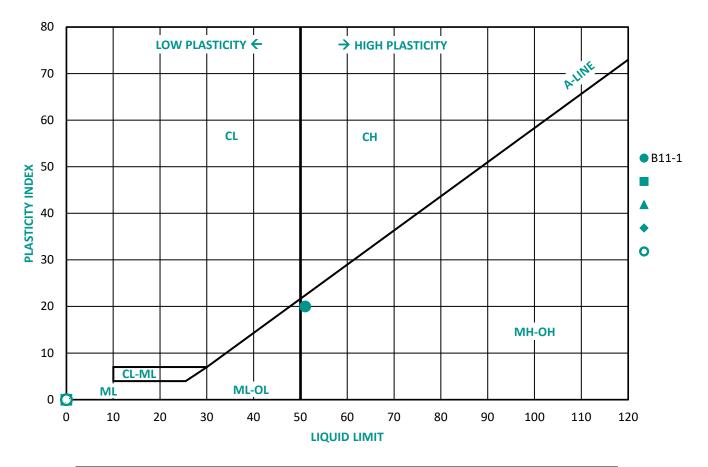
GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 SIEVE ANALYSES - ASTM D 135 & D 422

OLIVE PARK APARTMENTS

PROJECT NO.: G3035-52-01

TEST DATA								
D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	Cu	SOIL DESCRIPTION			
0.00301	0.02675	0.17441	1.4	58.0	Silty SAND			

GEOCON



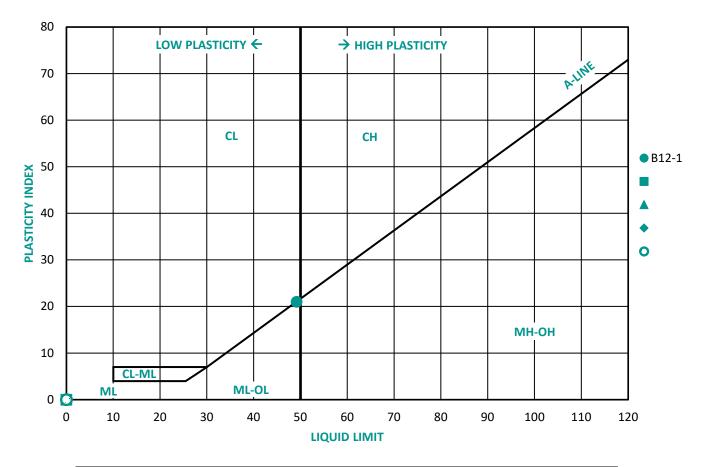
GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 SIEVE ANALYSES - ASTM D 135 & D 422

OLIVE PARK APARTMENTS

PROJECT NO.: G3035-52-01

TEST RESULTS										
SAMPLE NO.	GEOLOGIC UNIT		PLASTIC LIMIT	PLASTICITY INDEX	SOIL TYPE					
B11-1	Qls	51	31	20	MH-OH					

SOIL TYPE DESCRIPTION							
СН	High-Plasticity Clay						
CL	Low-Plasticity Clay						
ML	Low-Plasticity Silt						
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt						
МН-ОН	High-Plasticity Silt to High-Plasticity, Organic Silt						
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt						


GEOCON INCORPORATED

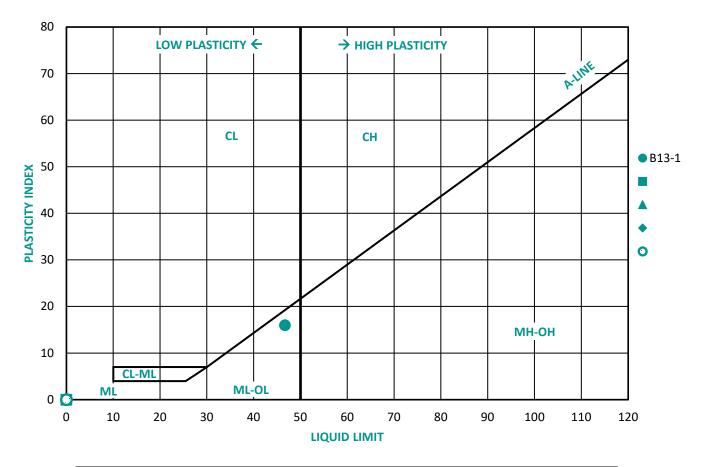
GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 **PLASTICITY INDEX - ASTM D 4318**

OLIVE PARK APARTMENTS PROJECT NO.: G3035-52-01

TEST RESULTS										
SAMPLE NO.	GEOLOGIC UNIT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	SOIL TYPE					
B12-1	Qls	49	28	21	ML-OL					

SOIL TYPE DESCRIPTION							
СН	High-Plasticity Clay						
CL	Low-Plasticity Clay						
ML	Low-Plasticity Silt						
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt						
MH-OH	High-Plasticity Silt to High-Plasticity, Organic Silt						
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt						

GEOCON INCORPORATED



GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 **PLASTICITY INDEX - ASTM D 4318**

OLIVE PARK APARTMENTS

PROJECT NO.: G3035-52-01

TEST RESULTS										
SAMPLE NO.	GEOLOGIC UNIT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	SOIL TYPE					
B13-1	Qls	47	31	16	ML-OL					

SOIL TYPE DESCRIPTION							
СН	High-Plasticity Clay						
CL	Low-Plasticity Clay						
ML	Low-Plasticity Silt						
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt						
МН-ОН	High-Plasticity Silt to High-Plasticity, Organic Silt						
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt						

GEOCON INCORPORATED

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159 **PLASTICITY INDEX - ASTM D 4318**

OLIVE PARK APARTMENTS PROJECT NO.: G3035-52-01

APPENDIX C

PREVIOUS BORING LOGS, TRENCHES AND RESULTS OF LABORATORY TESTING (GEOCON, 1985 AND GEOTEK, 2007)

FOR

OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

PROJECT NO. G3035-52-01

File No. D-3453-MO2

July 1, 1985

	July	1, 19	85					
DEPTH IN FEET	SAMPLE NO.	ЛТНОГОСЛ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 1 ELEVATION292'DATE DRILLED6/5/85 EQUIPMENTBucket Rig	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
			Π	,	MATERIAL DESCRIPTION			
- 0 - - 2 -				-	COLLUVIUM Medium dense, humid, light brown, Clayey SAND	-		
- 4 - - 4 -					LANDSLIDE DEBRIS Dense, humid, olive Silty SAND			
- 6 -					grades into very dense, moist, olive gray, highly fractured SANDSTONE	- -	¥.	
- 8 -					Dense, humid, cohesionless, whitich gray,	þ F		
- 10 -					medium-grained SAND		-	
- 12 - 					Medium stiff to soft, humid, olive-gray, highly fractured CLAYSTONE with numerous randomly oriented minor shear planes			
- 16 -					grades into hard, fractured Sandy SILTSTONE	-		
- 18 - - 20 -						-		
- 22-					Very dense, humid, whitish-gray, fractured SANDSTONE			
- 24-						-		
26- - 28-					becomes massive, light gray, weakly cemented, medium- to coarse-grained SANDSTONE	-		5. A
30	0 1-1			oct P	oring 1 C	ontinu	ed nex:	t page
	VPLE SYN			🗆 sa	MPLING UNSUCCESSFUL	E SAMPLE (I	JNDISTURE	BED)
	00.05.01		CONT					

....

File No. D-3453-MO2 July 1, 1985

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОВУ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 1 CONTINUED ELEVATIONDATE DRILLED	VETRATION SISTANCE LOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
	SA	5	GRC	sc)	EQUIPMENT		DR	≥ö
- 30 -					MATERIAL DESCRIPTION			
- 32 -					Highly fractured, humid, olive-gray CLAYSTONE, contact sheared, dips steeply NW	-		
- 34 -						-		
- 36 -				\geq	-—— dense, humid, whitish-gray cohesionless SAND		- -	
- 38 -					<pre> grades into highly fractured, dark gray, fine Silty SANDSTONE </pre>			2
- 40 -			'я Г			-	-	
- 42 -	1				r- becomes light gray, medium to coarse SANDSTONE	 		
- 44 -				$\langle \rangle$	highly cemented zone		С	
- 46 -			>			-		
- 48 -	٠				grades into medium-grained to fine SANDSTONE	-		-
- 50 -						-		ň
	o a				becomes well cemented	-		
		<u>~~</u> ~~			Shear zone, thickness l", attitude N10°W/6°W	-		
- 56 -	Х				PALEOSOL Hard, well cemented, humid, mottled rust btown-olive gray, Sandy SILTSTONE/SANDSTONE	-		
- 58 -								
60		<u>.</u>	Ц					
Figure	A-2,	Log of	Τe	est Bo		Continu	ed nex	t page
SAM	IPLE SYN	BOLS			MPLING UNSUCCESSFUL I STANDARD PENETRATION TEST I DRIVE			

File	No.	D-3453-MO2
Tee 1	1 .	1005

DEPTH IN FEET	SAMPLE NO.		GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 1 CONTINUED	FRATION STANCE WS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %		
E E	SAMF	LITH	ROUN	SOIL (U.S	ELEVATIONDATE DRILLED	PENETRAT RESISTAN BLOWS/I		CON		
- 60 -			0		MATERIAL DESCRIPTION					
			Π		·	_				
- 62 -				· .	т	-				
-		L	$\left \right $		Break in log	-				
≻ 74 -										
	A II				/ DECOMPOSED GRANITICS Contact attitude N70°E/10°N, contact					
- 76 -		$\overline{}$	П		sheared, thickness of shear zone 1"-10", apparently discontinuous, very stiff,			-		
- 78 -					fractured, dark olive CLAYSTONE grades into very dense, moist, olive gray,	-				
-					Clayey, very coarse SANDSTONE	$\left \right $				
- 80 -						-				
	9									
					BORING TERMINATED AT 82.0 FEET	-				
						-				
						-				
						-				
[]										
						L				
	Ŷ					-	4			
				-		$\left \right $	-			
F -										
		-								
	9					-				
					v. 4	-				
-						-				
- 1				τ.		-				
Figure	e A-3,	Log of	Τ	est Bo	oring 1 Continued					
SAN	SAMPLE SYMBOLS SAMPLE SYMBOLS Image: sampling unsuccessful discussion for the sample (undisturbed) Image: sample discussed or bag sample Image: sample discussion for the sample discussice discussice discuse discussion for the sample di									

File No. D-3453-M02

July 1, 1985

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĞY	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 2 ELEVATION 259' DATE DRILLED 6/6/85 EQUIPMENT Bucket Rig	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
0	1				MATERIAL DESCRIPTION			
- 2-				а (Ф)	TOPSOIL/COLLUVIUM Medium stiff, humid, blackish-gray, Sandy CLAY	-	5	
4 - - 4 - - 6 - - 8 - - 10 - - 12 - - 12 - - 14 - - 16 - - 18 - - 18 - - 18 - - 20 - - 22 - -					SANTIAGO FORMATION Very dense, humid, gray, fractured Sandy SILTSTONE grades into weakly cemented coarse SANDSTONE Stiff, humid, fractured, gray SILTSTONE, bedding attitude N50°W/6°SW - grades into very dense, humid, light gray, slightly fractured, very fine SANDSTONE minor shear plane, thickness approximately 1/16", dips south 11° Very dense, humid, massive, whitish-gray, weakly cemented, medium-grained SANDSTONE			
						-		
30 Figur	- <u>Α-</u> /ι	Log	E T	'est Ba	oring 2 C	ontinue	d nor	t page
	PLE SYN			0 san	MPLING UNSUCCESSFUL Image: Standard Penetration test Image: Standard Penetration test TURBED OR BAG SAMPLE Image: Standard Penetration test Image: Standard Penetration test	SAMPLE (U	NDISTURB	

	File No. D-3453-MO2 July 1, 1985							
DEPTH IN FEET	SAMPLE NO.	ЛТНОГОСУ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 2 CONTINUED ELEVATIONDATE DRILLED6/6/85 EQUIPMENT	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
_ 30 _					MATERIAL DESCRIPTION			
- 32 - - 32 -					DECOMPOSED GRANITICS Very dense, humid, olive, weathered, coarse SAND in Clayey matrix, attitude of contact N60°E/30°SE, some highly cemented paleosol remnants along the contact			
 - 36 -		···· · + ·+			grades into very hard, very dense DECOMPOSED GRANITIC ROCKS	-		
		* * *				-		,
- 40 -		+.				-		
- 42 -		, † , †				-	e.	
- 44 - 		+ •+				-		
- 46 - - 48 -	t.	*≈≈≈ *			Shear zone, minor fault, attitude N-S/45°W	-		
- 40 - - 50 -		(+ * , ; ; ; ; ;						
- 52 -	-	· + · · · + · · · · · ·	5			-		÷
- 54 -		+ 、+ +				-		
- 56 -					BORING TERMINATED AT 55.0 FEET			
						-		
Figure	≥ A-5,	Log of	ΕT	est Bo	oring 2 Continued			
SAMPLE SYMBOLS Image: sampling unsuccessful Image: standard penetration test Image: sample (undisturbed) Image: sample dor bag sample Image: standard penetration test Image: sample sample (undisturbed)						ED)		

File No. D-3453-MO2 July 1, 1985

	July	1, 198	35					
DEPTH IN FEET	SAMPLE NO.	ЛЭОТОНІ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 3 ELEVATION 232 DATE DRILLED 6/6/85 EQUIPMENT Bucket Rig	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
0_		9			MATERIAL DESCRIPTION			
- 2-					LANDSLIDE DEBRIS Loose to medium dense, humid, olive-light gray, highly fractured, very fine Silty SANDSTONE	-		
- 4-						ŀ		
- 6-					Dense, dry, whitish-gray, highly fractured, very weakly cemented to cohesionless, medium- to coarse-grained SANDSTONE	-		
- 8-						Ļ		
- 10-	3-1					1/ 4''	112.9	8.8
- 12- 					-—— occasional rip-up clasts	-		
- 14- 		· I.[.1	~		-—— grades into dense, fractured, light gray, Silty, very fine SANDSTONE/SILTSTONE		-	-
- 18-						-	9 10	
- 20-	3-2				grades into highly fractured, humid, dark gray SILTSTONE	- 3	104.6	18.0
- 22- 								
- 24- 	Δ.	<pre></pre>						
- 26-	8			>	highly fractured, very fine SANDSTONE			
- 28-								
30 Tri au r				logt P		Continu	ed nov	t page
Figur	е А-б,	LOG O	<u>т</u> 1	_				
SAM	IPLE SYN	IBOLS				E SAMPLE (L		ED)
NOTE		SUBEACEC	ONE	TIONE EL	OWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			

File No. D-3453-M02

T111 T77	1	1985	
JULY	ولل	T)0)	

	Jury	1, 19	0)					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĞY	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 3 CONTINUED ELEVATIONDATE DRILLED EQUIPMENT	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
_ 30 _			Π		MATERIAL DESCRIPTION			
- 30 - - 32 -	3–3				<pre> minor shear zone, attitude approximately E-W/vertical loose, moist, tan fine Silty SAND</pre>	4	104.0	21.8
- 34 - 					minor shear zone, attitude N45°W/60°NE	-		
38 -					Medium stiff to soft, moist, blackish-gray, Silty CLAY major shear zone, thickness 3"-4", attitude	-		ž
40 -	3-4				N60°W/4°SW	20	115.1	16.1
- 42 - - 44 -					SANTIAGO FORMATION Stiff, fractured, humid, light brown CLAYSTONE with shiny parting surfaces and randomly oriented minor shear planes	-		
- 46 -					<pre>grades into very dense, massive, humid, light gray Silty fine SANDSTONE]</pre>	-		
- 48 -					Very dense, massive, moist, whitish-gray, weakly cemented coarse SANDSTONE	-	2	
- 50 - 				α.	very hard, highly cemented SANDSTONE bed, attitude horizontal	-		
- 52 - 					└── light general seepage	-	*	*
					Unconformity, hard, wet, dark olive, fractured SILTSTONE, contact dips approximately 25°W	-		
- 58 -						-		
62					BORING TERMINATED AT 62.0 FEET			
Figur	e A-7,	Log of	T	est Bo	ring 3 Continued			
SAN	IPLE SYN	MBOLS		🗆 SA 🛛 DIS	MPLING UNSUCCESSFUL STANDARD PENETRATION TEST TURBED OR BAG SAMPLE STURBED OR BAG SAMPLE SONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			

File No. D-3453-M02

July 1, 1985

	July	1, 198	00					
DEPTH IN FEET	SAMPLE NO.	КОТОНТІ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 4 ELEVATION 282 DATE DRILLED 6/7/85 EQUIPMENT Bucket Rig	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
0			Π		MATERIAL DESCRIPTION	Ι	1	
 - 2 -	Ð				TOPSOIL/COLLUVIUM Medium stiff to stiff, humid, blackish- brown, Silty CLAY	-	-	
- 4 -						-		
- 6 -	-				LANDSLIDE DEBRIS Loose, humid to dry, light brown-tan, very fine Silty SAND			,
- 8 -						F		C.
- 10 - 	a.				grades into medium dense, humid, light brown-tan, cohesionless to very weakly cemented, very fine, poorly graded, Silty SAND with occasional angular sandstone fragments	- - -		
- 14 -	÷	111						
- 16 -	4-1	T.I.S. Miriti				2	104.6	9.1
- 18 -	4-2	Ň.					BULK :	SAMPLE
20 -					Break in log	Ē		
52 -					Basal Shear Zone, soft, sheared, dark	[
- 54 -					olive, Silty CLAY, thickness 2"-4", attitude near horizontal	-		
- 56 -				/	SANTIAGO FORMATION	-		
- 58 -					Very stiff, fractured, dark olive CLAYSTONE with shiny parging surfaces	-		
60		LLY.	Ц					
Figure	≥ A-8,	Log of	T	est Bo	ring 4 C	ontinue	ed next	t page
	IPLE SYM	1		🛛 DIS		E SAMPLE (L		
NOTE: THE	LOGOFSUB	SURFACEC	OND	ITIONS SH	OWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND E REPRESENTATIVE OF SUBSUBFACE CONDITIONS AT OTHER LOCATIONS AND TIMES			

AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

		No. D- 1, 198		53-MO2	2			
DEPTH IN FEET	SAMPLE NO.	гітногоду	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 4 CONTINUED ELEVATIONDATE DRILLED EQUIPMENT	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
- 60 -					MATERIAL DESCRIPTION			
- 62 - - 62 - - 64 - - 66 -					grades into hard, olive, Clayey massive SILTSTONE grades into very dense, massive, humid, olive-gray, medium cemented, very fine SANDSTONE		- - -	
					BORING TERMINATED AT 65.0 FEET			
	.e.							
Figure	A-9,	Log of	Τe	est Bo	ring 4 Continued			
SAMPLE SYMBOLS Image: sampling unsuccessful is turbed or bag sample Image: standard penetration test is the sample is the s					ED)			

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

.

×

File	No.	D-3453-M02

July 1, 1985

	July	1, 19	85					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 5 ELEVATION <u>320'</u> DATE DRILLED 6/7/85 EQUIPMENT <u>Bucket Rig</u>	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
			П		MATERIAL DESCRIPTION	1		
- 0 -		; / /• ; ;	Η		TOPSOIL/COLLUVIUM			
 - 2 -					Medium stiff, black, dry, Sandy CLAY	-		(#1)
- 4 -					grades into medium dense, moist, mottled Silty SAND		J.	*
6	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	.1.1.1.			*	1		-
- 8 -				,	LANDSLIDE DEBRIS Medium dense to dense, moist, mottled, light brown-tan, highly disturbed, fine			
	1	1 . 			Silty SAND with angular sandstone fragments	-		
 - 12 -					- soft, moist, gray, Silty CLAY/SILT	-		
_ 14 _					Medium dense, humid, whitish-gray, cohesionless SAND with numerous soft SILTSTONE and CLAYSTONE fragments			
- 16 - 				>	minor shear zone, thickness 1", attitude	-	-	
- 20 -					N50°W/35°SW	-		
		ملحم		<u></u>	Highly fractured, sheared, olive CLAYSTONE			
- 24 -				, ,	major shear zone, thickness 4"-6", attitude N20°W/16°W		×	
- 26 -	£	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/	J 			
- 28 -					CLAYSTONE with shiny parting surfaces and randomly oriented minor shear planes			
30	. 10		Ļ	Test D	/	Ll		
Figure	è A−10,	Log o)Í '	rest B	oring 5 C	ontinue	d next	t page
SAM	IPLE SYM	BOLS				E SAMPLE (U ER TABLE OR		1
		SUBEACEC	ONE		OWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			

File	No.	D-3453-MO2

T 1	1 7	
July	1.	L985

	Ö			SS (1	BORING 5 CONTINUED	NOLACON.	SITY	RE T, %
DEPTH IN FEET	SAMPLE NO	ГІТНОГОĞY	GROUNDWATER	SOIL CLÁSS (U.S.C.S.)	ELEVATIONDATE DRILLED	ETRA SISTAN OWS/	P.C.F.	MOISTURE CONTENT, 6
	SAN	5	GRO	(L SOI	EQUIPMENT	BL	рву	¥О
30					MATERIAL DESCRIPTION			
- 32 -					grades into very dense, moist, olive-gray, Sandy SILTSTONE/very fine SANDSTONE			
- 34 -						-		
- 36 -						-	1	
- 38 -	-	111			grades into very dense, massive, humid, whitish-gray, Silty fine SANDSTONE	-		
 - 40 -				_	grades into very dense, humid, whitish-	-		ų
 - 42 -	1				tan, weakly cemented, well graded SANDSTONE			
		0000			numerous pebbles and siltstone, rip-up clasts	-		
- 48 -		0 0 0		\geq		-		Υ.
- 50 -				<u> </u>	-—— approximately 3" thick SILTSTONE bed, attitude N10°W/2°W	-		
- 52 -				У		-	80°	
- 54 -	2				Unconformity, attitude of contact N80°W/30°S contact highly irregular			
- 56 -					hard, humid, dark gray, Sandy SILTSTONE/ SANDSTONE Break in log			
- 60 -		V			break in log	-		
62			Γ		BORING TERMINATED AT 61.0 FEET			
Figute	e A−11,	Log o	f	Test B	oring 5			
SAM	IPLE SYN	BOLS			MPLING UNSUCCESSFUL Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sturbed or bag sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test			

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

î.

File	No.	D-3453-M02
T11 1 17	1 1	1085

	Jury	1, 190				7		
Ξ.	0 N	JGΥ	VATE	ASS 3.)	BORING 6	OFN-	SITY	НЕ Т, %
DEPTH IN FEET	SAMPLE NO	ГІТНОГОВУ	NDV	SCC	ELEVATION 264 DATE DRILLED 6/7/85	STA STA	DEN C.F.	ISTU
<u> </u>	SAM	Ē	GROUNDWATER	SOIL CLASS (U.S.C.S.)	EQUIPMENT Bucket Rig	PENE RESI BLO	DRY DENSITY P.C.F.	MOISTURE CONTENT, 6
			Ē		MATERIAL DESCRIPTION			
		/	П		TOPSOIL/COLLUVIUM			
		/	1	_	Stiff, dry, grayish-brown, calichefied,	-		
- 2-		/			Sandy CLAY			ана 1. 1
		1	1			-		ž
- 4-		/				-	1	
					LANDSLIDE DEBRIS			
- 6-					Loose, dry, grayish-tan, cohesionless SAND	-		
						-		
- 8-	-					-		
						-	1	
- 10-						-		
- 1	u.		\vdash		Highly fractured, humid, dark olive, Silty	-		
- 12-		I II			CLAYSTONE, attitude N20°E/9°W	-		100
┠┤			\vdash			-		
- 14-					SANTIAGO FORMATION			
					Very dense, humid, massive, olive gray	-		·
- 16-					SANDSTONE	-		
+					grades into light olive gray SANDSTONE	[*]		*
- 18-	4					-		
- +					Very dense, humid, whitish gray-tan, weakly			
- 20-					cemented, well graded SANDSTONE	-		2
┝┤						-	ς	
- 22-				1	very coarse with numerous pebbles and	-		
		0.0.		\setminus	rip-up clasts	-		
- 24-				\backslash		-		
		0.00		À		-		
- 26-				/		-		
		V. 0		/		-		
- 28-		· • •		i	SILTSTONE bed	-		
		:111'			\int_{-}^{-}	-		
30 Figure	A 10	Tee		Tost T	Parina 6			
rigure	= A-12,	, год с	Σ	lest H		ontinue	ed nex	t page
SAM	PLE SYM	1BOLS			MPLING UNSUCCESSFUL			ED)
	STATE E OTTABOLO VILLE DISTURBED OR BAG SAMPLE CHUNK SAMPLE WATER TABLE OR SEEPAGE							

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OF TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

ł

.

File	No.	D-3453-MO2
		The second second second second second second second second second second second second second second second se

	July	1,	1985	
--	------	----	------	--

DEPTH IN FEET	SAMPLE NO.	гітногоду	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 6 CONTINUED ELEVATIONDATE DRILLED EQUIPMENT	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
- 30-				,	MATERIAL DESCRIPTION			
- 30 - - 32 - - 34 - - 36 - - 38 - - 38 - - 40 -					<pre>very light seepage Unconformity, attitude of contact N65°E/6°NE, hard, highly fractured, moist, dark olive- gray CLAYSTONE with shiny paring surfaces and randomly oriented minor shear zones, contact with the overlying sandstone sheared grades into hard, massive, humid, gray SILTSTONE</pre>		¥	
						-		
	4 12				BORING TERMINATED AT 42.0 FEET			
Figure	A-13,	Log o	f !		oring 6 Continued			
SAM	IPLE SYN	MBOLS			MPLING UNSUCCESSFUL Image: Standard penetration test Image: Standard penetration test STURBED OR BAG SAMPLE Image: Standard penetration test Image: Standard penetration test			

File	No.	D-3453-M02

Julv	1	1985
Jury	1,	T)0)

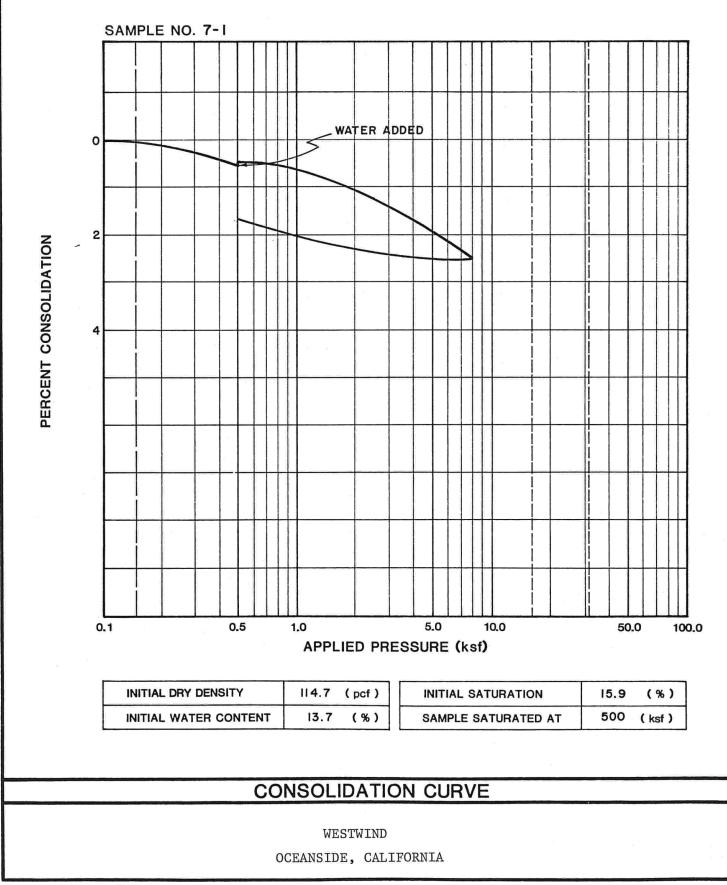
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 7 ELEVATION 204 DATE DRILLED 6/12/85 EQUIPMENT Mobile B-50	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
- 0 -			Ц		MATERIAL DESCRIPTION			
- 2 -				=	TOPSOIL Soft, dry to humid, blackish-gray, Sandy CLAY	-	æ.,	
- 4 - - 6 - - 8 -	7–1				ALLUVIUM Loose to medium dense, moist to wet, dark grayish-brown, Clayey SAND grades into medium dense, wet, brownish- gray, Silty fine SAND	28	, 114.7	
- 10 - - 12 -	7-2		Ţ			23	100.9	
- 14 - - 16 -	7-3		_		Very dense, saturated, dark gray, Silty SAND with soft, blackish-gray CLAY interbeds Break in log	- - 40	112.3	-
- 24 -					break in iog	-		-
- 26 - - 28 -					LANDSLIDE DEBRIS? OR WEATHERED SANTIAGO FM. Medium stiff, saturated, mottled olive green-purple, Sandy CLAY/SAND			
- 30 - - 32 -						-		
- 34 - - 36					BORING TERMINATED AT 35.0 FEET	-		
	A-14.	Log o	f	Cest B	oring 7			
	PLE SYN			🗆 SAM	MPLING UNSUCCESSFUL Image: Standard Penetration test Image: Standard Penetration test STURBED OR BAG SAMPLE Image: Standard Penetration test Image: Standard Penetration test			ED)

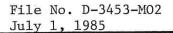
		No. D. 1, 198		53-MO2				
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĞY	GROUNDWATER	SOIL CLASS (U.S.C.S.)	BORING 8 ELEVATION 185 DATE DRILLED 6/12/85 EQUIPMENT Mobile B-50	PENETRATION RESISTANCE BLOWS/FT.	DRY DENSITY P.C.F.	MOISTURE CONTENT, %
0			Π		MATERIAL DESCRIPTION			
- 2 -					ALLUVIUM Very loose, dry, whitish-gray, poorly graded fine SAND	-		
4					grades into loose, moist, mottled light gray-black SAND/CLAY	-	,	
- 6 -	8-1					19	102.0	
- 8 -					grades into moist to wet, olive gray, pooly graded fine Silty SAND	-		
- 10 -	8-2		¥			21	103.0	
- 12 -		901). 991)				-	,	
- 14 - 	8-3				grades into loose to medium dense, interbedded fine SAND and Sandy CLAY	20	95.9	
- 16 - 					Break in log	-		
- 34 - 	ň			-	Soft, saturated, black Silty CLAY	-		
- 36 - 	-				Very dense, saturated, light olive, massive, very fine Silty SANDSTONE	-	×.	
- 38 - 						-		
- 40 - 						-		
- 42 - 	9					-		
- 44 -	-				ΣΩΣΙΝΟ ΠΕΡΜΙΝΑΠΕΊ ΑΠ ΑΓ ΑΓ Ο ΕΕΕΠ	-		
46	A 1 5	Loc	Ll f	Foot P	BORING TERMINATED AT 45.0 FEET			
	PLE SYN			🗆 sai	oring 8 MPLING UNSUCCESSFUL Image: Standard penetration test			

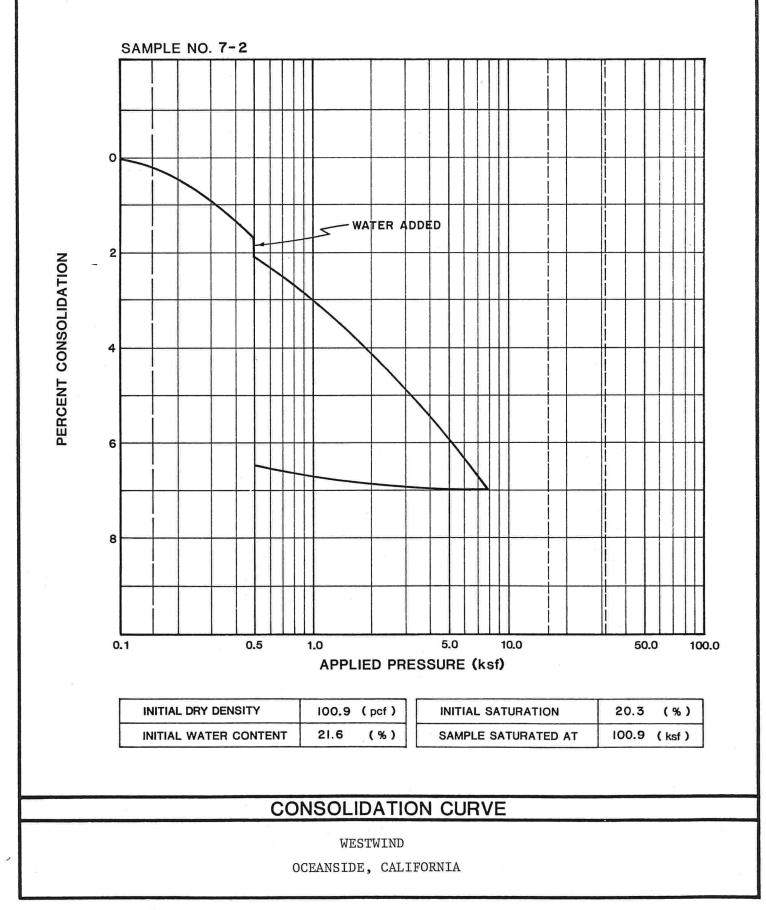
File No. D-3453-MO2 July 1, 1985

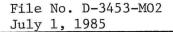
TABLE I

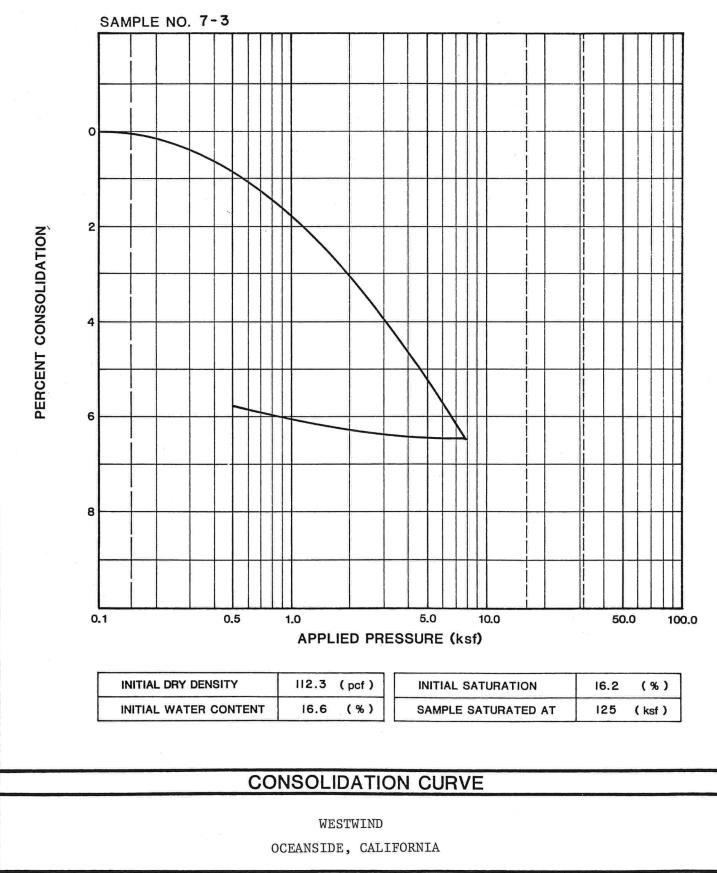
Summary	of In-Place	Moisture	-Density and	Direct Shear	Test Results
Sample No•	Depth ft	Dry Density pcf	Moisture Content %	Unit Cohesion psf	Angle of Shear Resistance Degrees
3-1 3-2 3-3	10 20 30	112.9 104.6 104.0	8.8 18.0 21.8	1110	19
3-4 4-1 *4-2	40 15 16-19	115.1 104.6 104.8	16.1 9.1 13.7	310	26

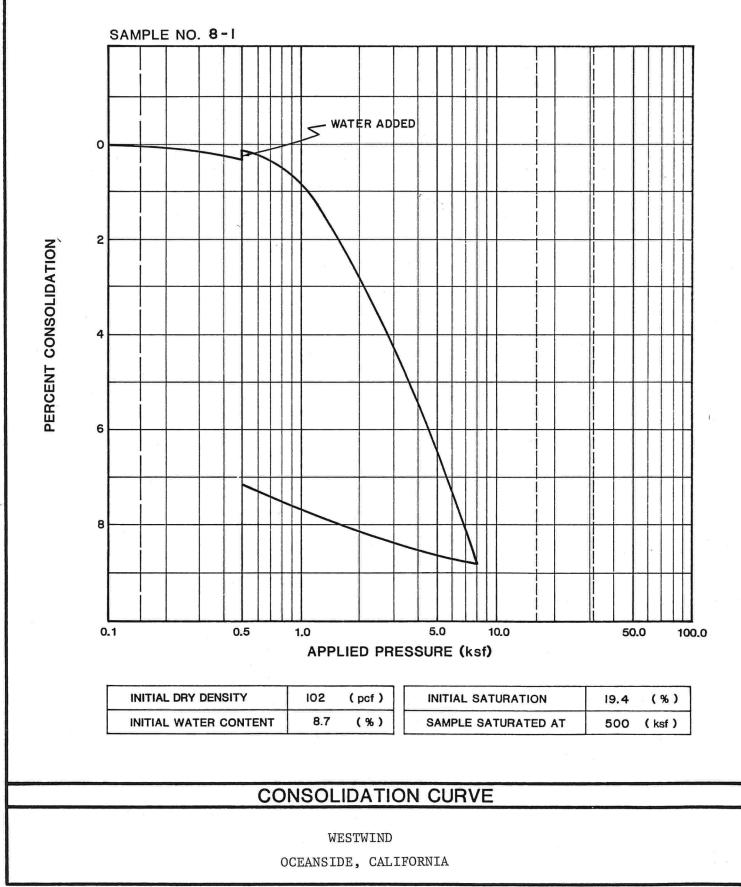

TABLE II

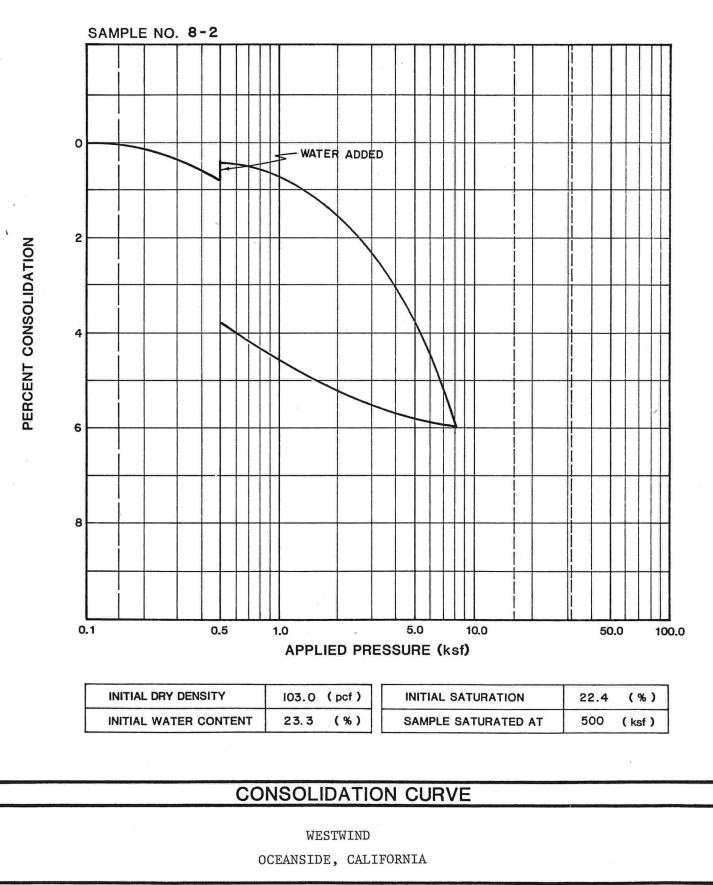

Summary of Laboratory Compaction Test Results

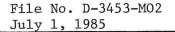

ASTM D1557-70

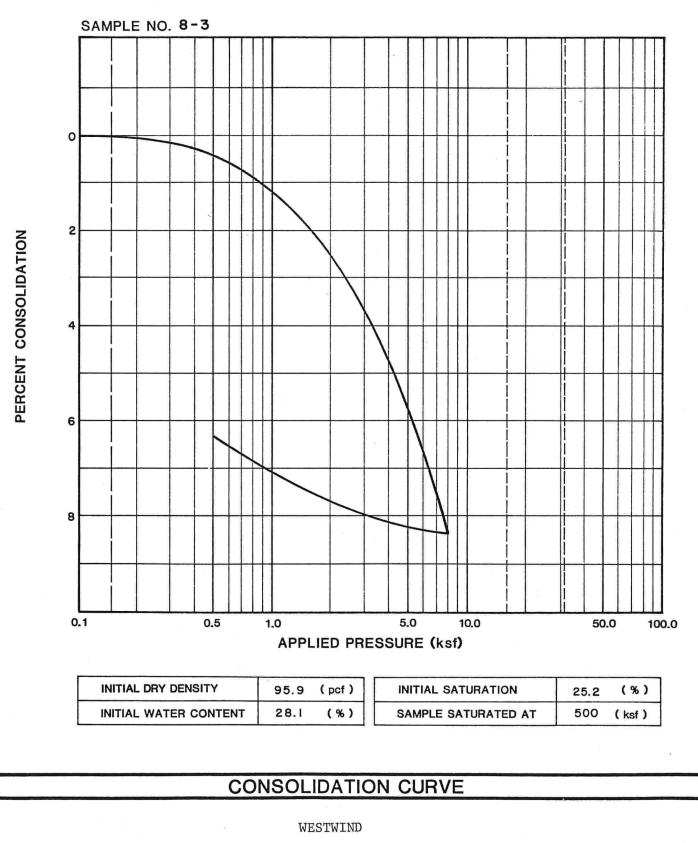

		Maximum Dry	Optimum
Sample		Density	Moisture
No.	Description	pcf	% Dry Wt.
4-2	Light brown, fine SAND	116.6	13.3


*Sample remolded to approximately 90 percent of maximum dry density at near optimum moisture content. File No. D-3453-MO2 July 1, 1985








File No. D-3453-MO2 July 1, 1985

File No. D-3453-MO2 July 1, 1985

OCEANSIDE, CALIFORNIA

	ECTI				uctures LLC Residential Dvlp	DRILL DRILL METH		Larive 30" Bucket		GED BY: RATOR:		BO/JB Richard/Adam
PROJ					9SD3			Kelly Bar	RI	G TYPE:		Earthdrill 45L
LOCA	HON			See S	ite Plan	ELEVATI	ON:	304 feet above MSL		DATE:		11/28/2006
		SAMPL	ES									oratory Testing
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol				TB-1		Vater Content (%)	Dry Density (pcf)	Others
					Landslide Deposit		FIION					
		1	B1-1	SM	1 inch fragments of	oist, loose, silty	/, fine 1 , iron c	to medium SAND, fr xide stain, rootlets.	iable	10.7	96	Kelly Bar 3500 Lbs. SH
		ı	D1-1							10.7	90	51
	Λ		B1-2									SR, SA
10 1 1	-				@ 11': several sub- dipping steeply to th contact @ 13.5 feet	e SE @ 40-60	ed frac degre	ctures (1/2''), infilled, es, continuous to				
												C: N50W 35NE
15 - - - - -		Push	B1-3	CL	Light olive gray silty contact, fractured/ju interbeds with tan si @ 16.5': remolded c around bore hole, sl orientated, polished healed fractures	mbled appeara andstone. blive gray clay : ightly undulati	ance, seam (1/4"), soft, continuo	us	21.5	117	SH CS: N70E 11NE
20 -					@ 19': becoming mo	·	ess frac	ctured				
-					@ 21': random orier	itated slicks						
25 –					@ 23': grades to we scattered orange-br	ll indurated ma own rip up cas	assive ts.	silty claystone, som	9			Kelly Bar 2400 Lbs.
_												C: N40W 8NE
30				SM	Tan to light gray, mo massive	olst, very dense	e, silty	fine to medium SAN	D			
					(continued)							
LEGEND	Sam	ple ty			RingSPT	Small Bu		Large Bulk		Recovery		✓Water Table
Ē	Lab testing: AL = Atterberg Limits EI = Expansion Index SA = Sieve Analysis RV = R-Value Test SR = Sulfate/Resisitivity Test SH = Shear Test CO = Consolidation test MD = Maximum Density								•			

PROJ	LIENT: Urban Structur ROJECT NAME: Oceanside Vista Res ROJECT NO.: 3129SD		side Vista	Residential Dvlp DRILL METHOD: 30" Bucket	OD: 30" Bucket OPERATOR: Richard			BO/JB Richard/Adam	
LOCA					ISD3 HAMMER: Kelly Bar te Plan ELEVATION: 304 feet above MSL	RIG	DATE:	Earthdrill 45L 11/28/2006	
	non		50	1				طم ا	
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: GTB-1		Water Content (%)	Dry Density (pcf)	oratory Testing క
	S	ш			MATERIAL DESCRIPTION AND COMMENTS		<u> </u>		
30 -		15/8"		SM	Landslide Deposits (continued) Tan to light grav, moist, very dense, silty fine to medium SAND				
			B1-4		@ 32': pockets of silty claystone within massive silty sandstone				
35 –					friable, massive.				
					@ 36':increasing in grain size; becoming coarse grained sand				
40 -					@ 41': scattered 1" to 3" rip up casts of silty claystone				
45 -	/	10	B1-5		@ 44': sharply defined iron oxide stained 3" layer of coarse grain sandstone, undulating near horizontal attitude. @ 44.4 to 44.9': Basalrupture Surface: 5 inch thick zone of remiclay, sheared and highly polished surfaces, iron oxide at base, refractures	olded			RS: N50W 2-4NE SH Driller utilized down crowds
50				CL	Santiago Formation Olive gray, moist, hard silty CLAYSTONE very dense,silty fine SANDSTONE, well indurated, massive, no fractures.				
				SM	@ 51': grades to light gray, damp, fine to medium silty SANDSTONE				C: N30E 8 SE
55			P1 6		@ 54': cemented zone in sandstone @ 55' becoming moist				Kelly 1300 Lbs.
60 -			B1-6		(contined)				
<u> </u>	Sam	ple ty	pe.		-Ring 📓SPT 🛛Small Bulk 🛛Large Bulk	No 5	lecovery		🚽Water Table
LEGEND	Jaill	pie ty	<u>.</u> .				lecovery		
Ĕ	Lab	testin	<u>g:</u>		rberg Limits EI = Expansion Index SA = Sieve Analysi rate/Resisitivity Test SH = Shear Test CO = Consolidation			R-Valu Maximu	e Test ım Density

CLIEN PROJ		NAME:			uctures LLC a Residential Dvlp	DRILLER: DRILL METHOD:	Larive 30" Bucket	LOGGE OPERA			BO/JB Richard/Adam
PROJ	ECT	NO.:		312	9SD3	HAMMER:	Kelly Bar	RIG	TYPE:		Earthdrill 45L
LOCA	TION	:		See S	bite Plan	ELEVATION:	304 feet above MSL		DATE:		11/28/2006
		SAMPL	ES	g				_	r		oratory Testing
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	MA	BORING NO.: (Water Content (%)	Dry Density (pcf)	Others
<u> </u>					Santiago Form	ation (continued)					
60 - - -	/	25/9"	B1-7	SM	@ 60': sharp fla Tan silty SANDS	t contact 1" thick iron ox STONE to pink to orang se, silty SANDSTONE,	kide layer: e, mottled, massive no bedding.		9.2	132	
65 					@ 67'- 68': well	cemented zone					
75		25/6"	B1-8		@ 75'- 81': gray	to orange mottled					
80	/	25/ 10"	B1-9 <u>B1-10</u>	SC	lweathered grani	ish green rip up casts v tic rock. noist, very dense, well i obbles of granitic rock,		1			Kelly 1800 Lbs. 30" auger and down crowds
90 -	Sam	nle tre	ne.		(continued)	Secold Dudy					₩Water Table
LEGEND	তমা	ple ty	he:	-	RingSPT	Small Bulk	Large Bulk	No Re	covery	-	
LEG	Lab	testin	a:		erberg Limits lfate/Resisitivity Test	El = Expansion Index SH = Shear Test	SA = Sieve An CO = Consolio			R-Valu Maximu	e Test im Density

CLIEN					uctures LLC	DRILLER:	Larive	LOGGE			BO/JB
		NAME:	Ocean		Residential Dvlp	DRILL METHOD: HAMMER:	30" Bucket	OPER/	ATOR: TYPE:		Richard/Adam Earthdrill 45L
PROJ					9SD3 ite Plan	ELEVATION:	Kelly Bar 304 feet above MSL		DATE:		11/28/2006
	T	SAMPL	ES							Lab	oratory Testing
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	M				Water Content (%)	Dry Density (pcf)	Others
					Santiago Form	nation (continued) moist, very dense, well in					
90				SC	Greenish Gray, with 4" to 8" gr	anitic rock cobbles.		itus			
- 1	-					-HOLE TERMINATED	OAT 95 FEET-				
					Practical refusa No groundwate Hole backfilled	al at 95 feet r encountered with 80 cft bentonite and	cuttings				
						K	<u> </u>				
LEGEND	<u>San</u>	nple ty	/ <u>pe</u> :		RingSP	TSmall Bulk	Large Bulk	No R	ecovery		₩Water Table
Ľ	Lab testing:				erberg Limits Ilfate/Resisitivity Tes	EI = Expansion Index st SH = Shear Test	SA = Sieve Ana CO = Consolida			= R-Valı = Maxim	ue Test um Density

Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Borns Born	Richard/Adam Earthdrill 45L Laboratory Testing
SAMPLES add is is bit is is <	Arsung Kelly Bar 3500 Lbs.
Boring No.: GTB-2 Boring No.: GTB-2 Burner Boring No.: GTB-2<	Arsung Kelly Bar 3500 Lbs.
SM Dark Brown, damp, loose, silty fine SANDS push/ 18" B2-1 CL Light greenish gray, v.moist, soft, silty CLAY mixed with tan fine to medium sands @ 3.5: clay seam 1/4 inch @ 4.7: Basalrupture surface, remolded clay seam greenish gray, highly plastic, saturated, undulatory surface Santiago Formation Gray moist, medium dense, silty CLAYSTONE with some sand closed fractures, no apparent bedding. 10 5 B2-3 CL 10 5 B2-3 CL SM @ 13.5' grades to light gray, damp, dense, silty fine to medium SANDSTONE massive	
SM Dark Brown, damp, Toose, silty fine SANDS push/ 16" B2-1 CL Light greenish gray, v.moist, soft, silty CLAY mixed with tan fine to medium sands @ 3.5: clay seam 1/4 inch @ 4.7: Basainputure surface, remolded clay seam greenish gray, highly plastic, saturated, undulatory surface Santiago Formation Gray moist, medium dense, silty CLAYSTONE with some sand closed fractures, no apparent bedding. 10 5 B2-3 11 5 B2-3 12 SM @ 13.5' grades to light gray, damp, dense, silty fine to medium 15 SM @ 13.5' grades to light gray, damp, dense, silty fine to medium	
B2-2 CL Light greenish gray, v.moist, soft, silty CLAY mixed with tan fine to medium sands @ 3.5': clay seam 1/4 inch @ 4.7': Basalrupture surface, remolded clay seam greenish gray, highly plastic, saturated, undulatory surface B2-3 CL B2-3 CL B2-3 CL CL Gray moist, medium dense, silty CLAYSTONE with some sand closed fractures, no apparent bedding. 10 5 B2-3 Sm (20, 13.5') grades to light gray, damp, dense, silty fine to medium SANDSTONE massive 15 SM 20, 13.5' grades to light gray, damp, dense, silty fine to medium	CS: N40E 16NW
B2-3 CL Gray moist, medium dense, silty CLAYSTONE with some sand closed fractures, no apparent bedding. 10 5 B2-3 SM @ 13.5' grades to light gray, damp, dense, silty fine to medium SANDSTONE massive	
10 5 B2-3 CL Gray moist, medium dense, silty CLAYSTONE with some sand closed fractures, no apparent bedding. 10 5 B2-3 14.9 1 10 5 B2-3 0 13.5' grades to light gray, damp,dense, silty fine to medium SANDSTONE massive 14.9 1	RS: N40E 15SE
15 B2-3 B2-3 Image: state of the state o	SR, EI, MD, SH
15 SANDSTONE massive	115
	@14': down crowds
B2-4 B2-4 B2-4 B2-4 B2-4 B2-4 B2-4 B2-4	@21': down crowds and auger
25 - @ 25': becomes tannish-brown well indurated granitic detritus with fragments of decomposed granitic rock.	Kelly Bar 2400 Lbs.
30 -HOLE TERMINATED AT 30 FEET- No groundwater encountered Practical refusal at 30 feet Hole backfilled with 45 cft bentonite and cuttings.	
Sample type:RingSPTSmall BulkLarge BulkNo Recovery	₩Water Table
Sample type: Image:	

CLIEN PROJI		NAME:			Ctures LLC DRILLER: Larive Residential Dvlp DRILL METHOD: 30" Bucket	LOGGED BY: OPERATOR:		BO/JB Richard/Adam	
PROJECT NO.:				SD3 HAMMER: Kelly Bar	RIG TYPE:		Earthdrill 45L		
LOCA	TION	:		See S	te Plan ELEVATION: 265 feet above MSL	DATE:	11/30/06 & 12/1/06		
Depth (ft)	Sample Type	Blows/ 12 in Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: GTB-3	Vater Vater Content (%)	Dry Density (pcf)	oratory Testing 동 문	
					Landslide Deposits	~			
				SM	Tan moist, loose, slity fine SAND with small fragments of siltstone, CaCO3 stringers.			Kelly Bar 3500 Lbs.	
5				CL	Olive gray sitty CLAYSTONE @ 5.5': clay seam, broken and tumbled, FeOx stain on frac some clay healing @ 6': fractures tighten @ 8': grades to fine sandy claystone	ctures		S: N20W 20 NW	
					0 0 0 0		ļ		
10 -		8/10"	B3-1	SM	Light gray, moist, very dense silty fine SANDSTONE mass no discernable bedding.	12.7	124	@ 9': down crowds	
15		8/11"			@ 12': becomes fine to coarse sandstone. From 12' to 14. closed near vertical fracture, FeOx staining on fracture fac	ie. 14.8	118		
-			<u>B3-2</u>	SC	Olive gray, moist, dense, silty, clayey fine SANDSTONE massive			C: N40E 5SE	
20	X		B3-3		@ 20.6': becomes silty fine to coarse sandstone				
25 -								Kelly Bar 2400 Lbs.	
		7	B3-4		@ 28.5: scattered rip up casts of claystone	14.6	118	MD, EI	
30 <mark>-</mark>	X		B3-5	CL	Olive green, moist, dense, silty CLAYSTONE fractured, po surfaces, random oriented slicks. (continued)	blished		C: N80E 4 NW	
LEGEND	<u>San</u>	nple ty	/pe:		RingSPTSmall BulkLarge Bulk	No Recove		✓Water Table	
Ŭ	Lab	testir	<u>ng:</u>		erberg Limits EI = Expansion Index SA = Sieve , Ifate/Resisitivity Test SH = Shear Test CO = Conse		' = R-Va) = Maxir	lue Test num Density	

ROJE		NAME:		Jrban Strue iside Vista	ctures LLC Residential Dvlp	DRILLER: DRILL METHOD:	Larive 30" Bucket	_	ATOR:		BO/JB Richard/Adam
ROJE		-		3129		HAMMER:	Kelly Bar		TYPE:		Earthdrill 45L
OCA.	ION	:		See Sit	e Plan	ELEVATION:	265 feet above MSL		DATE:		11/30/06 & 12/1/06
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	MA	BORING NO.: (Water Content (%)	Dry Density (pcf)	oratory Testing set O
					Landslide Depo	osits (continued)					
30 - - - - -				CL	@ 31'-32' polish	ed surfaces, random or r plane, approximately 1	iented slicks, poorly /4" remolded clay				S: N40E 13-20NW
35 - -				SM	Light olíve gray,	moist, dense, fine to me	edium silty SANDSTC	ONE			
					@ 40': grades to	o damp, dense, coarse s	sandstone				
					Ŭ	in at base of coarse sa	ndstone.				
- - 				CL	surface, polished @ 43.4 remolde	ure surface, well develo	ick	ulatory			RS: N5-10W 5-8 SV
- - - 50 -				ML-SC	Santiago Forma Dark gray, moist SANDSTONE.	a <u>tion</u> , very dense clayey SIL	TSTONE and fine silt	ty			
					tight discontinuo	ared zone dicontinuous us fractures; no basal p polished surfaces; CaCG puth.	lane/clay seams obs	erved			
55 1 1 1 1 1 1											@ 55': down crowds utilized Kelly 1300 Lbs.
30 					No groundwater Hole backfilled v	-HOLE TERMINAT encountered v/ 60 cft bentonite and c					
	<u>San</u>	nple ty	pe:		-RingSPT		Large Bulk		Recovery		☑Water Table
	<u>Lab</u>	testin	<u>g:</u>		berg Limits ate/Resisitivity Test	EI = Expansion Index SH = Shear Test	SA = Sieve An CO = Consolic	•		= R-Valı = Maxim	ue Test um Density

		NAME:		side Vista	uctures LLC a Residential Dvlp	DRILLER: DRILL METHOD:	Larive 30" Bucket	LOGGE	ATOR:		BO/JB Richard/Adam
PROJI LOCA ⁻					9SD3 lite Plan	HAMMER: ELEVATION:	Kelly Bar 262 feet above MSL		TYPE: DATE:	·····	Earthdrill 45L 12/4/2006
	HON.			See S			202 leet above MSL		DATE.	1 1	
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol		BORING NO.: (Water Content (%)	Dry Density (pcf)	oratory Testing 鉴 뜻 전
	0					TERIAL DESCRIPTION					
				SM	stringers and no		D; carbonate				Kelly Bar 3500 Lbs.
5	X	Duch/	B4-1			clayey silty fine sands prous, pockets of dark b	rown to black organi	ic	10.9	112	EI, MD, SH
10 110 15		Push/ 10"	B4-2		material				10.9	112	
20				SM	Landslide Depo Light tan, moist, oxide filled fractu	loose, silty fine SAND,	Steeply dipping iron				
	\times	1	B4-3		@ 22': fragments granite.	s of heavely iron oxide s	tained decomposed		8.9	102	
25 						ipping (40 N) iron oxide					Kelly Bar 2400 Lbs.
30					@ 28': fragments (continued)	s of greenish gray silty c	laystone.			10-11-11-12-12-12-12-12-12-12-12-12-12-12-	
LEGEND	Sam	ple typ	<u>be</u> :		RingSPT	Small Bulk	Large Bulk	No Re	ecovery		Water Table
EG	Lab	testing	1:		erberg Limits Ilfate/Resisitivity Test	EI = Expansion Index SH = Shear Test	SA = Sieve An CO = Consoli	-		: R-Valu = Maximi	e Test um Density

	ROJECT NAME: Oceanside V					GGED BY: PERATOR:		BO/JB Richard/Adam
						RIG TYPE:		Earthdrill 45L
LOCA				See S	ite Plan ELEVATION: 262 feet above MSL	DATE:		12/4/2006
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: GTB-4	Water Content (%)	Dry Density (pcf)	oratory Testing ຂອງ ອີສິ
	Ś	ш			MATERIAL DESCRIPTION AND COMMENTS	0		
30		2	B4-4	SM	Landslide Deposits (continued) Light tan, moist, loose, silty fine SAND	11.6	97	
35					@ 34': claystone fragments @ 36': diagonal shears on SW wall.			
40		6		CL	Steep undulating contact to olive gray silty claystone, iron oxide	17.6	112	C: N65E 50NW
			B4-5		staining on fracture surfaces. @ 43' - 45': shear zone, polished surfaces, highly fractured, 1/4" remolded clay along near vertical fracture			F: N80E 70 NE/ N10W 5 NE
45		7				15.5	117	
			B4-6		Possible basalrupture surface/slide plane at 51 feet Santiago Formation (?)			RS: N30E 20NW
				CL	<u>Santiago Formation (?)</u> Olive gray silty CLAYSTONE, very moist, dense.	⊻		@ 51': Ground Water
55								Keliy 1300 Lbs.
60 -		12	B4-7		-same	19.3	109	
			<u></u>		-HOLE TERMINATED 61 FEET- Groundwater and caving encountered at 51 feet Hole backfilled w/ 93 cft of bentonite and cuttings			
LEGEND	<u>Sam</u>	ple ty	pe:	-	RingSPTSmall BulkLarge Bulk	No Recovery		Water Table
FEG	Lab	testin	<u>g:</u>		rberg Limits EI = Expansion Index SA = Sieve Analysis fate/Resisitivity Test SH = Shear Test CO = Consolidation test		R-Valu Maxim	e Test um Density

CLIEN PROJI	OJECT NAME: Oceansid					GED BY: RATOR:			
PROJ				312		G TYPE:		Earthdrill 45L	
LOCA	TION	:		See S	e Plan ELEVATION: 256 feet above MSL	DATE:		12/4/06 & 12/5/06	
		SAMPL	ES.	0			Lab	oratory Testing	
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: GTB-5	Water Content (%)	Dry Density (pcf)	Others	
					Landslide Deposits (graben material)				
				SM	Dark brown, damp to moist, loose, silty fine SAND, carbonate stringers.			Kelly Bar 3500 Lbs.	
	\times	1	B5-1	SM	<u>_andslide Deposits</u> Fan, moist, loose silty fine SAND, porous, rootlets, carbonate nodules.	8.4	106	MD	
10 - - - - -				CL	Well defined contact with olive gray silty CLAYSTONE, rip up casts of claystone in tan silty sand @ 9.5': highly fractured, open structure, carbonate stringers.			C: N5E 7NW	
15 -				SM	Undulating contact, no apparent strike, iron oxide staining along contact. Light olive green, moist, medium dense, silty fine SANDSTONE with some clay. @ 17': jumbled claystone and sandstone, large (1 foot) rip up casts of claystone in sandstone matrix.				
20 -		8	B5-2		@ 21': root approx 1/2 " thick	12.2	124		
25 - - - -			-					Kelly Bar 2400 Lbs.	
30		7		CL	Dlive green, moist, medium dense, silty CLAYSTONE, fractured " to 6" spacing, rootlets in open fractures.	19	114		
			B5-3		continued)				
LEGEND	Sam	ple ty	<u>pe</u> :			Recovery		Water Table	
Ľ	Lab	<u>testin</u>	<u>g:</u>		berg Limits EI = Expansion Index SA = Sieve Analysis ate/Resisitivity Test SH = Shear Test CO = Consolidation test				

						BED BY: RATOR:		BO/JB Richard/Adam
PROJ			Oceans			G TYPE:		Earthdrill 45L
LOCA					ite Plan ELEVATION: 256 feet above MSL	DATE:		12/4/06 & 12/5/06
		SAMPL	ES	9			Lab	oratory Testing
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: GTB-5	Water Content (%)	Dry Density (pcf)	Others
					Landslide Deposits (continued)			
30 - - - - - - - - - - - - - - - - - - -				CL	Olive green, moist, medium dense, silty claystone			
35 -					@ 35': shear zone polished surfaces, no apparent strike or dip.			
				SM	Light olive gray, moist, loose, silty fine SAND @ 35'-37' shear zone			
40 - -		3	B5-4		@ 41': very coarse grained iron oxide stained zone	12	108	
				CL	Olive gray, moist, hard claystone			@ 42': down crowds
45 -								12/4/2006 groundwater @ 46'
				SM	Light olive green silty sandstone jumbled with dark greenish gray silty claystone.			overnight 12/5/2006
50 -		14	B5-5		@ 49.5': basalrupture surface, 2 " thick remolded clay, undulatory surface, free water seepage from slide plane, fracture zone above slide			RS: N20E 4-6 NW
			DJ-J		plane with 4" to 6" fracture fragments.			
				SM	Santiago Formation Massive, very dense, silty fine to coarse silty SANDSTONE, unbroken, unsheared	12.2	125	SH
55 								Kelly 1300 Lbs. @ 55': down crowds
60 -		25/9"	B5-6		-same	10.5	128	SH
					-HOLE TERMINATED AT 61 FEET- Groundwater and caving encountered at 45 feet Hole Backfilled with 65 cft bentonite and cuttings.			
LEGEND	<u>Sam</u>	nple ty	<u>pe</u> :		RingSPTSmall BulkLarge BulkNo	Recovery		도Water Table
LEG	Lab	testin	<u>g:</u>		erberg Limits EI = Expansion Index SA = Sieve Analysis Ifate/Resisitivity Test SH = Shear Test CO = Consolidation test		≖ R-Valu = Maxim	ie Test um Density

	ECTI	NAME:			tesidential Dvlp DRILL METHOD: 30" Bucket OPER	ED BY: ATOR:	OR: Richard/Adam			
PROJ LOCA		-		31298 See Site		TYPE: DATE:		Larthdrill 45L 12/5/2006		
		SAMPL	г <u>е</u>	000 0/1			Lah	oratory Testing		
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	BORING NO.: <i>GTB-6</i> MATERIAL DESCRIPTION AND COMMENTS	Water Content (%)	Dry Density (pcf)	otatory resting Others		
					Alluvium					
				SC	Dark brown, moist, loose, clayey fine SAND @ 6': becoming very moist.			Kelly Bar 3500 Lbs.		
10		Push	B6-1		-same	19.7 <u>\</u>	107	@ 12': groundwater		
				SM-SC	<u>Landslide Deposits</u> Dark grayish brown, very moist to wet, loose, clayey to silty fine SAND					
					@ 17': light gray saturated clayey silty fine sands, iron oxide staining					
20 -		Push	B6-2		-same	19.1	112			
-					@ 23': bore hole squeezing @ 24': gravish green silty fine sands with fragments of olive green					
25		Push	<u>B6-3</u>		@ 24': grayish green silty fine sands with fragments of olive green silty claystone fragments. -HOLE TERMINATED AT 26.5 FEET-			Kelly Bar 2400 Lbs.		
30					Groundwater at 12 feet Hole backfilled with 45 cft bentonite and cuttings					
LEGEND		ple ty		Al = Atterb		Recovery		Water Table		
۲	Lab testing: AL = Atterberg Limits EI = Expansion Index SA = Sieve Analysis RV = R-Value Test SR = Sulfate/Resisitivity Test SH = Shear Test CO = Consolidation test MD = Maximum Density									

.

	ENT: Urban Structures LLC DJECT NAME: Oceanside Vista Residential Dvlp			DRILLER: DRILL METHOD:	Larive 30'' Bucket	_ LOGGED E OPERATO		BO/JB Richard/Adam		
PROJE					9SD3	HAMMER:	Kelly Bar	RIG TYP		Earthdrill 45L
OCAT					ite Plan	ELEVATION:	216 feet above MSL	DA1		12/6/2006
T		SAMPL	FS	_			······································		La	boratory Testing
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	MA	BORING NO.:	GTB-7	Water		
				CL	Landslide Depo Dark gray, damp,	<u>sits</u> , medium stiff, clayey	coarse SAND, desicca	ated		Kelly Bar 3500 Lbs.
5		6	B7-1		landslide mapped	lay seam (1/4''), asso d above drill location.	ciated with surficial	5.	4 128	S: N50E 22NW
				SC	Santiago Forma Light brown well rounded granite o	tion indurated granitic det cobbles. Very difficult	ritus with 4" to 6" cobbl drilling.	les of		@ 6': down crowds and auger
5 1 1					@ 15': large rock					
					No groundwater d Hole backfilled w Practical refusal a Hole backfilled w	-HOLE TERMINAT encountered ith cuttings at 18 feet ith 40 cft bentonite ar				Kelly Bar 2400 Lbs.
	Sam	ple ty			RingSPT	Small Bulk	Large Bulk	No Recov		₩Water Table
	Lab	testin	a:		erberg Limits Ifate/Resisitivity Test	EI = Expansion Inde> SH = Shear Test	SA = Sieve An CO = Consolic		:V = R-Va ID = Maxir	lue Test num Density

CLIEN		NAME:			uctures LLC a Residential Dvlp	DRILLER DRILL METHOD		Larive 30" Bucket		ED BY: ATOR:			
PROJ					9SD3	HAMMER		Kelly Bar		TYPE:		Earthdrill 45L	
LOCA	TION			See S	ite Plan	ELEVATION	N: 21	6 feet above MSL		DATE:		12/6/2006	
		SAMPLE	ES	_							Lab	oratory Testing	
Depth (ft)	Sample Type	Blows/ 12 in	Sample Number	USCS Symbol	M/	BORING NO.			3	Water Content (%)	Dry Density (pcf)	Others	
					Landslide Dep	osit							
				CL	Dark gray, dam @ 3': fragments	p, soft, sandy CLAY, s of granitic rock e stringers and nodule		ated				Kelly Bar 3500 Lbs.	
10		1	B8-1	SC		een, moist, loose, si opearance with clays			D with some	9.8	. 117	SH	
					Abrunt contact	1.5" remolded clay s	hoar 70	no					
15 -		Push/			Santiago form	ation	nicai 20	nie,		26.2	99		
		8" 1/5"	B8-2	CL	Grayish green,	very moist, loose, silt	ty CLAY	'STONE				S: N10E 6-9NW	
20					@ 20': bedding @ 21': becomin	plane shear < 1/4" th	nick clay	/ seam				S: N10W 25NW	
						a more nurve						@ 22': down crowds utilized	
25 - 						its of heavily iron oxic			nents			Kelly Bar 2400 Lbs.	
				SC	Light green, we	ll indurated, granitic o	detritus,	very dense.					
30 – – –					No groundwate hole backfilled v	-HOLE TERMINA r encountered, Boring with 47 cft of bentonit	g termin	nated due to pract	ctical refusal				
LEGEND	<u>Sam</u>	ple typ	<u>e</u> :		RingSP	TSmall Bulk		Large Bulk	No F	Recovery	•	₩Water Table	
	Lab	testing	Ŀ		erberg Limits Ilfate/Resisitivity Tes	EI = Expansion Ind t SH = Shear Test	dex	SA = Sieve A CO = Consol			= R-Valu = Maximi	ie Test um Density	

CLIEN PROJI PROJI LOCA	ECT I ECT I	-		Jrban Struc Iside Vista I 31295 See Site	DRILL METHOD: 6" Hollow Stem Auger OP! D3 HAMMER: 140lbs/ 30in R	GED BY: ERATOR: IG TYPE: DATE:		LG Toby 9 Rig - Limited Access Rig 11/30/2006
		SAMPL	FS				Lab	oratory Testing
Depth (ft)	Sample Type	Blows/ 6 in	Sample Number	USCS Symbol	BORING NO.: GTB-9 MATERIAL DESCRIPTION AND COMMENTS	Water Content (%)	Dry Density (pcf)	Others
			B9-1	SC	Lanslide Deposits Light gray-dry, loose, clayey fine SAND; rootlets			
		14 24 27	B9-2	SM	light gray, damp to moist, medium dense, silty fine SAND	9.5	122	
5	\times	3 2 4	B9-3 B9-4		@5': Light yellow, moist, loose, silty fine SAND with clay; iron oxide	11.8		
		16 14 20	B9-5		Yellow, moist, medium dense, silty fine to medium SAND	12.1	115	
		5 4 5	B9-6		@10': becomes yellow, very moist, loose, silty fine to medium SAND; with clay	14		
15 _		7 8 9	B9-7	ML/CL	Green, wet, silty CLAY to clayey SILT Santiago Formation	18.1		Contact: QLS / Form
					White, moist, medium dense, silty fine SAND			
20 -		18 36 50/5"	B9-8		@20': becomes dense			
- 25 -		33 50/5"	<u> </u>		@24.5': becomes very dense			
30	-				-HOLE TERMINATED AT 24.5 FEET Groundwater at 17 teet Hole backfilled with bentonite Practical refusal at 25.5 feet on dense material			
LEGEND		nple ty testir		AL = Atter			= R-Va	Lue Test

PROJ	CLIENT: PROJECT NAME: Ocean PROJECT NO.: OCATION:				Residential Dvlp DRILL METHOD: 6" Hollow Stem Auger O	OGGED BY: PERATOR: RIG TYPE:	Toby Mole Rig - Limited Access Rig		
				See Sit	e Plan ELEVATION: ± 202 feet	DATE:	11/30/2006		
Depth (ft)	Sample Type	Blows/ 6 in	Sample S Number	USCS Sympol	BORING NO.: GTB-10 MATERIAL DESCRIPTION AND COMMENTS	Water Content (%)	Laboratory Testing (bcd) Others Others		
-			B10-1	SM	Alluvium Light gray, damp, loose, silty fine SAND; rootlets				
5		18 16 21	B10-2		@2.5': Light brown, moist, medium dense, silty fine SAND; rootlests; chunks of white SS in rings	4.3	109		
		10 8 6	B10-3	SM	Dark gray black, moist, medium dense, silty fine SAND ; calcium carbonate: roots	7.2			
-		16 8 12	B10-4	SC	Dark gray-black, very moist, medium dense, clayey line to medium SAND: calcium carbonate: roots: micaceous	19.6	109		
10 — — —		3 5 6	B10-5	SC	Gray-black, moist, medium dense, clayey fine SAND	19.5	¥		
				SC/CL	Gray, wet to saturated clayey fine SAND to sandy CLAY; roots				
15		3 3 3	B10-6 B10-7		@15': Gray, wet to saturated, loose, clayey tine SAND to sandy CLA roots	Y; 23.9			
20		2 2 3	B10-8		-same				
25 -	•	2 4 5	B10-9		-same Santiago Formation				
30 -		4 6 8	B10-10	SM ML/CL	Light yellow, moist, medium dense, silty fine to medium SAND Green, moist to wet, medium dense, clayey SILT to hard silty CLAY -HOLE TERMINATED AT 31.5 FEET- Groundwater encountered at 10 feet Hole backfilled with bentonite				
<u>a</u>	San	nple t	vpe:		RingSPTSmall BulkLarge Bulk	No Recover	yWater Table		
LEGEND		testi	velati.	AL = Atte	Arking Control Control Control Control prberg Limits EI = Expansion Index SA = Sieve Analysis fate/Resisitivity Test SH = Shear Test CO = Consolidation test	RV	= R-Value Test = Maximum Density		

APPENDIX A-2

LOGS OF EXPLORATORY BORINGS / TRENCHES

Borings B1 through B10 (Geocon Inc., previous studies) Trenches T-1 through T-14 (Geocon Inc., previous studies)

DEPTH IN SAMPLE 10 FEET NO. H	OROUNDWATER SOIL CLASS (USCS)	BORING B 1 ELEV. (MSL.) 259' DATE COMPLETED 05-10-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0		MATERIAL DESCRIPTION			
	SC+CL	LANDSLIDE DEBRIS Loose and stiff, moist, grayish brown to brownish gray, Clayey and Silty SAND and Sandy CLAY; jumbled texture; thin roots and rock fragments; pockets of clay material in sandy matrix; layer of fat sheared clay at 5 feet approximately 1/2" to 1" thick (S: N59W/14NE)	-		
6 - B1-6 B1-6	CL	Stiff, moist, olive gray, Silty to fine Sandy CLAY; highly fractured and sheared with internal polished surfaces and iron oxide mineralization	 	99.9	24.7
8 - - 10 - B1-2 12 -	ML	SANTIAGO FORMATION Hard, damp, light olive gray, Sandy to Clayey SILTSTONE; moderately to strongly indurated; few joints; overall intact and undisturbed -B: N38W/8SW	- 6/12" -	116.4	11.6
- HI-H 14		Dense, damp, light gray, Silty, fine- to medium-grained SANDSTONE; moderately cemented; micaceous; massive bedding; intact	- - 8/9"	129.4	7.5
	SM	-Very dense; drilling using down-crowds		122.2	5.7
22 -		-Strongly cemented; some cross bedding; B:N16E/5SE	-	122.2	5.7
		-Very dense and very strongly cemented along basal contact -Contact irregular to dipping approximately 18° NW			
26 - + + + + + + + + + + + + + + + + + +		GRANITIC ROCK Moderately hard, damp, grayish brown to light gray, GRANITIC ROCK; fine- to coarse-grained crystalline texture; moderately weathered; high-angle jointing	-		
igure A-1, og of Boring B 1,	Page 1 c	of 2		07227	7-52-02.GI
		NG UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE SA			

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJEC	T NO. 0722	27-52-0	2									
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B ELEV. (MSL.) EQUIPMENT	259' DATE COMPLETED 05-10-2005 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)			
					-	MATERIAL DESCRIPTION						
- 30 -	B1-5	+ +					15/6"	124.0	6.4			
- 32 -							_					
						BORING TERMINATED AT 33 FEET No groundwater encountered Backfilled with 45 cu. ft. of bentonite and soil cuttings in alternating layers						
Figure Log o	Figure A-1, 07227-52-02.GPJ Log of Boring B 1, Page 2 of 2											
SAMF	PLE SYMB	OLS			LING UNSUCCESSFUL RBED OR BAG SAMPLE	STANDARD PENETRATION TEST DRIVE SA CHUNK SAMPLE WATER						

DEPTH IN SAMPLE 000 FEET NO. 11	GROUNDWATER	SOIL CLASS (USCS)	BORING B 2 ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	ΰ					
0	$\left \right $		MATERIAL DESCRIPTION LANDSLIDE DEBRIS			
2 -		CL	Stiff, moist, dark brown, fine, Sandy CLAY; porous; moderate topsoil development; thin roots			
4 -]					<u> </u>
- B2-1			Medium dense, moist, mottled olive, reddish and grayish brown, Clayey, fine SAND; jumbled texture; thin roots; no distinguishable bedding; scattered carbonate pods; abundant fractures, generally healed with manganese and iron oxide mineralization	2/12" 	115.9	14.5
8 -		SC				
10 - B2-2			Medium dense, moist, gray with mottled yellowish brown, Silty, fine to medium SAND; structureless; few coarse grains and pieces of charcoal		115.9	11.2
				-		
14 - B2-3 B2-3 B2-3		SM	-Loose; mixed with pods of olive clay; decomposed pods of organic material; sand becomes fine to coarse grained; jumbled mixture of disturbed sand and silt beds displaying offset along randomly oriented fractures	 	112.9	14.5
				-		
20 - B2-15 B2-5			-Encountered layers of (weathered) sheared fat, gray-green clay; undulates with scour approximately 1/2 inch thick; undulating with general orientation of S: N29E/6NW; common slickensides; probably main slip surface (potential shear surface if undercut)	3/12"	111.5	14.3
22		CL	SANTIAGO FORMATION Very stiff, most, olive to greenish gray, fat CLAYSTONE; highly fractured with abundant polished and slickensided shear surfaces; manganese oxide mineralization and sheared clay between claystone fragments B: N42W/5NE			
24 -				_		ļ
B2-6			Hard, moist, olive gray, Clayey, SILTSTONE; moderately indurated; some fractures; overall intact and undisturbed	_ 7/12"	109.8	19.3
28 -		ML	-Marked increase in degree of induration; few fractures	_		
igure A-2,				1	0722	7-52-02 .G
.og of Boring B	2, F	age 1	of 3			

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

L. CHUNK SAMPLE

V ... WATER TABLE OR SEEPAGE

🕅 ... DISTURBED OR BAG SAMPLE

PROJEC	T NO. 072	27-52-0	2								
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 2 ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)			
					MATERIAL DESCRIPTION						
- 30 - 	B2-7				· · · · · · · · · · · · · · · · · · ·	14/12" 	105.5	13.9			
- 32 -					Grades to dense, damp, gray to olive gray, Silty, fine-grained SANDSTONE; moderately cemented. B:N16W/6NE	_					
- 34 -					-Becomes white; massive at 34 feet						
 - 36 -	B2-8					15/9" 	126.0	7.2			
- 38 -						-					
- 40 -	B2-9			SM		15/9"	:	-			
- 42 -					-Few pods of olive green, subrounded claystone with sandstone matrix	-					
- 44 - 46					-Becomes strongly cemented; common claystone pods; probably rip-up clasts						
- 48 -			╞┦		Abrupt contact between SANDSTONE and CLAYSTONE, C: N56W/12SW						
 - 50 -	B2-10			CL	slightly undulating; sandstone is reddish brown in a layer approximately 1/2 inch thick; polished, slickensided shear surface along base of sandstone unit continuous around hole (bedding plane shear); sandstone very moist and weakly cemented within 1 foot of contact. Hard, damp, olive gray,	- - 11/12"	120.5	13.9			
- 52 -			-	Т ML	fine-grained Sandy CLAYSTONE at 50 feet Grades to hard, damp, olive gray, fine-grained Sandy SILTSTONE; moderately to strongly indurated						
- 55 -					Very dense, damp, light gray to white, Silty, fine- to coarse-grained SANDSTONE; moderately to strongly cemented; massive	_					
- 56 -	B2-11			SM		15/7" 	123.9	8.7			
- 58 -						_	2				
								ann gegener mit state			
	Figure A-2,07227-52-02.GPJLog of Boring B2, Page 2 of 3										
SAMF	YLE SYMB	OLS			LING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE SA RBED OR BAG SAMPLE II CHUNK SAMPLE II WATER T						

and the second second second second second second second second second second second second second second second								
DEPTH IN	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS	BORING B 2 ELEV. (MSL.) 311' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NU.		ROUN	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENE RESI (BLC	DRY (F	CON CON
- 60 -	 				MATERIAL DESCRIPTION			
- 62 -				SM	-Abrupt contact between SANDSTONE and Clayey SILTSTONE at 63 feet; sandstone yellowish to reddish within 3 inches of contact C: N22E/7SE.	-		
- 64 - 	B2-12			ML	Hard, damp, olive gray, Clayey SILTSTONE; strongly indurated		122.7	11.2
- 66 -				СН	Hard, damp, dark reddish gray, fat CLAYSTONE; strongly indurated; polished internal surfaces	-		
- 68 - - 70 -	B2-13			CL	 Hard, damp, reddish gray, CLAYSTONE; highly fragmented and fractured; yellow clay film along polished surfaces; shearing generally high-angle and discontinuous. -CLAYSTONE shattered to crushed within a 9-inch thick zone; becomes soft 		132.9	8.4
 - 72 -	B2-14			 	and sheared with remolded clays and polished slickensided surfaces; layer continuous around hole; S: N14W/11SW; (bedding plane shear) abundant <u>yellowish to reddish brown iron oxide mineralization</u> Basal contact with very hard, damp, mottled gray and yellowish to reddish			
- 74 -				ML	brown, Clayey SILTSTONE; strongly indurated, laminated locally, no evidence of shearing or displacement			
- 76 - - 78 -						-		
						-		
- 80 -					BORING TERMINATED AT 80 FEET No groundwater encountered Backfilled with 69 cu. ft. of bentonite and soil cuttings in alternating layers			
			Anna an an an an an an an an an an an an					
L Figure Log o	e A-2, f Boring	gB2	1 2, F	age 3	of 3	I	0722	7-52-02.GPJ
SAMF	PLE SYMB	OLS			LING UNSUCCESSFUL II STANDARD PENETRATION TEST , II DRIVE S RBED OR BAG SAMPLE II CHUNK SAMPLE II WATER	AMPLE (UNDIS		

DEPTH		УЭС	GROUNDWATER	SOIL	BORING B 3	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	NDN	CLASS (USCS)	ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005	NETR	Υ DE (P.C	AOIST
			GROI	(0000)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	E B B B B B B B B B B B B B B B B B B B	ä	202
<u></u>					MATERIAL DESCRIPTION			
0					LANDSLIDE DEBRIS Soft to stiff, most, dark brown, fine Sandy CLAY; porous with thin roots; moderately well developed topsoil in upper foot; probably within graben zone	_		
2 -		/ /.			of upper slide	-		
4				CL	-Grades to clayey sand; common carbonate pods and stringers	- 1	116.8	13.4
6 -	B3-1					-		
8 -					Loose, moist, light grayish brown, Clayey and Silty, fine to medium SAND with pods of olive clay; jumbled texture; chaotic and discontinuous bedding;			
10 -	B3-2				displaced beds of silt and clay	1/12"	115.1	9.9
 12	B3-3			SM	-Scattered pieces of organic material and carbon			
- 14 -					-Discontinuous beds of fat claystone and siltstone displaced and dipping 28° NW	-		
- 16	B3-4		1		-Approximately 2- to 4-inch thick, partially remolded sandy clay B: <u>N60E/50NW; scattered fragments of charcoal</u> Loose to medium dense, light gray, Silty, fine to coarse SAND with pods of	2/12"	116.5	13.
-				SM	olive clay -Becomes very moist and fractured; undulating contact C: N63W/3NE	_		
18 - -	-			V	-Basal contact of upper slide; some sheared clays and yellow-green <u>mineralization 2 inch thick band around hole</u> Medium dense, moist, olive gray, fine Sandy SILTSTONE; some fracturing			
20 -	B3-5			ML		3/12"	117.1	14.
22 -			ļ		Moderately hard, moist, olive gray, Silty CLAYSTONE; internal fracturing and shearing with polished surfaces and slickensides	-	- <u></u>	
24 -				CL				
- 26	B3-6				Very stiff, moist, olive gray, Clayey SILTSTONE; fractured	3/12"	. 113.9	15.
- 28 -	-			ML		-		
-		KITNY KITNY	1] ·	- -	-Discordant, undulating basal contact Medium dense, light gray, fine SAND; red and yellow banding; some			+
igur	e A-3, of Borin		 	Dee- 4	-5.2		072	27-52-02

🕅 ... DISTURBED OR BAG SAMPLE

PROJEC	T NO. 0722	27-52-0	2		1 v	-	,	Provide state of the second second second second second second second second second second second second second
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 3 ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 30 - - 32 - - 34 -	B3-7			SM	 manganese oxide and carbonate mineralization -Medium dense to dense, moist, light gray, Silty, fine to coarse SAND; through going thin clay-filled fractures; pods of greenish clay -At 32 feet: continuous 2 to 4 inch bed of sandy siltstone B: N79E/6NW -At 33 feet: discontinuous bed of fractured gray CLAYSTONE within sandstone beds -Along contact: yellow to red mineralization; beds displaced approximately 4 inches on fracture F: N54W/32S; C: N29W/5NE; 3 inch thick layer of 	11/12" 	119.6	10.5
- 36 - 	B3-8			CL	crushed, remolded clay with shears and slickensides S: N68W/3NE SANTIAGO FORMATION Hard, moist, olive green, fat CLAYSTONE, internally sheared with polished surfaces and manganese oxide mineralization	_ 7/12" _ _	106.3	20.3
- 40 -				ML	Dense, damp, olive gray, Clayey SILTSTONE; strongly indurated; intact			
- 40 - - 42 -	B3-9		•		Dense, damp, light olive gray, Silty, fine-grained SANDSTONE; massive and undisturbed; moderately cemented	_ 15/10"	119.0	13.0
	B3-10		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-Becomes fine- to coarse-grained -Fine- to medium-grained, very light gray	_ _ _ 15/16" _	131.0	6.4
48 - - 50 -	- - - B3-11			SM	-Light gray, silty sandstone	 15/9"	129.6	6.5
- 52 - - 54 -					-Becomes hard and strongly cemented; difficult drilling using down-crowds			
- 56 · - ·					-Beds with common claystone fragments B: N10E/8SE	-		
Figur	e A-3,		-				0722	27-52-02.GPJ
Log	of Borin	ig B	3,	Page 2				
SAM	PLE SYM	BOLS			PLING UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE STURBED OR BAG SAMPLE III WATER	SAMPLE (UND TABLE OR SE		

,

PROJEC	Г NO. 0722	27-52-0	2				******	
DEPTH		JGΥ	ATER	SOIL	BORING B 3	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	CLASS (USCS)	ELEV. (MSL.) 300' DATE COMPLETED 05-11-2005	NETR ESIST. BLOW	R DE (P.C.	MOIST
			GRO	()	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	H R H	ö	- ŏ
					MATERIAL DESCRIPTION			
- 60 	B3-12		•		Very dense, damp, light gray, Silty, fine- to coarse-grained SANDSTONE; pods of olive claystone; overall massive and intact; moderately cemented	30/8"	112.7	6.8
- 62 -			•			-		
- 64			•	•		-		
			• • •	SM	-Cross bedded; fine- to medium-grained	-		
			•					
- 68 -			0 0 0		-Pods of iron oxide mineralization	-		
- 70 -	D2 12		•		-Abrupt basal contact between silty sandstone and siltstone C: N18W/8SW			
	B3-13	ŤĦŮ	1		Hard, damp, olive gray, Clayey SILTSTONE; strongly indurated	_28/12"	113.9	16.2
- 72 -				ML		-		
- 74 - - 76 -				CL	Hard, damp, dark gray with mottled dark reddish brown, Silty CLAYSTONE; moderately to strongly indurated; local, randomly oriented, polished internal surfaces with some manganese oxide mineralization; no evidence of remolding or displacement			
- 78 -	-				Hard, damp, greenish gray, Clayey SILTSTONE; strongly indurated			
- 80 -	B3-14			ML		28/12"	114.6	15.4
					BORING TERMINATED AT 80 FEET No groundwater encountered Backfilled with 69 cu. ft. of bentonite and soil cuttings in alternating layers			
Figur Log c	e A-3, of Borin	ig B	3,	Page 3	of 3		072	27-52-02,GPJ
	PLE SYMI			SAM	PLING UNSUCCESSFUL I STANDARD PENETRATION TEST II DRIVE S	SAMPLE (UNC	DISTURBED)	
SAM		5010		🕅 DIST	URBED OR BAG SAMPLE X CHUNK SAMPLE X WATER	TABLE OR S	EEPAGE	

PROJECT	ΓNO. 0722	27-52-0	2				1	
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĞY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 4 ELEV. (MSL.) 243' DATE COMPLETED 05-20-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 - 2 - 4 - 6	B4-1			CL	LANDSLIDE DEBRIS Stiff, damp to moist, dark grayish brown, fine to medium Sandy CLAY; pods of carbonate; porous with thin roots; graben zone backfilled with colluvial material; krotovina; some small pieces of charcoal		115.9	9.5
	B4-2			SM	-B: N70E/22NW -Becomes jumbled mixture of sand, silt, and clay; common krotovina Loose, moist, light yellowish to olive brown, Silty, fine to medium SAND with pockets of clay and shattered claystone, fragments of sandstone; generally structureless -Common small charcoal fragments; iron oxide mineralization at 12 feet	 	114.0	10.2
- 14 - - 14 - - 16 - - 18 -	В4-3		· · · · · · · · · · · · · · · · · · ·	SP	-Thick layer of remolded and sheared clay; some slickensides; S: N51E/36NW; basal slip surface of upper recent slide Displaced bed of fine- to medium-grained SANDSTONE approximately 2 feet thick on south side of hole and completely sheared away on north side; microfaulting and crossbedding common within sandstone bed; undulating basal contact C: N29E/16NW Fractured to shattered beds of very stiff, olive gray, Clayey SILTSTONE and Silty CLAYSTONE		<u> </u>	
- 20 - - 22 -	B4-4			CL-ML CH CL-ML	Very stiff, moist, olive gray, fat CLAYSTONE, internally sheared with polished surfaces and slickensides Stiff, moist, olive gray, Clayey SILTSTONE and CLAYSTONE beds; internally sheared with evidence of displacement		110.0	18.3
- 24 - - 26 - 	B4-9 B4-5			SC CH ML	Approximately 6 to 12 inch thick bed of white SANDSTONE displaced approximately 6 inches along approximately 2 inch thick sheared and remolded clay seam S: N59W/14NE; undulating contact with iron oxide staining at base of sandstone -Base of slide debris at 26 feet within sheared and remolded fat CLAY SANTIAGO FORMATION Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated; weakly jointed to relatively intact; no displacement	2/12"	108.9	17.0
	f Boring		4, F	Page 1	of 2	AMPLE (UNDI		7-52-02.GPJ
SAMF	PLE SYMB	IOLS		_	JRBED OR BAG SAMPLE I WATER	TABLE OR SE	EPAGE	

PROJEC	ΓNO. 0722	27-52-0	2			r		
DEPTH		βGY	ATER	SOIL	BORING B 4	ATION ANCE VFT.)	≺SITY (.=	URE IT (%)
IN FEET	SAMPLE NO.	ГІТНОLOGY	GROUNDWATER	CLASS (USCS)	ELEV. (MSL.) 243' DATE COMPLETED 05-20-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GRO		EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	린포핑	ā	- ö
					MATERIAL DESCRIPTION			
- 30 - - 32 - 	B4-6			CL+ML	Hard, damp, olive gray, Silty CLAYSTONE and Clayey SILTSTONE, mottled with reddish brown; strongly indurated; few joints; gradational contact	8/12" - -	119.6	14.0
- 34					Dense, moist, light olive gray, Silty, fine-grained SANDSTONE; moderately cemented; massive			
- 36 - - 38 -				SM	-Grades to fine- to coarse-grained, very light gray sandstone at 36 feet	-		
- 40 -	B4-7					 10/10"	123.3	10.2
- 42 -				1	-Slightly undulating contact; iron oxide mineralization along contact			
				CL+ML	Hard, moist, olive gray, Clayey SILTSTONE and Silty CLAYSTONE interbeds; strongly indurated; weakly jointed with some polishing and manganese oxide along joint surfaces	-		
- 46 -					Very dense, damp, light gray to gray, Silty, fine-grained SANDSTONE; massive and moderately to strongly cemented			
- 48 				SM		-		
- 50 -	B4-8					- 10/10"	121.7	12.2
					BORING TERMINATED AT 51 FEET No groundwater encountered Backfilled with soil cuttings and 55 cu. ft. of bentonite in alternating layers			
					· · ·	5		
Figure Log o	e A-4, f Boring	gB 4	1, F	Page 2	of 2		0722	7-52-02.GPJ
_	LE SYMB			SAMF	LING UNSUCCESSFUL III STANDARD PENETRATION TEST IIII DRIVE S JRBED OR BAG SAMPLE IIII CHUNK SAMPLE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			

		37	TER		BORING B 5	TION NCE FT.)	SITY (RE 1 (%)
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
		ГЦ	GROL	(0303)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEP BE	DR	≥o
					MATERIAL DESCRIPTION			
0				SC	LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; thin roots; carbonate pods and stringers	-	-	
_ 4 _			1		Loose, moist, light brown to light olive brown, Silty, fine to medium SAND; porous; common krotovina; generally structureless; few gravel and charcoal			
6 –	B5-1					2/12"	108.5	6.4
-						-		
8 -					-Common thin, clay-filled fractures	-		
10 – –	B5-2					1/12" 		
12 –								
14 -						_		
 16	B5-3			SM		1/12" _	93.4	9.1
 18 —					-Relict structure in disturbed sand beds B: N86E/23SE; some sandstone and claystone fragments in matrix of silty fine sand	-		
 20 —	B5-4				claystone tragments in matrix of sitty file saile	- - 1/12"	97.8	8.0
	231			•		- -		
- 24 -								
-	B5-5			-		_ 1/12"	99.1	9.0
26 -					-Minor caving; hole belled to 48-inch diameter; increase in sandstone and claystone fragments	-		
28 -					· · · · · · · · · · · · · · · · · · ·	- -		
igure	A-5,			Avenue and a second second second second second second second second second second second second second second			0722	27-52-02.0
	f Borin	gB \$	5, F	Page 1	of 3			
SAMF	PLE SYME	BOLS			PLING UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE S	SAMPLE (UND		

PROJEC	T NO. 0722	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 5 ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION		-	
- 30 -	B5-6					3/12"	101.4	7.7
 - 32 - - 34 -					-Mottled yellowish brown to light gray; abundant thin fractures backfilled with carbonate and clay; highly disturbed bedding with random and discontinuous orientations; some relatively intact blocks of sandstone and claystone generally less than 6-inch diameter			
	B5-7						99.0	9.1
- 36 - 	D3-7					-	,,,,,	
- 38 - 	-					_		
- 40 - 	B5-8						108.8	10.8
- 42 -						-		
 - 44 -				SM	-Displaced sheared and elongated beds of siltstone and claystone off set along abundant thin fractures; dip approximately 65° S; overall chaotic structure		116.1	12.6
- 46 -	B5-9					6/12" - -	116.1	13.6
- 48 -					-Displaced bed of sandstone B: N81W/44SW	-		
					-Becomes increasingly moist; medium dense; and light gray to grayish brown			
- 50 -	B5-10				-Twisted and rotated block of light gray sandstone in matrix of yellowish brown sand; block approximately 2 foot diameter and containing stratification oriented nearly vertical	6/12" 	108.9	14.0
- 52 - 						_		
- 54 -						-		
 - 56 -	B5-11				-Sheared and elongated bed of yellowish brown sandy silt; very moist; B: N81W/17SW; bed thinned from 6 inches to 1 inch from north to south at 55 feet	12/12"	112.1	17.7
	B5-16 🕸			CL	BASAL SLIP SURFACE; approximately 3 inch thick layer of remolded and sheared fat gray CLAY with abundant polished slickensided surfaces; very well defined; S: N11W/4NE			
			╞╴┤		SANTIAGO FORMATION Hard, moist, dark olive gray, Silty CLAYSTONE; strongly indurated; some sheared and polished internal surfaces; randomly oriented			
Figure	A-5, f Boring		. р	ane 2			0722	7-52-02.GPJ
			·, ·					
. SAMF	LE SYMB	OLS			LING UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE S.			

DEPTH		убү	GROUNDWATER	SOIL	BORING B 5	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	гітногоду	MON	CLASS	ELEV. (MSL.) 287' DATE COMPLETED 05-24-2005	IETR/ SIST/ OWS	Y DEI (P.C.I	OIST
1 661			GROU	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	BI BI	DR	ΞĊ
60 -					MATERIAL DESCRIPTION			
_	B5-12			ML	Hard, damp, olive gray, Clayey to Sandy SILTSTONE; strongly indurated; intact and well-bedded; no indications of shearing or offset	- 12/10" 	113.1	16.8
62 – –				SM	Dense, moist, light olive gray, Silty, fine-grained SANDSTONE; moderately cemented	_		
64 -		Ŧ₽₽			Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated B: N17E/4NW		1120	15.7
66 -	B5-13			ML		7/12" _	113.9	15.
- 68 - -					Becomes interbedded Sandy SILTSTONE and Silty SANDSTONE; moderately cemented; generally well-bedded and intact; beds 1 to 2 feet thick; few interbeds of strongly indurated claystone			
70 -	B5-14					15/10" 	125.3	11.
72 -						-		
74 -				SM+ML		-		
						-		
- 78 -						-		
-					Hard, moist, dark olive gray, Silty CLAYSTONE; strongly indurated; no			
80 —	B5-15			CL	evidence of shearing	25/10"	112.7	15.
					BORING TERMINATED AT 81 FEET No groundwater encountered Backfilled with alternating layers of soil cuttings and 69 cu. ft. of bentonite			
	e A-5, f Borin	qB5	5, F	Page 3	of 3		0722	?7-52-02.
	LE SYME		-, •		LING UNSUCCESSFUL	AMPLE (UNDI	STURBED)	

DEPTH IN FEET	SAMPLE NO.	ЛОТОНТІЛ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) 223' DATE COMPLETED 05-23-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0				SC	LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; thin roots and pods to stringers of carbonate; porous; moderate topsoil development	-		
4 6 -	B6-1			SM-ML	Loose, moist, grayish brown, Silty, fine SAND to Sandy SILT; abundant carbonate-filled fractures; porous; few pieces of charcoal	2/12"	115.9	9.8
8 -				SM	Loose, moist, light gray, Silty, fine to coarse SAND and SANDSTONE fragments; some elongated and sheared beds of claystone; high-angle dip	-	· · · · · · · · · · · · · · · · · · ·	
10 – – 12 –	B6-2				Displaced contact between SAND unit and SILT/CLAY units; displaced along series of stepped fractures; approximately 4 feet of vertical displacement; C: N14W/46NE; fractures high-angle to near vertical; thin bed of sheared, elongated claystone underlying contact	3/12"	106.4	5.4
- 14 - -	В6-3				-Becomes displaced beds of olive gray sandy to clayey siltstone with abundant fractures -Siltstone fragments in a matrix of sheared and crushed clay and silt	- - 4/12"	119.7	13.2
16 – – 18 –				CL-ML	-Chaotic mixture of crushed siltstone, sandstone, and claystone fragments; generally structureless at 18 feet	-		
20 -	B6-4				-Beds of claystone and sandstone displaced along high-angle fractures; vertical offset approximately 2 1/2 feet B: N28E/38SE; material crushed and rubbly on downthrown blocks	 2/12"	112.1	14.7
22 – – 24 –			<u>¥</u>		Becomes loose, moist, light gray to white, Silty, fine to coarse SAND; some claystone fragments; disturbed sandstone beds offset by significant fractures; groundwater at 24 feet; hole belled and caving Loose, moist to wet, olive gray, Silty, fine to medium SAND			
- 26	B6-5			SM	-Unable to proceed down-hole logging deeper than 24 feet due to groundwater	_ 2/12" 	114.9	13.4
28					table and caving	-		
igure oq of	A-6, Boring	B 6	. P	age 1	of 2		07227	′-52-02.G
			[SAMPL	ING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE S/ RBED OR BAG SAMPLE II CHUNK SAMPLE II WATER T			

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJEC	T NO. 0722	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОЄУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) 223' DATE COMPLETED 05-23-2005 EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			\square		MATERIAL DESCRIPTION			
- 30 -	B6-6			SM		7/12" 	117.9	14.8
- 32 -	A-6,				BORING TERMINATED AT 32 FEET Groundwater encountered at 24 feet Backfilled with alternating layers of soil cuttings and 45 cu. ft. of bentonite			7-52-02.GPJ
Log o	fBoring	уВ 6	6, F	age 2	of 2			
SAMF	YLE SYMB	OLS			LING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE S. RBED OR BAG SAMPLE II VATER II WATER II WATER II.			

DEPTH		βGY	GROUNDWATER	SOIL	BORING B 7	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОLOGY	Man	CLASS (USCS)	ELEV. (MSL.) 241 DATE COMPLETED 05-20-2005	PENETRATION RESISTANCE (BLOWS/FT.)	Y DEN (P.C.F	OISTU
			GROL	(0000)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PE BI BI BI BI BI BI BI BI BI BI BI BI BI	DR	ΣO
		1			MATERIAL DESCRIPTION			
0	-				LANDSLIDE DEBRIS Loose, damp, dark brown, Clayey, fine to medium SAND; weakly developed topsoil in upper 9 inches; porous with thin roots -Loose, damp, light gray, silty, fine to medium SAND to Sandy SILT; common carbonate stringers and krotovina; some fragments of sandstone and claystone	-		
4 -	B7-1			SM-ML	-Common blocks of shattered claystone and sandstone in a matrix of sand and	_ 2/12" 	109.6	13.4
6 – 8 –				Ţ	silt; few void spaces at 6 feet -Highly displaced and tilted bed of shattered claystone B: N56W/40SW; internal stratification			
 10	B7-2				Loose, damp, light gray, Silty, fine SAND; generally structureless; common thin, high-angle fractures; scattered fragments of claystone	 2/12"	102.8	9.4
 12 					-Tilted and displaced block of silty sandstone with beds generally dipping toward the north at relatively high angles; common fractures		,	
14 - -				914	-Broken block of cemented sandstone; fragments displaced approximately 2	 5/12"		
16 — —	B7-3			SM	feet -No sample recovery in layer of strongly cemented sandstone fragments at 15 feet			
18 – 			1		-Elongated and highly disturbed bed of sheared claystone B: N85E/27NW at 17.5 feet -Loose, moist, light gray, fine to coarse SAND with fragments of claystone and sandstone; generally disturbed and structureless			
20 -	B7-4				-Block of white sandstone displaced approximately 1.5 feet to the south along fractures at 20 feet -Undulating contact C: N83E/21SE at 21.5 feet	3/12" 	103.3	3.7
22 -				`	Fractured and sheared beds of Silty CLAYSTONE in a matrix of sand and clay	- ·		
24 - - 26 -	B7-5			SC+CL	-Chaotic mixture of sheared and displaced sandstone and claystone beds; common iron oxide mineralization infilling fractures and between blocks	2/12"	111.5	16.3
 28					Becomes more intact; disturbed beds of Clayey SILTSTONE and Silty CLAYSTONE			
	B7-6			ML+CL	-Approximately 6 inch thick bed of loose sand and sandstone fragments; undulating and irregular contact	 	107.5	19.
-	e A-7, of Borin	a R 7	1 7. F	Page 1	of 2	L _{ense}	0722	7-52-02.0
			· , •		LING UNSUCCESSFUL	AMPLE (UNDIS	GTURBED)	
SAMF	PLE SYME	OLS						

PROJEC	T NO. 0722	27-52-02	2			T		
DEPTH IN	SAMPLE NO.	гітногосу	GROUNDWATER	SOIL CLASS	BORING B 7 ELEV. (MSL.) 241' DATE COMPLETED 05-20-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET		ПП	JROU	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	(BL BL	DR	¥ö
			Ĕ		MATERIAL DESCRIPTION			
- 32 -	T	<u>(XI)</u> X			Disturbed and sheared beds of Silty CLAYSTONE; polished surfaces and			
					slickensides; manganese and iron oxide mineralization			
- 34 -								1
 - 36 -	B7-7					3/12"	109.4	17.2
						_		
- 38 -				CL				
				CL		-		
- 40 -	B7-8				-Stiff, moist, olive gray, silty claystone beds; disturbed and sheared	3/12"	100.9	22.9
					-Becomes wet and shattered to crushed; pods of carbonate; abundant remolded and polished surfaces; dark gray and fat			
- 42 - 						-		
- 44 -			V		-Water seeping from abundant fractures	-		
	В7-9					_ 6/12"	109.3	. 19.6 . - — — — -
- 46 -	B7-12		-	СН	Abrupt and very well defined slip surface S: N46W/4NE; slightly undulating approximately 3 inch thick seam in highly remolded, polished and			
					slickensided fat CLAY; base of slide debris at approximately 46 feet; slip surface within beds of fat claystone	_		
- 48 - 				h	SANTIAGO FORMATION Dense, damp, light olive gray, Silty, fine-grained SANDSTONE to	- ·		
- 50 -	B7-10		0 0	SM-ML	fine-grained Sandy SILTSTONE; moderately cemented; some minor water	10/10"	121.3	12.4
	. B/-IV		•		seeping from thin fractures	-		
- 52 -					Dense, moist to wet, light gray, Silty, fine- to medium-grained SANDSTONE;	<u>+</u> -		
					massive; moderately cemented; relatively intact and undisturbed			
- 54 -								
- 56 -	-		•	SM		-		
			•		-Grades fine- to coarse-grained	-		
- 58 -			•			-		
			•			- 20/6"	119.0	9.1
- 60 -	B7-11		•		BORING TERMINATED AT 60.5 FEET	20/0	119.0	9.1
					Seepage encountered at 44 feet Backfilled with alternating layers of soil cuttings and 60 cu. ft. of bentonite			
<u> </u>			L			<u>I.</u>	0722	27-52-02.GPJ
Log o	e A-7, of Borin	g B 7	7, I	Page 2	of 2			
					PLING UNSUCCESSFUL I STANDARD PENETRATION TEST	AMPLE (UND	ISTURBED)	
SAM	PLE SYME	SOLS		🕅 DISTI	URBED OR BAG SAMPLE	TABLE OR SE	EEPAGE	

PROJECT	Г NO. 0722	27-52-0	2	Shirts of the second states of the second states of the second states of the second states of the second states		T	l.	l
DEPTH		β	ATER	SOIL	BORING B 8	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	гітногобу	MDN	CLASS	ELEV. (MSL.) 234' DATE COMPLETED 05-24-2005	VETR/ SIST/ LOWS	Y DEI (P.C.I	10IST
PECI		LIJ	GROUNDWATER	(USCS)	EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	PEI BE	D	≥ 0 0
		+	\square		MATERIAL DESCRIPTION			
- 0 - 	B8-1				LANDSLIDE DEBRIS Loose, moist, dark brown, Clayey, fine to medium SAND; porous with thin roots			
 - 4 - 				SC -	-Abundant carbonate pods and stringers; medium dense; probably colluvium-infilled graben zone of slide			
- 8 -								
- 10 -		1.1			-Common roots; loose and porous	-		
- 12 -	-				Loose, moist, light grayish brown, Silty, fine to medium SAND; mottled with dark gray; common krotovina; porous			
- 14 -	-							
- 16 -	-		•		-Scattered fragments of sandstone and claystone; few pieces of charcoal			
- 18 -	_					_		
- 20 -	-			SM+CL				
- 22 -	-		. .		-Jumbled texture; thin clay-filled fractured; scattered blocks of sandstone and	- . -		
- 24 -	-		- - -		claystone generally less than 6-inch diameter, continued pieces of charcoal, yellowish brown to light olive gray			
- 26 ·	-					_		
- 28 -	-					-		
Figur Log o	re A-8, of Borir	ng B	8,	Page 1	of 2		072	27-52-02.GPJ
	IPLE SYM			SAN	PLING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE	SAMPLE (UN		

PROJEC	TNO. 0722	27-52-0	2					
	- 	×	VTER		BORING B 8	TION VCE FT.)	SITY)	RE (%)
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.) 234' DATE COMPLETED 05-24-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GRO		EQUIPMENT 30-INCH DIAMETER BUCKET AUGER	H R E	ā	ō
- 30 -					MATERIAL DESCRIPTION			
						-		
- 32 -						-		
						-		
- 34 - 				SM	-Displaced sandstone beds; highly fractured to shattered; elongated layer of carbon-rich material along bedding surface B: N4E/53NW	-		
- 36 -						_		
					-Becomes light gray	-		
- 38								
- 40 -					Becomes jumbled mixture of Sandstone and Claystone fragments in a matrix of Silty SAND; carbonate pods; pieces of charcoal; few shattered sandstone blocks; structureless; wet	-		
- 42 -						_		
				SM+SC		-		
- 44 -					-Hole completely caved to 44 feet; abundant seepage; unable to continue down-hole logging			
			<u>¥</u>					
- 46 -								
- 48 -						-		
		<u> </u>	, 		Mixture of olive gray clay and Claystone fragments in a matrix of SAND and	+		
- 50 -					SANDSTONE fragments; sheared and remolded clay seams			
- 52 -				CL+SM		-	-	
			2			-		
- 54 -		1	·		BORING TERMINATED AT 54 FEET Seepage encountered at 45 feet Caving 44 to 54 feet			
					Backfilled with 54 cu. ft. of bentonite and soil cuttings in alternating layers			
Figure	∋ A-8, f Boring	aB	3. F	Page 2	of 2		0722	27-52-02.GPJ
[LING UNSUCCESSFUL III STANDARD PENETRATION TEST	AMPLE (UNDI	STURBED)	
SAMF	PLE SYMB	OLS		-	JRBED OR BAG SAMPLE	TABLE OR SE	EPAGE	

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) 202' DATE COMPLETED 05-25-2205 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 0					MATERIAL DESCRIPTION			
- 2 -					ALLUVIUM Very stiff, moist, dark brown, fine, Sandy CLAY; porous with thin roots and scattered pieces of organic material; interlayers of medium dense, moist, gray, clayey, fine sand	_		
4 -	В9-2 .			CL+SC		_		
6 -	B9-1			CLIGO		- 19 -	102.5	22.3
- 8 -	ž					-		
10 -	В9-3			SC	Medium dense, moist, brownish gray, Clayey, fine to medium SAND; porous, scattered pockets of clay	10		
		///	V	<u></u>	-Encountered groundwater table at 13 feet			
14 – – 16 –	B9-4				LANDSLIDE DEBRIS Loose, saturated, olive gray, Silty, fine to coarse SAND; jumbled texture	- - 11	106.5	19.6
 18 -				SM		-		
20 - - 22 -	B9-5					- 7		
 24		· · · · · ·			SANTIAGO FORMATION	-		
- 26 -	B9-6				Dense, wet, light gray, Silty, fine- to coarse-grained SANDSTONE; weakly cemented	30 		
28 – –				SM		-		
30 - -	B9-7			ML	Hard, moist, light gray to olive gray, fine-grained Sandy to Clayey SILTSTONE; scattered iron oxide staining	- 59	98.9	23.4
igure .og of	A-9, Boring	B 9	, P	age 1	of 2		07227	'-52-02.GF
			[SAMPL	ING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE SA			

PROJEC	T NO. 0722	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) 202' DATE COMPLETED 05-25-2205 EQUIPMENT CME 75 WITH 8'' HOLLOW STEM AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE ⁻ CONTENT (%)
			┝┤		MATERIAL DESCRIPTION			
- 32 - 						-		,
- 34 - - 36 -	B9-8			SM+SC	Medium dense to dense, wet, light olive gray, Clayey and Silty, fine to coarse SAND	43	107.6	20.6
- 38 - 					Hard, moist, olive to olive gray, fine-grained Sandy SILTSTONE; weakly indurated			
- 42 -	B9-9			ML		31 		
- 44 - - 46 -	B9-10				Dense to hard, moist, olive to greenish gray, fine-grained Sandy CLAYSTONE to Clayey SANDSTONE; weakly indurated and cemented	42	100.5	23.9
48 50			* >	CL-SC		28		
- 52 -					Hard, moist, olive gray, Clayey SILTSTONE; strongly indurated			
- 54 - - 56 -	B9-12			ML		 50/5" 	111.3	16.6
	B9-13	+ + - + - + +	-		GRANITIC ROCK Hard, moist, gray, GRANITIC ROCK; moderately weathered; fine- to coarse-grained crystalline texture -No recovery at 58 feet	- 50/1"		
					-Refusal at 58.5 feet BORING TERMINATED AT 58.5 FEET Groundwater encountered at 13 feet Backfilled with 20.5 cu. ft. of bentonite slurry			
Figur Log c	e A-9, of Borin	g B	9, I	Page 2	of 2		0722	17-52-02.GPJ
SAM	PLE SYME	BOLS			PLING UNSUCCESSFUL I STANDARD PENETRATION TEST II DRIVE S URBED OR BAG SAMPLE I WATER			

PROJEC	T NO. 0722	27-52-0	2				an an an an an an an an an an an an an a	anaminininininininininyanity
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 10 ELEV. (MSL.) 198' DATE COMPLETED 05-25-2205 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 - - 2 -	B10-1				ALLUVIUM Loose, moist, dark brown, Clayey and Silty, fine to medium SAND; porous with thin roots	-		.
- 4 -	B10-2			SM+SC		_ _ _ 10	100.6	21.9
- 6 -	B10-2				-Wet	-		
- 10 -	B10-3				Medium dense, moist, dark brown to mottled grayish brown, Clayey, fine to medium SAND; some carbonate pods; porous	- 18	104.0	20.3
 - 12 -				SC				
- 14 -	B10-4		₹		-Encountered groundwater at 15 feet LANDSLIDE DEBRIS		104.5	21.9
- 16 - - 18 -			T		LANDSLIDE DEBRIS Loose to medium dense, wet, olive gray, Silty, fine to medium SAND; pods of carbonate	-	101.0	
 - 20 -	B10-5		ł	SM	-Loose to medium dense, saturated, fine- to coarse-grained	32		
- 22 -				SM	Dense, moist, light gray, Silty, fine- to medium-grained SANDSTONE; carbonate-filled fractures	_		
- 24 - 	B10-6				SANTIAGO FORMATION Dense, moist, light olive gray, Silty, fine-grained SANDSTONE to fine-grained Sandy SILTSTONE; moderately cemented	 74/11"	114.2	15.3
- 26 -				SM-MIL		-		
- 28 -								
	e A-10, f Boring	g B 1	0,	Page 1	of 2		0722	7-52-02,GPJ
SAMF	SAMPLE SYMBOLS Image: Sampling unsuccessful Image: Standard penetration test Image: Sample (undisturbed) Sampling unsuccessful Image: Standard penetration test Image: Sample (undisturbed) Sampling unsuccessful Image: Standard penetration test Image: Sample (undisturbed) Sampling unsuccessful Image: Standard penetration test Image: Sample (undisturbed) Sampling unsuccessful Image: Standard penetration test Image: Sample (undisturbed)							

.

PROJEC	T NO. 0722	27 - 52-0	2		·			
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 10 ELEV. (MSL.) 198' DATE COMPLETED 05-25-2205 EQUIPMENT CME 75 WITH 8" HOLLOW STEM AUGER	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 30 - 	B10-7				Dense, moist, light gray, Silty, fine- to coarse-grained SANDSTONE; weakly cemented; slightly micaceous	74 -		
- 34 - - 34 -	B10-8			SM	-Moderately cemented	_ 50/6"	117.4	13.4
 - 38 -								
- 40 -	B10-9					50/5"	111.5	15.4
- 42 -					Hard, moist, olive gray, Clayey to fine-grained Sandy SILTSTONE; strongly indurated; some iron oxide mineralization	-		
	B10-10			ML		80/10"		
- 44 -					-Refusal to penetration at 43.5 feet BORING TERMINATED AT 44 FEET Groundwater encountered at 15 feet Backfilled with 15 cu. ft. of bentonite slurry			
Figure			L		<u>,</u>	L	07227	-52-02.GPJ
Log of	f Boring	ј В 1(), F	Page 2	of 2			
SAMP	LE SYMBO	OLS			ING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE S BED OR BAG SAMPLE II CHUNK SAMPLE II WATER			

PROJEC ⁻	T NO. 0722	27-52-0	2						
DEPTH IN FEET	SAMPLE NO.	ЛОГОСА	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 1 ELEV. (MSL.) 300' DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
					MATERIAL DESCRIPTION				
- 0 - 				CL	LANDSLIDE DEBRIS Soft, moist, dark brown to grayish brown, fine Sandy CLAY; moderate topsoil development; common thin roots	_			
- 4 - - 4 - - 6 -				СН	Stiff, moist, brownish to olive gray, fine Sandy fat CLAY; abundant slickensided sheared surfaces; carbonate mineralization; scattered roots; overall jumbled texture; fractured claystone blocks S: N5W/17SW	-			
- 8 - - 10 -				SM+SC	SANTIAGO FORMATION Dense, moist, light olive gray, fine- to medium-grained Silty to locally Clayey SANDSTONE; moderately cemented; weakly jointed; generally massive and undisturbed	-			
					TRENCH TERMINATED AT 11 FEET No groundwater encountered				
Figur	e A-11,						0722	7-52-02.GPJ	
Logo	of Trenc	hΤ΄	1, F	⁵ age 1	of 1				
SAME	SAMPLE SYMBOLS Image: mail in the sampling unsuccessful in the sample of the sampl								

PROJEC	T NO. 0722	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 2 ELEV. (MSL.) 195' DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 - 				CL	LANDSLIDE DEBRIS Soft, moist, brown to grayish brown, fine Sandy CLAY; moderate topsoil development; abundant thin roots			
- 4 - - 6 - 8 -				CH+SC	Medium dense and stiff, moist, light gray to olive gray, fat CLAY and Clayey to Silty SAND; jumbled texture; chaotic structure; some fragments of sandstone and claystone; clayey areas sheared and slickensided; back-rotated beds generally dipping at low to moderate angles into hillside	-		
		., , , ,			TRENCH TERMINATED AT 9 FEET			
					No groundwater encountered			
Figure	e A-12, f Trencł	יד 2	p	ane 1	of 1		07227	7-52-02.GPJ
SAMPLE SYMBOLS					ING UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE S RBED OR BAG SAMPLE III WATER			

.

PROJEC ⁻	T NO. 0722	27-52-0	2				yagaramannaaniiiiniinii		
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 3 ELEV. (MSL.) 204" DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
					MATERIAL DESCRIPTION				
- 0 - - 2 -				CL	LANDSLIDE DEBRIS Soft, moist, dark brown, fine Sandy CLAY; abundant roots and porosity	-			
- 4 - - 6 - - 8 - - 10 - - 12 -				SM+SC	Loose, moist to wet, yellowish brown to light olive gray, Silty to Clayey SAND; highly disturbed, chaotic texture, some fragments of sandstone; few roots -Very loose and saturated; walls of trench highly prone to caving; abundant seepage TRENCH TERMINATED AT 12 FEET Seepage at 10 feet				
Figure Log o	e A-13, f Trencl	hT3	5, F	Page 1	of 1		0722	7-52-02.GPJ	
SAMPLE SYMBOLS Image: mail in the sample of the sample									

PROJEC	r no. 0722	27-52-0	2							
DEPTH IN FEET	SAMPLE NO.	ЛТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 4 ELEV. (MSL.) 207' DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)		
					MATERIAL DESCRIPTION					
- 0 - - 2 - - 2 - - 4 -				SC	ALLUVIUM Loose, moist, dark brown, Clayey, fine SAND; porous; common roots	-				
- 6 -					LANDSLIDE DEBRIS Loose, wet, olive gray to grayish brown, Clayey to Silty, fine SAND and Sandy CLAY; porous; jumbled texture and chaotic structure					
- 10 - - 12 - 				SM+SC	-Saturated; abundant seepage; caving of trench walls					
- 14 -					TRENCH TERMINATED AT 14 FEET Seepage at 9 feet					
Figure	e A-14, f Trenc	hT 4	4. F	Page 1	of 1		0722	7-52-02.GPJ		
	Log of Trench T 4, Page 1 of 1 SAMPLE SYMBOLS Image: main sampling unsuccessful image: main sample or bag sample Image: main sampling unsuccessful image: main sampling unsuccessful image: main sampling unsuccessful image: main standard penetration test image: main sample (undisturbed) Image: main sampling unsuccessful image: main samplimage: main sampling unsuccessful image: main									

PROJEC ⁻	PROJECT NO. 07227-52-02								
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĠY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 5 ELEV. (MSL.) 212' DATE COMPLETED 05-09-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
·		-			MATERIAL DESCRIPTION				
- 0 - - 2 - - 2 - - 4 -				SC	LANDSLIDE DEBRIS Loose, moist, dark gray, Clayey, fine SAND; porous; thin roots; weakly developed topsoil in upper 2 feet				
- 6 - - 8 - - 10 - - 12 - - 14 -				SM+SC	Loose, moist to wet, olive gray, Clayey to Silty, fine to coarse SAND; jumbled texture; chaotic structure; some clayey sandstone fragments in sandy matrix				
					TRENCH TERMINATED AT 14.5 FEET No groundwater encountered	,			
Figure	A-15, f Trencl	hT 4	 5 F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	of 1		0722	7-52-02.GPJ	
_	LE SYMB			SAMP	LING UNSUCCESSFUL II STANDARD PENETRATION TEST II DRIVE SA RBED OR BAG SAMPLE II CHUNK SAMPLE II WATER				

PROJEC	T NO. 0722	27-52-0	2								
DEPTH		ЭGY	GROUNDWATER	SOIL	TRENCH T	6			PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	MONU	CLASS (USCS)	ELEV. (MSL.)	226'	_ DATE COMPLETED	05-10-2005	NETR ESIST, ILOWS	۲ DE (P.C.	AOIST
			GROI		EQUIPMENT	JD 45	0 TRACK-MOUNTED BAG	CKHOE	E R B	۲Ċ.	≈ 0 8
- 0 -						MATERIA	L DESCRIPTION				
				SC	TOPSOIL Loose to med	lium dense, dry to	damp, Clayey SAND		-		
- 2 -	8		-		GRANITIC Moderately h moderately fr	ard, moist, tan to g	gray, GRANITIC ROCK; higl dry; light green clay on fractur	nly weathered; e surfaces	_		
	T6-1		1		-At 5 feet J: 1	N37E/vertical			-		
- 8 -		+ + + + + +	-		-At 7 feet J:N	153W/77SW			-		
			1						-		
							ERMINATED AT 9.5 FEET oundwater encountered No caving			-	
Figure	e A-16, f Trenc	hΤθ	5, F	Page 1	of 1		halanna sa Bhillin an Ingeresan gayan may kapanan sa Sabih Magarana kana da .			0722	7-52-02.GPJ
QA M/F	PLE SYMB	015		SAMP	LING UNSUCCESSFUL	🚺 s	TANDARD PENETRATION TEST	DRIVE S	AMPLE (UNDI	STURBED)	
				🕅 distl	JRBED OR BAG SAMPLE	🔊 c	CHUNK SAMPLE	💆 WATER	TABLE OR SE	EPAGE	

PROJEC	Г NO. 0722	27-52-0	2			[]
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСҮ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 7 ELEV. (MSL.) 240' DATE COMPLETED 05-10-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			\square		MATERIAL DESCRIPTION			
- 0 - - 2 - 				SC	LANDSLIDE DEBRIS Loose to medium dense, dry to damp, dark gray, Clayey SAND; moderate topsoil development Medium dense, moist, light gray brown; scattered flecks of black organics; base subparallel to slope; grades to very light gray with medium gray brown laminations			
- 6 -			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SM	SANTIAGO FORMATION Dense, damp, very light gray, fine- to medium-grained Silty SANDSTONE; massive to thickly slightly weathered -Becomes dark brown at 7.5 feet -C: 80E/5-10N (at top)	-		
					GRANITIC ROCK Moderately hard, damp to moist, greenish gray with abundant orange staining,			
					GRANITIC ROCK; highly weathered TRENCH TERMINATED AT 9 FEET No groundwater encountered No caving			
Figur Log o	e A-17, of Trenc	h T	7, 1	L Page 1	of 1		072	27-52-02.GPJ
SAM	SAMPLE SYMBOLS Image: mail and mail an							

PROJEC	T NO. 0722	27-52-0	2			7		
DEPTH IN FEET	SAMPLE NO.	ЛОПОНТИ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 8 ELEV. (MSL.) 254' DATE COMPLETED 05-10-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 -		, , , , , , , , , , , , , , , , , , , ,		SC	TOPSOIL Medium dense, dry to damp, dark gray, Clayey SAND	_		
- 2 -				SM	SANTIAGO FORMATION Dense, damp, very light gray, Silty SANDSTONE; fine- to medium-grained; moderately weathered; massive; moderately cemented	-		
	T8-1		•		-Slightly weathered at 4 feet TRENCH TERMINATED AT 5 FEET No groundwater encountered			
					·			
Figur	e A-18,		ىمىنىيەل <u>يەس</u>				072	27-52-02.GPJ
Log c	of Trenc	h T	8, I	Page 1	of 1	-0		
SAM				SAMPLE (UNE R TABLE OR S				

PROJEC	ľ NO. 0722	27-52-0	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОЄУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 9 ELEV. (MSL.) 241' DATE COMPLETED 05-10-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 -				SM	TOPSOIL Medium dense, dry to damp, dark gray-brown, Silty SAND	-		
- 2 - - 4 -				SM	SANTIAGO FORMATION Dense, damp, very light gray with some orange staining, Silty SANDSTONE; fine- to medium-grained; moderately weathered, slightly fractured; moderately cemented; massive -Slightly weathered; fine roots; dark brown staining at 4 feet -At 3 feet; J: N70W/65NE	_		
				<u></u>	-At 3 feet, J: N/0W/05NE TRENCH TERMINATED AT 5 FEET No groundwater encountered			
		- 						
							- -	
Figure Log o	e A-19, of Trenc	hT :	9, F	Page 1	of 1		0722	7-52-02.GPJ
	PLE SYME			SAMI	PLING UNSUCCESSFUL II STANDARD PENETRATION TEST III DRIVE S JRBED OR BAG SAMPLE III CHUNK SAMPLE IIII WATER			

PROJECI	NO. 0722	.7-52-0	2			1		1
DEPTH IN	SAMPLE	гітногосу	GROUNDWATER	SOIL CLASS	TRENCH T 10 ELEV. (MSL.) 228' DATE COMPLETED 05-10-2005	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
FEET	NO.	ГТНО	OUNE	(USCS)		PENE RESI (BLO	DRY (P	CONCON
			GR		EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE			
- 0 -					MATERIAL DESCRIPTION			
				SM	TOPSOIL Medium dense, dry to damp, dark gray, Silty SAND	-		
	T10-1			SP SM	SANTIAGO FORMATION Medium dense, moist, very light pale brown, SANDSTONE; massive; moderately hard; weakly cemented; moderately weathered -Very light gray; slightly weathered; slightly moist at 4 feet			
Figur Log c	e A-20, of Trenc	h T	10,	Page	1 of 1		072	27-52-02.GPJ
CVW		201.5		SAN		SAMPLE (UNI		
	PLE SYMBOLS Image: main standard penetration rest Image: main s							

PROJEC	r no. 0722	27-52-02	2					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОĞY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 11 ELEV. (MSL.) 226' DATE COMPLETED 05-10-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 - - 2 -				SC	TOPSOIL Medium dense, damp, dark gray, Clayey SAND	-		
- 4 -					GRANITIC ROCK Moderately hard, slightly moist, light gray brown with orange staining, GRANITIC ROCK; highly weathered, highly fractured			
- 6 -		+ +			-At 6 feet J: N70E/72NW; J: N72E/70SE	-		
Figure	e A-21,				TRENCH TERMINATED AT 7.5 FEET No groundwater encountered		0722	27-52-02.GPJ
Log o	of Trenc	h T 1	1,	Page 1	of 1	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
SAM	PLE SYME	BOLS				SAMPLE (UND R TABLE OR SE		

PO IECT NO 07227-52-02

PROJECI	NO. 0722	.1-52-0	۷								
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 1	220'	_ DATE COMPLETE		PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			ß		EQUIPMENT	JD 45	0 TRACK-MOUNTED	ВАСКНОЕ	- L		
						MATERIA	AL DESCRIPTION				
- 0 -				SC	TOPSOIL Medium dense,	slightly moist,	dark gray, Clayey SAND				
- 2 - - 4 -					ROCK; highly	d, damp, light g weathered; scatt	ray brown with orange sta tered hard rounded nodule: o coarse-grained crystalline	s (some nodules,	-		
- 6 -		+++							-		
							TERMINATED AT 7 FEE oundwater encountered	T			
Figure	e A-22, f Trenc	h T 1	2	Panė 1	of 1					0722	7-52-02.GPJ
	PLE SYMB		· رحم 	SAMF	PLING UNSUCCESSFUL		STANDARD PENETRATION TES		SAMPLE (UND		

PROJEC	Г NO. 0722	27-52-0	2					
DEPTH		οGY	GROUNDWATER	SOIL	TRENCH T 13	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОGY	NDN	CLASS (USCS)	ELEV. (MSL.) 228' DATE COMPLETED 05-10-2005	NETR ESIST	кү DE (P.C.	AOIST
			GROL	(5666)	EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	- RE B RE	-D D	2 8
		1			MATERIAL DESCRIPTION			
- 0 -		17.7	╆╌┨		LANDSLIDE DEBRIS			
				CL	Stiff, moist, dark brown, Sandy CLAY; porous with roots and krotovina; moderate topsoil development	_		
- 4 -				SM	Loose, moist, light olive gray, Silty, fine to medium SAND; common clay-filled; high-angle fractures	_		
				5101	a log in the line of the first of AV, periods a failty good and	F		
- 6 -					Stiff, moist, dark olive gray; Sandy, fat CLAY; pockets of silty sand and granitic rock fragments; highly fractured and sheared; chaotic bedding orientations B: N35E/38NW -Carbonate and iron oxide mineralization between sand and clay beds	-		
- 8 -					-Carbonate and iron oxide initieralization between sand and easy beds	-		
				СН		F		
- 10 -	T13-1	\$.	1			_		
		/./.	1			F		
- 12 -		×						
		<u>-//</u> + +		<u> </u>	-At 13 feet, contact roughly horizontal, undulatory GRANITIC ROCK			
- 14 -		+ +		Υ	Moderately hard to hard, damp, light to medium brown, GRANITIC ROCK;	/		
				<u> </u>	moderately weathered TRENCH TERMINATED AT 14 FEET No groundwater encountered			
					No caving			
Figur	e A-23, of Trenc	⊥ :h T 1	<u> </u>	Page	l of 1		072	1 27-52-02.GPJ
			,			SAMPLE (UND	STURBED)	
SAM	PLE SYME	BOLS				R TABLE OR SI		-
1								and the second second second second second second second second second second second second second second second

PROJEC	ROJECT NO. 07227-52-02							
DEPTH IN FEET	SAMPLE NO.	ГТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 14 ELEV. (MSL.) 238' DATE COMPLETED 05-10-2005 EQUIPMENT JD 450 TRACK-MOUNTED BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
· · ·					MATERIAL DESCRIPTION			
- 0 -				SC	PREVIOUSLY PLACED FILL Loose, moist, grayish brown, Clayey, fine to medium SAND; few gravels	-		
- 2 - 4 -				CL	TOPSOIL Stiff, moist, dark brown, fine Sandy CLAY; few gravels; common roots; porous	-		
- 6 -				СН	SANTIAGO FORMATION Very stiff, moist, dark olive gray, fine Sandy, fat CLAY; highly weathered and some shearing			
- 8 - - 10 - 12 -				SM-SC	Medium dense, moist, light olive gray, Clayey and Silty, SANDSTONE; fine- to medium-grained; very weakly cemented; massive bedding			
- 14 - - 14 - 				JW-JC	-Becomes dense, fine-grained and clayey			
- 18 -					TRENCH TERMINATED AT 18 FEET No groundwater encountered No caving			
Figure Log o	e A-24, f Trenc	h T 1	4,	Page 1	of 1		0722	7-52-02.GPJ
SAMF	SAMPLE SYMBOLS Image: Sampling unsuccessful Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Image: Standard penetration test Sample Image: Standard penetration test Image: Standard penetrates Image: Standard penetes							

SUMMARY OF LABORATORY TESTING

Classification

Soils were classified visually according to the Unified Soil Classification System (ASTM Test Method D2487). The soil classifications are shown on the logs of exploratory borings/trenches in Appendix A.

Liquid limit, plastic limit and plasticity index were determined in accordance with ASTM Test Method D4318. Results are shown below:

Boring No.	Sample Depth (Ft)	Liquid Limit (%)	Plasticity Index (%)	Unified Soil Classification Symbol
Geocon B1-6	6	63	41	CL
Geocon B7-12	46	55	23	СН

RESULTS OF LABORATORY ATTERBERG LIMITS

(Geocon, 2005)

Expansion Index

Expansion Index testing was performed on representative soil samples at locations listed. Testing was performed in general accordance with ASTM Test Method D4829. The Expansion Index (EI) test results are presented below:

Test Location	Expansion Index	Potential Expansion
GeoTek B-4 @ 5 feet	27	Low
GeoTek B-3 @ 29 feet	76	Medium
GeoTek B-2 @ 5 feet	164	High

RESULTS OF LABORATORY EXPANSION INDEX

EXPANSION INDEX TEST

(ASTM D4829)

Project Name:	Oceanside Residential Development
Project Number:	3129-SD3

Tested/ Checked By:
Date Tested:
Sample Source:
Sample Description:

TM	Lab No	2507
12/18/2006		
GTB2 @ 5		
Gray Silty Cla	у	

Ring Id_	12	_Ring Dia. " _	4"	_Ring	1"	
Loading	weigh	t: 5516. gram	s			

DENSITY DETERMINATION

Α	Weight of compacted sample & ring	760.4
В	Weight of ring	370
С	Net weight of sample	390.4
D	Wet Density, lb / ft3 (C*0.3016)	117.7
Ε	Dry Density, lb / ft3 (D/1.F)	105.1
	SATURATION DETERMIN	ATION
F	Moisture Content, %	12.0
G	(E*F)	1261.5
Н	(E/167.232)	0.63
I	(1H)	0.37
J	(62.4*1)	23.2
к	(G/J)= L % Saturation	54.4

R			
DATE	TIME	READING	
12/18/2006	11:20	0.024	Initial
12/18/2006	11:30	0.024	10 min/Dry
12/18/2006	11:31	0.032	1 min/Wet
12/18/2006	11:36	0.040	5 min/Wet
12/18/2006	1:10	0.052	Random
12/19/2006	8:00	0.182	Final

FINAL MOISTURE				
Weight of wet sample	Weight of dry sample			
& tare	& tare	Tare	% Moisture	
138	110.3	12.5	28.3%	

EXPANSION INDEX = 164 (@50% SATURATION)

EXPANSION INDEX TEST

(ASTM D4829)

Project Name:	Oceanside Residential Development
Project Number:	3129-SD3

Tested/ Checked By:	TM	Lab No	2507	
Date Tested:	12/18/2006			
Sample Source:	GTB3 @ 29			
Sample Description:	Light Olive Gray Silty Clay			

Ring Id	12	Ring Dia.	"	4"	Ring	

Loading weight: 5516. grams

DENSITY DETERMINATION

Α	Weight of compacted sample & ring	742.4			
в	Weight of ring	370			
С	Net weight of sample	372.4			
D	Wet Density, lb / ft3 (C*0.3016)	112.3			
Ε	Dry Density, lb / ft3 (D/1.F)	98.7			
	SATURATION DETERMINATION				
F	Moisture Content, %	13.8			
G	(E*F)	1362.0			
Н	(E/167.232)	0.59			
	(1H)	0.41			
J	(62.4*1)	25.6			
ĸ	(G/J)= L % Saturation	53.3			

R			
DATE	TIME	READING	
12/18/2006	11:20	0.035	Initial
12/18/2006	11:30	0.035	10 min/Dry
12/18/2006	11:31	0.067 ·	1 min/Wet
12/18/2006	11:36	0.089	5 min/Wet
12/18/2006	1:10	0.092	Random
12/19/2006	8:00	0.108	Final

	FINAL MOISTU	RE	
Weight of wet sample	Weight of dry sample		
& tare	& tare	Tare	% Moisture
135	110.1	12.2	25.4%

EXPANSION INDEX = 76 (@50% SATURATION)

EXPANSION INDEX TEST

(ASTM D4829)

Project Name: Oceanside Residential Development		
Project Number:	3129-SD3	
Ring Id <u>12</u> Ring Dia	. " Ring	
Loading weight: 5516. gr	rams	
DI		
Meight of compacted sa	mple & ring 764.1	

А	Weight of compacted sample & ring	764.1			
в	Weight of ring	370			
С	Net weight of sample	394.1			
D	Wet Density, lb / ft3 (C*0.3016)	118.9			
Е	Dry Density, lb / ft3 (D/1.F)	105.6			
	SATURATION DETERMINATION				
F	Moisture Content, %	12.6			
G	(E*F)	1330.1			
Н	(E/167.232)	0.63			
	1				
	(1H)	0.37			
ا ل	(1H) (62.4*1)	0.37 23.0			

Tested/ Checked By:
Date Tested:
Sample Source:
Sample Description:

TM	Lab No	2507
12/18/2006		
GTB4 @ 5		
Gray Brown	Clayey Silty	Sand

READINGS			
DATE	TIME	READING	
12/18/2006	11:20	0.013	Initial
12/18/2006	11:30	0.012	10 min/Dry
12/18/2006	11:31	0.015	1 min/Wet
12/18/2006	11:36	0.020	5 min/Wet
12/18/2006	1:10	0.024	Random
12/19/2006	8:00	0.036	Final

	FINAL MOISTU	JRE	
	Weight of dry sample & tare	Tare	% Moisture
& tare		Tale	
111.5	92.8	12.5	23.3%

EXPANSION INDEX = 27 (@50% SATURATION)

Moisture-Density Relations

Laboratory testing was performed on representative samples collected during the subsurface exploration. The laboratory maximum dry density and optimum moisture content for representative soil types were determined in general accordance with test method ASTM D1557.

Test Location	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
GeoTek B-5 @ 5 feet	117.5	13.5
GeoTek B-4 @ 5 feet	115.0	13.0
Geotek B-3 @ 29 feet	111.5	16.5
GeoTek B-2 @ 5 feet	115.5	14.0

RESULTS OF LABORATORY TEST OF MAXIMUM DRY DENSITY

Direct Shear

Shear testing was performed in a direct shear machine of the strain-control type in general accordance with ASTM Test Method D3080. The rate of deformation is 0.03 inches per minute. The sample was sheared under varying confining loads in order to determine the coulomb shear strength parameters, angle of internal friction and cohesion. The shear test results are included in the report.

Soil	Shear Strength		
Description/Source	Friction (Degrees)	Cohesion (psf)	Dry Unit Weight (pcf)
GeoTek B-1 at 5'	41.0	116	112.2
GeoTek B-1 at 16'	38.0	114	114.3
GeoTek B-1 at 45'	43.8	260	118.7
GeoTek B-2 at 5'	35.4	560	103.9
GeoTek B-4 at 5'	33.0	360	103.9
GeoTek B-5 at 50'	42.9	940	123.5
GeoTek B-5 at 60'	41.7	150	117.9
GeoTek B-8 at 10'	36.5	280	116.4

RESULTS OF LABORATORY SHEAR TESTING

Curve No.: GTB2 @ 5' Date: 12/18/06 Project No.: 3129-SD3 Project: Oceanside Residential Development Location: Elev./Depth: **Remarks:** MATERIAL DESCRIPTION **Description:** Light Olive Gray Silty Clay AASHTO: **USCS: Classifications** -Sp.G. = Nat. Moist. = Plasticity Index = Liquid Limit = % < No.200 = % > No.4 = % **TEST RESULTS** Maximum dry density = 115.5 pcf Optimum moisture = 14 % Test specification: 140 ASTM D 1557-00 Method A Modified 130 120 **100% SATURATION CURVES** FOR SPEC. GRAV. EQUAL TO: 2.8 2.7 2.6 Dry density, pcf 110 100 90 80 70 25 30 35 40 15 20 10 5 0 Water content, % Plate 1

-GeoTek, Inc.—

Curve No.: GTB3 @ 29'

Project No.: 3129-SD3 Project: Oceanside Residential Development

Location: Elev./Depth:

Remarks:

MATERIAL DESCRIPTION

Description: Light Olive Gray Silty Clay

AASHTO: USCS: **Classifications** -Sp.G. = Nat. Moist. = Plasticity Index = Liquid Limit = % < No.200 = % > No.4 = % **TEST RESULTS** Maximum dry density = 111.5 pcf Optimum moisture = 16.5 % Test specification: 140 ASTM D 1557-00 Method A Modified 130 100% SATURATION CURVES 120 FOR SPEC, GRAV, EQUAL TO: 2.8 2.7 2.6 Dry density, pcf 110 100 90 80 70 30 35 20 25 15 10 5 0 Water content, % Plate -GeoTek, Inc.-

Date: 12/18/06

40

2

Curve No.: GTB4 @ 5'

Date: 12/19/06

40

3

Project No.: 3129-SD3 Project: Oceanside Residential Development

Location: Elev./Depth:

Remarks:

MATERIAL DESCRIPTION

Description: GRAY BROWN CLAYEY SILTY SAND

AASHTO: **USCS: Classifications** -Sp.G. = Nat. Moist. = Plasticity Index = Liquid Limit = % < No.200 = % > No.4 = % TEST RESULTS Maximum dry density = 115 pcf Optimum moisture = 13 % **Test specification:** 140 ASTM D 1557-00 Method A Modified 130 **100% SATURATION CURVES** 120 FOR SPEC, GRAV. EQUAL TO: 2.8 2.7 2.6 Dry density, pcf 110 100 90 80 70 25 30 35 15 20 5 10 Water content, % Plate -GeoTek, Inc.-

Curve No.: GTB5 @ 5' Date: 12/19/06 Project No.: 3129-SD3 **Project:** Oceanside Residential Development Location: Elev./Depth: **Remarks:** MATERIAL DESCRIPTION **Description:** Olive Gray Silty Fine Sand AASHTO: USCS: **Classifications** -Sp.G. = Nat. Moist. = Plasticity Index = Liquid Limit = % < No.200 = % > No.4 = % **TEST RESULTS** Maximum dry density = 117.5 pcf Optimum moisture = 13.5 % **Test specification:** 140 ASTM D 1557-00 Method A Modified 130 **100% SATURATION CURVES** 120 FOR SPEC. GRAV. EQUAL TO: 2.8 2.7 2.6 Dry density, pcf 110 100 90 80 70 40 25 30 35 15 20 5 10 0 Water content, % Plate 4

-GeoTek, Inc.-

Project Name: oject Number:	Lundstrom/Oceanside 3129 SD3		Sample Source: Date Tested:	GTB1 @ 5' 12/13/06
	Brown Silty SAND			
5			i i i i i i i i i i i i i i i i i i i	
1.5				
4				
.5 -				S (ksf)
3				SHEAR STRESS (ksf)
.5				SHEP
2		= 0.88x + 0.16		
.5		- 0.000 + 0.10		
1 .				
.5				
0 0.5	1 1.5	2 2.5 NORMAL STRESS (ks	3 3.5 4 f)	4.5 5

Shear Strength: $\Phi = 4$	41.0 ⁰ ,	C =	0.16 ksf
----------------------------	---------------------	-----	----------

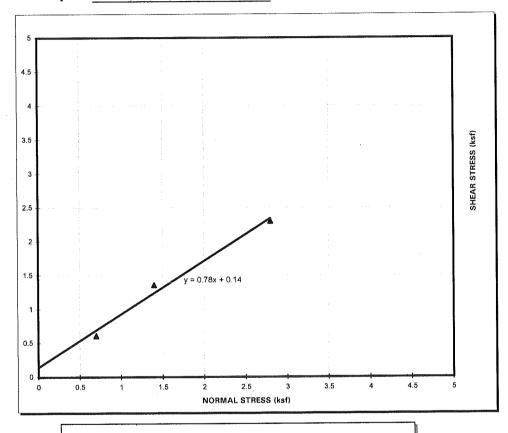
		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	10.7	111.7
2	1.4	10.7	113.1
3	2.8	10.7	111.8

Note: Saturated in shear box

Notes:

1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

2 - Shear strength calculated at peak load.


 Project Name:
 Oceanside Residential Development

 Project Number:
 3129 SD3

 Sample Source:
 GTB1 @ 16'

 Date Tested:
 12/14/06

Soil Description: Olive Gray Silty Clay

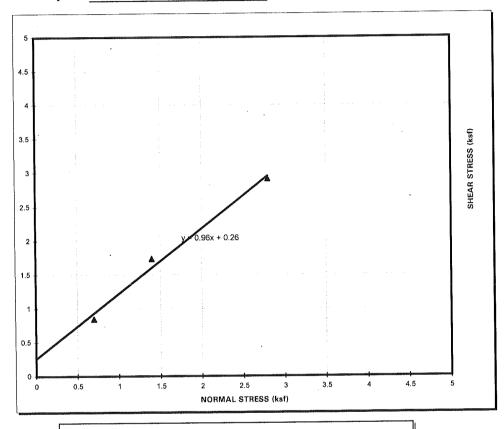
		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	21.5	114.8
2	1.4	21.5	114.2
3	2.8	21.5	113.8

Note: Saturated in shear box

Notes:

s: 1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

2 - Shear strength calculated at peak load.



 Project Name:
 Oceanside Residential Development

 Project Number:
 3129 SD3

Sample Source:	GTB1 @ 45'
Date Tested:	12/20/06

Soil Description: Olive Gray Brown Fine Sandy Silt

Shear Strength: $\Phi = 43.8^{\circ}$, C = 0.26 ksf

		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	11.2	119.1
2	1.4	11.2	118.6
3	28	11.2	118.3

Note: Saturated in shear box

Notes: 1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

2 - Shear strength calculated at peak load.

Project Name: oject Number:	Oceanside Residential Development 3129 SD3	Sample Source: Date Tested:	
oil Description:	Light Olive Gray Silty Clay	_	
5			
4.5 -			
4			
3.5			SS (ksf)
3			SHEAR STRESS (ksf)
2.5			SHE
2			
1.5	y = 0.71x + 0.56		
1			
0.5			
0 0.5	1 1.5 2 2.5 NORMAL STRE	3 3.5 4 SS (ksf)	4.5 5

Shear Strength: $\Phi = 35.4^{\circ}$, **C** = 0.56 ksf

		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	14	104.1
2	1.4	14	103.9
3	2.8	14	103.8

Note: Saturated in shear box

Notes: 1 - The soil specimen used in the shear box were remolded "ring" samples.

2 - Shear strength calculated at peak load.

Project Name: oject Number:	Oceanside Residential Development 3129 SD3	Sample Source: Date Tested:	GTB4 @ 5' 12/20/06
	Dark Brown Silty Fine Sand		
5			
4.5			
4			
3.5 -			S (ksf)
3 -			SHEAR STRESS (ksf)
2.5			SHE
2 -			
1.5	y = 0.65x + 0.36		
1			
0.5			
0 0.5	1 1.5 2 2.5 NORMAL ST		4.5 5

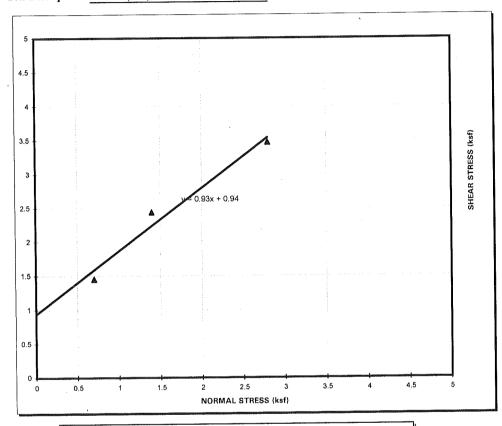
Shear Strength: $\Phi = 33.0^{\circ}$, **C** = 0.36 ksf

		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	13	103.9
2	1.4	13	103.7
3	2.8	13	104.1

Note: Saturated in shear box

Notes: 1 - The soil specimen used in the shear box were remolded "ring" samples.

2 - Shear strength calculated at peak load.


 Project Name:
 Oceanside Residential Development

 Project Number:
 3129 SD3

 Sample Source:
 GTB5 @ 50'

 Date Tested:
 12/19/06

Soil Description: Olive Gray Silty Fine Sand

		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	11.5	124.1
2	1.4	11.5	123.8
3	28	11.5	122.5

Note: Saturated in shear box

Notes:

1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

2 - Shear strength calculated at residual load.

ject Number:		tial Development		Sample Source: Date Tested:		6 @ 60' 15/06
	Brown Silty Sand			Duit I tsitui		
5					ging gugggannalakininininininininininini	
1,5	•					
4						
.5						SS (ksf)
3 -						SHEAR STRESS (ksf)
.5						SHE
2		= 0.89x + 0.15	5			
.5						
1-						
0.5						
0 0.5	1 1		2.5 3 STRESS (ksf)	3.5 4	4.5	5

Water Content Dry Density			
		Water Content	Dry Density

10.4

10.4

10.4

118.4

117.5

117.8

Note: Saturated in shear box

Notes:

1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

0.7

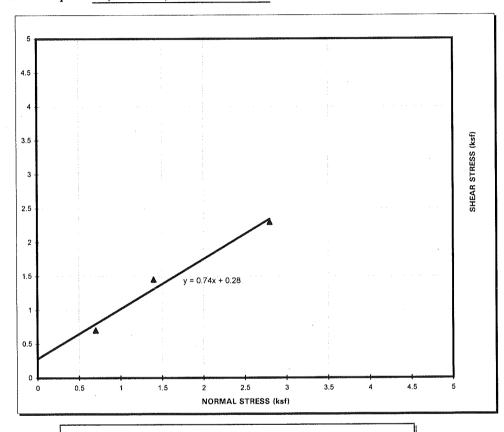
1.4

2.8

2 - Shear strength calculated at residual load.

1

2


3

Project Name: Oceanside Residential Development Project Number: 3129 SD3

Sample Source: GTB8 @ 10' Date Tested: 12/19/06

Soil Description: Grayish Brown Silty Fine Sand

Shear Strength:	Φ=	3650	C =	0.28 ksf	
<u> </u>	$\Psi -$	JU.J .	v –		

		Water Content	Dry Density
Test No.	Load (ksf)	(%)	(pcf)
1	0.7	9.7	117.1
2	1.4	9.7	116.4
3	2.8	97	115.8

Note: Saturated in shear box

Notes:

1 - The soil specimen used in the shear box were "ring" samples collected during the field investigation.

2 - Shear strength calculated at residual load.

1384 Poinsettia Ave., Suite A, Vista, CA 92083 (760) 599-0509 FAX (760) 599-0593

SOIL RESISTIVITY (California Test 643)

Project Name:	Oceanside Residential Development	Tested/ Checked By:	DC	Lab No	2507
Project Number:	3129 SD3	Date Tested:		12/17/2006	
		Sample Source:	NULWICH C.	GTB1 @ 6'	
		Sample Description:		Brown Silty Sar	nd
					-

Determing the soil's pH А

	Water Adde	
	<u>(mL)</u>	(ohms-cm)
В	100	1450
С	50	1150
D	20	1025
E	20	975
F	20	995
G		
Н		
I I		
J		

Minimum Resistivity =

975

8.6

years to perforation for a 18 gauge metal culvert. 24.7 32.1 years to perforation for a 16 gauge metal culvert. 39.5 years to perforation for a 14 gauge metal culvert. 54.4 years to perforation for a 12 gauge metal culvert. 69.2 years to perforation for a 10 gauge metal culvert. 84.0 years to perforation for a 8 gauge metal culvert.

1384 Poinsettia Ave., Suite A, Vista, CA 92083 (760) 599-0509 FAX (760) 599-0593

SOIL RESISTIVITY (California Test 643)

Project Name: Oceanside Residential Development **Project Number:**

3129 SD3

8.3

Tested/ Checked By: Date Tested: Sample Source: Sample Description:

DC	Lab No	2507			
	12/17/2006	3			
GTB2 @ 5'					
Light Olive Gray Silty Clay					

Determing the soil's pH А

w	Water Added (mL)		Measured Res from Nil. 400 (ohms-cm)
	100		750
	50		425
	20		300
	20		260
	20		275

Minimum Resistivity =

260

14.4 years to perforation for a 18 gauge metal culvert. 18.7 years to perforation for a 16 gauge metal culvert. years to perforation for a 14 gauge metal culvert. 23.0 years to perforation for a 12 gauge metal culvert. 31.6 years to perforation for a 10 gauge metal culvert. 40.2 48.9 years to perforation for a 8 gauge metal culvert.

В С D Е F G Н I

J

LABORATORY REPORT

	· · ·	
_% Telephone (619) [°] 425-1993	Fax 425-7917	Established 1928
CLARKSON LABOR 350 Trousdale Dr. Chula Vi ANALYTICAL AND	sta, Ca. 91910 www	.clarksonlab.com
Date: December 21, 2006 Purchase Order Number: 640 Sales Order Number: 86732 Account Number: GEOT		Ba Ba
To:		*
GeoTek,Inc. 1384 Poinsetta Avenue, Sui Vista, CA 92083 Attention: David Cliff	te A	
Laboratory Number: SO1979 Sample Designation:	Customers Pho Fa	ne: 760-599-0509 ax: 760-599-0593
*		* Erom
Two soil samples received Lundstrom 3129-SD3 Job# 25	07 marked as follow	NS:
ANALYSIS: Water Soluble Su	lfate California Te	est 417
Sample	SO48	
 ĢТВ1@6'	<0.001	
бТВ2@5'	0.017	
	u ^u	
· • · · · ·		
Landen		
LT/arr	**@	
	•	

APPENDIX D SLOPE STABILITY ANALYSES

We performed the slope stability analyses using the two-dimensional computer software *GeoStudio2018* developed by Geo-Slope International Ltd. We analyzed the critical modes of potential slip surfaces using rotational-mode based on Spencer's method. The soil parameters used, case conditions, and the calculated factors of safety are presented herein. Plots of the calculation results, including the soil stratigraphy, potential failure surfaces, and calculated factors of safety, are attached within this appendix.

We used the average direct shear, fully softened, and residual strength parameters based on laboratory tests and our experience with similar soil types in nearby areas for the slope stability analyses. We performed direct shear tests on samples of the landslide debris, the sandstone and claystone portions of the Santiago Formation and the granitic rock. Fully softened and residual shear tests were performed on samples of the shear plane materials and the claystone encountered in the Santiago Formation. We performed the laboratory shear tests in accordance with AASHTO T-236 with strain rates of 0.001 in/min and strain distance of 0.25 to 0.3 inches. Additionally, we incorporated Stark Correlations to help evaluate the residual and fully softened strength parameters to perform our slope stability analyses.

We used the 2023 Stark correlation website to help evaluate the results of the laboratory data of the fully softened and residual shear strengths for the bedding plane shear. Based on the correlation spreadsheet (only using Plasticity Index, which is normally a more conservative evaluation, because we do not have the clay fraction information), we obtained a cohesion of 100 psf and a friction angle of 11 degrees. However, we did not include this result in our referenced report because the sample description did not match the other bedding plane shear descriptions and the sample is not taken from the same elevation of the basal slide plane that is controlling the slope stability analyses. A comparison of borings B-1 (Geocon, 2005), B-2 (Geocon, 1985), and GTB-2 (Geotek, 2007), which are located in the same general area and have the same approximate top-of-boring elevation, shows several discrepancies in landslide geometry interpretations. Given the discrepancy in basal shear plane elevations, and the fact that the aforementioned boring logs are inconsistent with our updated geologic model, we opine the shear strength values used herein are applicable for project design.

For the seismic analyses, we used a higher shear strength (as discussed in SP 117) and the lower-thanaverage value of the test results as shown in the figure titled *Landslide Debris – Fully Softened and Stark Correlations (Seismic Case)* presented herein. The Stark correlations used in this figure are based on the "fully-softened" equations/graphs.

We used average-to-lower bound shear values from our shear strength tests (see graphical representations herein). For the static analyses, we used the lower bound value of the test results for the bedding plane shear strengths (including residual shear tests and stark correlations) as shown in the figure titled *Landslide Debris – Residual and Stark Correlations*. The Stark correlations used in this figure are based on the "residual" equations/graphs. The following table presents the values used for the input into the Stark Correlation Spreadsheet.

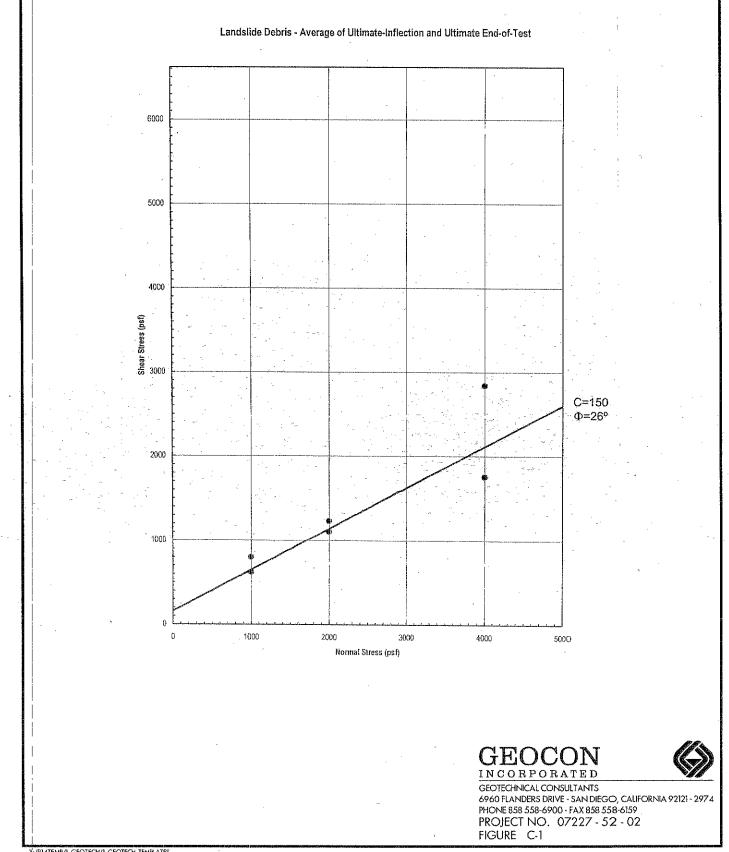
Sample No. (Year)	Depth (Feet)	Plasticity Index	Liquid Limit	CF (% Clay <0.002mm)	Liquid Limit (Not Ball Milled Correction)	CF (Not Balled Milled Correction)
B7-12 (2005)	45	23	55			
B1-6 (2006)	6	41	63			
B11-1 (2024)	48	21	51	13	71	24
B12-1 (2024)	78	20	49	16	67	28
B13-1 (2024)	39	16	17	10	64	10

SUMMARY OF SOIL PROPERTIES USED FOR STARK CORRELATION ANALYSES

Peak shear values were assigned to the sandstone portion of the Santiago Formation and the granitic rock, an average of the ultimate-inflection point and the ultimate-end-of-test values were assigned to the alluvium, landslide debris, and the claystone portion of the Santiago Formation, and fully softened and residual values were assigned to the landslide shear plane and the along bedding (anisotropic) of the claystone/siltstone portion of the Santiago Formation. Our calculations indicate were the proposed buildings are planned the existing and proposed southern slopes have calculated factors of safety (FOS) of at least 1.5 and 1.1 under static and seismic permanent conditions, respectively for both deep-seated failure and shallow sloughing conditions with the construction of shear pins and buttresses. The following table presents a summary of the soil properties used for the slope stability analyses.

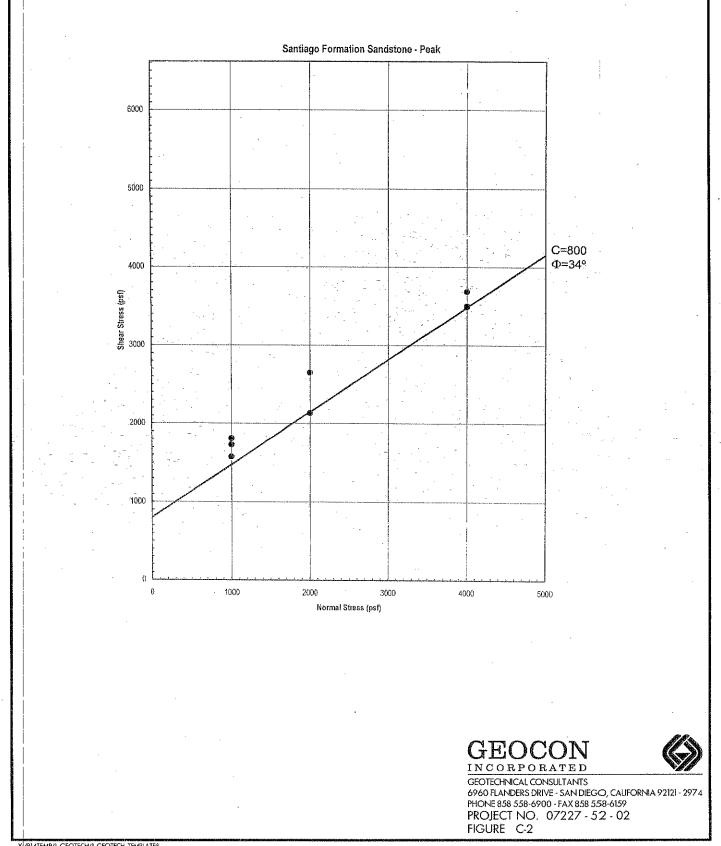
Geologic Unit/Material	Density (pcf)	Cohesion (psf)	Friction Angle (degrees)
Compacted Fill (Qcf)	130	300	28
Alluvium (Qal)	130	150	26
Landslide Debris (Qls)	130	150	26
Landslide Shear Plane (Qlsp)	130	50	14
Santiago Formation – Sandstone (Tsa)	130	800	34
Santiago Formation – Siltstone/Claystone (Tsa)	130	200	28
Santiago Formation – Siltstone/Claystone Along Bedding (Tsa)	130	50	14
Granitic Rock (Kgr)	130	1000	51

SUMMARY OF SOIL PROPERTIES USED FOR SLOPE STABILITY ANALYSES

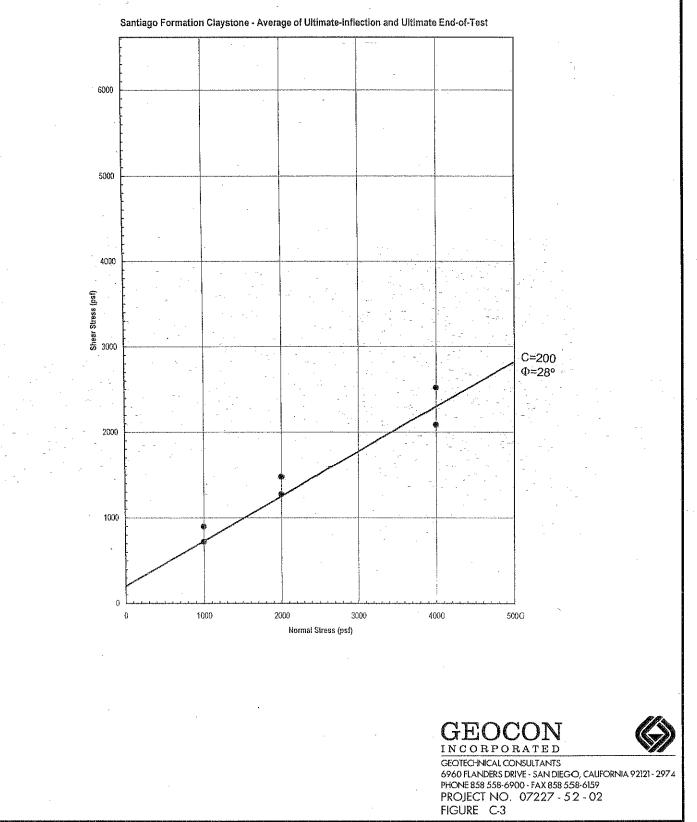

We selected Cross-Sections 1-1', 2-2', and 3-3' to perform the slope stability analyses for the existing conditions. Appendix D presents the results of the slope stability analyses.

The presence of weak claystone/siltstone layers and landslide debris will require the installation of shear pins and the use of slope buttresses or stabilization fills on the southern slope. Surficial slope stability calculations were performed for a 2:1 (horizontal: vertical) fill slope. The calculated factor of safety is greater than the required minimum factor of safety of 1.5.

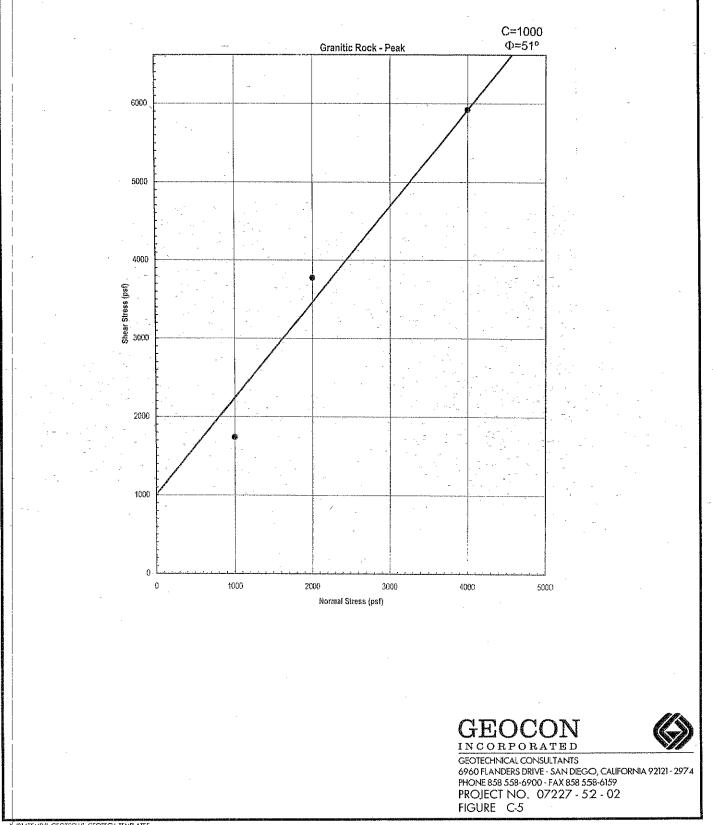
Excavations should be observed during grading by an engineering geologist with Geocon to evaluate whether soil and geologic conditions do not differ significantly from those expected or identified in this report.


We performed the slope stability analyses based on the interpretation of geologic conditions encountered during our field investigation. We should evaluate the geologic conditions during the grading operations to check if the conditions observed during grading are consistent with our interpretations. Additional slope stability analyses may be required during the grading operations.

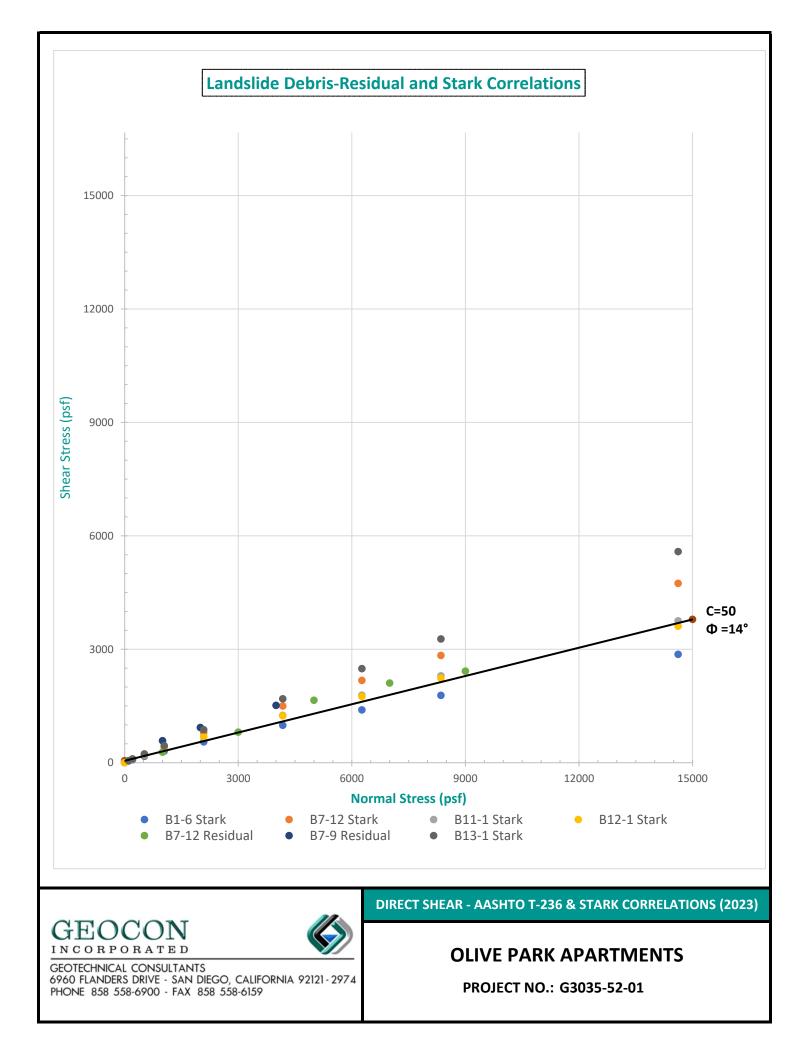
OCEANSIDE VISTA OCEANSIDE, CALIFORNIA

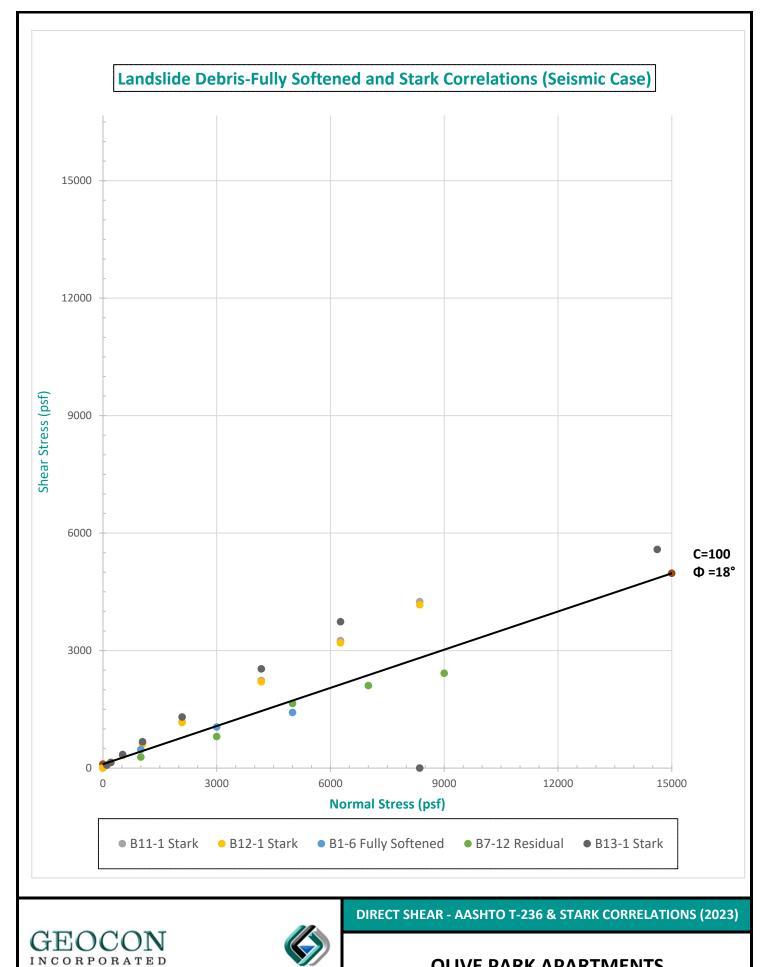

X:/R14TEMP/1_GEOTECH/1_GEOTECH_TEMPLATES

OCEANSIDE VISTA OCEANSIDE, CALIFORNIA


X /R14TEMP/1_GEOTECH/1_GEOTECH_TEMPLATES

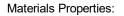
OCEANSIDE VISTA OCEANSIDE, CALIFORNIA




X:/R14TEMP/1_GEOTECH/1_GEOTECH_TEMPLATES

OCEANSIDE VISTA OCEANSIDE, CALIFORNIA

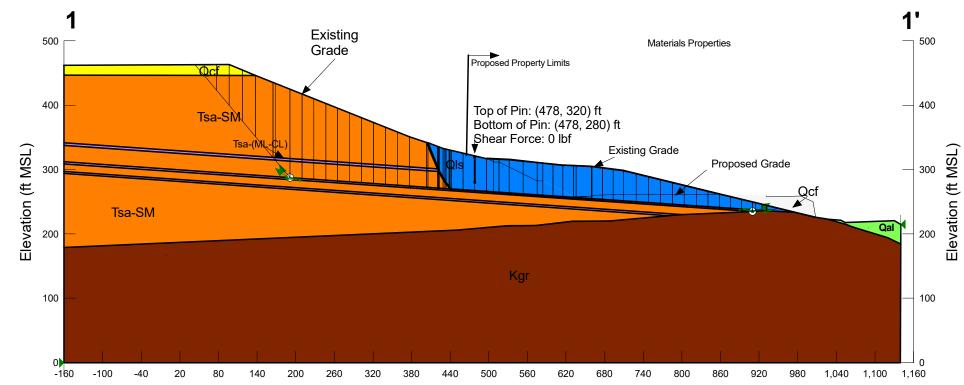
X:/RI4TEMP/1_GEOTECH/1_GEOTECH_TEMPLATES



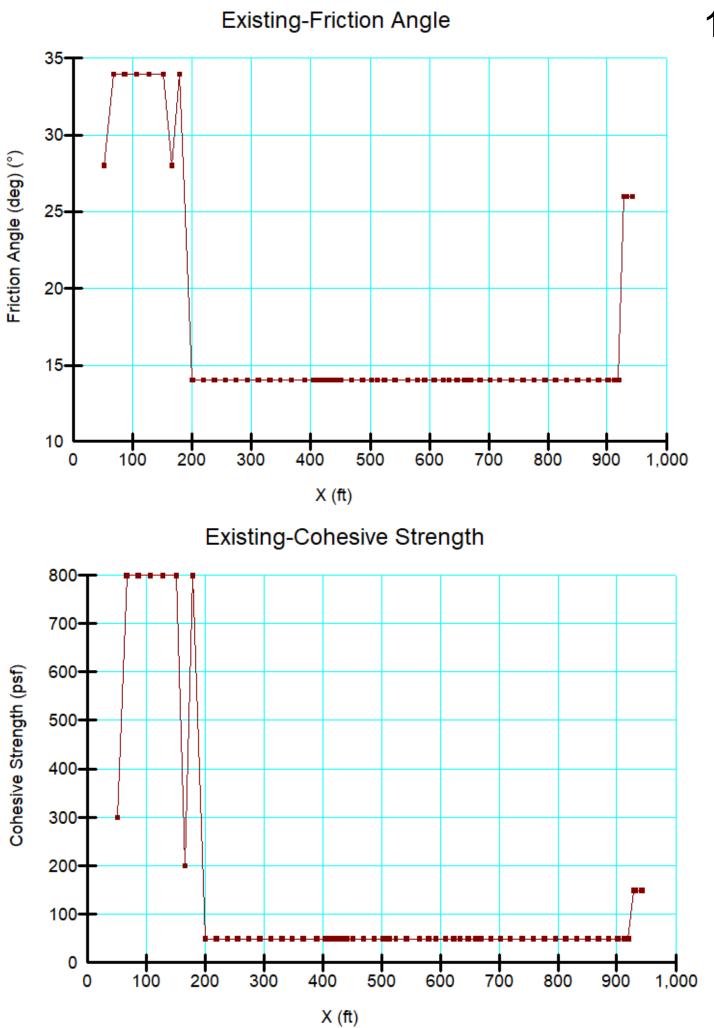
GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

OLIVE PARK APARTMENTS

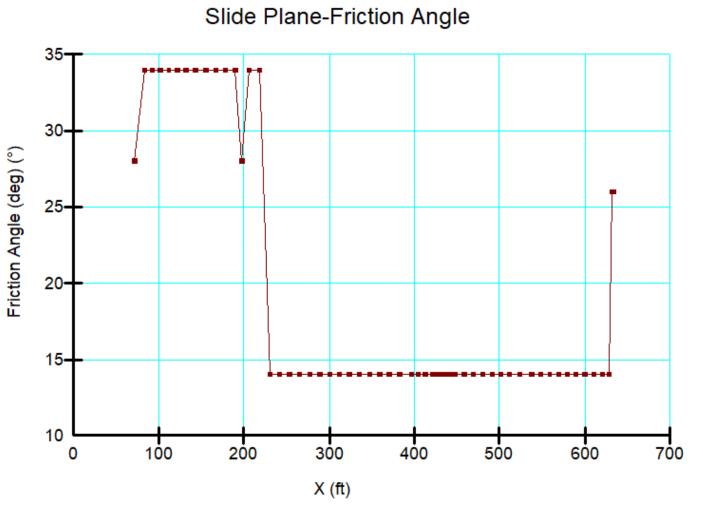
PROJECT NO.: G3035-52-01

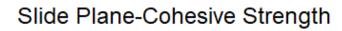


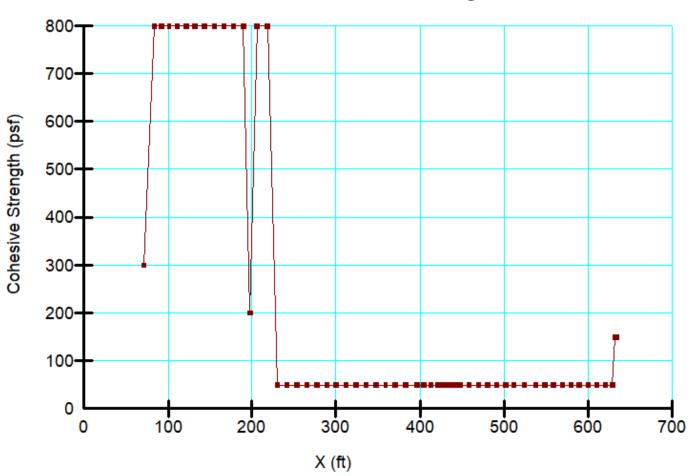
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		


Existing Grade Static Condition

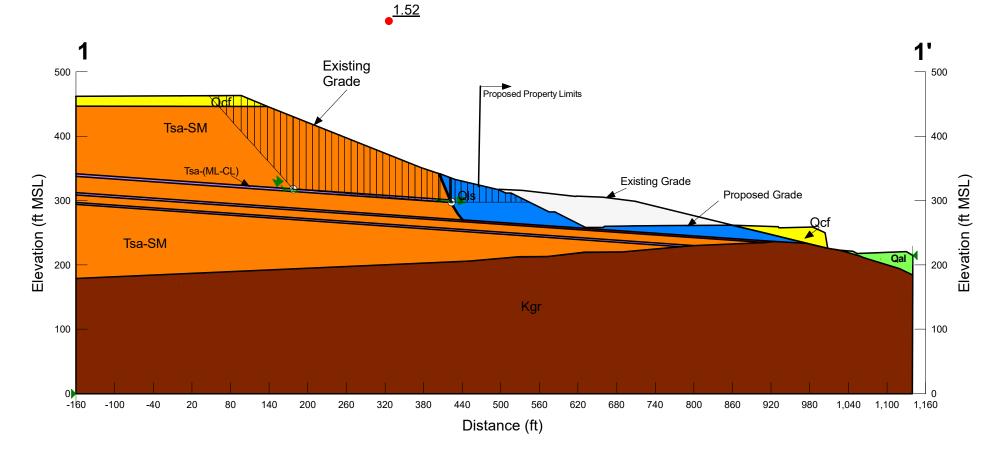
<u>1.56</u>

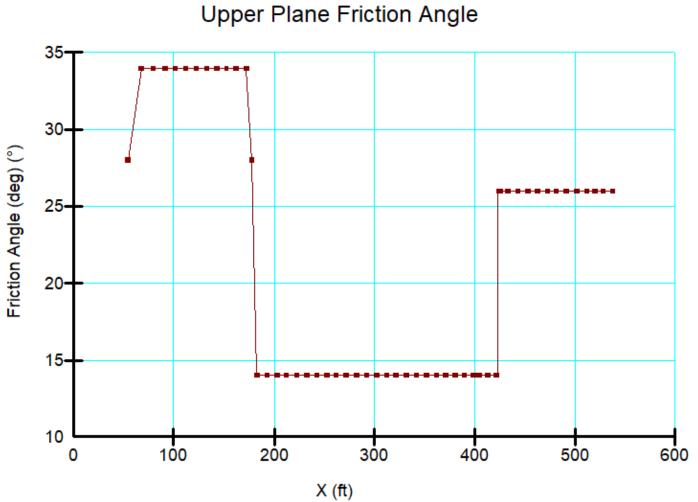

Olive Street Project No. G3035-52-01 Name: 1-1'-Existing.gsz

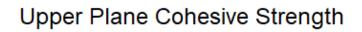



Distance (ft)

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.	Proposed Grade Static Condition	Р	Dlive Street Project No. G lame: Case	G3035-52-0 1_1-1'_Slic	l e Plane.gsz
	Kgr	130	1,000	51							
	Qal	130	150	26							
	Qcf	130	300	28							
	Qls	130	150	26							
	Qlsp	130	50	14							
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)					
	Tsa-SM	130	800	34			1.38				
5	1		б <mark>О</mark>		Existi Grade	ng Ə	Proposed Property Limits				1'
4				a-SM	Existi Grade	ng e	Proposed Property Limits Existing Grade	Propos	sed Grade		- 500 - 400
ation (ft MSL) 50 P	.00 —	Tsa-SM	Tsa	a-SM	Grade	ng e		Propos	sed Grade		- 400
Elevation (ft MSL)	.00	Tsa-SN	Tsa	a-SM	Grade	ng		Propos			

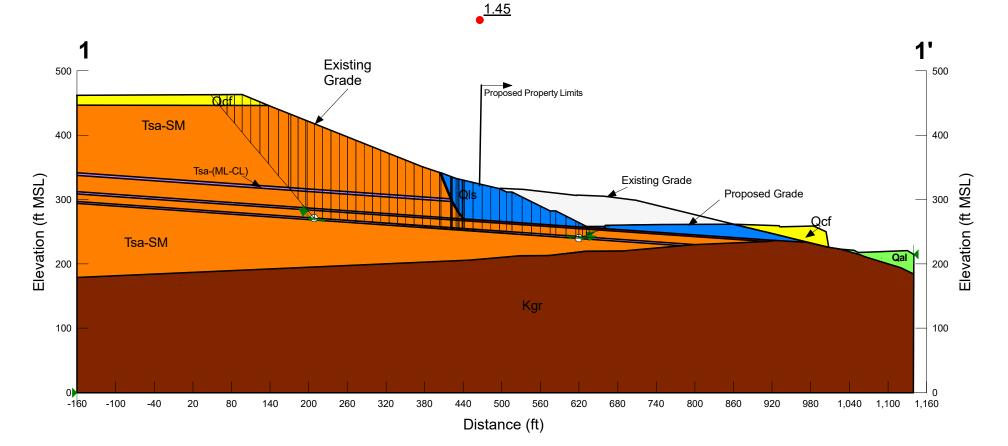


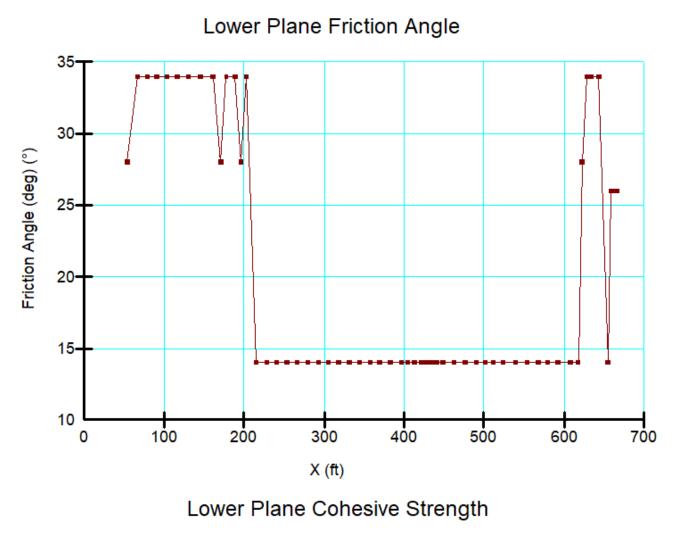


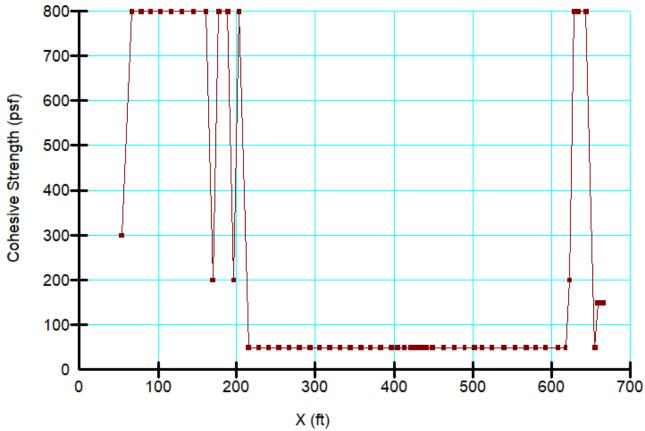

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		

Proposed Grade Static Condition

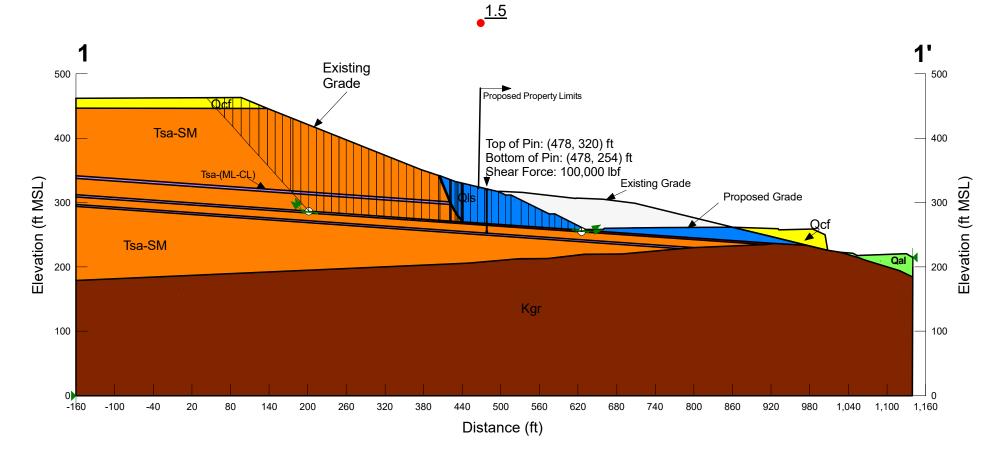
Olive Street Project No. G3035-52-01 Name: Case 2_1-1'_Upper Plane.gsz

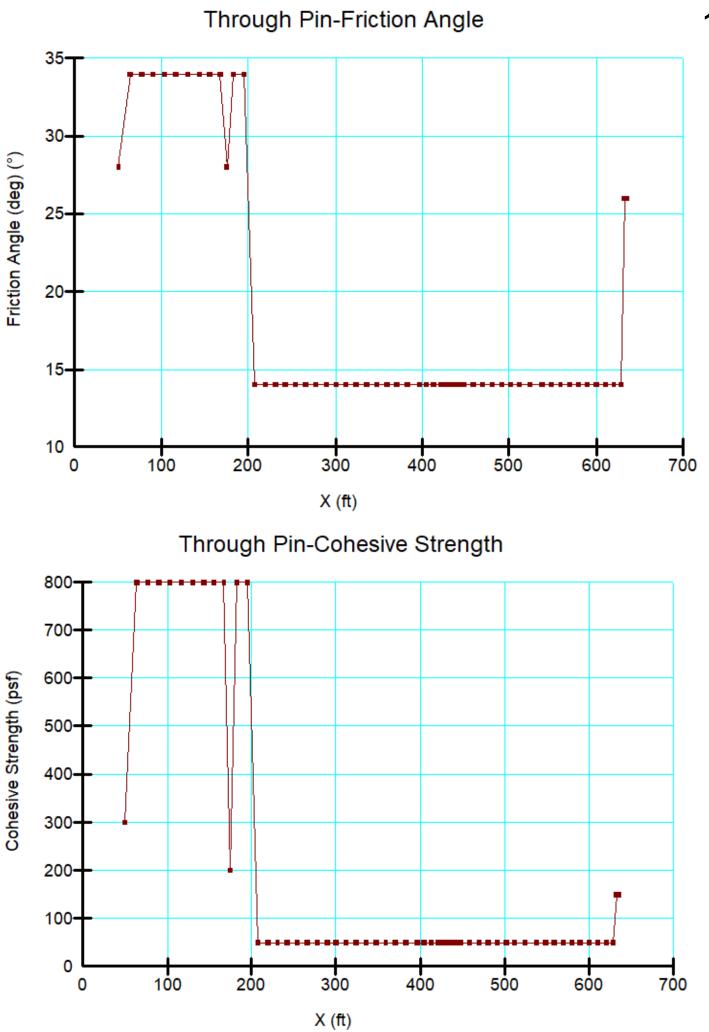





Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.	Proposed Grade Static Condition
	Kgr	130	1,000	51			
	Qal	130	150	26			
	Qcf	130	300	28			
	Qls	130	150	26			
	Qlsp	130	50	14			
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)	
	Tsa-SM	130	800	34			

Olive Street Project No. G3035-52-01 Name: Case 3_1-1'_Lower Plane.gsz


Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\1-1' Geo Studio\File Name: Case 3_1-1'_Lower Plane.gszDTime: 01:55:28 PMate: 07/26/2024



Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	-	Proposed Grade Static Condition
	Kgr	130	1,000	51			
	Qal	130	150	26			
	Qcf	130	300	28			
	Qls	130	150	26			
	Qlsp	130	50	14			
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)	
	Tsa-SM	130	800	34			

Olive Street Project No. G3035-52-01 Name: Case 4_1-1'_Through Pin.gsz

1' 1

Color

Name

Kgr

Unit

(pcf) 130

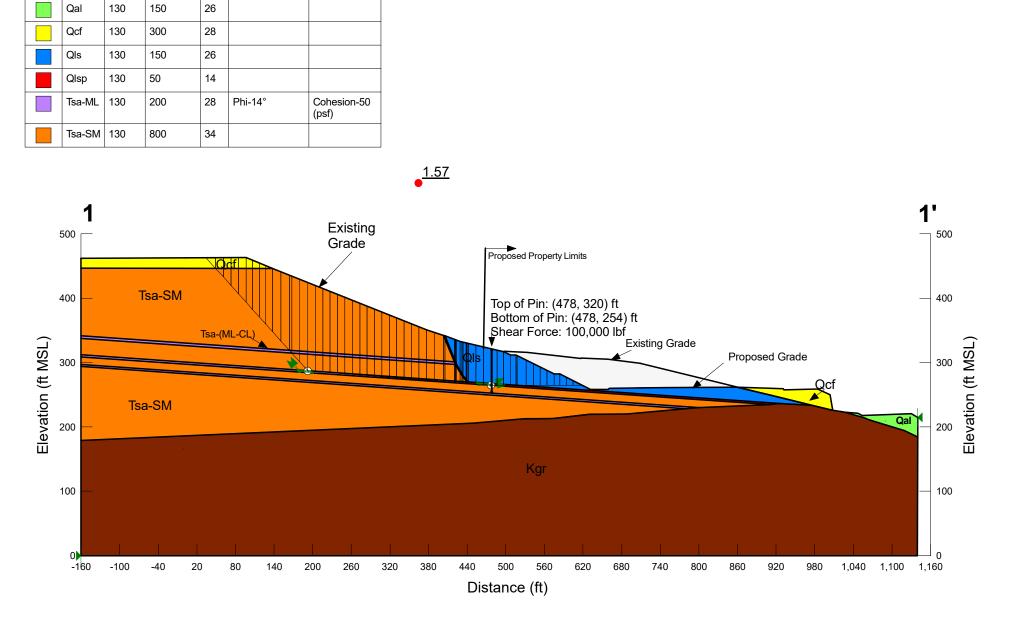
Weight (psf)

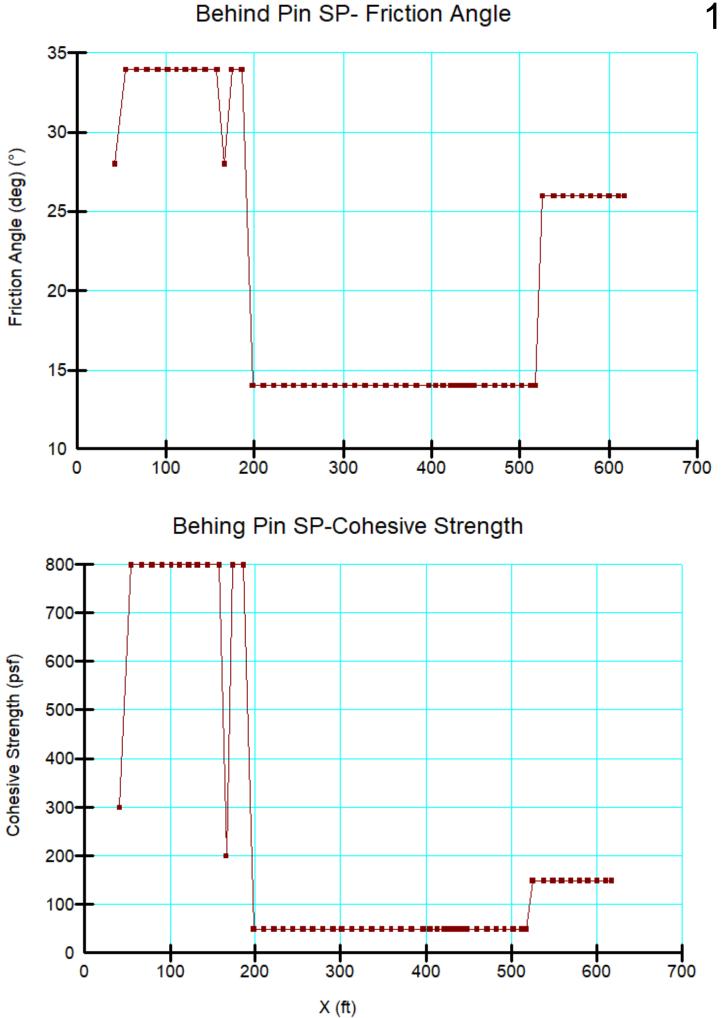
1,000

Cohesion' Phi'

(°)

51

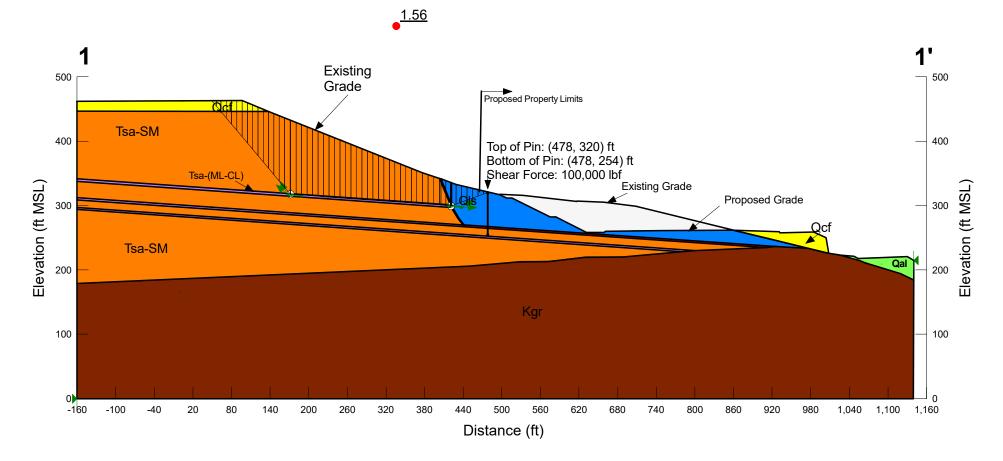

Phi-Anisotropic C-Anisotropic

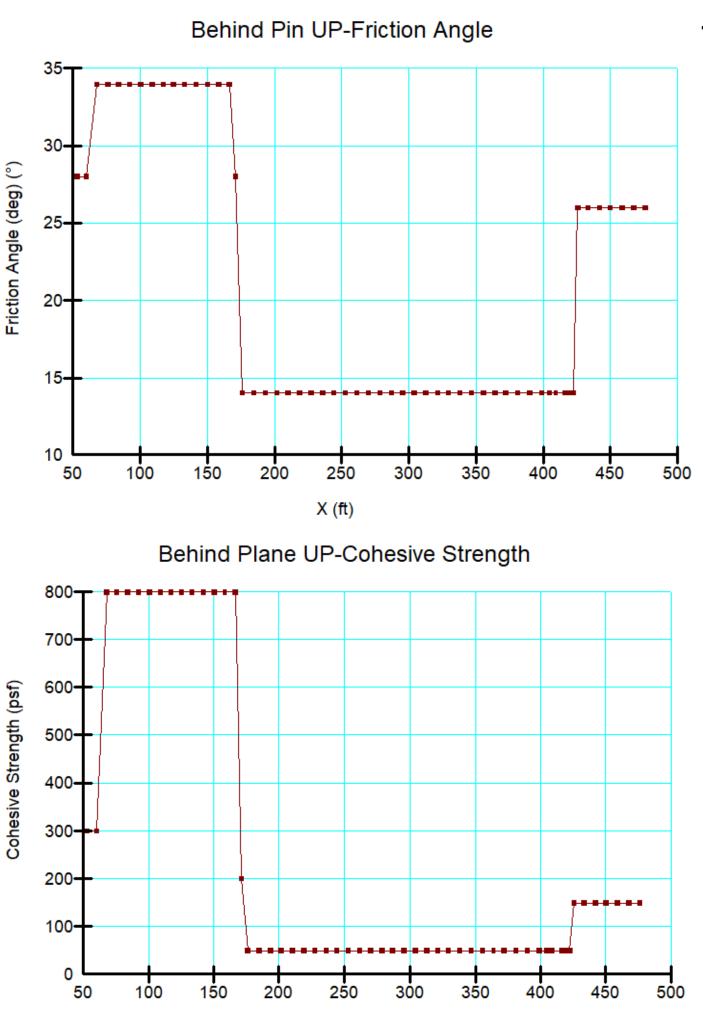

Strength Fn.

Strength Fn.

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 5_1-1'_Behind Pin-Slide Plane.gsz

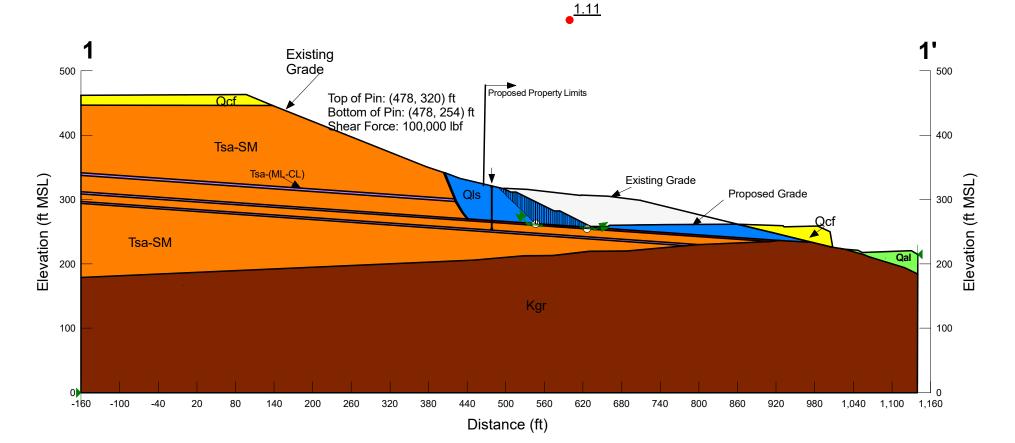




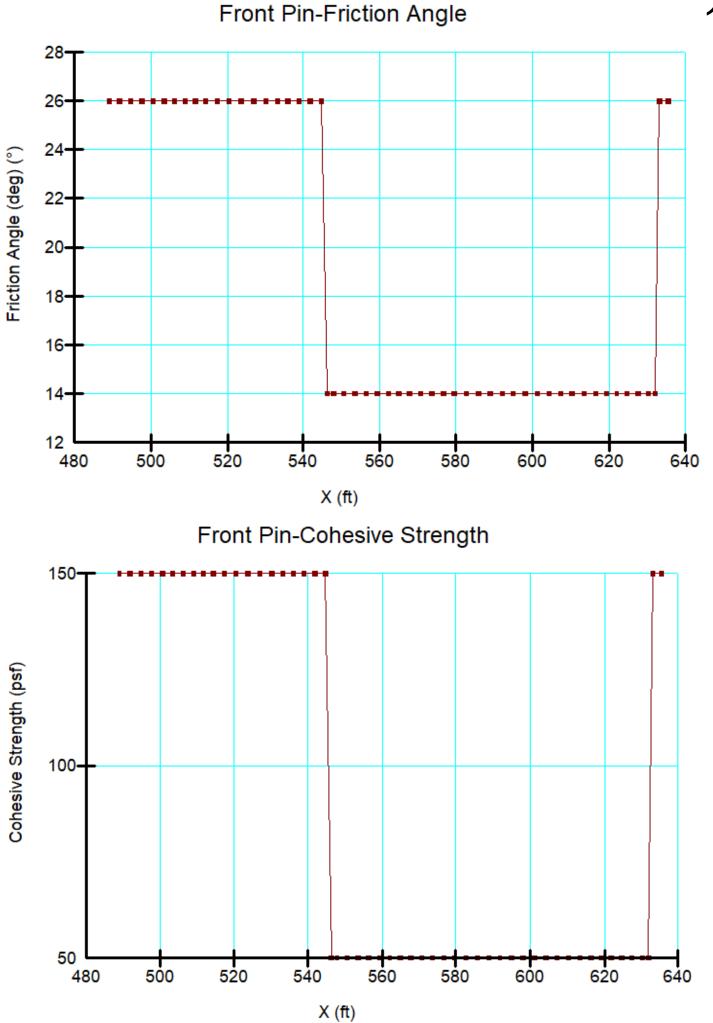
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 6_1-1'_Behind Pin-Upper.gsz

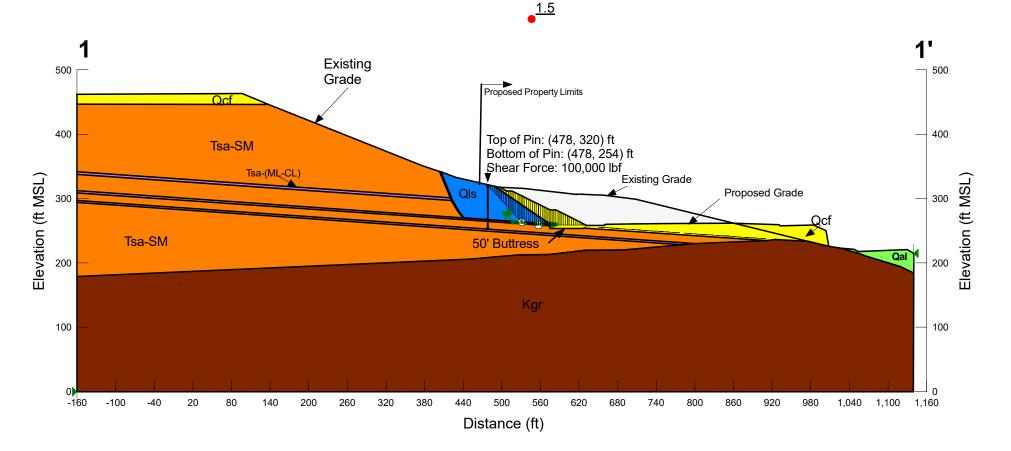


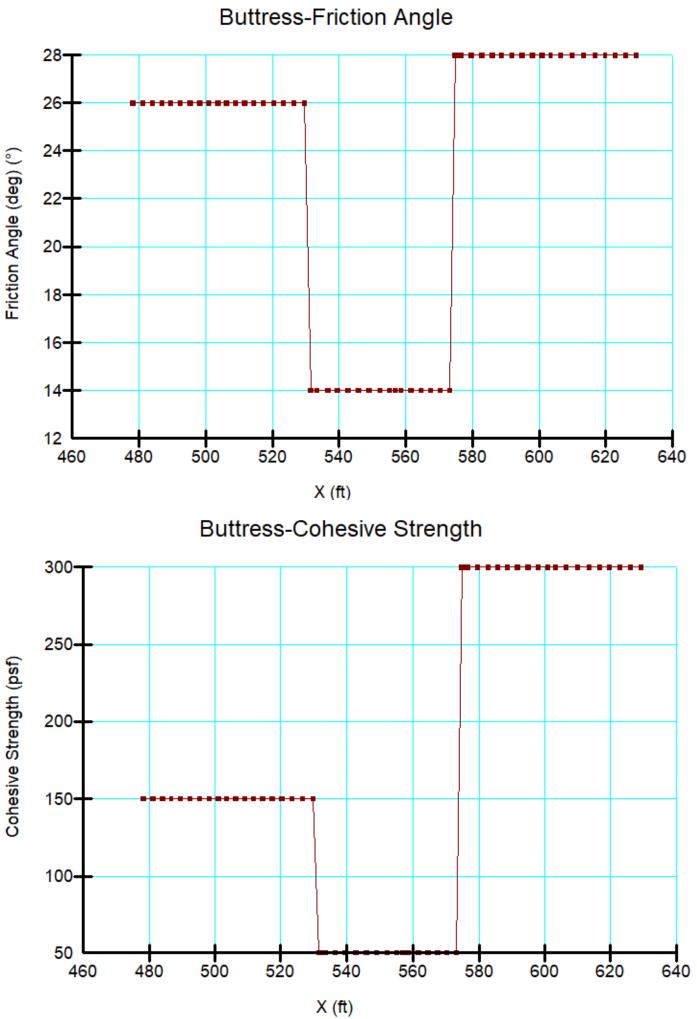
X (ft)


Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 7_1-1'_Front Pin.gsz

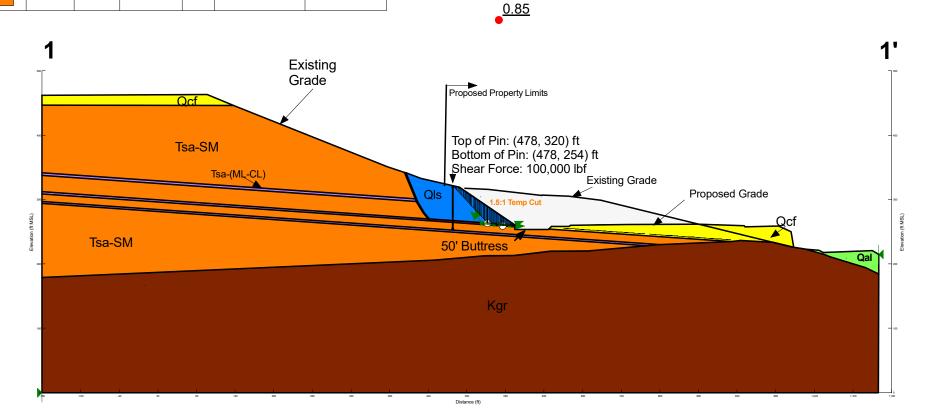

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\1-1' Geo Studio\File Name: Case 7_1-1'_Front Pin.gszDTime: 11:42:01 AMate: 07/28/2024



Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 8_1-1'_Buttress.gsz

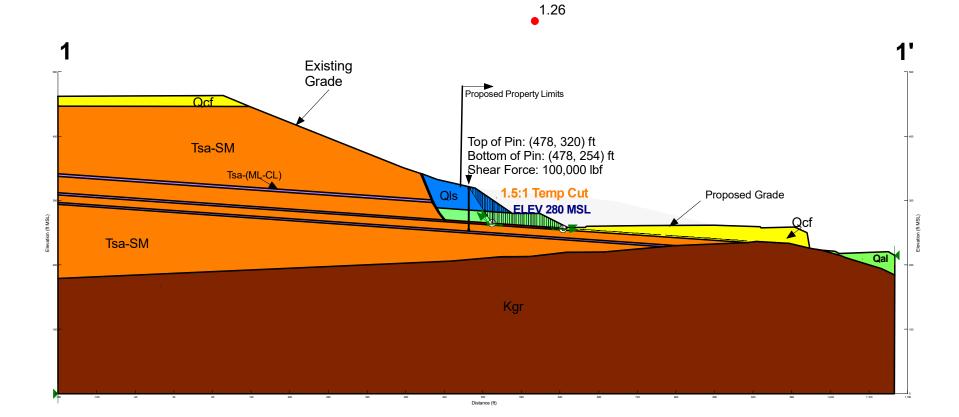


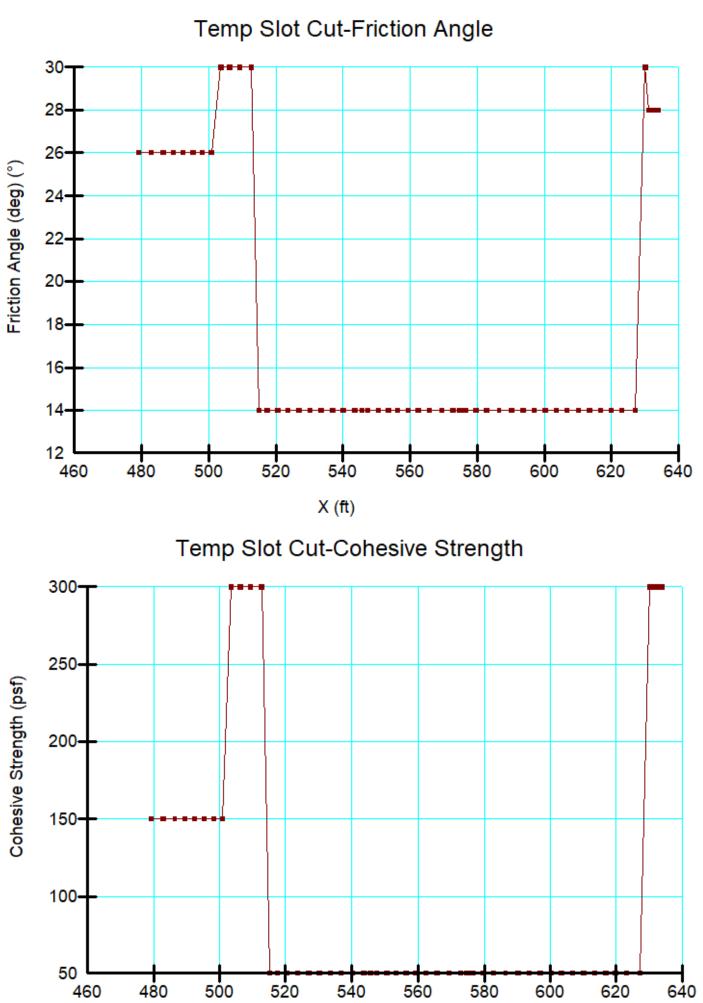
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		


Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 9_1-1'_Temp-block.gsz

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\1-1' Geo Studio\File Name: Case 9_1-1'_Temp-block.gszDTime: 12:07:31 PMate: 07/28/2024

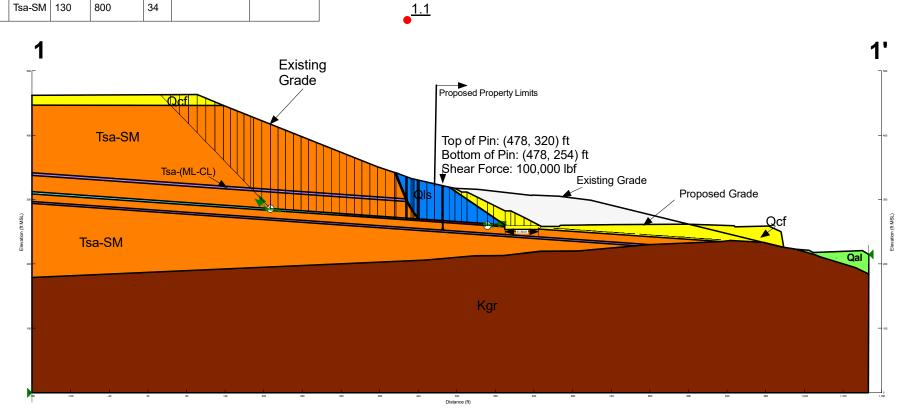

Temp-Friction Angle



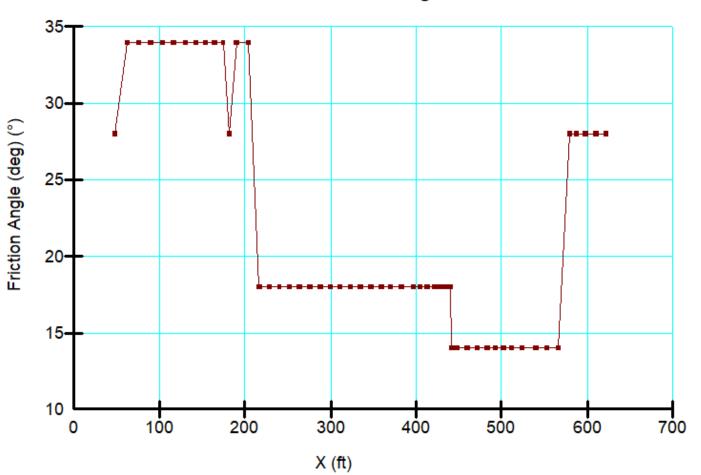
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qls-SM	130	300	30		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-SM	130	800	34		

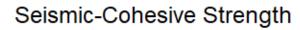
Proposed Grade Static Condition

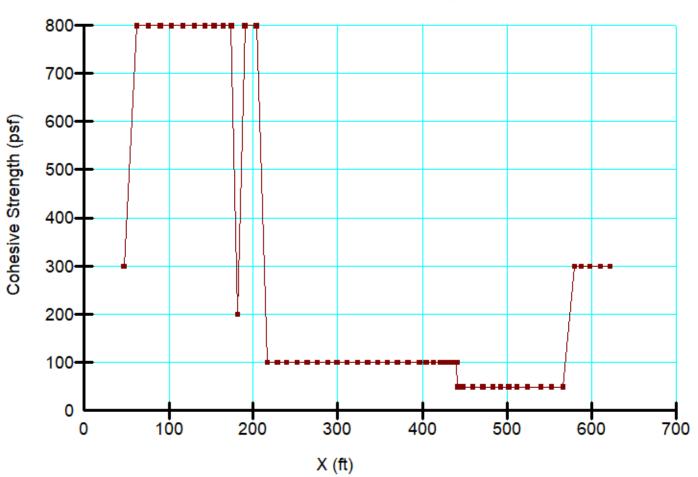
Olive Street Project No. G3035-52-01 Name: Case 10_1-1'_Temp-block-Slot Cut.gsz



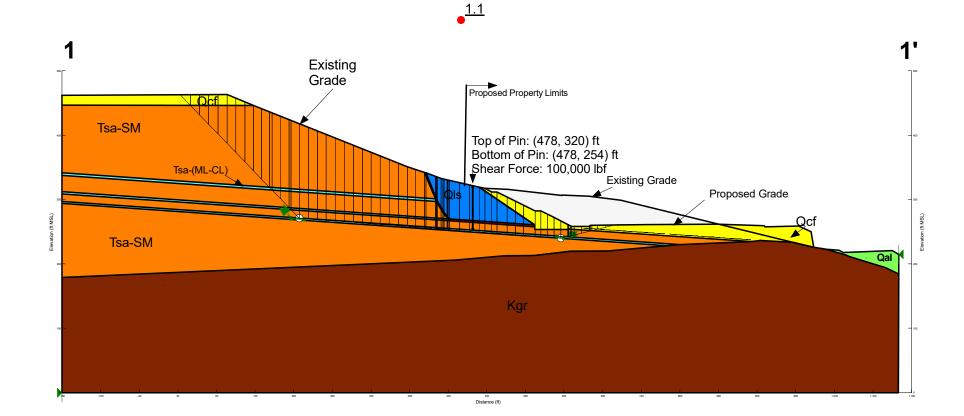
X (ft)

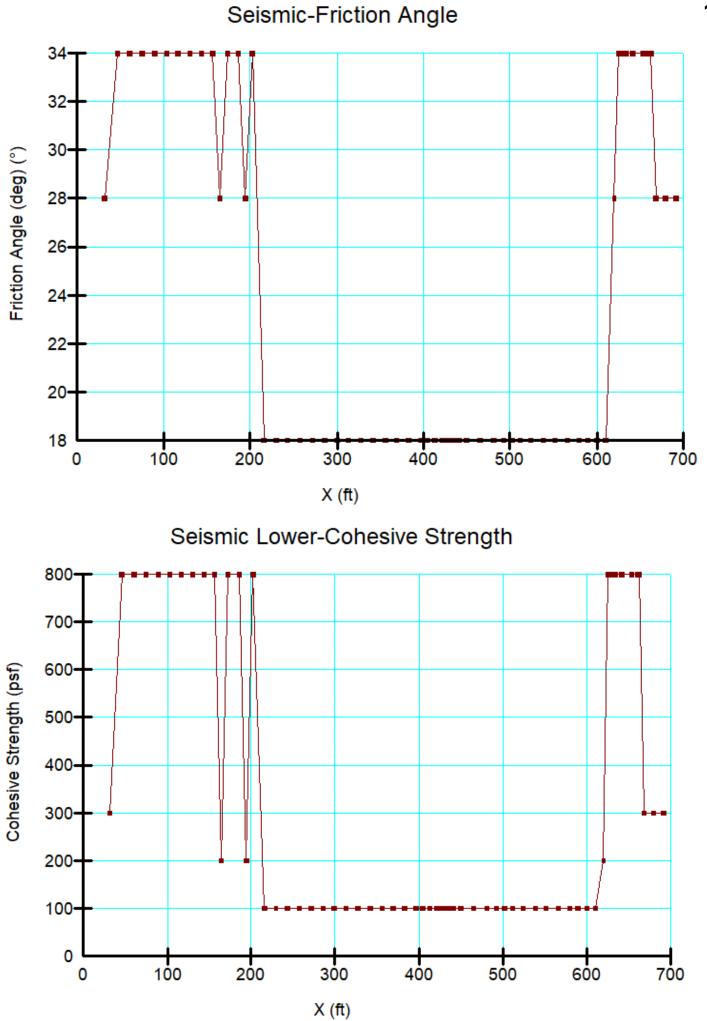

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML FS	130	200	28	Phi-18°	Cohesion-FS 100 (psf)
	Tsa-SM	130	800	34		


Proposed Grade Static Condition


Olive Street Project No. G3035-52-01 Name: Case 11_1-1'_Buttress-Seismic.gsz Horz Seismic Coef.: 0.15

Seismic-Friction Angle

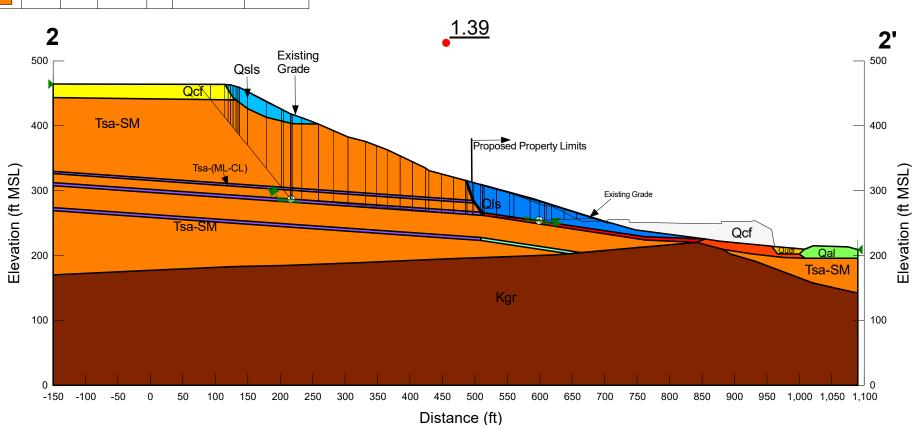




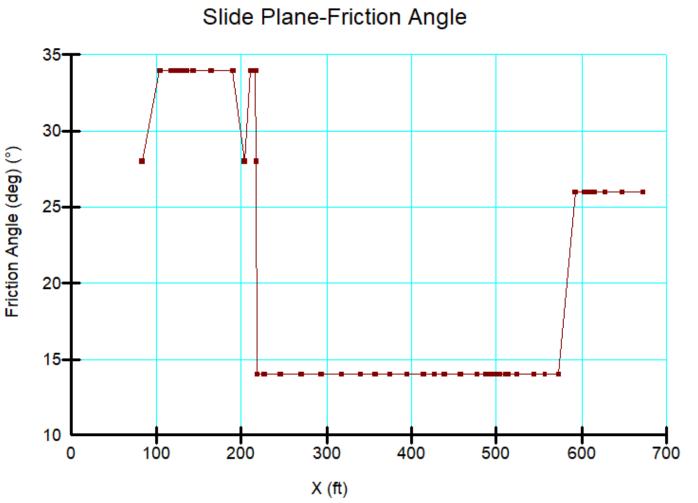
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Tsa-ML FS	130	200	28	Phi-18°	Cohesion-FS 100 (psf)
	Tsa-SM	130	800	34		

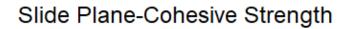
Proposed Grade Static Condition

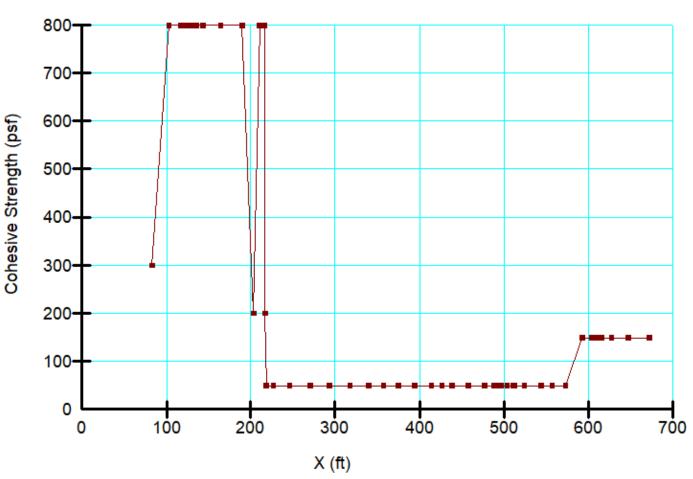
Olive Street Project No. G3035-52-01 Name: Case 12_1-1'_Seismic-Lower Plane.gsz Horz Seismic Coef.: 0.15



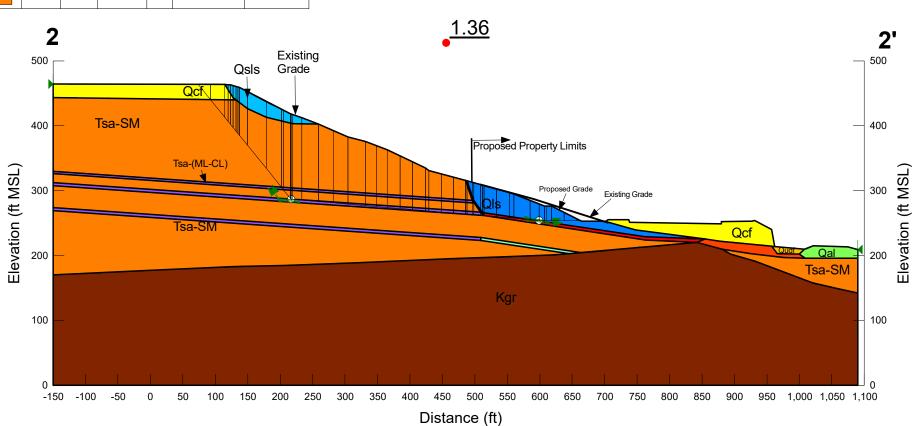
^{1-1&#}x27;


Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qcol	130	150	26		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qsls	130	150	26		
	Qudf	130	300	28		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML 8 Deg	130	200	28	Phi-14, angle 8	Cohesion-50, angle 8
	Tsa-SM	130	800	34		

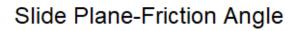

Existing Grade Static Condition

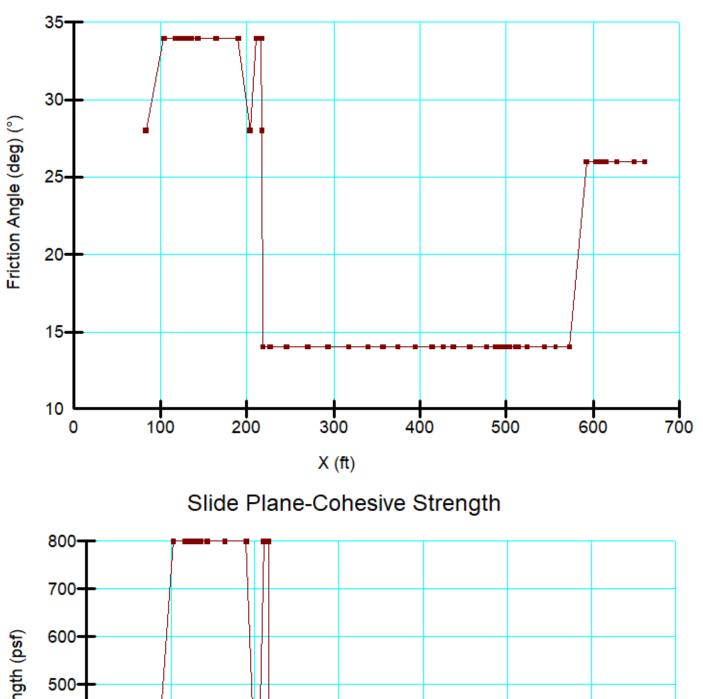

Olive Street Project No. G3035-52-01 Name: 2-2'_Existing.gsz

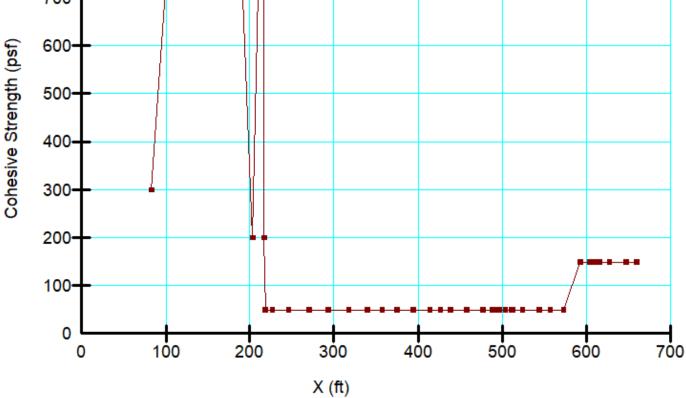
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: 2-2'_Existing.gszDTime: 09:06:55 PMate: 08/12/2024

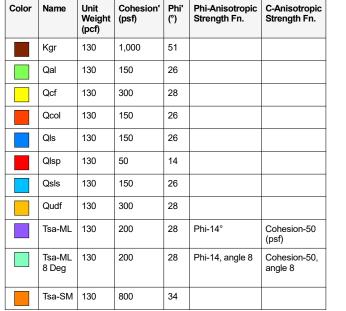


2-2'

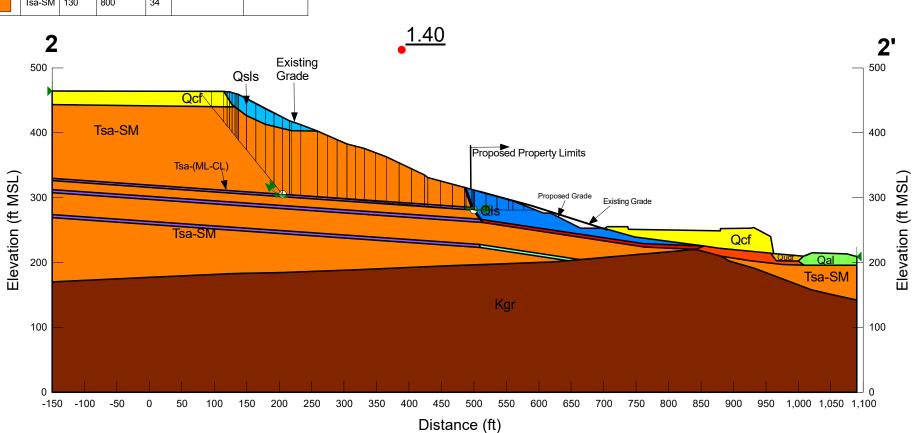

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qcol	130	150	26		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qsls	130	150	26		
	Qudf	130	300	28		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML 8 Deg	130	200	28	Phi-14, angle 8	Cohesion-50, angle 8
	Tsa-SM	130	800	34		

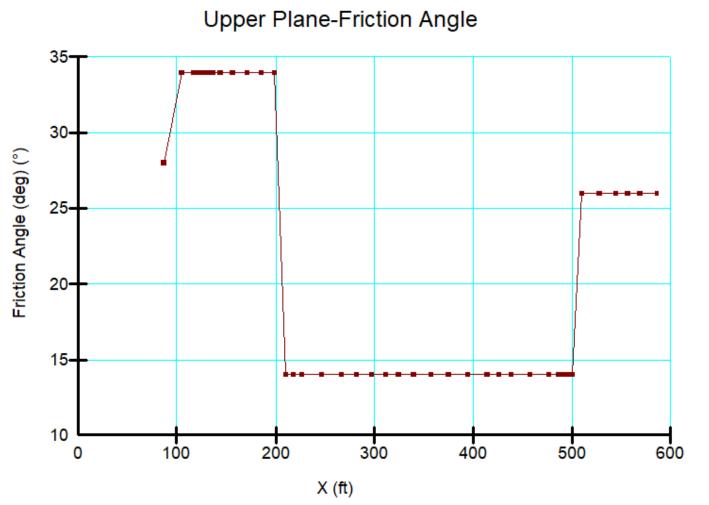

Proposed Grade Static Condition

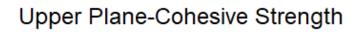

Olive Street Project No. G3035-52-01 Name: Case 1_2-2'_Slide Plane.gsz

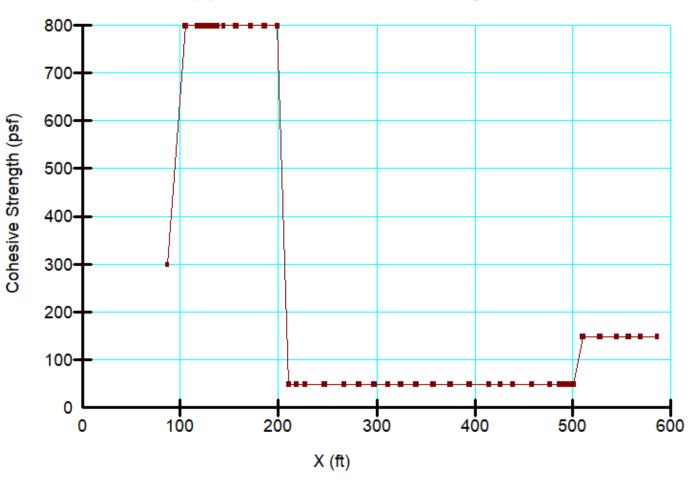


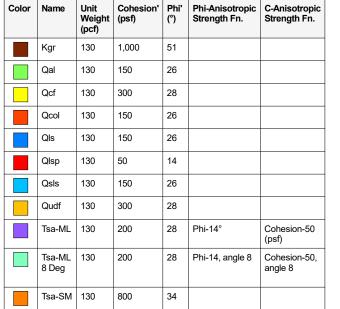
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 1_2-2'_Slide Plane.gszDTime: 08:16:17 AMate: 07/29/2024

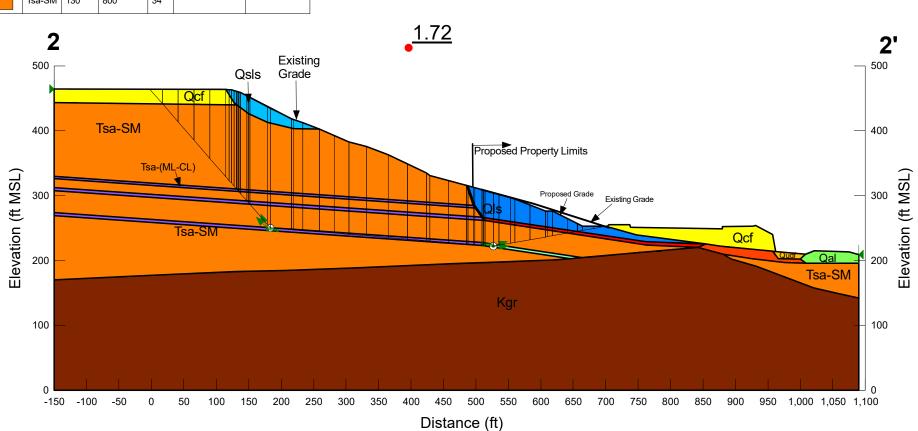




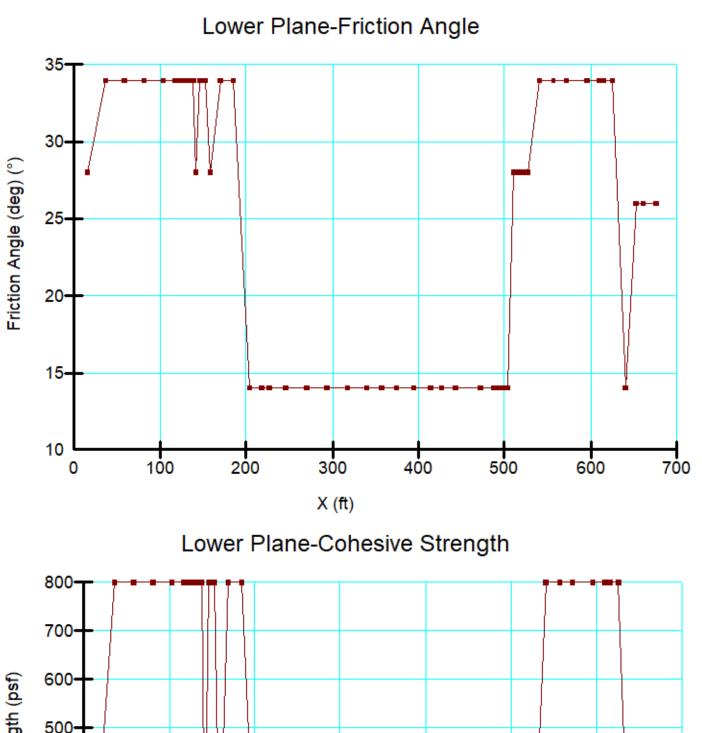

Proposed Grade Static Condition

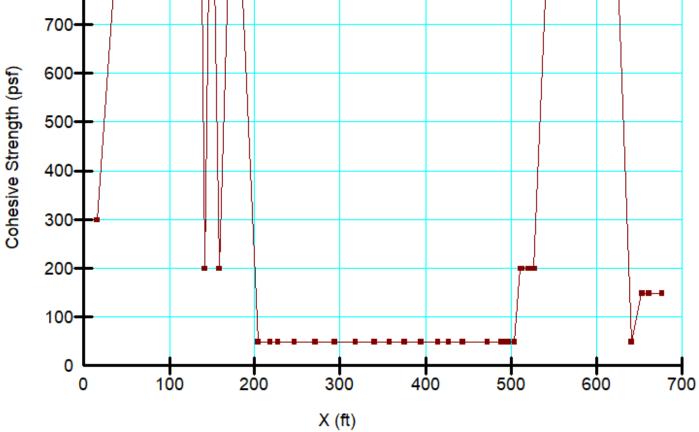

Olive Street Project No. G3035-52-01 Name: Case 2_2-2'_Upper Plane.gsz


Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 2_2-2'_Upper Plane.gszDTime: 08:31:32 AMate: 07/29/2024

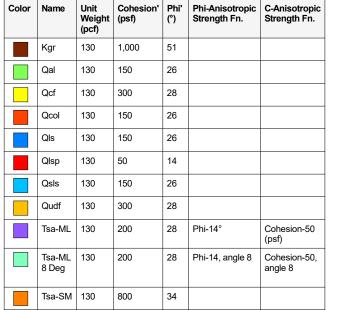


2-2'

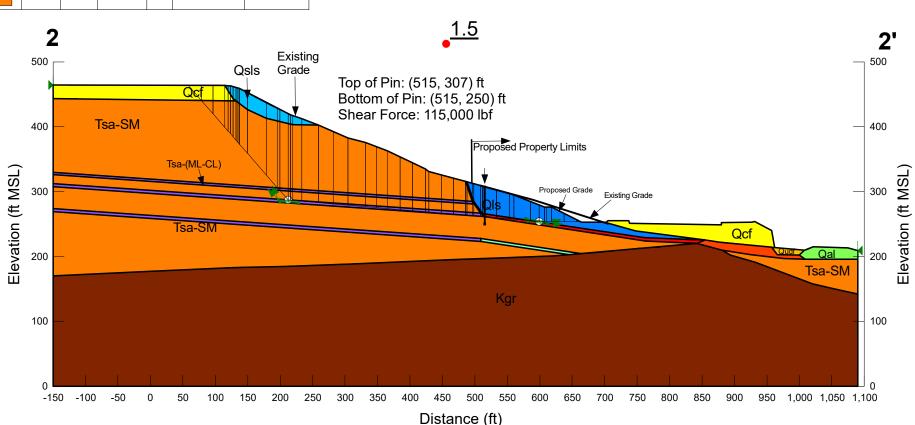


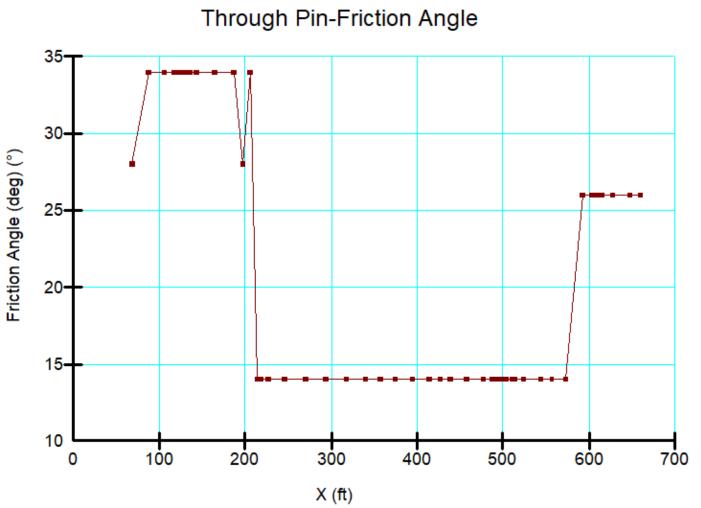

Proposed Grade Static Condition

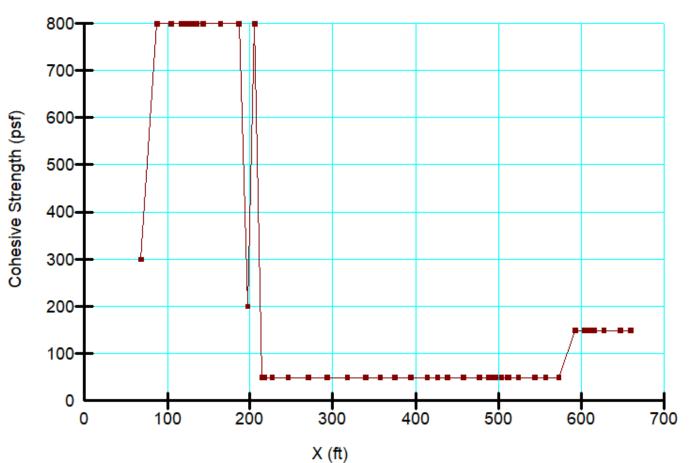
Olive Street Project No. G3035-52-01 Name: Case 3_2-2'_Lower Plane.gsz

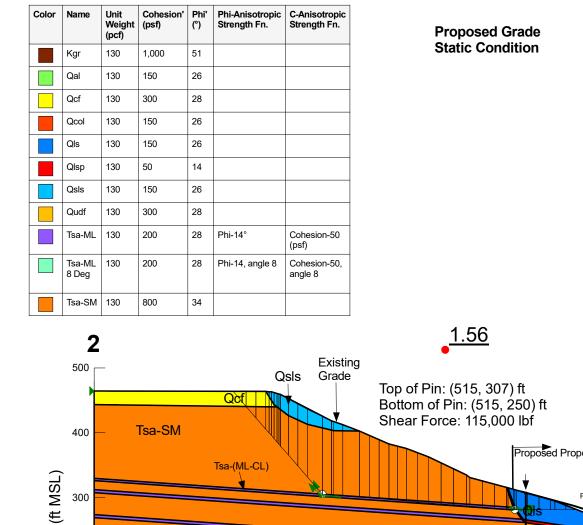


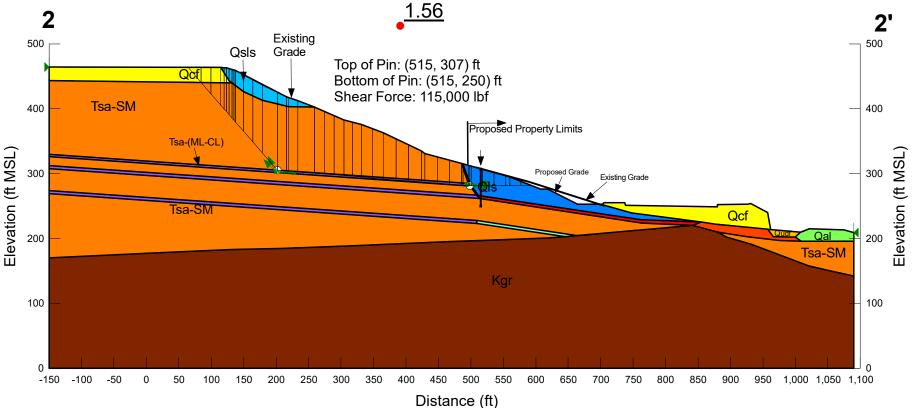
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: Case 3_2-2'_Lower Plane.gszDTime: 09:38:09 PMate: 08/12/2024



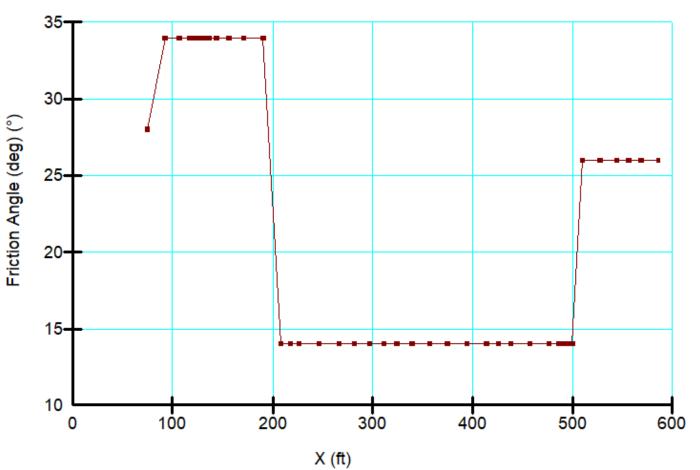

2-2'


Proposed Grade Static Condition Olive Street Project No. G3035-52-01 Name: Case 4_2-2'_Through Pin.gsz

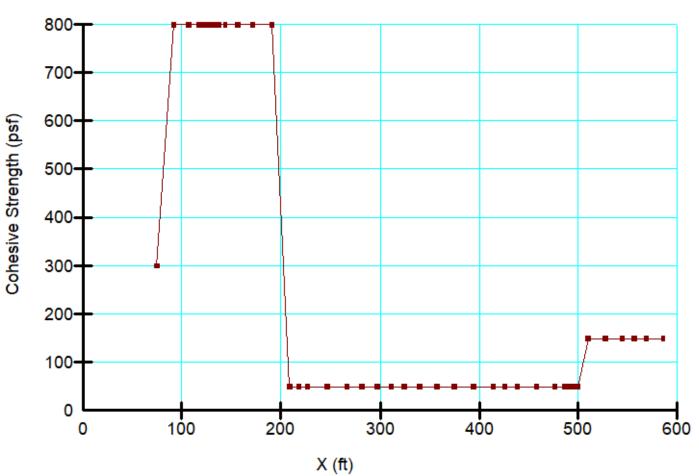

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: Case 4_2-2'_Through Pin.gszDTime: 08:32:25 AMate: 08/09/2024

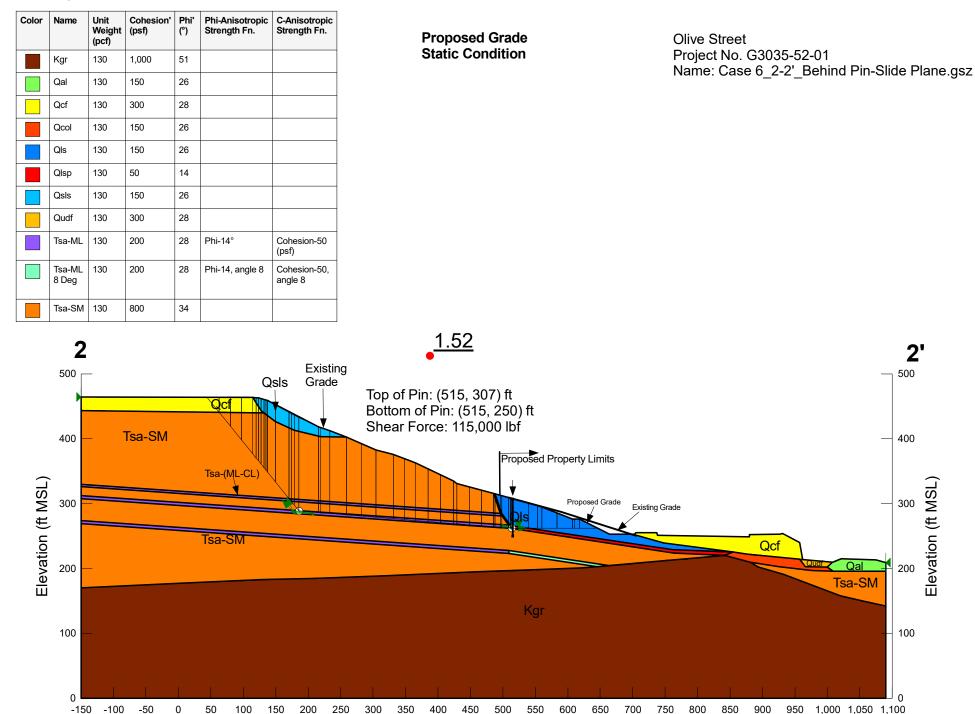


2-2'




Olive Street Project No. G3035-52-01 Name: Case 5_2-2'_Behind Pin-Upper.gsz




Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: Case 5_2-2'_Behind Pin-Upper.gszDTime: 08:35:04 AMate: 08/09/2024

Behind Pin UP-Friction Angle

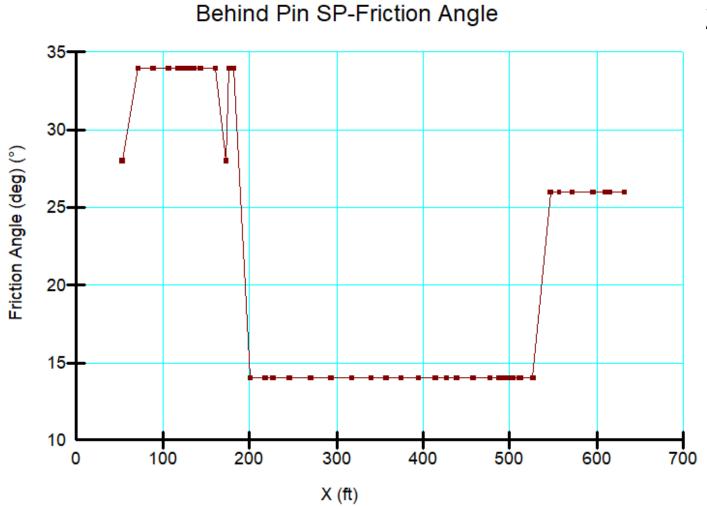
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: Case 6_2-2'_Behind Pin-Slide Plane.gszDTime: 08:37:10 AMate: 08/09/2024

Distance (ft)

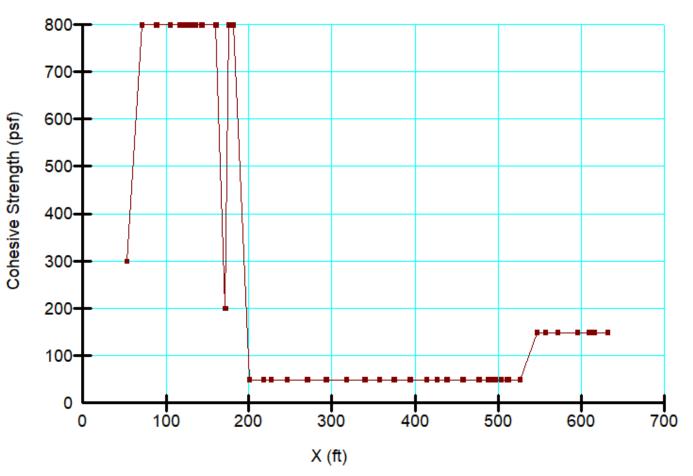
2'

500

400

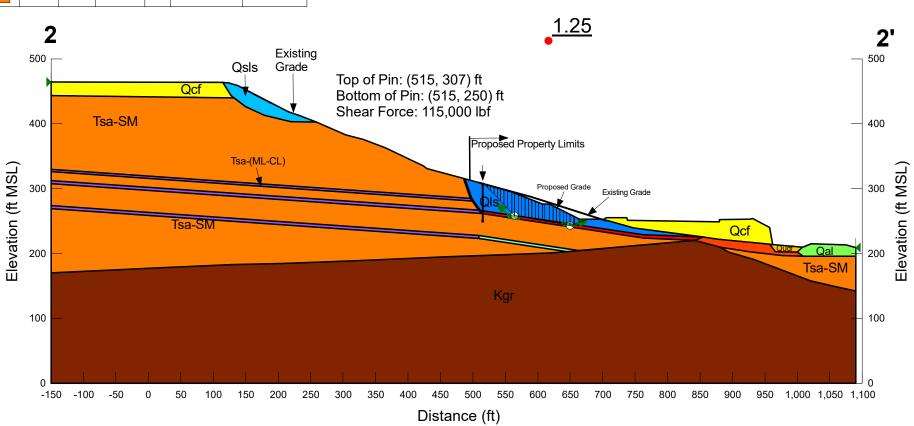

300

200

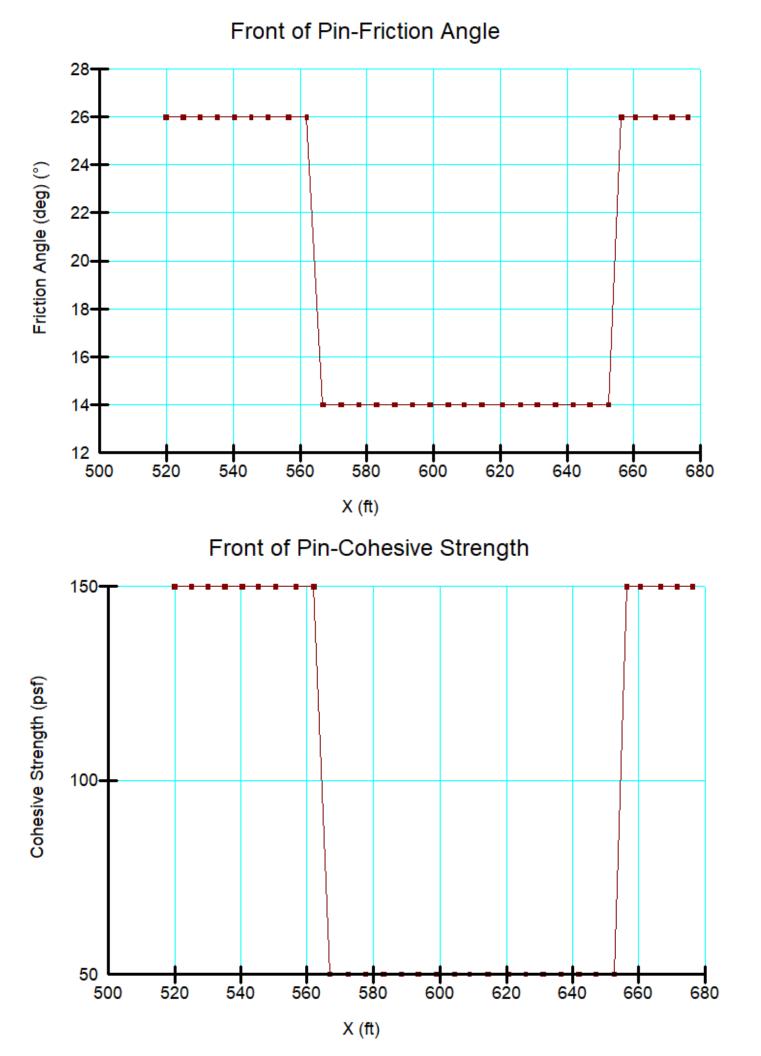

100

0

Elevation (ft MSL)



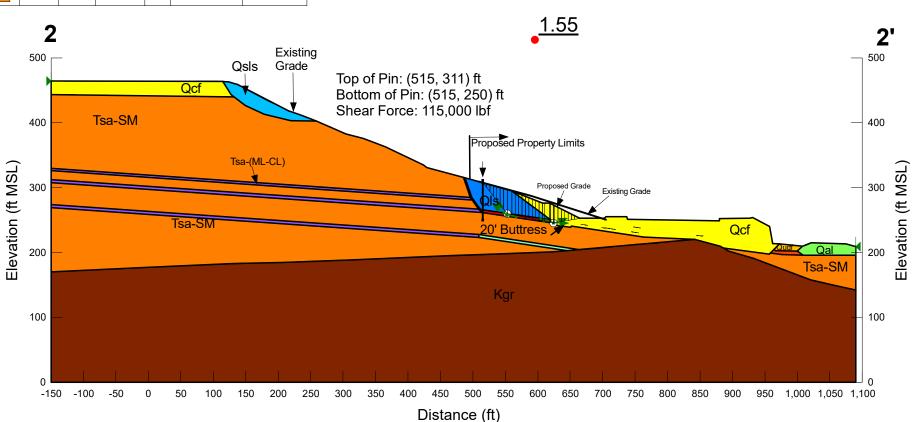
2-2'


Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qcol	130	150	26		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qsls	130	150	26		
	Qudf	130	300	28		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML 8 Deg	130	200	28	Phi-14, angle 8	Cohesion-50, angle 8
	Tsa-SM	130	800	34		

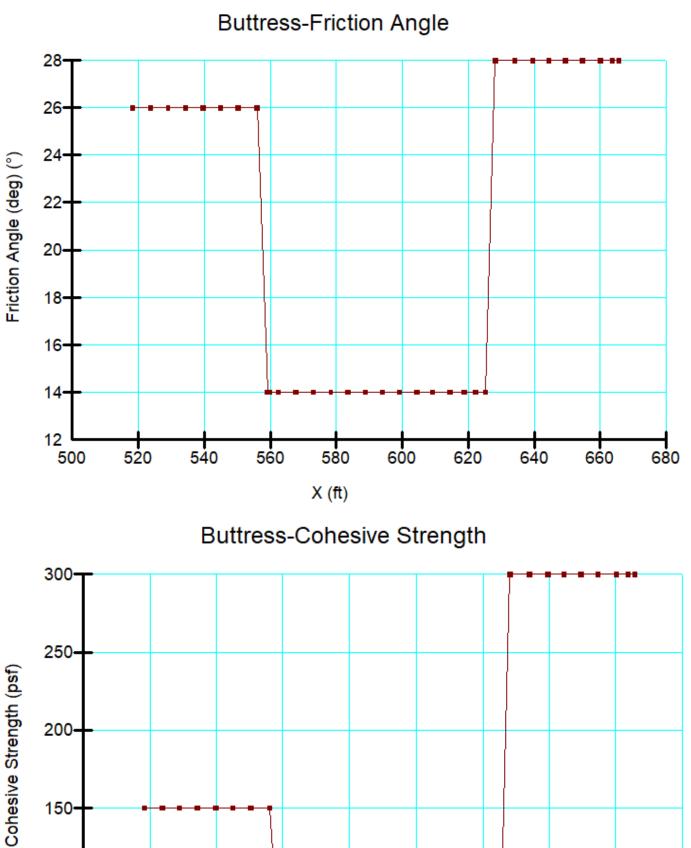
Proposed Grade Static Condition

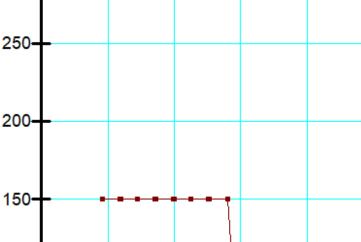
Olive Street Project No. G3035-52-01 Name: Case 7 2-2'-Front of Pin.gsz

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 7_2-2-Front of Pin.gszDTime: 08:42:42 AMate: 08/09/2024



2'

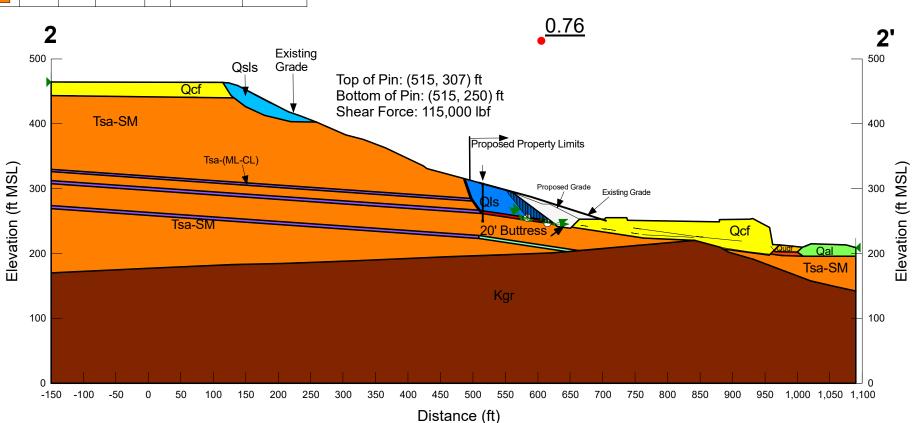

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qcol	130	150	26		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qsls	130	150	26		
	Qudf	130	300	28		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML 8 Deg	130	200	28	Phi-14, angle 8	Cohesion-50, angle 8
	Tsa-SM	130	800	34		

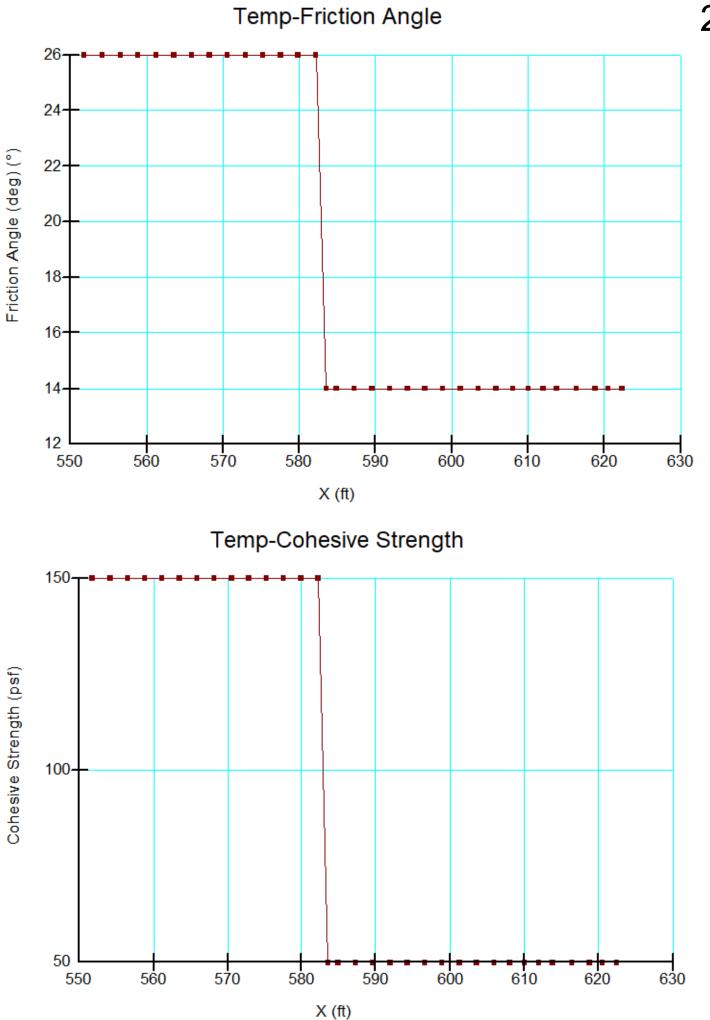

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01 Name: Case 8 2-2'-Buttress.gsz

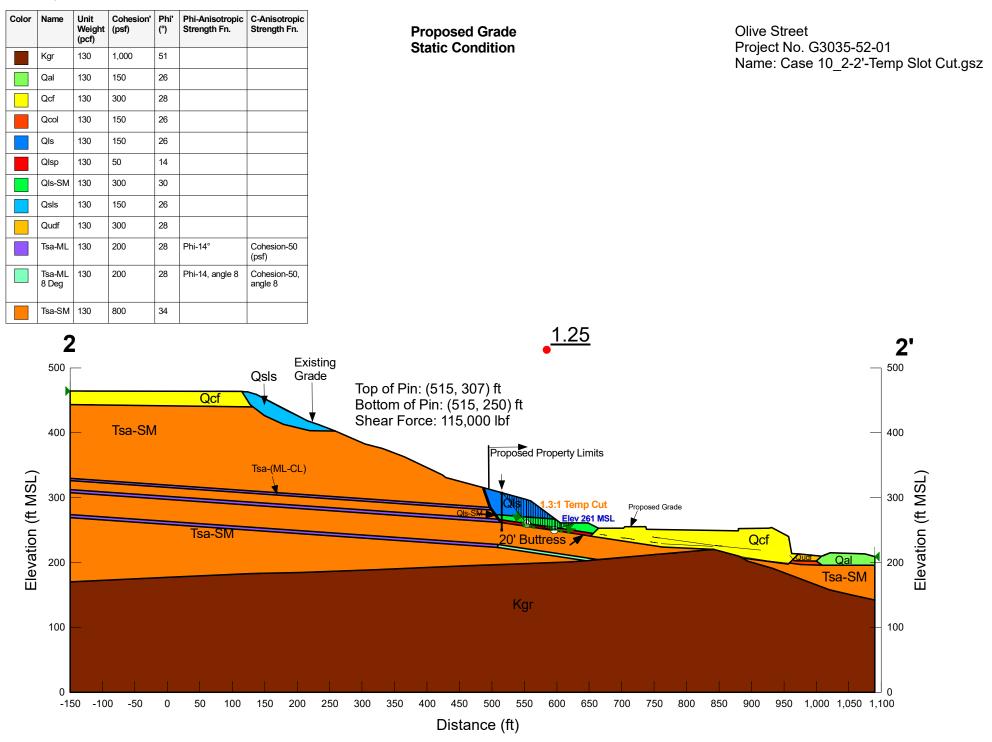
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 8_2-2'-Buttress.gszDTime: 08:48:10 AMate: 08/09/2024

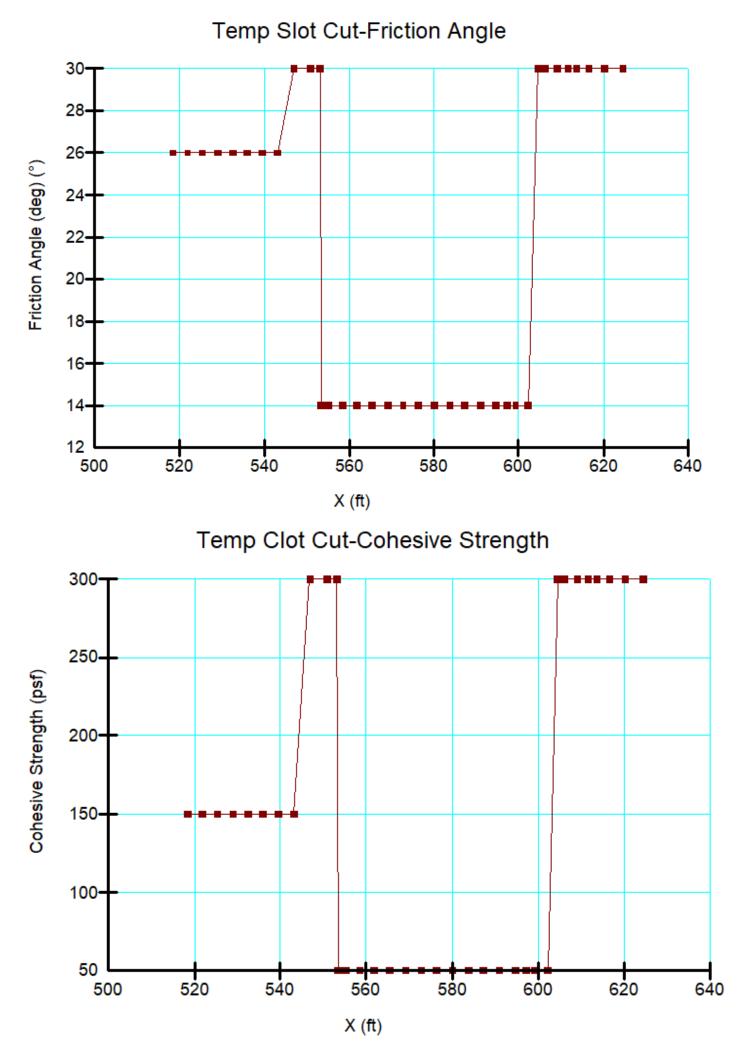
100-

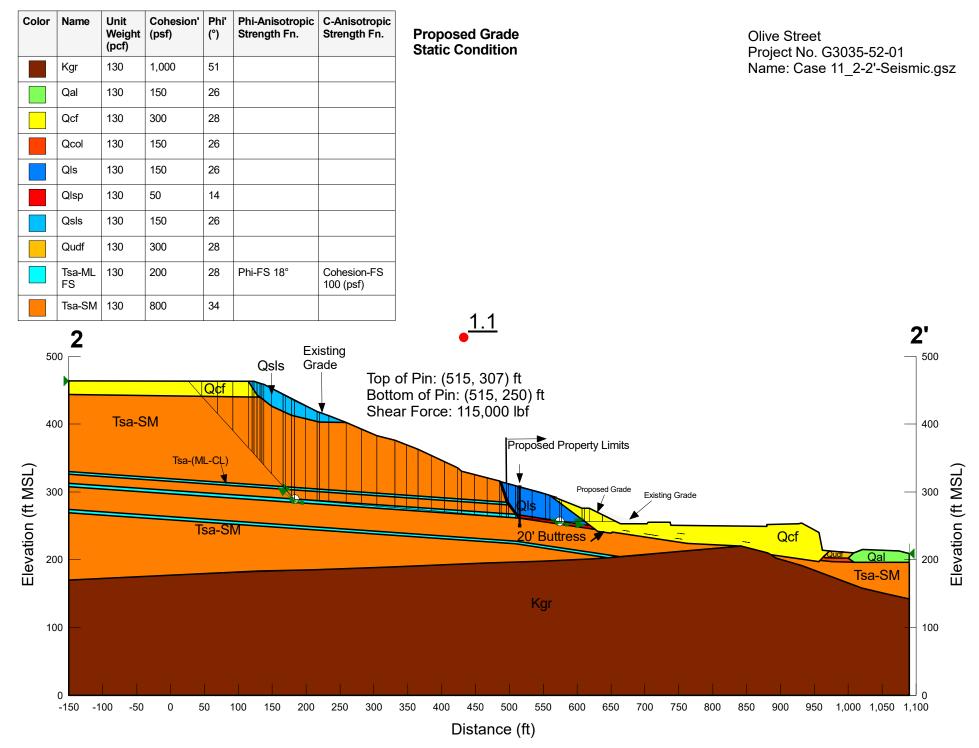

50 ⊾ 500


2-2'

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-Anisotropic Strength Fn.	C-Anisotropic Strength Fn.
	Kgr	130	1,000	51		
	Qal	130	150	26		
	Qcf	130	300	28		
	Qcol	130	150	26		
	Qls	130	150	26		
	Qlsp	130	50	14		
	Qsls	130	150	26		
	Qudf	130	300	28		
	Tsa-ML	130	200	28	Phi-14°	Cohesion-50 (psf)
	Tsa-ML 8 Deg	130	200	28	Phi-14, angle 8	Cohesion-50, angle 8
	Tsa-SM	130	800	34		

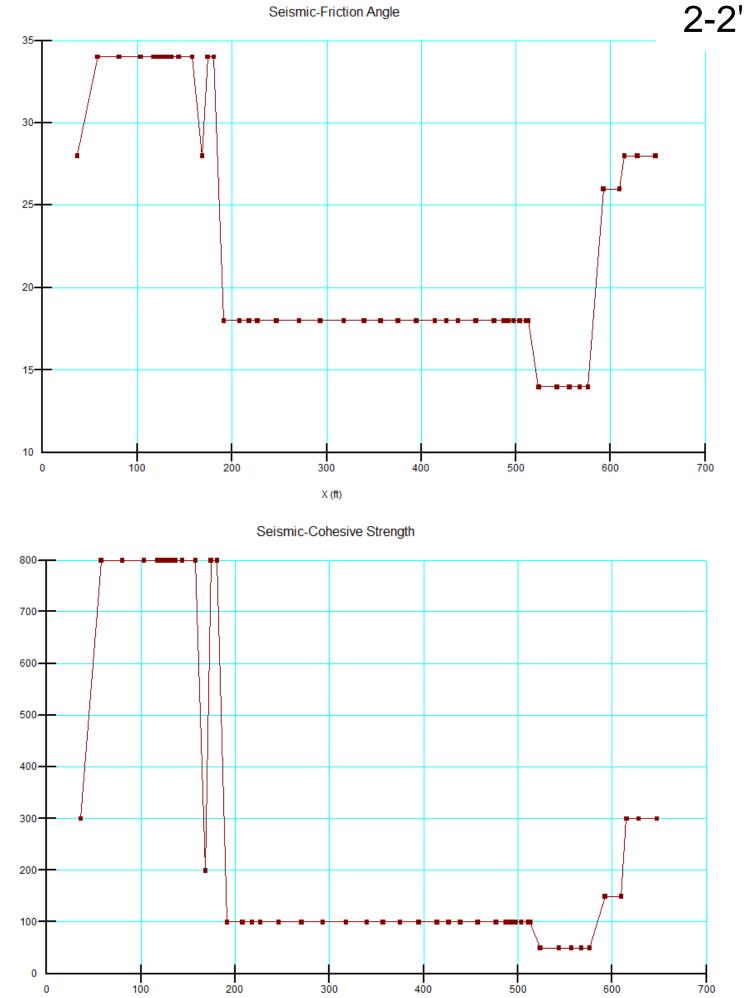

Proposed Grade Static Condition Olive Street Project No. G3035-52-01 Name: Case 9 2-2'-Temp.gsz

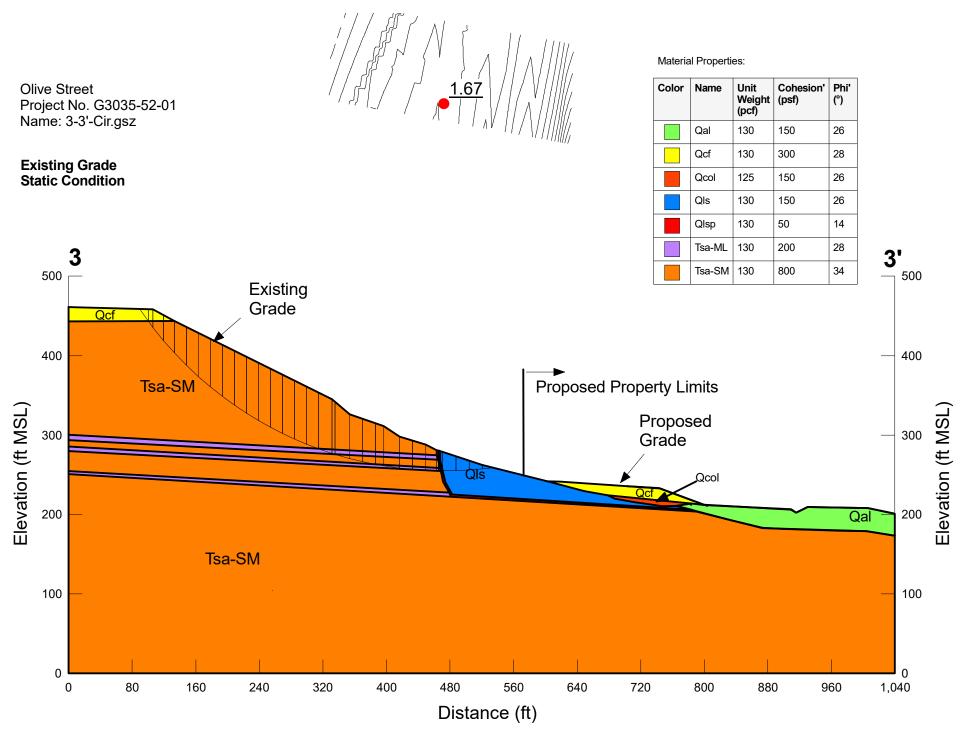

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\2-2' Geo Studio\File Name: Case 9_2-2'-Temp.gszDTime: 08:50:42 AMate: 08/09/2024



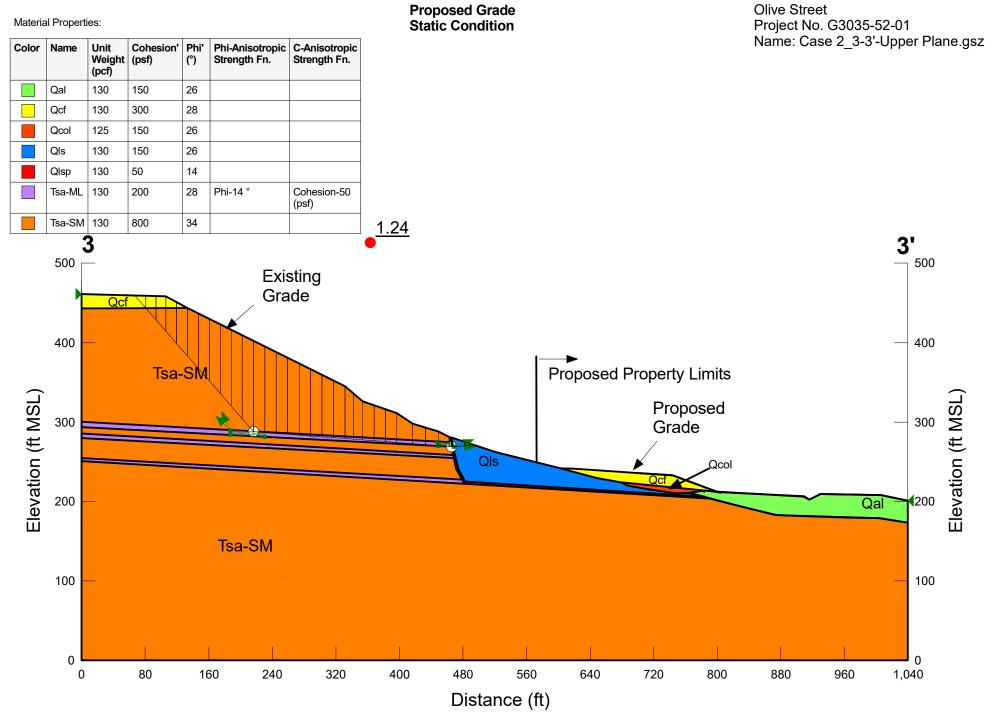
2-2'

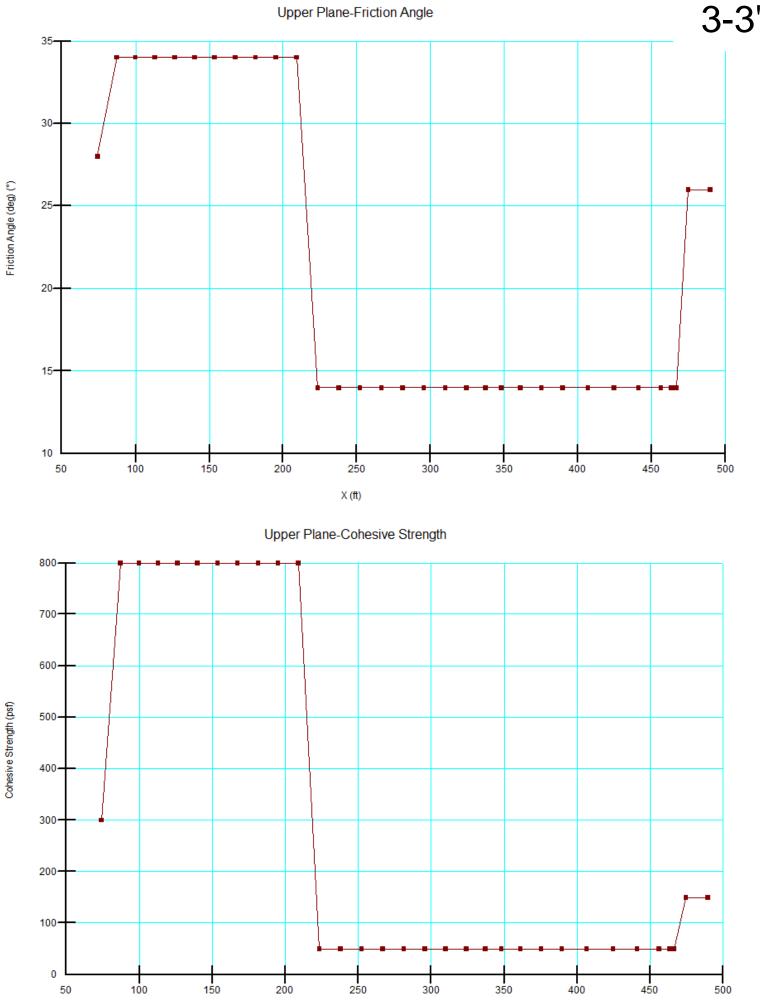
Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 10_2-2'-Temp Slot Cut.gszDTime: 08:52:22 AMate: 08/09/2024

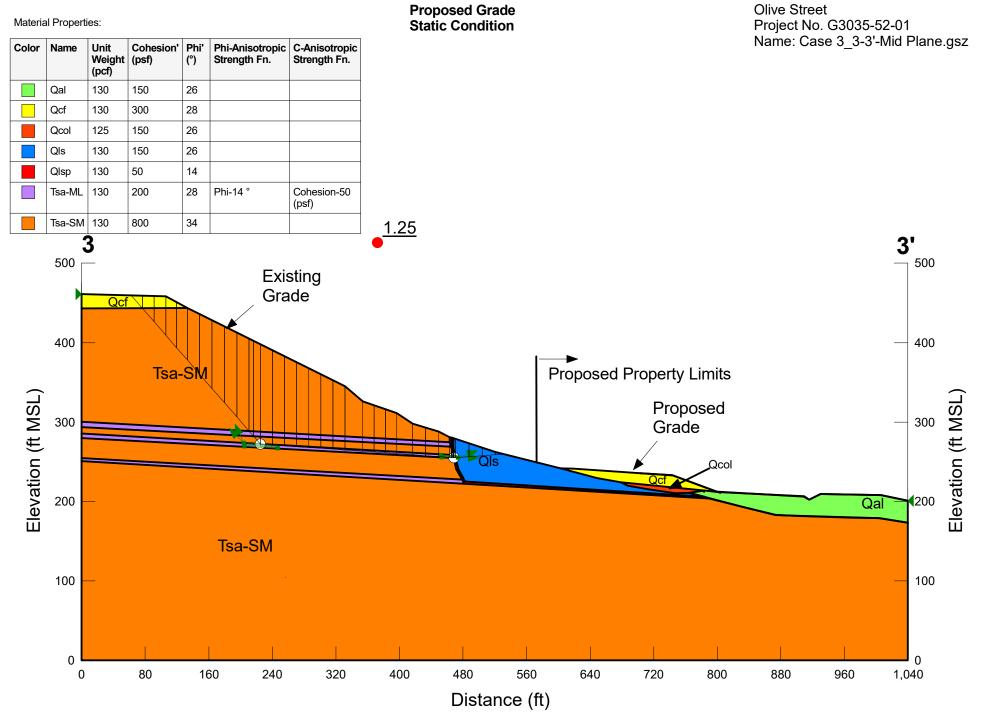


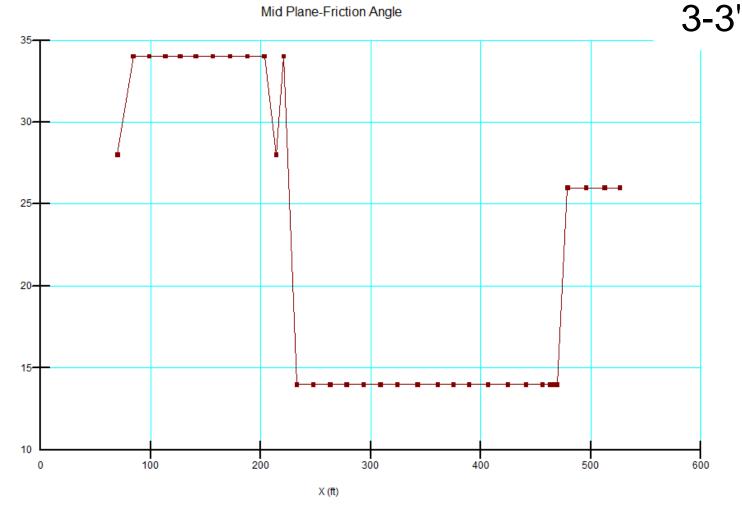

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Additional Drilling\2-2' Geo Studio\File Name: Case 11_2-2'-Seismic.gszDTime: 08:54:31 AMate: 08/09/2024

Friction Angle (deg) (")

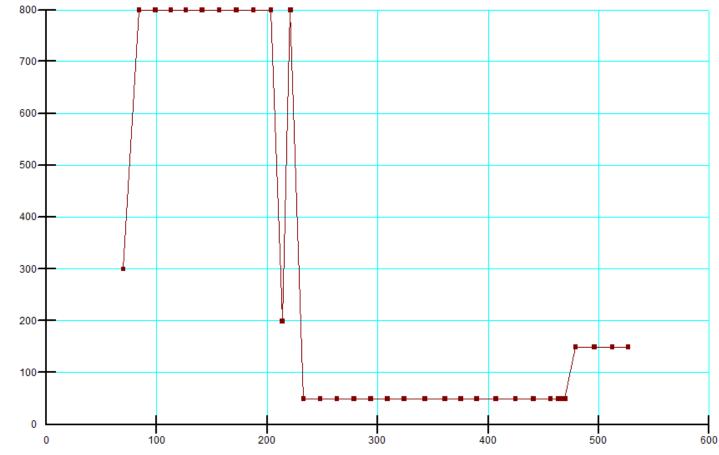

Cohesive Strength (psf)

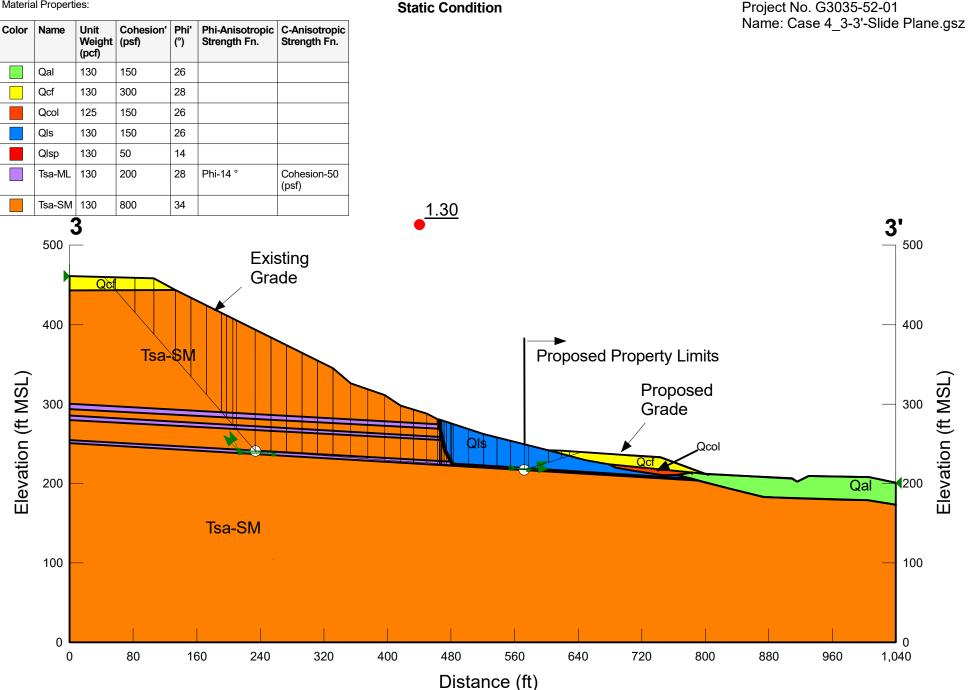

X (ft)


Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\3-3' Geo Studio\File Name: 3-3'-Cir.gszDTime: 02:46:40 PMate: 08/08/2024


Directory: St/Engineering and Geology/ENGINEER PROGRAMS, GUIDES, ETC/EngrgPrg/GEO-SLOPE2018/G3035-52-01 Olive Street/2024-07-16 Additional Drilling/3-3' Geo Studio/File Name: Case 2_3-3'-Upper Plane.gszDTime: 02:59:40 PMate: 08/08/2024

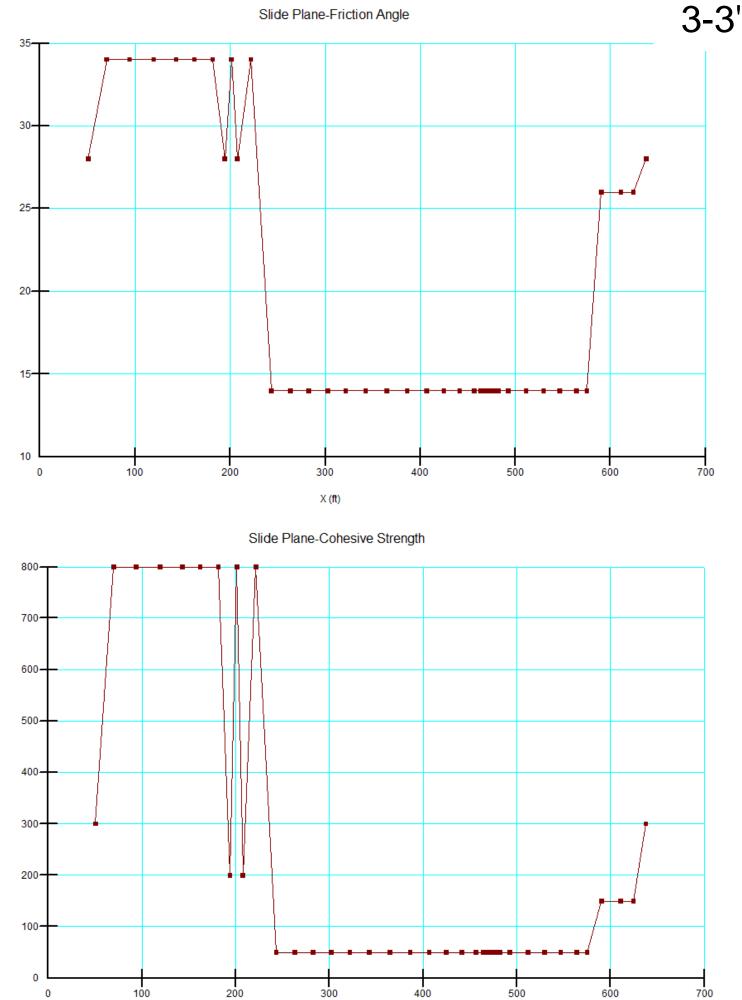
X (ft)


Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-07-16 Addtional Drilling\3-3' Geo Studio\File Name: Case 3_3-3'-Mid Plane.gszDTime: 03:03:08 PMate: 08/08/2024


Friction Angle (deg) (")

Cohesive Strength (psf)

X (ft)



Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Stree\2024-07-16 Additional Drilling\3-3' Geo Studio\File Name: Case 4_3-3-Slide Plane.gszDTime: 03:10:18 PMate: 08/08/2024

Material Properties:

Proposed Grade Static Condition

Olive Street Project No. G3035-52-01

Cohesive Strength (psf)

Friction Angle (deg) (")

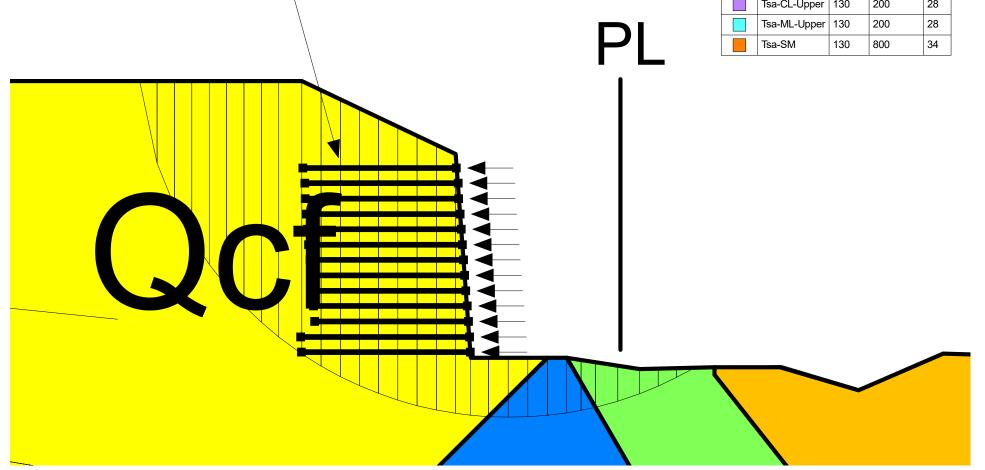
X (ft)

Olive Street Project No. G3035-52-01 Name: 2-2'-RW.gsz

Proposed MSE

Length Bottom 2 rows-22'

Miragrid 10xt


Length-20'

Proposed MSE Wall Static Condition Cross-section 2-2' Approx Sta 2+50

1.50

Material Properties:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Kgr	130	1,000	51
	Qal	130	150	26
	Qcf	130	300	28
	Qls	130	150	26
	Qlsp	130	50	14
	Qsls	130	150	26
	Qudf	130	300	28
	Tsa-CL-Lower	130	200	28
	Tsa-CL-Upper	130	200	28
	Tsa-ML-Upper	130	200	28
	Tsa-SM	130	800	34

Directory: S:\Engineering and Geology\ENGINEER PROGRAMS, GUIDES, ETC\EngrgPrg\GEO-SLOPE2018\G3035-52-01 Olive Street\2024-02-21 Updated Plans\24-01-30 Slot Cutting\File Name: 2-2'-RW.gszDTime: 11:05:53 AMate: 03/01/2024

APPENDIX E

RECOMMENDED GRADING SPECIFICATIONS

FOR

OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

PROJECT NO. G3035-52-01

RECOMMENDED GRADING SPECIFICATIONS

1. GENERAL

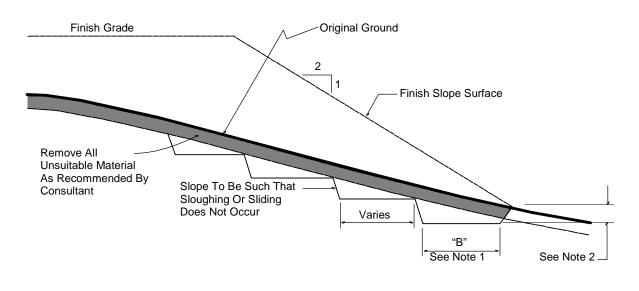
- 1.1 These Recommended Grading Specifications shall be used in conjunction with the Geotechnical Report for the project prepared by Geocon. The recommendations contained in the text of the Geotechnical Report are a part of the earthwork and grading specifications and shall supersede the provisions contained hereinafter in the case of conflict.
- 1.2 Prior to the commencement of grading, a geotechnical consultant (Consultant) shall be employed for the purpose of observing earthwork procedures and testing the fills for substantial conformance with the recommendations of the Geotechnical Report and these specifications. The Consultant should provide adequate testing and observation services so that they may assess whether, in their opinion, the work was performed in substantial conformance with these specifications. It shall be the responsibility of the Contractor to assist the Consultant and keep them apprised of work schedules and changes so that personnel may be scheduled accordingly.
- 1.3 It shall be the sole responsibility of the Contractor to provide adequate equipment and methods to accomplish the work in accordance with applicable grading codes or agency ordinances, these specifications and the approved grading plans. If, in the opinion of the Consultant, unsatisfactory conditions such as questionable soil materials, poor moisture condition, inadequate compaction, and/or adverse weather result in a quality of work not in conformance with these specifications, the Consultant will be empowered to reject the work and recommend to the Owner that grading be stopped until the unacceptable conditions are corrected.

2. **DEFINITIONS**

- 2.1 **Owner** shall refer to the owner of the property or the entity on whose behalf the grading work is being performed and who has contracted with the Contractor to have grading performed.
- 2.2 **Contractor** shall refer to the Contractor performing the site grading work.
- 2.3 **Civil Engineer** or **Engineer of Work** shall refer to the California licensed Civil Engineer or consulting firm responsible for preparation of the grading plans, surveying and verifying as-graded topography.

- 2.4 **Consultant** shall refer to the soil engineering and engineering geology consulting firm retained to provide geotechnical services for the project.
- 2.5 **Soil Engineer** shall refer to a California licensed Civil Engineer retained by the Owner, who is experienced in the practice of geotechnical engineering. The Soil Engineer shall be responsible for having qualified representatives on-site to observe and test the Contractor's work for conformance with these specifications.
- 2.6 **Engineering Geologist** shall refer to a California licensed Engineering Geologist retained by the Owner to provide geologic observations and recommendations during the site grading.
- 2.7 **Geotechnical Report** shall refer to a soil report (including all addenda) which may include a geologic reconnaissance or geologic investigation that was prepared specifically for the development of the project for which these Recommended Grading Specifications are intended to apply.

3. MATERIALS


- 3.1 Materials for compacted fill shall consist of any soil excavated from the cut areas or imported to the site that, in the opinion of the Consultant, is suitable for use in construction of fills. In general, fill materials can be classified as *soil* fills, *soil-rock* fills or *rock* fills, as defined below.
 - 3.1.1 Soil fills are defined as fills containing no rocks or hard lumps greater than 12 inches in maximum dimension and containing at least 40 percent by weight of material smaller than ¾ inch in size.
 - 3.1.2 **Soil-rock fills** are defined as fills containing no rocks or hard lumps larger than 4 feet in maximum dimension and containing a sufficient matrix of soil fill to allow for proper compaction of soil fill around the rock fragments or hard lumps as specified in Paragraph 6.2. **Oversize rock** is defined as material greater than 12 inches.
 - 3.1.3 **Rock fills** are defined as fills containing no rocks or hard lumps larger than 3 feet in maximum dimension and containing little or no fines. Fines are defined as material smaller than ¾ inch in maximum dimension. The quantity of fines shall be less than approximately 20 percent of the rock fill quantity.

- 3.2 Material of a perishable, spongy, or otherwise unsuitable nature as determined by the Consultant shall not be used in fills.
- 3.3 Materials used for fill, either imported or on-site, shall not contain hazardous materials as defined by the California Code of Regulations, Title 22, Division 4, Chapter 30, Articles 9 and 10; 40CFR; and any other applicable local, state or federal laws. The Consultant shall not be responsible for the identification or analysis of the potential presence of hazardous materials. However, if observations, odors or soil discoloration cause Consultant to suspect the presence of hazardous materials, the Consultant may request from the Owner the termination of grading operations within the affected area. Prior to resuming grading operations, the Owner shall provide a written report to the Consultant indicating that the suspected materials are not hazardous as defined by applicable laws and regulations.
- 3.4 The outer 15 feet of *soil-rock* fill slopes, measured horizontally, should be composed of properly compacted *soil* fill materials approved by the Consultant. *Rock* fill may extend to the slope face, provided that the slope is not steeper than 2:1 (horizontal:vertical) and a soil layer no thicker than 12 inches is track-walked onto the face for landscaping purposes. This procedure may be utilized provided it is acceptable to the governing agency, Owner and Consultant.
- 3.5 Samples of soil materials to be used for fill should be tested in the laboratory by the Consultant to determine the maximum density, optimum moisture content, and, where appropriate, shear strength, expansion, and gradation characteristics of the soil.
- 3.6 During grading, soil or groundwater conditions other than those identified in the Geotechnical Report may be encountered by the Contractor. The Consultant shall be notified immediately to evaluate the significance of the unanticipated condition.

4. CLEARING AND PREPARING AREAS TO BE FILLED

4.1 Areas to be excavated and filled shall be cleared and grubbed. Clearing shall consist of complete removal above the ground surface of trees, stumps, brush, vegetation, man-made structures, and similar debris. Grubbing shall consist of removal of stumps, roots, buried logs and other unsuitable material and shall be performed in areas to be graded. Roots and other projections exceeding 1½ inches in diameter shall be removed to a depth of 3 feet below the surface of the ground. Borrow areas shall be grubbed to the extent necessary to provide suitable fill materials.

- 4.2 Asphalt pavement material removed during clearing operations should be properly disposed at an approved off-site facility or in an acceptable area of the project evaluated by Geocon and the property owner. Concrete fragments that are free of reinforcing steel may be placed in fills, provided they are placed in accordance with Section 6.2 or 6.3 of this document.
- 4.3 After clearing and grubbing of organic matter and other unsuitable material, loose or porous soils shall be removed to the depth recommended in the Geotechnical Report. The depth of removal and compaction should be observed and approved by a representative of the Consultant. The exposed surface shall then be plowed or scarified to a minimum depth of 6 inches and until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment to be used.
- 4.4 Where the slope ratio of the original ground is steeper than 5:1 (horizontal:vertical), or where recommended by the Consultant, the original ground should be benched in accordance with the following illustration.

TYPICAL BENCHING DETAIL

No Scale

- DETAIL NOTES: (1) Key width "B" should be a minimum of 10 feet, or sufficiently wide to permit complete coverage with the compaction equipment used. The base of the key should be graded horizontal, or inclined slightly into the natural slope.
 - (2) The outside of the key should be below the topsoil or unsuitable surficial material and at least 2 feet into dense formational material. Where hard rock is exposed in the bottom of the key, the depth and configuration of the key may be modified as approved by the Consultant.

4.5 After areas to receive fill have been cleared and scarified, the surface should be moisture conditioned to achieve the proper moisture content, and compacted as recommended in Section 6 of these specifications.

5. COMPACTION EQUIPMENT

- 5.1 Compaction of *soil* or *soil-rock* fill shall be accomplished by sheepsfoot or segmented-steel wheeled rollers, vibratory rollers, multiple-wheel pneumatic-tired rollers, or other types of acceptable compaction equipment. Equipment shall be of such a design that it will be capable of compacting the *soil* or *soil-rock* fill to the specified relative compaction at the specified moisture content.
- 5.2 Compaction of *rock* fills shall be performed in accordance with Section 6.3.

6. PLACING, SPREADING AND COMPACTION OF FILL MATERIAL

- 6.1 *Soil* fill, as defined in Paragraph 3.1.1, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.1.1 *Soil* fill shall be placed by the Contractor in layers that, when compacted, should generally not exceed 8 inches. Each layer shall be spread evenly and shall be thoroughly mixed during spreading to obtain uniformity of material and moisture in each layer. The entire fill shall be constructed as a unit in nearly level lifts. Rock materials greater than 12 inches in maximum dimension shall be placed in accordance with Section 6.2 or 6.3 of these specifications.
 - 6.1.2 In general, the *soil* fill shall be compacted at a moisture content at or above the optimum moisture content as determined by ASTM D 1557.
 - 6.1.3 When the moisture content of *soil* fill is below that specified by the Consultant, water shall be added by the Contractor until the moisture content is in the range specified.
 - 6.1.4 When the moisture content of the *soil* fill is above the range specified by the Consultant or too wet to achieve proper compaction, the *soil* fill shall be aerated by the Contractor by blading/mixing, or other satisfactory methods until the moisture content is within the range specified.

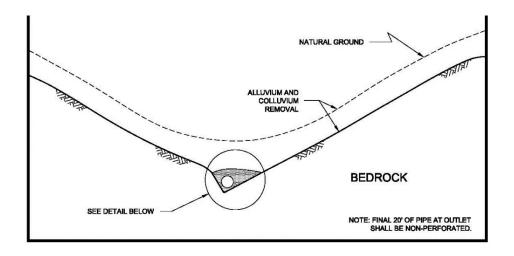
- 6.1.5 After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent. Relative compaction is defined as the ratio (expressed in percent) of the in-place dry density of the compacted fill to the maximum laboratory dry density as determined in accordance with ASTM D 1557. Compaction shall be continuous over the entire area, and compaction equipment shall make sufficient passes so that the specified minimum relative compaction has been achieved throughout the entire fill.
- 6.1.6 Where practical, soils having an Expansion Index greater than 50 should be placed at least 3 feet below finish pad grade and should be compacted at a moisture content generally 2 to 4 percent greater than the optimum moisture content for the material.
- 6.1.7 Properly compacted *soil* fill shall extend to the design surface of fill slopes. To achieve proper compaction, it is recommended that fill slopes be over-built by at least 3 feet and then cut to the design grade. This procedure is considered preferable to track-walking of slopes, as described in the following paragraph.
- 6.1.8 As an alternative to over-building of slopes, slope faces may be back-rolled with a heavy-duty loaded sheepsfoot or vibratory roller at maximum 4-foot fill height intervals. Upon completion, slopes should then be track-walked with a D-8 dozer or similar equipment, such that a dozer track covers all slope surfaces at least twice.
- 6.2 *Soil-rock* fill, as defined in Paragraph 3.1.2, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.2.1 Rocks larger than 12 inches but less than 4 feet in maximum dimension may be incorporated into the compacted *soil* fill, but shall be limited to the area measured 15 feet minimum horizontally from the slope face and 5 feet below finish grade or 3 feet below the deepest utility, whichever is deeper.
 - 6.2.2 Rocks or rock fragments up to 4 feet in maximum dimension may either be individually placed or placed in windrows. Under certain conditions, rocks or rock fragments up to 10 feet in maximum dimension may be placed using similar methods. The acceptability of placing rock materials greater than 4 feet in

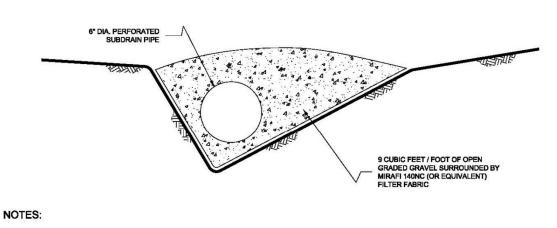
maximum dimension shall be evaluated during grading as specific cases arise and shall be approved by the Consultant prior to placement.

- 6.2.3 For individual placement, sufficient space shall be provided between rocks to allow for passage of compaction equipment.
- 6.2.4 For windrow placement, the rocks should be placed in trenches excavated in properly compacted *soil* fill. Trenches should be approximately 5 feet wide and 4 feet deep in maximum dimension. The voids around and beneath rocks should be filled with approved granular soil having a Sand Equivalent of 30 or greater and should be compacted by flooding. Windrows may also be placed utilizing an "open-face" method in lieu of the trench procedure, however, this method should first be approved by the Consultant.
- 6.2.5 Windrows should generally be parallel to each other and may be placed either parallel to or perpendicular to the face of the slope depending on the site geometry. The minimum horizontal spacing for windrows shall be 12 feet center-to-center with a 5-foot stagger or offset from lower courses to next overlying course. The minimum vertical spacing between windrow courses shall be 2 feet from the top of a lower windrow to the bottom of the next higher windrow.
- 6.2.6 Rock placement, fill placement and flooding of approved granular soil in the windrows should be continuously observed by the Consultant.
- 6.3 *Rock* fills, as defined in Section 3.1.3, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.3.1 The base of the *rock* fill shall be placed on a sloping surface (minimum slope of 2 percent). The surface shall slope toward suitable subdrainage outlet facilities. The *rock* fills shall be provided with subdrains during construction so that a hydrostatic pressure buildup does not develop. The subdrains shall be permanently connected to controlled drainage facilities to control post-construction infiltration of water.
 - 6.3.2 *Rock* fills shall be placed in lifts not exceeding 3 feet. Placement shall be by rock trucks traversing previously placed lifts and dumping at the edge of the currently placed lift. Spreading of the *rock* fill shall be by dozer to facilitate *seating* of the

rock. The *rock* fill shall be watered heavily during placement. Watering shall consist of water trucks traversing in front of the current rock lift face and spraying water continuously during rock placement. Compaction equipment with compactive energy comparable to or greater than that of a 20-ton steel vibratory roller or other compaction equipment providing suitable energy to achieve the required compaction or deflection as recommended in Paragraph 6.3.3 shall be utilized. The number of passes to be made should be determined as described in Paragraph 6.3.3. Once a *rock* fill lift has been covered with *soil* fill, no additional *rock* fill lifts will be permitted over the *soil* fill.

- 6.3.3 Plate bearing tests, in accordance with ASTM D 1196, may be performed in both the compacted *soil* fill and in the *rock* fill to aid in determining the required minimum number of passes of the compaction equipment. If performed, a minimum of three plate bearing tests should be performed in the properly compacted *soil* fill (minimum relative compaction of 90 percent). Plate bearing tests shall then be performed on areas of *rock* fill having two passes, four passes and six passes of the compaction equipment, respectively. The number of passes required for the *rock* fill shall be determined by comparing the results of the plate bearing tests for the *soil* fill and the *rock* fill and by evaluating the deflection variation with number of passes. The required number of passes of the compaction equipment as necessary until the plate bearing deflections are equal to or less than that determined for the properly compacted *soil* fill. In no case will the required number of passes be less than two.
- 6.3.4 A representative of the Consultant should be present during *rock* fill operations to observe that the minimum number of "passes" have been obtained, that water is being properly applied and that specified procedures are being followed. The actual number of plate bearing tests will be determined by the Consultant during grading.
- 6.3.5 Test pits shall be excavated by the Contractor so that the Consultant can state that, in their opinion, sufficient water is present and that voids between large rocks are properly filled with smaller rock material. In-place density testing will not be required in the *rock* fills.
- 6.3.6 To reduce the potential for "piping" of fines into the *rock* fill from overlying *soil* fill material, a 2-foot layer of graded filter material shall be placed above the uppermost lift of *rock* fill. The need to place graded filter material below the *rock*

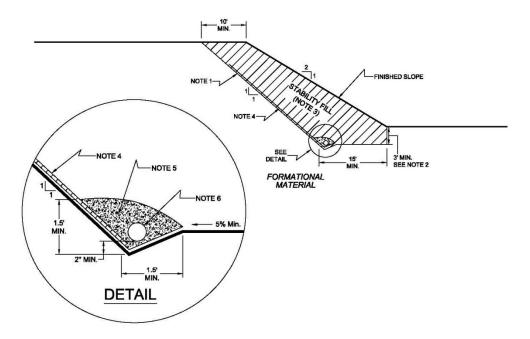

should be determined by the Consultant prior to commencing grading. The gradation of the graded filter material will be determined at the time the *rock* fill is being excavated. Materials typical of the *rock* fill should be submitted to the Consultant in a timely manner, to allow design of the graded filter prior to the commencement of *rock* fill placement.


6.3.7 *Rock* fill placement should be continuously observed during placement by the Consultant.

7. SUBDRAINS

7.1 The geologic units on the site may have permeability characteristics and/or fracture systems that could be susceptible under certain conditions to seepage. The use of canyon subdrains may be necessary to mitigate the potential for adverse impacts associated with seepage conditions. Canyon subdrains with lengths in excess of 500 feet or extensions of existing offsite subdrains should use 8-inch-diameter pipes. Canyon subdrains less than 500 feet in length should use 6-inch-diameter pipes.

TYPICAL CANYON DRAIN DETAIL



- 1......8-INCH DIAMETER, SCHEDULE 80 PVC PERFORATED PIPE FOR FILLS IN EXCESS OF 100-FEET IN DEPTH OR A PIPE LENGTH OF LONGER THAN 500 FEET.
- 2.....6-INCH DIAMETER, SCHEDULE 40 PVC PERFORATED PIPE FOR FILLS LESS THAN 100-FEET IN DEPTH OR A PIPE LENGTH SHORTER THAN 500 FEET.

NO SCALE

7.2 Slope drains within stability fill keyways should use 4-inch-diameter (or lager) pipes.

TYPICAL STABILITY FILL DETAIL

NOTES:

1.....EXCAVATE BACKCUT AT 1:1 INCLINATION (UNLESS OTHERWISE NOTED).

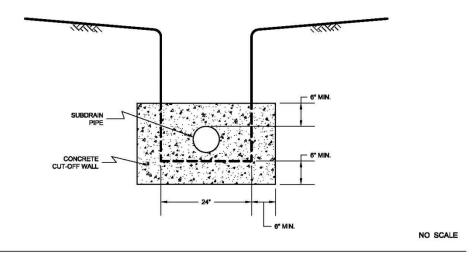
2.....BASE OF STABILITY FILL TO BE 3 FEET INTO FORMATIONAL MATERIAL, SLOPING A MINIMUM 5% INTO SLOPE.

3.....STABILITY FILL TO BE COMPOSED OF PROPERLY COMPACTED GRANULAR SOIL.

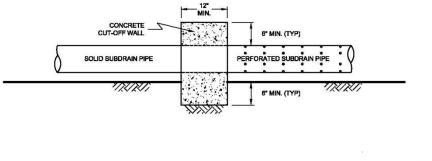
4.....CHIMNEY DRAINS TO BE APPROVED PREFABRICATED CHIMNEY DRAIN PANELS (MIRADRAIN G200N OR EQUIVALENT) SPACED APPROXIMATELY 20 FEET CENTER TO CENTER AND 4 FEET WIDE. CLOSER SPACING MAY BE REQUIRED IF SEEPAGE IS ENCOUNTERED.

5.....FILTER MATERIAL TO BE 3/4-INCH, OPEN-GRADED CRUSHED ROCK ENCLOSED IN APPROVED FILTER FABRIC (MIRAFI 140NC).

8.....COLLECTOR PIPE TO BE 4-INCH MINIMUM DIAMETER, PERFORATED, THICK-WALLED PVC SCHEDULE 40 OR EQUIVALENT, AND SLOPED TO DRAIN AT 1 PERCENT MINIMUM TO APPROVED OUTLET.

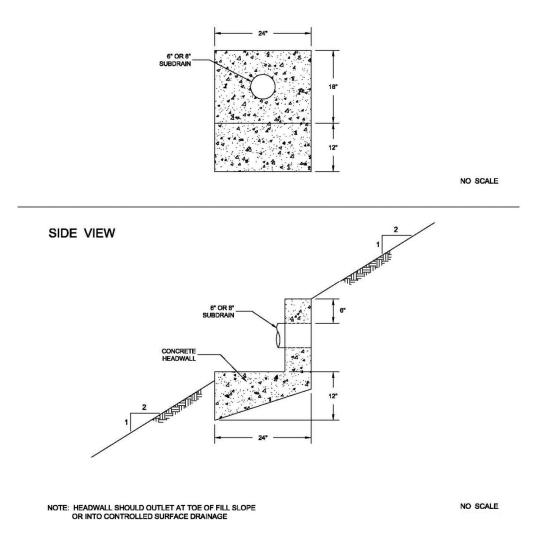

NO SCALE

- 7.3 The actual subdrain locations will be evaluated in the field during the remedial grading operations. Additional drains may be necessary depending on the conditions observed and the requirements of the local regulatory agencies. Appropriate subdrain outlets should be evaluated prior to finalizing 40-scale grading plans.
- 7.4 Rock fill or soil-rock fill areas may require subdrains along their down-slope perimeters to mitigate the potential for buildup of water from construction or landscape irrigation. The subdrains should be at least 6-inch-diameter pipes encapsulated in gravel and filter fabric. Rock fill drains should be constructed using the same requirements as canyon subdrains.


7.5 Prior to outletting, the final 20-foot segment of a subdrain that will not be extended during future development should consist of non-perforated drainpipe. At the non-perforated/ perforated interface, a seepage cutoff wall should be constructed on the downslope side of the pipe.

TYPICAL CUT OFF WALL DETAIL

SIDE VIEW



NO SCALE

7.6 Subdrains that discharge into a natural drainage course or open space area should be provided with a permanent headwall structure.

TYPICAL HEADWALL DETAIL

7.7 The final grading plans should show the location of the proposed subdrains. After completion of remedial excavations and subdrain installation, the project civil engineer should survey the drain locations and prepare an "as-built" map showing the drain locations. The final outlet and connection locations should be determined during grading operations. Subdrains that will be extended on adjacent projects after grading can be placed on formational material and a vertical riser should be placed at the end of the subdrain. The grading contractor should consider videoing the subdrains shortly after

burial to check proper installation and functionality. The contractor is responsible for the performance of the drains.

8. OBSERVATION AND TESTING

- 8.1 The Consultant shall be the Owner's representative to observe and perform tests during clearing, grubbing, filling, and compaction operations. In general, no more than 2 feet in vertical elevation of *soil* or *soil-rock* fill should be placed without at least one field density test being performed within that interval. In addition, a minimum of one field density test should be performed for every 2,000 cubic yards of *soil* or *soil-rock* fill placed and compacted.
- 8.2 The Consultant should perform a sufficient distribution of field density tests of the compacted *soil* or *soil-rock* fill to provide a basis for expressing an opinion whether the fill material is compacted as specified. Density tests shall be performed in the compacted materials below any disturbed surface. When these tests indicate that the density of any layer of fill or portion thereof is below that specified, the particular layer or areas represented by the test shall be reworked until the specified density has been achieved.
- 8.3 During placement of *rock* fill, the Consultant should observe that the minimum number of passes have been obtained per the criteria discussed in Section 6.3.3. The Consultant should request the excavation of observation pits and may perform plate bearing tests on the placed *rock* fills. The observation pits will be excavated to provide a basis for expressing an opinion as to whether the *rock* fill is properly seated and sufficient moisture has been applied to the material. When observations indicate that a layer of *rock* fill or any portion thereof is below that specified, the affected layer or area shall be reworked until the *rock* fill has been adequately seated and sufficient moisture applied.
- 8.4 A settlement monitoring program designed by the Consultant may be conducted in areas of *rock* fill placement. The specific design of the monitoring program shall be as recommended in the Conclusions and Recommendations section of the project Geotechnical Report or in the final report of testing and observation services performed during grading.
- 8.5 We should observe the placement of subdrains, to check that the drainage devices have been placed and constructed in substantial conformance with project specifications.
- 8.6 Testing procedures shall conform to the following Standards as appropriate:

8.6.1 Soil and Soil-Rock Fills:

- 8.6.1.1 Field Density Test, ASTM D 1556, Density of Soil In-Place By the Sand-Cone Method.
- 8.6.1.2 Field Density Test, Nuclear Method, ASTM D 6938, Density of Soil and Soil-Aggregate In-Place by Nuclear Methods (Shallow Depth).
- 8.6.1.3 Laboratory Compaction Test, ASTM D 1557, *Moisture-Density Relations* of Soils and Soil-Aggregate Mixtures Using 10-Pound Hammer and 18-Inch Drop.
- 8.6.1.4. Expansion Index Test, ASTM D 4829, *Expansion Index Test*.

9. **PROTECTION OF WORK**

- 9.1 During construction, the Contractor shall properly grade all excavated surfaces to provide positive drainage and prevent ponding of water. Drainage of surface water shall be controlled to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control features have been installed. Areas subjected to erosion or sedimentation shall be properly prepared in accordance with the Specifications prior to placing additional fill or structures.
- 9.2 After completion of grading as observed and tested by the Consultant, no further excavation or filling shall be conducted except in conjunction with the services of the Consultant.

10. CERTIFICATIONS AND FINAL REPORTS

- 10.1 Upon completion of the work, Contractor shall furnish Owner a certification by the Civil Engineer stating that the lots and/or building pads are graded to within 0.1 foot vertically of elevations shown on the grading plan and that all tops and toes of slopes are within 0.5 foot horizontally of the positions shown on the grading plans. After installation of a section of subdrain, the project Civil Engineer should survey its location and prepare an *as-built* plan of the subdrain location. The project Civil Engineer should verify the proper outlet for the subdrains and the Contractor should ensure that the drain system is free of obstructions.
- 10.2 The Owner is responsible for furnishing a final as-graded soil and geologic report satisfactory to the appropriate governing or accepting agencies. The as-graded report should be prepared and signed by a California licensed Civil Engineer experienced in

geotechnical engineering and by a California Certified Engineering Geologist, indicating that the geotechnical aspects of the grading were performed in substantial conformance with the Specifications or approved changes to the Specifications.

LIST OF REFERENCES

- 1. 2022 California Building Code, California Code of Regulations, Title 24, Part 2, based on the 2018 International Building Code, prepared by California Building Standards Commission, dated July 2022.
- 2. *ACI 302.2R-06, Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials,* prepared by the American Concrete Institute, dated August 2006.
- 3. *ACI 318-19, Commentary on Building Code Requirements for Structural Concrete,* prepared by the American Concrete Institute, dated May 2019.
- 4. *ACI 330-21, Commercial Concrete Parking Lots and Site Paving Design and Construction Guide,* prepared by the American Concrete Institute, dated 2021.
- 5. American Society of Civil Engineers (ASCE), *ASCE 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures*, 2017.
- 6. Bay Area Earthquake Alliance, *How Close To a Fault Do You Live*?: Website, <u>https://bayquakealliance.org/howclose/</u>
- 7. California Geological Survey (2008), *Special Publication 117A, Guidelines For Evaluating and Mitigating Seismic Hazards in California*, Revised and Re-adopted September 11, 2008.
- 8. California Geologic Survey (CGS), EQ Zapp: California Earthquake Hazards Zone Application, online map that queries California Geological Survey mapped earthquake hazard zones, <u>https://www.conservation.ca.gov/cgs/geohazards/eq-zapp</u>
- 9. County of San Diego, San Diego County Multi Jurisdiction Hazard Mitigation Plan, San Diego, California Final Draft, dated 2017.
- 10. Drained Residual and Fully softened Strengths and Standard Deviation September 1, 2023, <u>http://tstark.net/geotechnical-software</u>
- 11. Geotechnical *Investigation, Oceanside Vista, Oceanside, California,* prepared by Geocon Incorporated, dated October 12, 2005 (Project No. 07227-52-02).
- 12. Historical Aerial Photos. <u>http://www.historicaerials.com</u>
- 13. Kennedy, M. P., and S. S. Tan, 2007, *Geologic Map of the Oceanside 30'x60' Quadrangle, California*, USGS Regional Map Series Map No. 2, Scale 1:100,000.
- 14. *Preliminary Geotechnical Evaluation for: Oceanside Vista Residential Development, Oceanside, California,* prepared by GeoTek, Inc., dated March 21, 2007 (Project No. 3129SD3)
- 15. SEAOC, OSHPD Seismic Design Maps: Structural Engineers Association of California website, <u>http://seismicmaps.org/</u>
- 16. Unpublished reports, aerial photographs, and maps on file with Geocon Incorporated.
- 17. USGS, *Quaternary Fault and Fold Database of the United States*: U.S. Geological Survey website, <u>https://www.usgs.gov/natural-hazards/earthquake-hazards/faults.</u>
- 18. USGS, *Uniform Hazard Tool*, U.S. Geological Survey website, <u>https://earthquake.usgs.gov/hazards/interactive/</u>.

STORMWATER MANAGEMENT INVESTIGATION

OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA

AUGUST 7, 2024 PROJECT NO. G3035-52-01

PREPARED FOR:

CAPSTONE EQUITIES

GEOTECHNICAL E ENVIRONMENTAL E MATERIALS

Project No. G3035-52-01 August 7, 2024

CORPORATED

Capstone Equities 5600 W Jefferson Boulevard Los Angeles, California 90016

Attention: Mr. Brian Mikail

- Subject: STORM WATER MANAGEMENT INVESTIGATION OLIVE PARK APARTMENTS OLIVE DRIVE OCEANSIDE, CALIFORNIA
- Reference: Update Geotechnical Report, Olive Park Apartments, Olive Drive, Oceanside, California, prepared by Geocon Incorporated, dated March 12, 2024 (Project No. G3035-52-01).

Dear Mr. Mikail

In accordance with the request of Mr. Spencer LaShells from Hunsaker & Associates Inc., we herein submit the results of our storm water management investigation for the property located west of Olive Drive in the City of Oceanside, California. We understand the City of Oceanside has requested that the infiltration feasibility be investigated for the site.

SITE AND PROJECT DESCRIPTION

The site is an approximately 43-acre, semi-rectangular-shaped property that is elongated in an east-west direction. The site is south of Oceanside Boulevard and the San Diego Northern Railway (SDNR) line, east of an undeveloped property, and north and west of existing residential subdivisions. Additionally, an eastern access road to the site from College Boulevard will be incorporated into the improvements of the development. The Geologic Map, Figure 1, shows the proposed development. The Existing Site Plans (Proposed Development and Access Road) shows the current site conditions.

Existing Site Plan-Proposed Development

Existing Site Plan-Access Road

Topographically, the site is located on slopes that descend northwest to Loma Alta Creek located along the north margin of the site. The DMA Plan, Figure 2, depicts the topography of the site with ascending natural slopes to the south with a maximum height of approximately 200 feet. The site is steeper on

the south and becomes flatter to the north. The gentle-gradient creek has a general west-flowing meandering orientation and has locally incised vertical embankments up to 10 feet high at the stream margins. A fill berm related to railroad improvements has been constructed along the northeast margin of the site. Elevations on site vary from a low of approximately 185 feet above Mean Sea Level (MSL) at Loma Alta Creek in the northwest corner of the site to 460 feet MSL at the top of the southeast slope.

SOIL AND GEOLOGIC CONDITIONS

We encountered five surficial soil unit and two geologic units at the site. The occurrence, distribution, and description of each unit encountered is shown on the Geologic Map, Figure 1, and on the boring and trench logs in Appendix A on the referenced report. The surficial soil and geologic units are described herein in order of increasing age. The surficial soils and geologic units are described herein in order of increasing age.

Undocumented Fill (Qudf)

Undocumented fill underlies the northern and western portions of the site. The northern fill areas are associated with a berm that was apparently graded to control water flow in Loma Alta Creek and support the existing rail line. The western undocumented fill area is associated with waterline backfill that traverses the site in a north-south direction. The fill material generally consists of soft, fine to medium, sandy clay with silt and has an estimated maximum thickness of 10 feet. The fill is not considered suitable for support of site development in its present condition and will require remedial grading.

Previously Placed Fill (Qpf)

Previously placed fill is present on the south and northeast portions of the property. The southern fill underlies residential building pads that bound the southern margin of the property along Wooster Drive. The southern fill likely consists of loose, silty, fine- to medium-grained sand, and is estimated to have a maximum thickness of about 25 feet at the top of slope. Improvements are not planned in the vicinity of the southern fill areas. Previously placed fill also underlies the residential development along Olive Drive adjacent to the northeastern corner of the site (as observed in Trench T-14 in the referenced report). The fill consists of loose, moist, clayey sand and is underlain by relatively thick topsoil.

Topsoil (Unmapped)

Topsoil typically blankets the site and consists of brown, sandy clay to sandy silt. Topsoil is generally on the order of 1 to 4 feet thick, but localized areas with greater thicknesses may exist. Due to its relatively thin thickness, topsoil is not shown on the Geologic Map, Figure 1.

Alluvium (Qal)

Alluvium exists on the northern portion of the site in the Loma Alta Creek drainage. The alluvial soil consists of soft, sandy to silty clay and loose silty to clayey sand. The alluvium is locally underlain by and interfingered with landslide deposits. We encountered alluvial materials up to approximately 15½ feet deep and likely extend deeper toward the north. A shallow groundwater table is likely to exist approximately 3 to 5 feet below existing grade in the area of the streambed at the northern portion of the site. The alluvium is compressible, possesses a "very low" to "high" expansion potential (expansion index of 130 or less), possibly subject to liquefaction, and may have low to high permeability. We expect some alluvium will remain in place on the western portion of the property due to grading limitations.

Landslide Deposits (Qls and Qsls)

We encountered and observed landslide deposits in many of the exploratory borings and trenches performed during this study and are mapped underlying the majority of the central and eastern portions of the site, including the areas of proposed development. The deepest landslide debris encountered is about 56 feet thick in Boring B-5. Borings B-6 and B-8 (in the referced report and west of the proposed development) were unable to penetrate the full extent of landslide debris to a depth of up to 54 feet; therefore, the landslide debris is likely thicker than 56 feet in some areas. The landslide debris is up to approximately 40 feet thick in the vicinity of the proposed development.

Our exploratory borings and field observations suggest portions of the property are underlain by a series of landslides which have occurred within the Santiago Formation. Debris within the larger landslides consists of highly disturbed to relatively intact blocks of sandstone, siltstone, and claystone. Bedding orientations display evidence of displacement and rotation. Portions of the older landslide debris contained secondary mineralization and fracture infilling suggesting that these deposits have been partially "healed." The slip surfaces were typically located within claystone beds generally parallel to the direction of regional dip. The mechanism for the large-scale landsliding was likely deep-seated block failure along weakened planes within the claystone beds.

The debris composing the smaller, more recent landslides generally consist of loose, moist, olive gray to grayish brown, silty and clayey sands, sandy and clayey silts, and silty to sandy clays. Recent landslide debris typically contains highly disturbed and jumbled bedding, numerous fractures, roots, and sheared and remolded clays.

Landslide deposits are typically unstable within cut slopes and may be susceptible to significant settlement. Therefore, the highly compressible portions of the landslide debris within the proposed development areas should be removed and recompacted during the remedial grading of the site. In general, landslide debris is suitable for reuse as compacted fill provided potentially expansive clay is properly mixed with sandy material where located within about 5 feet of proposed grade.

We observed an isolated area of surficial landslide debris (Qsls) within the previously placed fill areas in the southern portion of the site. The near-surface portions (within 6 feet of the slope face) of the fill slope at the southeast corner of the site have locally failed. Adjacent homeowners have "end dumped" vegetation and other debris over the top of the slope. These deposits are likely the cause of failure of uncompacted "end dump" fill and not indicative of the near-surface soil conditions present along the steep slope portions of the site. We did not perform exploratory borings and trenches in the steep slope portions of the proposed open space areas to the south of the proposed development due to access limitations created by the presence of sensitive habitat.

Santiago Formation (Tsa)

We encountered the middle Eocene-age Santiago Formation underlying surficial soil in the majority of the exploratory excavations performed at the site. The Santiago Formation underlies the majority of the steep slope areas located to the south of the proposed development. The Santiago Formation is generally composed of light colored, massive to poorly bedded, fine- to medium-grained sandstone interbedded with weak siltstone and claystone layers. Claystone beds within the Santiago Formation contain bedding plane shears and internal shearing, some of which displayed out-of-slope bedding orientations. Bedding plane shears can be a contributing factor to slope instability. Cut slopes exposing out-of-slope bedding plane shears will require slope stabilization measures.

The Santiago Formation is considered suitable for foundation and/or fill support. However, the claystone and siltstone units may be susceptible to landsliding and slope instability. Additionally, some sandstone units of the Santiago Formation are poorly cemented and susceptible to erosion. Materials generated from excavations within the silty and sandy portions of the Santiago Formation are suitable

for reuse as compacted fill. Claystone that is potentially expansive should be mixed with sandy material, as discussed herein.

Granitic Rock (Kgr)

Cretaceous-age granitic rock is mapped in the general vicinity of the site by Tan and Kennedy (1996) as the Green Valley Tonalite. We encountered granitic rock in Boring B-1 and in Trenches T-6, T-7, and T-11 through T-13 (in the referenced report). The granitic rock consists of yellowish brown to gray, moderately weak to moderately strong, highly to moderately weathered, and displayed a fine-to coarse-grained crystalline texture. Granitic rock is considered suitable for the support of structures and/or compacted fill.

STORM WATER MANAGEMENT INVESTIGATION

We understand storm water management devices will be used in accordance with the 2022 City of Oceanside BMP Design Manual. If not properly constructed, there is a potential for distress to improvements and properties located hydrologically down gradient or adjacent to these devices. Factors such as the amount of water to be detained, its residence time, and soil permeability have an important effect on seepage transmission and the potential adverse impacts that may occur if the storm water management features are not properly designed and constructed. We have not performed a hydrogeological study at the site. If infiltration of storm water runoff occurs, downstream properties may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts as a result of water infiltration.

Hydrologic Soil Group

The United States Department of Agriculture (USDA), Natural Resources Conservation Services, possesses general information regarding the existing soil conditions for areas within the United States. The USDA website also provides the Hydrologic Soil Group. The following table presents the descriptions of the hydrologic soil groups. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. In addition, the USDA website also provides an estimated saturated hydraulic conductivity for the existing soil.

HYDROLOGIC SOIL GROUP DEFINITIONS

Soil Group	Soil Group Definition	
А	Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consis mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have high rate of water transmission.	
В	Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.	
С	Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.	
D	Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.	

The property is underlain by man-made previously placed fill and cemented stadium conglomerate and should be classified as Soil Group D. The following table presents the information from the USDA website for the subject property. The Hydrologic Soil Group Map presents output from the USDA website showing the limits of the soil units.

Map Unit Name	Map Unit Symbol	Approximate Percentage of Property	Hydrologic Soil Group	k _{sat} of Most Limiting Layer (Inches/ Hour)
Corralitos loamy sand, 0 to 5 percent slopes	CsB	10	А	5.95-19.98
Diablo clay, 15 to 30 percent slopes, eroded, warm MAAT	DaE2	2	С	0.06-0.20
Diablo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	DaF	4	С	0.06-0.20
Gaviota fine sandy loam, 30 to 50 percent slopes	GaF	27	D	1.98-5.95
Las Flores loamy fine sand, 9 to 15 percent slopes, eroded	LeD2	36	D	0.00-0.06
Salinas clay loam, 0 to 2 percent slopes, warm MAAT, MLRA 19	SbA	21	С	0.00-0.14

USDA WEB SOIL SURVEY – HYDROLOGIC SOIL GROUP*

*The areas of the property that possess fill materials should be considered to possess a Hydrologic Soil Group D.

Hydrologic Soil Group Map – Proposed Development

Hydrologic Soil Group Map – Access Road

In Situ Testing

The majority of the proposed development is underlain by landslide debris and landslide prone formational material. Additionally, groundwater within the alluvium is within 10 feet from existing grade and the proposed development will consist of fills greater than 5 feet across the entire site once the landslide debris is removed. Based on historic aerials, the access road appears to have been graded with fill and is adjacent to a slope down to the existing train tracks. Therefore, we did not perform infiltration tests within the granitic rock or Santiago Formation due to the proximity to groundwater, proposed fill depths, proximity to slopes, and geologic hazards that exist on site. Infiltration would be considered infeasible due to the presence of landslide debris across the site. If infiltration of storm water runoff occurs, downstream properties may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts because of water infiltration.

GEOTECHNICAL CONSIDERATIONS

Groundwater Elevations

We encountered groundwater during the previous field investigation in several of our borings at depths ranging from 9 to 45 feet below existing grade (elevation 183 to 199 feet MSL). Therefore, infiltration in these areas are considered infeasible.

Soil or Groundwater Contamination

We are unaware of contaminated soil or groundwater contamination on the property. Therefore, infiltration associated with this risk would be considered feasible.

Expansive Soils

Based on previous laboratory testing, the soil encountered in the field investigation is "non-expansive" (expansion index [EI] of 20 or less) and "expansive" (EI greater than 20) as defined by 2022 California Building Code (CBC) Section 1803.5.3. We expect most of the soil on site will have a "very low" to "medium" expansion potential (expansion index of 90 or less). Infiltration would be feasible when considering the expansion potential of the soil on the property.

Formational Soil Properties

The on-site landslides have occurred within the weak claystone and/or siltstone beds of the Santiago Formation. The lower portions of the landslide debris in the western portion of the site were observed to be saturated and prone to significant caving and seepage. Therefore, due to slope instability and weak claystone/siltstone beds in the Santiago Formation infiltration should be considered infeasible on site.

New or Existing Utilities

Utilities are present within the existing roadways to the east on Olive Drive. Full or partial infiltration should not be allowed in the areas of the utilities to help prevent potential damage/distress to improvements. Mitigation measures to prevent water from infiltrating the utilities consist of setbacks, installing cutoff walls around the utilities and installing subdrains and/or installing liners.

Existing and Planned Structures

Existing railroad tracks and residential structures exist to the north and west of the site, respectively. Water should not be allowed to infiltrate in areas where it could affect the existing and neighboring properties and existing and adjacent structures, improvements, and roadways. Mitigation for existing structures consists of not allowing water infiltration within a 1:1 plane from existing foundations and extending the infiltration areas at least 10 feet from the existing foundations and into formational materials.

CONCLUSIONS AND RECOMMENDATIONS

Storm Water Evaluation Narrative

As discussed herein, the property consisted of mostly landslide debris, fill materials, and Santiago Formation with slide prone weak claystone/siltstone beds. Additionally, we encountered groundwater in the alluvium materials within 10 feet from existing grade. In order to develop the site, the landslide materials will be removed and replaced with properly compacted fill. This would result in most of the site being underlain by fills greater than 5 feet subsequent to grading and site development. In our experience, fill does not possess infiltration rates appropriate with infiltration. Therefore, the areas where infiltration could potentially be feasible are limited based on existing structures, groundwater, fill greater than 5 feet, and slide prone formational materials. The potential for additional landsliding would increase if infiltration were allowed in the existing landslide debris or formational materials.

Storm Water Evaluation Conclusion

Based on the geologic conditions exhibited in the Santiago Formation, shallow groundwater, areas of the site underlain by landslide debris, proposed fills greater than 5 feet, and existing structures we opine full and partial infiltration on the property is considered infeasible and the property possesses a "No Infiltration" condition.

Storm Water Management Devices

Liners and subdrains should be incorporated into the design and construction of the planned storm water devices. The liners should be impermeable (e.g. High-density polyethylene, HDPE, with a thickness of about 30 mil or equivalent Polyvinyl Chloride, PVC) to prevent water migration. The subdrains should be perforated within the liner area, installed at the base and above the liner, be at least 3 inches in diameter and consist of Schedule 40 PVC pipe. The subdrains outside of the liner should consist of solid pipe. The penetration of the liners at the subdrains should be properly waterproofed. The subdrains should be connected to a proper outlet. The devices should also be installed in accordance with the manufacturer's recommendations.

Storm Water Standard Worksheets

We evaluated the proposed project with respect to the infiltration restrictions contained in Table D.1-1 in Appendix D of the City of Oceanside BMP Design Manual (see following table).

	Restriction Element	Is Element Applicable? (Yes/No)
	BMP is within 100' of Contaminated Soils	No
	BMP is within 100' of Industrial Activities Lacking Source Control	No
	BMP is within 100' of Well/Groundwater Basin	No
	BMP is within 50' of Septic Tanks/Leach Fields	No
	BMP is within 10' of Structures/Tanks/Walls	No
	BMP is within 10' of Sewer Utilities	No
Mandatory	BMP is within 10' of Groundwater Table	No
Considerations	BMP is within Hydric Soils	No
	BMP is within Highly Liquefiable Soils and has Connectivity to Structures	No
	BMP is within 1.5 Times the Height of Adjacent Steep Slopes (≥25%)	No
	City Staff has Assigned "Restricted" Infiltration Category	No

CONSIDERATIONS FOR GEOTECHNICAL ANALYSIS OF INFILTRATION RESTRICTIONS

	Restriction Element	Is Element Applicable? (Yes/No)
	BMP is within Predominantly Type D Soil	Yes
	BMP is within 10' of Property Line	No
Optional	BMP is within Fill Depths of ≥5′ (Existing or Proposed)	Yes
Considerations	BMP is within 10' of Underground Utilities	No
	BMP is within 250' of Ephemeral Stream	No
	Other (Provide detailed geotechnical support) – Landslide debris and slide prone formational materials (<i>See discussion herein)</i>	Yes
	Based on examination of the best available information, I have <u>not</u> identified any restrictions above.	
Result	Based on examination of the best available information, I have <u>identified</u> one or more restrictions above.	X Restricted

The BMP manual also has a worksheet (Table D.2-4 of Appendix D) that helps the project civil engineer estimate the factor of safety based on several factors. The following table describes the suitability assessment input parameters related to the geotechnical engineering aspects for the factor of safety determination.

Consideration	High Concern – 3 Points	Medium Concern – 2 Points	Low Concern – 1 Point
Infiltration Test Method	Any	At least 2 tests of any kind within 50' of BMP	At least 4 tests within BMP footprint, OR Large/Small Scale Pilot Infiltration Testing over at least 5% of BMP footprint.
Soil Texture Class	Unknown, Silty, or Clayey	Loamy	Granular/Slightly Loamy
Site Variability	Unknown or High	Moderately Homogenous	Significantly Homogenous
Depth to Groundwater/ Obstruction	<5' below BMP	5-15' below BMP	>15' below BMP

GUIDANCE FOR DETERMINING INDIVIDUAL FACTOR VALUES – PART A

The following table presents the estimated safety factor values for the evaluation of the factor of safety. This table only presents the suitability assessment safety factor (Part A) of the worksheet. The project civil engineer should evaluate the safety factor for design (Part B) and use the combined safety factor for the design infiltration rate.

	Consideration	Assigned Weight (w)	Factor Value (v)	Product (p = w x v)
	Infiltration Testing Method	0.25	3	0.75
Suitability	Soil Texture Class	0.25	2	0.50
Assessment	Site Variability	0.25	3	0.75
(A)	Depth to Groundwater/Obstruction	0.25	2	0.50
	Suitability A	Assessment Safe	ety Factor, S _A = ∑p	2.5
	Pretreatment	*		*
Design	Resiliency	*	Refer to Table D.2-4	*
(B)	Compaction	*	0.2	*
	Design Safety Factor, S _B = ∑p			*
	(Must be		Factor, $S = S_A \times S_B$ han or equal to 2)	*

DETERMINATION OF SAFETY FACTOR

*The civil engineer should evaluate the "Design (B)" factors and the Safety Factor, S.

We also included herein the original I-8 Form from previous submittals for consistency with the current submittal process. The DMA Plan, Figure 2, shows the setback areas as discussed herein. We opine infiltration is not feasible for this property.

If you have any questions regarding this correspondence, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Nikolas Garcia, EIT Senior Staff Engineer

NG:SFW:arm

(e-mail) Addressee

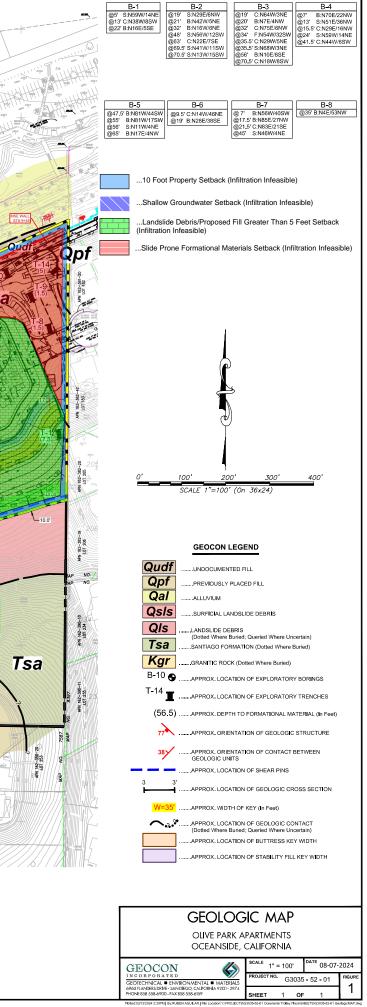
Shawn Foy Weedon, GE 2714 Vice President/Senior Engineer

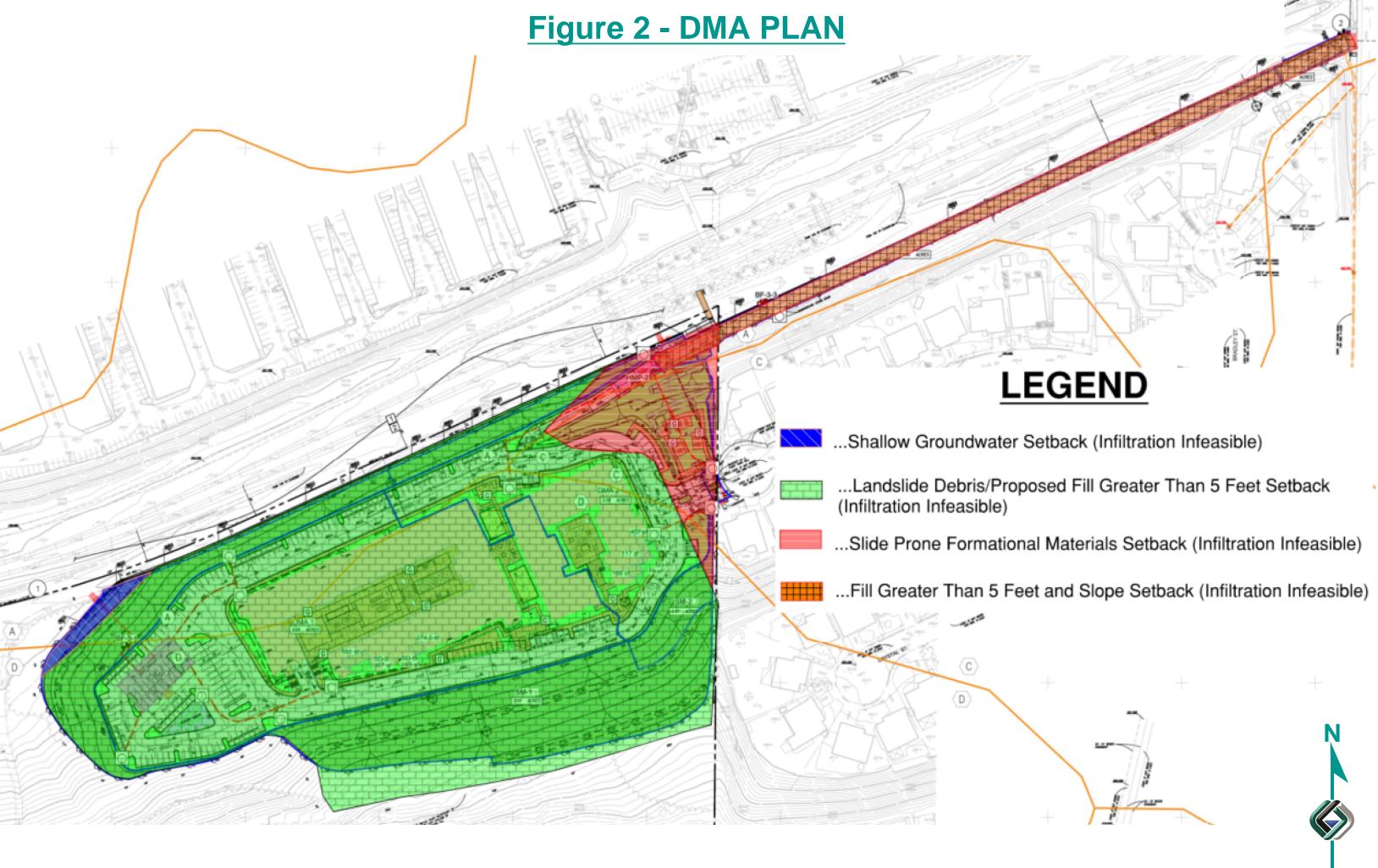
	Categorization of Infiltration Feasibility Condition		Form I-8	
Part 1 – Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?				
Criteria	Screening Question	Yes	No	
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		x	
Provide basis: The majority of the proposed development is underlain by landslide debris and landslide prone formational material. Additionally, groundwater within the alluvium is within 10 feet from existing grade and the proposed development will consist of fills greater than 5 feet across the entire site once the landslide debris is removed. Therefore, we did not perform infiltration tests within the granitic rock or Santiago Formation due to the proximity to groundwater, proposed fill depths, and geologic hazards that exist on site and Infiltration would be considered infeasible across the site.			consist of fills greater than on tests within the granitic	
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.				
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards			
Provide bas	sis:			

The majority of the proposed development is underlain by landslide debris and landslide prone formational material. Additionally, groundwater within the alluvium is within 10 feet from existing grade and the proposed development will consist of fills greater than 5 feet across the entire site once the landslide debris is removed. Therefore, infiltration should be considered infeasible due to the risk of slope stability, fill thickness and groundwater mounding.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

Worksheet C.4-1 Page 2 of 4				
Criteria	Screening Question	Yes	No	
3	pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question		Х	
Provide bas	is:			
We encountered groundwater within the alluvium materials within 10 feet from existing grade. Therefore, infiltration should not be allowed in these areas.				
	dings of studies; provide reference to studies, calculations, maps, data source Irce applicability.	es, etc. Provide na	arrative discussion of	
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issuessuch as change of seasonality of ephemeral streams orXincreased discharge of contaminated groundwater to surface waters? The response to this Screening QuestionX			
Provide bas				
Geocon Incorporated does not expect infiltration will cause water balance issues such as seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters.				
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.				
Part 1 Result*	If all answers to rows 1 – 4 are " Yes " a full infiltration design is potentially feasible. The feasibility screening category is Full In If any answer from row 1-4 is " No ", infiltration may be possible extent but would not generally be feasible or desirable to ach	filtration le to some	No Full Infiltration	


*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City to substantiate findings.


Part 2 – Pa	artial Infiltration vs. No Infiltration Feasibility Screening Criteria		
	iltration of water in any appreciable amount be physically feasil	ble without a	ny negative
	nces that cannot be reasonably mitigated?		, 0
•	, .		
Criteria	Screening Question	Yes	No
	Do soil and geologic conditions allow for infiltration in		
	any appreciable rate or volume? The response to this		х
5	Screening Question shall be based on a comprehensive		
	evaluation of the factors presented in Appendix C.2 and		
Provide ba	Appendix D.		
FI OVIUE Da	1515,		
	of the proposed development is underlain by landslide debris and landslide pro		
	within the alluvium is within 10 feet from existing grade and the proposed develo		-
feet across t	he entire site once the landslide debris is removed. Therefore, we did not perfo	orm infiltration te	ests within the granit
ock or Santia	go Formation due to the proximity to groundwater, proposed fill depths, and g	geologic hazards	that exist on site ar
nfiltration wo	uld be considered infeasible across the site.		
nfiltration wo	uld be considered infeasible across the site.		
ummarize fin	uld be considered infeasible across the site. Idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates.	es, etc. Provide r	narrative discussion
ummarize fin	idings of studies; provide reference to studies, calculations, maps, data source	es, etc. Provide r	narrative discussion
ummarize fin	idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed	es, etc. Provide r	narrative discussion (
ummarize fin tudy/data sor	idings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope	es, etc. Provide r	
ummarize fin	ndings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other	es, etc. Provide r	narrative discussion
ummarize fin tudy/data sou	dings of studies; provide reference to studies, calculations, maps, data source urce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable	es, etc. Provide r	
ummarize fin tudy/data sou 6	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be	es, etc. Provide r	
ummarize fin tudy/data sou 6	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be	es, etc. Provide r	
ummarize fin :udy/data sou 6 Provide ba	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be		X
ummarize fin :udy/data sou 6 Provide ba he majority c	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be asis:	one formational	X material. Additional
ummarize fin cudy/data sou 6 Provide ba he majority o roundwater v	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be stabilits: of the proposed development is underlain by landslide debris and landslide pro- within the alluvium is within 10 feet from existing grade and the proposed development	one formational opment will cons	X material. Additionall
ummarize fin :udy/data sou 6 Provide ba he majority o roundwater v feet across t	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be sisis: of the proposed development is underlain by landslide debris and landslide provide within the alluvium is within 10 feet from existing grade and the proposed development he entire site once the landslide debris is removed. Therefore, we did not perform	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additionall sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Adings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be sisis: of the proposed development is underlain by landslide debris and landslide provide within the alluvium is within 10 feet from existing grade and the proposed development he entire site once the landslide debris is removed. Therefore, we did not perform	one formational opment will cons orm infiltration te	X material. Additionall sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin :udy/data sou 6 Provide ba he majority o roundwater v feet across t pock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data so 6 Provide ba he majority o roundwater v feet across t ock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin :udy/data so 6 Provide ba he majority o roundwater v feet across t pock or Santia	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te	X material. Additional sist of fills greater that ests within the granit
ummarize fin tudy/data sou 6 Provide ba he majority o roundwater v feet across t pock or Santia nfiltration wo	Indings of studies; provide reference to studies, calculations, maps, data source aurce applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be usis:	one formational opment will cons orm infiltration te geologic hazards	X material. Additional sist of fills greater the ests within the granit that exist on site an

Worksheet C.4-1 Page 4 of 4					
Criteria	Screening Question	Yes	No		
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the		Х		
Provide ba	sis:				
	We encountered groundwater within the alluvium materials within 10 feet from existing grade. Therefore, infiltration should not be allowed in these areas.				
	ndings of studies; provide reference to studies, calculations, maps, data sou ource applicability and why it was not feasible to mitigate low infiltration rate		rrative discussion of		
8	Can infiltration be allowed without violating downstream water rights ? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х			
Provide ba	sis:				
Provide basis: Geocon Incorporated does not provide a study regarding water rights. However, these rights are not typical in the San Diego County area.					
	ndings of studies; provide reference to studies, calculations, maps, data sour purce applicability and why it was not feasible to mitigate low infiltration rate		rrative discussion of		
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration des potentially feasible. The feasibility screening category is Partia If any answer from row 5-8 is no, then infiltration of any vo considered to be infeasible within the drainage area. The feas category is No Infiltration.	al Infiltration. lume is sibility screening			

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City to substantiate findings.

ATTACHMENT 7 Storm Water Quality Assessment Form

This is the cover sheet for Attachment 7.

City of Oceanside – Engineering Division – Clean Water Program STORM WATER QUALITY ASSESSMENT FOR PLANNING, ENGINEERING, AND BUILDING PERMIT APPLICATIONS

All applications for Planning, Engineering, or Building Division permits are required to complete this assessment form and include it as part of the initial permit application submittal. Staff will review the permit application content to determine the applicability of State and City storm water requirements. Please note a storm water assessment cannot be provided without a complete permit application package.

Sect	Section 1 – Project Information				
Applic	ant Name: Capstone Equities	Phone Number:			
Projec	Olive Park Apartments	Project Site Address: College Boulevard and Olive Drive, Oceanside, CA 92056			
Permi	t Applications Number(s):	Assessor Parcel Number(s): 162-111-04-00			
Projec	ct Description: 43.50 acre-site-City of Oceanside. Partially de- veloped, 20 single family detached structures	Project Disturbed Area (square feet): 439208			
Existir	ng Impervious Area (square feet):	Created or Replaced Impervious Area (square feet): 252, 571 sft			
Sect	ion 2 – Identify Applicable Priority Development	t Project Categories (Check All Boxes that Apply)			
	New Development Project - A project that create	s 10,000 square feet or more of impervious surfaces (collectively			
	over the entire project site). This includes commerce projects on public or private land.	cial, industrial, residential, mixed-use, and public development			
		s and/or replaces 5,000 square feet or more of impervious surface			
		ting site of 10,000 square feet or more of impervious surfaces). This			
		use, and public development projects on public or private land.			
		/ that sells prepared foods and drinks for consumption, including			
		selling prepared foods and drinks for immediate consumption (SIC			
	-	create and/or replace 5,000 square feet or more impervious surface			
	(collectively over the entire project site).				
	Hillside Development - Category includes deve	lopment on any natural slope that is twenty-five percent or greater;			
	where new or redevelopment projects create and/	or replace 5,000 square feet or more impervious surface (collectively			
	over the entire project site).				
	Parking Lots - Category is defined as a land an	ea or facility for the temporary parking or storage of motor vehicles			
M	used personally, for business, or for commerce;	where new or redevelopment projects create and/or replace 5,000			
	square feet or more impervious surface (collectivel	y over the entire project site).			
	Streets, Roads, Highways, Freeways, and Drive	ways – Category is defined as any paved impervious surface used			
P	for the transportation of automobiles, trucks, motor	cycles, and other vehicles; where new or redevelopment projects			
	that create and/or replace 5,000 square feet or mo	re impervious surface (collectively over the entire project site).			
	Water Quality Environmentally Sensitive Area	- New or redevelopment projects that create and/or replace 2,500			
	square feet or more of impervious surface (collec	tively over the entire project site), and discharge directly to a Water			
	Quality Environmentally Sensitive Area (WQESA). "Discharge directly to" includes flow that is conveyed overland a				
	distance of 200 feet or less from the project to the	WQESA, or conveyed in a pipe or open channel any distance as an			
	isolated flow from the project to the ESA (i.e. not co	ommingled with flows from adjacent lands).			
		as a facility that is categorized in any one of the following Standard			
	Industrial Classification (SIC) codes: 5013, 5014	4, 5541, 7532-7534, or 7536-7539, where new or redevelopment			
	projects create and/or replace 5,000 square feet or	r more impervious surface (collectively over the entire project site).			
	() 3 9	ides RGOs that meet the following criteria (a) 5,000 square feet or			
		DT) of 100 or more vehicles per day; where new or redevelopment			
projects create and/or replace 5,000 square feet or more impervious surface (collectively over the entire project					
F		New or redevelopment projects that result in the disturbance of one			
ت	or more acres of land and are expected to generat	e pollutants post construction.			

City of Oceanside – Engineering Division – Clean Water Program STORM WATER QUALITY ASSESSMENT FOR PLANNING, ENGINEERING, AND BUILDING PERMIT APPLICATIONS

Section 3 – Identify Projects Not Subject to Permanent Stormwater Requirements (Check All Boxes that Apply)			
	The project consists of work entirely within an existing structu	ıre.	
	The project consists of construction of overhead or undergrou	und utilities (no new impervious surfaces).	
	The project consists of routine maintenance.		
	The project consists of less than 50 yards of grading and pre-	sents no opportunities to improve water quality.	
Secti	on 4 – Project Category Determination		
V	Priority Development Project : If any item in Section 2 is a Please prepare a PDP SWQMP for the project.	applicable, the project is a Priority Development Project.	
	Standard Development Project: If none of the items in Section 2 or 3 are applicable, the project is a Standard Development Project. <u>Please prepare an SDP SWQMP.</u>		
	Project Not Subject to Permanent Stormwater Requirement not subject to Permanent Stormwater Requirements. <u>Please</u> Note: Projects in this category are subject to typical pollution checklist on the following page.	submit the project plans with this form.	
Secti	on 5 – Applicant Certification		
Name	of Responsible Party: Brigh Mikgi	Title: Mankger	
Email	Name of Responsible Party: Brian Nikai Ittle: Mankger Email Address (optional) Phone Number: 310-666-6860		
I understand and acknowledge the City of Oceanside has adopted minimum requirements, as mandated by the San Diego Regional Water Quality Control Board – Order No. R9-2013-0001, as amended by Order Nos. R9-2015-0001 and R9-2015- 0100 (NPDES NO. CAS0109266) for mitigating impacts associated with urban runoff, including storm water from construction and land development activities. I certify this assessment has been accurately completed to the best of my knowledge and is consistent with the proposed project. I acknowledge that non-compliance with the City Best Management Practice (BMP) Design Manual, Grading Ordinance, and Erosion Control Ordinance may result in enforcement action by the City, the California State Water Resources Control Board, and/or the San Diego Regional Water Quality Control Board. Enforcement action may include stop work orders, notice of violation, fines, or other actions.			

Stormwater Pollution Prevention Measures for Projects Not Subject to Permanent Stormwater Requirements

Project Activity	Yes	No	Required Pollution Prevention
Trash & Waste Generation <u>**REQUIRED FOR ALL</u> <u>PROJECTS**</u>			 Train/inform all employees of pollution prevention requirements Collect and contain all construction trash, waste, and debris Promptly contain and clean any spill on site Routinely inspect site, remove loose trash and prevent spills Properly dispose of any hazardous materials Do not wash down surfaces unless water is collected or directed to landscape Permanent trash collection areas require full structure/enclosure
Digging of Dirt – excavation, trenching, or grading			 Do not allow dirt to migrate into street, sidewalk, or storm drain Preserve existing vegetation where feasible Perimeter site controls such as silt fence or straw wattles Cover exposed dirt using mulch, tarps, or erosion control devices Install and secure tarps over dirt piles Routinely sweep site to remove dirt
Landscaping and Irrigation Systems			 Do not store landscape materials in street Do not allow dirt to migrate into street, sidewalk, or storm drain Test irrigation system and prevent runoff/overspray Install and secure tarps over piles of mulch or soil Routinely sweep site to remove mulch or soil Do not wash down surfaces unless water is collected or directed to landscape
Concrete, Paint, Mortar, or Stucco Work			 Contain wet mixing areas within confined area Do not allow material to travel into site soil, street, or storm drain Properly dispose of waste material
Temporary Storage of Materials Outside			 Elevate material off ground where possible, such as on pallets Install and secure tarps over materials
Demolition of Structures			Follow Required Pollution Prevention for "Digging of Dirt"
New Structure – house addition, shed, etc.			 Follow Required Pollution Prevention for "Digging of Dirt" Direct downspouts to landscape, where feasible Consider rainwater harvesting Preserve existing vegetation and drainage patterns, where feasible
Patio, Driveway, or Sidewalk			 Consider use of pervious pavers or pervious concrete (refer to Section 3 of page 4 for routine maintenance information) Direct runoff to landscape areas, where feasible
Re-Roofing			 Contain removed roof debris in waste containers Follow Required Pollution Prevention for "Temporary Storage of Materials Outside"
Washing of Material, Equipment, or Surface			Do not wash down surfaces unless water is collected or directed to landscape
Draining of Water Heater, Pool, or Spa			 Direct drain water to landscape areas where possible Contact Stormwater Division if considering draining to sanitary system cleanout or storm drain system (760-643-2804)
Storm Drain at Industrial or Commercial Property			Install "No Dumping" or similar signage at each storm drain inlet

City of Oceanside – Engineering Division – Clean Water Program SWQA Form (R9-2013-0001 as Amended by Order No. R9-2015-0001 and Order No. R9-2015-0100) 6/4/2020 Page 3

City of Oceanside – Engineering Division – Clean Water Program STORM WATER QUALITY ASSESSMENT FOR PLANNING, ENGINEERING, AND BUILDING PERMIT APPLICATIONS

Completion Guidance

Please note – the Applicant is required to complete and submit this form as part of the project application. For definitions and additional information, please refer to the City of Oceanside BMP Design Manual. For assistance, please contact Development Services Staff at (760) 435-4373.

Section 1 – Project Information

- 1. Applicant Name provide name of Individual completing form, i.e. Owner or Owner Representative
- 2. Phone Number provide phone number of Individual completing form, i.e. Owner or Owner Representative
- 3. Project Name provide project name (consistent with project application)
- 4. Project Site Address provide a physical address for the proposed project, or nearest cross street
- 5. Permit Application Number(s) provide all applicable permit application numbers
- 6. Assessor Parcel Number(s) provide Assessor Parcel Number(s); refer to title documents or contact City Staff for assistance
- 7. Project Description provide a brief project description (e.g. single-family dwelling, retail business, repair shop, etc)
- 8. Project Disturbed Area provide the disturbed area for the entire project, including onsite and offsite work
- 9. Existing Impervious Area provide the total existing impervious area within the property and project boundary
- 10. Created or Replaced Impervious Area provide the total area of all newly created or replaced impervious surfaces within the project area

Section 2 – Identify Applicable Priority Development Project Categories

- 1. Review each category and check the appropriate boxes that apply to your project.
- General identification of Automotive Repair Shop SIC (Standard Industrial Classifications) as follows:
 5013 Motor vehicle supplies and new parts, 5014 Tires and tubes, 5541 Gasoline service stations, 7532 Top and body repair, and paint shops, 7533 Auto exhaust system repair shops, 7534 Tire retreading and repair shops, 7536 Automotive glass replacement shops, 7537 Automotive transmission repair shops, 7538 General automotive repair shops, 7539 Automotive repair shops, 7539 Automotive repair shops.
- 3. Contact Staff for assistance in determining applicability of the Water Quality Environmentally Sensitive Area (WQESA) category

Section 3 – Identify Projects Not Subject to Permanent Stormwater Requirements

- 1. Please refer to Page 1-6 of the City of Oceanside BMP Design Manual for a complete list of routine maintenance activities.
- 2. Activities that expose native subgrade in the process of replacing impervious surfaces, are not considered routine maintenance.

Section 4 – Project Category Determination

- 1. PDP SWQMP Priority Development Project Stormwater Quality Management Plan
- 2. SDP SWQMP Standard Development Project Stormwater Quality Management Plan
- 3. Contact Staff for assistance in determining the Project Category

Section 5 – Applicant Certification

- 1. Name of Responsible Party provide name of Owner
- 2. Title of Responsible Party provide responsible party's title, if applicable
- 3. Phone Number provide phone number of Owner
- 4. Email Address (Optional) provide email address
- 5. Applicant Signature provide signature of Individual completing form, i.e. Owner or Owner Representative
- 6. Date provide date current date

[Insert other supporting documentation here]

