Appendix G Preliminary Hydrology and WQMP

# **Preliminary Hydrology Report**

### **Pilot Perris**

APN: 329-250-011 & 329-250-012

March 2022

### **PREPARED FOR:**

Pilot Travel Centers LLC 5508 Lonas Drive Knoxville, TN 37909 (865) 588-7488

### **PREPARED BY:**



3880 Lemon Street, Suite 420 Riverside, CA 92501 (951) 543-9868

Copyright @ 2021 Kimley-Horn and Associates, Inc. KHA Project # 095426010

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

## **Certification by Engineer**

0, 3/22/22

Shea-Michael Anti, PE

Date



## Contents

| 100.0   | Introduction               | 1 |
|---------|----------------------------|---|
| 100.1   | Project Description        | 1 |
| 100.2   | Location                   | 1 |
| 100.3   | Methodology                | 1 |
| 100.4   | Drainage Characteristics   | 2 |
| 100.4.1 | Pre-Development Condition  | 2 |
| 100.4.2 | Post-Development Condition | 2 |
| 100.5   | Stormwater Mitigation      | 3 |
| 100.6   | Hydraulic Analysis         | 4 |
| 100.7   | Conclusion                 | 4 |
|         |                            |   |

### Appendices

- Appendix A Location Map
- Appendix B FIRM MAP
- Appendix C Construction Plans
- Appendix D Hydrology Manual Reference Material
- Appendix E NOAA Rainfall Data
- Appendix F Soils Reports
- Appendix G Romoland Master Drainage Plan
- Appendix H Drainage Maps
- Appendix I Rational Method Analysis
- Appendix J Synthetic Unit Hydrograph Method Analysis
- Appendix K Retention Volume Calculations
- Appendix L Sizing Calculations

### References

Hydrology Manual. Riverside County Flood Control and Water Conservation District, April 1978.

### **100.0 Introduction**

Kimley-Horn and Associates has been retained to prepare a Preliminary Hydrology Report for the proposed Pilot Travel Center in Perris, California. The purpose of this report is to demonstrate preliminary analysis of the hydrologic and hydraulic conditions associated with the development of the project site. To do so, the following is the scope of this report:

- Discuss the pre-development discharge patterns and points
- Discuss the post-development discharge patterns and points
- Determine the pre-development flow rates for the 10-year and 100-year events
- Determine the post-development unmitigated flow rates for the 10-year and 100-year events
- Analyze the required post-development onsite mitigation for the 100-year event

Even though this report discusses stormwater, this report is not a Stormwater Pollution Prevention Plan (SWPPP), a Groundwater Study, a Geotechnical Report, nor a Water Quality Management Plan (WQMP). Each of these separate reports discusses separate aspects of stormwater. Portions of the Geotechnical Report are utilized and referenced for the purpose of this report. Similarly, the requirements of the WQMP are considered for the stormwater mitigation and sizing of outlet structures for this project.

### **100.1 Project Description**

The existing vacant lot will be developed into the proposed Pilot Travel Center. The proposed development will include a proposed building with a restaurant, drive thru, and proposed fueling areas. Site improvements will include landscaping, concrete hardscape, and asphalt paving. The associated improvements include, but are not limited to onsite grading, domestic water service, sanitary sewer service, storm drain infrastructure, concrete and asphalt pavement, landscaping, and irrigation. The total project makes up nearly 14.0-acres. The project will not be phased.

### **100.2** Location

The site is located northwest of Ethanac Road and Trumble Road in the City of Perris, within Riverside County. The project site is bordered by Interstate 215 to the west, a vacant property to the north, Trumble Road to the east, and Ethanac Road to the south. For reference, see Appendix A Location Map.

### 100.3 Methodology

The hydrologic and hydraulic analyses were completed following the methods outlined in the RCFC & WCD Hydrology Manual. The rational method was used to estimate time of concentrations and peak flow rates generated from the existing and proposed 10-year and 100-year storm events. The synthetic unit hydrograph method was used to determine the onsite existing and proposed hydrographs for the 1, 3, 6 and 24-hour durations of the 100-year storm event. The CivilDesign Engineering Software – 2018 Version 9.0 was used to complete the rational method and synthetic unit hydrograph analyses. The results of the rational method analyses are included in Appendix I and the results of the synthetic unit hydrograph analyses are included in Appendix J. Bentley's FlowMaster was used to complete the hydraulic analyses for the offsite drainage ditch and culvert using the Federal Highway Administration HEC-22 method. The results of the analyses are included in Appendix L. Complete onsite and offsite drainage system analyses will be provided in the Final Hydrology Report.

For the rational method analysis, the rainfall data incorporated into CivilDesign from the Riverside County Flood Control and Water Conservation District Hydrology Manual was used. The rainfall data for the Perris Valley area was utilized due to the location of the project site. For the synthetic unit hydrograph analysis, the rainfall data from NOAA Atlas 14 for Moreno Valley, CA was used. See Appendix D and E for rainfall data.

The type of soil and soil conditions are major factors affecting infiltration/detention and resultant storm water runoff. The Natural Resources Conservation Service (NRCS) has classified soil into one general hydrologic soil group for comparing infiltration and runoff rates. The group is based on properties that influence runoff, such as water infiltration rate, texture, natural discharge, and moisture condition. The runoff potential is based on the amount of runoff at the end of a long duration storm that occurs after wetting and swelling of the soil not protected by vegetation. Using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey online tool, it was determined the predominant hydrologic soil group classification onsite is D. Based

on Plate C-1.42 of the Hydrology Manual, the site soils is type D as well. Soil type D is defined as soils having poor infiltration rates (high runoff potential). Based on the Geotechnical Engineering Percolation/Infiltration Test Report prepared by Geotechnical Solutions, Inc the proposed site experiences a percolation rate of 1.14 in/hr on average. The reported infiltration rate based on the Porchet Method was determined to be 0.05 in/hr (without a factor of safety applied). See Appendix D and F for the soil information.

In addition, antecedent moisture condition (AMC) II was used to calculate the 10-year and (AMC) III was used to calculate the 100-year peak flows and runoff based on the hydrology manual. The land use for the proposed drainage subareas were selected based on the percent impervious that characterizes each subarea in the proposed conditions. See Appendix D Plate D-5.6 for the impervious percentages that correspond to each land use.

### **100.4 Drainage Characteristics**

The site is mainly located in Zone X per the Federal Emergency Management Administration (FEMA) Flood Insurance Rate Map (FIRM) panel 06065C2055H and 06065C2060H, dated August 18, 2014. For reference, see FIRM Map in Appendix B. Flood Zone X is defined by FEMA as the area determined to be outside the 100-year flood. No portion of the site is located within the special flood hazard area inundated by the 100-year flood.

### **100.4.1 Pre-development Condition**

Under the existing condition, the project site drains northwest. The existing condition of the project site is vacant and land cover consists mostly of annual grass. Under existing conditions, the project site was subdivided into two drainage areas (A-1 and A-2). Both A-1 and A-2 confluence and sheet flow out along the western boundary into an existing natural swale. The existing natural swale also accepts additional flows from an existing headwall southwest of the project site. The swale flows north and is intercepted by an existing double 6'x5' RCB culvert near Illinois Avenue and Interstate 215. Flows from the existing culvert are conveyed west across Interstate 215 and then continue west through existing drainage facilities until discharging into the San Jacinto River.

Under existing conditions, the project site accepts some offsite flows from the adjacent vacant properties on the east. Offsite runoff flows through the site, confluence with the onsite flows, and sheet flow out along the western boundary. Ultimately, existing storm water discharge from offsite and onsite areas are intercepted by the existing double 6'x5' RCB culvert and are tributary to the San Jacinto River.

Table 1 shows a summary of the Onsite Pre-development Flows. See Appendix H for Existing Drainage Maps and Appendix I for Rational Calculations.

| Area        | Area    | <b>Q</b> <sub>10</sub> | <b>Q</b> 100 |
|-------------|---------|------------------------|--------------|
| Description | (acres) | (cfs)                  | (cfs)        |
| A-1, A-2    | 13.97   | 12.72                  | 20.43        |

Table 1: 100-year Onsite Pre-development Flows

### **100.4.2 Post-development Condition**

Similar to existing condition, the post-developed project site will predominantly drain northwest to maintain the existing flow pattern to the maximum extent possible. The proposed development includes the construction of the proposed Pilot Perris Travel Center. The proposed site will encompass one (1) new building with a restaurant, drive thru, and fueling areas. The site will include landscaping, concrete hardscape, asphalt parking, a new concrete channel, a drainage ditch for offsite flows, and a bio-retention basin. See Appendix C for Construction Plans.

Per the Romoland Master Drainage Plan (MDP), originally prepared in April 1988 and revised in March 2006, the development of our project site requires the construction of a drainage facility along the west (specifically lateral A-11A). Lateral A-11A includes a concrete channel from the southwest corner of our site to the existing culvert near Illinois Avenue. The planned Lateral A-11A was planned to accept the flows from our project site along with the offsite flows that our project site accepts and the flows tributary to the northern property. The flows tributary to our project site are shown as areas W-1, W-2, and W-3 of the MDP in Appendix G. Although the hydrology of the MDP shows that the calculated channel flows are planned to accept developed areas, the planned developed flow

from our site was 20.3 cfs which is nearly the same as our calculated onsite pre-development flow (20.4 cfs). Therefore, the proposed discharge from the project site will be mitigated to release the same flows as in the undeveloped condition in order to stay consistent with the planned flows from the site in the MDP.

Under proposed conditions, the project site will not obstruct conveyance of the existing offsite flows. Under the developed condition, the offsite runoff will be accepted from the existing cross gutter near the intersection of Trumble Road and Ethanac Road. The project is proposing a drainage ditch along the south that flows west and into the proposed channel. The proposed ditch is anticipated to convey 32 cfs of offsite runoff per the Romoland MDP.

Additionally, the proposed development does not plan to alter the existing natural swale west of the project site. This existing swale is within Caltrans right-of-way and will not be disturbed. Under the proposed condition, the existing swale will only be conveying tributary flows from Caltrans right-of-way and from the existing headwall southwest of the project site.

The developed project site includes fourteen (14) drainage areas. Drainage Areas A-1 through A-8 include most of the proposed development. Runoff from A-1 through A-8 predominantly drain in a northwest direction and are conveyed by a proposed storm drain system into a proposed bio-retention basin west of the project site. The bio-retention area (A-9) also contributes to the flows into the basin. Discharge from the basin will be controlled by an outlet structure and, due to the basin bottom elevation and the need for an underdrain system, flows will be pumped to discharge into the proposed channel (MDP Lateral A-11A). Drainage areas A-10 and A-11 include the proposed drainage ditch that will convey offsite flows. Drainage area A-12 includes the proposed channel. Drainage area A-13 and A-14 are driveway areas that were unfeasible to capture onsite and will drain toward the adjacent streets which ultimately drain into the proposed channel. Ultimately, all of the proposed onsite drainage areas are tributary to the proposed channel as planned in the Romoland MDP.

Table 2 shows a summary of the Onsite Post-development Flows (unmitigated). See Appendix H for Proposed Drainage Maps and Appendix I for Rational Calculations.

|             | 1       |                        | ۰ <i>د</i>   | - |
|-------------|---------|------------------------|--------------|---|
| Area        | Area    | <b>Q</b> <sub>10</sub> | <b>Q</b> 100 |   |
| Description | (acres) | (cfs)                  | (cfs)        |   |
| A-1 to A-12 | 13.88   | 17.62                  | 26.92        |   |

Table 2: Onsite Post-development Flows (unmitigated)

### **100.5 Stormwater Mitigation**

The proposed development intends to coincide with the planned discharge flows from the Romoland MDP. Per the MDP, the planned discharge from our site is 20.3 cfs which nearly coincides with the onsite pre-development 100year discharge of the site (20.4 cfs). Since our resulting unmitigated post-development flows exceed the existing flows, stormwater mitigation will be required. The proposed development is proposing a bio-retention basin (A-9) for dual purposes: stormwater quality treatment and mitigation. The volume of storage provided in the basin along with the size of the outflow riser structure is intended to restrict peak flows in the proposed condition to levels equal to or less than the existing flows. The existing and proposed unit hydrographs for the 1-hr, 3-hr, 6-hr and 24-hr durations of the 100-year storm event were compared in order to determine the required retention volume. The required retention volume was governed by the 100 year-24 hour storm. To estimate the retention volume required for preliminary purposes, the incremental storage (volume) in which the proposed unit hydrograph flows exceeded the existing unit hydrograph flows was calculated for each time step. These incremental volumes were added to determine the total estimated retention volume. Since the basin outlet riser structures will be sized in the Final Report, an additional 20% was added to the calculated retention volumes to account for the efficiency of the outlet structures. Through the mitigation that the proposed basin will provide, the proposed development is not expected to cause a significant impact to downstream systems. See Appendix J and K for the retention and proposed volume calculations. Table 3 shows a summary of the estimated retention volume required compared to the proposed retention volume provided.

Table 3: Estimated Retention Volume Required vs. Proposed Retention Volume Provided

| Area       | Estimated<br>Volume<br>Increase<br>(cf) | Estimated<br>Retention<br>Volume<br>Required<br>(cf) | Proposed<br>Basin<br>Volume<br>(cf) |
|------------|-----------------------------------------|------------------------------------------------------|-------------------------------------|
| A (Onsite) | 30,475                                  | 36,569                                               | 225,788                             |

### **100.6 Hydraulic Analysis**

The calculated peak flows form the analyses discussed above will be used to size the onsite drainage devices. The offsite concrete channel size was determined in the MDP as shown in Appendix G. The proposed offsite drainage ditch and culvert were preliminarily sized to assure offsite flows are able to be properly conveyed through the site. Preliminary sizing calculations are included in Appendix L for reference. All remaining drainage devices will be sized in the Final Hydrology Report.

### **100.7** Conclusion

In conclusion, the following was covered in this report:

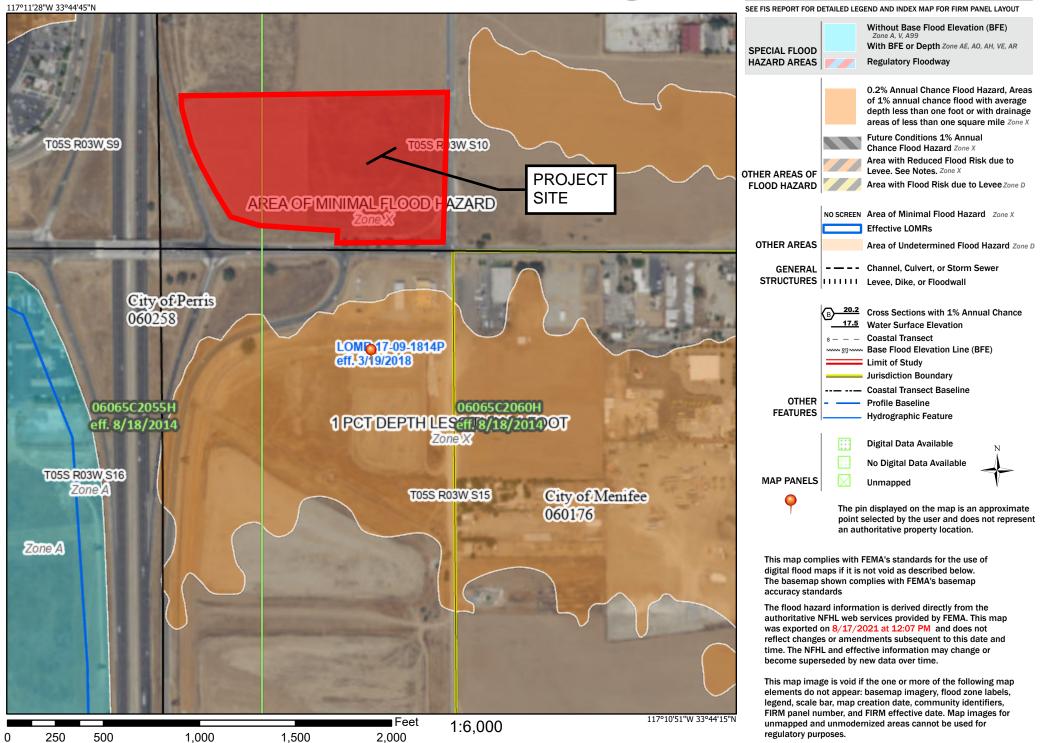
- The pre-development discharge patterns and points were analyzed
- The post-development discharge patterns and points were analyzed
- The pre-development flow rates for the 10-year and 100-year events were determined
- The post-development unmitigated flows for the 10-year and 100-year events were determined
- The required stormwater mitigation for the 100-year event was determined

As discussed in the contents of this report, the development of the existing site into the proposed development is not expected to cause a significant impact to downstream systems for storms up to the 100-year condition.

Appendix A

Location Map




Appendix **B** 

FIRM Map

# National Flood Hazard Layer FIRMette



### Legend



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

### Appendix C

### **Construction Plans**

# **PROJECT TEAM**

OWNER/DEVELOPER PILOT TRAVEL CENTERS LLC 5508 LONAS DRIVE KNOXVILLE, TN 37909 (865) 588-7488

SURVEYOR LG LAND SURVEYING, INC 30355 CALLE FELIZ TER VALLEY CENTER, CA 92082 ATTN: JOHN GERVAIS. PLS 8674 (619) 535-1172 JOHN@LGLSINC.COM DATE OF FIELD SURVEY: 07/13/2021

CIVIL ENGINEER SHEA-MICHAEL ANTI. PE, LSIT, QSP/QSD KIMLEY-HORN AND ASSOCIATES, INC. 3880 LEMON STREET, SUITE 420, RIVERSIDE, CA 92501

(951) 335-8272 SHEA.ANTI@KIMLEY-HORN.COM

GEOTECHNICAL CONSULTANT GEOTECHNICAL SOLUTIONS, INC 27 MAUCHLY #210 IRVINE, CA 92618 PROJECT No.: G-5908-01 DATED: JUNE 11, 2021

# UTILITY PURVEYORS

EASTERN MUNICIPAL WATER DISTRICT P.O. BOX 8300 2270 TRUMBLE ROAD PERRIS, CA 92572 (951) 928-3777

EASTERN MUNICIPAL WATER DISTRICT P.O. BOX 8300 2270 TRUMBLE ROAD PERRIS, CA 92572

(951) 928-3777

<u>ELECTRICITY</u> SOUTHERN CALIFORNIA EDISON 26100 MENIFEE ROAD MENIFEE, CA 92585 PHONE: (800) 655-4555

SOUTHERN CALIFORNIA GAS 1981 W. LUGONIA AVENUE REDLANDS, CA 92374 PHONE: (800) 427-2200

TELEPHONE/CABLE FRONTIER COMMUNICATIONS E 3RD ST PERRIS, CA, 92570 PHONE: (909) 793-2826

# PRIVATE ENGINEER'S NOTICE TO CONTRACTOR:

THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON THESI PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THESE LOCATIONS ARE APPROXIMATE AND SHALL BE CONFIRMED IN THE FIELD BY THE CONTRACTOR SO THAT ANY NECESSARY ADJUSTMENTS CAN BE MADE IN ALIGNMENT AND/OR GRADE OF THE PROPOSED IMPROVEMENTS. THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PREVENT ANY UTILITY LINES SHOWN AND ANY OTHER LINES NOT OF RECORD OR NOT SHOWN ON THESE PLANS

ACTUAL THICKNESS OR BASE MATERIAL TO BE DETERMINED BY THE SOILS TEST AND RECOMMENDED BY THE SOILS ENGINEER.

CARE SHOULD BE TAKEN TO PREVENT GRADED DITCHES AND SWALES FROM UNDERMINING STREET IMPROVEMENTS.

# **ATTENTION CONTRACTORS:**

CONTRACTOR SHALL VERIFY ALL CONDITIONS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.

CONSTRUCTION CONTRACTOR AGREES THAT, IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES. CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY: THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS. CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY. REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPTING LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF DESIGN PROFESSIONAL.

# **BASIS OF BEARINGS:**

THE BASIS OF BEARINGS FOR THIS SURVEY IS THE CENTERLINE OF TRUMBLE ROAD PER RS 85/71, I.E. N00°13'05"E.

# **FLOOD ZONE INFORMATION**

THE LAND SHOWN IS MAINLY LOCATED IN FLOOD ZONE "X" BEING DESCRIBED AS AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN. PER FLOOD INSURANCE RATE MAP (FIRM) - COMMUNITY PANEL NUMBER 06065C2055H AND 06065C2060H, DATED AUGUST 18, 2014.

# **BUILDING NOTE:**

ALL INFORMATION WITH BUILDING (INCLUDING SETBACKS AND FINISH FLOOR ELEVATIONS) IS FOR REFERENCE ONLY AND THE APPROVAL OF THESE GRADING PLANS DO NOT INCLUDE ANY PROVISION'S ASSOCIATED WITH BUILDINGS.

# NOTE:

A PRE-GRADING/PRE-CONSTRUCTION MEETING AND SITE INSPECTION SHALL BE ARRANGED FOR BY THE SITE DEVELOPER PRIOR TO COMMENCING GRADING OPERATIONS. THOSE PARTIES REQUIRED TO ATTEND THE PRE-CONSTRUCTION MEETING SHALL INCLUDE BUT ARE NOT LIMITED TO THE DEVELOPER, PROJECT SUPERINTENDENT, ENGINEER OF RECORD, SOIL ENGINEER, GRADING CONTRACTOR, THE UNDERGROUND UTILITIES CONTRACTOR AND CITY INSPECTOR. THE FOCUS OF THE PRE-CONSTRUCTION MEETING SHALL BE TO DISCUSS THE VARIOUS ASPECTS AND RESPONSIBILITIES OF THE GRADING PROJECT AND TO PROVIDE AN APPROXIMATE TIME-TABLE FOR THE COMPLETION OF ROUGH GRADING. ARRANGE FOR A PRE-GRADING/PRE-CONSTRUCTION MEETING BY CALLING THE CITY OFFICE RESPONSIBLE FOR PROVIDING YOUR GRADING AND BUILDING INSPECTIONS. CALL CITY DISPATCH AT (951) 943-6504 TO SETUP PRE-CONSTRUCTION MEETING.

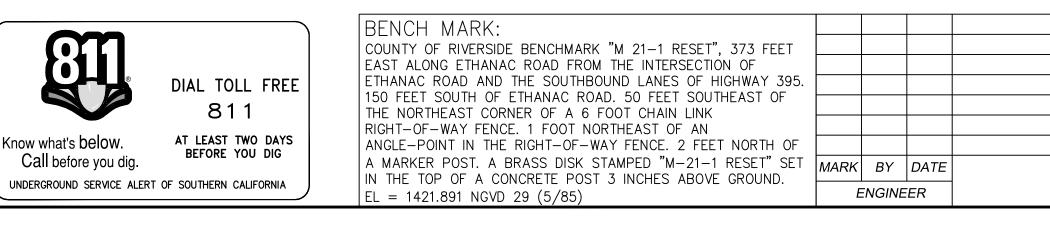
NO WORK SHALL COMMENCE WITHIN THE ROAD RIGHT-OF-WAY (R/W) PRIOR TO ISSUANCE OF AN ENCROACHMENT PERMIT BY CITY OF PERRIS.

PROJECT WILL COMPLY WITH PM10 REQUIREMENTS

# NOTIFICATIONS:

AT LEAST 48 HOURS PRIOR TO COMMENCING CONSTRUCTION, CONTRACTOR SHALL NOTIFY:

- 1. EASTERN MUNICIPAL WATER DISTRICT
- (FIELD ENGINEERING DEPARTMENT)
- 2. CITY OF PERRIS


3. UNDERGROUND SERVICE ALERT (USA)

- 4. ALL OTHER AFFECTED UTILITIES AND PERMIT AGENCIES: A. THE GAS COMPANY
  - B. SO. CAL EDISON (USA)
  - C. VERIZON D. TIME WARNER CABLE
- 1-800-427-2200 1-800-684-8123 1-800-483-4000 1-887-475-3127

(951) 943-5003

(951) 928-3777, EXT 4830

1(800) 227-2600 OR 811



# **CITY OF PERRIS** PRELIMINARY GRADING PLANS PILOT PERRIS

# ETHANAC ROAD AND TRUMBLE ROAD

# LEGAL DESCRIPTION

THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE CITY OF PERRIS. IN THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS: PARCEL A:

LOT 13 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14. PAGE 681, SAN DIEGO COUNTY RECORDS.

EXCEPT FROM SAID LOT 13 THAT PORTION THEREOF GRANTED TO THE STATE OF CALIFORNIA FOR FREEWAY PURPOSES BY DEED RECORDED JULY 3, 1951 IN BOOK 1284, PAGE 162, OFFICIAL RECORDS, RIVERSIDE COUNTY RECORDS.

ALSO EXCEPT THOSE PORTIONS OF LOT 13 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681 OF MAPS. SAN DIEGO COUNTY RECORDS, LYING WESTERLY AND SOUTHERLY OF THE FOLLOWING DESCRIBED LINE:

BEGINNING ON THE NORTHERLY LINE OF SAID LOT 12, DISTANT ALONG SAID NORTHERLY LINE SOUTH 89° 17' 04" EAST 50.61 FEET FROM THE WESTERLY LINE OF SAID SECTION;

THENCE COURSE (1) SOUTH 0° 21' 45" EAST 82.75 FEET;

THENCE ALONG A TANGENT CURVE CONCAVE EASTERLY WITH A RADIUS OF 2947 FEET, THROUGH AN ANGLE OF 3° 11' 29", 164.15 FEET;

THENCE ALONG A COMPOUND CURVE CONCAVE EASTERLY WITH A RADIUS OF 2197 FEET FROM A TANGENT BEARING SOUTH 3° 33' 14" EAST, THROUGH AN ANGLE OF 15° 40' 18", 600.93 FEET; THENCE SOUTH 19° 13' 32" EAST 67.41 FEET;

THENCE SOUTH 28° 16' 41" EAST 298.72 FEET;

THENCE SOUTH 58° 11' 26" EAST, 50.93 FEET;

THENCE SOUTH 82° 01' 10" EAST 438.46 FEET; THENCE COURSE (2) CONTINUING SOUTH 82° 01' 10" EAST 207.28 FEET;

THENCE COURSE (3) SOUTH 0° 46' 23" WEST 24.30 FEET TO THE SOUTHERLY LINE OF SAID LOT 14, AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED JUNE 18, 1965 AS INSTRUMENT NO. 70888 OF OFFICIAL RECORDS OF RIVERSIDE COUNTY.

APN: 329-250-011

PARCEL B:

LOT 14 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10. TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681, SAN DIEGO COUNTY RECORDS.

EXCEPT THE EASTERLY RECTANGULAR 30 FEET OF SAID LOT 14, AS GRANTED TO COUNTY OF RIVERSIDE BY DEED RECORDED AUGUST 16, 1950 IN BOOK 1197, PAGE 206 AND BY DEED RECORDED AUGUST 16, 1950 IN BOOK 1197, PAGE 229, BOTH OF OFFICIAL RECORDS, RIVERSIDE COUNTY RECORDS.

EXCEPT THOSE PORTIONS OF LOT 14 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10. TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681 OF MAPS, SAN DIEGO COUNTY RECORDS, LYING WESTERLY AND SOUTHERLY OF THE FOLLOWING DESCRIBED LINE:

BEGINNING ON THE NORTHERLY LINE OF SAID LOT 12, DISTANT ALONG SAID NORTHERLY LINE

SOUTH 89° 17' 04" EAST 50.61 FEET FROM THE WESTERLY LINE OF SAID SECTION; THENCE COURSE (1) SOUTH 0° 21' 45" EAST 82.75 FEET;

THENCE ALONG A TANGENT CURVE CONCAVE EASTERLY WITH A RADIUS OF 2947 FEET, THROUGH AN ANGLE OF 3° 11' 29", 164.15 FEET;

THENCE ALONG A COMPOUND CURVE CONCAVE EASTERLY WITH A RADIUS OF 2197 FEET FROM A TANGENT BEARING SOUTH 3° 33' 14" EAST, THROUGH AN ANGLE OF 15° 40' 18", 600.93 FEET; THENCE SOUTH 19° 13' 32" EAST 67.41 FEET;

THENCE SOUTH 28° 16' 41" EAST 298.72 FEET; THENCE SOUTH 58° 11' 26" EAST, 50.93 FEET; THENCE SOUTH 82° 01' 10" EAST 438.46 FEET;

THENCE COURSE (2) CONTINUING SOUTH 82° 01' 10" EAST 207.28 FEET;

THENCE COURSE (3) SOUTH 0° 46' 23" WEST 24.30 FEET TO THE SOUTHERLY LINE OF SAID LOT 14, AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED JUNE 18, 1965 AS INSTRUMENT NO. 70888 OF OFFICIAL RECORDS OF RIVERSIDE COUNTY.

# ESTIMATED EARTHWORK QUANTITIES

CUT:

APN: 329-250-012

FILL: 20,864 CY

21,176 CY

NET: 312 CY CUT

NOTE:

THE ABOVE QUANTITIES ARE APPROXIMATE AND FOR PERMIT PROCESS ONLY. QUANTITIES HAVE BEEN CALCULATED FROM EXISTING GRADE SURFACE TO PROPOSED FINAL GRADE. QUANTITIES ACCOUNT FOR THICKNESS OF PAVEMENT SECTIONS, BUILDING SLAB, AND DETENTION SPOILS. THEY DO NOT REFLECT SHRINKAGE, SWELL, SUBSIDENCE AND REMOVAL OF EXISTING BUILDING STRUCTURES AND SURFACE IMPROVEMENTS.

THE CONTRACTOR SHALL RELY ON THEIR OWN EARTHWORK ESTIMATES FOR BIDDING PURPOSES.

# STATEMENT BY ENGINEER OF RECORD

ALL EASEMENTS SHOWN ON THIS PLAN ARE PER THE ALTA PREPARED BY LG LAND SURVEYING DATED 07/13/21.

# **APPLICABLE CODES:**

ALL NEW CONSTRUCTION SHALL MEET OR EXCEED THE MINIMUM REQUIREMENTS OF THE CALIFORNIA BUILDING CODE 2016 EDITION THAT INCLUDE THE BUILDING, PLUMBING, MECHANICAL, ELECTRICAL, FIRE AND ENERGY COMMISSION SERIES. IN CASES WHERE THE CODES MAY CONFLICT WITH THE PROVISIONS IN THESE PLANS OR SPECIFICATIONS, THE MORE RESTRICTIVE PROVISIONS SHALL GOVERN.

| ABBR | EVIA | TIONS |
|------|------|-------|

|         | • |                               |
|---------|---|-------------------------------|
| ٩B      | _ | AGGREGATE BASE                |
|         |   | ASPHALT                       |
|         |   |                               |
|         |   | AUTHORITY HAVING JURISDICTION |
|         |   | BACK OF CURB                  |
|         |   | BOTTOM OF STAIR               |
| BLDG    | - | BUILDING                      |
| 3W      | _ | BACK OF WALK                  |
| CAB     | _ | COMPACTED AGGREGATE BASE      |
|         |   | CATCH BASIN                   |
|         |   | CURB FACE                     |
|         |   | CENTERLINE                    |
| - / -   |   |                               |
|         |   | CONCRETE                      |
|         |   | CONSTRUCT, CONSTRUCTION       |
|         |   | COMPACTED SUBGRADE            |
|         |   | DEEPENED FOOTING              |
|         |   | DRAIN INLET                   |
| DW      | — | DOMESTIC WATER                |
| -       | _ | EAST                          |
| E<br>EG | _ | EDGE OF GUTTER                |
|         |   | ELECTRIC                      |
|         |   | EDGE OF PAVEMENT              |
|         |   | FINISHED FLOOR                |
| -       |   | FINISHED GRADE                |
|         |   |                               |
|         |   | FLOW LINE                     |
|         |   | FINISHED SURFACE              |
|         |   | FIRE WATER                    |
|         |   | GAS                           |
| GB      | — | GRADE BREAK                   |
| ΗP      | — | HIGH POINT                    |
| NV      | _ | INVERT                        |
|         | _ | IRRIGATION WATER              |
|         |   | JUNCTION STRUCTURE            |
|         |   | LENGTH                        |
|         |   | LOW POINT                     |
|         |   | MANHOLE                       |
|         |   |                               |
|         |   | NORTH                         |
|         |   | PORTLAND CEMENT CONCRETE      |
|         |   | PROPERTY LINE                 |
|         |   | PUBLIC UTILITY EASEMENT       |
|         |   | POLYVINYL CHLORIDE            |
| २       | — | RADIUS OR RIDGE               |
| RD      | _ | ROOF DRAIN                    |
| ٦W      | _ | RECLAIMED WATER               |
| RÓW     | _ | RIGHT-OF-WAY                  |
| S       | _ | SLOPE GRADIENT                |
| SD      | _ | STORM DRAIN                   |
| STA     | _ | STATION                       |
|         | - |                               |
| SS      | - | SANITARY SEWER                |
| SPPWC   | - | STANDARD PLANS FOR PUBLIC     |
|         |   | WORKS CONSTRUCTION            |
|         | — | SIDE WALK                     |
| Г       | — | TELEPHONE                     |
|         | _ |                               |
| TS      | _ | TOP OF STAIR                  |
|         |   | VERIFY IN FIELD               |
|         |   |                               |

- WATER OR WEST
- XXX.XX PROPOSED ELEVATION (XXX.XX) - EXISTING ELEVATION

# SHEET INDEX

| SHEET INDEX  |                                      |  |  |
|--------------|--------------------------------------|--|--|
| SHEET NUMBER | SHEET TITLE                          |  |  |
| 1            | COVER SHEET                          |  |  |
| 2            | GENERAL NOTES                        |  |  |
| 3            | SITE PLAN                            |  |  |
| 4            | SITE PLAN                            |  |  |
| 5            | HORIZONTAL CONTROL PLAN              |  |  |
| 6            | HORIZONTAL CONTROL PLAN              |  |  |
| 7            | SIGNING, STRIPING, AND PAVEMENT PLAN |  |  |
| 8            | SIGNING, STRIPING, AND PAVEMENT PLAN |  |  |
| 9            | GRADING PLAN                         |  |  |
| 10           | GRADING PLAN                         |  |  |
| 11           | UTILITY PLAN                         |  |  |
| 12           | UTILITY PLAN BLOW UPS                |  |  |
| 13           | STORM DRAIN PLAN                     |  |  |
| 14           | STORM DRAIN PLAN BLOW UPS            |  |  |
| 15           | LANDSCAPE PLAN                       |  |  |
| 16           | LANDSCAPE PLAN                       |  |  |

| CITY OF PERR  | PROFESS/ONAL SE | Ki                                                                |           |
|---------------|-----------------|-------------------------------------------------------------------|-----------|
| BY:           |                 | SHEA-MICHAEL ANTI<br>RCE NO. 78274<br>C   V   L<br>OF C A L L FOR | 765 TH    |
| CITY ENGINEER | DATE            |                                                                   | SHEA-MICI |

|     |      | APPROVED BY: |
|-----|------|--------------|
| PPR | DATE |              |

CITY

CONTRACT CITY ENGINEER

REVISIONS

| SITE DATA<br>APN'S: 329-250-011 AND 329-250-012                                                                                       | ILLINOIS AVENUE |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| GROSS PARCEL ±14.4 ACRES<br>DISTURBED ±14.4 ACRES<br>TOTAL PERVIOUS ±4.5 ACRES<br>TOTAL IMPERVIOUS ±9.9 ACRES<br>(INCLUDING BUILDING) |                 |
| TOTAL GROSS FLOOR AREA: 13,980 SF                                                                                                     |                 |
| EXISTING: COMMERCIAL COMMUNITY (CC)                                                                                                   |                 |
| PROPOSED: COMMERCIAL COMMUNITY (CC)                                                                                                   |                 |
| PARKING PROVIDED:                                                                                                                     |                 |
| STANDARD88SPACESACCESSIBLE5SPACESTRUCK116SPACES                                                                                       | ETHANAC ROAD    |
| BICYCLE SPACES 2 PROPOSED                                                                                                             | ENCANTO E       |
|                                                                                                                                       |                 |

# LEGEND

| SS                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SD                                                                                                                                                                                       |
| AIR AIR                                                                                                                                                                                  |
|                                                                                                                                                                                          |
| W                                                                                                                                                                                        |
| ows ows                                                                                                                                                                                  |
| UGT                                                                                                                                                                                      |
| UE UE                                                                                                                                                                                    |
| GBGB                                                                                                                                                                                     |
| R                                                                                                                                                                                        |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
| -x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x |
| $\langle \# \rangle$                                                                                                                                                                     |
|                                                                                                                                                                                          |
| (1422.27 TC)<br>(1421.77 TP)                                                                                                                                                             |
|                                                                                                                                                                                          |
| 1422.27 TC<br>1421.77 TP                                                                                                                                                                 |
| <u>1.2%</u>                                                                                                                                                                              |

| PROPERTY LINE CIVIL           |
|-------------------------------|
| CENTERLINE                    |
| SETBACKS                      |
| EASEMENT LINE                 |
| LIMITS OF WORK LINE           |
| PROPOSED SANITARY SEWER PIPE  |
| PROPOSED STORM DRAIN PIPE     |
| PROPOSED AIR                  |
| PROPOSED WATER PIPE           |
| PROPOSED OIL WATER SEPARATOR  |
| PROPOSED TELEPHONE LINE       |
| PROPOSED UNDERGROUND ELECTRIC |
| GRADE BREAK                   |
| RIDGE LINE                    |
| ACCESSIBLE ROUTE              |
| FENCE                         |
| PARKING COUNT                 |
| PROPOSED ELEVATION            |
| EXISTING ELEVATION            |
|                               |

| - |        |        |   |   | 4 |   |
|---|--------|--------|---|---|---|---|
| Ŀ |        | • د    |   | ÷ | - | • |
|   |        |        |   |   |   |   |
|   |        |        |   |   |   |   |
| Г |        |        |   |   |   |   |
|   |        |        |   |   |   |   |
|   | _      | _      |   | _ | _ |   |
| ٩ | ۲<br>ب | Ŷ,     | * | ¥ | ¥ | ÷ |
| 1 | ۲<br>• |        | * | ¥ | ¥ | ÷ |
|   | ν      | $\Psi$ | ¥ |   | Ψ |   |

NTS

HEAVY DUTY CONCRETE PAVEMENT

HEAVY DUTY ASPHALT PAVEMENT

STANDARD DUTY ASPHALT PAVEMENT

LANDSCAPE/PLANTER AREA

DETECTABLE WARNINGS

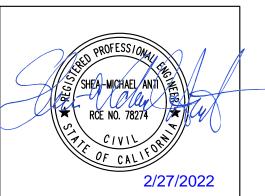
# **GEOTECHNICAL REPORT**

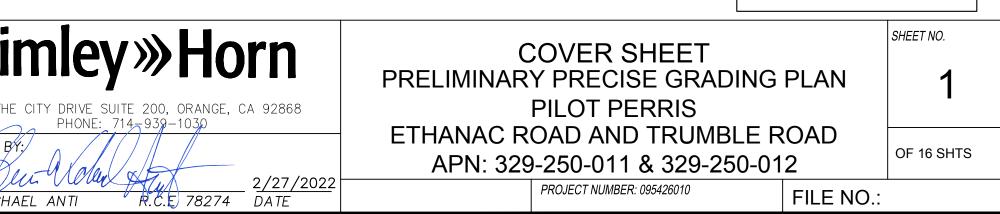
THE GEOTECHNICAL EVALUATION REPORT TRAVEL PLAZA PERRIS PROJECT NO. G-5908-01 DATED JUNE 11. 2021 PREPARED BY GEOTECHNICAL SOLUTIONS, INC. AND ALL ADDENDA SHALL BE CONSIDERED PART OF THESE CONSTRUCTION DOCUMENTS. THE PROJECT IS CONSISTENT WITH SOILS REPORT REQUIREMENTS AND RECOMMENDATIONS; AS WELL AS, ALL REQUIRED TESTS, INSPECTIONS AND REPORTS WILL BE CONDUCTED AS NECESSARY.

GEOTECHNICAL ENGINEER OF RECORD GEOTECHNICAL SOLUTIONS, INC

SLOPE

# **DECLARATION OF ENGINEER OF RECORD**


I HEREBY DECLARE THAT IN MY PROFESSIONAL OPINION, THE DESIGN OF THE IMPROVEMENTS AS SHOW ON THESE PLANS COMPLIES WITH THE CURRENT PROFESSIONAL ENGINEERING STANDARDS AND PRACTICES AS THE ENGINEER IN RESPONSIBLE CHARGE OF THE DESIGN OF THESE IMPROVEMENTS. I ACCEPT FULI RESPONSIBILITY FOR SUCH DESIGN. I UNDERSTAND AND ACKNOWLEDGE THAT THE PLAN CHECK OF THESE PLANS BY THE CITY OF PERRIS IS A REVIEW FOR THE LIMITED PURPOSE OF ENSURING THAT THESE PLANS COMPLY WITH CITY PROCEDURES AND OTHER APPLICABLE CODES AND ORDINANCES. THE PLAN REVIEW PROCESS IS NOT A DETERMINATION OF THE TECHNICAL ADEQUACY OF THE DESIGN OF THE IMPROVEMENTS SUCH PLAN CHECK DOES NOT THEREFORE RELIEVE ME OF MY DESIGN RESPONSIBILITY.


1/lun 1. 1 May X 5 SIGNATURE

LICENSE NO. 78274

DATE<u>2</u>/27/2022

EXP. <u>9/30/2023</u>





## **GENERAL NOTES**:

- 1. NOTIFY CITY ENGINEER, CITY OF PERRIS, AT (951) 943-6504, AT LEAST 24 HOURS PRIOR TO START OF CONSTRUCTION.
- 2. PROOF ROLL BUILDING AND ALL PARKING AREAS. NOTIFY ARCHITECT OF ALL UNACCEPTABLE AREAS.
- 3. EDGE OF NEW PAVEMENT TO BE FLUSH WITH EXISTING PAVEMENT.
- 4. ALL SIDEWALK, CURB AND GUTTER, STREET PAVING, CURB CUTS, DRIVEWAY APPROACHES, ACCESSIBLE RAMPS, ETC. CONSTRUCTED OUTSIDE THE PROPERTY LINE IN THE RIGHT-OF-WAY SHALL CONFORM TO ALL MUNICIPAL AND/OR STATE SPECIFICATIONS AND REQUIREMENTS.
- 5. FOR AREAS OUTSIDE THE PROPERTY LINES, REPAIR AND REPLACE ALL DAMAGE DONE TO EXISTING ELEMENTS (SIDEWALKS, PAVING, LANDSCAPING, ETC.) AS REQUIRED BY OWNERS AND/OR GOVERNING AUTHORITY
- 6. FOR PROPOSED UTILITY LOCATIONS, SEE UTILITY PLAN.
- 7. ALL DIMENSIONS REFER TO THE FACE OF CURB UNLESS OTHERWISE NOTED.
- 8. CONTRACTOR TO VERIFY ALL EXISTING CONDITIONS PRIOR TO ORDERING MATERIALS AND STARTING WORK, AND NOTIFY ENGINEER OF ANY DISCREPANCIES IMMEDIATELY.
- 9. CONTRACTOR SHALL ENSURE CLEAN JOINTS AND PROTECT PAVEMENT WHEREVER PROPOSED PAVEMENT MATCHES EXISTING PAVEMENT.
- 10. REFER TO ARCHITECTURAL PLANS FOR SIGN DETAILS. SEE MEP PLANS FOR SITE ELECTRICAL DRAWINGS.
- 11. REFER TO ARCHITECTURAL AND STRUCTURAL PLANS TO VERIFY ALL BUILDING DIMENSIONS.
- 12. ANY WORK IN THE RIGHT-OF-WAY SHALL BE APPROVED BY THE CITY ENGINEER.
- 13. ALL EARTHWORK TO COMPLY WITH RECOMMENDATIONS IN GEOTECHNICAL REPORT.
- 14. ALL PAINT STRIPING TO BE TWO COATS.
- 15. ALL PROPERTY LINES, EASEMENTS AND BUILDING, EXISTING AND PROPOSED, ARE SHOWN ON THIS SITE PLAN.
- 16. THE CONTRACTOR AND SUBCONTRACTORS SHOULD BE FAMILIAR WITH ALL STATE AND LOCAL REQUIREMENTS RELATED TO SITE CONSTRUCTION ACTIVITIES PRIOR TO COMMENCING WORK. ALL WORK SHALL CONFORM AS APPLICABLE TO THESE GOVERNING STANDARDS AND SPECIFICATIONS.
- 17. THE CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING ALL MATERIAL AND LABOR TO CONSTRUCT THE FACILITY AS SHOWN AND DESCRIBED IN THE CONSTRUCTION DOCUMENTS IN ACCORDANCE WITH THE APPROPRIATE APPROVING AUTHORITIES, SPECIFICATIONS AND REQUIREMENTS. CONTRACTOR SHALL CLEAR AND GRUB ALL AREAS UNLESS OTHERWISE INDICATED, REMOVING TREES, STUMPS, ROOTS, MUCK, EXISTING PAVEMENT AND ALL OTHER DELETERIOUS MATERIAL.
- 18. EXISTING UTILITIES SHOWN ARE LOCATED ACCORDING TO THE INFORMATION AVAILABLE TO THE ENGINEER AT THE TIME OF THE TOPOGRAPHIC SURVEY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR THE ENGINEER. GUARANTEE IS NOT MADE THAT ALL EXISTING UNDERGROUND UTILITIES ARE SHOWN OR THAT THE LOCATION OF THOSE SHOWN ARE ENTIRELY ACCURATE. FINDING THE ACTUAL LOCATION OF ANY EXISTING UTILITIES IS THE CONTRACTOR'S RESPONSIBILITY AND SHALL BE DONE BEFORE COMMENCING ANY WORK IN THE VICINITY. FURTHERMORE, THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES DUE TO THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. THE OWNER OR ENGINEER WILL ASSUME NO LIABILITY FOR ANY DAMAGES SUSTAINED OR COST INCURRED BECAUSE OF THE OPERATIONS IN THE VICINITY OF EXISTING UTILITIES OR STRUCTURES, NOR FOR TEMPORARY BRACING AND SHORING OF SAME. IF IT IS NECESSARY TO SHORE, BRACE, SWING OR RELOCATE A UTILITY, THE UTILITY COMPANY OR DEPARTMENT AFFECTED SHALL BE CONTACTED AND THEIR PERMISSION OBTAINED REGARDING THE METHOD TO USE FOR SUCH WORK.
- 19. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONTACT THE VARIOUS UTILITY COMPANIES WHICH MAY HAVE BURIED OR AERIAL UTILITIES WITHIN OR NEAR THE CONSTRUCTION AREA BEFORE COMMENCING WORK. THE CONTRACTOR SHALL PROVIDE 48 HOURS MINIMUM NOTICE TO ALL UTILITY COMPANIES PRIOR TO BEGINNING CONSTRUCTION. AN APPROXIMATE LIST OF THE UTILITY COMPANIES WHICH THE CONTRACTOR MUST CALL BEFORE COMMENCING WORK IS PROVIDED ON THE UTILITY SHEET OF THESE CONSTRUCTION PLANS. THIS LIST SERVES AS A GUIDE ONLY AND IS NOT INTENDED TO LIMIT THE UTILITY COMPANIES WHICH THE CONTRACTOR MAY WISH TO NOTIFY.
- 20. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL REQUIRED CONSTRUCTION PERMITS AND BONDS IF REQUIRED PRIOR TO CONSTRUCTION.
- 21. THE CONTRACTOR SHALL HAVE AVAILABLE AT THE JOB SITE AT ALL TIMES ONE COPY OF THE CONSTRUCTION DOCUMENTS INCLUDING PLANS, SPECIFICATIONS, GEOTECHNICAL REPORT AND SPECIAL CONDITIONS AND COPIES OF ANY REQUIRED CONSTRUCTION PERMITS.
- 22. ANY DISCREPANCIES ON THE DRAWINGS SHALL BE IMMEDIATELY BROUGHT TO THI ATTENTION OF THE OWNER AND ENGINEER BEFORE COMMENCING WORK. NO FIELD CHANGES OR DEVIATIONS FROM DESIGN ARE TO BE MADE WITHOUT PRIOR APPROVAL OF THE OWNER AND NOTIFICATION TO THE ENGINEER.
- 23. ALL COPIES OF COMPACTION, CONCRETE AND OTHER REQUIRED TEST RESULTS ARE TO BE SENT TO THE OWNER AND DESIGN ENGINEER OF RECORD DIRECTLY FROM THE TESTING AGENCY.
- 24. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUBMITTING TO THE ENGINEER A CERTIFIED RECORD SURVEY SIGNED AND SEALED BY A PROFESSIONAL LAND SURVEYOR REGISTERED IN THE STATE OF ARIZONA DEPICTING THE ACTUAL FIELD LOCATION OF ALL CONSTRUCTED IMPROVEMENTS THAT ARE REQUIRED BY THE JURISDICTIONAL AGENCIES FOR THE CERTIFICATION PROCESS. ALL SURVEY COSTS WILL BE THE CONTRACTORS RESPONSIBILITY.
- 25. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DOCUMENTING AND MAINTAINING AS-BUILT INFORMATION WHICH SHALL BE RECORDED AS CONSTRUCTION PROGRESSES OR AT THE COMPLETION OF APPROPRIATE CONSTRUCTION INTERVALS AND SHALL BE RESPONSIBLE FOR PROVIDING AS-BUILT DRAWINGS TO THE OWNER FOR THE PURPOSE OF CERTIFICATION TO JURISDICTIONAL AGENCIES AS REQUIRED. ALL AS-BUILT DATA SHALL BE COLLECTED BY A STATE OF CALIFORNIA PROFESSIONAL LAND SURVEYOR WHOSE SERVICES ARE ENGAGED BY THE CONTRACTOR
- 26. ANY WELLS DISCOVERED ON SITE THAT WILL HAVE NO USE MUST BE PLUGGED BY A LICENSED WELL DRILLING CONTRACTOR IN A MANNER APPROVED BY ALL JURISDICTIONAL AGENCIES. CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ANY WELL ABANDONMENT PERMITS REQUIRED.
- 27. ANY WELL DISCOVERED DURING EARTH MOVING OR EXCAVATION SHALL BE REPORTED TO THE APPROPRIATE JURISDICTIONAL AGENCIES WITHIN 24 HOURS AFTER DISCOVERY IS MADE.
- 28. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THAT THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS DO NOT CONFLICT WITH ANY KNOWN EXISTING OR OTHER PROPOSED IMPROVEMENTS. IF ANY CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITE WORK THAT WOULD BE AFFECTED. FAILURE TO NOTIFY OWNER OF AN IDENTIFIABLE CONFLICT PRIOR TO PROCEEDING WITH INSTALLATION RELIEVES OWNER OF ANY OBLIGATION TO PAY FOR A RELATED CHANGE ORDER.
- 29. ANY EXISTING UTILITY, WHICH IS TO BE EXTENDED, WHICH IS THE CONNECTION POINT FOR NEW UNDERGROUND UTILITIES, OR WHICH NEW FACILITIES CROSS, SHALL BE EXPOSED BY THE CONTRACTOR PRIOR TO PLACEMENT OF THE NEW UTILITIES. COST OF SUCH EXCAVATION AND SUBSEQUENT BACKFILL SHALL BE INCLUDED IN THE PRICES PAID FOR THE VARIOUS ITEMS OF WORK. THE ELEVATIONS AND LOCATIONS OF THE EXISTING FACILITIES WILL BE CHECKED BY THE PUBLIC WORKS INSPECTOR AND THE ENGINEER. IF IN THE OPINION OF THE INSPECTOR A CONFLICT EXISTS, THEN THE ENGINEER SHALL MAKE ANY NEEDED GRADE AND/ OR ALIGNMENT ADJUSTMENTS AND REVISE THE PLANS ACCORDINGLY. ALL GRAVITY FLOW PIPELINES TO BE LAID UPGRADE FROM THE LOWEST POINT STARTING AT THE END OF EXISTING IMPROVEMENTS. THE CONTRACTOR SHALL NOTIFY THE ENGINEER AT LEAST 24 HOURS PRIOR TO BACKFILLING OF ANY PIPE WHICH STUBS TO A FUTURE PHASE OF CONSTRUCTION FOR INVERT VERIFICATION. TOLERANCE SHALL BE IN ACCORDANCE WITH CITY STANDARD SPECIFICATIONS.

## **GENERAL NOTES CONTINUATION:**

- 1. ALL WORK TO BE PERFORMED PER CITY OF PERRIS, RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT (R.C.T.D.), EASTERN MUNICIPAL WATER DISTRICT (E.M.W.D), CALTRANS AND THE 2009 MANUAL ON UNIFORM CONTROL DEVICES (M.U.T.C.D.) STANDARDS WITH CALIFORNIA SUPPLEMENT.
- NOTIFY CITY ENGINEER, CITY OF PERRIS, AT (951) 943-6504, AT LEAST 24 HOURS PRIOR 2. TO START OF CONSTRUCTION.
- CONTRACTOR IS REQUIRED TO LOCATE AND ADJUST TO GRADE ALL EXISTING MANHOLES. METERS, AND VALVE COVERS FOR WATER, SEWER, TELEPHONE, ELECTRIC, CABLE TV AND OTHER FACILITIES AS REQUIRED (WHEATEAR CALLED-OUT OR NOT ON PLANS).
- 4. ALL STRIPING & LEGENDS SHALL BE REPLACED IN ACCORDANCE WITH THE STRIPING PLANS HEREIN. ALL STRIPING TO BE PAINT (TWO COATS) AND ALL MARKINGS (INCLUDING CROSSWALKS) TO BE THERMOPLASTIC ALL STRIPING AND PAVEMENT MARKINGS TO BE PER 2006 M.U.T.C.D. STANDARDS WITH CALIFORNIA SUPPLEMENT.
- 5. ALL EXISTING A.C. AND CONCRETE TO BE SAW-CUT WHERE WIDENING IS TO TAKE PLACE OR ADJACENT TO WHERE CONCRETE IS TO BE CONSTRUCTED (1' MINIMUM). 6. ANY STOCKPILE OR STORAGE YARD ON PRIVATE PROPERTY MUST HAVE CITY'S AND
- OWNER'S APPROVAL THE CITY INSPECTOR WILL MARK ALL CONCRETE REMOVALS PRIOR TO CONSTRUCTION ALL 7. CONCRETE WILL BE SAW-CUT WHERE REQUIRED PRIOR TO BEING REMOVED.
- CONTRACTOR SHALL VERIFY THE EXISTENCE OF EXISTING SURVEY MONUMENTS AND PROTECT THEM IN PLACE. ANY SURVEY MONUMENTS MISSING AND/OR DAMAGED DURING CONSTRUCTION WILL HAVE TO BE RESET PRIOR TO PROJECT COMPETITION BY A QUALIFIED REGISTERED SURVEYOR.
- 9. IT IS THE CONTRACTOR'S RESPONSIBILITY TO PROTECT THE NEW WORK, FROM VANDALISM UNTIL THE IMPROVEMENTS HAVE BEEN ACCEPTED BY THE CITY AND A NOTICE OF COMPLETION MUST BE FILED.
- 10. ALL ASPHALT REMOVALS TO BE MARKED BY THE CITY INSPECTOR PRIOR TO CONTRACTOR BEGINNING WORK ON THAT PARTICULAR STREET SEGMENT.
- CONTRACTOR SHALL CONTACT UNDERGROUND SERVICE ALERT OF SOUTHERN CALIFORNIA
- AND OTHER UTILITY COMPANIES AS NEEDED TO COORDINATE FOR PROTECTION AND/OR ADJUSTMENTS OF UTILITIES, AS REQUIRED.
- 12. CONTRACTOR TO VISIT THE SITE AND FAMILIARIZE HIMSELF WITH THE WORK AND AREA PRIOR TO BIDDING AND NOTIFY THE CITY OF DISCREPANCIES.
- 13. ALL DIMENSIONS ARE APPROXIMATE CONTRACTOR TO VERIFY IN FIELD.
- 14. CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL TRAFFIC CONTROL DEVICES AS NEEDED AND PROVIDE TWO-WAY ACCESS AT ALL TIMES THROUGH THE SITE. THE CONTRACTOR SHALL MAINTAIN THESE DEVICES AT ALL TIMES INCLUDING HOLIDAYS AND WEEKENDS. FLAGMAN SHALL BE UTILIZED AS REQUIRED TO PROVIDE TWO-WAY TRAFFIC DURING CONSTRUCTION.
- 15. CONTRACTOR SHALL PROVIDE TRAFFIC CONTROL IN COMPLIANCE WITH WATCH MANUAL, 2009 M.U.T.C.D., OR CURRENT EDITION, AND THE TRAFFIC PLANS PROVIDED HEREIN.
- 16. THE CONTRACTOR SHALL APPLY TO, AND BE ISSUED A NO FEE ENCROACHMENT PERMIT BY THE CITY OF PERRIS BEFORE BEGINNING ANY WORK WITH AN EXISTING CITY MAINTAINED PUBLIC STREET AND FOR UTILITY WORK WITHIN OFFERS OF DEDICATION FOR PUBLIC USE.
- 17. EXISTING PUBLIC STREETS, SHALL REMAIN OPEN TO THE PUBLIC DURING CONSTRUCTION AND SHALL BE MAINTAINED BY THE CONTRACTOR UNLESS OTHERWISE PROVIDED IN THE PLANS AND SPECIFICATIONS. PUBLIC INCONVENIENCE WILL BE MINIMIZED AT ALL TIMES AND SUCH STREETS SHALL BE LEFT FREE OF DIRT AND DEBRIS AT THE END OF EACH WORKING DAY UNLESS PERMISSION IS OTHERWISE GRANTED BY THE CITY ENGINEER.
- 18. THE CONTRACTOR IS RESPONSIBLE FOR CLEARING AND GRUBBING THE PROPOSED WORK AREA AND DISPOSAL OF EXCESS OR UNDESIRABLE MATERIAL CONTRACTOR SHALL RELOCATE OR CAUSE TO BE RELOCATED EXISTING CONFLICTING UTILITIES IF REQUIRED BY CONTRACT
- ANY PROPOSED DEVIATION FROM THESE PLANS BY THE CONTRACTOR MUST MET CITY'S 19. APPROVAL. THE CONTRACTOR IS RESPONSIBLE TO REIMBURSE THE CITY FOR ANY RELATED COST TO THE CITY ASSOCIATED WITH SUCH CHANGE. IN THIS EVENT, NO INCREASE IN CONTRACTOR'S COST WILL BE APPROVED.
- 20. CONTRACTOR IS REQUIRED TO INSTALL BLUE REFLECTIVE PAVEMENT AT ALL FIRE HYDRANT LOCATION IN THE WORK AREA.
- 21. THE CONTRACTOR IS REQUIRED TO REMOVE ALL CONFLICTING STRIPING AND LEGENDS BY WET SANDBLASTING.
- APPLY WEED KILL TO ALL EXISTING WEEDS BETWEEN 1-3 WEEKS PRIOR TO CONSTRUCTION 22. AND REMOVE WEEDS. WEEDS SHALL BE REMOVED FROM ALL EXISTING PAVEMENT, MEDIANS, CURB AND GUTTER, SIDEWALK (BETWEEN CURB AND SIDEWALK) AND WHEREVER IMPROVEMENTS ARE PROPOSED, AND UP TO 4.0° BEHIND E.P. OR CURB WHEN NO SIDEWALK EXISTS.
- 23. CONTRACTOR SHALL REPLACE ALL STRIPING, LEGENDS, AND SIGNS IF THEY ARE DAMAGED DURING CONSTRUCTION AT NO EXTRA COST TO THE CITY. EXISTING STRIPING WITHIN PROJECT VICINITY THAT BECOME DULL, SHALL BE REFRESHED AS DIRECTED BY THE CITY ENGINEER. CONFLICTING SIGNS SHALL BE REMOVED AS DIRECTED BY THE CITY ENGINEER OR HIS REPRESENTATIVE.
- EXISTING TO PROPOSED CONCRETE PAVEMENT JOINTS SHALL BE CONSTRUCTED PER CALTRANS REVISED STANDARD PLAN RSP P10. 1 INCH MINIMUM DIAMETER DOWEL BARS SHALL BE USED AND AS APPROVED BY THE CITY ENGINEER.
- 25. ALL GRADING AND CONSTRUCTION ACTIVITIES SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECTS SWPPP AND NOI. REFER TO NPDES NOTED ON EROSION CONTROL PLANS.
- 26. ALL STREET SECTION ARE MINIMUM REQUIREMENTS, ADDITIONAL SOILS TESTS SHALL BE TAKEN AFTER ROUGH GRADING TO DETERMINE THE RECOMMENDED STREET SECTIONS REQUIREMENTS. USE RIVERSIDE COUNTY STD 401 IF EXPANSIVE SOILS ARE ENCOUNTERED.
- 27. ON-SITE LIGHTING, LANDSCAPE, AND LAYOUT TO BE APPROVED BY THE CITY OF PERRIS PLANNING DEPARTMENT.
- 28. WALLS/FENCE REQUIRE A SEPARATE PERMIT.
- 29. HAULING ROUTE SHALL BE SUBMITTED FOR APPROVAL BY THE CITY ENGINEER PRIOR TO START OF THE IMPORTATION/EXPORTATION OF DIRT.

## CITY OF PERRIS WOMP INSPECTION NOTIFICATION REQUIREMENTS

- 1. GENERAL CONTRACTOR IS RESPONSIBLE TO CALL FOR WQMP (WATER QUALITY MANAGEMENT PLAN) INSPECTIONS. A MINIMUM OF TWO (2) WQMP INSPECTIONS ARE REQUIRED IN THE FOLLOWING ORDER:
  - A. AT THE TIME OF PRECISE GRADE AND CONSTRUCTION OF FLOW-BASED/VOLUME BASED BMP'S, AND/OR INSTALLATION OF STORM DRAIN AND WQMP EQUIPMENT, THE TRENCHES ARE STILL OPEN; AND
- B. AT FINAL INSPECTION, WHEN ALL PLANT MATERIALS, STRUCTURAL TREATMENT CONTROL BMP'S, STENCILING, EMPLOYEE SOURCE CONTROL HANDBOOKS, AND WOMP EQUIPMENT HAVE BEEN INSTALLED AND ARE FULLY OPERATIONAL.
- 2. A WRITTEN CLEARANCE LETTER SHALL BE SIGNED BY THE CITY'S ENGINEERING DEPARTMENT TO SIGNIFY APPROVAL OF WOMP SITE DESIGN, SOURCE CONTROL AND TREATMENT CONTROL BMP'S (BEST MANAGEMENT PRACTICES). THIS LETTER WILL NEED TO BE PRESENTED TO BUILDING AND SAFETY DEPARTMENT AS PART OF THE FINAL APPROVALS.



## BENCH MARK:

EL = 1421.891 NGVD 29 (5/85)

COUNTY OF RIVERSIDE BENCHMARK "M 21-1 RESET". 373 FEET EAST ALONG ETHANAC ROAD FROM THE INTERSECTION OF ETHANAC ROAD AND THE SOUTHBOUND LANES OF HIGHWAY 395. 150 FEET SOUTH OF ETHANAC ROAD. 50 FEET SOUTHEAST OF HE NORTHEAST CORNER OF A 6 FOOT CHAIN LINK RIGHT-OF-WAY FENCE. 1 FOOT NORTHEAST OF AN ANGLE-POINT IN THE RIGHT-OF-WAY FENCE. 2 FEET NORTH OF A MARKER POST. A BRASS DISK STAMPED "M-21-1 RESET" SET IN THE TOP OF A CONCRETE POST 3 INCHES ABOVE GROUND.

| MARK | BY     | DATE |  |
|------|--------|------|--|
| E    | ENGINE |      |  |

REVISIONS

WHEN

# UTILITY NOTES:

SHALL GOVERN.

- 1. THE CONTRACTOR SHALL CONSTRUCT GRAVITY SEWER LATERALS, CLEANOUTS, GRAVITY SEWER LINES, AND DOMESTIC WATER AND FIRE PROTECTION SYSTEM AS SHOWN ON THESE PLANS. THE CONTRACTOR SHALL FURNISH ALL NECESSARY MATERIALS. EQUIPMENT. MACHINERY TOOLS MEANS OF TRANSPORTATION AND LABOR NECESSARY TO COMPLETE THE WORK IN FULL AND COMPLETE ACCORDANCE WITH THE SHOWN, DESCRIBED AND REASONABLY INTENDED REQUIREMENTS OF THE CONTRACT DOCUMENTS AND JURISDICTIONAL AGENCY REQUIREMENTS. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT
- 2. ALL EXISTING UNDERGROUND UTILITY LOCATIONS SHOWN ARE APPROXIMATE THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS FOR UTILITY LOCATION AND COORDINATION IN ACCORDANCE WITH THE NOTES CONTAINED IN THE GENERAL CONSTRUCTION SECTION OF THIS SHEET.
- 3. THE CONTRACTOR SHALL RESTORE ALL DISTURBED VEGETATION IN KIND, UNLESS SHOWN OTHERWISE.
- 4. DEFLECTION OF PIPE JOINTS AND CURVATURE OF PIPE SHALL NOT EXCEED THE MANUFACTURER'S SPECIFICATIONS. SECURELY CLOSE ALL OPEN ENDS OF PIPE AND FITTINGS WITH A WATERTIGHT PLUG WHEN WORK IS NOT IN PROGRESS. THE INTERIOR OF ALL PIPES SHALL BE CLEAN AND JOINT SURFACES WIPED CLEAN AND DRY AFTER THE PIPE HAS BEEN LOWERED INTO THE TRENCH. VALVES SHALL BE PLUMB AND LOCATED ACCORDING TO THE PLANS.
- 5. ALL PHASES OF INSTALLATION, INCLUDING UNLOADING, TRENCHING, LAYING AND BACK FILLING, SHALL BE DONE IN A FIRST CLASS WORKMANLIKE MANNER. ALL PIPE AND FITTINGS SHALL BE CAREFULLY STORED FOLLOWING MANUFACTURER'S RECOMMENDATIONS. ANY PIPE OR FITTING WHICH IS DAMAGED OR WHICH HAS FLAWS OR IMPERFECTIONS WHICH. IN THE OPINION OF THE ENGINEER OR OWNER, RENDERS IT UNFIT FOR USE, SHALL NOT BE USED. ANY PIPE NOT SATISFACTORY FOR USE SHALL BE CLEARLY MARKED AND IMMEDIATELY REMOVED FROM THE JOB SITE, AND SHALL BE REPLACED AT THE CONTRACTOR'S EXPENSE.
- 6. WATER FOR FIRE FIGHTING SHALL BE AVAILABLE FOR USE PRIOR TO COMBUSTIBLES BEING BROUGHT ON SITE.
- 7. ALL UTILITY AND STORM DRAIN TRENCHES LOCATED UNDER AREAS TO RECEIVE PAVING SHALL BE COMPLETELY BACK FILLED IN ACCORDANCE WITH THE GOVERNING JURISDICTIONAL AGENCY'S SPECIFICATIONS. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT SHALL GOVERN
- 8. CONTRACTOR SHALL PERFORM, AT HIS OWN EXPENSE, ANY AND ALL TESTS REQUIRED BY THE SPECIFICATIONS AND/OR ANY AGENCY HAVING JURISDICTION. THESE TESTS MAY INCLUDE, BUT MAY NOT BE LIMITED TO, INFILTRATION AND EXFILTRATION, TELEVISION INSPECTION AND A MANDREL TEST ON GRAVITY SEWER. A COPY OF THE TEST RESULTS SHALL BE PROVIDED TO THE UTILITY PROVIDER, OWNER AND JURISDICTIONAL AGENCY AS REQUIRED.
- 9. THE EXISTING UTILITIES SHOWN ON THE PLAN ARE BASED ON AVAILABLE RECORDS. THE CONTRACTOR MUST FIELD DETERMINE THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION. REPORT DISCREPANCIES AND POTENTIAL CONFLICTS WITH PROPOSED UTILITIES TO ENGINEER PRIOR TO INSTALLATION OF ANY PIPING.
- 10. DIMENSIONS PROVIDED ARE TO OUTSIDE PIPE DIAMETERS.
- 11. ALL WATER LINES ARE TO BE BURIED A MINIMUM OF 40" DEEP, MEASURED TO TOP OF PIPE.
- 12. WATER PIPE TRENCHING PER EMWD STANDARD DETAIL B-408.
- 13. SEWER PIPE TRENCHING PER EMWD STANDARD DETAIL SB-157 AND SB-158. 14. CONFIRM UTILITY TIE-IN POINTS IN FIELD AND WITH MEP PLANS PRIOR TO CONSTRUCTION.

## **DEMOLITION NOTES:**

- 1. REFER TO THE TOPOGRAPHIC SURVEY FOR ADDITIONAL DETAILS OF EXISTING STRUCTURES, ETC., LOCATED WITHIN THE PROJECT SITE, UNLESS OTHERWISE NOTED, ALL EXISTING BUILDINGS, STRUCTURES, SLABS, CONCRETE, ASPHALT, DEBRIS PILES, SIGNS, AND ALL APPURTENANCES ARE TO BE REMOVED FROM THE SITE BY THE CONTRACTOR AND PROPERLY DISPOSED OF IN A LEGAL MANNER AS PART OF THIS CONTRACT. SOME ITEMS TO BE REMOVED MAY NOT BE DEPICTED ON THE TOPOGRAPHIC SURVEY. REFER TO THE DEMOLITION PLAN FOR THE LIMITS OF ASPHALT REMOVAL (THE EXISTING PARKING LOT IS TO REMAIN). IT IS THE CONTRACTOR'S RESPONSIBILITY TO VISIT THE SITE AND DETERMINE THE FULL EXTENT OF ITEMS TO BE REMOVED. IF ANY ITEMS ARE IN QUESTION, THE CONTRACTOR SHALL CONTACT THE OWNER PRIOR TO REMOVAL OF SAID ITEMS.
- 2. THE CONTRACTOR SHALL CLEAR THE PROJECT SITE AREA WITHIN THE CONFINES OF THE DEMOLITION LIMIT LINE. THE CONTRACTOR SHALL CAP IN PLACE ALL EXISTING UTILITIES AT THE DEMOLITION LIMIT LINE, UNLESS NOTED ON THE PLAN. THE CONTRACTOR SHALL DEMOLISH AND LEGALLY REMOVE/DISPOSE OF ITEMS FROM THE SITE, INCLUDING ALL EXISTING IILITY STRUCTURES, PLANTERS, TREES, AND ALL OTHER SITE FEATURES, UNLESS OTHERWISE NOTED ON THE PLAN.
- 3. DEMOLITION OF PAVEMENT INCLUDES PAVEMENT THICKNESS, REBAR IF ENCOUNTERED, AND BASE COURSE.
- 4. REMOVAL OF LANDSCAPING SHALL INCLUDE ROOTS AND ORGANIC MATERIAL.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ANY AND ALL PERMITS AND SHALL PAY ALL FEES NECESSARY FOR ENCROACHMENT, GRADING, DEMOLITION, AND DISPOSAL OF SAID MATERIALS AS REQUIRED BY PRIVATE, LOCAL AND STATE JURISDICTIONS.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR A SITE INSPECTION TO FULLY ACKNOWLEDGE THE EXTENT OF DEMOLITION WORK.
- 7. THE CONTRACTOR SHALL VERIFY AND LOCATE ALL EXISTING ABOVE AND UNDERGROUND UTILITIES LOCATIONS SHOWN ON THE PLANS ARE APPROXIMATE AND ARE SHOWN FOR GENERAL INFORMATION ONLY. CONTRACTOR SHALL ADJUST TO GRADE ANY EXISTING UTILITIES TO REMAIN
- 8. DAMAGE TO ANY EXISTING UTILITIES AND SERVICES TO REMAIN SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. CONTRACTOR SHALL REPAIR AND/OR REPLACE IN KIND.
- 9. EROSION CONTROL MEASURES SHALL BE IMPLEMENTED TO PREVENT DEBRIS AND UNSUITABLE MATERIALS FROM ENTERING SANITARY SEWERS AND STREETS.
- 10. DUST CONTROL MEASURES SHALL BE IMPLEMENTED DURING DEMOLITION.
- 11. DEMOLITION IS LIMITED TO WITHIN THE DEMOLITION LIMIT LINE UNLESS OTHERWISE NOTED. 12. CONTRACTOR SHALL REMOVE DEMOLISHED MATERIALS FROM THE SITE AS WORK PROGRESSES.
- 13. THE DRAWINGS MAY NOT INDICATE IN DETAIL ALL DEMOLITION WORK TO BE PERFORMED. THE CONTRACTOR SHALL EXAMINE EXISTING CONDITIONS TO DETERMINE THE FULL EXTENT OF DEMOLITION.
- 14. ALL DEMOLITION SHALL COMPLY WITH CHAPTER 24 AND ARTICLE 87 OF THE CALIFORNIA FIRE CODE.
- 15. CONTRACTOR TO USE CARE IN HANDLING DEBRIS FROM SITE TO ENSURE THE SAFETY OF THE PUBLIC. HAUL ROUTE TO BE CLOSELY MONITORED FOR DEBRIS OR MATERIALS TRACKED ONTO ADJOINING ROADWAYS, SIDEWALKS, ETC. ROADWAYS AND WALKWAYS TO BE CLEARED DAILY OR AS NECESSARY TO MAINTAIN PUBLIC SAFETY.
- 16. SEE EROSION CONTROL PLAN FOR EROSION PREVENTION.
- 17. CONTRACTOR TO INSTALL CHAIN LINK FENCE WITH MESH SCREEN TO PROTECT PUBLIC FROM ENTERING CONSTRUCTION AREA.
- 18. CONTINUOUS ACCESS SHALL BE MAINTAINED FOR SURROUNDING PROPERTIES AT ALL TIMES DURING DEMOLITION OF EXISTING FACILITIES. 19. MONITORING WELLS TO BE REMOVED PRIOR TO BEGINNING OF CONSTRUCTION.
- 20. FULL DEMOLITION LIMITS DUE TO CONSTRUCTION OF UTILITIES IS NOT SHOWN. CONTRACTOR TO REFER TO SHEET C3 AND UTILITY PLANS TO DETERMINE LIMITS. CONTRACTOR TO USE CAUTION AROUND EXISTING UTILITIES.
- 21. A CITY-APPROVED WASTE HAULER SHALL BE USED FOR ALL CONSTRUCTION/OTHER WASTE DISPOSAL.

APPROVED BY:

CONTRACT CITY ENGINEER

**CITY OF PERRIS** 

DATE

22. CONTRACTOR SHALL ADJUST TO GRADE ANY EXISTING UTILITIES TO REMAIN.

APPR DATE

CITY

## PAVING, GRADING AND DRAINAGE NOTES:

- ALL PAVING, CONSTRUCTION, MATERIALS, AND WORKMANSHIP WITHIN JURISDICTION'S RIGHT-OF-WAY SHALL BE IN ACCORDANCE WITH LOCAL OR COUNTY SPECIFICATIONS AND STANDARDS (LATEST EDITION) OR SPPWS SPECIFICATIONS AND STANDARDS (LATEST EDITION) IF NOT COVERED BY LOCAL OR COUNTY REGULATIONS.
- ALL UNPAVED AREAS IN EXISTING RIGHTS-OF-WAY DISTURBED BY CONSTRUCTION SHALL BE REGRADED AND REPAIRED TO EXISTING CONDITION OR BETTER.
- 3. TRAFFIC CONTROL ON ALL CALTRANS, LOCAL AND COUNTY RIGHTS-OF-WAY SHALL MEET THE REQUIREMENTS OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (U.S. DOT/FHA) AND THE REQUIREMENTS OF THE STATE AND ANY LOCAL AGENCY HAVING JURISDICTION. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT SHALL GOVERN.
- 4. THE CONTRACTOR SHALL GRADE THE SITE TO THE ELEVATIONS INDICATED AND SHALL REGRADE WASHOUTS WHERE THEY OCCUR AFTER EVERY RAINFALL UNTIL AN ADEQUATE STABILIZATION OCCURS.
- 5. ALL AREAS INDICATED AS PAVEMENT SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE TYPICAL PAVEMENT SECTIONS AS INDICATED ON THE DRAWINGS.
- 6. WHERE EXISTING PAVEMENT IS INDICATED TO BE REMOVED AND REPLACED, THE CONTRACTOR SHALL SAW CUT A MINIMUM 2" DEEP FOR A SMOOTH AND STRAIGHT JOINT AND REPLACE THE PAVEMENT WITH THE SAME TYPE AND DEPTH OF MATERIAL AS EXISTING OR AS INDICATED.
- WHERE NEW PAVEMENT MEETS THE EXISTING PAVEMENT, THE CONTRACTOR SHALL SAW CUT THE EXISTING PAVEMENT A MINIMUM 2" DEEP FOR A SMOOTH AND STRAIGHT JOINT AND MATCH THE EXISTING PAVEMENT ELEVATION WITH THE PROPOSED PAVEMENT UNLESS OTHERWISE INDICATED.
- 8. IF DEWATERING IS REQUIRED, THE CONTRACTOR SHALL OBTAIN ANY APPLICABLE REQUIRED PERMITS. THE CONTRACTOR IS TO COORDINATE WITH THE OWNER AND THE DESIGN ENGINEER PRIOR TO ANY EXCAVATION.
- 9. STRIP TOPSOIL AND ORGANIC MATTER FROM ALL AREAS OF THE SITE AS REQUIRED. IN SOME CASES TOPSOIL MAY BE STOCKPILED ON SITE FOR PLACEMENT WITHIN LANDSCAPED AREAS BUT ONLY AS DIRECTED BY THE OWNER.
- 10. FIELD DENSITY TESTS SHALL BE TAKEN AT INTERVALS IN ACCORDANCE WITH THE LOCAL JURISDICTIONAL AGENCY.
- 11. ALL SLOPES AND AREAS DISTURBED BY CONSTRUCTION SHALL BE GRADED AS PER PLANS. THE AREAS SHALL THEN BE STABILIZED BY MEANS AND METHODS APPROVED BY THE LOCAL AGENCY. ANY AREAS DISTURBED FOR ANY REASON PRIOR TO FINAL ACCEPTANCE OF THE JOB SHALL BE CORRECTED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER. ALL EARTHEN AREAS WILL BE COVERED WITH ROCK OR MULCHED AS SHOWN ON THE LANDSCAPING PLAN.
- 12. ALL CUT OR FILL SLOPES SHALL BE 4 (HORIZONTAL) :1 (VERTICAL) OR FLATTER UNLESS OTHERWISE SHOWN.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CONTROL OF DUST AND DIRT RISING AND SCATTERING IN THE AIR DURING CONSTRUCTION AND SHALL PROVIDE WATER SPRINKLING OR OTHER SUITABLE METHODS OF CONTROL. THE CONTRACTOR SHALL COMPLY WITH ALL GOVERNING REGULATIONS PERTAINING TO ENVIRONMENTAL PROTECTION.
- 14. THE CONTRACTOR SHALL TAKE ALL REQUIRED MEASURES TO CONTROL TURBIDITY, INCLUDING BUT NOT LIMITED TO THE INSTALLATION OF TURBIDITY BARRIERS AT ALL LOCATIONS WHERE THE POSSIBILITY OF TRANSFERRING SUSPENDED SOLIDS INTO THE RECEIVING WATER BODY EXISTS DUE TO THE PROPOSED WORK. TURBIDITY BARRIERS MUST BE MAINTAINED IN EFFECTIVE CONDITION AT ALL LOCATIONS UNTIL CONSTRUCTION IS COMPLETED AND DISTURBED SOIL AREAS ARE STABILIZED. THEREAFTER, THE CONTRACTOR MUST REMOVE THE BARRIERS. AT NO TIME SHALL THERE BE ANY OFF-SITE DISCHARGE WHICH VIOLATES THE WATER QUALITY STANDARDS OF THE GOVERNING CODE.
- 15. EXPOSED SLOPES SHOULD BE STABILIZED WITHIN 48 HOURS OF COMPLETING FINAL GRADING. AND AT ANY OTHER TIME AS NECESSARY, TO PREVENT EROSION, SEDIMENTATION OR TURBID DISCHARGES.
- 16. THE CONTRACTOR MUST REVIEW AND MAINTAIN A COPY OF THE REQUIRED PERMITS COMPLETE WITH ALL CONDITIONS, ATTACHMENTS, EXHIBITS, AND PERMIT MODIFICATIONS IN GOOD CONDITION AT THE CONSTRUCTION SITE. THE COMPLETE PERMIT MUST BE AVAILABLE FOR REVIEW UPON REQUEST BY GOVERNING JURISDICTIONS.
- 17. THE CONTRACTOR SHALL ENSURE THAT ISLAND PLANTING AREAS AND OTHER PLANTING AREAS ARE NOT COMPACTED AND DO NOT CONTAIN ROAD BASE MATERIALS. THE CONTRACTOR SHALL ALSO EXCAVATE AND REMOVE ALL UNDESIRABLE MATERIAL FROM ALL AREAS ON THE SITE TO BE PLANTED AND PROPERLY DISPOSED OF IN A LEGAL MANNER.
- 18. CONTRACTOR TO VERIFY ALL EXISTING TOPOGRAPHY AND STRUCTURES ON THE SITE AND IMMEDIATELY NOTIFY THE ENGINEER OF ANY DISCREPANCIES PRIOR TO STARTING WORK. 19. ALL PAVEMENT SPOT GRADE ELEVATIONS WITHIN OR ALONG THE CURB REFER TO THE EDGE OF PAVEMENT ELEVATIONS UNLESS OTHERWISE NOTED.
- 20. ALL ELEVATIONS SHOWN DEPICT FINISHED GRADE UNLESS OTHERWISE NOTED. GENERAL CONTRACTOR TO COORDINATE WITH EXCAVATION. LANDSCAPING, AND PAVING SUBCONTRACTORS REGARDING TOPSOIL THICKNESS FOR LANDSCAPING AREAS AND PAVEMENT SECTION THICKNESS FOR PAVED AREAS TO PROPERLY ENSURE ADEQUATE CUT TO ESTABLISH SUBGRADE ELEVATIONS
- 21. NO EARTHEN SLOPE SHALL BE GREATER THAN 4:1 UNLESS OTHERWISE NOTED.
- 22. MAXIMUM SLOPE IN ACCESSIBLE PARKING SPACES AND LOADING ZONES SHALL NOTE EXCEED 2.0% IN ALL DIRECTIONS.
- 23. MAXIMUM RUNNING SLOPE SHALL NOTE EXCEED 5% AND CROSS SLOPE SHALL NOTE EXCEED 2.0% ON ALL SIDEWALKS AND ACCESSIBLE ROUTES UNLESS OTHERWISE NOTED. 24. WHEN NATURAL FLOW OF DRAINAGE IS AWAY FROM CURB CONTRACTOR TO INSTALL
- REVERSE GUTTER PITCH.

SEAL COAT AREA.

SHEA-MICHAEL ANTI

RCE NO. 78274

- 25. REFERENCE ARCHITECTURAL PLANS FOR ROOF DRAIN AND LOCATIONS.
- 26. CONTRACTOR TO USE APPROPRIATE PAINT COLORS PER DETAILS SHEET. ADA BARRIER FREE AREAS TO COMPLY WITH ALL LOCAL AND FEDERAL ADA STANDARDS.
- 27. ACCESSIBLE ROUTE TO ACCESSIBLE SPACES, BUILDING ENTRANCES, AND PUBLIC STREETS SHALL NOT EXCEED 5% RUNNING SLOPE AND 2% CROSS SLOPE.
- 28. THE ACCESSIBLE ROUTE IN FRONT OF PARKING SHALL BE A MINIMUM OF 48" WIDE AND NOT REDUCED BY VEHICLE OVERHANGS, CURBING, SIGN POSTS, OR OTHER OBSTRUCTIONS. 29. ANY WALK THAT CROSSES OR ADJOINS A VEHICULAR WAY NOT SEPARATED BY CURBS,
- RAILINGS, OR OTHER ELEMENTS SHALL BE DEFINED BY A CONTINUOUS 36" WIDE DETECTABLE WARNING.
- 30. SPECIAL RAMP RULES APPLY FOR ANY RISE GREATER THAN 6" INCLUDING BUT NOT LIMITED TO RESTRICTION ON SLOPE, TOTAL RISE BETWEEN LANDINGS, AND USE OF HANDRAILS.
- 31. TRANSITION CHANGE IN ELEVATION IS NOT TO EXCEED 1/4" WITHIN AN ACCESSIBLE
- 32. JOINT WIDTHS ARE NOT TO EXCEED 1/2" OF WIDTH. 33. CURB RAMPS MUST HAVE A DIFFERENT FINISH FROM THE ADJACENT PAVEMENT.
- 34. 2% SLOPE IN ALL DIRECTIONS WITHIN ADA PARKING STALLS. AFTER PROPOSED GRADE BREAK, ALLOWABLE SLOPE TO MATCH EXISTING IS 5.0%.

PREPARED BY;/

UL

SHEA-MICHAEL ANTI

New

35. ALL AREAS WHERE STRIPING IS TO BE ERADICATED. CONTRACTOR IS TO ERADICATE AND

## PRECISE GRADING NOTES (CITY OF PERRIS):

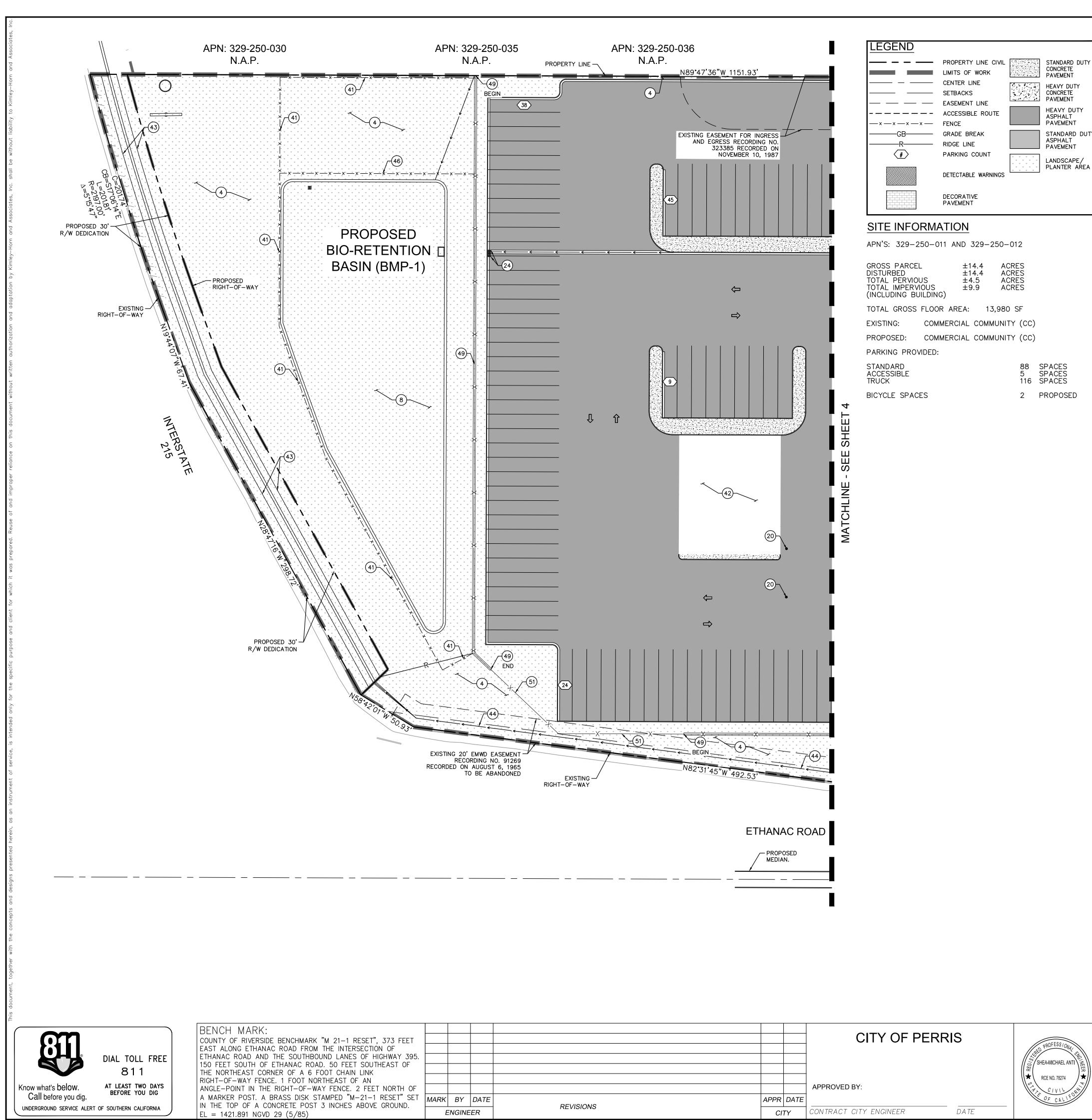
- 1. ALL GRADING SHALL CONFORM TO THE UNIFORM CODE, APPENDIX CHAPTER 33, AS AMENDED BY ORDINANCE NO. 457.
- 2. ALL PROPERTY CORNERS SHALL BE CLEARLY DELINEATED IN THE FIELD PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION/GRADING. 3. DURING ROUGH GRADING OPERATIONS AND PRIOR TO CONSTRUCTION OF PERMANENT
- DRAINAGE STRUCTURES, TEMPORARY DRAINAGE CONTROL SHOULD BE PROVIDED TO PREVENT PONDING WATER AND DAMAGE TO ADJACENT STRUCTURES. 4. DUST SHALL BE CONTROLLED BY WATERING OR OTHER APPROVED METHODS.
- 5. NO FILL SHALL BE PLACED ON EXISTING GROUND UNTIL THE GROUND HAS BEEN CLEARED OF WEEDS, DEBRIS, TOPSOIL, AND OTHER DELETERIOUS MATERIAL. 6. MAXIMUM CUT AND FILL SLOPE = 2:1, UNLESS OTHERWISE SHOWN ON PLANS.
- 7. STABILITY CALCULATIONS WITH A FACTOR OF SAFETY OF AT LEAST ONE AND FIVE TENTHS (1.5) SHALL BE SUBMITTED BY A SOILS ENGINEER TO THE BUILDING AND SAFETY DEPARTMENT FOR CUT AND FILL SLOPES OVER 30' IN VERTICAL HEIGHT.
- 8. PROVIDE 5' BY 1' HIGH BERM OR EQUIVALENT ALONG THE TOP OF ALL FILL SLOPES OVER 5' HIGH. 9. PROVIDE A BROW DITCH, DESIGNED TO HANDLE 100 YR. Q STORM FLOWS, ALONG THE TOP
- OF ALL FILL SLOPES OVER 5' HIGH. 10. MINIMUM BUILDING PAD AND DRAINAGE SWALE SLOPE SHALL BE 1% IF CUT OF FILL IS LESS THAN 10'. 2% IF CUT OR FILL IS GREATER THAN 10'. DRAINAGE SWALES SHALL BE A MINIMUM OF 0.2' DEEP AND BE CONSTRUCTED A MINIMUM OF 2' FROM THE TOP OF CUT OR FILL SLOPES.
- 11. NO OBSTRUCTION OF FLOOD PLAINS OR NATURAL WATER COURSES SHALL BE PERMITTED. 12. ALL EXISTING DRAINAGE COURSES ON THE PROJECT SITE MUST CONTINUE TO FUNCTION. ESPECIALLY DURING STORM CONDITIONS. PROTECTIVE MEASURES AND TEMPORARY DRAINAGE PROVISIONS MUST BE USED TO PROTECT ADJOINING PROPERTIES DURING GRADING
- OPERATIONS. 13. FINISHED GRADE SHALL BE SLOPED AWAY FROM ALL EXTERIOR WALLS AT NOT LESS THAN 3" PER FOOT FOR A MINIMUM OF 3'.
- 14. CUT AND FILL SLOPES EQUAL TO OR GREATER THAN 3' IN VERTICAL HEIGHT SHALL BE PLANTED WITH GRASS OR GROUND COVER TO PROTECT THE SLOPE FROM EROSION AND INSTABILITY IN ACCORDANCE WITH ORDINANCE NO. 457 PRIOR TO FINAL GRADING INSPECTION.
- 15. EROSION CONTROL: ALL SLOPES REQUIRED TO BE PLANTED SHALL BE PROVIDED WITH ROSEA ICE PLANT (OR EQUAL) GROUND COVER AT 12" ON CENTER. SLOPES EXCEEDING 15' IN VERTICAL HEIGHT SHALL BE PLANTED WITH APPROVED TREES SPACED NOT TO EXCEED 20' ON CENTER OR SHRUBS NOT TO EXCEED 10', OR A COMBINATION OF SHRUBS AND TREES NOT TO EXCEED 15' IN ADDITION TO A GRASS MIX OR GROUND COVER. SLOPES EXCEEDING 4' IN VERTICAL HEIGHT SHALL BE PROVIDED WITH AN IN-GROUND IRRIGATION SYSTEM. SLOPES EQUAL TO OR LESS THAN 4' MAY BE IRRIGATED BY HOSE BIB LOCATED AT THE TOP OR TOE OF THE SLOPE, SPACED TO MAKE USE OF A HOUSE NO LONGER THAN 50' IN HEIGHT. THE IRRIGATION SYSTEM SHALL BE PROVIDED WITH AN APPROPRIATE BACKFLOW DEVICE PER U.P.C., CHAPTER 10.
- 16. ALL GRADING SHALL BE DONE IN CONFORMANCE WITH RECOMMENDATIONS OF THE PRELIMINARY SOILS INVESTIGATION BY SALEM ENGINEERING GROUP, INC. TWO SETS OF THE FINAL COMPACTION REPORT SHALL BE SUBMITTED TO THE BUILDING AND SAFETY DEPARTMENT WHICH SHALL INCLUDE FOUNDATION DESIGN RECOMMENDATIONS AND CERTIFICATION THAT GRADING HAS BEEN DONE IN CONFORMANCE WITH THE RECOMMENDATIONS OF THE SITE INVESTIGATION REPORT.
- 17. IF STEEP SLOPING TERRAIN OCCURS UPON WHICH FILL IS TO BE PLACED, IT MUST BE CLEARED, KEYED AND BENCHED INTO FIRM NATURAL SOIL FOR FULL SUPPORT. PREPARATION SHALL BE APPROVED BY A SUITABLE QUALIFIED AND REGISTERED PROFESSIONAL PRIOR TO PLACEMENT OF FILL MATERIAL.
- 18. ALL GRADING SHALL BE DONE UNDER THE SUPERVISION OF A COMPETENT SOILS ENGINEER WHO SHALL CERTIFY THAT ALL FILL HAS BEEN PROPERLY PLACED AND WHO SHALL SUBMIT A FINAL COMPACTION REPORT FOR ALL FILLS OVER 1' DEEP.
- 19. FINAL COMPACTION REPORT WILL BE REQUIRED FOR ALL FILLS GREATER THAN 1'.
- 20. A SUITABLY QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT TO THE BUILDING AND SAFETY DEPARTMENT WRITTEN CERTIFICATION OF COMPLETION OF ROUGH GRADING IN ACCORDANCE WITH THE APPROVED GRADING PLAN PRIOR TO REQUESTING INSPECTION AND ISSUANCE OF THE BUILDING PERMIT. CERTIFICATION SHALL INCLUDE LINE, GRADE, ELEVATION AND LOCATION OF CUT/FILL SLOPES.
- 21. A SUITABLE QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT CERTIFICATION OF BUILDING PAD ELEVATION, WHERE SPECIFIC ELEVATIONS ARE REQUIRED. THE ELEVATION (WITH RESPECT TO MEAN SEA LEVEL) SHALL BE GIVEN. IF AN ELEVATION WITH RESPECT TO ADJACENT GROUND SURFACE IS REQUIRED, THE ACTUAL DISTANCE ABOVE THE ADJACENT SHALL BE GIVEN.
- 22. A SUITABLY QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT TO THE BUILDING AND SAFETY DEPARTMENT WRITTEN CERTIFICATION OF COMPLETION OF FINAL GRADING IN ACCORDANCE WITH THE APPROVED PLANS FOR ALL GRADING AS "ENGINEERED GRADING".
- 23. THE CONTRACTOR SHALL NOTIFY UNDERGROUND SERVICE ALERT TWO DAYS BEFORE YOU DIG AT 1-800-227-2600. A GRADING PERMIT MUST BE OBTAINED FROM THE DEPARTMENT OF BUILDING AND SAFETY, CITY OF PERRIS, PRIOR TO GRADING.
- 24. THE CONTRACTOR SHALL NOTIFY THE BUILDING AND SAFETY DEPARTMENT. 101 NORTH "D" STREET, PERRIS, CA 92571, TELEPHONE (951) 943-5003, AT LEAST 24 HOURS IN ADVANCE REQUESTING LOT GRADE AND DRAINAGE INSPECTION. THE INSPECTION MUST BE APPROVED PRIOR TO BUILDING PERMIT FINAL INSPECTION.
- 25. THE EARTHWORK QUANTITIES SHOWN ARE SUBJECT TO FIELD CONDITIONS. THE GRADING CONTRACTOR SHALL SATISFY HIMSELF AS TO THE QUANTITIES AND ADDITIONAL WORK SHOWN ON THIS PLAN AS PART OF THIS BID.
- 26. CONSTRUCTION ACTIVITIES AND EQUIPMENT MAINTENANCE IS LIMITED TO THE HOURS BETWEEN 7:00 A.M. AND 7:00 P.M. PER ZONING ORDINANCE, NOISE CONTROL, SECTION 7.34.060. IT IS UNLAWFUL FOR ANY PERSONS BETWEEN THE HOURS OF 7:00 P.M. OF ANY DAY AND 7:00 A.M. OF THE FOLLOWING DAY, OR ON A LEGAL HOLIDAY, OR ON SUNDAYS TO ERECT, CONSTRUCT. DEMOLISH. EXCAVATE, ALTER OR REPAIR ANY BUILDING OR STRUCTURE IN A MANNER AS TO CREATE DISTURBING EXCESSIVE OR OFFENSIVE NOISE.
- 27. STATIONARY CONSTRUCTION EQUIPMENT THAT GENERATES NOISE IN EXCESS OF 65 DBA AT THE PROJECT BOUNDARIES MUST BE SHIELDED AND LOCATED AT LEAST 100 FEET FROM OCCUPIED RESIDENCES. THE EQUIPMENT AREA WITH APPROPRIATE ACOUSTIC SHIELDING SHALL BE DESIGNATED ON BUILDING AND GRADING PLANS. EQUIPMENT AND SHIELDING SHALL REMAIN IN THE DESIGNATED LOCATION THROUGHOUT CONSTRUCTION ACTIVITIES.
- 28. CONSTRUCTION ROUTES ARE LIMITED TO CITY OF PERRIS DESIGNATED TRUCK ROUTES.
- 29. WATER TRUCKS OR SPRINKLER SYSTEMS SHALL BE USED DURING CLEANING, GRADING, EARTH MOVING. EXCAVATION. TRANSPORTATION OF CUT OR FILL MATERIALS AND CONSTRUCTION PHASES TO PREVENT DUST FROM LEAVING THE SITE AND TO CREATE A CRUST AFTER EACH DAY'S ACTIVITIES CEASE. AT A MINIMUM, THIS WOULD INCLUDE WETTING DOWN SUCH AREAS IN THE LATER MORNING AND AFTER WORK IS COMPLETED FOR THE DAY AND WHENEVER WIND EXCEEDS 15 MILES PER HOUR.
- 30. A PERSON OR PERSONS SHALL BE DESIGNATED TO MONITOR THE DUST CONTROL PROGRAM AND TO ORDER INCREASED WATERING AS NECESSARY TO PREVENT TRANSPORT OF DUST OFF-SITE. THE NAME AND TELEPHONE NUMBER OF SUCH PERSON SHALL BE PROVIDED TO THE CITY.
- 31. PROJECT APPLICANTS SHALL PROVIDE CONSTRUCTION SITE ELECTRICAL HOOK-UPS FOR ELECTRIC HAND TOOLS SUCH AS SAWS, DRILLS, AND COMPRESSORS, TO ELIMINATE THE NEED FOR DIESEL-POWERED ELECTRIC GENERATORS OR PROVIDE EVIDENCE THAT ELECTRICAL HOOK-UPS AT CONSTRUCTION SITES ARE NOT PRACTICAL OR PROHIBITIVELY EXPENSIVE.

| im | ley≫ | Horn |
|----|------|------|
|----|------|------|

765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030

R.C.E 78274 DATE

2/27/2022


GENERAL NOTES PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010

| Sł | ΙE | ET | N | 0. |
|----|----|----|---|----|
|    |    |    |   |    |

0

OF 16 SHTS

FILE NO.:



|           |            | CITY OF PERRIS              | ROFESS/ONAL CO | Kimle                      |
|-----------|------------|-----------------------------|----------------|----------------------------|
|           |            | APPROVED BY:                | KCE NO. 78274  | 765 THE CITY DRIVI<br>PHON |
| REVISIONS | DATE<br>TY | CONTRACT CITY ENGINEER DATE | OF CALLED      | SHEA-MICHAEL ANTI          |

### CONSTRUCTION NOTES

(1) PILOT TRAVEL CENTER BUILDING (SEE ARCHITECTURAL DRAWINGS), INSTALLED BY CONTRACTOR.

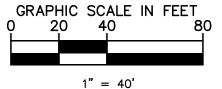
- (2) ABOVE GROUND STORAGE TANK FARM WITH CONTAINMENT. EACH AST FARM CONTAINS (4) 12,000 GALLON TACKS FOR DIESEL AND BIO. SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION.
- (3) 25'-0" x 253'-7" AUTO CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER. CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.

(4) LANDSCAPE AREA INSTALLED BY CONTRACTOR. REFER TO LANDSCAPE AND IRRIGATION PLANS FOR MORE INFORMATION.

- (5) GREASE TRAP. FURNISHED AND INSTALLED BY CONTRACTOR.
- (6) CONCRETE ISLAND WITH A GAS/AUTO DIESEL (3+1) DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (7) 2'-0' HIGH GUARDRAIL AROUND CONTAINMENT AREA, 1'-0" OUTSIDE OF FENCE.
- (8) PROPOSED BIORETENTION BASIN. SEE UTILITY PLAN FOR MORE INFORMATION.
- (9) 25'-0" x 124'-9" TRUCK CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER, CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (10) TRUCK AIR STAND, TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND, SUPPLIED BY OWNER AND INSTALLED BY CONTRACTOR.
- (11) CONCRETE ISLAND WITH A DIESEL DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (12) PREFABRICATED TRUCK ISLAND CATCH BASIN (TYP (7) PLACES). SUPPLIED BY OWNER INSTALLED BY CONTRACTOR
- (13) TRUCK FREEZE PROOF WATER STAND TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND FURNISHED AND INSTALLED BY CONTRACTOR. (14) TANK #1, PRODUCT #1. 20,000 GALLON, 10'-0"Ø X 37'-8 3/4" LONG, DOUBLE-WALL FIBERGLASS UNDERGROUND REGULAR UNLEADED
- GASOLINE TANK. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR (TYP (1) PLACE). SEE PP DRAWINGS FOR MORE INFORMATION.

(15) TANK #2 AND TANK #3. 20,000 GALLON, 10'-0" X 37'-10" LONG (2) CHAMBER UNDERGROUND DOUBLE WALL FIBERGLASS TANK, TANK #2, PRODUCT #2 - 12,000 GALLON SUPER UNLEADED GASOLINE, TANK #3, PRODUCT #3 - 8,000 AUTO DIESEL. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR. (SEE PP DRAWINGS FOR MORE INFORMATION).

- (16) LOCAL UTILITY ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (17) TRAVEL CENTER DISTRIBUTION ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (18) PROPOSED WATER METER AND BACKFLOW. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (19) PROPOSED IRRIGATION METER AND BACKFLOW PREVENTOR. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (20) PROPOSED SEWER CLEANOUT. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (21) PROPOSED U-SHAPED BIKE RACKS PER CITY STANDARDS AND SPECIFICATIONS.


(22) INSTALL ACCESSIBLE RAMP. INSTALL CAST-IN-PLACE DETECTABLE WARNING SYSTEM (TRUNCATED DOMES) PER ARMOR TILE - 36" X 48" PANEL. PRODUCT NO. ADA-C-3648W PER DETAIL X, SHEET XX.

- (23) INSTALL DETECTABLE WARNINGS.
- (24) PROPOSED CATCH BASIN. SEE STORM DRAIN PLANS SHEET 13-14 FOR MORE INFORMATION.
- (25) AUTO AIR/VACUUM (PROVIDED BY OWNER, ELECTRICAL BY CONTRACTOR), YARD HYDRANT BY CONTRACTOR.
- (26) NEW TANK VENT RISER CLUSTER, INSTALLED BY CONTRACTOR.
- (27) 4,000 GALLON, 6'-0"ø x 21'-11" LONG, SINGLE-WALL FIBERGLASS UNDERGROUND OIL/ WATER SEPARATOR, FURNISHED BY OWNER, INSTALLED BY CONTRACTOR.
- (28) CLEAN OUT FOR OIL/WATER SEPARATOR FURNISHED AND INSTALLED BY CONTRACTOR.
- (29) B99 INJECTION SHED WITH SUMP. SUPPLIED BY OWNER. (SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION).
- (30) 4" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (31) 6" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (32) 1'-0" CONCRETE BOLLARD FURNISHED, INSTALLED AND PAINTED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (33) GREASE CONTAINER, PROVIDED BY OWNER.
- (34) site light, furnished by owner, installed by contractor. (Location to be determined during final engineering)
- (35) TRUCK SCALE, CONCRETE TRUCK SCALE PIT AND TRUCK SCALE FURNISHED AND INSTALLED BY TRUCK SCALE SUPPLIER. ELECTRICAL, COMMUNICATIONS AND DRAINAGE PROVIDED TO THE SCALE PIT BY CONTRACTOR, COORDINATION BY CONTRACTOR.
- (36) PARKING AREA DESIGNATED FOR GOLF CART.
- (37) trash enclosure 8' chain link fence with vinyl inserts mounted on reinforced concrete pad with protective steel BOLLARDS, INSTALLED BY CONTRACTOR (SEE ARCH DWGS FOR DETAILS).
- (38) TRASH COMPACTOR, FURNISHED AND INSTALLED BY TRASH COMPACTOR SUPPLIER.
- (39) cardboard bailer or recycle dumpster, furnished and installed by dumpster supplier.
- (40) STORAGE UNIT, FURNISHED BY OWNER. ELECTRICAL & A/C INSTALL BY CONTRACTOR.
- (41) PROPOSED "CERTAIN TEED BRAND; BUFFTECH VINYL FENCING; PRIVACY SERIES; STYLE "GALVESTON", 8' TALL; COLOR ALMOND." OR APPROVED EQUAL. FURNISHED AND INSTALLED BY CONTRACTOR.
- (42) proposed shop building location.
- (43) PROPOSED CHANNEL (BOTTOM WIDTH 2', DEPTH 3.5', SIDE SLOPE 1.5:1) PER RIVERSIDE COUNTY FLOOD CONTROL AND WATER
- CONSERVATION DISTRICT PLAN FOR M.D.P. ROMOLAND AREA LATERAL A-11A.
- (44) PROPOSED V-DITCH. REFER TO GRADING PLAN SHEET 9 AND 10 FOR MORE INFORMATION.
- (45) PROPOSED PORTE-COCHERE. REFER TO ARCHITECTURAL PLANS FOR MORE INFORMATION.

2/27/2022

- (46) PROPOSED 4' CHAIN LINK FENCE.
- (47) INSTALL CHAIN LINK FENCE PER LANDSCAPE PLANS.
- (48) PROPOSED COMMERCIAL DRIVEWAY.
- (49) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) ON TOP OF 3' BERM.
- (50) PROPOSED 10' CONCRETE MASONRY UNITS WALL.
- (51) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) AT GRADE.

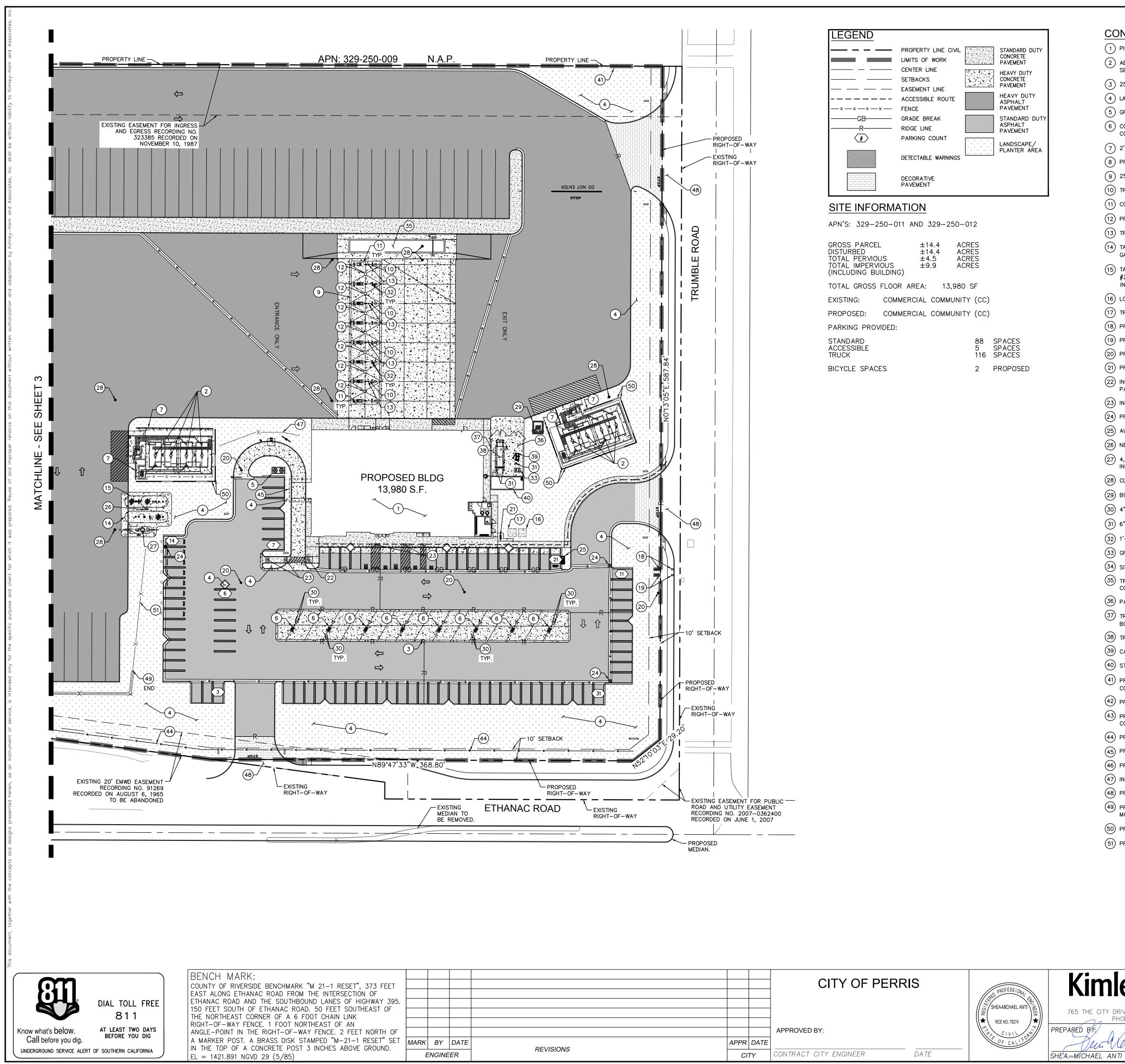




WHEN PRINTED AT FULL SIZE (24"X36")

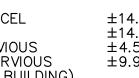
SHEET NO.

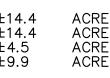
3


OF 16 SHTS

THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030

R.C.E 78274 DATE


lu Allex A


### SITE PLAN PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:



| LEGEND      |                                          |                                                      |                                       |
|-------------|------------------------------------------|------------------------------------------------------|---------------------------------------|
|             | PROPERTY LINE CIVIL<br>LIMITS OF WORK    |                                                      | STANDARD DUTY<br>CONCRETE<br>PAVEMENT |
|             | CENTER LINE<br>SETBACKS<br>EASEMENT LINE |                                                      | HEAVY DUTY<br>CONCRETE<br>PAVEMENT    |
| - <u> </u>  | ACCESSIBLE ROUTE                         |                                                      | HEAVY DUTY<br>ASPHALT<br>PAVEMENT     |
| GB<br>R     | GRADE BREAK<br>RIDGE LINE                |                                                      | STANDARD DUTY<br>ASPHALT<br>PAVEMENT  |
|             | PARKING COUNT                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | LANDSCAPE/<br>PLANTER AREA            |
|             | DECORATIVE                               |                                                      |                                       |
|             |                                          |                                                      |                                       |
| SITE INFORM | ATION                                    |                                                      |                                       |

| APN'S: | 329-250-011 | AND | 329-250-012 |
|--------|-------------|-----|-------------|





### CONSTRUCTION NOTES

CONTRACTOR.

(1) PILOT TRAVEL CENTER BUILDING (SEE ARCHITECTURAL DRAWINGS), INSTALLED BY CONTRACTOR.

(2) ABOVE GROUND STORAGE TANK FARM WITH CONTAINMENT. EACH AST FARM CONTAINS (4) 12,000 GALLON TACKS FOR DIESEL AND BIO. SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION.

(3) 25'-0" x 253'-7" AUTO CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER. CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.

(4) LANDSCAPE AREA INSTALLED BY CONTRACTOR. REFER TO LANDSCAPE AND IRRIGATION PLANS FOR MORE INFORMATION.

- (5) GREASE TRAP. FURNISHED AND INSTALLED BY CONTRACTOR.
- (6) CONCRETE ISLAND WITH A GAS/AUTO DIESEL (3+1) DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY
- (7) 2'-0' HIGH GUARDRAIL AROUND CONTAINMENT AREA, 1'-0" OUTSIDE OF FENCE.
- (8) PROPOSED BIORETENTION BASIN. SEE UTILITY PLAN FOR MORE INFORMATION.
- (9) 25'-0" x 124'-9" TRUCK CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER, CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (10) TRUCK AIR STAND, TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND, SUPPLIED BY OWNER AND INSTALLED BY CONTRACTOR.
- (11) CONCRETE ISLAND WITH A DIESEL DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (12) PREFABRICATED TRUCK ISLAND CATCH BASIN (TYP (7) PLACES). SUPPLIED BY OWNER INSTALLED BY CONTRACTOR
- (13) TRUCK FREEZE PROOF WATER STAND TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND FURNISHED AND INSTALLED BY CONTRACTOR. (14) TANK #1, PRODUCT #1. 20,000 GALLON, 10'-0"ø X 37'-8 3/4" LONG, DOUBLE-WALL FIBERGLASS UNDERGROUND REGULAR UNLEADED
- GASOLINE TANK. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR (TYP (1) PLACE). SEE PP DRAWINGS FOR MORE INFORMATION.

(15) TANK #2 AND TANK #3. 20,000 GALLON, 10'-0"¢ X 37'-10" LONG (2) CHAMBER UNDERGROUND DOUBLE WALL FIBERGLASS TANK, TANK #2, PRODUCT #2 – 12,000 GALLON SUPER UNLEADED GASOLINE, TANK #3, PRODUCT #3 – 8,000 AUTO DIESEL. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR. (SEE PP DRAWINGS FOR MORE INFORMATION).

- (16) LOCAL UTILITY ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (17) TRAVEL CENTER DISTRIBUTION ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (18) PROPOSED WATER METER AND BACKFLOW. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (19) PROPOSED IRRIGATION METER AND BACKFLOW PREVENTOR. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (20) PROPOSED SEWER CLEANOUT. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (21) PROPOSED U-SHAPED BIKE RACKS PER CITY STANDARDS AND SPECIFICATIONS.

(22) INSTALL ACCESSIBLE RAMP. INSTALL CAST-IN-PLACE DETECTABLE WARNING SYSTEM (TRUNCATED DOMES) PER ARMOR TILE - 36" X 48" PANEL. PRODUCT NO. ADA-C-3648W PER DETAIL X, SHEET XX.

- (23) INSTALL DETECTABLE WARNINGS.
- (24) PROPOSED CATCH BASIN. SEE STORM DRAIN PLANS SHEET 13-14 FOR MORE INFORMATION.
- (25) AUTO AIR/VACUUM (PROVIDED BY OWNER, ELECTRICAL BY CONTRACTOR), YARD HYDRANT BY CONTRACTOR.
- (26) NEW TANK VENT RISER CLUSTER, INSTALLED BY CONTRACTOR.
- (27) 4,000 GALLON, 6'-0"ø x 21'-11" LONG, SINGLE-WALL FIBERGLASS UNDERGROUND OIL/ WATER SEPARATOR, FURNISHED BY OWNER, INSTALLED BY CONTRACTOR.
- (28) CLEAN OUT FOR OIL/WATER SEPARATOR FURNISHED AND INSTALLED BY CONTRACTOR.
- (29) B99 INJECTION SHED WITH SUMP. SUPPLIED BY OWNER. (SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION).
- (30) 4" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (31) 6" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (32) 1'-0" CONCRETE BOLLARD FURNISHED, INSTALLED AND PAINTED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (33) GREASE CONTAINER, PROVIDED BY OWNER.
- (34) site light, furnished by owner, installed by contractor. (Location to be determined during final engineering)
- (35) truck scale, concrete truck scale pit and truck scale furnished and installed by truck scale supplier. Electrical, COMMUNICATIONS AND DRAINAGE PROVIDED TO THE SCALE PIT BY CONTRACTOR, COORDINATION BY CONTRACTOR.
- (36) parking area designated for GOLF Cart.
- (37) trash enclosure 8' chain link fence with vinyl inserts mounted on reinforced concrete pad with protective steel BOLLARDS, INSTALLED BY CONTRACTOR (SEE ARCH DWGS FOR DETAILS).
- (38) trash compactor, furnished and installed by trash compactor supplier.
- (39) cardboard bailer or recycle dumpster, furnished and installed by dumpster supplier.
- (40) STORAGE UNIT, FURNISHED BY OWNER. ELECTRICAL & A/C INSTALL BY CONTRACTOR.
- (41) PROPOSED "CERTAIN TEED BRAND; BUFFTECH VINYL FENCING; PRIVACY SERIES; STYLE "GALVESTON", 8' TALL; COLOR ALMOND." OR APPROVED EQUAL. FURNISHED AND INSTALLED BY CONTRACTOR.
- (42) proposed shop building location.
- (43) PROPOSED CHANNEL (BOTTOM WIDTH 2', DEPTH 3.5', SIDE SLOPE 1.5:1) PER RIVERSIDE COUNTY FLOOD CONTROL AND WATER
- CONSERVATION DISTRICT PLAN FOR M.D.P. ROMOLAND AREA LATERAL A-11A. (44) PROPOSED V-DITCH. REFER TO GRADING PLAN SHEET 9 AND 10 FOR MORE INFORMATION.
- (45) PROPOSED PORTE-COCHERE. REFER TO ARCHITECTURAL PLANS FOR MORE INFORMATION.
- (46) PROPOSED 4' CHAIN LINK FENCE.
- (47) INSTALL CHAIN LINK FENCE PER LANDSCAPE PLANS.
- (48) PROPOSED COMMERCIAL DRIVEWAY.
- (49) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) ON TOP OF 3' BERM. REFER TO SHEET 9-10 FOR MORE INFORMATION.
- (50) PROPOSED 10' CONCRETE MASONRY UNITS WALL
- (51) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) AT GRADE.

2/27/2022



GRAPHIC SCALE IN FEET 40 20

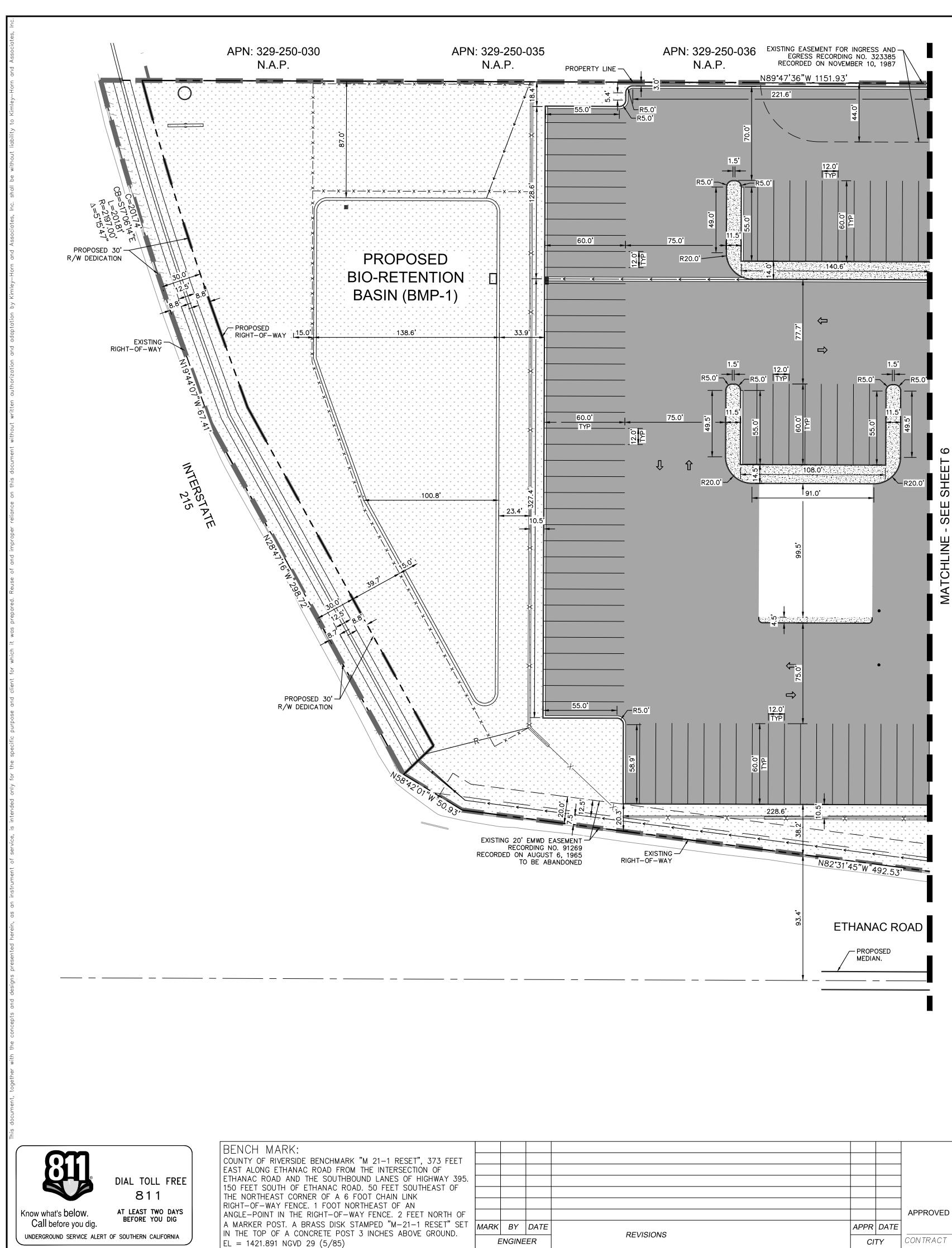
1" = 40' WHEN PRINTED AT FULL SIZE (24"X36")

SHEET NO.

4

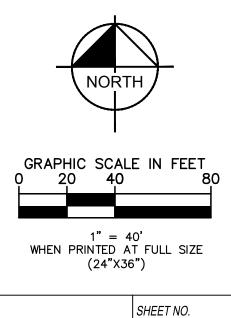
OF 16 SHTS

# **Kimley**»Horn


765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030

R.C.E 78274 DATE

NOW X


UL.

SITE PLAN PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:

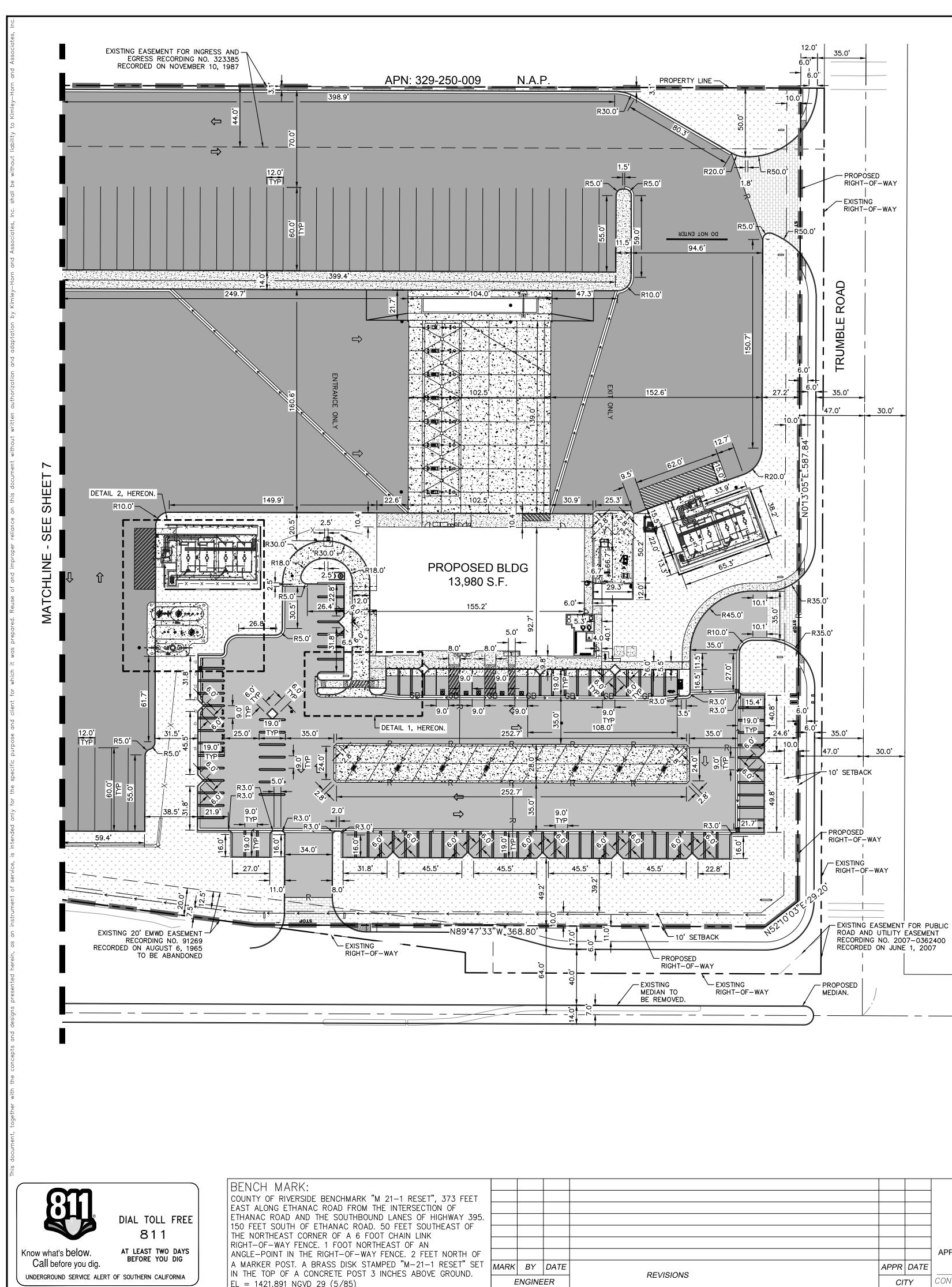


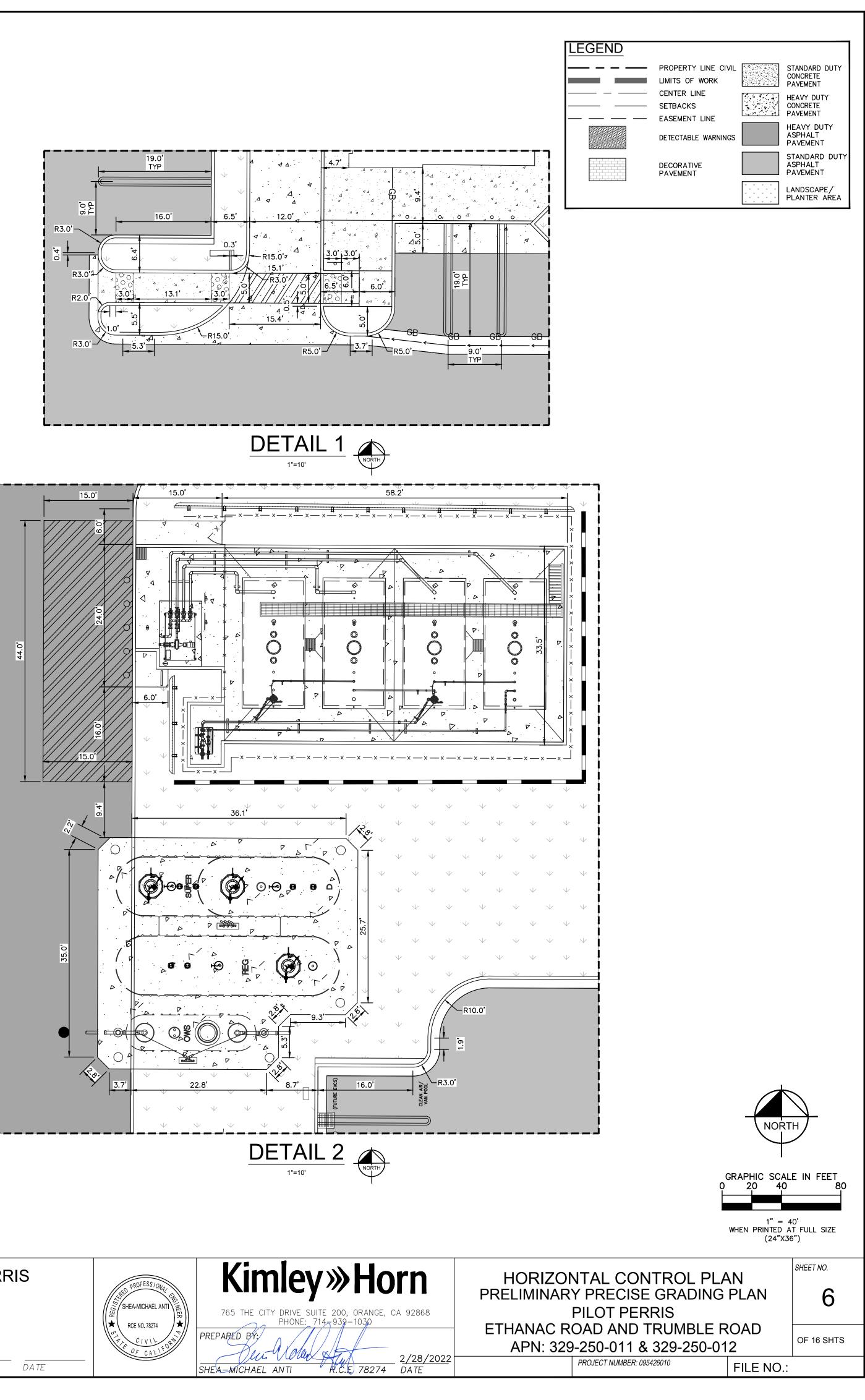
|           |            | CITY OF PERRIS                                      | PROFESS/ONAL CH                         | Kimle                             |
|-----------|------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------|
|           |            |                                                     | SHEA-MICHAEL ANTI<br>C<br>RCE NO. 78274 | 765 THE CITY DRIVE                |
| REVISIONS | DATE<br>TY | APPROVED BY:         CONTRACT CITY ENGINEER    DATE | OF CALLEOR                              | PREPARED BY:<br>SHEA-MICHAEL ANTI |

| LEGEND |                                          |                                                     |                                       |
|--------|------------------------------------------|-----------------------------------------------------|---------------------------------------|
|        | PROPERTY LINE CIVIL<br>LIMITS OF WORK    |                                                     | STANDARD DUTY<br>CONCRETE<br>PAVEMENT |
|        | CENTER LINE<br>SETBACKS<br>EASEMENT LINE |                                                     | HEAVY DUTY<br>CONCRETE<br>PAVEMENT    |
|        | DETECTABLE WARNINGS                      |                                                     | HEAVY DUTY<br>ASPHALT<br>PAVEMENT     |
|        | DECORATIVE<br>PAVEMENT                   |                                                     | STANDARD DUTY<br>ASPHALT<br>PAVEMENT  |
|        |                                          | + + + +<br>+ + + +<br>+ + + +<br>+ + + +<br>+ + + + | LANDSCAPE/<br>PLANTER AREA            |

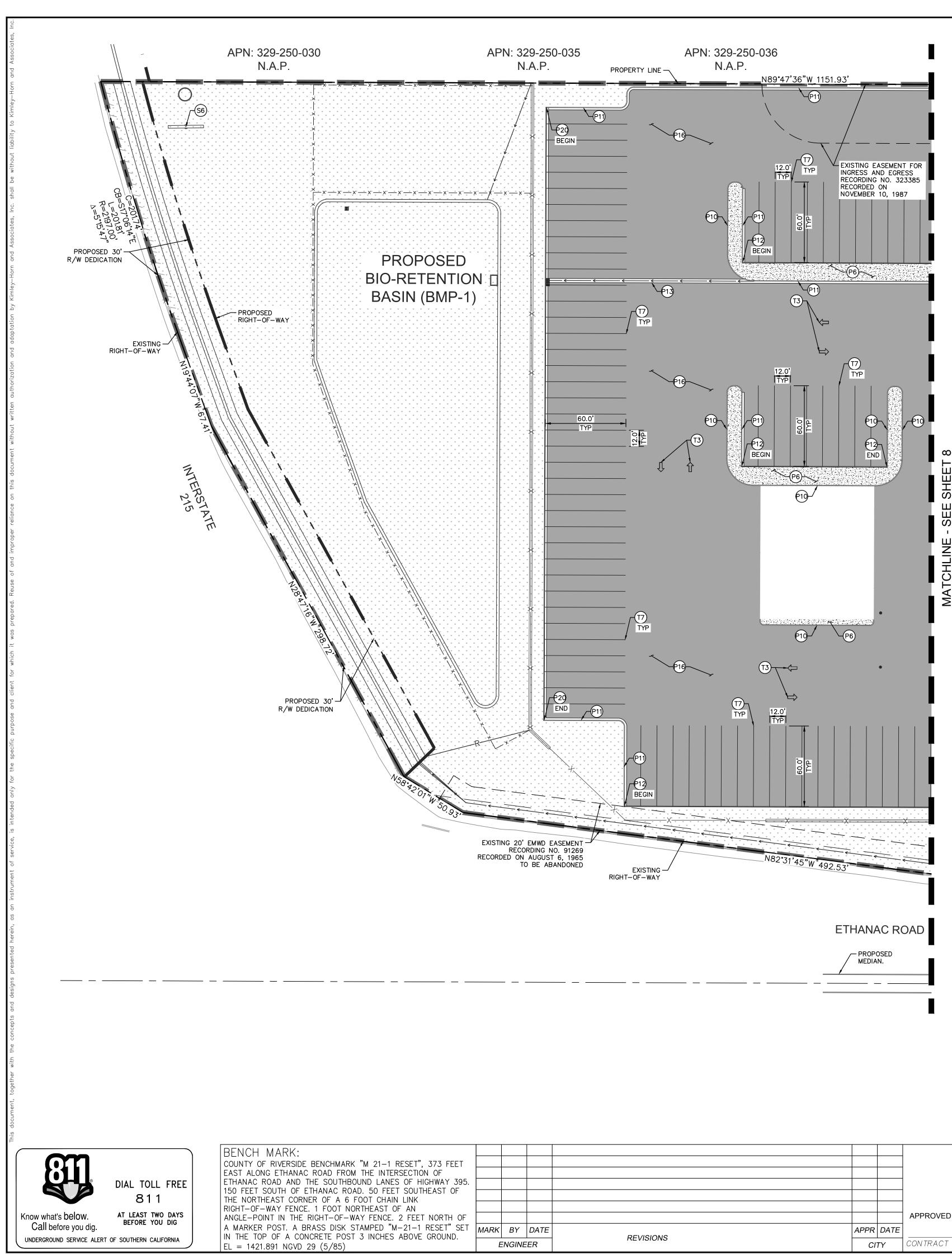


# **Simley Worn**


THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030


R.C.E 78274 2/28/2022 R.C.E 78274

Ilin Mark AT


HORIZONTAL CONTROL PLAN PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:

| 5          |
|------------|
| OF 16 SHTS |





|           |      |      | CITY OF PERRIS              | DROFESS/OW        | K        |
|-----------|------|------|-----------------------------|-------------------|----------|
|           |      |      |                             | SHEA-MICHAEL ANTI | 765      |
|           |      |      | APPROVED BY:                | RCE NO. 78274     | PREPARED |
| REVISIONS | APPR | DATE |                             | OF CALIFOU        |          |
| REVISIONS | С    | ITY  | CONTRACT CITY ENGINEER DATE |                   | SHEA-MIC |



|           |            | CITY OF PERRIS | ROFESS/ONAL CO                                               | Kimle                      |
|-----------|------------|----------------|--------------------------------------------------------------|----------------------------|
|           |            | APPROVED BY:   | SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>RCE NO. 78274<br>▼ | 765 THE CITY DRIVI<br>PHON |
| REVISIONS | APPR<br>CI | 4              | CIVIL FOR                                                    | SHEA-MICHAEL ANTI          |

| LEGEND |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|        |                     | No. of the State o |                                      |
|        | PROPERTY LINE CIVIL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD DUTY<br>CONCRETE            |
|        | LIMITS OF WORK      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAVEMENT                             |
|        | CENTER LINE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEAVY DUTY                           |
|        | SETBACKS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONCRETE                             |
|        | EASEMENT LINE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAVEMENT                             |
|        | ACCESSIBLE ROUTE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEAVY DUTY<br>ASPHALT                |
| xxx x  | FENCE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAVEMENT                             |
|        | DETECTABLE WARNINGS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD DUTY<br>ASPHALT<br>PAVEMENT |
|        | DECORATIVE PAVEMENT | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LANDSCAPE/<br>PLANTER AREA           |

## PAVEMENT NOTES

P16" REINFORCED CONCRETE PAD FOR AUTO CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE AUTO CANOPY. ASPHALT PAVING ON ALL (4) SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. SEE DETAIL X SHEET X, INSTALLED BY CONTRACTOR.

P2 8" REINFORCED CONCRETE PAD FOR TRUCK CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE TRUCK CANOPY. ASPHALT PAVING ON BOTH SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. CONCRETE PAD FOR THE TRUCK CANOPY MUST DRAIN TO CATCH BASIN. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P3)8" REINFORCED CONCRETE PAD AT TANK FARM. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P4)8" REINFORCED CONCRETE PAD TRASH ENCLOSURE. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P5)6" REINFORCED CONCRETE PARKING APRON AT PARKING SPACES IN FRONT OF BUILDING. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P6) 4" REINFORCED CONCRETE SIDEWALK. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

P7 7'-0" X 7'-0" X 6" REINFORCED CONCRETE PAD FOR ELECTRICAL TRANSFORMER. CONTRACTOR TO COORDINATE WITH UTILITY COMPANY FOR SIZE AND REINFORCING REQUIREMENTS. INSTALLED BY CONTRACTOR.

(P8)8" REINFORCED CONCRETE PAD AT OIL/WATER SEPARATOR. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P9) SEE BUILDING PLANS FOR AST AND BIO SHED FOUNDATION DESIGN.

(P19) STANDARD DUTY 6" CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P1) STANDARD DUTY CURB AND GUTTER. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(12) HEAVY DUTY CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P13) INSTALL RIBBON GUTTER PER DETAIL X, SHEET X.

(1) 0" ELEVATION CURB. SEE GRADING PLANS FOR DETAILS AND SPECIFICATIONS.

(15)8" REINFORCED CONCRETE RAMP FOR CAT SCALE.

(16) construct heavy duty asphalt pavement per detail x sheet x.

(1) construct standard duty asphalt pavement detail x sheet x.

(18) CONSTRUCT THICKENED EDGE PER DETAIL X, SHEET X.

(19) CONSTRUCT CONCRETE WALK-OFF PER DETAIL X, SHEET X.

(2) HEAVY DUTY CURB AND GUTTER PER DETAIL X, SHEET X.

## (P2) DECORATIVE PAVEMENT

STRIPING NOTES

(T1)INSTALL ACCESSIBLE PATH OF TRAVEL STRIPING.

INSTALL ACCESSIBLE STRIPING PARKING STALL AND ACCESSIBLE PARKING SYMBOL.

(T3) ALL DIRECTIONAL AND PARKING STRIPING TO BE SAFETY YELLOW-UNLESS NOTED OTHERWISE (TYP).

(T4) STOP LINE INSTALLED BY CONTRACTOR.

5'-0" x 20'-0" PASSENGER DROP-OFF/LOADING ZONE. TRAFFIC STRIPING 4" WIDE PAINTED (SAFETY YELLOW) PARALLEL STRIPES AT 16" O.C. FURNISHED AND INSTALLED BY CONTRACTOR.

 $(\overline{16})$ 4" yellow double hairpin striping, typ. (color per city code).

 $(\overline{17})$ 4" yellow painted solid line, typ. (color per city code).

(18) PROPOSED "PARKING FOR SERVICE ISLAND USE ONLY." PAVEMENT MARKING.

(T9) PROPOSED "CLEAN AIR/ VAN POOL." PAVEMENT MARKING.

TIO PROPOSED FUTURE EVCS PARKING STALLS.

(T11) PROPOSED "ENTRANCE ONLY" PAVEMENT MARKING

(12) PROPOSED "EXIT ONLY" PAVEMENT MARKING.

## SIGNING NOTES

(S1) INSTALL ACCESSIBLE PARKING STALL SIGN PER DETAIL X SHEET X AND SINGLE BASE SIGN POST PER DETAIL X SHEET X.

(S2) install van accessible parking stall sign per detail x sheet x and single base sign post per detail x sheet x.

(\$3) "PASSENGER LOADING ZONE ONLY" SIGN FURNISHED AND INSTALLED BY CONTRACTOR SHALL BE WALL MOUNTED.

(S4) "STOP SIGN" SIGN INSTALLED BY CONTRACTOR.

55 "PED-XING" SIGN FURNISHED AND INSTALLED BY CONTRACTOR.

(\$6) SEE BUILDING PLANS DRAWINGS FOR ALL OTHER SIGNAGE.

## RESTAURANT "DRIVE-THRU" (INTERNALLY ILLUMINATED) DIRECTIONAL SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(58) "DRIVE-THRU CLEARANCE 9 FT. 6 IN." SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION INSTALLED BY CONTRACTOR.

(S9) RESTAURANT PREVIEW BOARD (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(510) "RESTAURANT" MENU BOARD (INTERNALLY ILLUMINATED) AND INTERCOM SYSTEM FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(S11) "THANK YOU / DO NOT ENTER" DIRECTIONAL SIGN (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

## GENERAL PAVING NOTES

ALL MANHOLES MUST BE SET 2" HIGHER THAN PAVING TO PROVIDE A CROWN IN A 24"Ø AREA AROUND EACH MANHOLE.

2. SUB-BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN

1.5% OF OPTIMUM. 3. STONE BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN

1.5% OF OPTIMUM. 4. PRIOR TO INSTALLING BITUMINOUS PAVING CONTRACTOR IS TO PROOF-ROLL SUB-BASE USING HEAVY, PNEUMATIC-TIRED ROLLERS TO LOCATE AREAS THAT ARE UNSTABLE OR THAT REQUIRE

FURTHER COMPACTION. NOTIFY CONSTRUCTION MANAGER IN WRITING OF ANY UNSATISFACTORY CONDITIONS. DO NOT BEGIN PAVING INSTALLATION UNTIL THESE CONDITIONS HAVE BEEN SATISFACTORILY CORRECTED. 5. ASPHALT PAVING @ EDGE OF CONCRETE PAD FOR THE TRUCK CANOPY SHOULD BE LAID @1/4"

HIGHER THAN CONCRETE PAD ON EXIT SIDE CANOPY. 6. CONCRETE COLLAR IS REQUIRED FOR ALL STRUCTURES IN

R.C.E 78274 DATE

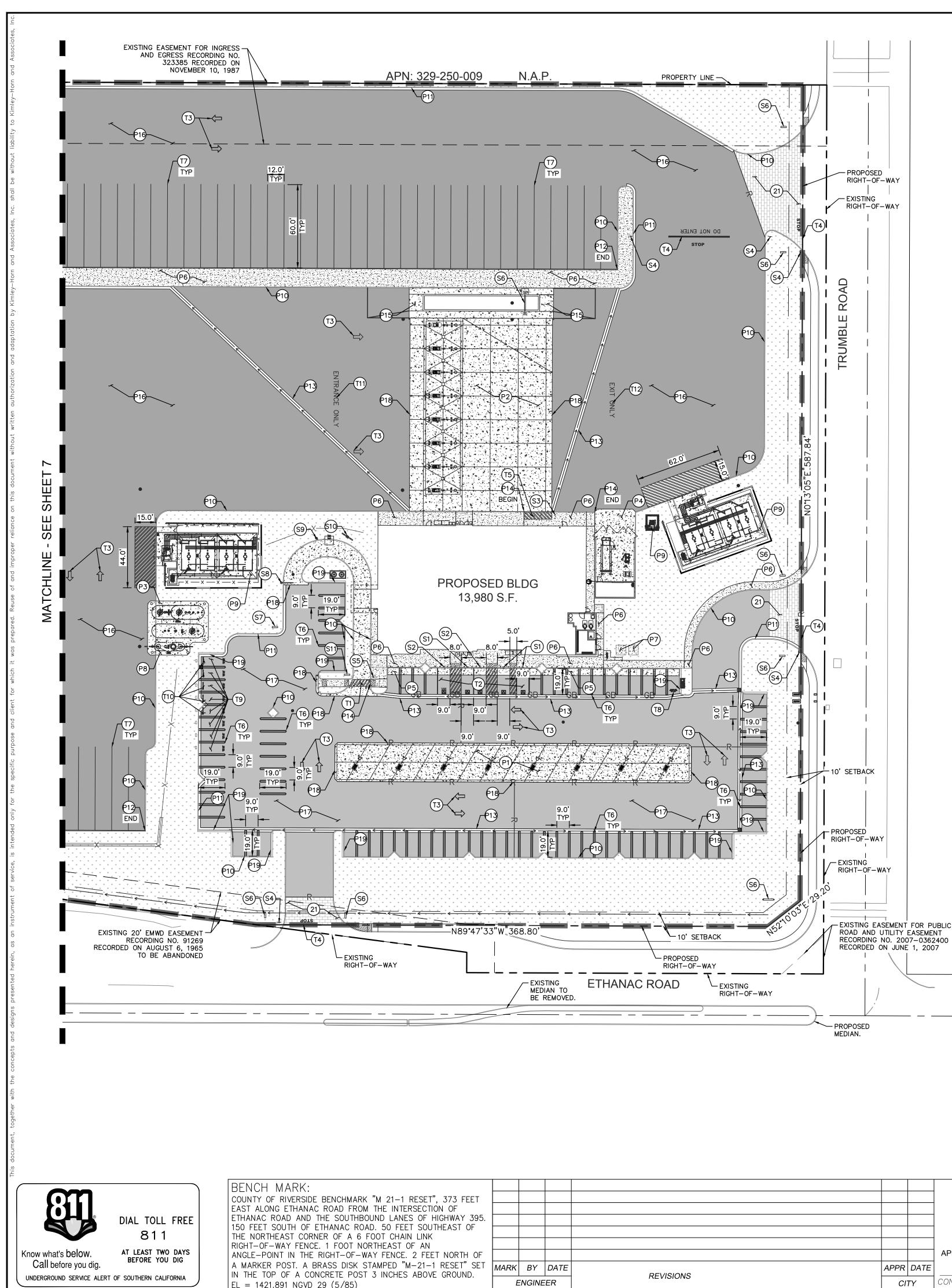


PAVEMENT.

la Marx A



NORTH


GRAPHIC SCALE IN FEET

40

1" = 40'

WHEN PRINTED AT FULL SIZE (24"X36")

20



|           |      |      | CITY OF PERRIS              | NO PROFESS/ONAL                                         | K        |
|-----------|------|------|-----------------------------|---------------------------------------------------------|----------|
|           |      |      |                             | SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>RCE NO. 78274 | 765      |
|           |      |      | APPROVED BY:                | CIVIL ON                                                | PREPARED |
|           | APPR | DATE |                             | OF CALLED                                               |          |
| REVISIONS | CI   | ΓY   | CONTRACT CITY ENGINEER DATE |                                                         | SHEA-MI  |
|           |      |      |                             |                                                         |          |

| LEGEND  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
|         | PROPERTY LINE CIVIL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STANDARD DUTY                        |
|         | LIMITS OF WORK      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONCRETE<br>PAVEMENT                 |
|         | CENTER LINE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEAVY DUTY                           |
|         | SETBACKS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONCRETE                             |
|         | EASEMENT LINE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAVEMENT                             |
|         | ACCESSIBLE ROUTE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEAVY DUTY                           |
|         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASPHALT                              |
| x x x x | FENCE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAVEMENT                             |
|         | DETECTABLE WARNINGS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STANDARD DUTY<br>ASPHALT<br>PAVEMENT |
|         | DECORATIVE PAVEMENT | •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         •           •         •         •         •         • | LANDSCAPE/<br>PLANTER AREA           |

## PAVEMENT NOTES

(P1)6" REINFORCED CONCRETE PAD FOR AUTO CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE AUTO CANOPY. ASPHALT PAVING ON ALL (4) SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. SEE DETAIL X SHEET X, INSTALLED BY CONTRACTOR.

P2 8" REINFORCED CONCRETE PAD FOR TRUCK CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE TRUCK CANOPY. ASPHALT PAVING ON BOTH SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. CONCRETE PAD FOR THE TRUCK CANOPY MUST DRAIN TO CATCH BASIN. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P3)8" REINFORCED CONCRETE PAD AT TANK FARM. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

 $\mathbb{P}_{4}$ 8" REINFORCED CONCRETE PAD TRASH ENCLOSURE. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

956" REINFORCED CONCRETE PARKING APRON AT PARKING SPACES IN FRONT OF BUILDING. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P6)4" REINFORCED CONCRETE SIDEWALK. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

P7 7'-0" X 7'-0" X 6" REINFORCED CONCRETE PAD FOR ELECTRICAL TRANSFORMER. CONTRACTOR TO COORDINATE WITH UTILITY COMPANY FOR SIZE AND REINFORCING REQUIREMENTS. INSTALLED BY CONTRACTOR.

(P8)8" REINFORCED CONCRETE PAD AT OIL/WATER SEPARATOR. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P9) SEE BUILDING PLANS FOR AST AND BIO SHED FOUNDATION DESIGN.

(19) STANDARD DUTY 6" CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P1) STANDARD DUTY CURB AND GUTTER. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(12) HEAVY DUTY CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(1) INSTALL RIBBON GUTTER PER DETAIL X, SHEET X.

0" ELEVATION CURB. SEE GRADING PLANS FOR DETAILS AND SPECIFICATIONS.

(1) 8" REINFORCED CONCRETE RAMP FOR CAT SCALE.

CONSTRUCT HEAVY DUTY ASPHALT PAVEMENT PER DETAIL X SHEET X.

CONSTRUCT STANDARD DUTY ASPHALT PAVEMENT DETAIL X SHEET X.

CONSTRUCT THICKENED EDGE PER DETAIL X, SHEET X.

19 CONSTRUCT CONCRETE WALK-OFF PER DETAIL X, SHEET X.

122 HEAVY DUTY CURB AND GUTTER PER DETAIL X, SHEET X.

(2) DECORATIVE PAVEMENT

## STRIPING NOTES

(1) INSTALL ACCESSIBLE PATH OF TRAVEL STRIPING.

(T2)INSTALL ACCESSIBLE STRIPING PARKING STALL AND ACCESSIBLE PARKING SYMBOL.

 $(\overline{\mathbf{13}})$  all directional and parking striping to be safety yellow-unless noted otherwise (TYP).

(T4) STOP LINE INSTALLED BY CONTRACTOR.

(15)5'-0" X 20'-0" PASSENGER DROP-OFF/LOADING ZONE. TRAFFIC STRIPING 4" WIDE PAINTED (SAFETY YELLOW) PARALLEL STRIPES AT 16" O.C. FURNISHED AND INSTALLED BY CONTRACTOR.

 $(\overline{16})$ 4" yellow double hairpin striping, typ. (color per city code).

 $(\overline{17})$ 4" yellow painted solid line, typ. (color per city code).

(T8) PROPOSED "PARKING FOR SERVICE ISLAND USE ONLY." PAVEMENT MARKING.

(T9) PROPOSED "CLEAN AIR/ VAN POOL." PAVEMENT MARKING.

(1) PROPOSED FUTURE EVCS PARKING STALLS.

(T1) PROPOSED "ENTRANCE ONLY" PAVEMENT MARKING (T12) PROPOSED "EXIT ONLY" PAVEMENT MARKING.

## SIGNING NOTES

(S1) install accessible parking stall sign per detail x sheet x and single base sign post per detail x sheet x.

 $(\tilde{s2})$  install van accessible parking stall sign per detail x sheet x and single base sign post per detail x sheet x.

(\$3) "PASSENGER LOADING ZONE ONLY" SIGN FURNISHED AND INSTALLED BY CONTRACTOR SHALL BE WALL MOUNTED.

(\$4) "STOP SIGN" SIGN INSTALLED BY CONTRACTOR.

 $\overline{S5}$  "PED-XING" SIGN FURNISHED AND INSTALLED BY CONTRACTOR.

S6 SEE BUILDING PLANS DRAWINGS FOR ALL OTHER SIGNAGE.

## RESTAURANT "DRIVE-THRU" (INTERNALLY ILLUMINATED) DIRECTIONAL SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

"DRIVE-THRU CLEARANCE 9 FT. 6 IN." SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION INSTALLED BY CONTRACTOR.

RESTAURANT PREVIEW BOARD (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.
 "RESTAURANT" MENU BOARD (INTERNALLY ILLUMINATED) AND INTERCOM SYSTEM FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER.

"RESTAURANT" MENU BOARD (INTERNALLY ILLUMINATED) AND INTERCOM SYSTEM FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(SI) "THANK YOU / DO NOT ENTER" DIRECTIONAL SIGN (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

## **GENERAL PAVING NOTES**

1. ALL MANHOLES MUST BE SET 2" HIGHER THAN PAVING TO PROVIDE A CROWN IN A 24"Ø AREA AROUND EACH MANHOLE.

2. SUB-BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN

1.5% OF OPTIMUM. 3. STONE BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN

 1.5% OF OPTIMUM.
 PRIOR TO INSTALLING BITUMINOUS PAVING CONTRACTOR IS TO PROOF-ROLL SUB-BASE USING HEAVY, PNEUMATIC-TIRED ROLLERS TO LOCATE AREAS THAT ARE UNSTABLE OR THAT REQUIRE

FURTHER COMPACTION. NOTIFY CONSTRUCTION MANAGER IN WRITING OF ANY UNSATISFACTORY CONDITIONS. DO NOT BEGIN PAVING INSTALLATION UNTIL THESE CONDITIONS HAVE BEEN SATISFACTORILY CORRECTED. 5. ASPHALT PAVING @ EDGE OF CONCRETE PAD FOR THE TRUCK CANOPY SHOULD BE LAID @1/4"

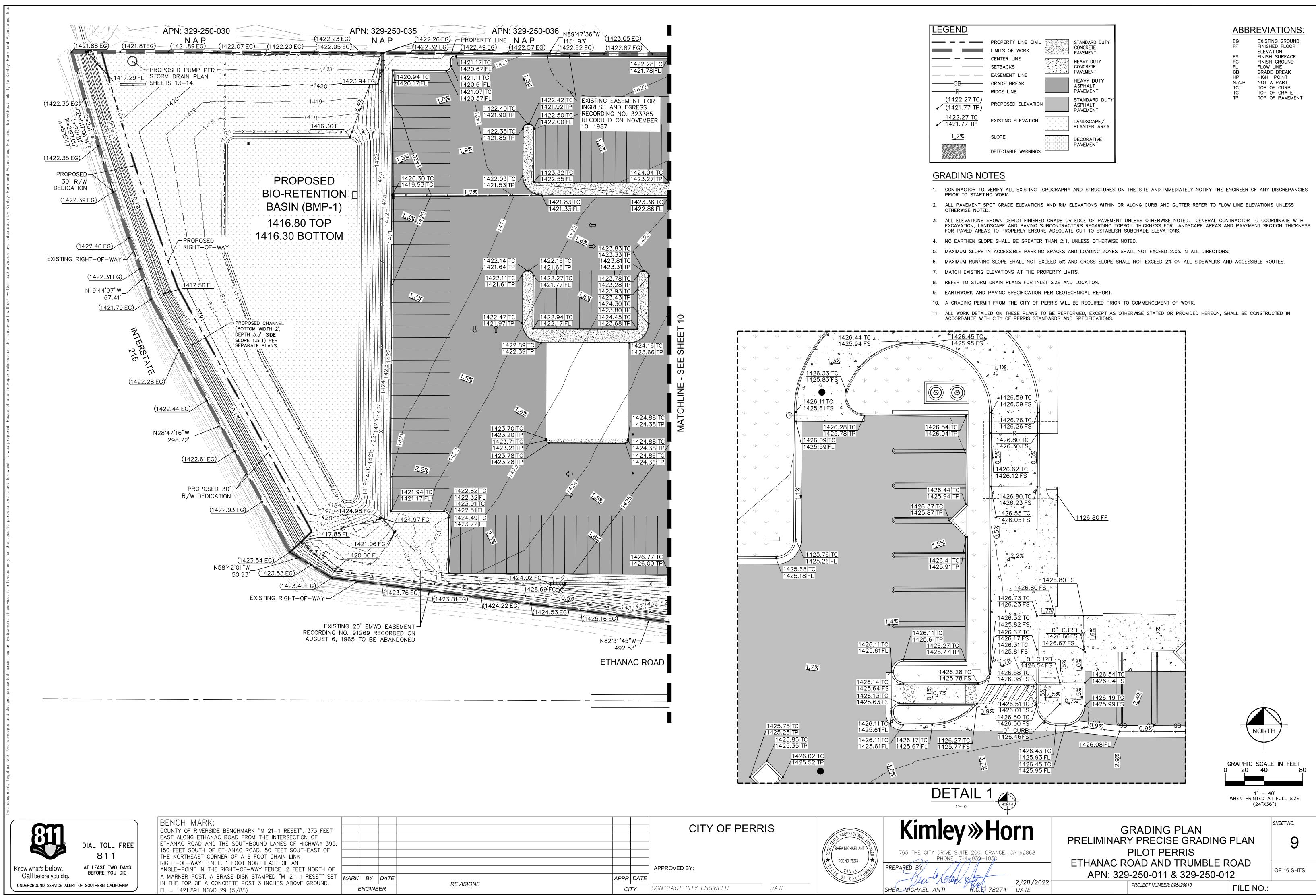
HIGHER THAN CONCRETE PAD ON EXIT SIDE CANOPY. 6. CONCRETE COLLAR IS REQUIRED FOR ALL STRUCTURES IN



PAVEMENT.

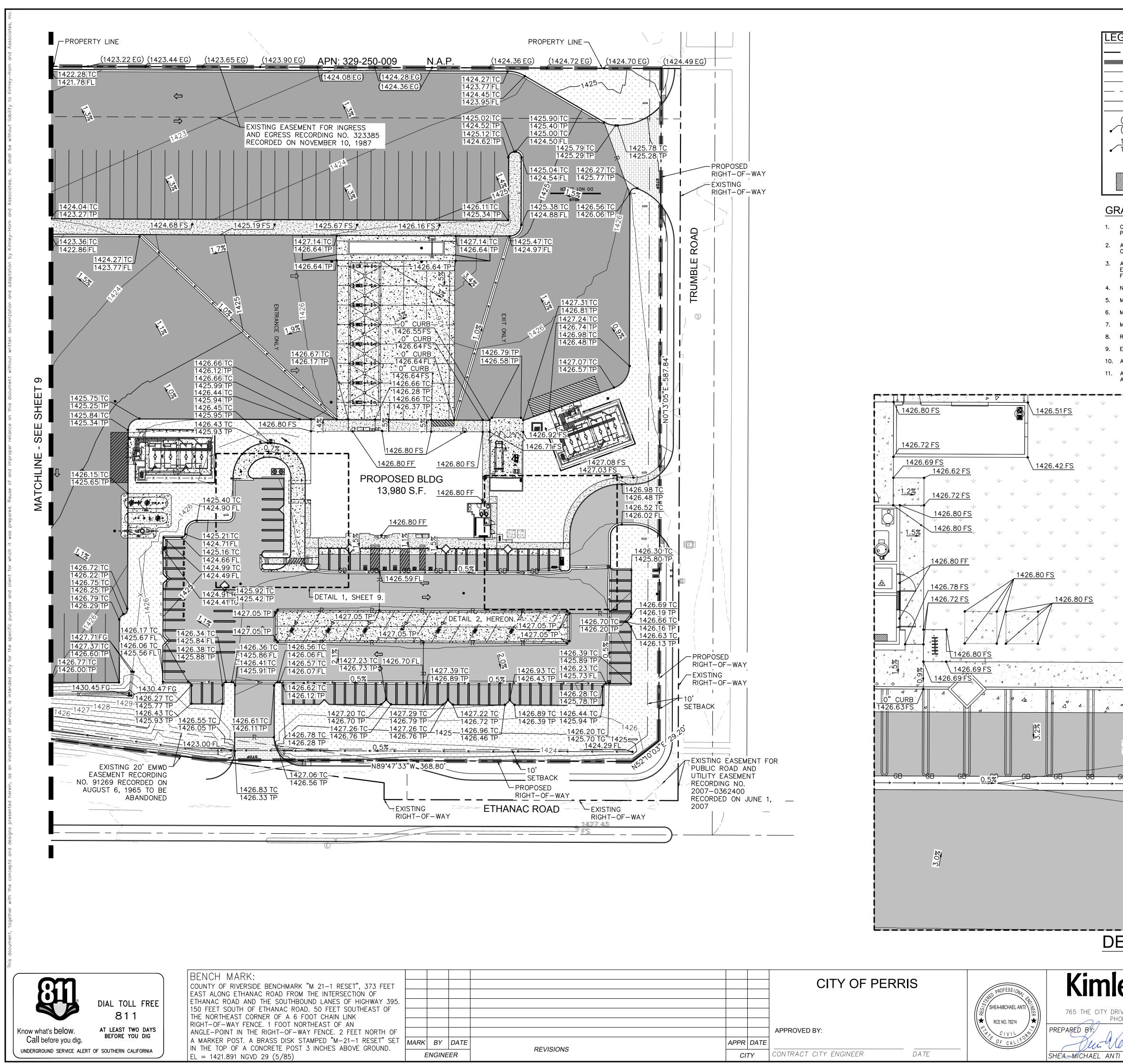


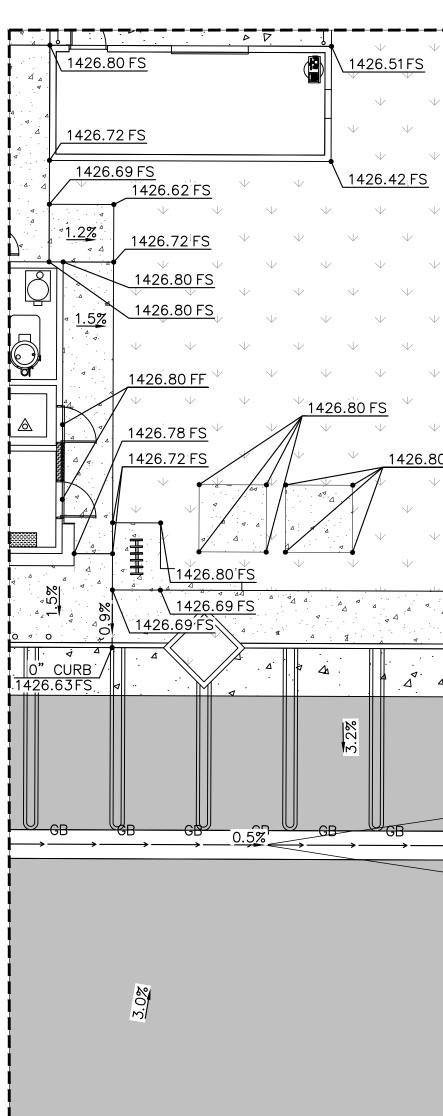
NORTH


GRAPHIC SCALE IN FEET

1" = 40'

WHEN PRINTED AT FULL SIZE (24"X36")


40


20



|           |            |            | CITY OF PERRIS | ROFESS/ONAL C                                                | K        |
|-----------|------------|------------|----------------|--------------------------------------------------------------|----------|
|           |            |            | APPROVED BY:   | SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>RCE NO. 78274<br>★ | 765      |
| REVISIONS | APPR<br>CI | DATE<br>TY |                | OF CALLEOR                                                   | SHEA-MIC |

| LEGEND                       |                                            |                                       |  |
|------------------------------|--------------------------------------------|---------------------------------------|--|
|                              | PROPERTY LINE CIVIL                        | STANDARD DUTY<br>CONCRETE<br>PAVEMENT |  |
|                              | CENTER LINE<br>SETBACKS                    | HEAVY DUTY<br>CONCRETE<br>PAVEMENT    |  |
| GB<br>                       | EASEMENT LINE<br>GRADE BREAK<br>RIDGE LINE | HEAVY DUTY<br>ASPHALT<br>PAVEMENT     |  |
| (1422.27 TC)<br>(1421.77 TP) | PROPOSED ELEVATION                         | STANDARD DUTY<br>ASPHALT<br>PAVEMENT  |  |
| 1422.27 TC<br>1421.77 TP     | EXISTING ELEVATION                         | LANDSCAPE/<br>PLANTER AREA            |  |
| <u>1.2%</u>                  | SLOPE                                      | DECORATIVE<br>PAVEMENT                |  |
|                              | DETECTABLE WARNINGS                        |                                       |  |
| GRADING NO                   | DTES                                       |                                       |  |

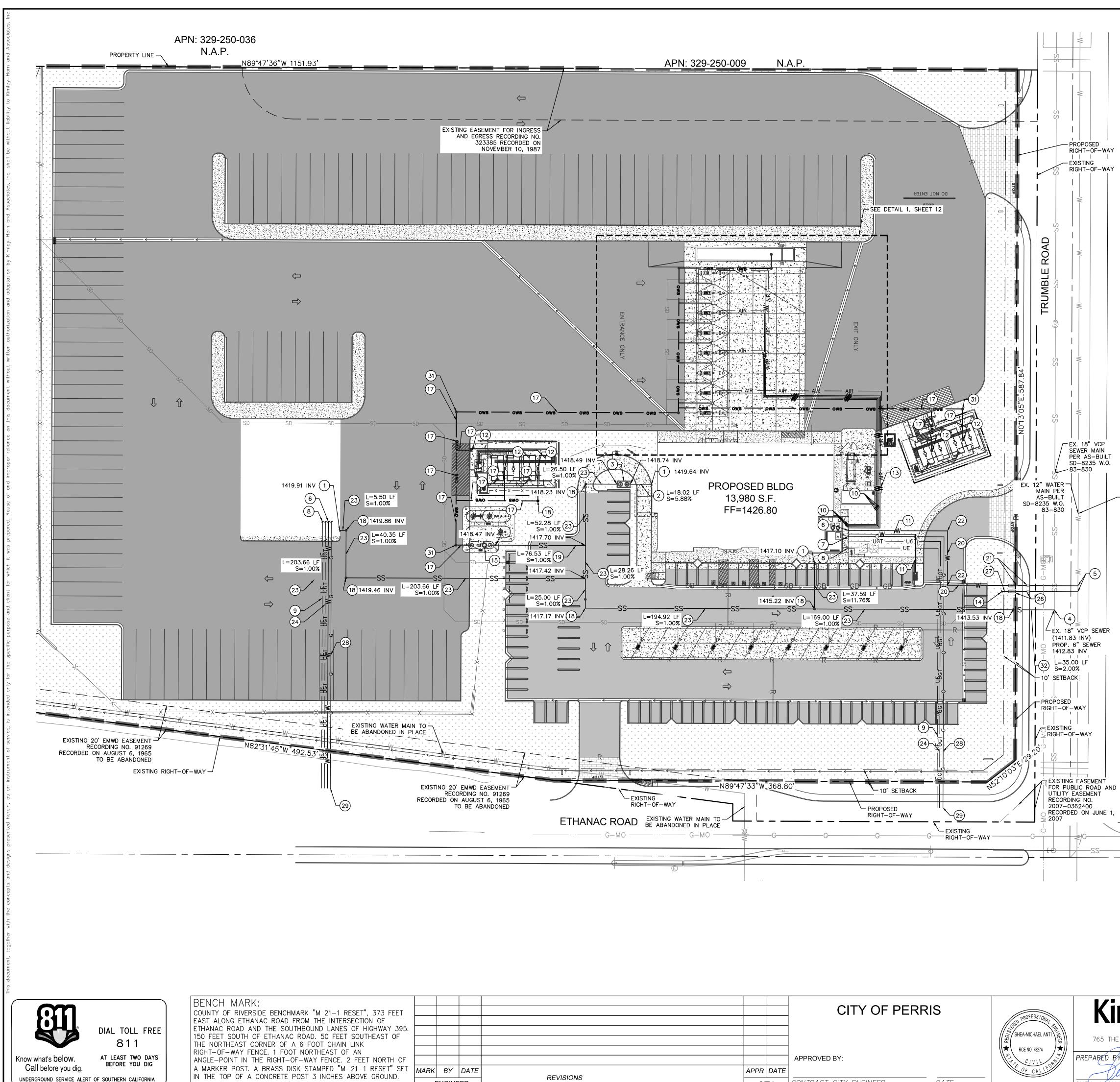




Ill aller A

2/28/2022

R.C.E 78274 DATE


| LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABBREVIATIONS:                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPERTY LINE CIVIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STANDARD DUTY         CONCRETE         PAVEMENT         HEAVY DUTY         CONCRETE         PAVEMENT         HEAVY DUTY         ASPHALT         PAVEMENT         STANDARD DUTY         ASPHALT         PAVEMENT         LANDSCAPE/         PLANTER AREA         DECORATIVE                                                                                                                                                                                      | EG EXISTING GROUND<br>FF FINISHED FLOOR<br>ELEVATION<br>FS FINISH SURFACE<br>FG FINISH GROUND<br>FL FLOW LINE<br>GB GRADE BREAK<br>HP HIGH POINT<br>N.A.P NOT A PART<br>TC TOP OF CURB<br>TG TOP OF GRATE<br>TP TOP OF PAVEMENT |
| DETECTABLE WARNINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |
| <ul> <li>PRIOR TO STARTING WORK.</li> <li>ALL PAVEMENT SPOT GRADE ELEVATIONS AN OTHERWISE NOTED.</li> <li>ALL ELEVATIONS SHOWN DEPICT FINISHED GF EXCAVATION, LANDSCAPE AND PAVING SUBC FOR PAVED AREAS TO PROPERLY ENSURE A</li> <li>NO EARTHEN SLOPE SHALL BE GREATER TH/</li> <li>MAXIMUM SLOPE IN ACCESSIBLE PARKING SF</li> <li>MAXIMUM RUNNING SLOPE SHALL NOT EXCEE</li> <li>MATCH EXISTING ELEVATIONS AT THE PROPE</li> <li>REFER TO STORM DRAIN PLANS FOR INLET S</li> <li>EARTHWORK AND PAVING SPECIFICATION PEF</li> <li>A GRADING PERMIT FROM THE CITY OF PERF</li> </ul> | ND RIM ELEVATIONS WITHIN OR ALONG CURB AN<br>RADE OR EDGE OF PAVEMENT UNLESS OTHERWIS<br>CONTRACTORS REGARDING TOPSOIL THICKNESS F<br>ADEQUATE CUT TO ESTABLISH SUBGRADE ELEVA<br>AN 2:1, UNLESS OTHERWISE NOTED.<br>PACES AND LOADING ZONES SHALL NOT EXCEED<br>ED 5% AND CROSS SLOPE SHALL NOT EXCEED<br>ERTY LIMITS.<br>SIZE AND LOCATION.<br>R GEOTECHNICAL REPORT.<br>RIS WILL BE REQUIRED PRIOR TO COMMENCEME<br>RE PERFORMED, EXCEPT AS OTHERWISE STATED | ) 2.0% IN ALL DIRECTIONS.<br>2% ON ALL SIDEWALKS AND ACCESSIBLE ROUTES.                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1426.37 TC<br>1425.87 FL                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |
| <u>1426.</u><br>1426.<br>1426.<br>1426.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63 TC<br>13 TP<br>60 TC                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |
| 1426.49 TC       1425.99 FL       PARXING FOR<br>SERVICE ISLAND       0B       GB       GB       1426.29 TC       1425.79 FL       1426.30 TC       1425.80 FL                                                                                                                                                                                                                                                                                                                                                                                                                        | 1425.60 TG<br>0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                 |
| DETAIL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRAPHIC SCALE IN FEET<br>0 $20$ $40$ $80$ $1" = 40'WHEN PRINTED AT FULL SIZE(24"X36")$                                                                                                                                          |
| HE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRADINO<br>PRELIMINARY PRECI<br>PILOT PI<br>ETHANAC ROAD ANI                                                                                                                                                                                                                                                                                                                                                                                                    | S PLAN<br>SE GRADING PLAN 10<br>ERRIS                                                                                                                                                                                           |

OF 16 SHTS

FILE NO.:

APN: 329-250-011 & 329-250-012

PROJECT NUMBER: 095426010



ENGINEER

EL = 1421.891 NGVD 29 (5/85)

|           |           | CITY OF PERRIS | PROFESS/ONA/ STR  | <b>Kimley</b> »Horn                                                   | UTILITY PLAN<br>PRELIMINARY PRECISE GRADING PLAN                     | SHEET NO.  |
|-----------|-----------|----------------|-------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|------------|
|           |           | APPROVED BY:   | SHEA-MICHAEL ANTI | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030 | PILOT PERRIS<br>ETHANAC ROAD AND TRUMBLE ROAD                        |            |
| REVISIONS | APPR DATE | 4              | OF CALLEOR        | SHEA-MICHAEL ANTI R.C.E 78274 2/28/2022<br>DATE                       | APN: 329-250-011 & 329-250-012<br>PROJECT NUMBER: 095426010 FILE NO. | OF 16 SHTS |

| LEGEND |                               |
|--------|-------------------------------|
|        | PROPERTY LINE CIVIL           |
|        | LIMITS OF WORK                |
|        | CENTER LINE                   |
|        | SETBACKS                      |
|        | EASEMENT LINE                 |
| SS     | PROPOSED SANITARY SEWER       |
| SD     | PROPOSED STORM DRAIN PIPE     |
| AIR    | PROPOSED AIR                  |
| W      | PROPOSED WATER PIPE           |
| ows    | PROPOSED OIL WATER SEPARATOR  |
| UGT    | PROPOSED TELEPHONE LINE       |
| UE     | PROPOSED UNDERGROUND ELECTRIC |

## UTILITY PLAN CONSTRUCTION NOTES

- (1) CONTRACTOR TO CONNECT TO 6" BUILDING SANITARY SEWER LINE. (4.00' MIN. BELOW FF)
- 2 CONTRACTOR TO CONNECT 6" BUILDING SANITARY SEWER LINE FROM BUILDING TO THE GREASE TRAP. INVERT ELEVATION AT THE GREASE TRAP OUTLET PER PLAN.
- (3) INSTALL GREASE TRAP. REFER TO MEP PLANS FOR MORE INFORMATION.
- (4) CONNECT INTO EXISTING 18" VCP SEWER MAIN PER EMWD STANDARDS AND SPECIFICATION. GENERAL CONTRACTOR SHALL VERIFY INVERT ELEVATION AT CONNECTION PRIOR TO COMMENCEMENT OF WORK. GENERAL CONTRACTOR TO NOTIFY ENGINEER OF ANY DISCREPANCIES.
- (5) HOT TAP INTO EXISTING 12" WATER MAIN. CONTRACTOR TO COORDINATE WITH UTILITY SERVICE PROVIDER.
- (6) CONTRACTOR TO CONNECT TO 2" WATER SERVICE LINE AT THE BUILDING. WATER SERVICE LINE SHALL BE COPPER.
- (7) CONTRACTOR TO CONNECT TO 3" GAS LINE AT THE BUILDING.
- (8) CONTRACTOR TO INSTALL ELECTRICAL SERVICE LINE FROM ELECTRICAL TRANSFORMER PAD TO BUILDING ELECTRICAL PANELS.
- (9) CONTRACTOR TO INSTALL AND/OR COORDINATE ELECTRICAL SERVICE LINE FROM ELECTRICAL TRANSFORMER TO THE LOCATION WHERE THE LOCAL UTILITY BRINGS SERVICE.
- (10) CONTRACTOR TO INSTALL 3/4" PEX WATER LINES INSIDE OF 2" PVC SLEEVES FROM BUILDING TO TRUCK FREEZE PROOF WATER STAND (FURNISHED AND INSTALLED BY CONTRACTOR) LOCATED AT EVERY OTHER TRUCK FUELING ISLAND. PEX AND PVC SLEEVE TO BE PROVIDED AND INSTALLED BY CONTRACTOR. SEE CIVIL SHEETS FOR DETAILS.
- (11) CONTRACTOR TO INSTALL 1/2" PEX WATER LINE INSIDE OF 2" PVC SLEEVE FROM BUILDING TO AUTO AIR/WATER STAND (TYP. (1) PLACE). PEX AND SLEEVE TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- (12) INSTALL PREFABRICATED TRUCK ISLAND CATCH BASIN 2' BY 2' FOR OIL/WATER SEPARATION.
- (13) CONTRACTOR TO INSTALL 1/2" COPPER AIR LINE FROM AIR COMPRESSOR IN THE YARD MAINTENANCE BUILDING TO THE TRUCK AIR STAND LOCATED AT EVERY OTHER TRUCK FUELING ISLAND. SEE TC SHEETS FOR DETAILS.
- (14) REFER TO LANDSCAPE AND IRRIGATION PLANS FOR CONTINUATION.
- (15) PROPOSED OIL/WATER SEPARATOR.
- (16) CONTRACTOR TO INSTALL 4" SCHEDULE 40 PVC PIPE AND GLUED FITTINGS FROM THE TRUCK CANOPY PAD CATCH BASIN TYPICAL AT EACH DRAIN. NO "FERNCO" TYPE FITTINGS ALLOWED AT ANY PART OF THE OWS PIPING SYSTEM.
- (17) CONTRACTOR TO INSTALL 6" SCHEDULE 40 PVC PIPE AND GLUED FITTINGS FROM 4" PVC CATCH BASIN LINES TO INLET OF OIL/ WATER INTERCEPTOR INVERT ELEVATION AT INTERCEPTOR INLET PER PLAN. NO "FERNCO" TYPE FITTINGS ALLOWED AT ANY PART OF THE OWS PIPING SYSTEM.
- (18) INSTALL SEWER CLEANOUT PER DETAIL 1, SHEET 12.
- (19) CONTRACTOR TO FURNISH AND INSTALL 6" SCHEDULE 40 PVC PIPE AND GLUED FITTINGS FROM OIL/WATER SEPARATOR TO THE SEWER PIPE. INVERT ELEVATION AT OIL/WATER SEPARATOR OUTLET PER PLAN. INVERT ELEVATION AT THE STORM POND INLET PER PLAN. NO "FERNCO" TYPE FITTINGS ALLOWED AT ANY PART OF THE OWS PIPING SYSTEM.
- (20) INSTALL 2-1/2" COPPER WATER SERVICE LINE. MAINTAIN 3' MINIMUM COVER.
- (21) INSTALL WATER METER AND BACKFLOW PREVENTOR. CONTRACTOR TO COORDINATE WITH UTILITY SERVICE PROVIDER.
- (22) INSTALL 90° DOMESTIC WATER PIPE BEND.
- (23) INSTALL 6" SDR-35 PVC AT MINIMUM 1% SLOPE.
- (24) CONTRACTOR TO INSTALL (2) 4" PVC SCH 40 CONDUIT BURIED TO MIN. DEPTH OF 24" W/200 LB. PULL STRING AND CAPPED ON BOTH ENDS FOR TELEPHONE SERVICE, TO LOCATION WHERE LOCAL UTILITY BRINGS SERVICE. MINIMUM 3 FT. SWEEPING RADIUS (NO RIGHT ANGLES), NO MORE THAN THREE 90 DEGREE TURNS WITHOUT A PULL BOX (12"x12"x18" MINIMUM), AND PATHS LONGER THAN 300 FT. WILL REQUIRE A PULL BOX.
- (25) CONTRACTOR TO INSTALL 3" PVC FROM TRUCK SCALE SUMP TO 6" TRUNK LINE TO GRIT CHAMBER.
- (26) INSTALL 1" IRRIGATION METER AND 1.5" BACKFLOW PREVENTOR. CONTRACTOR TO COORDINATE WITH UTILITY SERVICE PURVEYOR.
- (27) INSTALL 1" IRRIGATION WATER SERVICE LINE. CONTRACTOR TO COORDINATE WITH UTILITY SERVICE PURVEYOR.
- (28) PROPOSED GAS LINE. COORDINATE WITH GAS UTILITY COMPANY.
- (29) CONNECT TO EXISTING GAS MAIN BY OTHERS.
- (30) CONTRACTOR TO MAINTAIN A VERTICAL SEPARATION OF A MINIMUM OF 1-FOOT FOR ALL UTILITY CROSSINGS SHOWN ON THIS PLAN PER DETAIL 2, SHEET 12.
- (31) CLEANOUT FOR OIL/WATER SEPARATOR. REFER TO MEP PLANS FOR MORE INFORMATION.
- (32) INSTALL 6" VCP SEWER LATERAL AT MINIMUM 2% SLOPE.

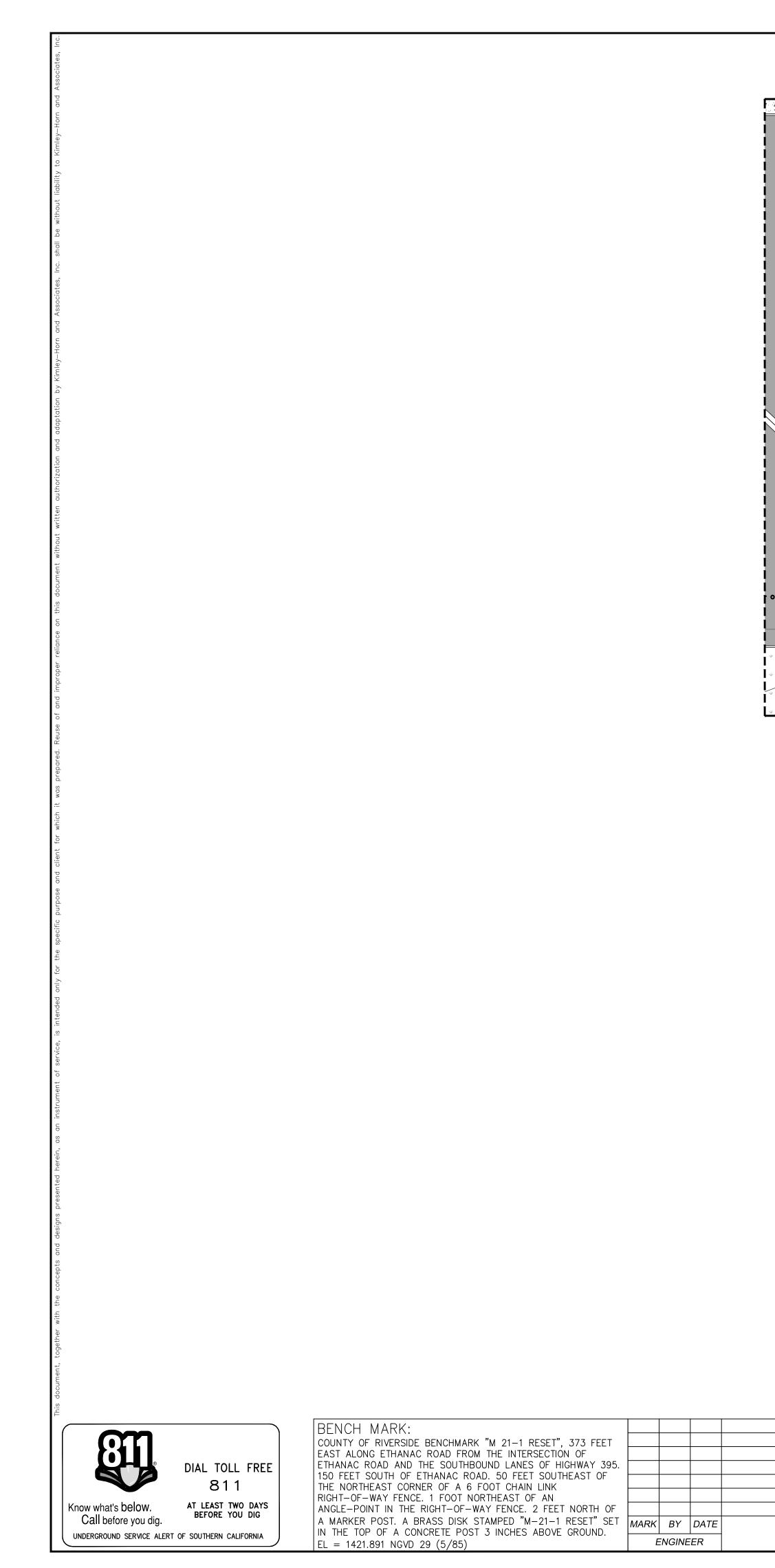
### EXISTING UTILITY NOTES

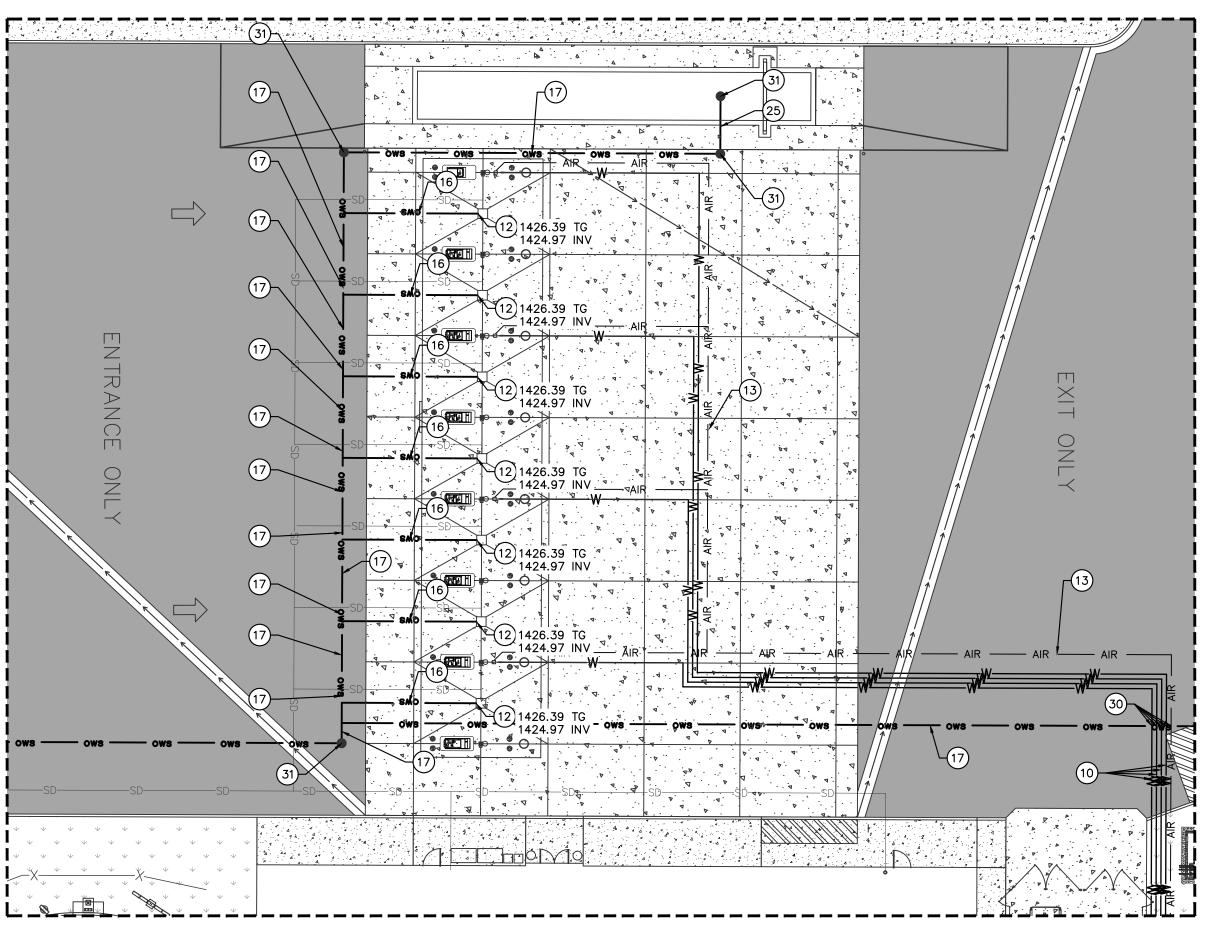
- THE EXISTING UTILITIES SHOWN ON THE PLAN ARE BASED ON AVAILABLE RECORDS. THE CONTRACTOR MUST FIELD DETERMINE THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION. REPORT DISCREPANCIES AND POTENTIAL CONFLICTS WITH PROPOSED UTILITIES TO ENGINEER PRIOR TO INSTALLATION OF ANY PIPING.
- ALL SHUT DOWN OF EXISTING WATER MAIN TO BE DONE BY AND COORDINATED WITH THE CITY UTILITY DIVISION. CONTRACTOR SHALL NOTIFY ALL AFFECTED WATER USERS 72 HOURS IN

### **GENERAL NOTES**

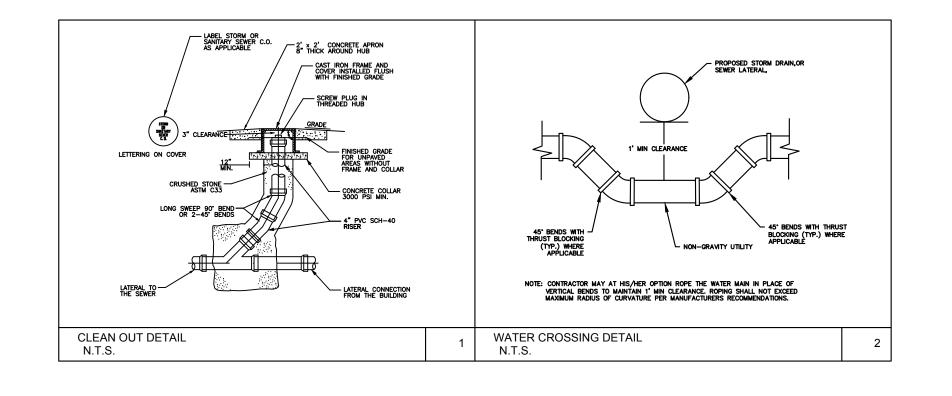
ADVANCE OF SHUT DOWN.

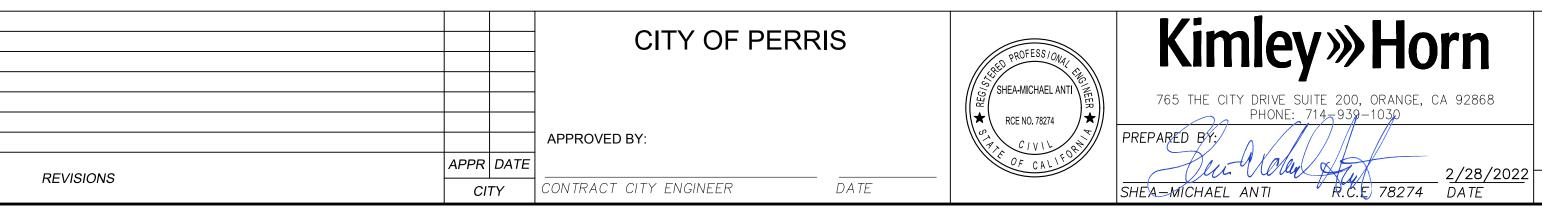
- 1. PRIOR TO ANY WORK PERFORMED IN THE RIGHT-OF-WAY A PERMIT
- FROM THE CITY OF PERRIS IS REQUIRED. 2. ALL CATCH BASIN COVERS/GRATES AND CLEANOUT/MANHOLE
- COVERS EXPOSED TO VEHICULAR LOADS SHALL BE TRAFFIC RATED. 3. FOR TRENCHING, PIPE BEDDING & ROADWAY PAVEMENT REPAIRS
- DETAILS & SPECIFICATIONS, TRENCH AND BACKFILL PER EMWD
- STANDARDS AND SPECIFICATIONS. 4. STUB POINT OF CONNECTION 5' FROM BUILDING. REFER TO MEP
- PLAN FOR CONTINUATION OF BUIDING.
  5. CONTRACTOR TO MAINTAIN A VERTICAL SEPARATION OF A MINIMUM OF 1-FOOT FOR ALL UTILITY CROSSINGS SHOWN ON THIS PLAN PER DETAIL X, SHEET XX.


## WATER AND SEWER UTILITY NOTES


SEE SHEET 2, FOR WATER AND SEWER UTILITY NOTES.

# GRAPHIC SCALE IN FEET 0 20 40 80 1" = 40'


NORTH


WHEN PRINTED AT FULL SIZE (24"X36")

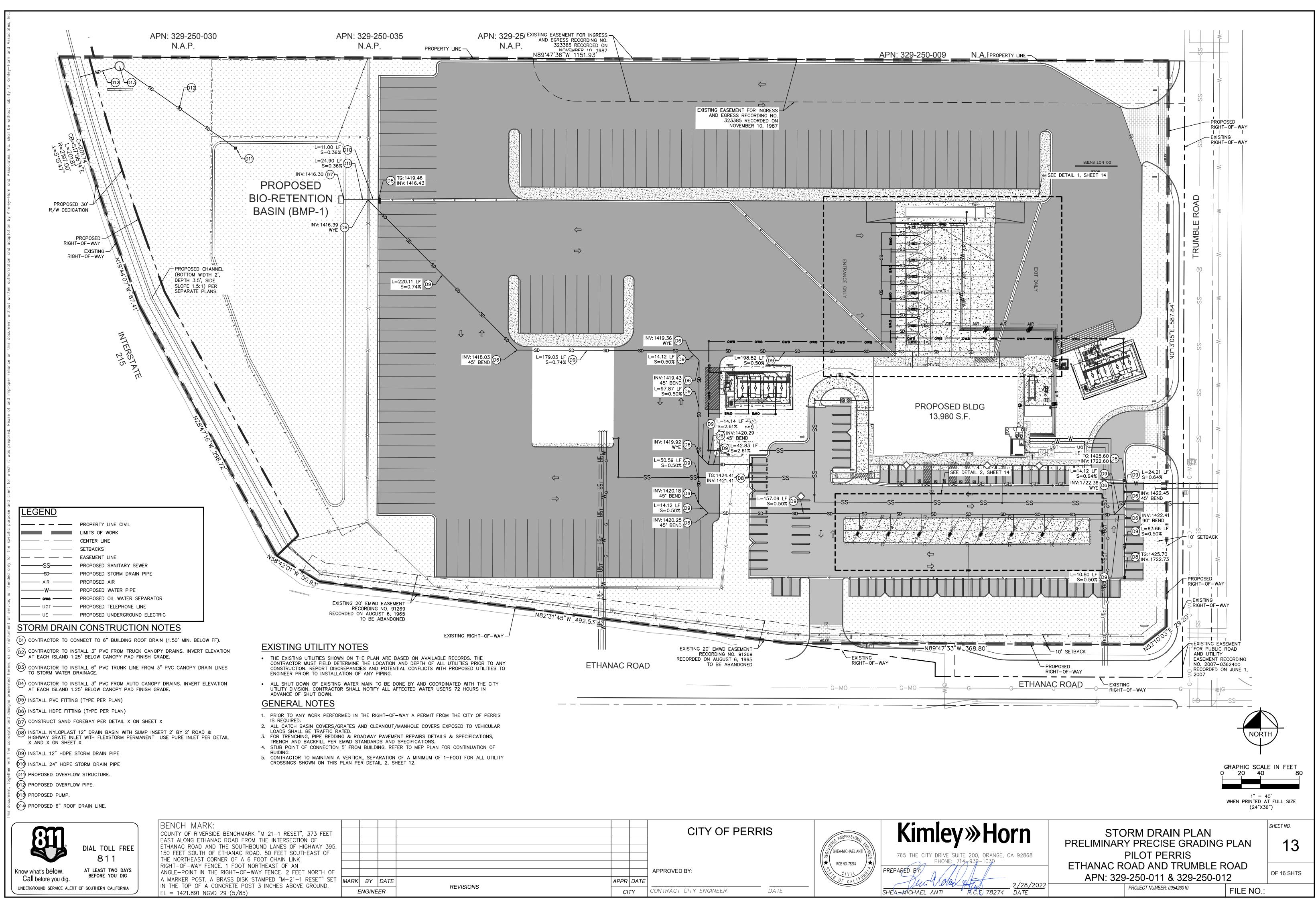




DETAIL 1 1"=20'






| LEGEND |                               |
|--------|-------------------------------|
|        | PROPERTY LINE CIVIL           |
|        | LIMITS OF WORK                |
|        | CENTER LINE                   |
|        | SETBACKS                      |
|        | EASEMENT LINE                 |
| SS     | PROPOSED SANITARY SEWER       |
| SD     | PROPOSED STORM DRAIN PIPE     |
| AIR    | PROPOSED AIR                  |
| W      | PROPOSED WATER PIPE           |
| ows    | PROPOSED OIL WATER SEPARATOR  |
| UGT    | PROPOSED TELEPHONE LINE       |
| UE     | PROPOSED UNDERGROUND ELECTRIC |

UTILITY PLAN BLOW UPS PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:

SHEET NO.

12

OF 16 SHTS

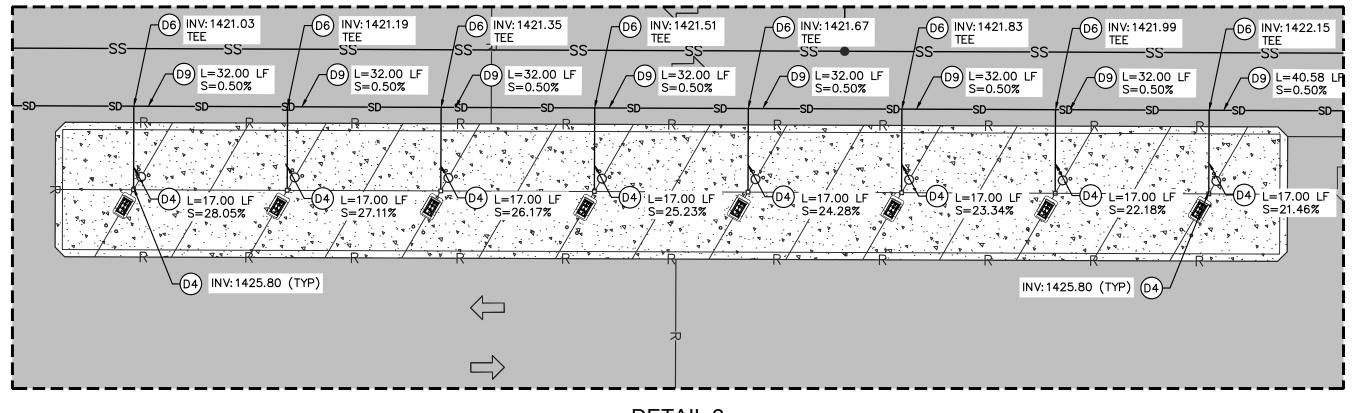


|           |                   | CITY OF PERRIS | ROFESS/ONAL               |
|-----------|-------------------|----------------|---------------------------|
|           |                   | APPROVED BY:   | RCE NO. 78274<br>PREPARED |
| REVISIONS | APPR DATE<br>CITY |                | - CIVIL FOR SHEA-MIC      |

|     | CENTER LINE                                                                                                                              |                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|     | SETBACKS                                                                                                                                 |                                                            |
|     | EASEMENT LINE                                                                                                                            |                                                            |
|     |                                                                                                                                          |                                                            |
|     |                                                                                                                                          |                                                            |
|     | AIR PROPOSED AIR                                                                                                                         |                                                            |
|     | W                                                                                                                                        |                                                            |
|     | OWS PROPOSED OIL WATER SEPARATOR                                                                                                         |                                                            |
|     | UGT PROPOSED TELEPHONE LINE                                                                                                              |                                                            |
|     | UE PROPOSED UNDERGROUND ELECTRIC                                                                                                         |                                                            |
| ST  | ORM DRAIN CONSTRUCTION NOTES                                                                                                             |                                                            |
| 21) | CONTRACTOR TO CONNECT TO 6" BUILDING ROOF DRAIN (1.50' MIN.                                                                              | BELOW FF).                                                 |
| 02) | CONTRACTOR TO INSTALL 3" PVC FROM TRUCK CANOPY DRAINS. IN<br>AT EACH ISLAND 1.25' BELOW CANOPY PAD FINISH GRADE.                         | /ERT ELEVATION                                             |
| 3   | CONTRACTOR TO INSTALL 6" PVC TRUNK LINE FROM 3" PVC CANOP TO STORM WATER DRAINAGE.                                                       | Y DRAIN LINES                                              |
| 94) | CONTRACTOR TO INSTALL 3" PVC FROM AUTO CANOPY DRAINS. INVEAT EACH ISLAND 1.25' BELOW CANOPY PAD FINISH GRADE.                            | ERT ELEVATION                                              |
| 5   | INSTALL PVC FITTING (TYPE PER PLAN)                                                                                                      |                                                            |
| 6   | INSTALL HDPE FITTING (TYPE PER PLAN)                                                                                                     |                                                            |
| 7   | CONSTRUCT SAND FOREBAY PER DETAIL X ON SHEET X                                                                                           |                                                            |
| 8   | INSTALL NYLOPLAST 12" DRAIN BASIN WITH SUMP INSERT 2' BY 2' HIGHWAY GRATE INLET WITH FLEXSTORM PERMANENT USE PURE INL X AND X ON SHEET X |                                                            |
| 9   | INSTALL 12" HDPE STORM DRAIN PIPE                                                                                                        |                                                            |
| 10  | INSTALL 24" HDPE STORM DRAIN PIPE                                                                                                        |                                                            |
| ~   | PROPOSED OVERFLOW STRUCTURE.                                                                                                             |                                                            |
| 12) | PROPOSED OVERFLOW PIPE.                                                                                                                  |                                                            |
| 13  | PROPOSED PUMP.                                                                                                                           |                                                            |
| 14) | PROPOSED 6" ROOF DRAIN LINE.                                                                                                             |                                                            |
|     |                                                                                                                                          |                                                            |
|     | DIAL TOLL FREE EAST ALONG                                                                                                                | RIVERSIDE BENCHMA<br>GETHANAC ROAD FR<br>DAD AND THE SOUTH |
|     |                                                                                                                                          | OUTH OF ETHANAC R<br>EAST CORNER OF A                      |

AT LEAST TWO DAYS

BEFORE YOU DIG


Know what's **below**.

Call before you dig.

UNDERGROUND SERVICE ALERT OF SOUTHERN CALIFORNIA

LEGEND

----- PROPERTY LINE CIVIL LIMITS OF WORK



## EXISTING UTILITY NOTES

- THE EXISTING UTILITIES SHOWN ON THE PLAN ARE BASED ON AVAILABLE RECORDS. THE CONTRACTOR MUST FIELD DETERMINE THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION. REPORT DISCREPANCIES AND POTENTIAL CONFLICTS WITH PROPOSED UTILITIES TO ENGINEER PRIOR TO INSTALLATION OF ANY PIPING.
- ALL SHUT DOWN OF EXISTING WATER MAIN TO BE DONE BY AND COORDINATED WITH THE CITY UTILITY DIVISION. CONTRACTOR SHALL NOTIFY ALL AFFECTED WATER USERS 72 HOURS IN ADVANCE OF SHUT DOWN.
- GENERAL NOTES
- 1. PRIOR TO ANY WORK PERFORMED IN THE RIGHT-OF-WAY A PERMIT FROM THE CITY OF PERRIS
- IS REQUIRED.
   ALL CATCH BASIN COVERS/GRATES AND CLEANOUT/MANHOLE COVERS EXPOSED TO VEHICULAR LOADS SHALL BE TRAFFIC RATED.
- 3. FOR TRENCHING, PIPE BEDDING & ROADWAY PAVEMENT REPAIRS DETAILS & SPECIFICATIONS, TRENCH AND BACKFILL PER EMWD STANDARDS AND SPECIFICATIONS.
- 4. STUB POINT OF CONNECTION 5' FROM BUILDING. REFER TO MEP PLAN FOR CONTINUATION OF BUIDING.
- 5. CONTRACTOR TO MAINTAIN A VERTICAL SEPARATION OF A MINIMUM OF 1-FOOT FOR ALL UTILITY CROSSINGS SHOWN ON THIS PLAN PER DETAIL X, SHEET XX.

| BENCH MARK:                                            |   |
|--------------------------------------------------------|---|
| COUNTY OF RIVERSIDE BENCHMARK "M 21–1 RESET", 373 FEET |   |
| EAST ALONG ETHANAC ROAD FROM THE INTERSECTION OF       |   |
| ETHANAC ROAD AND THE SOUTHBOUND LANES OF HIGHWAY 395.  |   |
| 150 FEET SOUTH OF ETHANAC ROAD. 50 FEET SOUTHEAST OF   | F |
| THE NORTHEAST CORNER OF A 6 FOOT CHAIN LINK            | ┝ |
| RIGHT-OF-WAY FENCE. 1 FOOT NORTHEAST OF AN             | L |
| ANGLE-POINT IN THE RIGHT-OF-WAY FENCE. 2 FEET NORTH OF |   |
| A MARKER POST. A BRASS DISK STAMPED "M-21-1 RESET" SET | 1 |
| IN THE TOP OF A CONCRETE POST 3 INCHES ABOVE GROUND.   |   |
| EL = 1421.891 NGVD 29 (5/85)                           |   |
|                                                        |   |

|   |                          |  |           |                   | CITY OF PERRIS              | ROFESS/ONAL   | Kimle                     |
|---|--------------------------|--|-----------|-------------------|-----------------------------|---------------|---------------------------|
|   |                          |  |           |                   | APPROVED BY:                | RCE NO. 78274 | 765 THE CITY DRIV<br>PHON |
| ٨ | IARK BY DATE<br>ENGINEER |  | REVISIONS | APPR DATE<br>CITY | CONTRACT CITY ENGINEER DATE | OF CALLEON    | SHEA-MICHAEL ANTI         |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                       |
|---------------------------------------------------------------------------------------------------------------|
| L=16.32  LF  014 $L=16.32  LF  014$ $S=29.27%$ $S=26.24%$ $INV: 1425.30 (TYP) (D1)$ $INV: 1425.30 (TYP) (D1)$ |

DETAIL 1 1"=20'

DETAIL 2 1"=20'





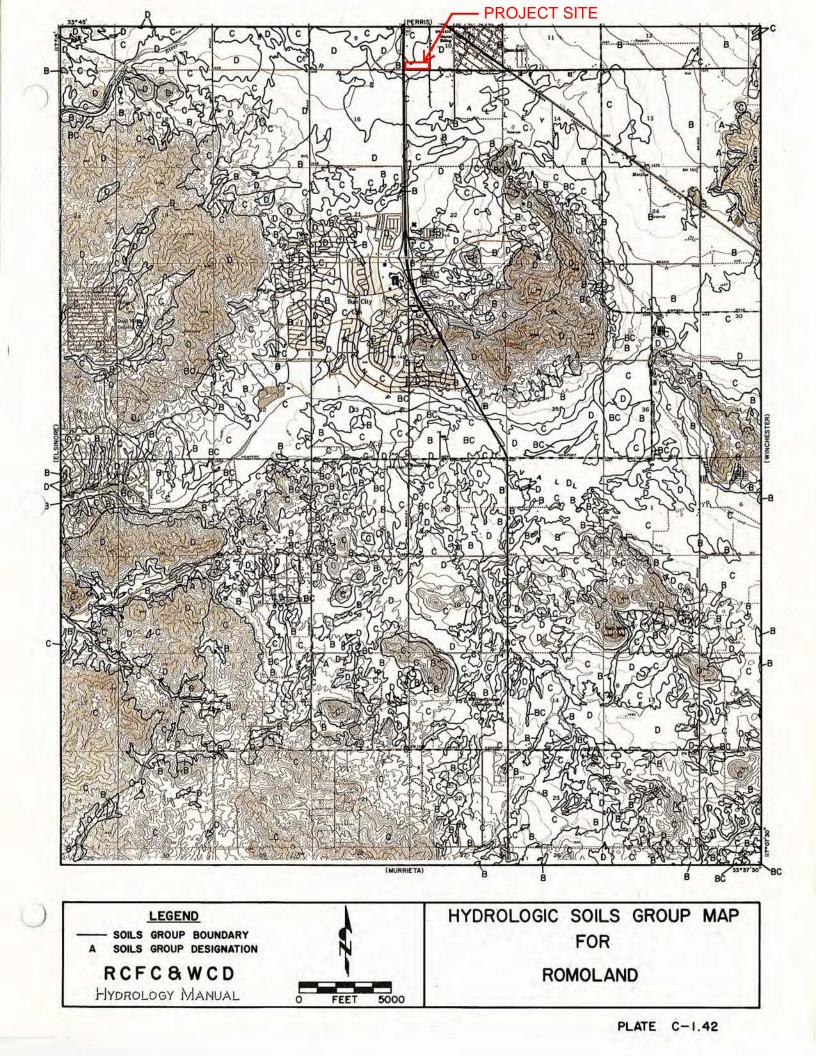
THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030  $\overline{A}$ 

R.C.E 78274 DATE

2/28/2022

Ten Nolan AF

STORM DRAIN PLAN BLOW UPS PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:


SHEET NO.

14

OF 16 SHTS

### Appendix D

Hydrology Manual and Other Reference Material



RAINFALL INTENSITY-INCHES PER HOUR HYDROLOGY Σ C SUNNYMEAD - MORENO WOODCREST Т DURATION DURATION FREQUENCY FREQUENCY C MINUTES MINUTES 10 100 10 100 YEAR YEAR YEAR YEAR 9 2.84 4.16 3.37 5 5 5.30 6 2.59 3.79 6 3.05 4.79 ¥ MANUAL 2.40 7 3.51 7 2.80 4.40 2.25 3.29 8 8 2.60 4.09 C 9 2.12 3.10 9 2.44 3.83 O 2.94 10 2.01 10 2.30 3.62 1.92 2.80 11 11 2.19 3.43 1.83 12 2.68 15 2.08 3.27 13 1.76 2.58 13 1.99 3.13 14 1.70 2.48 14 1.91 3.01 15 2.40 1.64 15 1.84 2.89 1.59 2.32 1.78 16 16 2.79 1.54 2.25 1.72 2.70 17 17 18 1.50 2.19 1.67 2.62 18 19 1.46 2.13 1.62 2.54 19 20 1.42 2.08 50 1.57 2.47 22 1.35 1.98 55 1.49 2.34 24 1.30 1.90 24 5.53 1.42 1.25 26 56 1.82 1.36 2.14 28 1.20 1.76 28 1.31 2.05 30 1.16 1.70 30 1.26 1.98 1.12 32 1.64 32 1.55 1.91 INTENSITY -34 1.09 1.59 34 1.19 1.85 36 1.06 1.55 36 1.14 1.79 38 1.03 1.51 38 1.11 1.74 CURVES 40 1.00 1.47 40 1.07 1.69 . 95 1.39 STANDARD 45 45 1.01 1.58 50 . 90 1.31 50 .95 1.49 . 90 55 .86 1.25 55 1.42 60 .82 1.20 60 .86 1.35 65 . 79 1.15 65 . 82 1.29 DURATION PLATE D-4.1 (6 of 6) 70 .76 1.11 70 .79 1.24 DATA 75 .73 1.07 75 .76 1.19 80 .71 1.04 80 .73 1.15 85 .69 85 1.01 .71 1.11 SLOPE = .500 SLOPE = .550

| ACTUAL IMPERVIOU                               | IS COVER       |                                                           |
|------------------------------------------------|----------------|-----------------------------------------------------------|
| Land Use (1)                                   | Range-Percent  | Recommended Value<br>For Average<br>Conditions-Percent(2) |
| Natural or Agriculture                         | 0 - 10         | 0                                                         |
| Single Family Residential: (3)                 |                |                                                           |
| 40,000 S. F. (1 Acre) Lots                     | 10 <b>-</b> 25 | 20                                                        |
| 20,000 S. F. ( <sup>1</sup> , Acre) Lots       | 30 <b>-</b> 45 | 40                                                        |
| 7,200 - 10,000 S. F. Lots                      | 45 <b>-</b> 55 | 50                                                        |
| Multiple Family Residential:                   |                |                                                           |
| Condominiums                                   | <b>45 -</b> 70 | 65                                                        |
| Apartments                                     | 65 <b>-</b> 90 | 80                                                        |
| Mobile Home Park                               | 60 <b>-</b> 85 | 75                                                        |
| Commercial, Downtown<br>Business or Industrial | 80 -100        | 90                                                        |

Notes:

- 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
- 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimating the percentage of impervious cover in developed areas.
- 3. For typical horse ranch subdivisions increase impervious area 5 percent over the values recommended in the table above.



### RUNOFF COEFFICIENT CURVE DATA

The data in the following tables may be used to develop runoff coefficient (C) curves for any combination of runoff index (RI) number and antecedent mositure condition (AMC). For an RI number with an AMC of II (from Plate D-5.5) enter the tables on the following pages and plot the "C" curve data directly on Plate D-5.8. "C" curve data is given for even RI numbers only, but values may easily be interpolated for odd RI numbers.

For an AMC of I or III enter the tabulation on this page with the RI for AMC II, and read the appropriate RI for AMC I or III. Use this revised RI to enter the tables on the following pages to determine "C". For example if RI = 40 for AMC II, then RI = 22 for AMC I and RI = 60 for AMC III.

| RI FOR<br>AMC II           | RI FOR OTH<br>AMC CONDIT<br>AMC I AM |                            | RI FOR<br>AMC II           | RI FOR O<br>AMC COND<br>AMC I |                            |
|----------------------------|--------------------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|
| 10<br>11<br>12<br>13<br>14 | <br><br>                             | 22<br>24<br>25<br>27<br>28 | 55<br>56<br>57<br>58<br>59 | 35<br>36<br>37<br>38<br>39    | 74<br>75<br>75<br>76<br>77 |
| 15<br>16<br>17<br>18<br>19 | <br><br>                             | 30<br>31<br>33<br>34<br>36 | 60<br>61<br>62<br>63<br>64 | 40<br>41<br>42<br>43<br>44    | 78<br>78<br>79<br>80<br>81 |
| 20<br>21<br>22<br>23<br>24 | 10<br>10<br>11<br>11                 | 37<br>38<br>39<br>41<br>42 | 65<br>66<br>67<br>68<br>69 | 45<br>46<br>47<br>48<br>50    | 82<br>82<br>83<br>84<br>84 |
| 25<br>26<br>27<br>28<br>29 | 12<br>12<br>13<br>14                 | 43<br>44<br>46<br>47<br>49 | 70<br>71<br>72<br>73<br>74 | 51<br>52<br>53<br>54<br>55    | 85<br>86<br>86<br>87<br>88 |
| 30<br>31<br>32<br>33<br>34 | 15<br>16<br>16<br>17<br>18           | 50<br>51<br>52<br>53<br>54 | 75<br>76<br>77<br>78<br>79 | 57<br>58<br>59<br>60<br>62    | 88<br>89<br>89<br>90<br>91 |
| 35<br>36<br>37<br>38<br>39 | 18<br>19<br>20<br>21<br>21           | 55<br>56<br>57<br>58<br>59 | 80<br>81<br>82<br>83<br>84 | 63<br>64<br>66<br>67<br>68    | 91<br>92<br>93<br>93       |
| 40<br>41<br>42<br>43<br>44 | 22<br>23<br>24<br>25<br>25           | 60<br>61<br>62<br>63<br>64 | 85<br>86<br>87<br>88<br>89 | 70<br>72<br>73<br>75<br>76    | 94<br>94<br>95<br>95<br>96 |
| 45<br>46<br>47<br>48<br>49 | 26<br>27<br>28<br>29<br>30           | 65<br>66<br>67<br>68<br>69 | 90<br>91<br>92<br>93<br>94 | 78<br>80<br>81<br>83<br>85    | 96<br>97<br>97<br>98<br>98 |
| 50<br>51<br>52<br>53<br>54 | 31<br>31<br>32<br>33<br>34           | 70<br>70<br>71<br>72<br>73 | 95<br>96<br>97<br>98<br>99 | 87<br>89<br>91<br>94<br>97    | 98<br>99<br>99<br>99       |

### AMC ADJUSTMENT RELATIONSHIPS

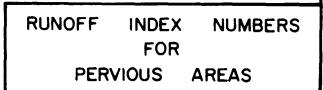
## RCFC & WCD

HYDROLOGY MANUAL

### RUNOFF COEFFICIENT CURVE DATA

| RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II |           |              |          |          |          |          |  |  |
|-----------------------------------------------------------------------------------|-----------|--------------|----------|----------|----------|----------|--|--|
| Cover Type (3) Quality of Soil Group                                              |           |              |          |          |          |          |  |  |
| Cover Type (3)                                                                    | Cover (2) | A            | В        | С        | D        |          |  |  |
| NATURAL COVERS -                                                                  |           |              |          |          |          |          |  |  |
| Barren<br>(Rockland, eroded and graded land)                                      |           | 78           | 86       | 91       | 93       |          |  |  |
| Chaparrel, Broadleaf                                                              |           | Poor         | 53       | 70       | 80       | 85       |  |  |
| (Manzonita, ceanothus and scrub oak)                                              |           | Fair         | 40       | 63       | 75       | 81       |  |  |
|                                                                                   | Good      | 31           | 57       | 71       | 78       |          |  |  |
| Chaparrel, Narrowleaf                                                             | Poor      | 71           | 82       | 88       | 91       |          |  |  |
| (Chamise and redshank)                                                            |           | Fair         | 55       | 72       | 81       | 86       |  |  |
|                                                                                   |           | Dalara       |          | 70       | 00       | 89       |  |  |
| Grass, Annual or Perennial                                                        |           | Poor<br>Fair | 67<br>50 | 78<br>69 | 86<br>79 | 89       |  |  |
|                                                                                   |           | Good         | 38       | 61       | 74       | 80       |  |  |
|                                                                                   |           |              |          |          |          |          |  |  |
| Meadows or Cienegas                                                               | 1.        | Poor         | 63       | 77       | 85       | 88       |  |  |
| (Areas with seasonally high water tab<br>principal vegetation is sod forming      | -         | Fair<br>Good | 51<br>30 | 70<br>58 | 80<br>72 | 84<br>78 |  |  |
| principal vegetation is boa forming                                               | 91455)    | 0000         |          | 50       | 1 -      | /0       |  |  |
| Open Brush                                                                        |           | Poor         | 62       | 76       | 84       | 88       |  |  |
| (Soft wood shrubs - buckwheat, sage,                                              | Fair      | 46           | 66       | 77       | 83       |          |  |  |
|                                                                                   | Good      | 41           | 63       | 75       | 81       |          |  |  |
| Woodland                                                                          |           | Poor         | 45       | 66       | 77       | 83       |  |  |
| (Coniferous or broadleaf trees predom                                             | inate.    | Fair         | 36       | 60       | 73       | 79       |  |  |
| Canopy density is at least 50 percen                                              | t)        | Good         | 28       | 55       | 70       | 77       |  |  |
| Woodland, Grass                                                                   |           | Poor         | 57       | 73       | 82       | 86       |  |  |
| (Coniferous or broadleaf trees with c                                             | anopy     | Fair         | 44       | 65       | 77       | 82       |  |  |
| density from 20 to 50 percent)                                                    | • •       | Good         | 33       | 58       | 72       | 79       |  |  |
| URBAN COVERS -                                                                    |           |              |          |          |          |          |  |  |
| Residential or Commercial Landscaping                                             |           | Good         | 32       | 56       | 69       | 75       |  |  |
| (Lawn, shrubs, etc.)                                                              |           |              |          |          |          |          |  |  |
| m                                                                                 |           | <b>n</b>     |          |          |          |          |  |  |
| Turf<br>(Irrigated and mowed grass)                                               |           | Poor<br>Fair | 58<br>44 | 74<br>65 | 83<br>77 | 87<br>82 |  |  |
| (IIIIgacca and mowed grass)                                                       |           | Good         | 33       | 58       | 72       | 79       |  |  |
| AGRICULTURAL COVERS -                                                             |           |              |          |          |          |          |  |  |
| - 11                                                                              |           |              |          |          |          |          |  |  |
| Fallow<br>(Land plowed but not tilled or seeded)                                  | )         |              | 76       | 85       | 90       | 92       |  |  |
|                                                                                   | ,<br>     |              |          |          |          | I        |  |  |
|                                                                                   |           |              |          |          |          |          |  |  |
| RCFC & WCD                                                                        | RUNOFF    | INDEX        |          | NUN      | MBE      | RS       |  |  |
|                                                                                   |           | FOR          |          |          |          |          |  |  |
| Hydrology Manual                                                                  | PE        | RVIOUS       |          | EAS      | 6        |          |  |  |

|                                             | Quality of | L          | Soil Group |    |    |  |
|---------------------------------------------|------------|------------|------------|----|----|--|
| Cover Type (3)                              | Cover (2)  | Ā          | В          | С  | I  |  |
| AGRICULTURAL COVERS (cont.) -               |            |            |            |    |    |  |
| Legumes, Close Seeded                       | Poor       | 66         | 77         | 85 | 89 |  |
| (Alfalfa, sweetclover, timothy, etc.)       | Good       | 58         | 72         | 81 | 8  |  |
| Orchards, Deciduous                         |            | See Note 4 |            |    |    |  |
| (Apples, apricots, pears, walnuts, etc.)    |            |            |            |    |    |  |
| Orchards, Evergreen                         | Poor       | 57         | 73         | 82 | 86 |  |
| (Citrus, avocados, etc.)                    | Fair       | 44         | 65         | 77 | 82 |  |
|                                             | Good       | 33         | 58         | 72 | 79 |  |
| Pasture, Dryland                            | Poor       | 67         | 78         | 86 | 89 |  |
| (Annual grasses)                            | Fair       | 50         | 69         | 79 | 84 |  |
|                                             | Good       | 38         | 61         | 74 | 80 |  |
| Pasture, Irrigated                          | Poor       | 58         | 74         | 83 | 87 |  |
| (Legumes and perennial grass)               | Fair       | 44         | 65         | 77 | 82 |  |
|                                             | Good       | 33         | 58         | 72 | 79 |  |
| Row Crops                                   | Poor       | 72         | 81         | 88 | 91 |  |
| (Field crops - tomatoes, sugar beets, etc.) | Good       | 67         | 78         | 85 | 89 |  |
| Small Grain                                 | Poor       | 65         | 76         | 84 | 88 |  |
| (Wheat, oats, barley, etc.)                 | Good       | 63         | 75         | 83 | 87 |  |
| Vineyard                                    |            | See Note 4 |            |    |    |  |


- All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II.
- 2. Quality of cover definitions:
  - Poor-Heavily grazed or regularly burned areas. Less than 50 percent of the ground surface is protected by plant cover or brush and tree canopy.
  - Fair-Moderate cover with 50 percent to 75 percent of the ground surface protected.

Good-Heavy or dense cover with more than 75 percent of the ground surface protected.

- 3. See Plate C-2 for a detailed description of cover types.
- 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C-2.
- 5. Reference Bibliography item 17.



HYDROLOGY MANUAL



Appendix E

NOAA Rainfall Data



### NOAA Atlas 14, Volume 6, Version 2 Location name: Menifee, California, USA\* Latitude: 33.7438°, Longitude: -117.1867° Elevation: 1427.48 ft\*\* \* source: ESRI Maps \*\* source: USGS



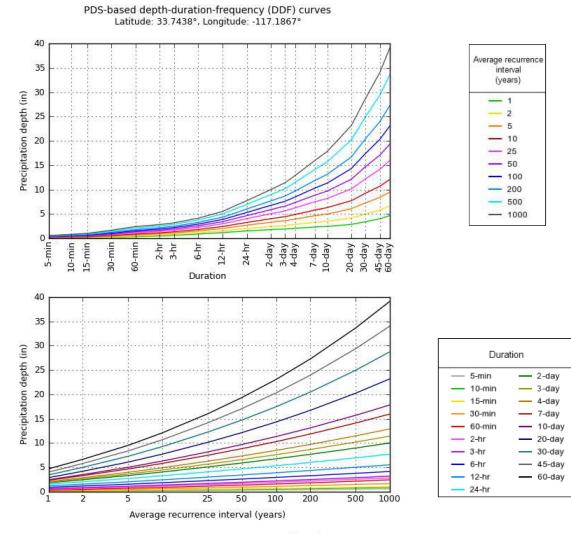
### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF\_tabular | PF\_graphical | Maps\_&\_aerials

### PF tabular

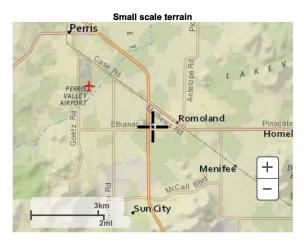

| PD       | S-based p                           | point prec                 | ipitation f                | requency                   | estimates                  | with 90%                   | o confiden                 | ce interva                 | ls (in inch                | ıes) <sup>1</sup>          |  |  |
|----------|-------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|
| Duration | Average recurrence interval (years) |                            |                            |                            |                            |                            |                            |                            |                            |                            |  |  |
| Duration | 1                                   | 2                          | 5                          | 10                         | 25                         | 50                         | 100                        | 200                        | 500                        | 1000                       |  |  |
| 5-min    | <b>0.086</b>                        | <b>0.124</b>               | <b>0.176</b>               | <b>0.220</b>               | <b>0.283</b>               | <b>0.334</b>               | <b>0.389</b>               | <b>0.447</b>               | <b>0.530</b>               | <b>0.599</b>               |  |  |
|          | (0.072-0.104)                       | (0.104-0.150)              | (0.147-0.213)              | (0.182-0.269)              | (0.226-0.359)              | (0.261-0.433)              | (0.296-0.516)              | (0.330-0.611)              | (0.375-0.758)              | (0.408-0.886)              |  |  |
| 10-min   | <b>0.123</b>                        | <b>0.178</b>               | <b>0.252</b>               | <b>0.315</b>               | <b>0.406</b>               | <b>0.479</b>               | <b>0.557</b>               | <b>0.641</b>               | <b>0.760</b>               | 0.858                      |  |  |
|          | (0.103-0.149)                       | (0.148-0.215)              | (0.210-0.305)              | (0.261-0.386)              | (0.324-0.514)              | (0.374-0.621)              | (0.424-0.740)              | (0.473-0.876)              | (0.538-1.09)               | (0.585-1.27)               |  |  |
| 15-min   | <b>0.149</b>                        | <b>0.215</b>               | <b>0.305</b>               | <b>0.381</b>               | 0.491                      | <b>0.580</b>               | <b>0.674</b>               | <b>0.775</b>               | <b>0.920</b>               | <b>1.04</b>                |  |  |
|          | (0.125-0.180)                       | (0.180-0.259)              | (0.254-0.369)              | (0.315-0.466)              | (0.392-0.622)              | (0.453-0.750)              | (0.513-0.895)              | (0.573-1.06)               | (0.650-1.31)               | (0.708-1.54)               |  |  |
| 30-min   | <b>0.243</b>                        | 0.349                      | <b>0.496</b>               | <b>0.621</b>               | <b>0.799</b>               | 0.944                      | <b>1.10</b>                | <b>1.26</b>                | <b>1.50</b>                | <b>1.69</b>                |  |  |
|          | (0.203-0.293)                       | (0.292-0.422)              | (0.413-0.601)              | (0.513-0.759)              | (0.638-1.01)               | (0.737-1.22)               | (0.834-1.46)               | (0.932-1.73)               | (1.06-2.14)                | (1.15-2.50)                |  |  |
| 60-min   | <b>0.352</b>                        | <b>0.506</b>               | <b>0.718</b>               | <b>0.899</b>               | <b>1.16</b>                | <b>1.37</b>                | <b>1.59</b>                | <b>1.83</b>                | <b>2.17</b>                | <b>2.45</b>                |  |  |
|          | (0.295-0.425)                       | (0.423-0.612)              | (0.599-0.871)              | (0.743-1.10)               | (0.924-1.47)               | (1.07-1.77)                | (1.21-2.11)                | (1.35-2.50)                | (1.53-3.10)                | (1.67-3.62)                |  |  |
| 2-hr     | <b>0.522</b>                        | <b>0.709</b>               | <b>0.961</b>               | <b>1.17</b>                | <b>1.47</b>                | <b>1.70</b>                | <b>1.95</b>                | <b>2.21</b>                | <b>2.57</b>                | <b>2.85</b>                |  |  |
|          | (0.437-0.630)                       | (0.593-0.856)              | (0.801-1.17)               | (0.969-1.43)               | (1.17-1.86)                | (1.33-2.20)                | (1.48-2.59)                | (1.63-3.02)                | (1.81-3.66)                | (1.95-4.23)                |  |  |
| 3-hr     | <b>0.640</b>                        | 0.852                      | <b>1.14</b>                | <b>1.37</b>                | <b>1.70</b>                | <b>1.96</b>                | <b>2.23</b>                | <b>2.51</b>                | <b>2.90</b>                | <b>3.20</b>                |  |  |
|          | (0.536-0.772)                       | (0.712-1.03)               | (0.947-1.38)               | (1.13-1.68)                | (1.36-2.15)                | (1.53-2.53)                | (1.69-2.96)                | (1.85-3.43)                | (2.05-4.14)                | (2.19-4.74)                |  |  |
| 6-hr     | <b>0.904</b>                        | <b>1.18</b>                | <b>1.55</b>                | <b>1.86</b>                | <b>2.28</b>                | <b>2.61</b>                | <b>2.94</b>                | <b>3.30</b>                | <b>3.78</b>                | <b>4.16</b>                |  |  |
|          | (0.756-1.09)                        | (0.988-1.43)               | (1.29-1.88)                | (1.54-2.27)                | (1.82-2.88)                | (2.03-3.37)                | (2.24-3.91)                | (2.43-4.51)                | (2.67-5.40)                | (2.84-6.16)                |  |  |
| 12-hr    | <b>1.19</b>                         | <b>1.56</b>                | <b>2.05</b>                | <b>2.45</b>                | <b>3.01</b>                | <b>3.45</b>                | <b>3.90</b>                | <b>4.37</b>                | <b>5.02</b>                | <b>5.53</b>                |  |  |
|          | (0.997-1.44)                        | (1.30-1.88)                | (1.71-2.48)                | (2.03-2.99)                | (2.40-3.81)                | (2.69-4.46)                | (2.96-5.17)                | (3.23-5.97)                | (3.55-7.17)                | (3.77-8.19)                |  |  |
| 24-hr    | <b>1.55</b>                         | <b>2.05</b>                | <b>2.72</b>                | <b>3.28</b>                | <b>4.07</b>                | <b>4.69</b>                | <b>5.33</b>                | <b>6.01</b>                | <b>6.96</b>                | <b>7.71</b>                |  |  |
|          | (1.37-1.78)                         | (1.81-2.36)                | (2.40-3.15)                | (2.87-3.83)                | (3.44-4.90)                | (3.89-5.77)                | (4.32-6.71)                | (4.74-7.78)                | (5.27-9.37)                | (5.65-10.7)                |  |  |
| 2-day    | <b>1.82</b>                         | <b>2.46</b>                | <b>3.33</b>                | <b>4.06</b>                | <b>5.09</b>                | <b>5.91</b>                | <b>6.77</b>                | <b>7.68</b>                | <b>8.97</b>                | <b>10.0</b>                |  |  |
|          | (1.61-2.10)                         | (2.17-2.84)                | (2.93-3.85)                | (3.55-4.74)                | (4.30-6.13)                | (4.90-7.27)                | (5.48-8.52)                | (6.06-9.94)                | (6.80-12.1)                | (7.33-13.9)                |  |  |
| 3-day    | <b>1.94</b><br>(1.72-2.24)          | <b>2.66</b><br>(2.35-3.07) | <b>3.64</b><br>(3.21-4.21) | <b>4.47</b><br>(3.91-5.22) | <b>5.65</b><br>(4.78-6.81) | <b>6.60</b><br>(5.48-8.12) | 7.60<br>(6.16-9.57)        | <b>8.67</b><br>(6.84-11.2) | <b>10.2</b><br>(7.72-13.7) | <b>11.4</b> (8.37-15.9)    |  |  |
| 4-day    | <b>2.08</b>                         | <b>2.88</b>                | <b>3.99</b>                | <b>4.93</b>                | <b>6.26</b>                | <b>7.34</b>                | 8.49                       | <b>9.72</b>                | <b>11.5</b>                | <b>12.9</b>                |  |  |
|          | (1.84-2.40)                         | (2.55-3.33)                | (3.51-4.62)                | (4.30-5.75)                | (5.30-7.55)                | (6.09-9.03)                | (6.88-10.7)                | (7.66-12.6)                | (8.69-15.4)                | (9.45-18.0)                |  |  |
| 7-day    | <b>2.34</b>                         | <b>3.31</b>                | <b>4.66</b>                | <b>5.82</b>                | <b>7.48</b>                | 8.84                       | <b>10.3</b>                | <b>11.9</b>                | <b>14.1</b>                | <b>16.0</b>                |  |  |
|          | (2.07-2.70)                         | (2.93-3.83)                | (4.11-5.40)                | (5.09-6.79)                | (6.34-9.02)                | (7.33-10.9)                | (8.34-13.0)                | (9.35-15.3)                | (10.7-19.0)                | (11.7-22.2)                |  |  |
| 10-day   | <b>2.46</b>                         | <b>3.53</b>                | <b>5.02</b>                | <b>6.30</b>                | <b>8.16</b>                | <b>9.69</b>                | <b>11.3</b>                | <b>13.1</b>                | <b>15.7</b>                | <b>17.8</b>                |  |  |
|          | (2.18-2.84)                         | (3.12-4.08)                | (4.42-5.81)                | (5.51-7.36)                | (6.91-9.84)                | (8.04-11.9)                | (9.18-14.3)                | (10.3-17.0)                | (11.9-21.1)                | (13.1-24.8)                |  |  |
| 20-day   | <b>2.89</b><br>(2.56-3.33)          | <b>4.21</b><br>(3.72-4.86) | <b>6.08</b><br>(5.36-7.04) | <b>7.72</b><br>(6.75-9.02) | <b>10.1</b><br>(8.58-12.2) | <b>12.1</b><br>(10.1-14.9) | <b>14.3</b><br>(11.6-18.0) | <b>16.7</b><br>(13.2-21.6) | <b>20.2</b> (15.3-27.2)    | <b>23.2</b><br>(17.0-32.3) |  |  |
| 30-day   | <b>3.45</b><br>(3.05-3.98)          | <b>5.02</b><br>(4.43-5.80) | <b>7.28</b><br>(6.41-8.43) | <b>9.27</b><br>(8.10-10.8) | <b>12.2</b><br>(10.4-14.7) | <b>14.7</b><br>(12.2-18.1) | <b>17.4</b><br>(14.1-22.0) | <b>20.5</b><br>(16.1-26.5) | <b>24.9</b><br>(18.9-33.6) | <b>28.7</b> (21.1-40.0)    |  |  |
| 45-day   | <b>4.03</b><br>(3.57-4.65)          | <b>5.81</b><br>(5.13-6.71) | <b>8.38</b><br>(7.38-9.71) | <b>10.7</b><br>(9.33-12.5) | <b>14.1</b><br>(12.0-17.0) | <b>17.1</b> (14.1-21.0)    | <b>20.3</b><br>(16.4-25.6) | <b>23.9</b><br>(18.9-31.0) | <b>29.4</b><br>(22.2-39.5) | <b>34.0</b><br>(24.9-47.4) |  |  |
| 60-day   | <b>4.70</b><br>(4.16-5.42)          | <b>6.65</b><br>(5.88-7.69) | <b>9.52</b> (8.38-11.0)    | <b>12.1</b><br>(10.6-14.1) | <b>16.0</b><br>(13.5-19.3) | <b>19.3</b><br>(16.0-23.8) | <b>23.1</b><br>(18.7-29.0) | <b>27.3</b> (21.5-35.3)    | <b>33.6</b><br>(25.5-45.3) | <b>39.1</b><br>(28.6-54.4) |  |  |

<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

**PF graphical** 




NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Mon Aug 16 22:51:56 2021



#### Maps & aerials



Large scale terrain

| Carl Carl                    | and the second s |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lancaster                    | Jan Harrison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ra Palmdale<br>Santa Clarita | Victorville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | SAN BERNARDINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R LUS Angeles                | iverside MOUNTAINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Long Beach Anaheim           | C. thedral City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Santa Ana                    | Palm Desert Indio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Murrie                       | ta la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Murrie                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Murrie<br>Oceanside          | ta<br>Saltor +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Saltor +<br>Sea -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Saltor +<br>Sea -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oceanside                    | Saltor +<br>Sea -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Large scale map



Large scale aerial



Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

**Disclaimer** 

Appendix F

Soils Reports

# WQMP Project Report

#### **County of Riverside Stormwater Program**

Santa Ana River Watershed Geodatabase

Monday, August 16, 2021

Note: The information provided in this report and on the Stormwater Geodatabase for the County of Riverside Stormwater Program is intended to provide basic guidance in the preparation of the applicant�s Water Quality Management Plan (WQMP) and should not be relied upon without independent verification.

| Project Site Parcel Number(s):<br>Latitude/Longitude:<br>Thomas Brothers Page:                                                                             | 329250012, RW, 329250011, 329250009<br>33.744, -117.1866                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Site Acreage:<br>Watershed(s):                                                                                                                     | 14.52<br>SANTA ANA                                                                                                                                                                                                                                                                                                                                                        |
| This Project Site Resides in the following Hydrologic Unit(s) (HUC):                                                                                       | HUC Name - HUC Number<br>Perris Valley-San Jacinto River - 180702020306                                                                                                                                                                                                                                                                                                   |
| The HUCs Contribute stormwater<br>to the following 303d listed water<br>bodies and TMDLs which may<br>include drainage from your<br>proposed Project Site: |                                                                                                                                                                                                                                                                                                                                                                           |
| These 303d listed Water bodies<br>and TMDLs have the following<br>Pollutants of Concern (POC):                                                             | <ul> <li>Bacterial Indicators - Pathogens</li> <li>Nutrients - Nutrients, Organic Enrichment/Low</li> <li>Dissolved Oxygen</li> <li>Other Organics - PCBs (Polychlorinated biphenyls)</li> <li>Toxicity - Sediment Toxicity, Unknown Toxicity</li> </ul>                                                                                                                  |
| Is the Site subject to<br>Hydromodification:                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                       |
| Limitations on Infiltration:                                                                                                                               | Project Site Onsite Soils Group(s) - C, D<br>Known Groundwater Contamination Plumes within<br>1000' - No<br>Adjacent Water Supply Wells(s) - No information<br>available please contact your local water agency for<br>more information. Your local contact agency is<br>EASTERN MUNICIPAL W.D Your local wholesaler<br>contact agency is METROPOLITAN WATER<br>DISTRICT. |
| Environmentally Sensitive Areas<br>within 200'(Fish and Wildlife<br>Habitat/Species):                                                                      | None                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |

| Environmentally Sensitive Areas within 200'(CVMSHCP): |                                           |
|-------------------------------------------------------|-------------------------------------------|
| Environmentally Sensitive Areas within 200'(WRMSHCP): | Burrowing Owl Survey Required Area        |
| Groundwater elevation from Mean Sea Level:            | 1360                                      |
| 85th Percentile Design Storm<br>Depth (in):           | 0.604                                     |
| Groundwater Basin:                                    | Perris-South                              |
| MSHCP/CVMSHCP Criteria Cell<br>(s):                   | No Data                                   |
| <b>Retention Ordinance Information:</b>               | No Data                                   |
| Studies and Reports Related to                        | Comprehensive Nutrient Reduction Plan     |
| Project Site:                                         | IBI Scores - Southern Cal                 |
|                                                       | bulletin118_4-sc                          |
|                                                       | water_fact_3_7.11                         |
|                                                       | 8039-SAR-Hydromodification                |
|                                                       | Romoland MDP                              |
|                                                       | West San Jacinto GW Basin Management Plan |
|                                                       | Homeland/Romoland ADP Map                 |



United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

## Custom Soil Resource Report for Western Riverside Area, California



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

| Preface                                           | 2  |
|---------------------------------------------------|----|
| How Soil Surveys Are Made                         | 5  |
| Soil Map                                          | 8  |
| Soil Map                                          |    |
| Legend                                            |    |
| Map Unit Legend                                   |    |
| Map Unit Descriptions                             | 11 |
| Western Riverside Area, California                |    |
| EnA—Exeter sandy loam, 0 to 2 percent slopes      | 13 |
| MaA—Madera fine sandy loam, 0 to 2 percent slopes | 14 |
| References                                        | 16 |

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



|               | MAP L                                            | EGEND      |                                  | MAP INFORMATION                                                                                                                                                                                                                             |
|---------------|--------------------------------------------------|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Int   | terest (AOI)<br>Area of Interest (AOI)           | 8          | Spoil Area<br>Stony Spot         | The soil surveys that comprise your AOI were mapped at 1:15,800.                                                                                                                                                                            |
| Soils         | Soil Map Unit Polygons                           | 8          | Very Stony Spot<br>Wet Spot      | Warning: Soil Map may not be valid at this scale.                                                                                                                                                                                           |
| ĩ             | Soil Map Unit Lines<br>Soil Map Unit Points      | Δ          | Other<br>Special Line Features   | Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of                                                      |
| అ             | Point Features<br>Blowout                        | Water Fea  |                                  | contrasting soils that could have been shown at a more detailed scale.                                                                                                                                                                      |
| ×             | Borrow Pit<br>Clay Spot                          | Transporta | <b>ation</b><br>Rails            | Please rely on the bar scale on each map sheet for map measurements.                                                                                                                                                                        |
| ¢<br>₩        | Closed Depression<br>Gravel Pit<br>Gravelly Spot | ~          | Interstate Highways<br>US Routes | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                |
| ∴<br>©<br>∧   | Landfill<br>Lava Flow                            | ~          | Major Roads<br>Local Roads       | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts                                                                                                                 |
| 大<br>少<br>次   | Marsh or swamp<br>Mine or Quarry                 | Backgroui  | n <b>a</b><br>Aerial Photography | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required.                                                   |
| 0             | Miscellaneous Water<br>Perennial Water           |            |                                  | This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.                                                                                                                                         |
| ~<br>+        | Rock Outcrop<br>Saline Spot                      |            |                                  | Soil Survey Area: Western Riverside Area, California<br>Survey Area Data: Version 13, May 27, 2020                                                                                                                                          |
|               | Sandy Spot<br>Severely Eroded Spot               |            |                                  | Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.                                                                                                                                                             |
| <b>◇</b><br>≫ | Sinkhole<br>Slide or Slip                        |            |                                  | Date(s) aerial images were photographed: May 25, 2019—Jun 25, 2019                                                                                                                                                                          |
| ø             | Sodic Spot                                       |            |                                  | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. |

## **Map Unit Legend**

| Map Unit Symbol                                   | Map Unit Name                            | Acres in AOI  | Percent of AOI |
|---------------------------------------------------|------------------------------------------|---------------|----------------|
| Map Onit Symbol                                   | Map Onit Name                            | Acres III AOI | Fercent of AOI |
| EnA                                               | Exeter sandy loam, 0 to 2 percent slopes |               | 3.3%           |
| MaA Madera fine sandy loam, 0 to 2 percent slopes |                                          | 14.0          | 96.7%          |
| Totals for Area of Interest                       |                                          | 14.5          | 100.0%         |

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Western Riverside Area, California

### EnA—Exeter sandy loam, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: hctg Elevation: 20 to 700 feet Mean annual precipitation: 7 to 20 inches Mean annual air temperature: 61 to 64 degrees F Frost-free period: 250 to 300 days Farmland classification: Farmland of statewide importance

#### **Map Unit Composition**

Exeter and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Exeter**

#### Setting

Landform: Alluvial fans Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from granite

#### **Typical profile**

H1 - 0 to 16 inches: sandy loam

- H2 16 to 37 inches: sandy clay loam
- H3 37 to 50 inches: indurated
- H4 50 to 60 inches: stratified sandy loam to silt loam

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 20 to 40 inches to duripan
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.3 inches)

#### Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 3s Hydrologic Soil Group: C Ecological site: R019XD029CA Hydric soil rating: No

#### **Minor Components**

#### Greenfield

Percent of map unit: 4 percent Hydric soil rating: No

#### Ramona

Percent of map unit: 4 percent Hydric soil rating: No

#### Monserate

Percent of map unit: 4 percent Hydric soil rating: No

#### Unnamed

Percent of map unit: 3 percent Hydric soil rating: No

#### MaA—Madera fine sandy loam, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: hcwt Elevation: 20 to 250 feet Mean annual precipitation: 14 inches Mean annual air temperature: 61 degrees F Frost-free period: 250 days Farmland classification: Farmland of statewide importance

#### Map Unit Composition

Madera and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Madera**

#### Setting

Landform: Alluvial fans Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from granite

#### **Typical profile**

H1 - 0 to 19 inches: fine sandy loam
H2 - 19 to 26 inches: clay
H3 - 26 to 37 inches: indurated
H4 - 37 to 62 inches: stratified coarse sandy loam to clay loam

#### **Properties and qualities**

*Slope:* 0 to 2 percent *Depth to restrictive feature:* More than 80 inches; 20 to 40 inches to duripan

Drainage class: Moderately well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

#### Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R019XD061CA Hydric soil rating: No

#### Minor Components

#### Unnamed, ponded

Percent of map unit: 3 percent Landform: Depressions Hydric soil rating: Yes

#### Monserate

Percent of map unit: 3 percent Hydric soil rating: No

#### Chino

Percent of map unit: 3 percent Hydric soil rating: No

#### Exeter

Percent of map unit: 3 percent Hydric soil rating: No

#### Willows

Percent of map unit: 3 percent Hydric soil rating: No

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

## GEOTECHNICAL EVALUATION REPORT

TRAVEL PLAZA PERRIS

AT

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. WEST PACIFIC AVENUE HENDERSON, NEVADA, 89015

PROJECT NO: G-5908-01

JUNE 11, 2021

PREPARED BY:

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING



## Geotechnical Solutions, Inc.

Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project No: G-5908-01

**Broadbent, Inc.** 8 West Pacific Avenue Henderson, Nevada, 89015

## Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelskis@broadbentinc.com

Re: Geotechnical Engineering Evaluation Report Travel Plaza Perris Corner of Trumble Road & Ethanac Road Perris, California

Gentlemen:

Submitted herewith is the report of the Geotechnical Engineering evaluation study conducted by this office for Perris Travel Plaza at the referenced vacant site.

The project site is located just northwest corner of Trumble Road and Ethanac Road Intersection, and east of Freeway 215 in Perris, San Bernardino County, California as shown on Vicinity Map (Plate A) and Google Map (Plate D).

Based on our study findings, it is our opinion that the site is suitable for the proposed development from a geotechnical-engineering standpoint, provided that the recommendations of this report are successfully implemented.

The closest known active faults capable of producing major earthquakes are the Elsinore (GI) (6.89 Mw) and Elsinore (W + GI) (7.27 Mw) faults, which are located approximately 9.56 miles (15.3 km) away from the project site.

The site does not lie within Alquist-Priolo Earthquake Fault Zone as designated by the California Geological Survey (CGS). The potential for direct surface fault rupture at the site is considered unlikely.

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary under the circumstances.

In the opinion of the undersigned, the accompanying report has been substantiated by mathematical and other data and presents fairly the design information requested by your organization.

Respectfully Submitted,

### Geotechnical Solutions, Inc.

CROLETA

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

Abraham S. Baha, PE, M. ASCE Sr. Principal





Distribution: (3+pdf) Addressee

## **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                           | 1  |
|--------------------------------------------|----|
| 1.1 Purpose and Scope                      | 1  |
| 1.2 Project Description                    | 2  |
| 1.3 Site Description and Topography        | 3  |
| 1.4 Site Geologic Setting                  | 3  |
| 1.5 Other Geologic Hazards                 | 4  |
| 1.5.1 Earthquake-Induced Liquefactions     | 4  |
| 1.5.2 Induced Floodings                    | 5  |
| 1.5.3 Earthquake-Induced Landsliding       | 5  |
| 2.0 FIELD EXPLORATION                      | 5  |
| 2.1 Scope                                  | 5  |
| 2.2 Drilling and Sampling Procedures       | 5  |
| 2.3 Field Tests and Measurements           | 6  |
| 2.4 Standard Penetration Resistance        | 6  |
| 3.0 LABORATORY TESTING AND SUMMARY METHODS | 7  |
| 4.0 SUBSURFACE DISCUSSION                  | 9  |
| 4.1 General                                | 9  |
| 4.2 Material and Soil Conditions Summary   | 10 |

| 4.3 Groundwater                               | 10 |
|-----------------------------------------------|----|
| 4.4 Faulting and Seismicity                   | 11 |
| 4.4.1 Faults Close to the Site                | 11 |
| 4.4.2 U.S.G.S. Earthquake Hazard Program      | 12 |
| 4.4.3 Seismic Factors                         | 12 |
| 4.5 Design Values                             | 14 |
| 5.0 SITE CONSIDERATIONS                       | 15 |
| 5.1 Site Preparation                          | 15 |
| 5.1.1 General                                 | 15 |
| 5.1.2 Site Clearing                           | 15 |
| 5.1.3 Excavation                              | 16 |
| 5.1.4 ASTs Pad Preparation                    | 16 |
| 5.1.5 Compliance                              | 16 |
| 5.2 Lateral Earth Pressures                   | 17 |
| 5.2.1 Lateral Passive Resistance              | 17 |
| 5.2.2 Retaining Wall Recommendations (If Any) | 17 |
| 5.2.3 Active pressure                         | 18 |
| 5.2.4 At-Rest Earth Pressure                  | 18 |
| 5.2.5 Seismic Force on Wall                   | 19 |

| 5.3 On-Site Fill Soils                        | 19 |
|-----------------------------------------------|----|
| 5.3.1 Materials                               | 19 |
| 5.3.2 Placement and Compaction                | 20 |
| 5.4 Soil Corossvity                           | 21 |
| 5.4.1 Corrosion and Sulfate Attack Protection | 21 |
| 5.4.2 Concrete                                | 22 |
| 5.5 Building Foundation Recommendations       | 22 |
| 5.5.1 Conventional/Spread Foundation          | 22 |
| 5.5.2 Mat Foundation                          | 24 |
| 5.5.3 Drilled Shafts for Canopy Foundation    | 24 |
| 5.6 Slab Design Recommendation                | 26 |
| 5.7 General Drainage and Moisture Protection  | 26 |
| 5.8 Volume Changes                            | 27 |
| 5.9 Underground Utilities                     | 27 |
| 5.10 Pavement Design                          | 27 |
| 5.10.1 Pavement Section                       | 27 |
| 5.10.2 Pavement Grading Recommendation        | 29 |
| 5.10.3 General                                | 29 |
| 5.104 Subgrade Preparation                    | 29 |
| 5.10.5 Aggregate Base                         | 30 |

| 5.10.6 Asphalt Concrete Pavement                  | 30 |  |
|---------------------------------------------------|----|--|
| 5.10.7 Concrete Pavement Areas                    | 30 |  |
| 5.11 Exterior Concrete Flatwork                   | 31 |  |
| 5.12 Temporary Excavations                        | 31 |  |
| 6.0 GENERAL COMMENTS AND LIMITATIONS              | 32 |  |
| 6.1 Plan Review                                   | 32 |  |
| 6.2 Geotechnical Observation and Testing          | 32 |  |
| 6.3 Construction Verification Procedure           | 33 |  |
| 6.4 Recommendations for Construction              | 34 |  |
| 6.5 Limitations                                   | 34 |  |
| 6.6 Closure                                       | 35 |  |
| References                                        | 36 |  |
| Appendix A - Plates                               | 37 |  |
| Appendix B – Seismic Data                         | 38 |  |
| Appendix C – Recommended Earthwork Specifications | 39 |  |

## **1.0 INTRODUCTION**

### 1.1 Purpose and Scope

The primary objectives of this study were to explore subsurface conditions beneath the project site and evaluate the existing earth materials relative to foundation support and lateral pressure design factors, seismic conditions and earthquake-induced liquefaction potential.

In general, the study objectives were met by a visual reconnaissance of the site and vicinity, review of available tentative development plans, exploratory drilling and sampling of earth materials, laboratory testing, seismic evaluations, geologic hazards study, and engineering analysis. The general scope and objectives of the study were established in collaboration with the client/project team. Items considered in our study relevant to this site included the following:

- Near surface and subsurface soil types,
- Expansion potential,
- Settlement and hydro-collapse potential,
- Bearing capacity and Foundation Design Parameters,
- Slabs-on-grade,
- Lateral earth pressures,
- Drainage considerations,
- Temporary excavation support,
- Corrosion potential,
- Groundwater conditions,
- Likely excavation conditions,
- Seismic Conditions,
- Earthquake induced liquefaction potential,

- Pavements,
- Grading considerations, and
- Construction observation and testing considerations.

To address these, the following scope of work was executed:

- 1. Review of preliminary project plans, available documents, and coordination with the owner's representatives and project design professionals.
- 2. Site reconnaissance.
- 3. Evaluation of seismic conditions for the subject location.
- 4. Excavator and Backhoe drilling, sampling and logging twelve (11) test holes to investigate subsurface conditions.
- 5. Laboratory testing of soil samples obtained from subsurface explorations, to determine their physical and engineering properties.
- 6. Geotechnical analysis of the data obtained.
- 7. Developing conclusions and recommendations for foundation design.
- 8. Preparation of this report.

### 1.2 **Project Description**

Based on the information provided, the proposed Travel Plaza Perris will have total site area of 14.67 acres including 0.9 acre for the pond area and will consist mainly of constructing the Auto Fueling Island / Canopy, Truck Fueling Island / Canopy, Cat Scale, Aboveground (AST's) and underground (UST's) storage tanks, store building, shop building, pond area, and truck approaches at the location shown on Plot Plan and Boring Location Map (Plate B in Appendix A). Also, the project consists of heavy-duty asphalt pavement for parking and driveways with some rigid concrete pavement sections to accommodate 98 auto parking and 135 truck parking.

## 1.3 Site Description and Topography

The project site is located just northwest of Trumble Road and Ethanac Road Intersection and just east of freeway 215 as shown on Vicinity Map (Plate A) and Google Map (Plate D) in Appendix A. At the time of our field exploration, the site was vacant and covered mostly with grass and weeds all around.

The site is relatively flat at an elevation of 1,426 feet above the sea level. No hilly terrain or drainage problems exist at the subject property.

## 1.4 Site Geologic Setting

The Peninsular Ranges province is one of the largest geomorphic units in western North America. Basically, it extends from the Tranverse Ranges geomorphic province and the Los Angeles Basin, roughly 900 miles south to the tip of Baja California. This province varies in width from about 30 to 100 miles. It is bounded on the west by the Pacific Ocean, on the south by the Gulf of California and on the east by the Colorado Desert Province. The Peninsular Ranges are essentially a series of northwest-southeast oriented fault blocks. Three major fault zones are found in this province. The Elsinore Fault zone and the San Jacinto Fault zones trend northwest-southeast and are found in the near the middle of the province. The San Andreas Fault zone borders the northeasterly margin of the province.

The Perris Block is a large mass of granitic rock generally bounded by the San Jacinto Fault, the Elsinore Fault, the Santa Ana River and a non-defined southeast boundary. The Perris Block has had a history of vertical land movements of several thousand feet due to shifts in the Elsinore and San Jacinto Faults. The primary source of strong seismic ground shaking in the project area is the Elsinore Fault Zone and San Jacinto Fault Zone. Other

regional fault zone of significance that could affect the project area is the San Andreas. The Site Regional Geology Map is shown on the enclosed Plate D.

The site is underlain by alluvial soils over Cretaceous aged igneous rocks (Val Verde Tonalite). The materials encountered onsite generally consist of alluvial soils consist of dense to very dense silty sand to sand. The tonalite bedrock is grey in color and moderately weathered and becomes harder with depth. It should be noted that Special handling and coring could be required during the caisson excavation.

The most significant geologic hazard to the project is the potential for moderate to severe ground shaking resulting from earthquakes generated on the faults close to the site. The site is not located in an Alquist-Priolo Special Studies zone for earthquake rupture hazard. The potential for direct surface fault rupture in the project area is considered very low.

### 1.5 Other Geologic Hazards

Since the site is located in a relatively flat area, we do not consider landslides or other forms of natural slope instability to represent a hazard to the project. The site is not located near any impounded bodies of water therefore tsunamis and seiches are not considered a potential hazard to the project. The proposed project is an area of stable soil conditions with low shrink-swell potential; hence, no impact is anticipated.

In addition to possible strong earthquake ground motion at the site, the secondary effects of earthquake-induced liquefaction, and earthquake-induced landsliding, were considered. Guidelines for evaluating and mitigation seismic hazards in California (CGS, 2008, SP-117A) summarize procedures for evaluating the earthquake-induced landslide and liquefaction potential.

### 1.5.1 Earthquake-Induced Liquefaction

The site has not been evaluated for earthquake-induced liquefaction potential as per

California Geologic Survey (Plate F, Appendix A). Liquefaction is discussed in more detail in the proceeding sections.

## **1.5.2 Induced Flooding**

The site lies far and/or high enough from the coast or large inland body of water to preclude the hazards of tsunami or seiche waves or inundation from the rupture of an upgradient reservoir.

## 1.5.3 Eathquake-Induced Landsliding

The site has not been evaluated by California Geologic Survey (CGS) for earthquakeinduced landsliding potential. Since the site is far enough from steep slopes, landsliding will be unlikely.

## **2.0 FIELD EXPLORATION**

## 2.1 <u>Scope</u>

Hollow Stem auger was used to drill. Eleven (11) borings were drilled to get soil samples from the depths varying from 10- to 51.5-feet below the existing ground level in the proposed development areas. The Boring Logs, B-1 through B-11 are shown on the Plot Plan and Boring Location Map (Plate B) in Appendix A.

### 2.2 Drilling and Sampling Procedures

A continuous record of the materials encountered during the drilling was made by our field engineer and Log of all the borings are presented on Appendix A The lines designating the interface between soil strata on the log of Test Holes represent approximate boundaries. The transition between strata may be gradual. Undisturbed samples were secured at frequent intervals from various locations for laboratory testing.

Core samples and bulk samples were secured at frequent depth intervals for laboratory examination and testing. Both California standard ring samples (CA) and split spoon

samples with Penetration test (SPT) blow counts were obtained for further evaluation. Disturbed bulk samples, representative of the surficial subgrade materials were also obtained.

The relative sampler penetration resistance (SPT) exhibited by the deposits sample is tabulated in the Blow per Foot column of the pertinent test hole log. Recorded blow counts for 12 inches of sampler penetration were generally indicative of medium to high shear resistance (140 pounds hammer at a 30-inch drop).

### 2.3 Field Tests and Measurements

The drilled holes were examined and logged in the field. Representative samples were obtained to classify the soils. The Unified Soil Classification System (USCS) was used to classify the soils. The soil classification symbols appear on the boring logs and are briefly described in Appendix A. Local and regional geologic characteristics were used to estimate the seismic design criteria.

In addition, relatively undisturbed California ring samples were obtained for laboratory testing. The attached logs tabulate data based on laboratory classification tests and visual observation by the field geologist at the site.

## 2.4 Standard Penetration Resistance

A sediment is considered to be susceptible to transformation to a fluid mass during a strong seismic event only if the packing of the grains (relative density) is relatively low. Sediments with high relative densities cannot reduce their total volume through the compactive effort induced by the ground shaking.

The number of blows necessary to drive a standard sampler  $(1\frac{1}{2}$ " I.D.)-12 inches into the individual stratum is a measurement of a specific property that has been correlated to relative density. The sampling (penetration) resistance offered by sediment from

successive blows delivered by a 140-pound hammer falling 30 inches is counted. The number of blows to drive the standard sampler full 12 inches is recorded as the N-Value.

The on-site material yielded penetration resistance which indicates dense to very dense alluvial soils, fine to coarse grained, dry to slightly moist with trace of silt were encountered within the boring depth. The standard penetration resistances of the on-site materials at 5-feet intervals are presented on the boring logs (Appendix A).

## 3.0 LABORATORY TESTING AND SUMMARY METHODS

Laboratory testing was programmed following a review of field investigation data and after considering the various foundations, floor slabs, and grading elements to be evaluated. In general, this includes physical testing to establish foundation-bearing characteristics, and classification tests.

## A. In-Place Moisture & Density (ASTM D2216 & D2937)

In-situ moisture content and density were determined for all the undisturbed core samples obtained during test boring drilling operations. Test results are tabulated on Plates I-1 through I-11, Log of Test Holes.

## B. Mechanical Analysis (ASTM D-422)

The texture composition of a selected typical sample determined by the hydrometer test method was as follows:

| Boring<br>No. | Depth (Feet) | Percent Sand | Percent Silt | Percent Clay |
|---------------|--------------|--------------|--------------|--------------|
| B-2           | 0-3          | 72           | 10           | 18           |
| B-7           | 0-3          | 61           | 17           | 22           |
| B-8           | 0-3          | 56           | 22           | 22           |

| B-9 | 0-3 | 68 | 12 | 20 |
|-----|-----|----|----|----|
|     |     |    |    |    |

# C. Direct Shear (ASTM D-3080)

Direct shear test was performed on the representative sample of native soil and was considered most pertinent in the design of mat/ spread footings, and moderately deep pier. Tests were performed in the saturated condition at the field density. Individual test results are shown on Plate J.

# D. Expansion (ASTM D-4829)

Expansion characteristics were determined by the Expansion Index test on a typical bulk sample considered to be generally representative of the near subgrade soils. Test results were as follows:

| Test Boring | Moisture    | Dry Density | Expansion | Remarks            |
|-------------|-------------|-------------|-----------|--------------------|
| No.         | Content (%) | (pcf)       | Index     |                    |
| B-8         | 8.6         | 115.2       | 18        | Very Low Expansive |

According to the test results, the underlying soils generally exhibit very low expansive potential.

# E. Consolidation (ASTM D-2435)

Consolidation (load deformation) tests were performed on undisturbed samples at selected depths. Plotted test results are presented on Plates K, L, and M.

# F. Chemical Sulfate Analysis (CAL 417-A Method)

Chemical sulfate analysis was performed on a representative sample by the CAL 417-A method. A soluble sulfate of 390 parts per million was indicated, which is negligible exposure to concrete, however we recommend using Type II Portland cement for the foundation elements in contact with the underlying soil.

## G. R-Value Test (ASTM D-2844)

Representative samples of the subgrade soils were obtained and tested to determine the R-value. The material is thought to be typical and presumed to be representative of the subgrade soils. Testing was performed in general accordance with the latest revisions to the Department of Transportation, State of California, Material & Research Test Method No. 301. Pavement design recommendations are based on the latest Traffic Indices (TI's) and recently tested R-value.

An R-Value test was conducted on a representative sample of the near surface soil consisting of clayey sand with trace of silt. The specimens were tested in a state as near to full saturation as possible to simulate the condition the soil might attain at typical field density and under adverse moisture conditions. The R-Value for a representative soil was determined to be 30. Test results are as follows:

The R-Value for a representative soil was determined to be 40. Test results are as follows:

| Test<br><u>Number</u> | Moisture @<br>Compaction (%) | Density<br>(pcf) | Exudation<br>Pressure (psi) | Stabilometer<br>"R"-Value |
|-----------------------|------------------------------|------------------|-----------------------------|---------------------------|
| а                     | 7.4                          | 120.5            | 200                         | 37                        |
| b                     | 7.1                          | 122.0            | 350                         | 42                        |
| с                     | 6.7                          | 123.8            | 450                         | 47                        |

\* Interpolated 300 psi by Exudation, Rv = 40

# **4.0 SUBSURFACE DISCUSSION**

# 4.1 General

The recommendations presented are based on entirely upon data derived from a limited number of samples obtained from widely spaced borings. The attached logs, B-1 through

B-11 presented in Appendix A are indicators of subsurface conditions only at the specific locations and times noted. This report assumes the uniformity of the geology and soil structure between the borings, however variations can and often do exist. Whenever there is any deviation, difference or change is encountered or becomes known, we should be contacted.

# 4.2 Material and Soil Conditions Summary

No appreciable artificial fill was encountered at the boring locations during the exploratory drilling. The upper and underlying natural soils are older alluvium, light brown to dark brown, dry to slightly moist, generally fine to coarse grained, medium dense to very dense, sand with gravel, and some rock fragments as well. A more detailed soil profiles are shown on Plates I-1 through I-11, Log of Test Hole (Appendix A).

# 4.3 Groundwater

Surface water on this site is the likely result of precipitation or surface run-off from surrounding sites. Overall site drainage is in a north and northwesterly direction. Provisions for surface drainage will need to be accounted for by the project civil engineer.

We recommend that all surface runoff should not be allowed to pond above or flow freely over adjacent slope surfaces. Collected water should be conveyed via a non-erosive device to a suitable storm drain system.

Groundwater was not encountered at a drilled hole depth of 51.5-feet during the field study. No springs or perennial stream flow in local drainages exist based on older topographic maps.

The nearest well, 05S03W10N0015 as shown on Closest Well Groundwater Data (Plate H-1) and groundwater well data (Plate H-2) indicated the highest groundwater elevation to be 1331.86 above mean sea level. The elevation of our project area is about 1,426 feet.

Thus we believe the historic groundwater depth was around 95-feet below the existing ground surface.

Groundwater is not anticipated to affect the site adversely. However, these observations reflect site conditions at the time of the investigation and do not preclude changes in local groundwater conditions, localized seepage due to variations in rainfall, heavy irrigation, damaged structure (pipes, etc.), or altered site drainage pattern(s).

Proper surface drainage is imperative to collect and convey any surface water off site to a suitable storm drain system.

# 4.4 Faulting and Seismicity

The project site is located in the highly seismic Southern California region within the influence of several fault systems that are considered to be active or potentially active. An active fault is defined by the State of California as a "sufficiently active and well-defined fault" that has exhibited surface displacement within the Holocene time (about the last 11,000 years).

A potentially active fault is defined by the State as a fault with a history of movement within Pleistocene time (between 11,000 and 1.6 million years ago).

No faults have been mapped trending towards or through the site area. The site area does not lie within an Alquist-Priolo Earthquake Fault Zone as designated by the California Geological Survey (CGS) (Hart, 1997). For this reason, the potential for direct surface rupture is considered unlikely.

# 4.4.1 Faults Close to the Site

USGS National Seismic Hazard Maps for Source parameters interactive query has been used to determine the closest fault to the site within 50 miles and has been tabulated on Table -1 in Appendix B.

The closest known active faults capable of producing major earthquakes are the Elsinore (GI) and Elsinore (W + GI) Faults, which are both located approximately 9.56 miles (15.3 km) away from the project site. The Elsinore (GI) Fault has been assigned to 6.89 Mw magnitude and slip rate of 5 mm/year and Elsinore (W + GI) Fault has been assigned to 7.27 Mw magnitude and slip rate of N/A.

# 4.4.2 U.S.G.S. Earthquake Hazard Program

Latest Interactive U.S.G.S. Earthquake Hazard Program using Unified Hazard Tool

has been utilized for Conterminous U.S. 2008 (v3.2.x) and peak ground acceleration.

| Peak Horizontal Ground Acceleration for 10% probability of |         |
|------------------------------------------------------------|---------|
| exceedance in 50 years i.e. return period of 475 years     | 0.4423g |
| Peak Horizontal Ground Acceleration for 5% probability of  |         |
| exceedance in 50 years i.e. return period of 975 years     | 0.5487g |
| Peak Horizontal Ground Acceleration for 2% probability of  |         |

exceedance in 50 years i.e. return period of 2,475 years 0.6906g

Interactive Hazard Curve and Uniform Hazard Response Spectrum have been plotted and presented in Appendix B.

# 4.4.3 Seismic Factors

The following are the geotechnical parameters for earthquake design data in accordance with ASCE 7-16 and the latest CBC 2019. The details are presented in Appendix B:

| NO. | PARAMETERS                                                                                                                             | VALUES           | REFERENCE        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1   | 0.2-Second Mapped Spectral Response<br>Accelerations, S <sub>s</sub> (MCE <sub>R</sub> Ground Motion)                                  | 1.428g           | ASCE 7-16        |
| 2   | 1-Second Mapped Spectral Response<br>Accelerations, S <sub>1</sub> (MCE <sub>R</sub> Ground Motion)                                    | 0.532g           | ASCE 7-16        |
| 3   | Site Class                                                                                                                             | D                | ASCE 7-16        |
| 4   | Site Amplification Factor at 0.2 sec, Fa                                                                                               | 1.0              | ASCE 7-16        |
|     | According to Section 11.4.4, F <sub>a</sub> should not be less than 1.2                                                                | 1.2              | Use              |
| 5   | Site Amplification Factor at 1.0 sec, <b>F</b> <sub>v</sub> , however, according to Table 11.4.2, <b>F</b> <sub>v</sub> should be 1.77 | Null<br>1.77     | ASCE 7-16<br>Use |
| 6   | Site Modified Spectral Acceleration Value, $S_{MS}$<br>$S_{MS} = F_a S_s = 1.2 x 1.428 = 1.714$                                        | 1.714g<br>1.714g | ASCE 7-16<br>Use |
| 7   | Site Modified Spectral Acceleration Value, $S_{M1}$<br>$SM_1 = F_v S_1 = 1.77 \times 0.532 = 0.942$                                    | Null<br>0.942g   | ASCE 7-16<br>Use |
| 8   | Numeric Seismic Design value at 0.2 sec SA,<br>$S_{DS} = 2/3$ of $S_{MS} = 2/3 \times 1.714 = 1.143$                                   | 1.143g<br>1.143g | ASCE 7-16<br>Use |
| 9   | Numeric Seismic Design value at 1.0 sec SA,<br>$S_{D1} = 2/3$ of $SM_1 = 2/3 \times 0.942 = 0.628$                                     | Null<br>0.628g   | ASCE 7-16<br>Use |

# Latitude: $33.7441^{0}$ and Longitude: $-117.1658^{0}$

Other seismic parameters are as follows:

| Closest Fault Distance                    | 9.56 m                     | iles (15.3 km)  |
|-------------------------------------------|----------------------------|-----------------|
| Fault Name                                | Elsinore (GI) & Elsinore ( | (W + GI) Faults |
| Earthquake Magnitude 6.8                  |                            | w & 7.27 Mw     |
| Slip Rate (mm/year)                       |                            | 5.0 & N/A       |
| PGA <sub>M</sub> Site Modified Peak Grour | nd Acceleration            | 0.600g          |
| 5% Damped Design Spectral Accelerati      | 1.143g                     |                 |
| 5% Damped Design Spectral Accelerati      | 0.628g                     |                 |
| Seismic Design Category                   | D                          |                 |
| Risk Category                             | II                         |                 |
| Soil Site Class                           | D                          |                 |

# 4.5 Design Values

Representative values were selected from the test data and other sources for design and is tabulated below:

| Field Density                         | 120 pcf               |
|---------------------------------------|-----------------------|
| Expansion Index                       | 0 & 18                |
| Angle of Internal Friction (Ult/Peak) | 32/33 & 34/35 deg.    |
| Cohesion (Ult/Peak) Remolded          | 200/250 & 200/250 psf |
| Subgrade K-Value                      | 100 pci               |

# **5.0 SITE CONSIDERATIONS**

# 5.1 Site Preparation

# 5.1.1 General

It is our professional opinion that the proposed construction will not be subject to geologic hazard from settlement, slippage, or landslide, provided the recommendations of this report are incorporated into the proposed construction. It is also our opinion that the proposed construction will not adversely affect the geologic stability of the site or adjacent properties provided the recommendations contained in this report are incorporated into the proposed construction.

The validity of the conclusions contained in this report is based on compliance with the recommendations presented in this section. Any excavating, trenching, or disturbances that occur after completion of the earthwork must be backfilled, compacted and tested in accordance with the recommendations contained herein. If any unobserved and untested earthwork, trenching, or backfilling occurs, then the conclusions and recommendations in this report may not be relied on.

# 5.1.2 Site Clearing

Prior to grading, all grasses, bushes, shrubs and debris including construction materials should entirely be removed from the site and disposed of off-site. Existing any undesirable materials should also be removed and hauled off-site. Existing utilities (if Any) should be removed and relocated as required. Any construction debris or ant buried or other contaminated exposed during site clearance should be removed and hauled away from the site. The resulting excavation from any removal should be cleared of loose material then backfilled with compacted soil. Oversized rocks greater than 6 inches should be removed.

# 5.1.3 Excavation

Excavations into the on-site soils may encounter a variety of challenges for example, firm alluvium, gravels, some fragments of rocks etc. Caving on clean sands may be encountered. The contractor should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of the excavation sides. All excavations should be sloped or shored in the interest of safety following local and federal regulations including current OSHA excavation and trench safety standards.

Heavy equipment for breaking the very dense and firm alluvium may be required for the excavations for shallow foundations, drilled shafts, and utility trenches for the proposed construction. The speed and ease of excavation are dependent on the nature of the deposit, the type of equipment used, and the skill and experience of the equipment operator.

## 5.1.4 ASTs Pad Preparation

At the locations where Above Ground Storage tanks (ASTs) are located, proof-roll the exposed subgrade to observe for any loose or disturbed soils that may remain. Remove and replace any loose or disturbed soils prior to placing any additional fill materials required to reach the finished subgrade elevation.

# 5.1.5 Compliance

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the **Site Preparation recommendations** and Recommended Earthwork Specifications in Appendix C.

To assess compliance, observation and testing should be performed under the direction of a geotechnical engineer. Please contact us to provide observation and testing services.

# 5.2 Lateral Earth Pressures

# 5.2.1 Lateral Passive Resistance

Horizontal forces may be resisted by passive pressure acting on the side and sliding resistance. The passive pressure may be 300 psf per foot of embedment from the lowest adjacent grade up to a maximum of 4,500 psf.

Friction between base of footings and/or floor slabs, and the underlying soils may be assumed to be 40 percent of the dead loads.

The allowable bearing capacity and the allowable resistance of horizontal forces may be increased one-third for transient forces.

Friction and lateral pressure may be combined, but not to exceed two-thirds of the allowable lateral pressure.

# 5.2.2 Retaining Wall Recommendations (If Any)

The retaining wall structures may be supported by shallow footings bearing on compacted fill or competent subgrade soil. Following bearing values may be used for foundation design.

Shallow footings for the wall and/or secondary structure may be designed for an allowable bearing value of 1,500 pounds per square foot (psf) embedded at least 18 inches, a minimum width of 12 inches, placed over a minimum of 12-inches thick engineered fill compacted to 90% relative density or over a competent subgrade soil. This basic bearing value may be increased by 200 psf for each one-foot increase in depth, and by 100 psf for each additional 12 inches in width to a maximum value of 2,500 psf.

Recommended bearing values are for dead plus live loads and may be increased by one-third for combined dead, live, and transient forces such as wind load and seismic forces. It is recommended that all foundations be reinforced per structural design, but no less than a minimum reinforcement of 2#5 bars top and 2#5 bars at the bottom.

It is estimated that total settlement will be less than 0.50" and differential settlement will be less than 0.25" over a horizontal distance of 30 feet.

# 5.2.3 Active Pressure

Recommended active lateral soil pressure values for design of drained retaining wall are as follows:

| Surface Slope of<br>Retained Material<br>(Horizontal:Vertical) | Equivalent<br>Fluid Weight (pcf)<br>(Native Backfill) | Allowable Bearing<br>Capacity |  |
|----------------------------------------------------------------|-------------------------------------------------------|-------------------------------|--|
| Level                                                          | 35                                                    | 1,500 psf                     |  |

A Pipe and gravel drain (4" perforated PVC embedded in at least three cubic feet of gravel per lineal foot of pipe wrapped with Mirafi geofabric 10N or equivalent) should be provided on the retained earth side and near the base of all the retaining walls. Backfill should consist of sand and/or gravel. While all backfills should be compacted to the required degree, care should be taken when working close to the walls to prevent excessive pressure.

# 5.2.4 At-Rest Earth Pressure (If Any)

Retaining walls (basement walls, underground vault, if applicable) should be designed for at-rest conditions. The recommended earth pressure for at-rest conditions is an equivalent fluid density of 60 pounds per cubic foot without surcharge loading.

# Note:

The equivalent fluid pressures presented herein do not include the lateral pressures arising from the presence of the following:

- Hydrostatic conditions, submergence or partial submergence
- Sloping backfill, positively or negatively
- Surcharge loading, permanent or temporary
- Seismic or dynamic conditions

#### 5.2.5 Seismic Force on Wall

Lateral forces on retaining walls (exceeding 6 feet in height) due to earthquake movements in accordance with Section 1803A.5.12 of the 2019 CBC for active and at-rest conditions may be calculated as follows:

| Seismic active Force  | = 13 $H^2$ pounds/ft of wall (Inverted triangular               |
|-----------------------|-----------------------------------------------------------------|
|                       | distribution, acting at 0.6H from bottom).                      |
| Seismic at-rest Force | = $24 \text{ H}^2$ pounds/ft of wall (Rectangular Distribution, |
|                       | acting at 0.6H from bottom).                                    |

Where, H = Height of the retaining wall in feet

# 5.3 On-Site Fill Soils

#### 5.3.1 Materials

On-site clean sand (after removing rocks, sizes greater than 6 inches), lowexpansive potential soils, or imported materials may be used as fill material for the following:

- Foundation Areas
- Interior Slab Areas
- Pavement Areas
- Backfill

Any earth materials imported or excavated on the property may be utilized in the fill provided that each material has been determined to be suitable by the soil engineer. These materials should be free of roots, tree branches, other organic matter or other deleterious materials. Soils of poor gradation, undesirable expansion potential, or substandard strength characteristics may be designated by the consultant as unsuitable and may require blending with other soils to serve as a satisfactory fill material.

Gradation (as per ASTM C136) should be as follows:

| Size          | <u>% by Weight</u> |
|---------------|--------------------|
| 6"            | 100                |
| 4"            | 85-100             |
| 3/4"          | 70-100             |
| No 4 Sieve    | 50-100             |
| No. 200 Sieve | 15 (max)           |

Any import material should have an expansion Index, EI less than 20.

# 5.3.2 Placement and Compaction

- a. Place and compact approved fill material in nearly horizontal layers that when compacted should not exceed 6 inches in thickness.
- b. Use appropriate equipment and procedures that will produce recommended densities and water contents throughout the lift. Moisture condition, blending, and mixing of the fill layer should continue until the fill materials have a uniform moisture content at or above optimum moisture.
- c. Uncompacted fill lifts should not exceed 8 inches.
- d. Materials should be compacted to the following:

• On-site or imported soil, reworked and fill:

Minimum % (ASTM D-1557

|                                | Laboratory Standard) |
|--------------------------------|----------------------|
| Subgrade Below Footings        | 90                   |
| Subgrade Below Slab-on Grade   | 90                   |
| Subgrade Below Pavement        | 90                   |
| Crush Rock Below Slab-on-Grade | 95                   |
| Aggregate Base below pavement  | 95                   |

#### 5.4 Soil Corrosivity

#### 5.4.1 Corrosion and Sulfate Attack Protection

A major factor in determining soil corrosivity is electrical Resistivity. The electrical Resistivity of a soil is a measure of its resistance to the flow of electrical current. Corrosion of buried metal is an electrochemical process in which the amount of metal loss due to corrosion is directly proportional to the flow of electrical current (DC) from the metal into the soil. Corrosion currents, following Ohm's Law, are inversely proportional to soil Resistivity. Lower electrical resistivities result from higher moisture and chemical contents and indicate corrosive soil. Other soil characteristics that can influence corrosivity toward metals are pH, chemical content, soil types and site drainage.

Based on test results and our past experience at this site, soils are classified as slightly corrosive to ferrous metals and negligible sulfate exposure to concrete. The type of alluvial deposits encountered at this site and in this area in general is known to cause corrosion problems. Ferrous metals and pipes should be properly coated and wrapped. Please be advised that this firm does not practice corrosion engineering; therefore, we recommend that upon completion of precise grading, onsite soils be

analyzed by a qualified corrosion engineer to evaluate the impact of chemical activity of these soils on buried metallic pipes and other underground structures. If necessary, more elaborate corrosion protection systems may be considered as may be recommended by a corrosion expert.

# 5.4.2 Concrete

Concrete for foundation where in contact with the underlying soils should be designed in accordance with the 2019 CBC, ACI 318 Section 4.3, Table 4.3.1 (2005). As the potential for sulfate attack on concrete appears negligible, however, we recommend that the use of type II Portland cement, with a maximum water-cement ratio of 0.50, and a minimum compressive strength of 3,000 psi should be taken into consideration for the foundation elements in contact with the soil.

For all concrete in contact with soil, concrete cover over rebar should be maintained per California Building Code (CBC 2019).

# 5.5 **Building Foundation Recommendations**

Based upon results of the field explorations, laboratory testing and engineering analysis, it is concluded that the site is suitable for the proposed development at the subject site. The site is subject to ground shaking typical of the Southern California area, any construction should conform to the current seismic design provision of the California Building Code (2019), and/or other regulatory codes.

Following are more specific recommendations:

# 5.5.1 Conventional/Spread Foundations

The planned ASTs and the proposed building may be supported by conventional continuous and/or isolated shallow spread pad footings, bearing on certified compacted fill. The foundations should bear on engineered fills achieved by removal and re-compaction of the soils below foundation and slab elements.

Footings placed at least 18 inches below finish subgrade and 3 feet x 3 feet spread footings, 24 inches deep may be designed for an allowable bearing value of 1,500 pounds per square foot (psf). The footing width should be a minimum of 18 inches. An increase of 100 psf and 200 psf are allowed for each additional foot of increase in width and depth, respectively to a maximum value of 2,000 psf.

This allowable bearing value is for dead plus live load and may be increased by one-third for combined dead, live, and transient loads such are wind or seismic forces.

All footings at minimum shall be incorporated with 2#5 bars at top and 2#5 bars at the bottom.

Isolated column footings should be connected to other foundation elements with reinforced grade beams.

Total settlement is estimated to be less than  $\frac{1}{2}$  inch for loading of 2 kips per square foot. Differential settlement will be  $\frac{1}{3}$  of an inch maximum for a horizontal distance of 30 feet. Additional foundation movements could occur if water from any source infiltrates the foundation soils. Therefore, proper drainage should be provided in the final design and during construction.

All footings, stem walls, and masonry walls should be steel-reinforced to reduce the potential for distress caused by differential foundation movements. The use of joints at openings or other discontinuities in masonry walls is recommended.

We recommend that geotechnical engineer, or his representative thereof, observe the footing excavations before reinforcing steel and concrete are placed. This observation is to assess whether the soils exposed are similar to those anticipated based on our exploration. Any soft, loose, or otherwise unacceptable soils should be undercut to suitable materials and backfilled with approved fill materials, or controlled density fill (i.e., lean concrete). Soil backfill should be properly placed and compacted.

# 5.5.2 Mat Foundation (Alternate Foundation for ASTs)

Alternatively, above ground storage tanks (ASTs) and proposed building may be supported on the mat foundation. The semi-rigid mat foundation should be at least 4-feet or more below the finish grade and may be designed for an allowable bearing capacity of 2,000 pounds per square foot. This basic allowable bearing value is for dead load plus live load and may be increased by one-third for short duration loading, such as wind or seismic forces. Modulus of subgrade reaction, k value may be taken as 150 pci for subgrade soil at 4 feet depth.

For lateral support, an average passive capacity of 300 pounds per square foot per foot to a maximum of 4,500 psf may be used for mat footing.

Minimum thickness of mat footing should be 24 inches. The bottom of excavation at 4 feet below the finish grade should be compacted to 90 % of the maximum density as per ASTM D-1557 Laboratory Standard, certified by the Geotechnical Engineer of record prior to pouring concrete. Other aspects of the design including reinforcement and the thickness of the mat should be determined by the project structural engineer. The mat may be buried and should be backfilled with on-site material compacted to 90 percent.

# 5.5.3 Drilled Shafts for Canopy Foundation

Proposed truck diesel and gas canopies may be supported by moderately deep cast-in-place concrete caisson bearing into natural subgrade materials. Very hard drilling may be encountered because of the presence of dense to very dense alluvial soils. Heavy-duty equipment may be required.

The lateral forces will be the controlling element in this case depending on the height of the canopies, wind load, and/or seismic loads. Therefore, it is

recommended that the minimum pier diameter should be 36 inches and should be extended to a minimum depth of 10 feet into the native material.

The pier may be designed for an allowable end bearing of 3,000 pounds per square foot or for an average frictional resistance of 300 pounds per square foot. Either skin resistance or end bearing or combined will provide adequate foundation support for the proposed canopies. The uppermost length of the drilled shaft foundation equal to the diameter of the shaft should be ignored when evaluating allowable capacities.

For lateral support, a passive capacity of 350 pounds per square foot per foot to a maximum of 5,000 psf may be used.

It is recommended that concrete be placed immediately after drilling. The concrete for the pier should be placed through tremmie or other directional devices. Pier drilling operations should be subject to observation by this office to confirm the conditions encountered are consistent with the conclusions and recommendations of this report and/or to make any appropriate modifications, if necessary. Please note that caving is very likely to be encountered during caisson drilling. The contractor should be ready to provide either casing or other methods to prevent caving. The contractor should bring the heavy duty equipment because very difficult drilling are anticipated due to presence of boulders and rocks.

We anticipate that total settlement of the proposed structures, supported by drilled shaft foundations as recommended, should be less than <sup>1</sup>/<sub>2</sub>-inch. Additional foundation could occur if water from any source infiltrates the foundation soils. Therefore, proper drainage should be provided in the final design and during construction.

In case, caisson drilling is not feasible for the canopies, mat foundation as explained on 5.5.2 for the support of the canopies may be anticipated.

25

#### 5.6 Slab Design Recommendation

Based on test results, the underlying surface soils are very low expansive, therefore it is recommended to maintain subgrade soil at near optimum moisture content during precise grading and / or by periodic watering following grading and incorporated slab reinforcement of No. 3 bars 16 inches center to center cross pattern. The slab thickness should be 5 inches minimum. However, the thickness and reinforcement requirements of the slab should be evaluated by the project structural engineer.

It is further recommended that moisture retarder (Stego 15 mil or approved equivalent) be provided over a minimum of 6 inches of  $\frac{3}{4}$ " aggregate rock rolled and compacted to 95% relative compaction, with the gradation (90-100% passing on sieve  $\frac{3}{4}$ " size, 1-10% passing on No. 4 sieve, and 0-3% passing on No. 100 sieve) over the compacted fill subgrade compacted to 90% relative compaction.

The modulus of subgrade reaction (k) is estimated to be 125 pounds per cubic inch (pci). All concrete placement and curing operations should follow the American Concrete Institute (ACI 318-19) manual recommendations. Improper curing techniques, high slump (high water-cement ratio), or both, could cause excessive shrinkage, cracking, or curling. Concrete slabs should be allowed to cure properly before placing vinyl or other moisture-sensitive floor coverings.

# 5.7 General Drainage and Moisture Protection

It is recommended to provide positive surface drainage systems consisting of a combination of sloped concrete flatwork, sheet flow gradients, swales, surface area drains (where needed) around the structures. Ground surface should have a minimum gradient of 2 percent away from any building foundations and similar structures. Surface waters should not be allowed to collect or pond against building foundations and within the level areas of the site. Buildings should be provided with gutters and downspouts. Downspouts shall be connected to area drains by pipes.

Planters near the building should be avoided if possible and if used, they should be water proofed. Irrigation should be controlled and an area drain system should be provided to avoid water intrusion beneath the structure.

# 5.8 Volume Changes

Based on our experience, there is typically a reduction in soil volume when the native soils are excavated and then compacted. Typical shrinkage percentages are usually in the range of 5 to 10 percent when the soils are compacted depending on the native in-place density.

# 5.9 Underground Utilities

Utility backfill should be placed and compacted by mechanical means as recommended in this report. Testing of the backfill should be conducted to verify conformance to the required specifications. Ponding or water jetting of the backfill should not be conducted.

Exterior trenches adjacent to, and within areas extending below a 1:1 plane projected from the outside bottom edge of the footing, and all trenches beneath hardscape features should be compacted to at least 90% of the laboratory standard. Sand backfill, unless excavated from the trench, should not be used in these backfill areas. Compaction testing and observations, along with probing, should be accomplished to verify the desired results.

All trench excavations should conform to CAL\_OSHA and local safety codes.

# 5.10 Pavement Design

# 5.10.1 Pavement Section

The pavement sections presented on the following page are based on the R-value data tested, the assumed TI values, and the guidelines presented in the latest revision to the California Department of Transportation "Highway Design Manual," latest edition.

Typical categories of paved areas with corresponding traffic indices are listed as follows:

T.I. 5.0 Parking StallsT.I. 6.0 DrivewaysT.I. 8.0 Trucks Route, Fire Lane, Truck Parking

The recommended pavement sections provided below are intended as a minimum guideline. If thinner or highly variable pavement sections are constructed, increased maintenance and repair could be expected.

If the ADT (average daily traffic) or ADTT (average daily truck traffic) increases beyond that intended, as reflected by the TI used for design, increased maintenance and repair could be required for the pavement sections.

Consideration should be given to the increased potential for distress from overuse of paved areas by heavy equipment and/or construction related traffic (e.g., concrete trucks, loaded supply trucks, etc.), particularly when the final section is not in place (i.e., topcoat). Best management construction practices should be followed at all times, especially during inclement weather.

Based on an "R" Value of 40, the following thickness of aggregate base was determined for vehicular and non-vehicular areas.

| Pavement Areas                          | Traffic Index, TI | Asphalt Concrete<br>AC (inch) | Aggregate Base<br>AB (inch) |
|-----------------------------------------|-------------------|-------------------------------|-----------------------------|
| Truck Route, Fire lane<br>Truck Parking | 8                 | 4"                            | 12"                         |
| Driveway/U <u>nder</u><br><u>Canopy</u> | 6                 | 4"                            | 8"                          |
| Parking Stall                           | 5                 | 4"                            | 6"                          |

#### Asphalt Concrete Pavement Section Design Table

# Rigid Concrete Pavement Section Design Table

| Pavement Areas                 | Traffic Index, TI | Concrete<br>(inch) | Aggregate Base<br>AB (inch) |
|--------------------------------|-------------------|--------------------|-----------------------------|
| Heavy Truck<br>Vehicular Areas | <sup>.</sup> 6    | 6"                 | 10"                         |
| Walkways                       | -                 | 4"                 | 4"                          |

For concrete section, #4 reinforcement 12-inch center to center each way cross pattern are recommended. However structural design by structural engineer will suffix.

# 5.10.2 Pavement Grading Recommendations

# 5.10.3 General

A representative of Geotechnical Solutions, Inc. (GSI) should be present for the preparation of subgrade, aggregate base, and asphalt concrete for flexible pavement and concrete for rigid pavement.

# 5.10.4 Subgrade Preparation

After removing the existing deleterious materials on the pavement areas and hauled offsite, all surficial deposits of loose soil material should be removed and excavate 12 inches below the base and recompacted as recommended. The bottom is further scarified to a depth of at least 6 inches; moisture conditioned as necessary and compacted to 90 percent of the maximum laboratory density as determined by ASTM Test Method D-1557.

Deleterious material, grass/weeds, excessively wet or dry pockets, concentrated zones of oversized rock fragments, and any other unsuitable materials encountered during excavation or grading should be removed. The compacted fill material should then be brought to the elevation of the proposed subgrade for the pavement.

The subgrade should be proof-rolled in order to ensure a uniform, firm and unyielding surface. All grading and fill placement should be observed by the project soils engineer and/or his representative.

# 5.10.5 Aggregate Base

Compaction and rolling are required for the recommended base section. Minimum relative compaction required will be 95 percent of the laboratory maximum density as determined by ASTM Test Designation D-1557. Aggregate base should be in accordance with Crush Rock Class II aggregate base (minimum R-value=78) and sample should be brought for testing and approval prior to delivery to the site. Please note that crush miscellaneous base is not allowed.

# 5.10.6 Asphalt Concrete Pavement

Asphalt concrete pavement should be Performance Grade PG 64-10 1/2" maximum aggregate size and should be placed and compacted in two layers. Asphalt concrete shall be compacted to 95 percent of the Hveem Laboratory Standard.

# 5.10.7 Concrete Pavement Areas:

Concrete flatwork including sidewalks, patio-type slabs and concrete sub-slabs to be covered with decorative pavers should be at least 4 inches thick and provided with construction joints or expansion joints every 6 feet or less.

Concrete driveway slabs should be at least 6 inches thick over 6 inches of aggregate base or native base (for vehicular areas) and 4" of concrete over 4" of aggregate base or native base (Non-vehicular areas) over approved subgrade, providing #4 reinforcement 12" center to center each way cross pattern and provided with construction joints or expansion joints every 10 feet or less.

At the driveway areas, the top 12 inches of subgrade should be excavated; moisture conditioned and recompacted with minimum 90% compaction immediately prior to placing the rock base and asphalt concrete. Rock-base material shall be class II aggregate base and to be compacted to 95 percent minimum.

Design section must be verified during site grading, based on R value test and appropriate modifications shall be made, if required.

# 5.11 Exterior Concrete Flatwork

In order to reduce the potential for unsightly cracking, concrete sidewalks, deck and patio slabs and concrete sub-slabs to be covered with decorative pavers should be at least 4 inches thick and provided with construction joints or expansion joints every 6 feet or less. Concrete driveway slabs should be at least 5 inches thick and provided with construction joints or expansion joints every 10 feet or less.

#### **5.12 Temporary Excavations**

Temporary excavations may not be required but in case it is needed then the Contractor should be made fully responsible for adequate support of the excavation at all times. Temporary support of excavation structures plans should be designed by a Professional Engineer licensed in the State of California and experienced in such work and these plans should be reviewed by us and approved by the City of Perris, if necessary.

Since the site has adequate room to lay back with temporary excavation slopes, shoring may not be needed, but this should be evaluated based on field conditions.

The stability of temporary excavations depends on many factors, including the slope angle, the shearing strength of the existing material, orientation and inclination of geologic structure, the height of the slope and the length of time the excavation remains unsupported and exposed to equipment vibrations and rainfall. All excavations should be observed by the engineering geologist during excavation.

The possibility of temporary excavations failing may be minimized by: 1) keeping the time between cutting and filling operations to a minimum; 2) limiting excavation length exposed at any one time; and, 3) cutting no steeper than a 1:1 (horizontal to vertical [h:v]) inclination and no steeper for false cuts along the toe for key excavations, cleanouts, etc.

Following is the temporary excavation recommendation, subject to field verification by the geotechnical consultant.

| Excavation up to 4 feet                  | Vertical    |
|------------------------------------------|-------------|
| Excavation over 4' but not to exceed 10' | 1:1 (H: V)  |
| Excavation from 10' to 20'               | 1½:1 (H: V) |

# **6.0 GENERAL COMMENTS AND LIMITATIONS**

#### 6.1 Plan Review

Final project plans should be reviewed by this office prior to construction, so that construction is in accordance with the conclusions and recommendations of this report. Based on our review, supplemental recommendations and/or further geotechnical studies may be warranted.

#### 6.2 Geotechnical Observation and Testing

All footing trenches for the proposed structure should be observed by a representative of this firm to verify that they were excavated into competent bearing soils per the recommendations of this report as well as to the minimum depths recommended above. These observations should be performed prior to the placement of forms or reinforcement. The excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed prior to placing concrete.

## 6.3 Construction Verification Procedure

Construction of foundations and placement of engineered fill should be done under the observation and documentation of a representative of the project Geotechnical Engineer. The following are noted as items requiring verification during construction.

# **Pre-Grading Meeting:**

A pre-grading meeting should be held prior to the start of any grading activities. Attendees of this meeting should include the Owner, the Architect, the Geotechnical Engineer, and the Contractor, to review procedures and scheduling.

#### **Footing Observations:**

Construction of foundation and slab should be performed under inspection of the Geotechnical Engineer. Footings should be observed and certified by Geotechnical Engineer of Record after excavation and prior to placement of reinforcing bars.

# Earthwork Observations:

Relative compaction of all fill materials placed on site should be tested in accordance with ASTM D6938. All new fill shall be brought to near optimum moisture, placed in layers not exceeding six inches in thickness, and compacted to at least 90 percent relative compaction for subgrade and 95 percent relative compaction for aggregate base. No jetting or water tamping of fill soils shall be permitted. All imported soil for engineered fill should be pre-approved by the Geotechnical Engineer and consist of clean, granular, non-expansive soil, free of vegetation and other debris with an Expansion Index of 20 or less.

At all times, the contractor should have a responsible field superintendent on the project in full charge of the work, with authority to make decisions. He should cooperate fully with the Geotechnical Engineer in carrying out the work.

33

All footing trenches for continuous and spread footings and subgrade for the slab areas should be observed by the project Geotechnical Engineer to verify that overexcavation and re-compaction operations of adequate depth, thickness, and compaction have been performed as specified. All footing excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed and replaced with properly compacted soil.

#### 6.4 <u>Recommendations for Construction</u>

**Surveying:** The contractor shall set necessary stakes to verify lines and grades as shown on the plan.

**Changed Conditions**: Any changed conditions not found during exploration should be brought to the attention of the soil engineer. As a result of the changed conditions, the soil engineer will provide further recommendations.

**Site Drainage**: The site should be sloped to direct water away from all structures and divert to a positive drainage device at the street. Roof gutters and down spouts shall be provided for roof drainage. Down spouts shall be connected to the positive area drains.

**Footing and Utilities Trenches.** All the Footing excavations as well as utility trenches should be observed by a representative of Geotechnical Solutions, prior to placement of steel.

# 6.5 Limitations

This report is issued with the understanding that it is the responsibility of the owner or his representative to see that the information and recommendations contained herein are called to the attention of the other members of the design team for the project and that the applicable information is incorporated into the plans, and that the necessary steps are taken to see that the contractors and the subcontractors carry out such recommendations. The findings of this report are valid as of the present date. However, changes in the

conditions of a property can occur with the passage of time, whether due to natural processes or to the works of man, on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes outside of our control. The validity of the recommendations of this report assumes that Geotechnical Solutions, Inc. will be retained to provide construction monitoring services. The scope of our services did not include any investigation for the presence or absence of hazardous or toxic materials.

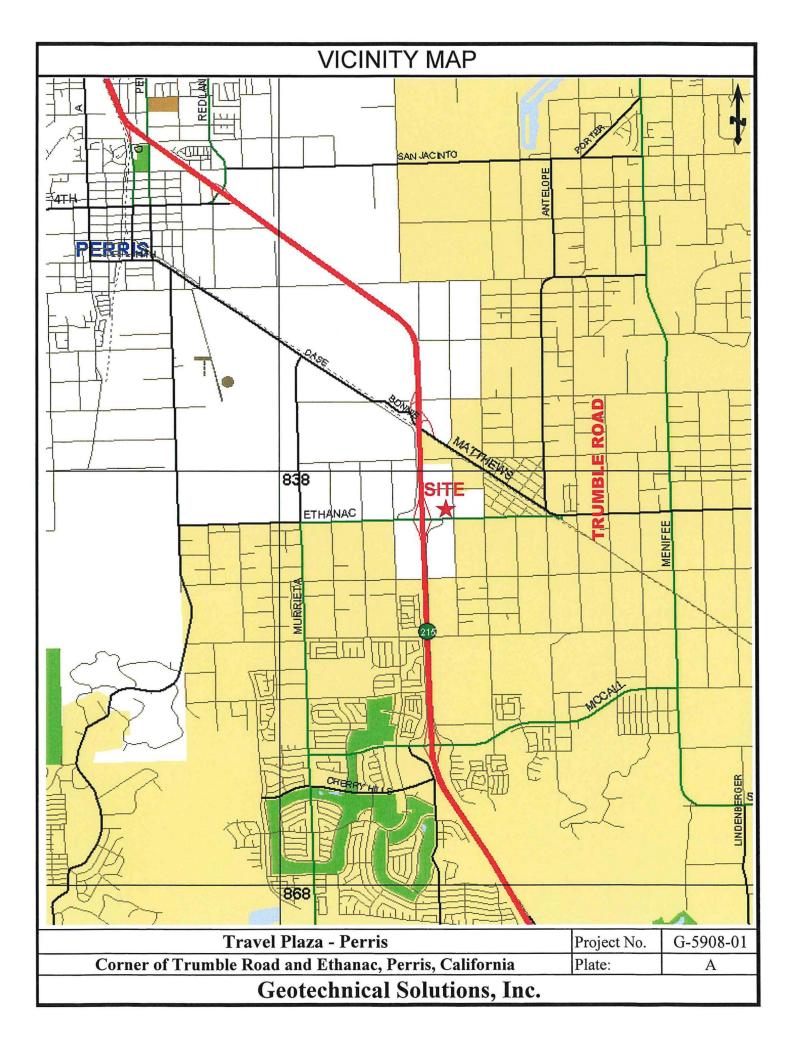
#### 6.6 Closure

The Conclusions and recommendations contained herein are based on the findings and observations made at the test boring locations. It is not unusual to find conditions between and beyond such locations, which differ from the conditions encountered. If conditions are encountered during construction, which appear to differ from those previously disclosed, this office should be notified so as to consider the need for modifications. On-site construction observations and wherever appropriate, tests should be performed during the course of construction by a representative of this office to evaluate compliance with the design concepts, specifications, and recommendations contained herein.

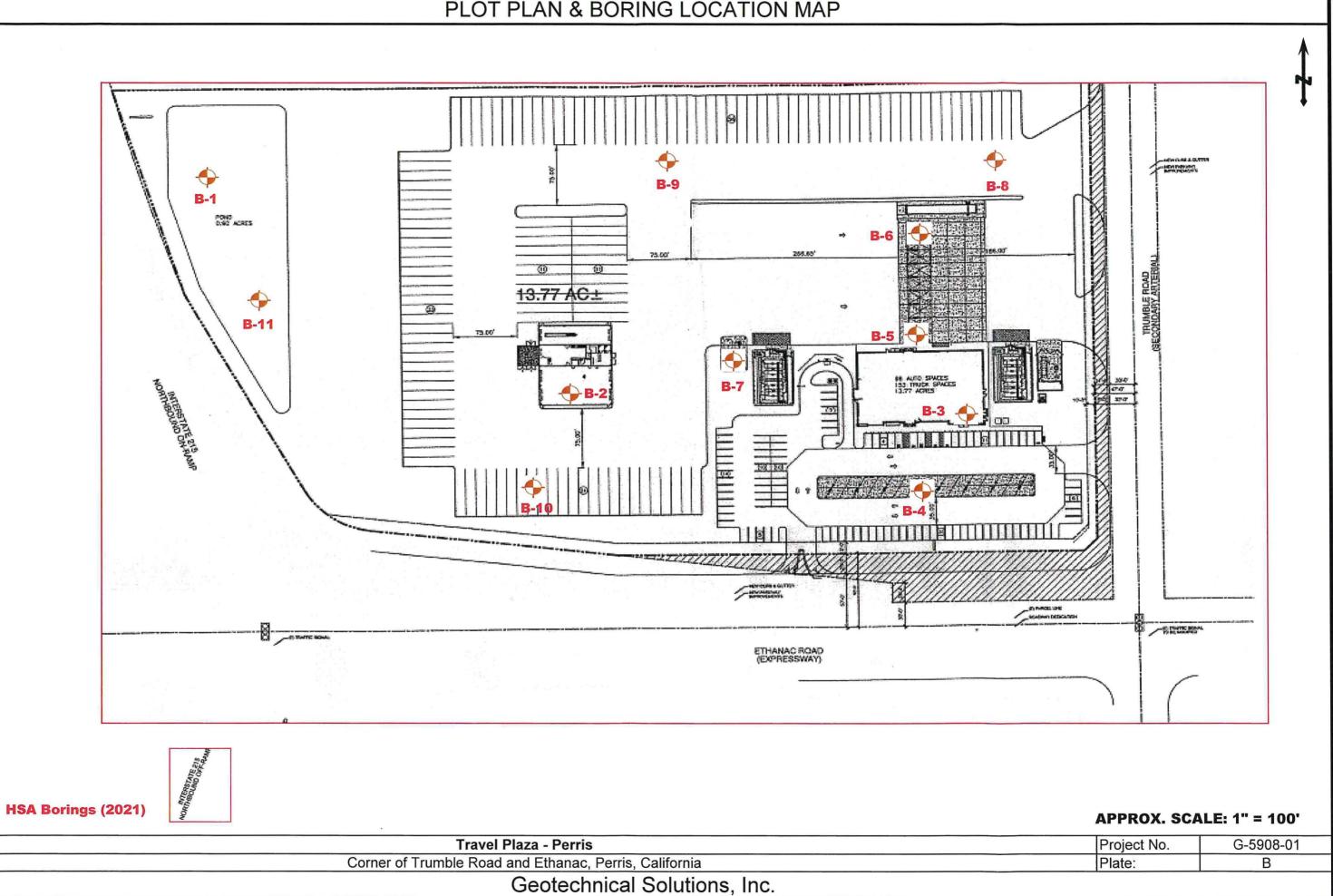
This report has been compiled for the exclusive use of our client, it shall not be transferred to, or used by, other parties, or applied to any project on this site other than described herein without consent and /or thorough review by this office.

#### **Geotechnical Solutions, Inc.**

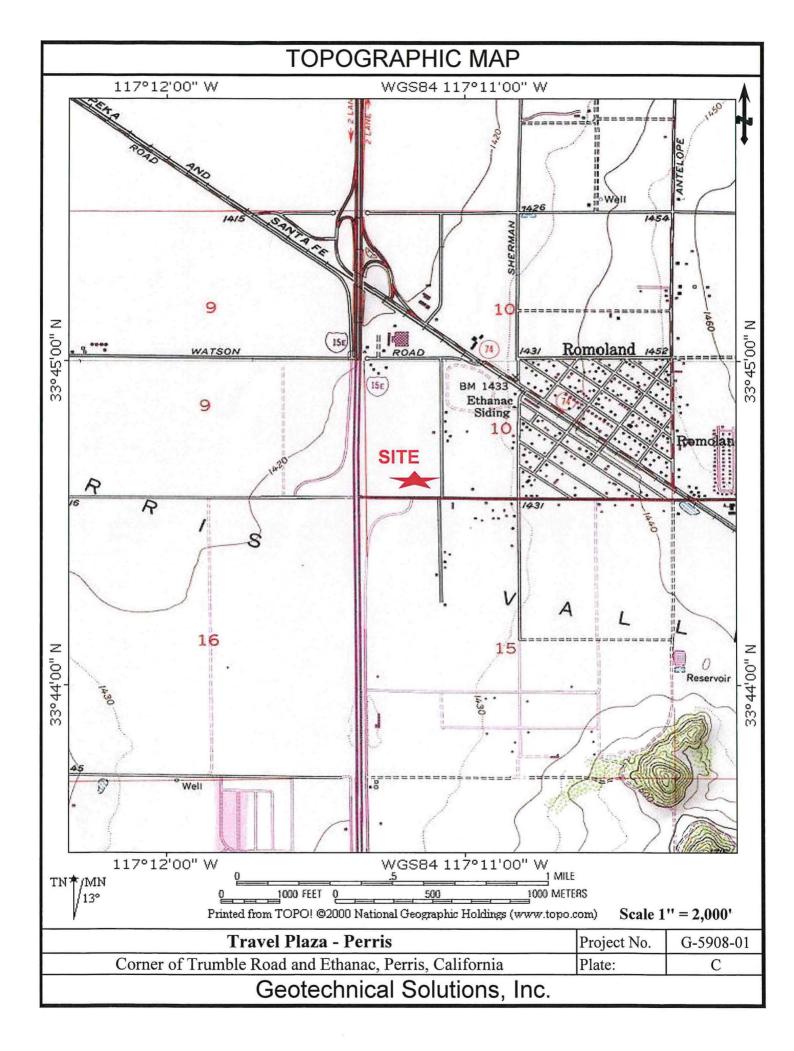
35

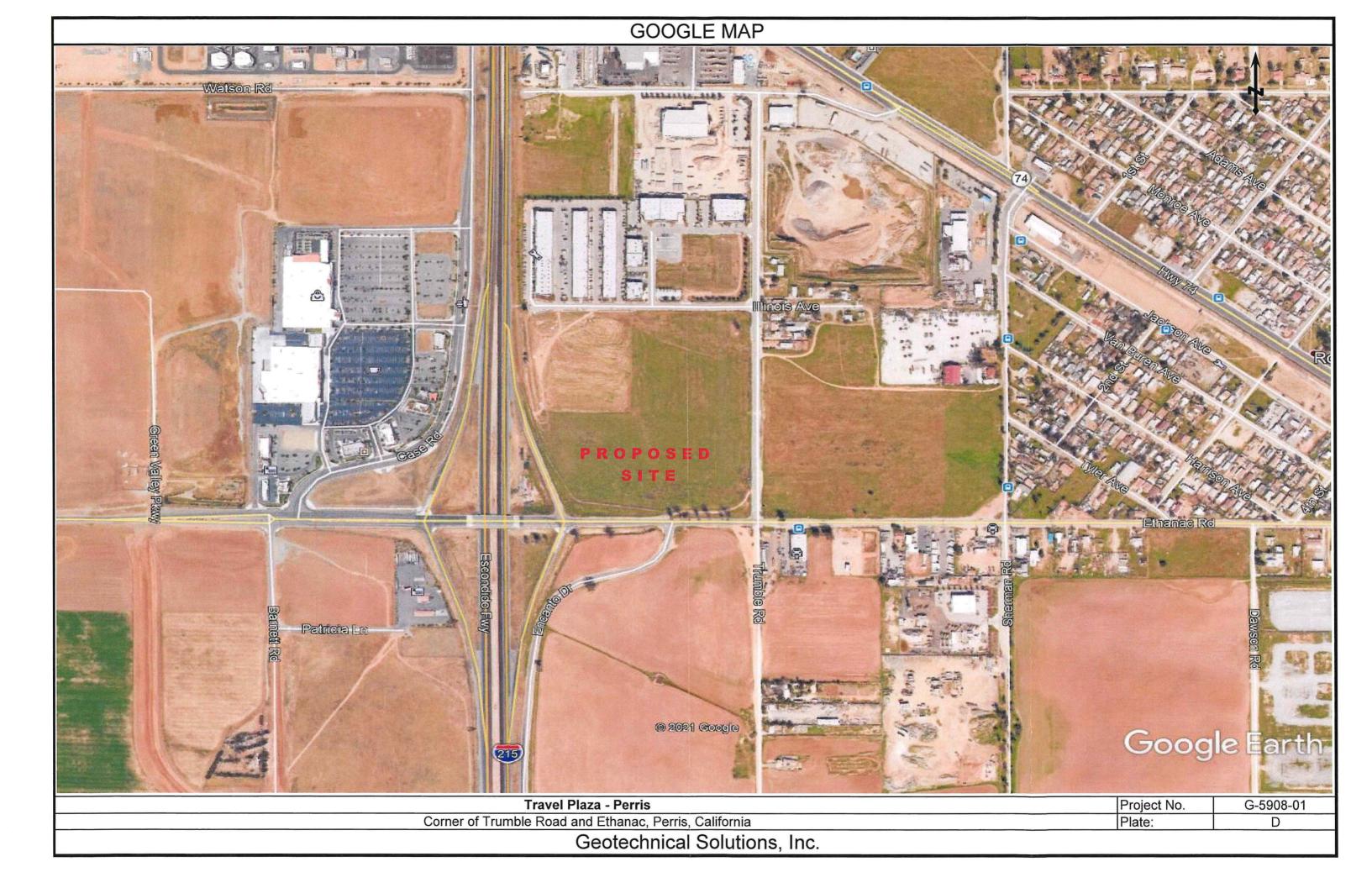

#### References

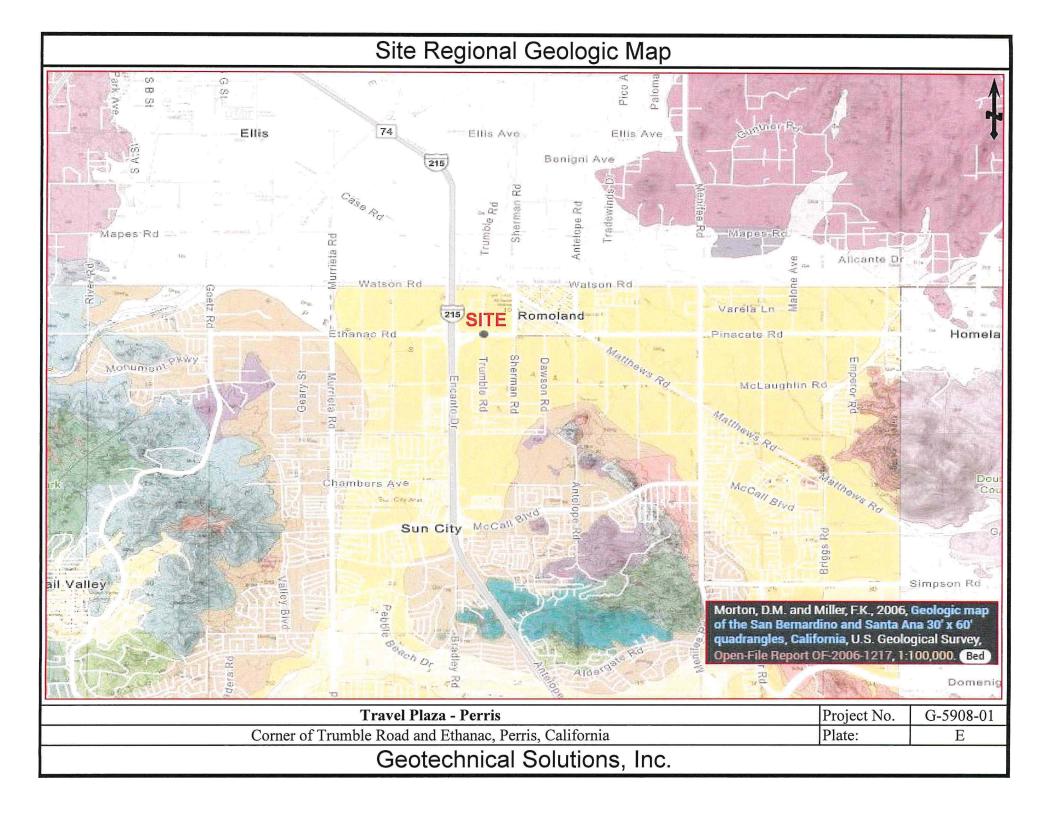
- California Department of Water Resources groundwater well data <u>http://wdl.water.ca.gov</u>.
- California Division of Mines and Geology, 1997, Fault-Rupture Hazard Zones in California, Special Publication 42.
- California, Division of Mines and Geology, 2008, Special Publication 117A, Guidelines for Evaluating and Mitigating Seismic Hazards.
- International Conference of Building Officials (ICBO), 2019, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2.
- Jennings, C.W., 1994, Preliminary Fault Activity Map of California, Scale 1:750,000, DMG Open File Report 92-03.
- Morton, D.M. and F.K. Miller, 2006, "Geologic Map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California: U.S. Geological Survey, Open-File Report OF-2006-1217, Scale 1:100,000.
- Thomas W. Dibblee, Jr., 2003," Geologic Map of the Devore Quadrangle, San Bernardino County, California", Edited by John A. Minch.
- U.S. Seismic Design Maps Summary & Detailed Report (SEAOC/OSHPOD)
- 2008 National Seismic Hazard Maps Source Parameters. https://earthquake.usgs.gov/cfusion/hazfaults\_2008\_search/query\_results.cfm
- U.S.G.S., Earthquake Hazards Program, Unified Hazard Tool Interactive Hazard Curve and Interactive Deaggregation web Site. https://earthquake.usgs.gov/hazards/interactive/

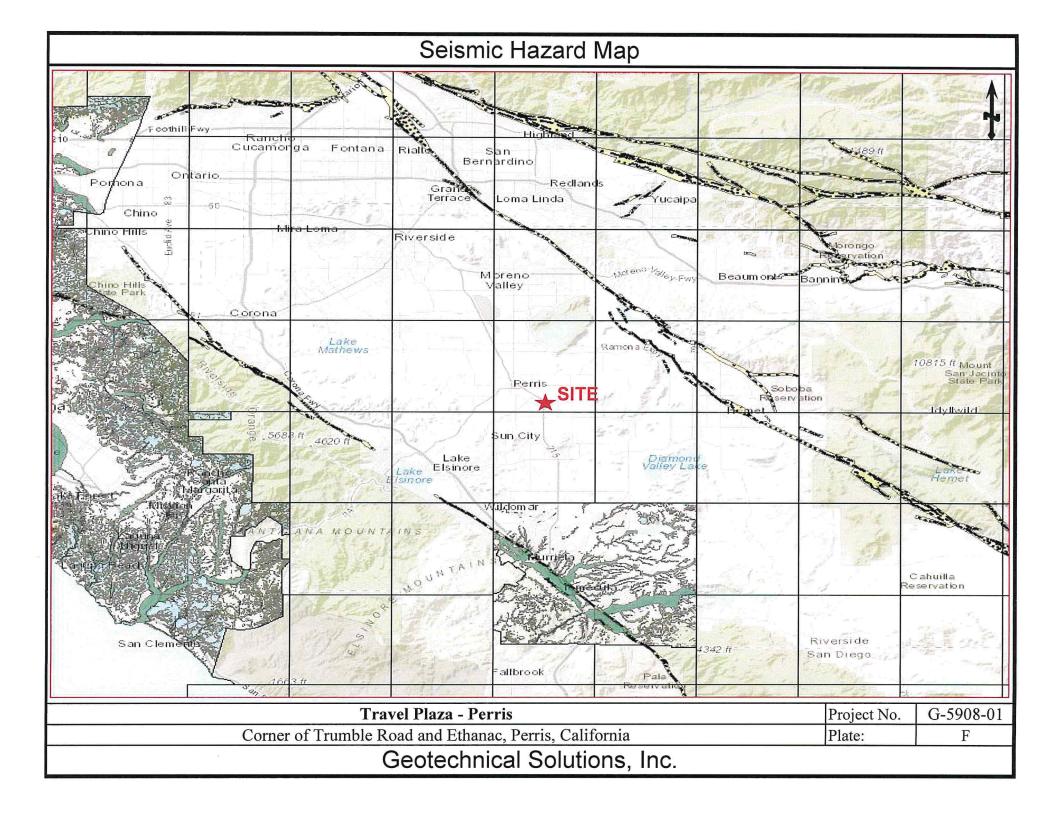

# Appendix A

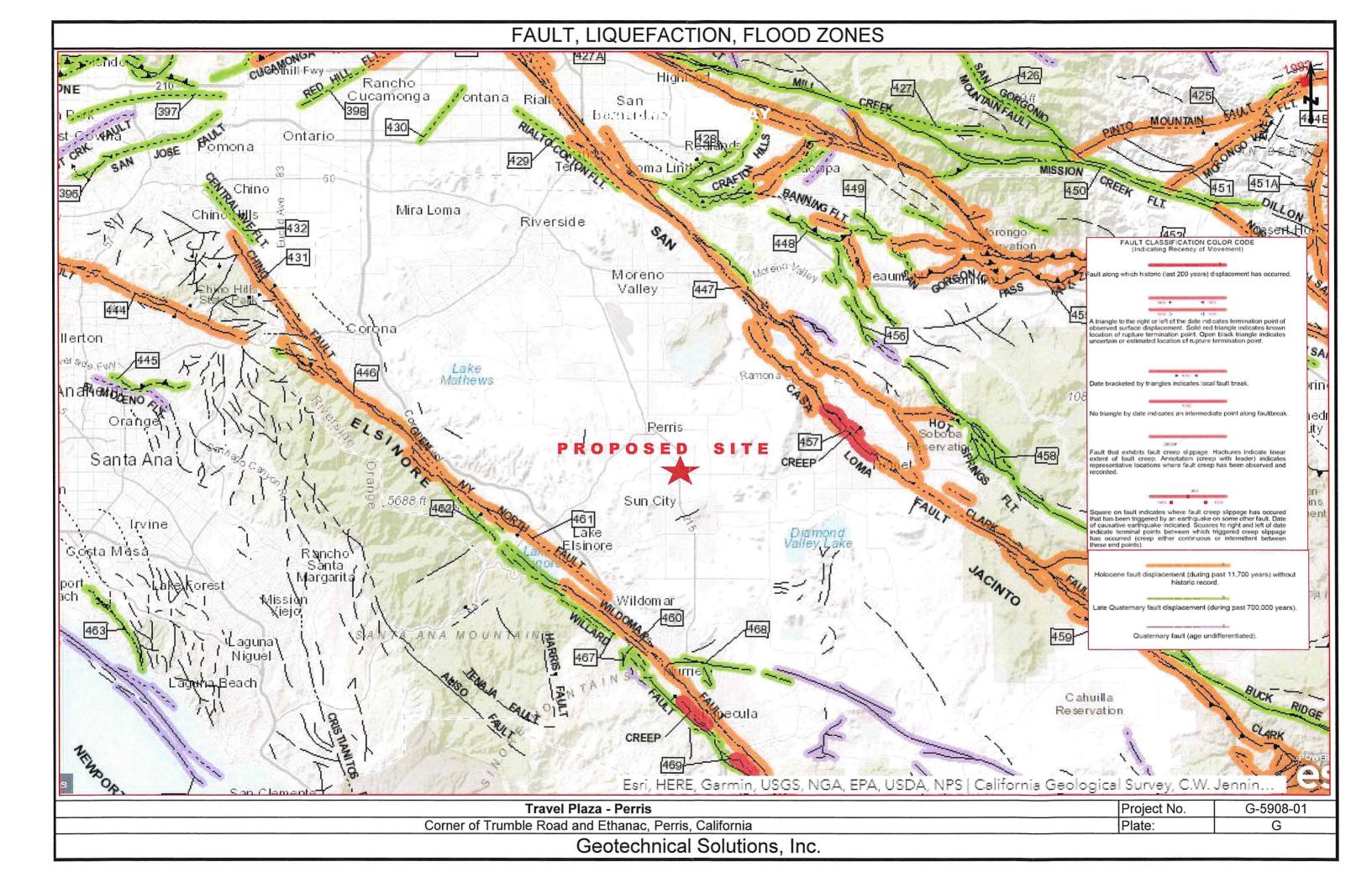
#### **Plates:**

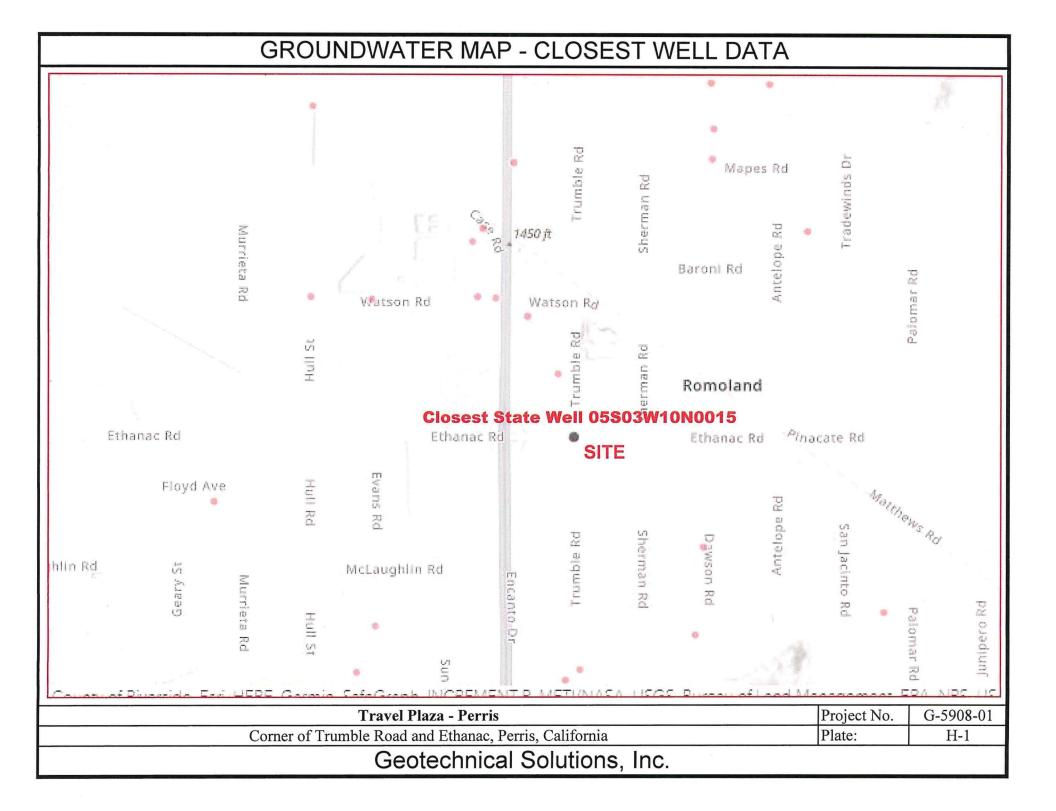

- Vicinity Map
- Plot Plan and Boring Location Map
- Topographic Map
- Google Map
- Site Regional Geology Map
- Seismic Hazard Map CGS
- Fault, Liquefaction and Flood Zones
- Groundwater Closest Well Data
- Groundwater Map Well Data
- Log of Test Borings
- Direct Shear Tests
- Consolidation Tests



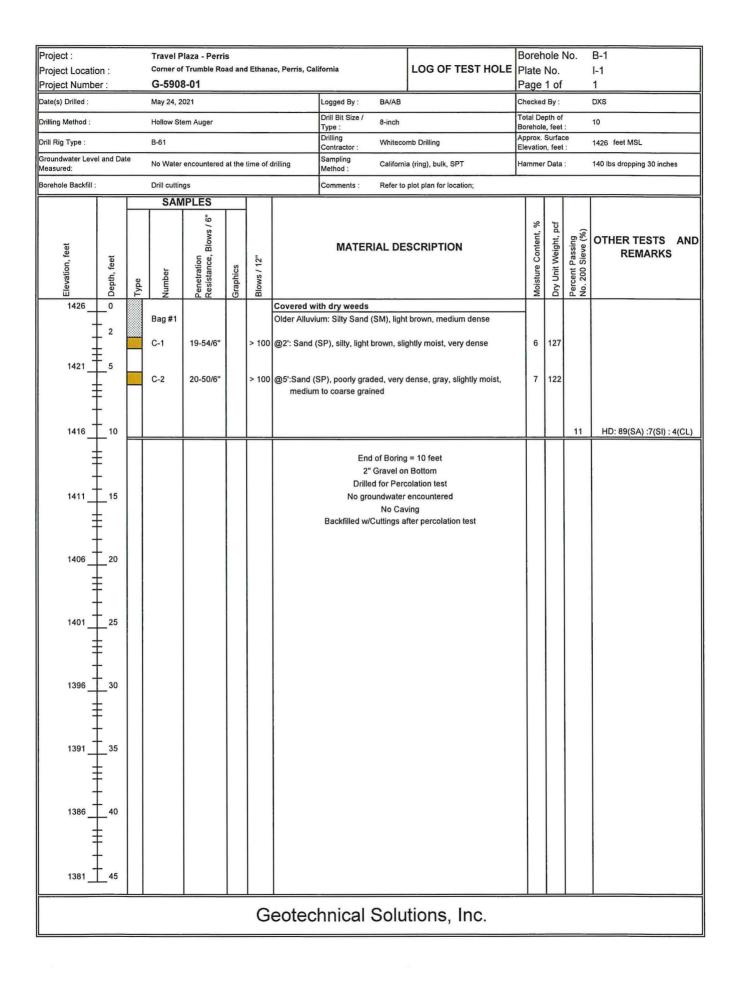


# PLOT PLAN & BORING LOCATION MAP



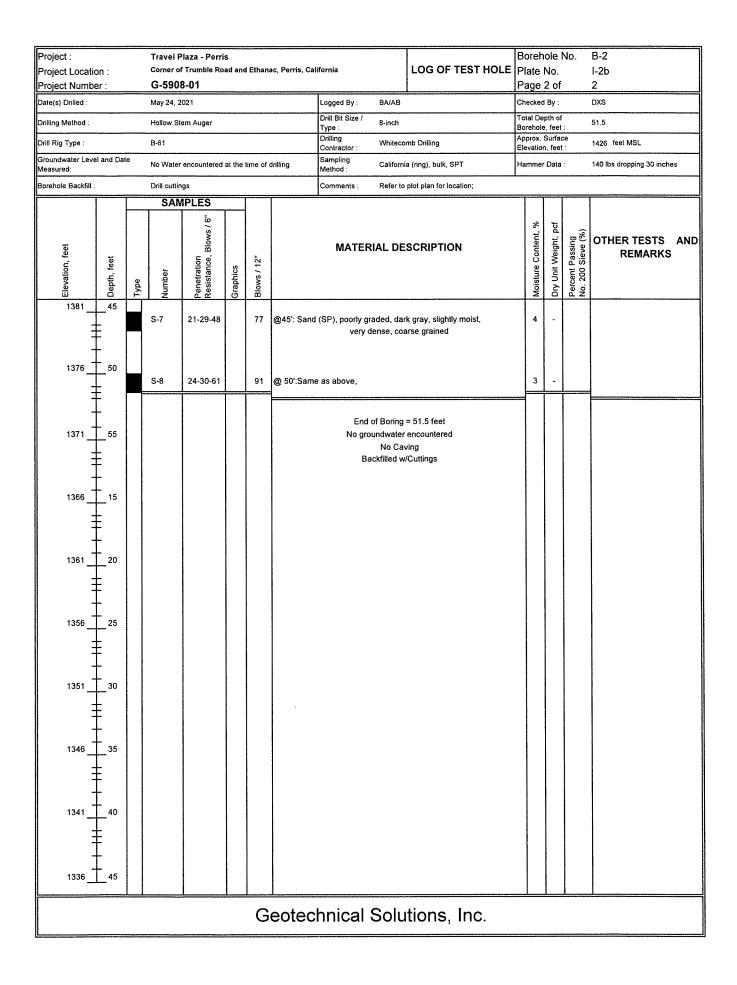


**B-11** 







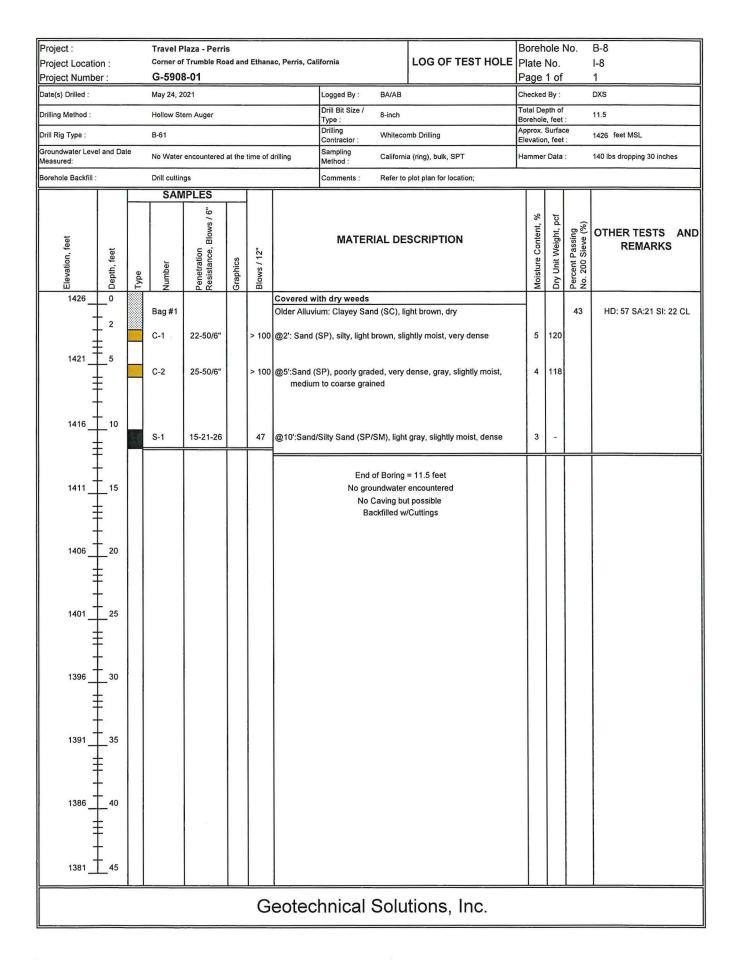


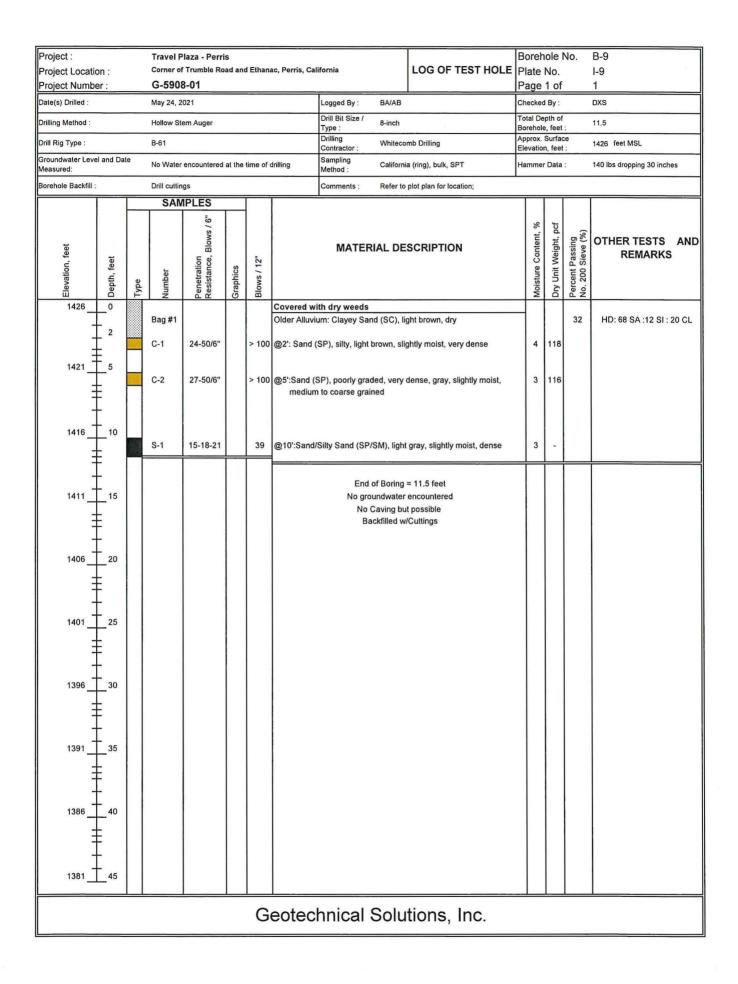

|                                            | GROUI                                    | NDWATEF                   | r Map - We               | ELL DATA                           |                      |                              |        |
|--------------------------------------------|------------------------------------------|---------------------------|--------------------------|------------------------------------|----------------------|------------------------------|--------|
| Groundwater L                              | evel Report.                             |                           |                          |                                    |                      |                              |        |
| Station 337464N117                         | 1859W001                                 |                           |                          |                                    |                      |                              |        |
| Station Data Groundwate                    | r Level Data                             |                           |                          |                                    |                      |                              |        |
| Groundwater Level                          | s for Well 337464N1                      | 171859W001 <b>(</b>       | Site Code)               |                                    |                      |                              |        |
| 1440 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1420 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1400 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| (II)<br>Hot 1380 ft                        |                                          |                           |                          |                                    |                      |                              |        |
| 五<br>1360 府                                |                                          |                           |                          |                                    |                      |                              |        |
| 1340 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1320 ft                                    | ø                                        |                           |                          |                                    | •                    |                              |        |
|                                            | 06/02/1995                               | - Water Surface           | Ground Surface           | - Questionable Data                |                      |                              |        |
| Measurement Referen<br>Date (PST) Elevatio | ice Point Ground Surface<br>In Elevation | Distance from<br>RP to WS | Groundwater<br>Elevation | Ground Surface<br>to Water Surface | Measurement<br>Issue | Collecting<br>Agency         | V<br>N |
| 06/02/1995 1427.49<br>00:00:00             | 0 1427.490                               | 97.98                     | 1329.51                  | 97.98                              |                      | Department of<br>Water Resou |        |
| 09/13/1995<br>00:00:00 1427.49             | 0 1427.490                               | 95.63                     | 1331.86                  | 95.63                              |                      | Department of<br>Water Resou |        |
|                                            |                                          | el Plaza - Perris         | Domia Califami           |                                    | Project              |                              |        |
|                                            | Corner of Trumble Roa                    |                           | I Solutions,             |                                    | Plate:               | H                            | -2     |
|                                            | 00                                       |                           |                          |                                    |                      |                              |        |

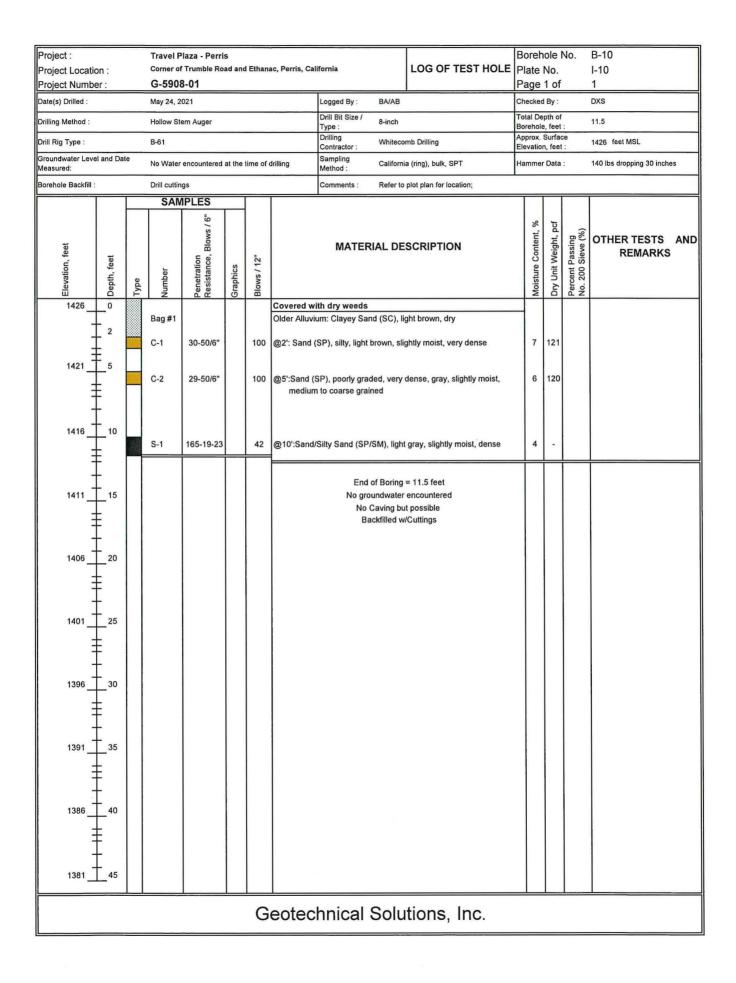


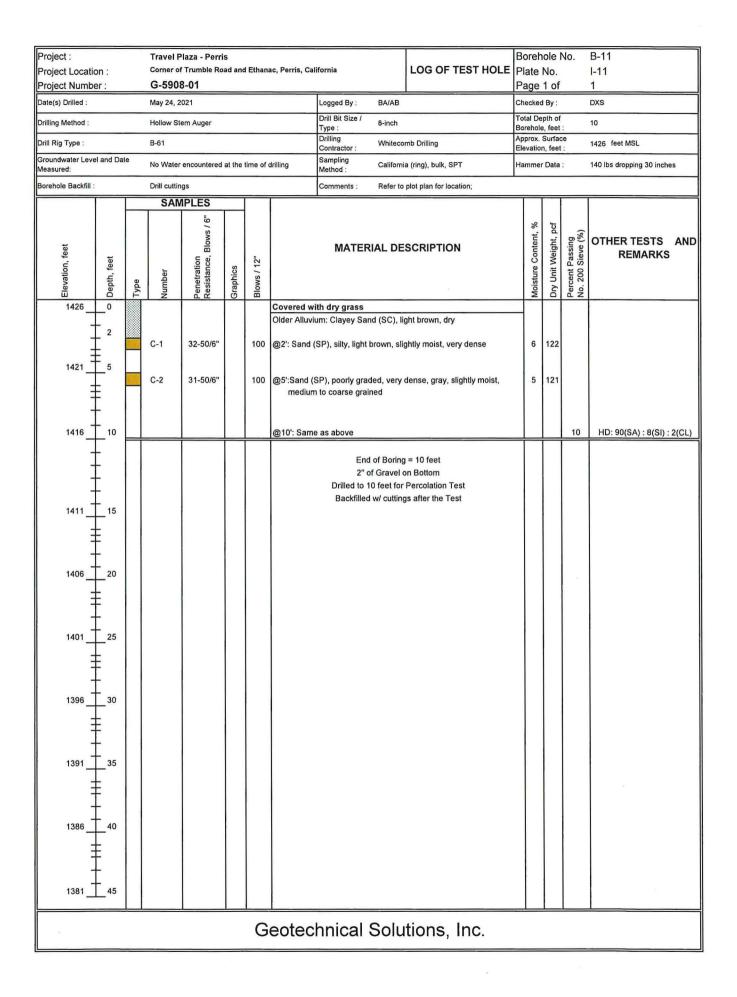
| Project :<br>Project Locatio | n ·         |      |               | laza - Perri<br>Trumble Ro            |          | d Ethan     | ac, Perris, Cal                                                                                   | lifornia                                        | LOG OF TEST HOLE                                   | Boreh               |                      | No.                                  | B-2<br>I-2a                                                                                               |
|------------------------------|-------------|------|---------------|---------------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------|----------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|
| roject Numbe                 |             |      | G-5908        |                                       | ad an    | - Cinan     | ac, r enns, ca                                                                                    | inorma                                          |                                                    | Plate               |                      |                                      | 2                                                                                                         |
| ate(s) Drilled :             |             |      | May 24, 2     |                                       |          |             |                                                                                                   | Logged By : BA/AB                               | 1                                                  | Checker             | _                    |                                      | DXS                                                                                                       |
| rilling Method :             |             |      | Hollow Ste    | em Auger                              |          |             |                                                                                                   | Drill Bit Size / 8-inch                         |                                                    | Total De            |                      |                                      | 51.5                                                                                                      |
| rill Rig Type :              |             |      | B-61          |                                       |          |             |                                                                                                   | Drilling Whiteco                                | mb Drilling                                        | Borehol<br>Approx.  |                      |                                      | 1426 feet MSL                                                                                             |
| Groundwater Level            | and Date    | e    |               |                                       |          |             |                                                                                                   | Sampling                                        |                                                    | Elevatio            |                      |                                      |                                                                                                           |
| leasured:                    |             |      |               | encountered                           | at the   | time of     | aniling                                                                                           | Method : Californi                              | a (ring), bulk, SPT                                | Hamme               | r Data               | :                                    | 140 lbs dropping 30 inches                                                                                |
| orehole Backfill :           |             |      | Drill cuttin  |                                       |          |             |                                                                                                   | Comments : Refer to                             | plot plan for location;                            |                     |                      |                                      |                                                                                                           |
| Elevation, feet              | Depth, feet | Type | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                                                   | MATERIAL DE                                     | SCRIPTION                                          | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AI<br>REMARKS                                                                                 |
| 1426                         | _0          |      |               |                                       |          |             | Baregroun                                                                                         |                                                 |                                                    | _                   |                      |                                      |                                                                                                           |
| +                            | 2           |      | Bag #1<br>C-1 | 50/6"                                 |          | 100         |                                                                                                   | um: Clayey Sand (SC), li                        | ght brown, medium dense<br>ghtly moist, very dense | 7                   | 121                  | 28                                   | HD:72 SA:10 SI: 18 CI                                                                                     |
| 1421                         | 5           |      | C-2           | 18-37-44                              |          | 81          |                                                                                                   | SP), poorly graded, very<br>n to coarse grained | dense, gray, moist,                                | 10                  | 126                  |                                      |                                                                                                           |
| 1416                         | 10          |      | C-3           | 17-32-34                              |          | 66          | @10':Sand<br>to coarse gr                                                                         | (SP), variety of color, mo<br>rained            | ist, very dense, medium                            | 9                   | 95                   |                                      | DS: P=Peak / Ult=Ultimate<br>$\phi = 34^{\circ}$ , c =250 psf (P<br>$\phi = 33^{\circ}$ , c = 200 psf (Ul |
| 1411                         | 15          |      | S-1           | 14-28-33                              |          | 61          | @15': Sand                                                                                        | l (SP), hard to drill, slightl                  | y moist, dark gray                                 | 5                   | -                    |                                      |                                                                                                           |
| 1406                         | 20          |      | S-2           | 15-34-39                              |          | 73          | @20': Same                                                                                        | e as above                                      |                                                    | 5                   | -                    |                                      |                                                                                                           |
| 1401                         | 25          | -    | S-3           | 19-31-37                              |          | 68          | @25': Same                                                                                        | e as above                                      |                                                    | 5                   | -                    |                                      |                                                                                                           |
| 1396                         | _30         |      | S-4           | 14-19-27                              |          | 46          | @ 30': Sam                                                                                        | e as above                                      |                                                    | 4                   | d -                  |                                      |                                                                                                           |
| 1391                         | _35         |      | S-5           | 11-18-26                              |          | 44          | @ 35': Sand                                                                                       | 11                                              | -                                                  |                     |                      |                                      |                                                                                                           |
| 1386                         | 40          |      | S-6           | 20-27-39                              |          | 66          | @40': Sand(SP), poorly graded, dark gray, slightly moist,<br>very dense, medium to coarse grained |                                                 |                                                    |                     |                      |                                      |                                                                                                           |
| 1381                         | 45          |      |               |                                       |          |             |                                                                                                   |                                                 |                                                    |                     |                      |                                      |                                                                                                           |
|                              |             |      |               |                                       |          | G           | eotec                                                                                             | hnical Solu                                     | tions, Inc.                                        |                     |                      |                                      |                                                                                                           |

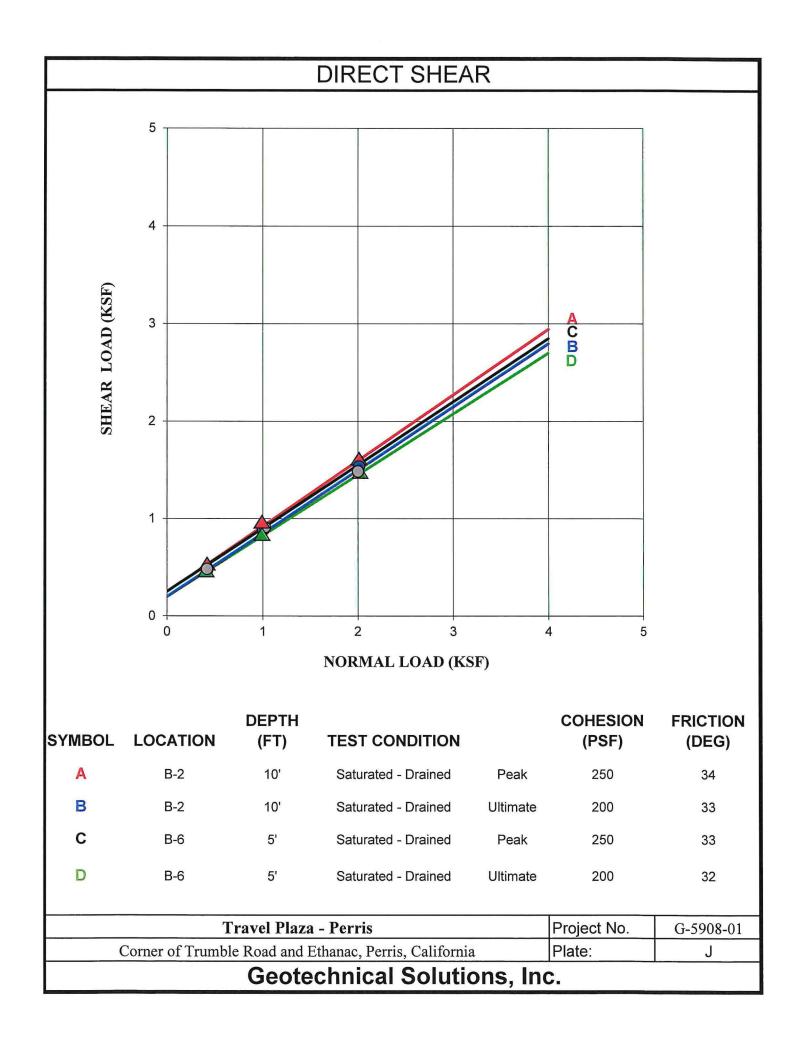



| Designation                      | _        | -             |                                       |          |             |                                       |                                                              |                         | D                   | al.                  | Nie                                                                                                                                          | D 2                        |
|----------------------------------|----------|---------------|---------------------------------------|----------|-------------|---------------------------------------|--------------------------------------------------------------|-------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Project :<br>Project Location :  |          |               | laza - Perri<br>Trumble Ro            |          | l Ethana    | ac, Perris, Cali                      | lifornia                                                     | LOG OF TEST HOLE        | Boreh               |                      | NO.                                                                                                                                          | B-3<br>I-3                 |
| Project Number :                 |          | G-590         |                                       |          |             | , , , , , , , , , , , , , , , , , , , |                                                              |                         | Page                |                      |                                                                                                                                              | 1                          |
| Date(s) Drilled :                |          | May 24, 2     |                                       |          |             |                                       | Logged By : BA/AB                                            |                         | Checked             |                      |                                                                                                                                              | DXS                        |
| Drilling Method :                |          | Hollow St     | em Auger                              |          |             |                                       | Drill Bit Size / 8-inch                                      |                         | Total De            |                      |                                                                                                                                              | 16.5                       |
| Drill Rig Type :                 |          | B-61          |                                       |          |             |                                       | Type :<br>Drilling<br>Whitecor                               | nb Drilling             | Borehole<br>Approx. | Surfac               | ce                                                                                                                                           | 1426 feet MSL              |
| Groundwater Level and Dat        | e        | No Water      | encountered                           | at the   | time of c   | frilling                              | Sampling California                                          | ı (ring), bulk, SPT     | Elevatio<br>Hamme   |                      |                                                                                                                                              | 140 lbs dropping 30 inches |
| Measured:<br>Borehole Backfill : |          | Drill cuttin  |                                       |          |             |                                       | Method :                                                     | plot plan for location; |                     | Duiu                 |                                                                                                                                              |                            |
| Borenole Backini .               | -        |               | IPLES                                 | _        |             |                                       | Comments . Refer to                                          | piot plan for location, | <b>—</b>            |                      |                                                                                                                                              |                            |
|                                  |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| Elevation, feet<br>Depth, feet   | Type     | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                       | MATERIAL DE                                                  | SCRIPTION               | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%)                                                                                                         | OTHER TESTS AND<br>REMARKS |
| 14260                            | <b>F</b> | 2             |                                       | 0        |             | Bareground                            | d                                                            |                         |                     |                      | <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                            |
| - 2<br>- 2                       |          | Bag #1<br>C-1 | 50/6"                                 |          |             | Older Alluviu                         | um: Silty Sand/ Sand (SM<br>SP), silty, dark brown, slig     |                         | 6                   | 127                  |                                                                                                                                              |                            |
| 14215                            |          | C-2           | 20-50/6"                              |          | 100         |                                       | SP), poorly graded, very on<br>nedium to coarse grained      |                         | 7                   | 122                  |                                                                                                                                              |                            |
| 141610                           |          | C-3           | 8-10-33                               |          | 43          | @10':Same                             | as above, slightly moist                                     |                         | 3                   |                      |                                                                                                                                              |                            |
| 141115                           |          | S-1           | 10-20-40                              |          | 60          | @10':Same                             | as above                                                     |                         | 3                   | -                    |                                                                                                                                              |                            |
| 1406 20                          |          |               |                                       |          |             |                                       | End of Boring =<br>No groundwater<br>No Cav<br>Backfilled w/ | encountered<br>ing      |                     |                      |                                                                                                                                              |                            |
| 140125                           |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 139630                           |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1391 35                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1386 40                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1381 45                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
|                                  |          |               |                                       |          | G           | eotecl                                | hnical Solu                                                  | tions, Inc.             |                     |                      |                                                                                                                                              |                            |


| Project :                             |      | Traval        | lana Dawi                             |          |             |                 |                                                            |                         | Boreh               |                      | No                                   | B-4                        |
|---------------------------------------|------|---------------|---------------------------------------|----------|-------------|-----------------|------------------------------------------------------------|-------------------------|---------------------|----------------------|--------------------------------------|----------------------------|
| Project Location :                    |      |               | Plaza - Perri<br>f Trumble Ro         |          | l Ethana    | ac, Perris, Cal | ifornia                                                    | LOG OF TEST HOLE        |                     |                      |                                      | I-4                        |
| Project Number :                      |      | G-590         | 8-01                                  |          |             |                 |                                                            |                         | Page                |                      |                                      | 1                          |
| Date(s) Drilled :                     |      | May 24, 2     | 021                                   |          |             |                 | Logged By : BA/AB                                          |                         | Checke              | d By :               |                                      | DXS                        |
| Drilling Method :                     |      | Hollow St     | em Auger                              |          |             |                 | Drill Bit Size / 8-inch<br>Type :                          |                         | Total De<br>Borehol |                      |                                      | 21.5                       |
| Drill Rig Type :                      |      | B-61          |                                       |          |             |                 | Drilling<br>Contractor : Whitecor                          | nb Drilling             | Approx.<br>Elevatio |                      |                                      | 1426 feet MSL              |
| Groundwater Level and Da<br>Measured: | ite  | No Water      | encountered                           | at the   | time of o   | drilling        | Sampling<br>Method : California                            | a (ring), bulk, SPT     | Hamme               | r Data               | :                                    | 140 lbs dropping 30 inches |
| Borehole Backfill :                   |      | Drill cuttin  | (2))                                  |          |             |                 | Comments : Refer to                                        | plot plan for location; |                     |                      |                                      |                            |
|                                       |      | SAN           | IPLES                                 |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| Elevation, feet<br>Depth, feet        | Type | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                 | MATERIAL DE                                                | SCRIPTION               | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AND<br>REMARKS |
| 14260                                 |      |               |                                       | -        |             | Bareground      | d                                                          |                         |                     |                      |                                      |                            |
| 2<br>2<br>2                           |      | Bag #1<br>C-1 | 28-50/6"                              |          | 100         |                 | um: Silty Sand (SM), light<br>SP), Silty, light brown, sli |                         | 8                   | 117                  |                                      |                            |
| 14215                                 |      | C-2           | 9-13-16                               |          | 29          |                 | and (SM), medium dense,<br>a to coarse grained             | brown, moist,           | 6                   | 113                  |                                      |                            |
| 141610                                |      | C-3           | 10-12-18                              |          | 30          |                 | and/Sand (SM/SP), dark<br>ium to coarse grained            | brown, moist, medium    | 3                   | 103                  |                                      |                            |
| 1411 15                               |      | S-1           | 16-26-39                              |          | 65          | @15': Sand      | (SP), dark brown, slightly coarse gr                       |                         | 3                   | -                    |                                      |                            |
| 1406 20                               |      | S-2           | 20-27-43                              |          | 70          | @20': Same      | e as above                                                 |                         | 3                   | -                    |                                      |                            |
| 140125                                |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1396 30                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1391 35                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1386 40                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1381 45                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
|                                       |      |               |                                       |          | G           | eotec           | hnical Solu                                                | tions, Inc.             |                     |                      |                                      |                            |

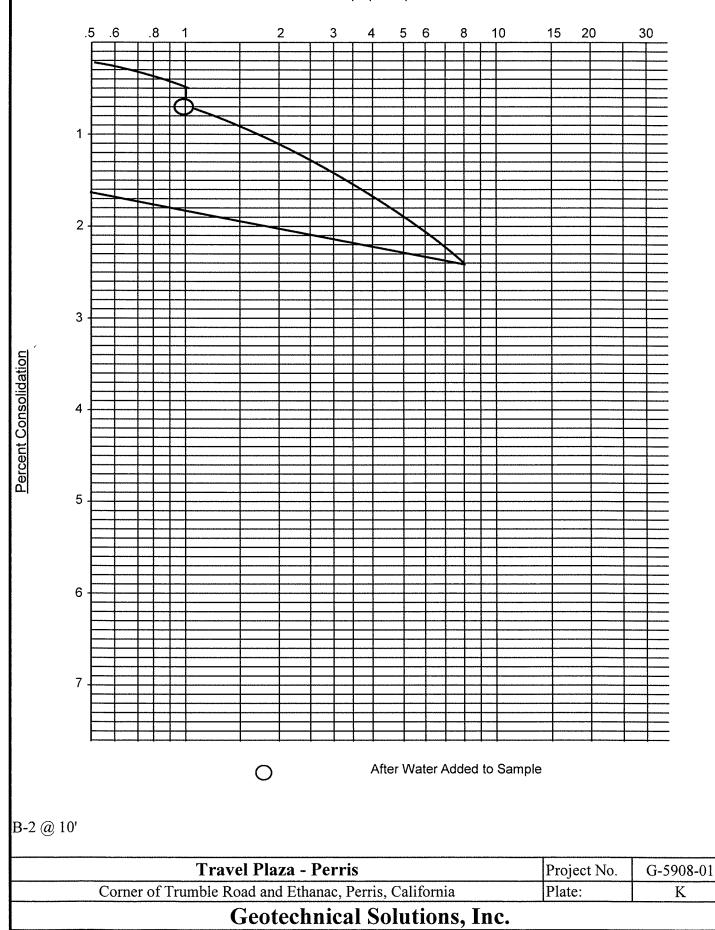

| Project :<br>Project Location<br>Project Number |             |      |              |                                       |          | i Ethana    | ic, Perris, Cali                                                           | ifornia                                 |            | LOG OF TEST HOLE        | Boreh<br>Plate<br>Page | No.                  |                                      | B-5<br>I-5<br>1            |
|-------------------------------------------------|-------------|------|--------------|---------------------------------------|----------|-------------|----------------------------------------------------------------------------|-----------------------------------------|------------|-------------------------|------------------------|----------------------|--------------------------------------|----------------------------|
| Date(s) Drilled :                               |             |      | May 24, 2    | 021                                   |          |             |                                                                            | Logged By :                             | BA/AB      |                         | Checkee                |                      |                                      | DXS                        |
| Drilling Method :                               |             |      | Hollow Ste   | em Auger                              |          |             |                                                                            | Drill Bit Size /<br>Type :              | 8-inch     |                         | Total De<br>Borehole   | epth of<br>e, feet   | :                                    | 21.5                       |
| Drill Rig Type :                                |             |      | B-61         |                                       |          |             |                                                                            | Drilling<br>Contractor :                | Whiteco    | mb Drilling             | Approx.<br>Elevatio    |                      |                                      | 1426 feet MSL              |
| Groundwater Level a<br>Neasured:                | and Date    | 9    | No Water     | encountered                           | at the   | time of c   | Irilling                                                                   | Sampling<br>Method :                    | Californi  | a (ring), bulk, SPT     | Hamme                  | r Data               | :                                    | 140 lbs dropping 30 inches |
| orehole Backfill :                              |             |      | Drill cuttin | -                                     | _        |             |                                                                            | Comments :                              | Refer to   | plot plan for location; |                        |                      |                                      |                            |
|                                                 | -           |      | SAN          | IPLES                                 |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| Elevation, feet                                 | Depth, feet | Type | Number       | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                            | MATERI                                  | AL DE      | SCRIPTION               | Moisture Content, %    | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AN<br>REMARKS  |
| 1426                                            | _0          |      | Bag #1       | 4                                     |          |             |                                                                            | th dry grass<br>um: Silty Sand (\$      | SM), light | brown, dry              | -                      |                      |                                      |                            |
| +                                               | 2           |      | C-1          | 51-50/1"                              |          | >100        |                                                                            | SP), trace Silt, li<br>ium to coarse gr |            | n, slightly moist, very | 10                     | 111                  |                                      |                            |
| 1421                                            | 5           |      | C-2          | 26-50/5"                              |          | >100        | @5':Same a                                                                 |                                         |            | 11                      | 103                    |                      |                                      |                            |
| 1416                                            | _10         |      | C-3          | 37-50/4"                              |          | >100        | @10':Same as above                                                         |                                         |            |                         |                        | 119                  |                                      |                            |
| 1411                                            | _15         | 16   | S-1          | 29-36-44                              |          | 80          | @15': Sand (SP), dark brown, slightly moist, very dense,<br>coarse grained |                                         |            |                         |                        | -                    |                                      |                            |
| 1406                                            | _20         |      | S-2          | 30-35-47                              |          | 82          | @20': Same                                                                 | e as above                              |            |                         | 5                      | -                    |                                      |                            |
| 1401                                            | _25         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1396                                            | _30         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1391                                            | _35         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1386                                            | _40         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1381                                            | _45         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
|                                                 |             |      |              |                                       |          | G           | eotec                                                                      | hnical S                                | Solu       | tions, Inc.             |                        |                      |                                      |                            |


| Project :                               | Travel F      | Plaza - Perri                         | s        |             |                                                                                                                                       |                                                        |                           |   | Boreh               |                      | No.                                                                                                          | B-6                        |
|-----------------------------------------|---------------|---------------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|---|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| Project Location :                      |               |                                       | ad and   | l Ethana    | ac, Perris, Cal                                                                                                                       | lifornia                                               | LOG OF TEST H             |   |                     |                      |                                                                                                              | I-6                        |
| Project Number :                        | G-590         |                                       |          |             |                                                                                                                                       |                                                        |                           | Ť | Page                |                      |                                                                                                              | 1                          |
| Date(s) Drilled :                       | May 24, 2     | 021                                   |          |             |                                                                                                                                       | Logged By : BA/AB                                      |                           |   | Checke              |                      |                                                                                                              | DXS                        |
| Drilling Method :                       | Hollow St     | em Auger                              |          |             |                                                                                                                                       | Type : 8-inch                                          |                           | 1 | Total De<br>Borehol | e, feet              | :                                                                                                            | 11.5                       |
| Drill Rig Type :                        | B-61          |                                       |          |             |                                                                                                                                       | Drilling Whited                                        | omb Drilling              |   | Approx.<br>Elevatio |                      |                                                                                                              | 1426 feet MSL              |
| Groundwater Level and Date<br>Measured: | No Water      | encountered                           | at the   | time of c   | drilling                                                                                                                              | Sampling Califor<br>Method :                           | nia (ring), bulk, SPT     | 1 | Hamme               | r Data               | :                                                                                                            | 140 lbs dropping 30 inches |
| Borehole Backfill :                     | Drill cuttin  | IPLES                                 |          |             |                                                                                                                                       | Comments : Refer                                       | o plot plan for location; |   |                     | -                    |                                                                                                              |                            |
|                                         | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                                                                                       | MATERIAL D                                             | ESCRIPTION                |   | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%)                                                                         | OTHER TESTS AND<br>REMARKS |
|                                         | Bag #1<br>C-1 | 26-50/4"                              |          | > 100       |                                                                                                                                       | SM/SP), light brown, medi<br>lightly moist, very dense | ium                       | 6 | 123                 |                      |                                                                                                              |                            |
|                                         | C-2           | 28-50/5"                              |          | > 100       | @5':Sand (S<br>grained                                                                                                                | noist, medium to coarse                                |                           | 8 | 129                 |                      | DS: P=Peak / Ult=Ultimate<br>$\phi = 33^{\circ}$ , c =250 psf (P)<br>$\phi = 32^{\circ}$ , c = 200 psf (Ult) |                            |
| 141610                                  | S-1           | 15-25-30                              |          | 55          |                                                                                                                                       | nt gray, slightly moist, ver                           | у                         | 3 | i <del>n</del>      |                      |                                                                                                              |                            |
| 1411 15                                 |               |                                       |          |             | e dense, coarse grained<br>End of Boring = 11.5 feet<br>No groundwater encountered<br>No Caving but possible<br>Backfilled w/Cuttings |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1406 20                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1401 25                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 139630                                  |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 139135                                  |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1386 40                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1381 45                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
|                                         |               |                                       |          | G           | eotec                                                                                                                                 | hnical Solu                                            | utions, Inc.              |   |                     |                      |                                                                                                              |                            |


| Project :                              |      | Travel P     | laza - Perris                         | 5        |             |                                                                       |                                   |                      |                                  | Boreh               |                      | No.                                  | B-7                        |
|----------------------------------------|------|--------------|---------------------------------------|----------|-------------|-----------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------------|---------------------|----------------------|--------------------------------------|----------------------------|
| Project Location :                     |      | Corner of    | Trumble Roa                           | ad and   | l Ethana    | ic, Perris, Cali                                                      | fornia                            |                      | LOG OF TEST HOLE                 | Plate               | No.                  |                                      | I-7                        |
| Project Number :                       |      | G-590        | 3-01                                  |          |             |                                                                       |                                   |                      |                                  | Page                | 1 of                 |                                      | 1                          |
| Date(s) Drilled :                      |      | May 24, 2    | 021                                   |          |             |                                                                       | Logged By :                       | BA/AB                |                                  | Checker             |                      |                                      | DXS                        |
| Drilling Method :                      |      | Hollow St    | em Auger                              |          |             |                                                                       | Drill Bit Size /<br>Type :        | 8-inch               |                                  | Total De<br>Borehol | e, feet              | :                                    | 21.5                       |
| Drill Rig Type :                       |      | B-61         |                                       |          |             |                                                                       | Drilling<br>Contractor :          | Whiteco              | mb Drilling                      | Approx.<br>Elevatio |                      |                                      | 1426 feet MSL              |
| Groundwater Level and Dat<br>Measured: | e    | No Water     | encountered                           | at the   | time of c   | Irilling                                                              | Sampling<br>Method :              | Californi            | a (ring), bulk, SPT              | Hamme               | r Data               | 2                                    | 140 lbs dropping 30 inches |
| Borehole Backfill :                    |      | Drill cuttin | gs                                    |          |             |                                                                       | Comments :                        | Refer to             | plot plan for location;          |                     |                      |                                      |                            |
|                                        |      | SAN          | IPLES                                 |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| Elevation, feet<br>Depth, feet         | Type | Number       | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                       | MATERI                            | AL DE                | SCRIPTION                        | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AND<br>REMARKS |
| 14260                                  |      |              |                                       |          |             |                                                                       | th dry grass                      |                      | - hé banung dar                  | _                   |                      | 39                                   | HD: 61 SA:17 SI: 22 CL     |
| <u> </u>                               |      | Bag #1       |                                       |          |             |                                                                       | im: Clayey San                    |                      |                                  |                     |                      | 39                                   | HD: 61 5A:17 5I: 22 CL     |
| <u>+</u>                               |      | C-1          | 50/4"                                 |          | >100        | -                                                                     | Sand (SC), trac<br>nse, medium to |                      | ht brown, very moist,<br>grained | 18                  | 95                   |                                      |                            |
| <sup>1421</sup> 5                      |      | C-2          | 24-50/5"                              |          | >100        | @5':Sand (S<br>coarse grain                                           |                                   | , very de            | nse, moist, medium to            | 6                   | 127                  |                                      |                            |
|                                        |      | C-3          | 18-24-32                              |          | 56          | @10':Sand                                                             | I), dense                         | , brown, very moist, | 14                               | 114                 |                      |                                      |                            |
| 1411 15                                |      | S-1          | 15-18-18                              |          | 36          | @15': Sand (SP), dark brown, slightly moist, dense,<br>coarse grained |                                   |                      |                                  |                     | -                    |                                      |                            |
| 140620                                 |      | S-2          | 20-20-23                              |          | 43          | @20': Same                                                            | as above                          |                      |                                  | 4                   | -                    |                                      |                            |
| 1401 25                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1396 30                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1391 <u>3</u> 35                       |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1386 <u>40</u>                         |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1381 45                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
|                                        |      |              |                                       |          | G           | eotec                                                                 | hnical S                          | Solu                 | tions, Inc.                      |                     |                      |                                      |                            |

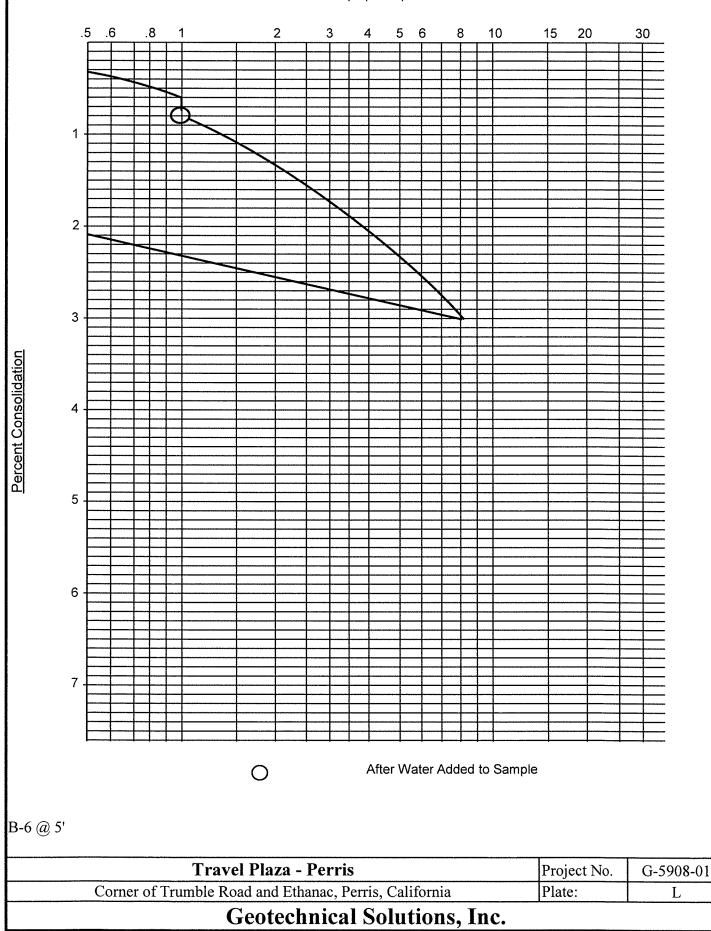












## CONSOLIDATION

Load In Kips per Square Foot



## CONSOLIDATION

Load In Kips per Square Foot



### Appendix B

### Seismic Data

- Table 1 Faults Table
- Unified Hazard Tool Hazard Curve
- U.S. Seismic Design Maps Summary & Detailed Report (SEAOC / OSHPD)

### Table - 1

### 2008 National Seismic Hazard Maps - Source Parameters Travel Plaza - Perris

| Distance in<br>Miles | Name                          | State | Pref Slip<br>Rate<br>(mm/yr) | Dip<br>(degrees) | Dip Dir | Slip Sense  | Rupture<br>Top<br>(km) | Rupture<br>Bottom<br>(km) | Length<br>(km) |
|----------------------|-------------------------------|-------|------------------------------|------------------|---------|-------------|------------------------|---------------------------|----------------|
| 9.56                 | Elsinore;Gl                   | CA    | 5                            | 90               | V       | strike slip | 0                      | 13                        | 37             |
| 9.56                 | Elsinore;W+GI                 | CA    | n/a                          | 81               | NE      | strike slip | 0                      | 14                        | 83             |
| 10.22                | San Jacinto;A+CC+B+SM         | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 178            |
| 10.22                | San Jacinto;A+CC+B            | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 152            |
| 10.22                | San Jacinto;A+C               | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 118            |
| 10.22                | San Jacinto;A                 | CA    | 9                            | 90               | V       | strike slip | 0                      | 17                        | 71             |
| 10.22                | San Jacinto;A+CC              | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 118            |
| 10.37                | Elsinore;GI+T+J+CM            | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 16                        | 195            |
| 10.37                | Elsinore;W+GI+T+J+CM          | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 16                        | 241            |
| 10.37                | Elsinore;GI+T                 | CA    | 5                            | 90               | V       | strike slip | 0                      | 14                        | 78             |
| 10.37                | Elsinore;W+GI+T+J             | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 16                        | 199            |
| 10.37                | Elsinore;W+GI+T               | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 14                        | 124            |
| 10.37                | Elsinore;GI+T+J               | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 17                        | 153            |
| 10.63                | Elsinore;T+J                  | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 17                        | 127            |
| 10.63                | Elsinore;T+J+CM               | CA    | n/a                          | 85               | NE      | strike slip | 0                      | 16                        | 169            |
| 10.63                | Elsinore;T                    | CA    | 5                            | 90               | V       | strike slip | 0                      | 14                        | 52             |
| 11.45                | San Jacinto;SBV+SJV+A+CC      | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 181            |
| 11.45                | San Jacinto;SBV+SJV+A+C       | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 181            |
| 11.45                | San Jacinto;SBV+SJV+A         | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 134            |
| 11.45                | San Jacinto;SJV+A+CC          | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 136            |
| 11.45                | San Jacinto;SJV+A+C           | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 136            |
| 11.45                | San Jacinto;SJV+A             | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 89             |
| 11.45                | San Jacinto;SBV+SJV+A+CC+B+SM | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 241            |
| 11.45                | San Jacinto;SBV+SJV+A+CC+B    | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 215            |
| 11.45                | San Jacinto;SJV+A+CC+B+SM     | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 196            |

1

| 11.45 | San Jacinto;SJV+A+CC+B                             | CA | n/a | 90 | V  | strike slip | 0.1 | 15 | 170 |
|-------|----------------------------------------------------|----|-----|----|----|-------------|-----|----|-----|
| 12.01 | San Jacinto;SJV                                    | CA | 18  | 90 | V  | strike slip | 0   | 16 | 43  |
| 12.01 | San Jacinto;SBV+SJV                                | CA | n/a | 90 | V  | strike slip | 0   | 16 | 88  |
| 19.04 | San Jacinto;SBV                                    | CA | 6   | 90 | V  | strike slip | 0   | 16 | 45  |
| 22.54 | Chino, alt 2                                       | CA | 1   | 65 | SW | strike slip | 0   | 14 | 29  |
| 23.98 | Elsinore;W                                         | CA | 2.5 | 75 | NE | strike slip | 0   | 14 | 46  |
| 24.79 | S. San Andreas;NM+SM+NSB+SSB                       | CA | n/a | 90 | V  | strike slip | 0   | 13 | 213 |
| 24.79 | Chino, alt 1                                       | CA | 1   | 50 | SW | strike slip | 0   | 9  | 24  |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB+<br>BG+CO | CA | n/a | 86 |    | strike slip | 0.1 | 13 | 512 |
| 24.79 | S. San Andreas;SSB+BG                              | CA | n/a | 71 |    | strike slip | 0   | 13 | 101 |
| 24.79 | S. San Andreas;NSB+SSB+BG+CO                       | CA | n/a | 79 |    | strike slip | 0.2 | 12 | 206 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB              | CA | n/a | 90 | v  | strike slip | 0   | 14 | 322 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB+BG           | CA | n/a | 85 |    | strike slip | 0   | 14 | 380 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB+BG+<br>CO    | CA | n/a | 86 |    | strike slip | 0.1 | 13 | 449 |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB           | CA | n/a | 90 | v  | strike slip | 0   | 14 | 384 |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB+<br>BG    | CA | n/a | 86 |    | strike slip | 0   | 14 | 442 |
| 24.79 | S. San Andreas;NM+SM+NSB+SSB+BG                    | CA | n/a | 83 |    | strike slip | 0   | 14 | 271 |
| 24.79 | S. San<br>Andreas;NM+SM+NSB+SSB+BG+CO              | CA | n/a | 84 |    | strike slip | 0.1 | 13 | 340 |
| 24.79 | S. San Andreas;NSB+SSB                             | CA | n/a | 90 | V  | strike slip | 0   | 13 | 79  |
| 24.79 | S. San Andreas;NSB+SSB+BG                          | CA | n/a | 75 |    | strike slip | 0   | 14 | 136 |

|       | S. San                                                |    |     |    |   |             |     |    |   |
|-------|-------------------------------------------------------|----|-----|----|---|-------------|-----|----|---|
| 24.79 | Andreas; PK+CH+CC+BB+NM+SM+NSB+S<br>SB                | CA | n/a | 90 | V | strike slip | 0.1 | 13 | 2 |
| 24.79 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB+S<br>SB+BG    | CA | n/a | 86 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB+S<br>SB+BG+CO | CA | n/a | 86 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB                             | CA | n/a | 90 | V | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB+BG                          | CA | n/a | 81 |   | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB+BG+CO                       | CA | n/a | 83 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San Andreas;SSB                                    | CA | 16  | 90 | V | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SSB+BG+CO                              | CA | n/a | 77 |   | strike slip | 0.2 | 12 |   |
| 24.79 | S. San Andreas;BB+NM+SM+NSB+SSB                       | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 24.79 | S. San<br>Andreas;BB+NM+SM+NSB+SSB+BG                 | CA | n/a | 84 |   | strike slip | 0   | 14 |   |
| 24.79 | S. San<br>Andreas;BB+NM+SM+NSB+SSB+BG+CO              | CA | n/a | 85 |   | strike slip | 0.1 | 13 |   |
| 26.4  | S. San Andreas;BG+CO                                  | CA | n/a | 72 |   | strike slip | 0.3 | 12 |   |
| 26.4  | S. San Andreas;BG                                     | CA | n/a | 58 |   | strike slip | 0   | 13 |   |
| 28.06 | S. San Andreas;BB+NM+SM+NSB                           | CA | n/a | 90 | V | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;CC+BB+NM+SM+NSB                        | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;NSB                                    | CA | 22  | 90 | V | strike slip | 0   | 13 |   |
| 28.06 | S. San Andreas;SM+NSB                                 | CA | n/a | 90 | V | strike slip | 0   | 13 |   |
| 28.06 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB                  | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;NM+SM+NSB                              | CA | n/a | 90 | V | strike slip | 0   | 13 |   |

|       |                                         |    | Т   | I  | 1  | 1           |     | 1  |     |
|-------|-----------------------------------------|----|-----|----|----|-------------|-----|----|-----|
| 28.06 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB | CA | n/a | 90 | v  | strike slip | 0.1 | 13 | 377 |
| 29.62 | Elsinore;J                              | CA | 3   | 84 | NE | strike slip | 0   | 19 | 75  |
| 29.62 | Elsinore;J+CM                           | CA | 3   | 84 | NE | strike slip | 0   | 17 | 118 |
| 29.9  | San Joaquin Hills                       | CA | 0.5 | 23 | SW | thrust      | 2   | 13 | 27  |
| 33.36 | Cucamonga                               | CA | 5   | 45 | N  | thrust      | 0   | 8  | 28  |
| 34.27 | Pinto Mtn                               | CA | 2.5 | 90 | V  | strike slip | 0   | 16 | 74  |
| 36.79 | Cleghorn                                | CA | 3   | 90 | V  | strike slip | 0   | 16 | 25  |
| 37.33 | Newport-Inglewood (Offshore)            | CA | 1.5 | 90 | V  | strike slip | 0   | 10 | 66  |
| 37.33 | Newport Inglewood Connected alt 1       | CA | 1.3 | 89 |    | strike slip | 0   | 11 | 208 |
| 37.33 | Newport Inglewood Connected alt 2       | CA | 1.3 | 90 | v  | strike slip | 0   | 11 | 208 |
| 38.59 | San Jose                                | CA | 0.5 | 74 | NW | strike slip | 0   | 15 | 20  |
| 39.78 | North Frontal (West)                    | CA | 1   | 49 | S  | reverse     | 0   | 16 | 50  |
| 40.6  | Puente Hills (Coyote Hills)             | CA | 0.7 | 26 | N  | thrust      | 2.8 | 15 | 17  |
| 41.18 | Sierra Madre                            | CA | 2   | 53 | N  | reverse     | 0   | 14 | 57  |
| 41.18 | Sierra Madre Connected                  | CA | 2   | 51 |    | reverse     | 0   | 14 | 76  |
| 41.65 | San Jacinto;CC+B                        | CA | n/a | 90 | V  | strike slip | 0.2 | 14 | 77  |
| 41.65 | San Jacinto;CC+B+SM                     | CA | n/a | 90 | V  | strike slip | 0.2 | 14 | 103 |
| 41.65 | San Jacinto;CC                          | CA | 4   | 90 | V  | strike slip | 0   | 16 | 43  |
| 42.56 | San Jacinto;C                           | CA | 14  | 90 | V  | strike slip | 0   | 17 | 47  |
| 44.04 | Newport-Inglewood, alt 1                | CA | 1   | 88 |    | strike slip | 0   | 15 | 65  |
| 44.6  | S. San Andreas;NM+SM                    | CA | n/a | 90 | V  | strike slip | 0   | 14 | 134 |
| 44.6  | S. San Andreas;PK+CH+CC+BB+NM+SM        | CA | n/a | 90 | v  | strike slip | 0.1 | 13 | 342 |
| 44.6  | S. San Andreas;BB+NM+SM                 | CA | n/a | 90 | V  | strike slip | 0   | 14 | 184 |
| 44.6  | S. San Andreas;CH+CC+BB+NM+SM           | CA | n/a | 90 | V  | strike slip | 0   | 14 | 306 |
| 44.6  | S. San Andreas;SM                       | CA | 29  | 90 | V  | strike slip | 0   | 13 | 98  |
| 44.6  | S. San Andreas;CC+BB+NM+SM              | CA | n/a | 90 | V  | strike slip | 0   | 14 | 243 |
| 44.97 | Rose Canyon                             | CA | 1.5 | 90 | V  | strike slip | 0   | 8  | 70  |
| 45.34 | Helendale-So Lockhart                   | CA | 0.6 | 90 | V  | strike slip | 0   | 13 | 114 |
| 46.48 | North Frontal (East)                    | CA | 0.5 | 41 | S  | thrust      | 0   | 16 | 27  |

| 47.6  | Burnt Mtn                       | CA | 0.6 | 67 | W | strike slip | 0   | 16 | 21 |
|-------|---------------------------------|----|-----|----|---|-------------|-----|----|----|
| 49.55 | Puente Hills (Santa Fe Springs) | CA | 0.7 | 29 | N | thrust      | 2.8 | 15 | 11 |

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

^ Input

Edition

Conterminous U.S. 2008 (v3.2.x)

### Latitude

Decimal degrees

33.7441

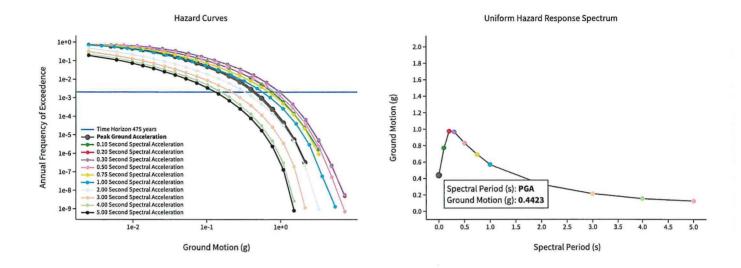
### Longitude

Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)


Spectral Period

Peak Ground Acceleration

Time Horizon Return period in years

475 Travel Plaza Perris

### Hazard Curve



View Raw Data

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

^ Input

Edition

Conterminous U.S. 2008 (v3.2.x)

#### Latitude

Decimal degrees

33.7441

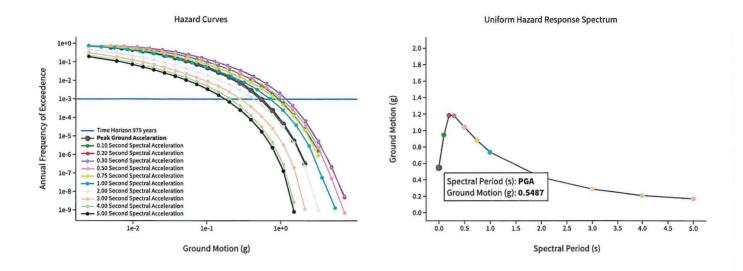
### Longitude

Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)


Spectral Period

Peak Ground Acceleration

Time Horizon Return period in years

975 Travel Plaza Perris

### Hazard Curve



### View Raw Data

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Input

Edition

Conterminous U.S. 2008 (v3.2.x)

### Latitude

Decimal degrees

33.7441

### Longitude

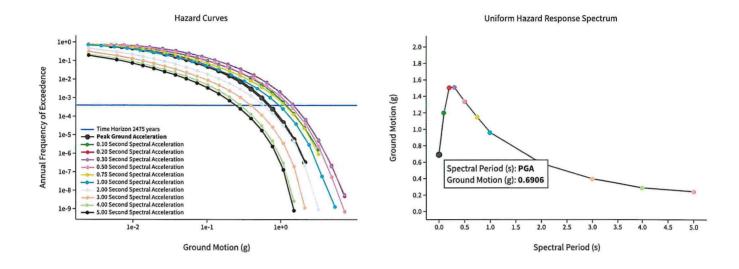
Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)

Spectral Period


Peak Ground Acceleration

Time Horizon

Return period in years

2475 Travel Plaza Perris

### Hazard Curve



### View Raw Data



# OSHPD

## **Travel Plaza Perris**

### Latitude, Longitude: 33.7441, -117.1658

| Latitud                                         | de, Longitude: 33.744           | 1, -117.1658                                                                              |                                    |                                  |
|-------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|
| 74                                              | Field Park<br>Romoland Head Sta | Acts Christian                                                                            | <mark>Chinese Bistro</mark><br>Ame | erimax Building<br>Products, Inc |
|                                                 | Holliday Rock                   | (74) (74)                                                                                 | 74                                 | 0                                |
| Goo                                             | V                               | Ahern Rentals 🗳                                                                           |                                    | •                                |
|                                                 | gic                             | Grand II.                                                                                 |                                    | Map data ©2021                   |
| Date                                            |                                 | 5/28/2021, 10:30:36 AM                                                                    |                                    |                                  |
| Design Code Reference Document<br>Risk Category |                                 | ASCE7-16                                                                                  |                                    |                                  |
| Site Cla                                        |                                 | II<br>D. Default (See Section 1                                                           | 1 4 2)                             |                                  |
| Sile Cia                                        | >>                              | D - Default (See Section 1                                                                | 1.4.3)                             |                                  |
| Туре                                            | Value                           | Description                                                                               |                                    |                                  |
| SS                                              | 1.428                           | MCE <sub>R</sub> ground motion. (for 0.2 second period)                                   |                                    |                                  |
| S <sub>1</sub>                                  | 0.532                           | MCE <sub>R</sub> ground motion. (for 1.0s period)                                         |                                    |                                  |
| S <sub>MS</sub>                                 | 1.714                           | Site-modified spectral acceleration value                                                 |                                    |                                  |
| S <sub>M1</sub>                                 | null -See Section 11.4.8        | Site-modified spectral acceleration value                                                 |                                    |                                  |
| S <sub>DS</sub>                                 | 1.143                           | Numeric seismic design value at 0.2 second SA                                             |                                    |                                  |
| S <sub>D1</sub>                                 | null -See Section 11.4.8        | Numeric seismic design value at 1.0 second SA                                             |                                    |                                  |
| Туре                                            | Value                           | Description                                                                               |                                    |                                  |
| SDC                                             | null -See Section 11.4.8        | Seismic design category                                                                   |                                    |                                  |
| Fa                                              | 1.2                             | Site amplification factor at 0.2 second                                                   |                                    |                                  |
| $F_v$                                           | null -See Section 11.4.8        | Site amplification factor at 1.0 second                                                   |                                    |                                  |
| PGA                                             | 0.5                             | MCE <sub>G</sub> peak ground acceleration                                                 |                                    |                                  |
| F <sub>PGA</sub>                                | 1.2                             | Site amplification factor at PGA                                                          |                                    |                                  |
| PGA <sub>M</sub>                                | 0.6                             | Site modified peak ground acceleration                                                    |                                    |                                  |
| ΤL                                              | 8                               | Long-period transition period in seconds                                                  |                                    |                                  |
| SsRT                                            | 1.428                           | Probabilistic risk-targeted ground motion. (0.2 second)                                   |                                    |                                  |
| SsUH                                            | 1.531                           | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration  |                                    |                                  |
| SsD                                             | 1.5                             | Factored deterministic acceleration value. (0.2 second)                                   |                                    |                                  |
| S1RT                                            | 0.532                           | Probabilistic risk-targeted ground motion. (1.0 second)                                   |                                    |                                  |
| S1UH                                            | 0.581                           | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. |                                    |                                  |
| S1D                                             | 0.6                             | Factored deterministic acceleration value. (1.0 second)                                   |                                    |                                  |
| PGAd                                            | 0.5                             | Factored deterministic acceleration value. (Peak Ground Acceleratio                       | n)                                 |                                  |
| C <sub>RS</sub>                                 | 0.933                           | Mapped value of the risk coefficient at short periods                                     |                                    |                                  |
|                                                 |                                 |                                                                                           |                                    |                                  |

#### DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Project No.: G-5908-01 Travel Plaza - Perris

### Appendix C

Recommended Earthwork Specifications

### **RECOMMENDED EARTHWORK SPECIFICATIONS**

### 1.0 General

### 1.1 Description

1.1.1 These specifications cover preparation of the subject site to receive fills, the type of soils suitable for use in fills, the compaction standards, and the methods of testing compacted fills.

1.1.2 The Contractor shall furnish all labor, supervision, equipment, operations, and materials to excavate to the required grade, support existing underground facilities, stockpile material, compact fill and backfill, and fine grade. The work of the Contractor shall include all clearing and grubbing, removing existing unsatisfactory material, preparing areas to be filled, spreading and compacting of fill in the areas to be filled and all other work necessary to complete the grading of the filled areas. It shall be the Contractor's responsibility to place, spread, moisten or dry, and compact the fill in strict accordance with these specifications to the lines and grades indicated on project plans or as directed in writing by the Civil Engineer.

1.1.3 Deviations from these specifications will be permitted only upon written authorization from the Owner or his representative.

1.2 Role of the Geotechnical Engineer

1.2.1 Construction - The Owner will employ a Geotechnical Consultant to observe and test this work as it is being performed. The Contractor shall cooperate with the Geotechnical Consultant and allow his unrestricted access to the site as required for the performance of his duties.

The Contractor shall provide a minimum notice of 48 hours to the Geotechnical Engineer before beginning or restarting earthwork operations that will require the presence of the Geotechnical Engineer or his representative on site. 1.2.2 Subsurface Investigations - A geotechnical engineering report for design purposes was prepared by Geotechnical Solutions, Inc., Irvine, California. Any recommendations made in the geotechnical report or subsequent reports are made part of these specifications. These reports are available for review upon request to the Owner.

1.2.3 Observation and Testing - The Geotechnical Engineer's representative shall observe the clearing and grubbing, excavation, filling and compacting operations and shall take density tests in the fill material so that he can state his opinion as to whether or not the fill was constructed in accordance with the specifications. All fill will be tested shortly after its placement to ascertain that the required compaction is achieved. A minimum of one density test will be made on each 500 cubic yards of fill placed, with a minimum of at least one test per every 2 feet of vertical height of fill. If the surface is disturbed, the density tests shall be made in the compacted materials below the disturbed zone. When these tests indicate that the density or water content of any layer of fill or portion thereof does not meet the specified density or water content, the particular layer or portions thereof shall be reworked until the specified density and water content have been obtained.

After the completion of grading, the Geotechnical Engineer will prepare a written opinion of grading. Neither the testing performed by the Geotechnical Consultant nor his opinion as to whether or not the fill was constructed in accordance with these Specifications shall relieve the Contractor of his responsibility to construct the fills in accordance with the Contract Documents.

### 1.3 Reference Standards

The following ASTM (American Society for Testing and Materials) codes and standards shall be used to the extent indicated by references herein. The most recent revision of the standards shall be used.

D 1556 - "Standard Test Method for Density of Soil in Place by the Sand-Cone Method"

41

D1557 - "Standard Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using 10-lb (4.54 kg) and 18-inch (457-mm) Drop"

D2216 - "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures"

D4318 - "Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils"

D4718 - "Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles"

D4829 - "Standard Test Method for Expansion Index of Soils"

D4944 - "Standard Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester Method."

D5195 - "Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)"

D6938 - "Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)"

D7928 - "Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis"

1.4 Degree of Fill Compaction

The degree to which fill is to be compacted is expressed in terms of "relative compaction." Relative compaction is defined as the ratio; expressed in percent, of the in-place dry density of the compacted fill to the reference maximum dry density. The reference maximum dry density shall be obtained following ASTM D1557. Optimum water content shall be obtained in the same test used to obtain the reference maximum dry density. Correction of the maximum dry density and optimum water content for

oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate. The in-place density shall be obtained following ASTM D1556 (sand cone method) or ASTM D6938 (nuclear method-shallow depth) test method. The in-place water content shall be obtained following ASTM D4944 (calcium carbide gas pressure meter), ASTM D5195 (nuclear method-shallow depth), or ASTM D2216 (oven drying). Correction of the in-place density and water content for oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate.

If any of the test methods specified in this section are judged by the Geotechnical Engineer to be impractical or unreliable because the material has a coarse particle size distribution, or for other reasons, the Geotechnical Engineer shall establish other procedures to obtain the required soil characteristics.

2.0 Products

#### 2.1 Materials

2.1.1 General - During grading operations, soil types other than those identified in the geotechnical investigation report may be encountered by the Contractor. Consult the Geotechnical Consultant for his evaluation of the suitability of using these soils a fill material prior to placement or disposal.

2.1.2 General Fill - Materials for compacted fill shall consist of material imported from outside the site or excavated from the site that, in the opinion of the Geotechnical Engineer, is suitable for use in constructing engineered fills. The material shall not contain rocks or hard lumps greater than 6 inches in maximum dimension, and at least 70 percent (by weight) of its particles shall pass through a U.S. Standard 3/8 inch sieve. Material greater than 3 inches, but less than 6 inches in maximum dimension, shall be placed by the Contractor so that it is completely surrounded by compacted, finer material;

43

no nesting of rocks shall be permitted. Do not use any perishable, spongy, hazardous, or other undesirable materials as fill.

2.1.3 Select Fill - Select fill shall meet all criteria for general fill but shall also contain no rocks or hard lumps greater than 3 inches in maximum dimension, and at least 80 percent (by weight) shall pass through a U.S. Standard 3/8-inch sieve. The expansion index of select material shall be less than 50 (i.e., 5.0 percent swell) when tested in accordance with ASTM D4829.

#### 3.0 Execution

3.1 Clearing and Grubbing

Within the project limits, tile Contractor shall demolish structures as specified on the Drawings.

Unless otherwise indicated on the Drawings or by the Owner in writing, the Contractor shall clear and grub all trees, stumps, roots, brush, grass, and other vegetation within construction, fill and stockpile areas to a minimum depth of 3 feet below the existing ground surface or below finished grade, whichever is deeper, unless otherwise recommended by the Geotechnical Engineer's Field Representative.

Remove cleared and grubbed materials from the site and dispose of them legally. No onsite burning or burying of cleared and grubbed materials is permitted. No placement of cleared and grubbed materials in topsoil stockpiles is permitted. No mulching of branches or roots is permitted. Incorporating vegetative matter into stockpiled materials, which are to be used in fill, is not permitted.

Stockpile organic-laden topsoil separate from other fill materials.

Remove any remaining vegetative matter from the deeper excavated soils, which may result from roots deeper than those encountered during clearing and grubbing operations.

All material thereby removed shall be piled at a location away from the immediate work area so as to avoid burying of piled material.

#### 3.2 Compacted Fills

3.2.1 Preparing Areas to be Filled - Brush, grass, and other objectionable materials shall be collected, piled, and disposed of as indicated in Section 3.1 by the Contractor so as to leave the areas that have been cleared with a neat and finished appearance, free from unsightly debris.

Remove all loose soil, uncertified fill, landslide debris, and weathered bedrock to firm material or in-situ bedrock, as approved by the Geotechnical Consultant. The Contractor shall obtain approval from the Geotechnical Engineer or his representative of stripping and site preparation before the compaction of any fill subgrade begins. The surface shall then be scarified to a minimum depth of 6 inches until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment used, and shall be brought to the specified water content and relative compaction. Compact scarified materials to a minimum relative compaction of 90 percent, relative to ASTM D1557, prior to placement of any fill material.

3.2.2 Placing, Spreading, and Compacting, Fill Material - Onsite soil obtained from removals, borrow, or cut areas may be reused as compacted fill provided it is free from deleterious debris and meets the other requirements of the "Materials" portion of this Specification Section.

Use of soil containing deleterious debris from the clearing and grubbing operation or from other sources is not permitted. The fill materials shall be placed by the Contractor in horizontal layers not greater than 8 inches thick, measured before compaction. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to obtain uniformity of material and moisture in each layer. The moisture content of material used for compacted fill should be adjusted to be at or above optimum water content as determined by ASTM D1557. When the water content of the fill material is too high, the

fill materials shall be aerated by the Contractor by blading, mixing, or other satisfactory methods until the water content is as specified.

After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent of the maximum dry density as determined by ASTM D1557 for general fill, and 95 percent of the maximum dry density as determined by ASTM D1557 for select fill, compacted fill pads, and the upper 1 foot of pavement subgrade. Compaction shall be accomplished by: sheepsfoot rollers; vibratory rollers; multiple-wheel, pneumatic-tired rollers; or other types of acceptable compacting equipment. Equipment shall be of such design that it is able to compact the fill to the specified density. Compaction shall be continuous over the entire area, and the equipment shall make sufficient passes to obtain the desired density uniformly. All fill placed on site shall be treated in like manner until finished grades are attained. Jetting, puddling, and hydro consolidation techniques shall not be used, including backfill of utility trenches.

The placement of topsoil is subject to the approval of the Geotechnical Engineer. Topsoil shall not be placed beneath concrete flatwork, beneath or behind retaining walls, or within structural fill. All topsoil material is subject to the same moisture conditioning, placement, and compaction requirements as General Fill. Roots, branches and other organic debris are not permitted within the compacted topsoil layer.

When backfilling around footings and compacting behind retaining walls and flexible retaining structures, the Contractor shall use lightweight compaction equipment such as hand-operated equipment, shoring, or other means to avoid over-stressing structural walls. When using lightweight compaction equipment, the fill materials shall be spread in horizontal layers not greater than 6 inches thick, measured before compaction.

As an alternative, sand-cement slurry may be used to backfill trenches. The slurry shall have minimum cement content of 3 sacks per cubic yard within the zone of influence of foundations and other settlement sensitive structures. A minimum of 2 sacks per cubic

yard of slurry shall be used elsewhere within building limits, and a minimum of one sack per cubic yard of slurry shall be used elsewhere. Slurry shall not be used in those areas where such placement would result in the obstruction of water flow, and is subject to the approval of the Geotechnical Engineer.

3.3 Protection of Work and Adjacent Properties

3.3.1 During Construction - The Contractor shall grade all excavated surfaces to provide good drainage away from construction slopes and prevent ponding of water. He shall control surface water and the transport of silt and sediment to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control measures have been installed.

Dispose of all water resulting from dewatering operations legally and in ways that will not cause damage to public or private property, or constitute a nuisance or menace to the public, in accordance with municipal requirements.

The Contractor shall make every effort to minimize the amount of dust raised in excavating, on haul roads and access roads, and all other work areas in the course of construction activities.

Protect benchmarks, monuments, and other reference points against displacement or damage. Repair or replace benchmarks, monuments, and other permanent survey data that become displaced or damaged due to the performance of this work.

3.3.2 After Completion - After earthwork is completed and the, Geotechnical Engineer has finished his observations of the work, no further excavation, filling or backfilling shall be performed except under the observation of the Geotechnical Engineer.

47

## GEOTECHNICAL ENGINEERING PERCOLATION / INFILTRATION TEST REPORT

TRAVEL PLAZA PERRIS

AT

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. 8 WEST PACIFIC AVENUE HENDERSON, NEVADA 89015

PROJECT NO: G-5908-08

JUNE 11, 2021

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING





Geotechnical Solutions, Inc.

Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project: G-5908-08

### **BROADBENT, INC.** 8 West Pacific Avenue

Henderson, Nevada 89015

## Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelski@broadbentinc.com

#### Re: Geotechnical Engineering Percolation / Infiltration Report Travel Plaza - Perris Corner of Trumble Road & Ethanac Road Perris, California 92570

Gentlemen:

Per your authorization, we have performed our geotechnical engineering field percolation tests to evaluate the subgrade percolation and infiltration rate at the referenced Travel Plaza - Perris site located at the corner of Trumble Road and Ethanac Road, just west of Trumble Road, Perris, San Bernardino County, California. Proposed development consists of improving or incorporating Storm Water Permanent Best Management Practice (BMP).

The accompanying geotechnical engineering report presents the results of our field borings, sampling of subgrade material, field percolation tests, reviewing site plan, performing laboratory tests, analyzing field and laboratory data and our conclusions and recommendations for the project.

Our services were performed using the standard of care ordinarily exercised in this locality, at the time when the report was prepared.

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary in the circumstances.

In the opinion of the undersigned, the accompanying report has been substantiated by data, observations, analysis, and opinions and presents fairly the design information requested by you.

This completes our scope of services for the initial design phase of the project. We have appreciated this opportunity to be of service to you on this project.

#### **Respectfully Submitted**,

#### **Geotechnical Solutions, Inc.**

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

Abraham S. Baha, PE, MASCE Sr. Principal





Distribution: (3 +pdf) Addressee

## **TABLE OF CONTENTS**

| Introduction1                                                          |
|------------------------------------------------------------------------|
| Field Exploration Methods1                                             |
| Groundwater1                                                           |
| Laboratory Testing                                                     |
| Percolation Tests                                                      |
| Percolation Rate Evaluation4                                           |
| Results of the Tests                                                   |
| Conclusions                                                            |
| Additional Services                                                    |
| Closure                                                                |
| Appendix A - Plates                                                    |
| Appendix B – Pre-Tests & Percolation Test Results11                    |
| Appendix C – Infiltration Rates12                                      |
| Appendix $D$ – Infiltration Rates Using Reduction Factor Method, $R_f$ |

#### Introduction

Geotechnical Solutions, Inc. (GSI) has performed field investigations including borings and sampling of earth material and field percolation tests at the proposed locations as shown on Plot Plan & Percolation Tests Location Map (Plate B in Appendix A) at Travel Plaza, Perris, California.

The main purpose of this study is to provide infiltration rates of subgrade material based on field percolation tests so that an appropriate system incorporating Storm Water permanent best management practice (BMP) to manage surface water into the ground and the appropriate infiltration basin or any other approved system may be designed and existing drainage be improved.

#### **Field Exploration**

Field exploration consisted of drilling two borings for percolation tests, B-1 (PC-1) and B-2 (PC-2), 8-inches in diameter and extended to 10-feet below existing ground as shown on Plot Plan and Percolation Tests Location Map (Plate B).. The percolation test logs are presented on Plates D-1 and D-2 in Appendix A.

The attached logs tabulate data based on laboratory classification tests and visual observation by the field engineer at the site. During drilling bulk samples of earth material obtained for further laboratory test.

#### Groundwater

Groundwater was not encountered in any of our borings. Also, in accordance with the available groundwater well maps data, <u>http://wdl.water.ca.gov/water data library</u>, historical high groundwater level as shown on Plates C-1 and C-2 presented in Appendix A are much deeper than 50 feet. The potential for ground water to rise to the ground surface in the site area is considered very unlikely.

### Laboratory Testing

Laboratory testing was programmed following a review of the field investigation data to be evaluated. Tests included physical testing to determine soil characteristics and selective tests. Test results are presented in Appendix A.

### Mechanical Analysis (ASTM D-422)

Mechanical analyses by the hydrometer test method were performed to confirm field classifications. Test results are as follows:

| Test Hole<br>No. | Sample<br>Depth (ft) | Sand<br>Percent | Silt<br>Percent | Clay<br>Percent |
|------------------|----------------------|-----------------|-----------------|-----------------|
| B-1 (PC-1)       | 10.0                 | 89              | 7               | 4               |
| B-2 (PC-2)       | 10.0                 | 90              | 8               | 2               |

#### **Field Percolation Tests**

We performed field percolation tests at B-1 (PC-1) and B-11 (PC-2) locations as shown on Plot Plan and Percolation Tests Location Map (Plate B). The percolation test procedure performed in accordance with the current acceptable method for shallow percolation test (less than 10 feet) by qualified personnel under the supervision of registered geotechnical engineer as per Technical Guidance Document, Orange County Public Works.

- Borehole diameter was 8 inches.
- Bottom elevation of test holes correspond to bottom elevation of proposed retention basins which are proposed at 10-feet in depth below the ground surface in accordance with the following locations:

B-1 (PC-1) 10 feet below the ground surface

B-11 (PC-2) 10 feet below the ground surface

- The bottom of the test hole was covered with 2 inches of gravel prior to testing.
- Sides of the hole were not smeared after drilling and there was no caving.
- Holes were filled with clear water to appropriate depths from the ground surface (Minimum required is 5 x radius of the hole (5 x 4" = 20 inches) from the bottom.
- On these two locations, two consecutive measurements showed that less than 6 inches of water seeped away in 25 minutes test (Pre-Percolation Data Sheets, Plates 1 and 3 in Appendix B). Thus, pre-soaking overnight for about 24 hours was required.
- The tests were then run the next day for an additional 6-hours duration, measurements being taken every 30 minutes interval (Percolation Test Results).
- The drop that occurs during the final reading is used to calculate the percolation and then infiltration rate.
- Field Percolation Tests for both PC-1 and PC-2 are presented as Plate 2 and 4 in Appendix B.
- Infiltration calculations (Porchet Method) are shown on Plates 5 and 6 and presented in Appendix C.
- Infiltration results using another method, Reduction Factor Method, Rf are presented on Plates 7 and 8 in Appendix D.
- Measurements were taken with a precision of 0.25 inches or better.
- All the field percolation tests are tabulated and are presented in Appendix B.
- The holes were backfilled with soil cuttings.

#### **Percolation Rate Evaluation**

To evaluate the percolation rates, testing was performed by filling the borehole with water and observing the rate of water drop from the fixed reference point on the ground surface. The depths of water drop for every 30 minutes intervals were noted and tabulated and plotted as shown on Plates 2 and 4, respectively for PC-1 and PC-2 in Appendix B.

Percolation rate, k can be correlated with the data in the form of the straight line equation as shown below:

t/R = b + ktWhere, t = average time in minutes $R = \Delta t / d$  $\Delta t = Time Interval, minutes$ d = drop in inch = R1 - R2R1 = Initial Readings, inchR2 = Final Readings, inchk = Percolation Rate inch/minuteR = 1/k at equilibrium rate

t/R is plotted against t as shown on the plots (Plates 2 and 6 for B-1 (PC-1) and B-11 (PC-2), respectively) and the regression analyses were performed to interpolate the data obtained in the field. Straight line interpolation gives the slope as a percolation rate, k.

#### **Results of the Tests**

The results obtained from the analyses are as follows:

- 1. Near surface material consisted of mainly Clayey to Silty Sand (SC/SM), dry to slightly moist, firm, light brown in color having dense to very dense in consistency.
- 2. Around and below 10 feet, the subgrade materials consisted mainly of the sandy material, Sand (SP) with some gravel, slightly moist to moist, dark brown to gray in color having dense to very dense in consistency.
- 3. Field Percolation tests were performed at 10-feet depth for both B-1 (PC-1) and B-11 (PC-2) and the results are tabulated as shown on the Table-1 below:

|             | Coefficient of Permeability, k |            |                      |                                          |  |  |  |  |  |
|-------------|--------------------------------|------------|----------------------|------------------------------------------|--|--|--|--|--|
| Location    | Inch/minute                    | Cm/sec     | Inch/hour<br>Average | Inch/hr based on last 30 Minutes Reading |  |  |  |  |  |
| B-1 (PC-1)  | 0.0135                         | 6.0 x E-04 | 0.81                 | 1.0                                      |  |  |  |  |  |
| B-11 (PC-2) | 0.0206                         | 9.0 x E-04 | 1.236                | 1.5                                      |  |  |  |  |  |
| Average     | 0.0171                         | 7.5 x E-04 | 1.023                | 1.25                                     |  |  |  |  |  |
|             | 1                              | Average:   | 1.137 inch/hour      |                                          |  |  |  |  |  |

TABLE - 1Percolation Test Results

- 4. Based on the data presented in this report and the testing information accumulated, it is our judgment that the percolation rate is an average of 1.137 inch per hour. It takes about 53 minutes to percolate 1 inch. This conclusion regarding percolation rate is based on the results of our field exploration and testing.
- 5. General range of permeability for some of the subgrade soils are as follows:

| Type of Soil                    | Permeability (Cm/Sec)                            |
|---------------------------------|--------------------------------------------------|
| Medium to coarse gravel         | > 10 <sup>-1</sup>                               |
| Coarse sand to fine sand        | between 1x10 <sup>-1</sup> to 1x10 <sup>-3</sup> |
| fine sand and silty sand        | between 1x10 <sup>-3</sup> to 1x10 <sup>-5</sup> |
| silt, clayey silt or silty clay | between 1x10 <sup>-4</sup> to 1x10 <sup>-6</sup> |
| Clays                           | $1 \times 10^{-7}$ or less                       |

Since the percolation rate average is 7.5 x E-04 Cm/Sec, it falls into fine Sand and silty Sand category as tabulated above.

As per Technical Guidance Document, Infiltration rate,  $I_t$  is calculated based on Percolation Rate Conversion using Porchet Method, aka Inverse Borehole Method.

The bottom of the proposed infiltration basin would be at 10-feet below the existing ground surface. Percolation tests were performed with the depth of the test hole set at the infiltration surface level (bottom of basin).

After the minimum required number of testing intervals, the test was complete. The data collected at the final interval was used to calculate infiltration rates.

The calculations and the results are tabulated and presented on Plates 5 and 6 in Appendix C.

| Location   | Percolation Rate<br>inch/hour<br>Based on Average<br>Reading | Infiltration Rate<br>Inch/hour<br>Based on Porchet Method<br>aka Inverse Borehole<br>Method |  |  |
|------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| B-1 (PC-1) | 0.810                                                        | 0.0370                                                                                      |  |  |

| PC-2    | 1.236 | 0.0596 |
|---------|-------|--------|
| Average | 1.137 | 0.0483 |

Using factor of safety of 2.0 for uncertainty and bias, **percolation test result is 0.5685 inch per hour** and **Infiltration Rate = 0.0242 "/ hour**, which is less than 0.3"/hour as per the requirement in accordance with **TGD VII.2**.

Thus, it **does not meet** the standard criteria, hence **FAILED**.

## Reduction Factor (R<sub>f</sub>) Method

We have used Reduction Factor  $(R_f)$  Method which is another acceptable and approved method for calculating Infiltration Rate,  $I_f$ .

Infiltration Rates as calculated by this method have been tabulated on Plates 7 and 8 in Appendix D. The results are as follows:

| Location     | I <sub>f</sub> Using       |
|--------------|----------------------------|
|              | (Reduction Factor Method)  |
|              | (inch/hour)                |
| B-1 (PC-1)   | 0.0559                     |
| B-11 (PC-2)  | 0.0801                     |
| AVERAGE:     | 0.068                      |
| With FOS = 2 | 0.034                      |
|              | < 0.3 inch/hour - "FAILED" |

#### Conclusions

The subgrade soils consist entirely of very firm alluvial soils, mainly sand with some gravel, medium to coarse grained, dark brown to gray in color, dry to slightly moist to moist, dense to very dense and hard in consistency. Percolation tests performed at two locations, B-1 (PC-1) and B-11 (PC-2) at 10 feet depth <u>did not meet</u> the prescribed criteria.

Also, since the groundwater is very deep more than 50 feet, there is a room for the basin. However, infiltration rate at both locations indicated that it is much less than the required infiltration rate of 0.3 inch per hour (**TGD VII.2**), hence we conclude that the project is **not feasible**.

#### **Additional Services**

This office will be available for further consultation.

#### Closure

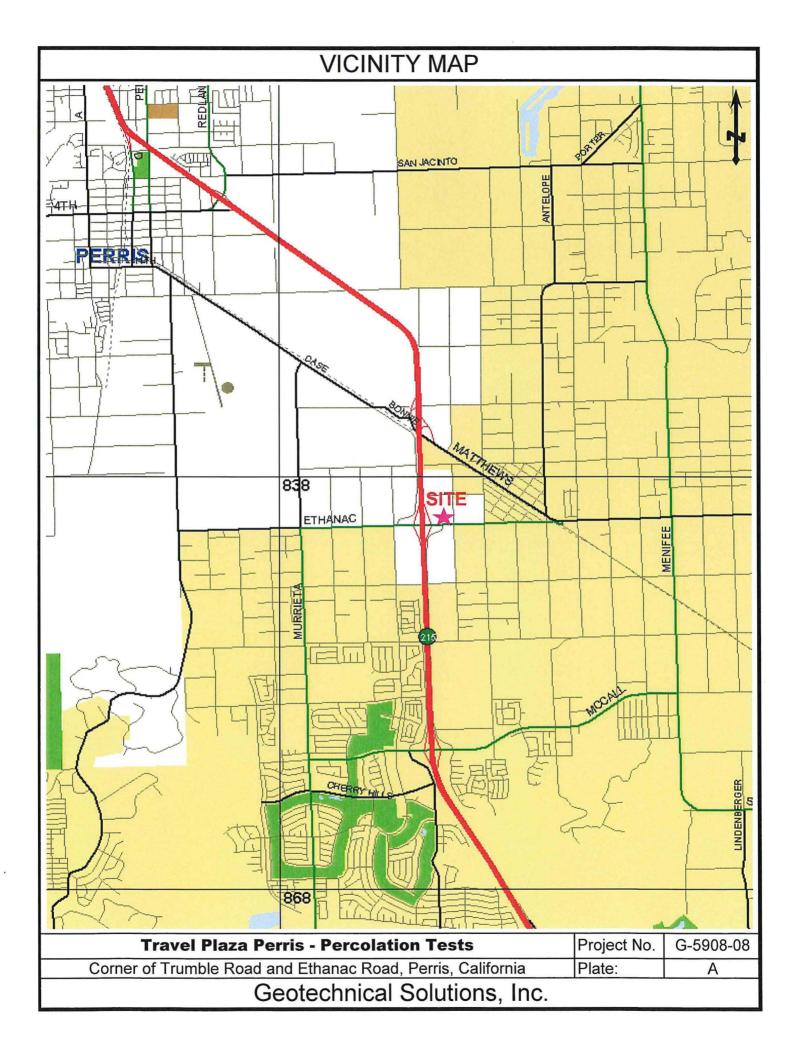
Based on the data presented in this report and the testing information accumulated, it is the judgment of the writers of this report that BMP infiltration system seems to be **not** <u>feasible</u> at these locations. The conclusions presented in this report are based on the results of our field exploration, percolation tests, infiltration tests, and other laboratory tests.

This report has been compiled for the exclusive use on the above referenced site, for the purpose stated above. It should not be transferred to or used by another party, or applied to any other project on this site, other than as described herein, without consent and/or thorough review by this office.

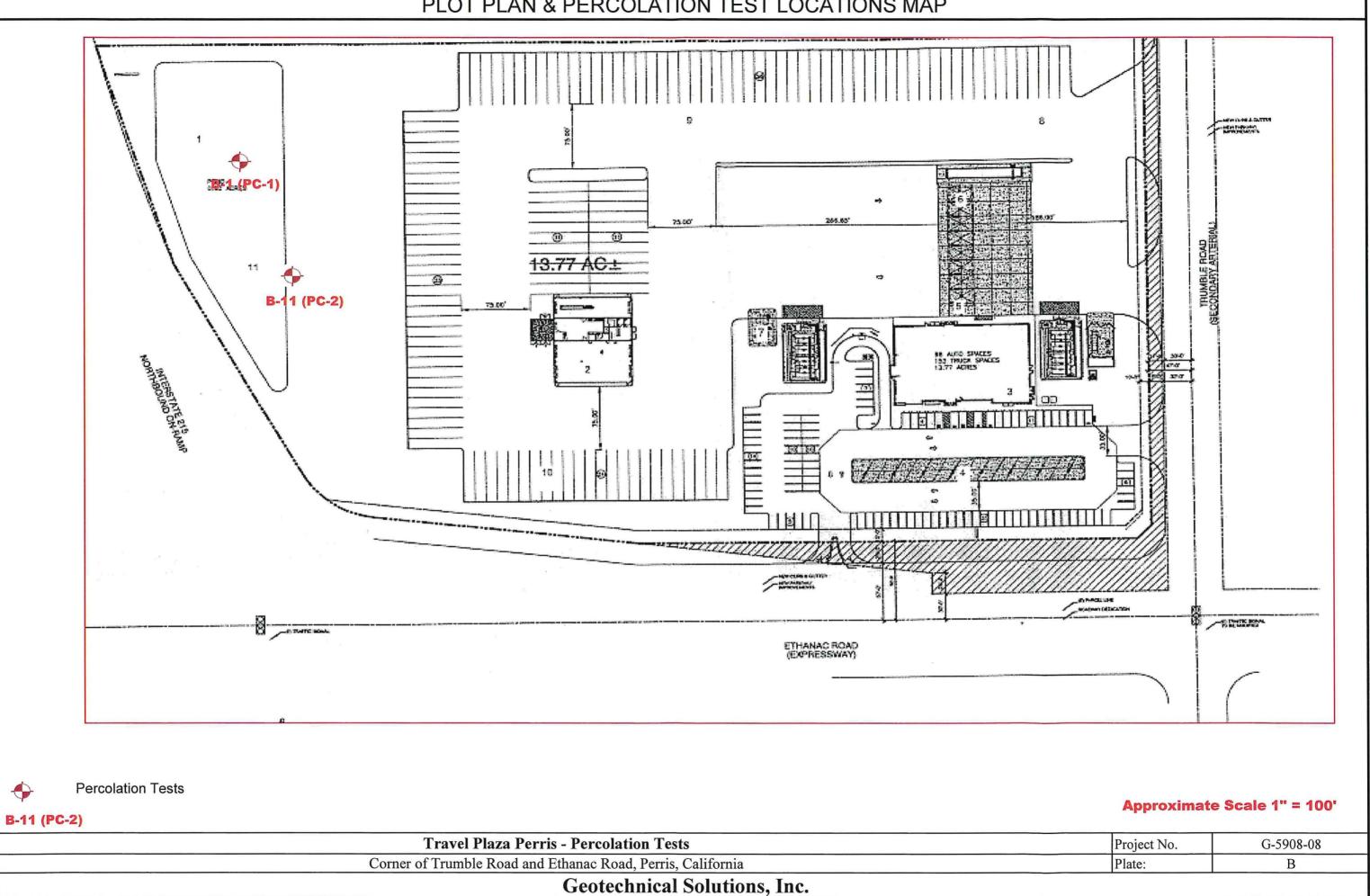
## Geotechnical Solutions, Inc.

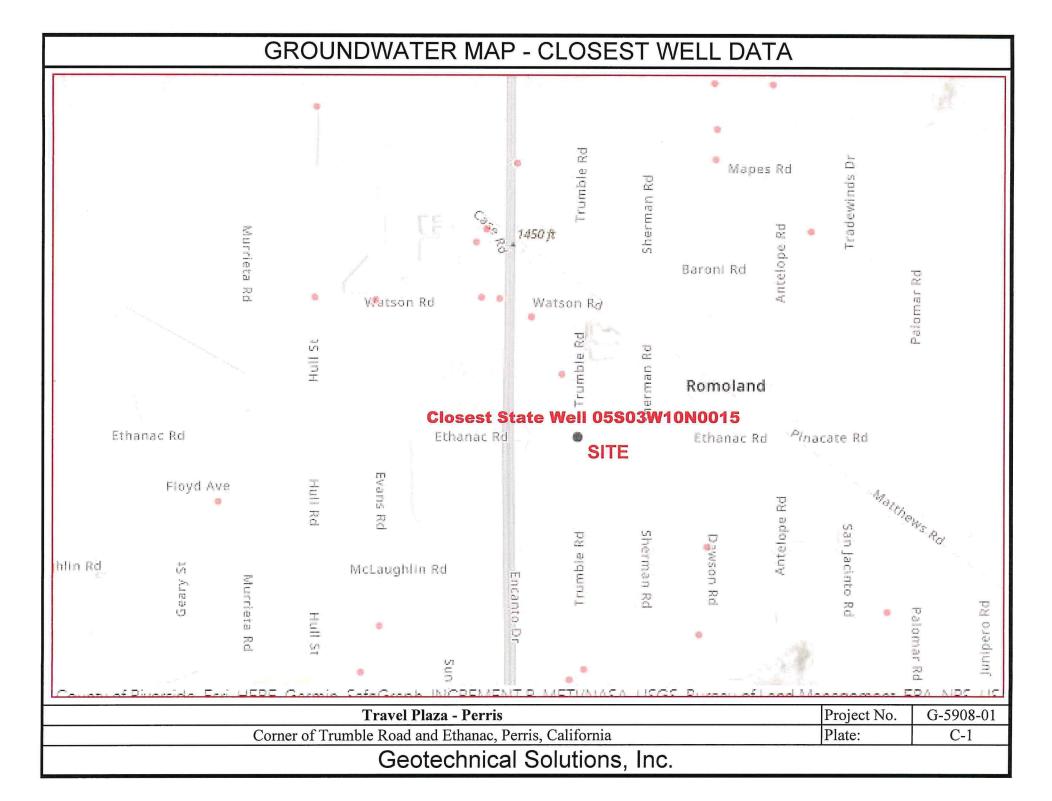
#### References

California Building Code, 2019, California Code of Regulations, Title 24, Volume 2 of Part 2.

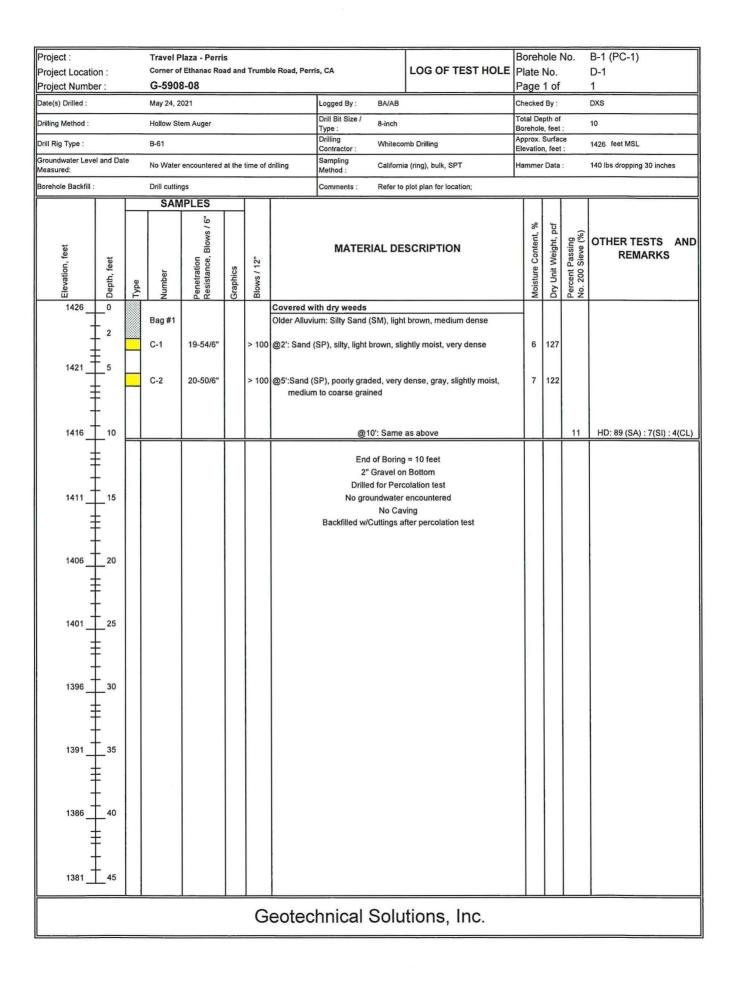

California Department of Water Resources groundwater well data <u>http://wdl.water.ca.gov</u>.

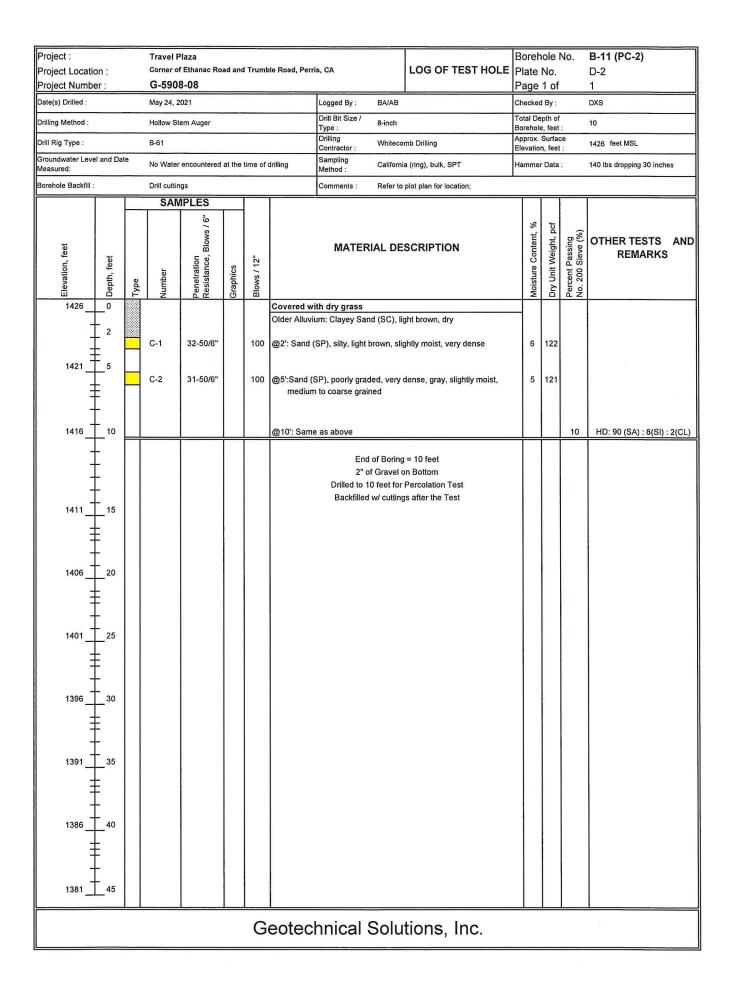
Orange County, Technical Guidance Document (TGD) for the Preparation of Conceptual / Preliminary and/or Project Water Quality Management Plans (WQMPs) dated December, 2013.


## Appendix A


### **Plates:**

- Vicinity Map
- Plot Plan & Percolation Tests Location Map
- Groundwater Map (Closest Well Data)
- Groundwater Map Well Data
- Boring Logs, B-1 (PC-1) & B-11 (PC-2)








|                           |                              | GROUN                       | NDWATEF                   | r Map - We               | ELL DATA                           |                     |                 |                        |
|---------------------------|------------------------------|-----------------------------|---------------------------|--------------------------|------------------------------------|---------------------|-----------------|------------------------|
| Groundw                   | ater Level l                 | Report                      |                           |                          |                                    |                     |                 |                        |
| Station 3374              | 64N1171859W0                 | 01                          |                           |                          |                                    |                     |                 |                        |
| Station Data              | Froundwater Level Da         | ta                          |                           |                          |                                    |                     |                 |                        |
| Groundwat                 | er Levels for W              | ell 337464N11               | 71859W001 (               | Site Code)               |                                    |                     |                 |                        |
| 1440 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1420 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1400 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| (11)<br>uote 1380 ft      |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1360 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1340 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1320 ft                   |                              | 06/02/1995                  |                           |                          |                                    |                     | 0               |                        |
|                           |                              | 06/02/1993                  | Water Surface             | Ground Surface           | - Questionable Data                |                     |                 |                        |
| Measurement<br>Date (PST) | Reference Point<br>Elevation | Ground Surface<br>Elevation | Distance from<br>RP to WS | Groundwater<br>Elevation | Ground Surface<br>to Water Surface | Measuremen<br>Issue | t Colle<br>Ager | ecting V<br>ncy R      |
| 06/02/1995<br>00:00:00    | 1427.490                     | 1427.490                    | 97.98                     | 1329.51                  | 97.98                              |                     |                 | artment of<br>er Resou |
| 09/13/1995                | 1427.490                     | 1427.490                    | 95.63                     | 1331.86                  | 95.63                              |                     | •               | artment of<br>er Resou |
|                           | ~                            |                             | l Plaza - Perris          |                          |                                    |                     | oject No.       | G-5908-01              |
|                           | Corner                       |                             |                           | Perris, California       |                                    | Pla                 | ate:            | C-2                    |
|                           |                              | Ge                          | Clecimica                 | i Solutions,             | IIIC.                              |                     |                 |                        |



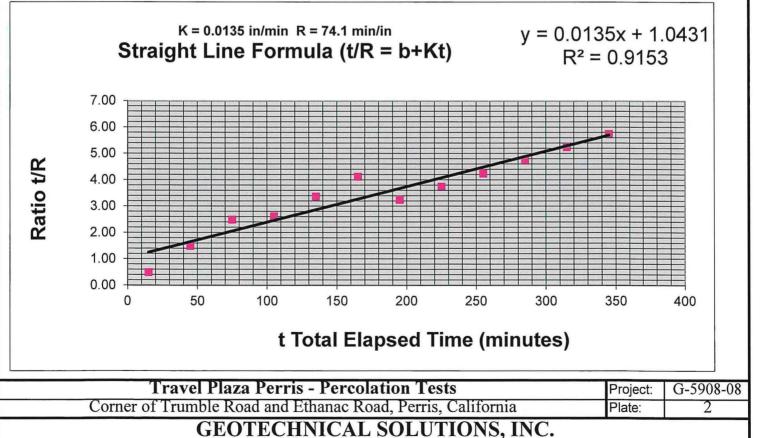


## **Appendix B**

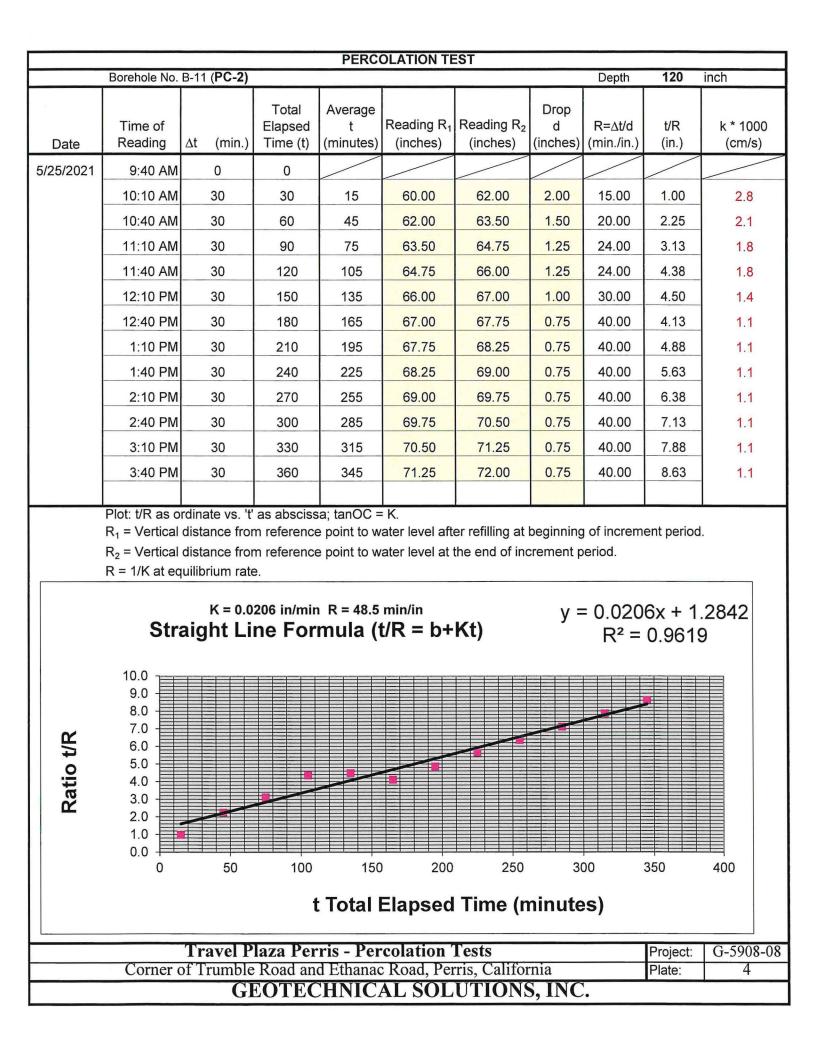
## **Pre-Test & Percolation Test Results**

- Pre-Test Percolation Data Sheet (PC-1)
- Percolation Test Result at Location PC-1
- Pre-Test Percolation Data Sheet (PC-2)
- Percolation Test Result at Location PC-2

|                 |             | PRE- F                                          | PERCOLATIO                                       | N TEST DATA                                                                                  | SHEET                                     |                                  |                                        |
|-----------------|-------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|
| Project:        | Travel Pla  | za - Perris                                     | Project No.:                                     | G-59                                                                                         | 08-08                                     | Date:                            | 5/24/2021                              |
| Test Hole Num   | ber:        | PC-1                                            | Tested By:                                       |                                                                                              | BA                                        | /AB                              |                                        |
| Depth of Test H | Iole, DT    | 10'                                             | USCS Soil Clas                                   | sification:                                                                                  |                                           | Sand (SP)                        |                                        |
|                 | Test H      | ole Dimensions                                  | (inches)                                         |                                                                                              | Length                                    | Width                            |                                        |
| Diameter (      | if Round) = | 8"                                              | Sides (if Rectan                                 | gular) =                                                                                     |                                           |                                  |                                        |
|                 |             |                                                 | Sandy Soil C                                     | Criteria Test *                                                                              |                                           | <b>P</b>                         |                                        |
| Trial No.       | Start Time  | Stop Time                                       | Time Interval<br>(Min)                           | Initial Depth to<br>Water (in)                                                               | Final Depth to<br>Water (in)              | Change in<br>Water Level<br>(in) | Greater than or<br>Equal to 6"?<br>y/n |
| 1               | 8:30 AM     | 8:55 AM                                         | 25                                               | 65                                                                                           | 66.25                                     | 1.3                              | < 6"                                   |
| 2               | 8:55 AM     | 9:20 AM                                         | 25                                               | 66.25                                                                                        | 67.50                                     | 1.25                             | < 6"                                   |
|                 | minutes     | , the test shall be ru<br>se, pre-soak (fill) o | un for an additional h<br>vernight. Obtain at le | six inches of water s<br>our with measureme<br>east twelve measure<br>ervals) with a precisi | ents taken every 10<br>ments per hole ove | minutes.<br>r at least           |                                        |


|           | PERCOLATION TEST        |           |                              |                           |                                    |                                    |                       |                      |              |                    |
|-----------|-------------------------|-----------|------------------------------|---------------------------|------------------------------------|------------------------------------|-----------------------|----------------------|--------------|--------------------|
|           | Borehole No. B-1 (PC-1) |           |                              |                           |                                    |                                    |                       |                      | 120          | inch               |
| Date      | Time of<br>Reading      | ∆t (min.) | Total<br>Elapsed<br>Time (t) | Average<br>t<br>(minutes) | Reading R <sub>1</sub><br>(inches) | Reading R <sub>2</sub><br>(inches) | Drop<br>d<br>(inches) | R=∆t/d<br>(min./in.) | t/R<br>(in.) | k * 1000<br>(cm/s) |
| 5/25/2021 | 9:30 AM                 | 0         | 0                            |                           |                                    |                                    |                       |                      |              |                    |
|           | 10:00 AM                | 30        | 30                           | 15                        | 60.00                              | 61.00                              | 1.00                  | 30.00                | 0.50         | 1.4                |
|           | 10:30 AM                | 30        | 60                           | 45                        | 61.00                              | 62.00                              | 1.00                  | 30.00                | 1.50         | 1.4                |
|           | 11:00 AM                | 30        | 90                           | 75                        | 62.00                              | 63.00                              | 1.00                  | 30.00                | 2.50         | 1.4                |
|           | 11:30 AM                | 30        | 120                          | 105                       | 63.00                              | 63.75                              | 0.75                  | 40.00                | 2.63         | 1.1                |
|           | 12:00 PM                | 30        | 150                          | 135                       | 63.75                              | 64.50                              | 0.75                  | 40.00                | 3.38         | 1.1                |
|           | 12:30 PM                | 30        | 180                          | 165                       | 64.50                              | 65.25                              | 0.75                  | 40.00                | 4.13         | 1.1                |
|           | 1:00 PM                 | 30        | 210                          | 195                       | 65.25                              | 65.75                              | 0.50                  | 60.00                | 3.25         | 0.7                |
|           | 1:30 PM                 | 30        | 240                          | 225                       | 65.75                              | 66.25                              | 0.50                  | 60.00                | 3.75         | 0.7                |
|           | 2:00 PM                 | 30        | 270                          | 255                       | 66.25                              | 66.75                              | 0.50                  | 60.00                | 4.25         | 0.7                |
|           | 2:30 PM                 | 30        | 300                          | 285                       | 66.75                              | 67.25                              | 0.50                  | 60.00                | 4.75         | 0.7                |
|           | 3:00 PM                 | 30        | 330                          | 315                       | 67.25                              | 67.75                              | 0.50                  | 60.00                | 5.25         | 0.7                |
|           | 3:30 PM                 | 30        | 360                          | 345                       | 67.75                              | 68.25                              | 0.50                  | 60.00                | 5.75         | 0.7                |

Plot: t/R as ordinate vs. 't' as abscissa; tanOC = K.


R<sub>1</sub> = Vertical distance from reference point to water level after refilling at beginning of increment period.

R<sub>2</sub> = Vertical distance from reference point to water level at the end of increment period.

R = 1/K at equilibrium rate.



|                 |              | PRE - I                | PERCOLATIO                     | N TEST DATA                                                         | SHEET                        | P                                |                                        |
|-----------------|--------------|------------------------|--------------------------------|---------------------------------------------------------------------|------------------------------|----------------------------------|----------------------------------------|
| Project:        | Travel Pl    | aza - Perris           | za - Perris Project No.: G-590 |                                                                     |                              | Date:                            | 5/24/2021                              |
| Test Hole Num   | ber:         | PC-2                   | Tested By:                     |                                                                     | BA                           | /AB                              |                                        |
| Depth of Test H | Iole, DT     | 10'                    | USCS Soil Clas                 | sification:                                                         |                              | <b>r</b>                         |                                        |
|                 | Test H       | Iole Dimensions        | (inches)                       |                                                                     | Length                       | Width                            |                                        |
| Diameter (      | (if Round) = | 8"                     | Sides (if Rectan               | gular) =                                                            |                              |                                  |                                        |
|                 |              |                        | Sandy Soil C                   | Criteria Test *                                                     |                              | r                                |                                        |
| Trial No.       | Start Time   | Stop Time              | Time Interval<br>(Min)         | Initial Depth to<br>Water (in)                                      | Final Depth to<br>Water (in) | Change in<br>Water Level<br>(in) | Greater than or<br>Equal to 6"?<br>y/n |
| 1               | 9:35 AM      | 10:00 AM               | 25                             | 65                                                                  | 67.0                         | 2                                | < 6"                                   |
| 2               | 10:00 AM     | 10:25 AM               | 25                             | 67                                                                  | 69.0                         | 2                                | < 6"                                   |
|                 | minutes      | s, the test shall be r | un for an additional h         | six inches of water s<br>nour with measureme<br>east twelve measure | ents taken every 10          | minutes.                         |                                        |
|                 |              | six hours (approxi     | mately 30 minute Int           | ervals) with a precisi                                              | ion of at least 0.25".       |                                  |                                        |



# Appendix C – Infiltration Rates

Infiltration Rate If Calculations

- PC-1
- PC-2

## Percolation Rate Conversion Infiltration Rate, I<sub>t</sub> Porchet Method, aka Inverse Borehole Method

## Travel Plaza - Perris Project No: G-5908-08

## Percolation Test PC-1

## As per Test Result, Average Percolation Rate = 0.0135 inch/Min = 0.81 inch/hour

## Data collected at the Final Interval analysed: 1.0 inch/hour

| Time Interval, $\Delta$ t             | = <mark>30</mark>               | Minutes              |   | Initial Depth to | Water, D <sub>0</sub>        | = 67.75 Inches                     |
|---------------------------------------|---------------------------------|----------------------|---|------------------|------------------------------|------------------------------------|
| Total Depth of Test Hole, $D_t$       | = 120                           | Inches               |   | Final Depth to   | Water, D <sub>f</sub>        | = 68.25 Inches                     |
| Test Hole Radius, r                   | = 4                             | Inches               |   |                  |                              |                                    |
| Initial Height of Water at the        | selected time inter             | ∿al, H₀              | = | 52.25            | Inches                       | (D <sub>t</sub> - D <sub>0</sub> ) |
| Final Height of Water at the S        | Selected time inter             | rval, H <sub>f</sub> | = | 51.75            | Inches                       | (D <sub>t</sub> - D <sub>f</sub> ) |
| Change in Height over the tin         | ne interval, $\Delta$ H         |                      | Ξ | 0.5              | Inches                       | (H <sub>o</sub> - H <sub>f</sub> ) |
| Average Head Height over th           | e time interval, H <sub>a</sub> | avg                  | = | 52               | Inches                       | $(H_0 + H_f)/2$                    |
| Tested In                             | filtration Rate,                | l <sub>t</sub>       | = | ∆ H (60 r) /((∆  | t)(r + 2 H <sub>avg</sub> )) | in/hr                              |
|                                       | Therefore,                      | Ι <sub>t</sub>       | = | 0.037037         | inch/hour                    |                                    |
|                                       |                                 | l <sub>t</sub>       | = | 0.018519         | inch/hour                    | FS: 2                              |
| < 0.3 inch/hour requirement<br>FAILED |                                 |                      |   |                  |                              |                                    |

## Percolation Rate Conversion Infiltration Rate, I<sub>t</sub> Porchet Method, aka Inverse Borehole Method

## Travel Plaza - Perris Project No: G-5908-08

## Percolation Test PC-2

## As per Test Result, Average Percolation Rate = 0.0206 inch/Min = 1.236 inch/hour

## Data collected at the Final Interval analysed: 1.5 inch/hour

| Time Interval, $\Delta$ t                                                      | = <mark>30</mark> | Minutes        |   | Initial Depth to | o Water, D <sub>0</sub>        | = 71.25 Inches                     |  |
|--------------------------------------------------------------------------------|-------------------|----------------|---|------------------|--------------------------------|------------------------------------|--|
| Total Depth of Test Hole, $D_t$                                                | = 120             | Inches         |   | Final Depth to   | o Water, D <sub>f</sub>        | = 72.00 Inches                     |  |
| Test Hole Radius, r                                                            | = 4               | Inches         |   |                  |                                |                                    |  |
| Initial Height of Water at the selected time interval, ${\rm H}_{\rm 0}$       |                   |                |   | 48.75            | Inches                         | (D <sub>t</sub> - D <sub>0</sub> ) |  |
| Final Height of Water at the Selected time interval, $\mathrm{H}_{\mathrm{f}}$ |                   |                |   | 48               | Inches                         | (D <sub>t</sub> - D <sub>f</sub> ) |  |
| Change in Height over the time interval, $\Delta$ H                            |                   |                |   | 0.75             | Inches                         | (H <sub>o</sub> - H <sub>f</sub> ) |  |
| Average Head Height over the time interval, $H_{avg}$                          |                   |                |   | 48.375           | Inches                         | $(H_0 + H_f)/2$                    |  |
| Tested Infiltration Rate, I <sub>t</sub>                                       |                   |                | = | ∆ H (60 r) /((/  | \ t)(r + 2 H <sub>avg</sub> )) | in/hr                              |  |
|                                                                                | Therefore,        | Ι <sub>t</sub> | = | 0.0596           | inch/hour                      |                                    |  |
|                                                                                |                   | Ι <sub>t</sub> | = | 0.029777         | inch/hour                      | FS: 2                              |  |
| < 0.3 inch/hour- FAILED                                                        |                   |                |   |                  |                                |                                    |  |

# Appendix D

# Infiltration Rates Using Reduction Factor Method $R_{\rm f}$

- PC-1
- PC-2

|                       | REDUCTION FACTOR, R <sub>f</sub>                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Travel Plaza - Perris |                                                                                                                | Project No.:                                                                                                                                                                                                                                                                   | G-5908-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                                                                                                     | 5/25/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| er:                   | PC-1                                                                                                           | Tested By:                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /AB                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ole, DT               | 10'                                                                                                            | Initial Water De                                                                                                                                                                                                                                                               | pth (Inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.75                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                       | Test Hole Din                                                                                                  | nensions (inches)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Width                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Round), Dia =         | 8                                                                                                              | Sides (if Rectangular) =                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Percolation Test      |                                                                                                                | Pre-Adjusted<br>Percolation<br>Rate, in/hr                                                                                                                                                                                                                                     | Initial Depth to<br>Water, <b>d1</b> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water level<br>Drop, ∆ <b>d</b> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R <sub>f</sub>                                                                                                                                                                                                                                            | I <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| PC-1                  |                                                                                                                | 1                                                                                                                                                                                                                                                                              | 67.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.88                                                                                                                                                                                                                                                     | 0.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| percolation rate mu   | st be reduced to a<br>Formula: Reduction                                                                       | account for the dischaption $R_f = [(2d1)$                                                                                                                                                                                                                                     | arge of water from bo<br>- ∆d) / Dia] + 1_whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oth the sides and borner $d_1 = Initial water I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ottom of the boring                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                       | er:<br>ole, DT<br>Round), Dia =<br>Percolation Test<br>PC-1<br>o of the stabilized rate<br>percolation rate mu | er:       PC-1         ole, DT       10'         Test Hole Dim         cound), Dia =       8         Percolation Test       8         PC-1         o of the stabilized rate over the last thr         percolation rate must be reduced to a         Use the Formula: Reduction | er:       PC-1       Tested By:         ole, DT       10'       Initial Water Degenorm         Test Hole Dimensions (inches)       Test Hole Dimensions (inches)         Round), Dia =       8       Sides (if Reconstruction Reconstruction)         Percolation Test       Pre-Adjusted         Percolation Test       Pre-Adjusted         Percolation Test       1         of the stabilized rate over the last three consecutive reading       percolation rate must be reduced to account for the dischard         Use the Formula: Reduction Factor, $R_f = [(2d1)]$ Reduction Factor, $R_f = [(2d1)]$ | er:       PC-1       Tested By:         ole, DT       10'       Initial Water Depth (Inches)         Test Hole Dimensions (inches)         cound), Dia =       8       Sides (if Rectangular)         Recolation Test       Pre-Adjusted<br>Percolation<br>Rate, in/hr       Initial Depth to<br>Water, d1 (in)         PC-1       1       67.75         of the stabilized rate over the last three consecutive readings is the pre-adjust<br>percolation rate must be reduced to account for the discharge of water from be<br>Use the Formula: Reduction Factor, $R_f = [(2d1 - \Delta d) / Dia] + 1$ when | er:PC-1Tested By:BAole, DT10'Initial Water Depth (Inches)Test Hole Dimensions (inches)Round), Dia =8Sides (if Rectangular)999999999999999191967.7590.590999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999< | er:       PC-1       Tested By:       BA/AB         ole, DT       10'       Initial Water Depth (Inches)       67.75         Test Hole Dimensions (inches)       Length         Round), Dia =       8       Sides (if Rectangular)       =         Percolation       Initial Depth to<br>Rate, in/hr       Water level<br>Water, d1 (in)       R <sub>f</sub> PC-1       1       67.75       0.5       17.88         of the stabilized rate over the last three consecutive readings is the pre-adjusted percolation rate at the test location is percolation rate must be reduced to account for the discharge of water from both the sides and bottom of the boring of Use the Formula: Reduction Factor, $R_r = [(2d1 - \Delta d) / Dia] + 1$ where $d_1 =$ Initial water Depth, in |  |  |  |

| REDUCTION FACTOR, R <sub>f</sub> |                       |                                            |                                                                                     |                                      |                      |                     |           |  |
|----------------------------------|-----------------------|--------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|----------------------|---------------------|-----------|--|
| Project:                         | Travel Pla            | Travel Plaza - Perris                      |                                                                                     | G-5908-08                            |                      | Date:               | 5/25/2021 |  |
| Test Hole Numb                   | ber:                  | PC-2                                       | Tested By:                                                                          | BA/AB                                |                      |                     |           |  |
| Depth of Test H                  | ole, DT               | 10'                                        | Initial Water De                                                                    | epth (Inches)                        | ) 71.25              |                     |           |  |
|                                  |                       | Test Hole Din                              | nensions (inches)                                                                   |                                      | Length               | Width               |           |  |
| Diameter (if H                   | Round), Dia =         | 8                                          | Sides (if Rec                                                                       | Sides (if Rectangular) =             |                      |                     |           |  |
|                                  |                       |                                            |                                                                                     | T                                    |                      | T                   |           |  |
| Percolation Test                 |                       | Pre-Adjusted<br>Percolation<br>Rate, in/hr | Initial Depth to<br>Water, <b>d1</b> (in)                                           | Water level<br>Drop, ∆ <b>d</b> (in) | R <sub>f</sub>       | If                  |           |  |
|                                  | PC-2                  |                                            | 1.5                                                                                 | 71.25                                | 0.75                 | 18.72               | 0.0801    |  |
|                                  | l percolation rate mu | ist be reduced to a                        | ee consecutive readi<br>account for the discha<br>on Factor, R <sub>f</sub> = [(2d1 | arge of water from bo                | oth the sides and bo | ottom of the boring |           |  |
|                                  |                       | $\Delta d = Water$                         | level drop of Fina                                                                  | l Period or Stabil                   | ized Rate (in)       |                     |           |  |

## GEOTECHNICAL ADDENDUM REPORT

TRAVEL PLAZA PERRIS

AT

ł

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. WEST PACIFIC AVENUE HENDERSON, NEVADA, 89015

PROJECT NO: G-5908-01

JUNE 11, 2021

PREPARED BY:

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING



# Geotechnical Solutions, Inc. Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project No: G-5908-01

**Broadbent, Inc.** 8 West Pacific Avenue Henderson, Nevada, 89015

#### Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelskis@broadbentinc.com

#### Re: Geotechnical Engineering Addendum Report Travel Plaza - Perris Corner of Trumble Road & Ethanac Road Perris, California 92570

Gentlemen:

Submitted herewith is the addendum report to our geotechnical engineering report dated June 11, 2021 conducted by this office for Travel Plaza Perris at the referenced project site.

Recommendations regarding over excavation have been included in this addendum report for the Travel Plaza Perris located just northwest of the intersection of Trumble Road and Ethanac Road, just west of Trumble Road in Perris, San Bernardino County, California as shown on Vicinity Map (Plate A) and Google Map (Plate C).

#### Site Clearing

Prior to grading, all debris, grass, weeds including construction materials should entirely be removed from the site and disposed of off-site. Existing any undesirable materials should also be removed and hauled off-site. Existing utilities (if Any) should be removed and relocated as required. Any construction debris or ant buried or other contaminated exposed during site clearance should be removed and hauled away from the site. The resulting excavation from any removal should be cleared of loose material then backfilled with compacted soil. Oversized rocks greater than 6 inches should be removed.

#### Excavation

Excavations into the on-site soils may encounter a variety of challenges for example, very firm and dense to very dense alluvial soils. Some Caving on clean sands may be encountered. The contractor should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of the excavation sides. All excavations should be sloped or shored in the interest of safety following local and federal regulations including current OSHA excavation and trench safety standards.

Heavy equipments for breaking the very dense alluvial materials may be required for the excavations for shallow foundations, drilled shafts, and utility trenches for the proposed construction. The speed and ease of excavation are dependent on the nature of the deposit, the type of equipment used, and the skill and experience of the equipment operator.

#### Building Pad Over-excavation (Above Ground Storage Tanks, AST's)

After removal of existing debris, the above ground storage tank areas should be overexcavated at least 3 feet below the lowest grade or 24 inches below the bottom of the footings whichever is greater. Excavation should be extended 3-feet outside building perimeters. Over-excavation may be hard due to the presence of very dense alluviums, therefore heavy equipments may be required. Remove and replace any loose or disturbed soils prior to placing any additional fill materials required to reach the finished subgrade elevations. The over-excavation should be backfilled to the foundation base elevation with the compacted engineering fill in accordance with the recommendations presented in this report.

#### Compliance

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the General Grading **a**nd Recommended Earthwork Specifications in Appendix B.

To assess compliance, observation and testing should be performed under the direction of a geotechnical engineer. Please contact us to provide observation and testing services.

#### **Backfill Materials**

On-site clean, low-expansive potential soils, or imported materials may be used as fill material for the following:

- Foundation Areas
- Interior Slab Areas
- Pavement Areas
- Backfill

Any earth materials imported or excavated on the property may be utilized in the fill provided that each material has been determined to be suitable by the soil engineer. These materials should be free of roots, tree branches, other organic matter or other deleterious materials. Soils of poor gradation, undesirable expansion potential, or substandard strength characteristics may be designated by the consultant as unsuitable and may require blending with other soils to serve as a satisfactory fill material. Also, rocks of sizes bigger than 3 inches should be discarded for the site material to be used for backfill.

Gradation (as per ASTM C136) should be as follows:

| Size | % by Weight |
|------|-------------|
| 6"   | 100         |

| 4"            | 85-100   |
|---------------|----------|
| 3/2,          | 70-100   |
| No 4 Sieve    | 50-100   |
| No. 200 Sieve | 15 (max) |

Any import material should have an expansion Index, EI less than 20. Import material should also meet the following criteria:

| Soil Properties | <u>Values</u> |
|-----------------|---------------|
| Liquid Limit    | 35 (Max)      |
| Plastic Limit   | 6 (Max)       |

#### **Placement and Compaction**

Place and compact approved fill material in nearly horizontal layers that when compacted should not exceed 6 inches in thickness.

Use appropriate equipment and procedures that will produce recommended densities and water contents throughout the lift. Moisture condition, blending, and mixing of the fill layer should continue until the fill materials have a uniform moisture content at or above optimum moisture.

Uncompacted fill lifts should not exceed 8 inches.

Materials should be compacted to the following:

| On-site or imported soil, reworked and fill: | <u>Minimum % (ASTM D-1557</u><br>Laboratory Standard) |
|----------------------------------------------|-------------------------------------------------------|
| Subgrade Below Footings                      | 90                                                    |
| Subgrade Below Slab-on Grade                 | 90                                                    |
| Subgrade Below Pavement                      | 90                                                    |
| Crush Rock Below Slab-on-Grade               | 95                                                    |
| Aggregate Base below pavement                | 95                                                    |

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

#### **Excavations at Pavement Areas**

#### **Subgrade Preparation**

After removing the existing deleterious materials, dense to very dense alluvial materials on the pavement areas and hauled offsite, all surficial deposits of loose soil material should be removed and excavate 12 inches below the base and recompacted as recommended. The bottom is further scarified to a depth of at least 6 inches; moisture conditioned as necessary and compacted to 90 percent of the maximum laboratory density as determined by ASTM Test Method D-1557.

Deleterious material, excessively wet or dry pockets, and any other unsuitable materials encountered during excavation or grading should be removed. The compacted fill material should then be brought to the elevation of the proposed subgrade for the pavement. The subgrade should be proof-rolled in order to ensure a uniform, firm and unyielding surface. All grading and fill placement should be observed by the project soils engineer and/or his representative.

#### **Aggregate Base**

Compaction and rolling are required for the recommended base section. Minimum relative compaction required will be 95 percent of the laboratory maximum density as determined by ASTM Test Designation D-1557. Aggregate base should be in accordance with 200-2.2 crushed Aggregate base Class II base (minimum R-value=78) and sample should be brought for testing and approval prior to delivery to the site. No crushed miscellaneous base (CMB) should be accepted.

#### Asphalt Concrete Pavement

Asphalt concrete pavement should be Performance Grade PG 64-10 1/2" maximum aggregate size and should be placed and compacted in two layers. Asphalt concrete shall be compacted to 95 percent of the Hveem Laboratory Standard.

#### **Earthwork Observations:**

Relative compaction of all fill materials placed on site should be tested in accordance with ASTM D6938. All new fill shall be brought to near optimum moisture, placed in layers not exceeding six inches in thickness, and compacted to at least 90 percent relative compaction for subgrade and 95 percent relative compaction for aggregate base. No jetting or water tamping of fill soils shall be permitted. All imported soil for engineered fill should be pre-approved by the Geotechnical Engineer and consist of clean, granular, non-expansive soil, free of vegetation and other debris with an Expansion Index of 20 or less.

At all times, the contractor should have a responsible field superintendent on the project in full charge of the work, with authority to make decisions. He should cooperate fully with the Geotechnical Engineer in carrying out the work.

All footing trenches for continuous and spread footings and subgrade for the slab areas should be observed by the project Geotechnical Engineer to verify that over-excavation and re-compaction operations of adequate depth, thickness, and compaction have been performed as specified. All footing excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed and replaced with properly compacted soil.

#### **General Grading**

All grading should conform to the guidelines presented in the California Building Code (CBC, 2019), the City of Perris, San Bernardino County, International Conference of Building Officials (ICBO, 2018), and Appendix B in this report, except where specifically superceded in the text of this report. When code references are not equivalent, the more stringent code should be followed. During earthwork construction, all site preparation and the general grading procedures of the contractor should be observed, and the fill selectively tested by a representative (s) of Geotechnical Solutions, Inc. (GSI). If unusual or unexpected conditions are exposed in the field, they should be

reviewed by this office and if warranted, modified and /or additional recommendations will be offered. All applicable requirements of local and national construction and general industry safety orders, the Occupational Safety and Health Act and the construction Safety Act should be met.

#### Closure

The Conclusions and recommendations contained herein are based on the findings and observations made at the test boring locations. It is not unusual to find conditions between and beyond such locations, which differ from the conditions encountered. If conditions are encountered during construction, which appear to differ from those previously disclosed, this office should be notified so as to consider the need for modifications. On-site construction observations and wherever appropriate, tests should be performed during the course of construction by a representative of this office to evaluate compliance with the design concepts, specifications, and recommendations contained herein.

This report has been compiled for the exclusive use of our client, it shall not be transferred to, or used by, other parties, or applied to any project on this site other than described herein without consent and /or thorough review by this office.

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary under the circumstances.

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

In the opinion of the undersigned, the accompanying report has been substantiated by mathematical and other data and presents fairly the design information requested by your organization.

Respectfully Submitted,

**Geotechnical Solutions, Inc.** 

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

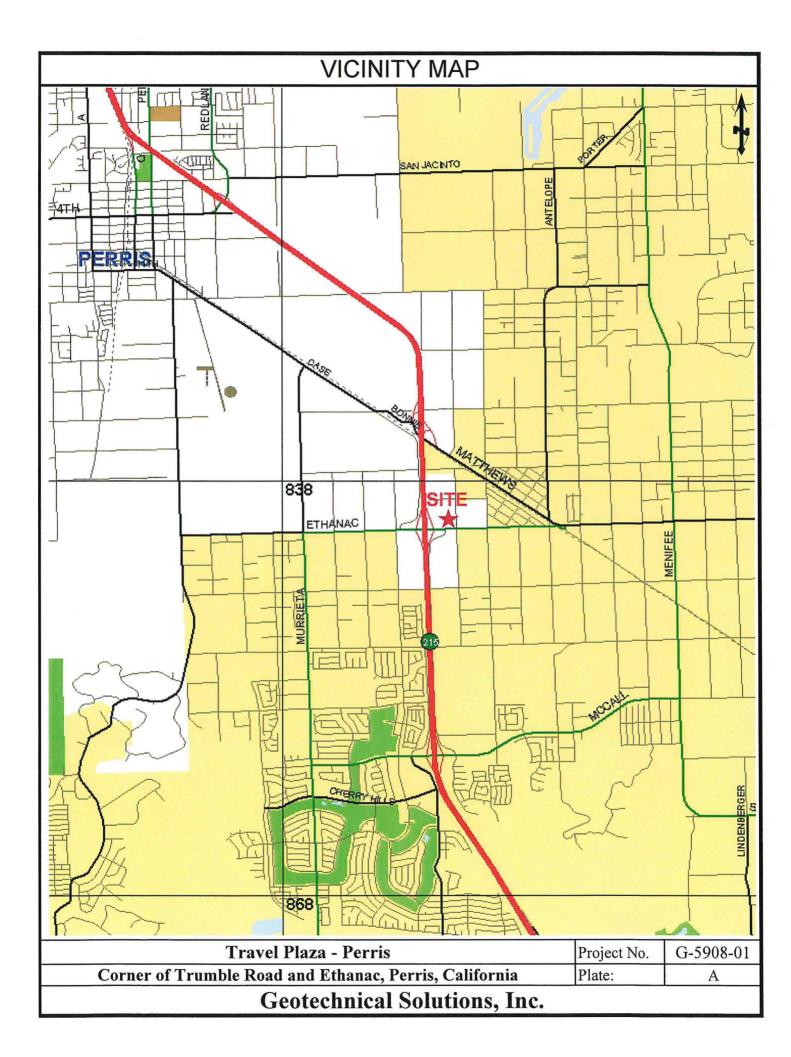
Abraham S. Baha, PE, M. ASCE Sr. Principal

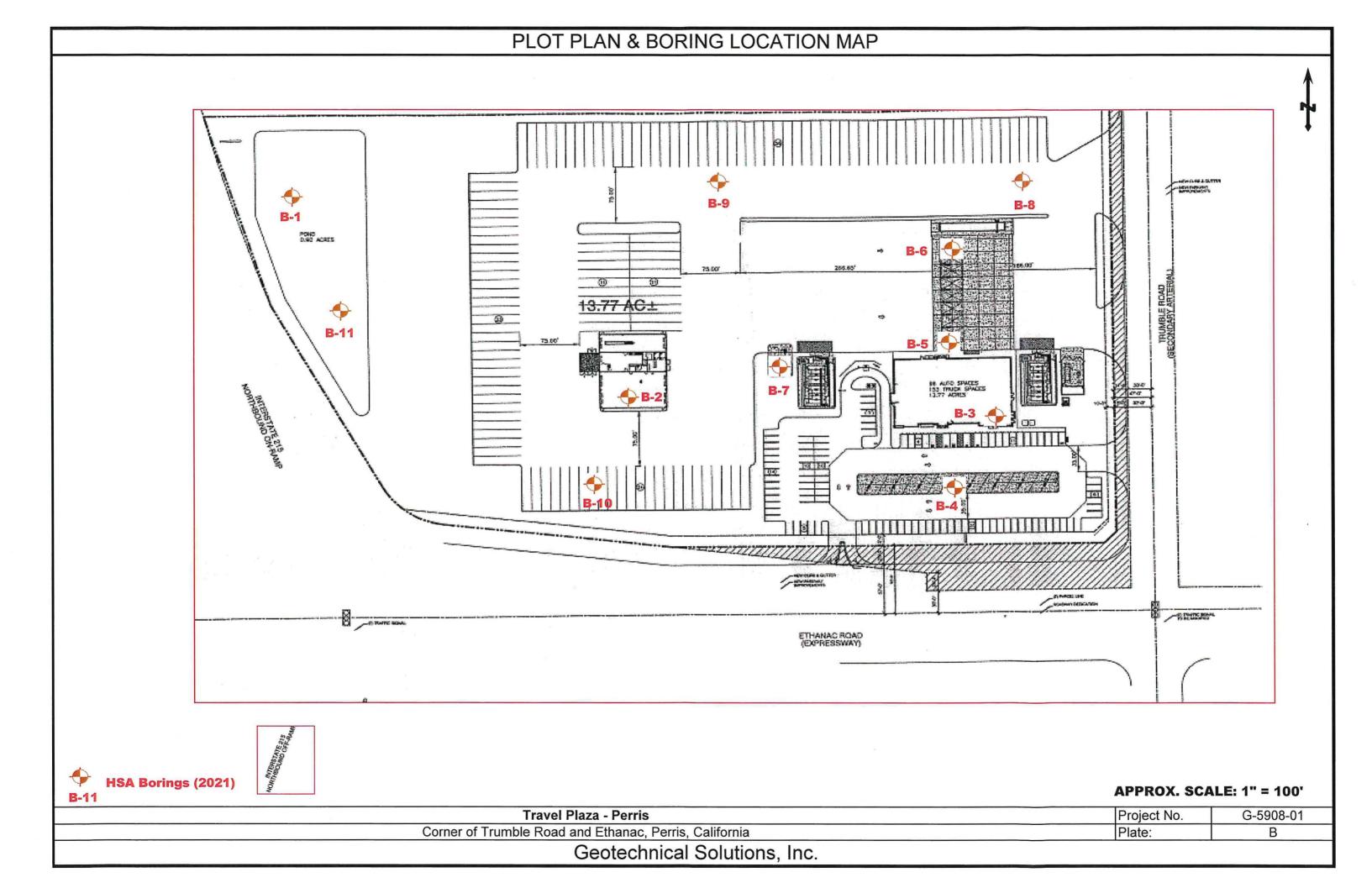
Distribution: (3+pdf) Addressee

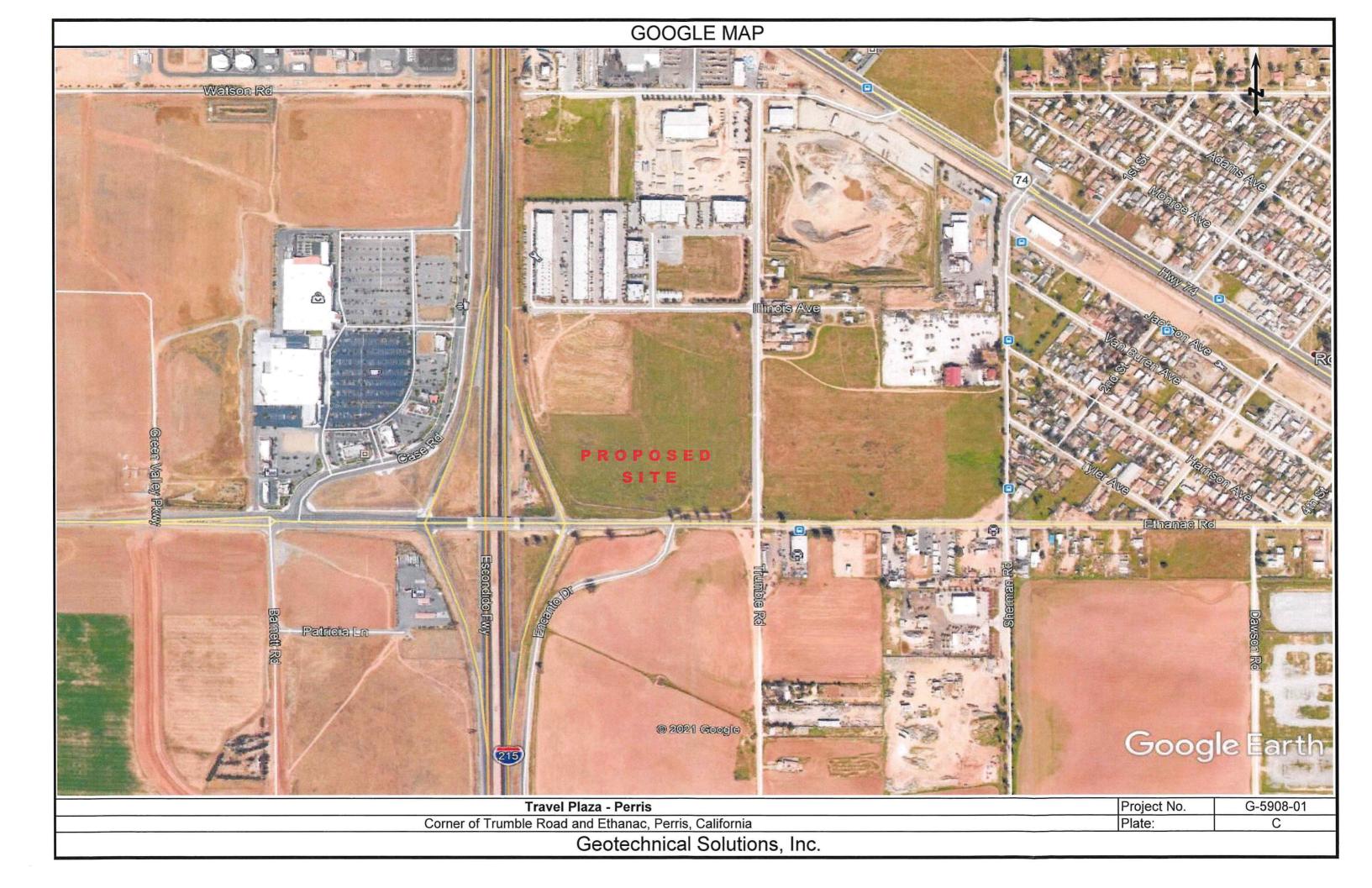




#### References


- Geotechnical Solutions, Inc., 2021, "Geotechnical Evaluation Report for Travel Plaza Perris, Located at the corner of Trumble Road and Ethanac Road, Perris, California", Project Number G-5908-01, dated June 11.
- International Conference of Building Officials (ICBO), 2019, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2.


Project No.: G-5908-01 Travel Plaza Perris - Addendum Report


Appendix A

Plates

- Vicinity Map
  - Plot Plan
- Google Map







Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

# Appendix B

Recommended Earthwork Specifications

### **RECOMMENDED EARTHWORK SPECIFICATIONS**

#### 1.0 General

#### 1.1 Description

1.1.1 These specifications cover preparation of the subject site to receive fills, the type of soils suitable for use in fills, the compaction standards, and the methods of testing compacted fills.

1.1.2 The Contractor shall furnish all labor, supervision, equipment, operations, and materials to excavate to the required grade, support existing underground facilities, stockpile material, compact fill and backfill, and fine grade. The work of the Contractor shall include all clearing and grubbing, removing existing unsatisfactory material, preparing areas to be filled, spreading and compacting of fill in the areas to be filled and all other work necessary to complete the grading of the filled areas. It shall be the Contractor's responsibility to place, spread, moisten or dry, and compact the fill in strict accordance with these specifications to the lines and grades indicated on project plans or as directed in writing by the Civil Engineer.

1.1.3 Deviations from these specifications will be permitted only upon written authorization from the Owner or his representative.

1.2 Role of the Geotechnical Engineer

1.2.1 Construction - The Owner will employ a Geotechnical Consultant to observe and test this work as it is being performed. The Contractor shall cooperate with the Geotechnical Consultant and allow his unrestricted access to the site as required for the performance of his duties.

The Contractor shall provide a minimum notice of 48 hours to the Geotechnical Engineer before beginning or restarting earthwork operations that will require the presence of the Geotechnical Engineer or his representative on site. 1.2.2 Subsurface Investigations - A geotechnical engineering report for design purposes was prepared by Geotechnical Solutions, Inc., Irvine, California. Any recommendations made in the geotechnical report or subsequent reports are made part of these specifications. These reports are available for review upon request to the Owner.

1.2.3 Observation and Testing - The Geotechnical Engineer's representative shall observe the clearing and grubbing, excavation, filling and compacting operations and shall take density tests in the fill material so that he can state his opinion as to whether or not the fill was constructed in accordance with the specifications. All fill will be tested shortly after its placement to ascertain that the required compaction is achieved. A minimum of one density test will be made on each 500 cubic yards of fill placed, with a minimum of at least one test per every 2 feet of vertical height of fill. If the surface is disturbed, the density tests shall be made in the compacted materials below the disturbed zone. When these tests indicate that the density or water content of any layer of fill or portion thereof does not meet the specified density or water content, the particular layer or portions thereof shall be reworked until the specified density and water content have been obtained.

After the completion of grading, the Geotechnical Engineer will prepare a written opinion of grading. Neither the testing performed by the Geotechnical Consultant nor his opinion as to whether or not the fill was constructed in accordance with these Specifications shall relieve the Contractor of his responsibility to construct the fills in accordance with the Contract Documents.

#### 1.3 Reference Standards

The following ASTM (American Society for Testing and Materials) codes and standards shall be used to the extent indicated by references herein. The most recent revision of the standards shall be used.

D 1556 - "Standard Test Method for Density of Soil in Place by the Sand-Cone Method"

13

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

D1557 - "Standard Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using 10-lb (4.54 kg) and 18-inch (457-mm) Drop"

D2216 - "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures"

D4318 - "Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils"

D4718 - "Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles"

D4829 - "Standard Test Method for Expansion Index of Soils"

D4944 - "Standard Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester Method."

D5195 - "Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)"

D6938 - "Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)"

D7928 - "Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis"

1.4 Degree of Fill Compaction

The degree to which fill is to be compacted is expressed in terms of "relative compaction." Relative compaction is defined as the ratio; expressed in percent, of the in-place dry density of the compacted fill to the reference maximum dry density. The reference maximum dry density shall be obtained following ASTM D1557. Optimum water content shall be obtained in the same test used to obtain the reference maximum dry density. Correction of the maximum dry density and optimum water content for

14

oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate. The in-place density shall be obtained following ASTM D1556 (sand cone method) or ASTM D6938 (nuclear method-shallow depth) test method. The in-place water content shall be obtained following ASTM D4944 (calcium carbide gas pressure meter), ASTM D5195 (nuclear method-shallow depth), or ASTM D2216 (oven drying). Correction of the in-place density and water content for oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate.

If any of the test methods specified in this section are judged by the Geotechnical Engineer to be impractical or unreliable because the material has a coarse particle size distribution, or for other reasons, the Geotechnical Engineer shall establish other procedures to obtain the required soil characteristics.

#### 2.0 Products

#### 2.1 Materials

2.1.1 General - During grading operations, soil types other than those identified in the geotechnical investigation report may be encountered by the Contractor. Consult the Geotechnical Consultant for his evaluation of the suitability of using these soils a fill material prior to placement or disposal.

2.1.2 General Fill - Materials for compacted fill shall consist of material imported from outside the site or excavated from the site that, in the opinion of the Geotechnical Engineer, is suitable for use in constructing engineered fills. The material shall not contain rocks or hard lumps greater than 6 inches in maximum dimension, and at least 70 percent (by weight) of its particles shall pass through a U.S. Standard 3/8 inch sieve. Material greater than 3 inches, but less than 6 inches in maximum dimension, shall be placed by the Contractor so that it is completely surrounded by compacted, finer material;

no nesting of rocks shall be permitted. Do not use any perishable, spongy, hazardous, or other undesirable materials as fill.

2.1.3 Select Fill - Select fill shall meet all criteria for general fill but shall also contain no rocks or hard lumps greater than 3 inches in maximum dimension, and at least 80 percent (by weight) shall pass through a U.S. Standard 3/8-inch sieve. The expansion index of select material shall be less than 50 (i.e., 5.0 percent swell) when tested in accordance with ASTM D4829.

#### 3.0 Execution

3.1 Clearing and Grubbing

Within the project limits, tile Contractor shall demolish structures as specified on the Drawings.

Unless otherwise indicated on the Drawings or by the Owner in writing, the Contractor shall clear and grub all trees, stumps, roots, brush, grass, and other vegetation within construction, fill and stockpile areas to a minimum depth of 3 feet below the existing ground surface or below finished grade, whichever is deeper, unless otherwise recommended by the Geotechnical Engineer's Field Representative.

Remove cleared and grubbed materials from the site and dispose of them legally. No onsite burning or burying of cleared and grubbed materials is permitted. No placement of cleared and grubbed materials in topsoil stockpiles is permitted. No mulching of branches or roots is permitted. Incorporating vegetative matter into stockpiled materials, which are to be used in fill, is not permitted.

Stockpile organic-laden topsoil separate from other fill materials.

Remove any remaining vegetative matter from the deeper excavated soils, which may result from roots deeper than those encountered during clearing and grubbing operations.

All material thereby removed shall be piled at a location away from the immediate work area so as to avoid burying of piled material.

#### 3.2 Compacted Fills

3.2.1 Preparing Areas to be Filled - Brush, grass, and other objectionable materials shall be collected, piled, and disposed of as indicated in Section 3.1 by the Contractor so as to leave the areas that have been cleared with a neat and finished appearance, free from unsightly debris.

Remove all loose soil, uncertified fill, landslide debris, and weathered bedrock to firm material or in-situ bedrock, as approved by the Geotechnical Consultant. The Contractor shall obtain approval from the Geotechnical Engineer or his representative of stripping and site preparation before the compaction of any fill subgrade begins. The surface shall then be scarified to a minimum depth of 6 inches until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment used, and shall be brought to the specified water content and relative compaction. Compact scarified materials to a minimum relative compaction of 90 percent, relative to ASTM D1557, prior to placement of any fill material.

3.2.2 Placing, Spreading, and Compacting, Fill Material - Onsite soil obtained from removals, borrow, or cut areas may be reused as compacted fill provided it is free from deleterious debris and meets the other requirements of the "Materials" portion of this Specification Section.

Use of soil containing deleterious debris from the clearing and grubbing operation or from other sources is not permitted. The fill materials shall be placed by the Contractor in horizontal layers not greater than 8 inches thick, measured before compaction. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to obtain uniformity of material and moisture in each layer. The moisture content of material used for compacted fill should be adjusted to be at or above optimum water content as determined by ASTM D1557. When the water content of the fill material is too high, the

fill materials shall be aerated by the Contractor by blading, mixing, or other satisfactory methods until the water content is as specified.

After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent of the maximum dry density as determined by ASTM D1557 for general fill, and 95 percent of the maximum dry density as determined by ASTM D1557 for select fill, compacted fill pads, and the upper 1 foot of pavement subgrade. Compaction shall be accomplished by: sheepsfoot rollers; vibratory rollers; multiple-wheel, pneumatic-tired rollers; or other types of acceptable compacting equipment. Equipment shall be of such design that it is able to compact the fill to the specified density. Compaction shall be continuous over the entire area, and the equipment shall make sufficient passes to obtain the desired density uniformly. All fill placed on site shall be treated in like manner until finished grades are attained. Jetting, puddling, and hydro consolidation techniques shall not be used, including backfill of utility trenches.

The placement of topsoil is subject to the approval of the Geotechnical Engineer. Topsoil shall not be placed beneath concrete flatwork, beneath or behind retaining walls, or within structural fill. All topsoil material is subject to the same moisture conditioning, placement, and compaction requirements as General Fill. Roots, branches and other organic debris are not permitted within the compacted topsoil layer.

When backfilling around footings and compacting behind retaining walls and flexible retaining structures, the Contractor shall use lightweight compaction equipment such as hand-operated equipment, shoring, or other means to avoid over-stressing structural walls. When using lightweight compaction equipment, the fill materials shall be spread in horizontal layers not greater than 6 inches thick, measured before compaction.

As an alternative, sand-cement slurry may be used to backfill trenches. The slurry shall have minimum cement content of 3 sacks per cubic yard within the zone of influence of foundations and other settlement sensitive structures. A minimum of 2 sacks per cubic

yard of slurry shall be used elsewhere within building limits, and a minimum of one sack per cubic yard of slurry shall be used elsewhere. Slurry shall not be used in those areas where such placement would result in the obstruction of water flow, and is subject to the approval of the Geotechnical Engineer.

#### 3.3 Protection of Work and Adjacent Properties

3.3.1 During Construction - The Contractor shall grade all excavated surfaces to provide good drainage away from construction slopes and prevent ponding of water. He shall control surface water and the transport of silt and sediment to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control measures have been installed.

Dispose of all water resulting from dewatering operations legally and in ways that will not cause damage to public or private property, or constitute a nuisance or menace to the public, in accordance with municipal requirements.

The Contractor shall make every effort to minimize the amount of dust raised in excavating, on haul roads and access roads, and all other work areas in the course of construction activities.

Protect benchmarks, monuments, and other reference points against displacement or damage. Repair or replace benchmarks, monuments, and other permanent survey data that become displaced or damaged due to the performance of this work.

3.3.2 After Completion - After earthwork is completed and the, Geotechnical Engineer has finished his observations of the work, no further excavation, filling or backfilling shall be performed except under the observation of the Geotechnical Engineer.

#### Appendix G

#### **Romoland Master Drainage Plan**

102770\_13

# RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT RIVERSIDE, CALIFORNIA

# ROMOLAND

# **MASTER DRAINAGE PLAN**

Zone 4

Original Plan - April 1988 Revision No.1 – March 2006 Warren D. Williams General Manager – Chief Engineer

#### **UNDERGROUND STORM DRAINS**

The proposed underground storm drains generally consist of reinforced concrete pipe ranging in size from 27 inches to 96 inches in diameter. Reinforced concrete boxes are usually placed under dedicated road crossings or where the flow rates or hydraulic necessities exceed the capacity of standard pipe sizes. The underground storm drains proposed within this revision consist of pre-cast reinforced concrete pipe or reinforced concrete box.

#### **DETENTION BASINS**

The purpose of the detention basin proposed in this plan is, by the use of temporary storage, to reduce fairly high inflow rates to substantially lesser outflow rates. This peak reduction allows the use of smaller and thus less costly downstream facilities. It should be pointed out that the detention basin proposed in this plan is designed for ultimate 100-year frequency storms. Flows exceeding the design capacity of the basin would pass through the emergency spillway in flow patterns approximating present condition.

#### MAJOR REVISIONS

This section describes some of the major revisions to the previously adopted Romoland Master Drainage Plan. Revisions may include alignment changes, facility types and sizes and or flow-rate adjustments. Minor changes (such as the downstream extension of Line A-2, elimination of downstream portions of Line A-4, the deletion of Line A-14b and A-6) were the result of mainline realignments described below. **FIGURE 3** depicts the realignment, and modifications made by this master plan revision.

#### Line A

This facility has been completely realigned and redesigned to account for basin additions in the Homeland area that have decreased the flow rate anticipated from that area. Line A will be proposed as an earthen open channel west of the freeway, where the alignment closely resembles the District's 1990 preliminary drawings titled "Romoland Channel Line A Stage 1" (project number: 4-0-310, drawing number: 4-552). The portion of Line A upstream of the 215 freeway is a combination of concrete-lined open channel, reinforced concrete box, and reinforced concrete pipe.

The existing topography on the east side of the Interstate 215 is steeper than the west side. As a result, the average slope is greater. The velocities on the east side of Interstate 215 range from 12 feet per second to over 20 feet per second. An earthen channel with that range of velocities would tend to scour and create deposition in the San Jacinto River. This deposition would constitute a hydrologic condition of concern for the San Jacinto River. In addition, this sediment could lead to further impairment of Lake Elsinore (which is listed on the federal Clean Water Act 303(d) list as impaired for sedimentation/siltation). In order to minimize scour potential and significantly reduce the right-of-way required, Line A is proposed as a concrete-lined channel between of Interstate 215 and Palomar Road.

#### Line A-3

This facility consists of a concrete-lined open channel along Varela Lane and reinforced concrete box on Palomar Road. The alignment was altered to combine both Line A-3 and Line A-3e. This

eliminates a portion of the north-south alignment of Line A-3 and will simplify construction.

#### Line A-8 & A-12

The upstream portion of Line A-8 located on Murrieta road was extended northerly and incorporated as a part of Line A-12. Consequently, portions of Line A-8 from Murrieta to Hull Street have been deleted. Facility sizes and flow rates were revised accordingly.

#### Line A-15

This facility was revised to an underground storm drain and realigned downstream of Ethanac Road to travel north along Goetz Road to the San Jacinto River.

#### Line A-16, Line A-17, Line A-18

Lines A-16, A-17, and A-18 are new facilities that connect to the revised Line A alignment near the intersections of Sherman Road, Dawson Road and Antelope Road respectively. These lines are underground storm drains that extend south from Line A approximately 300 ft.

#### **SECTION VI – ALTERNATIVES**

Several alternatives were developed and studied during the generation of this revision to the Romoland Master Drainage Plan. These alternatives considered different alignment schemes for the major storm drains and open channels; sizing of the proposed detention basins; and various hydraulic considerations. As the study progressed, alternatives considered for the main facilities proposed in this Plan were presented to the District management and staff. General concurrence with the Plan selected was obtained based on cost differentials, accessibility to collector drains, right-of-way restrictions and ease of construction.

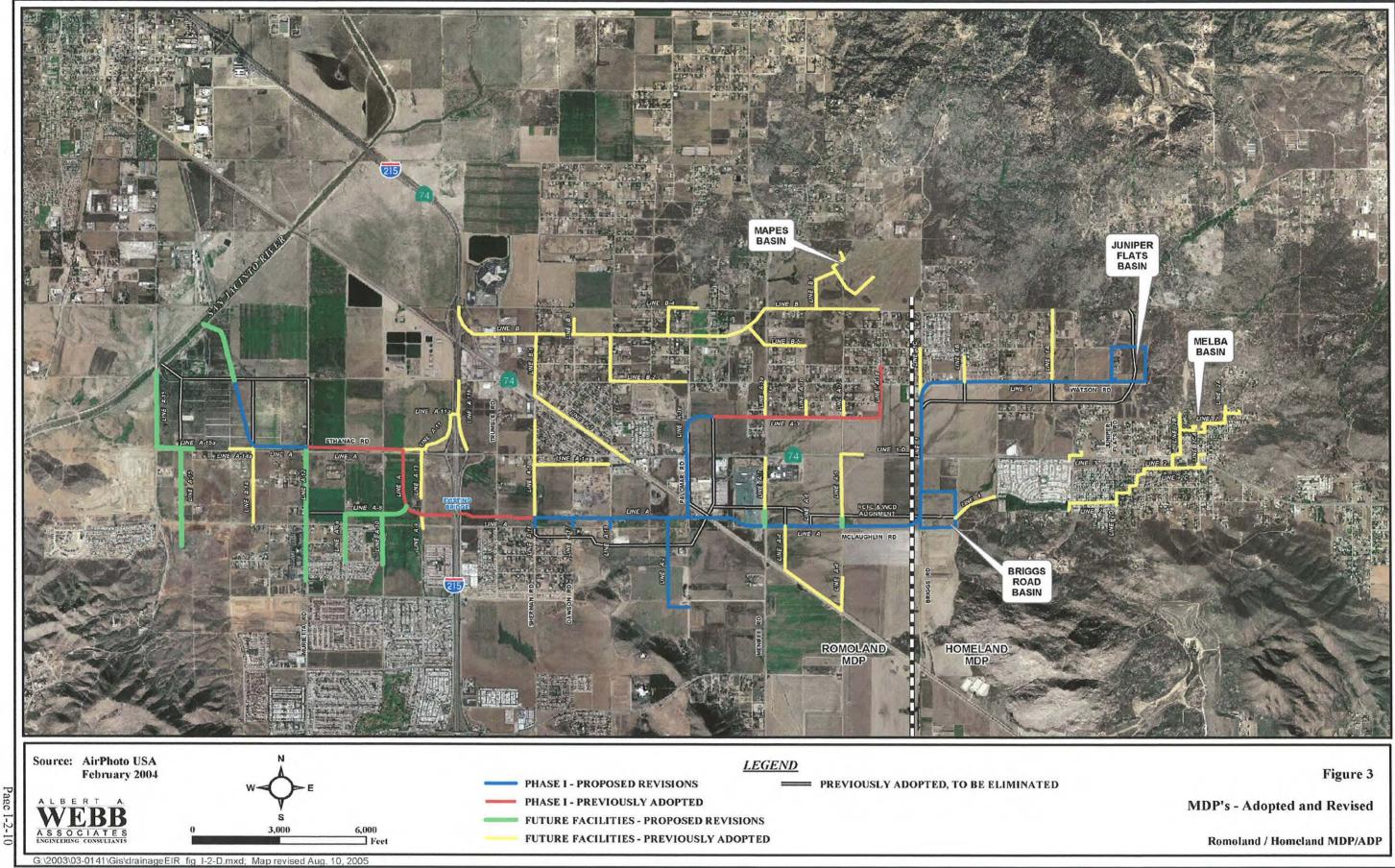
# SECTION VII – ESTIMATED COST

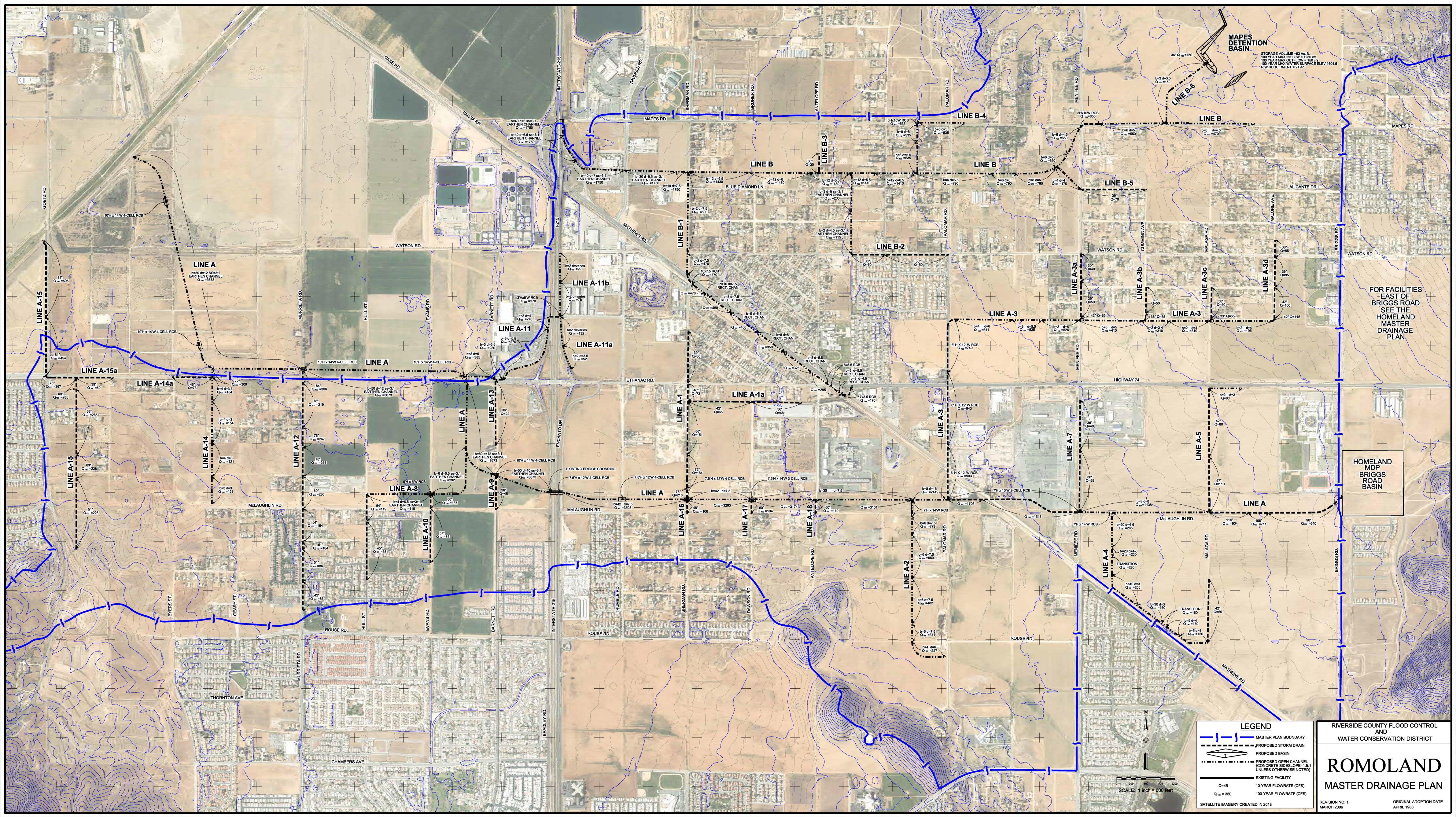
A cost summary for the MDP facilities is shown in **TABLE 1 "Cost Summary"**. Cost were based on the 2005 Planning Unit Cost sheets and include construction, right of way and 34% for engineering, environmental mitigation, administration and contingencies.

The cost of the drains shown in **TABLE 1** includes manholes and catch basins in addition to the cost of the pipe installed. Manholes are located as necessary with a maximum spacing of 500 feet. Catch basins are not specifically located but the total number of lineal feet is computed and costed.

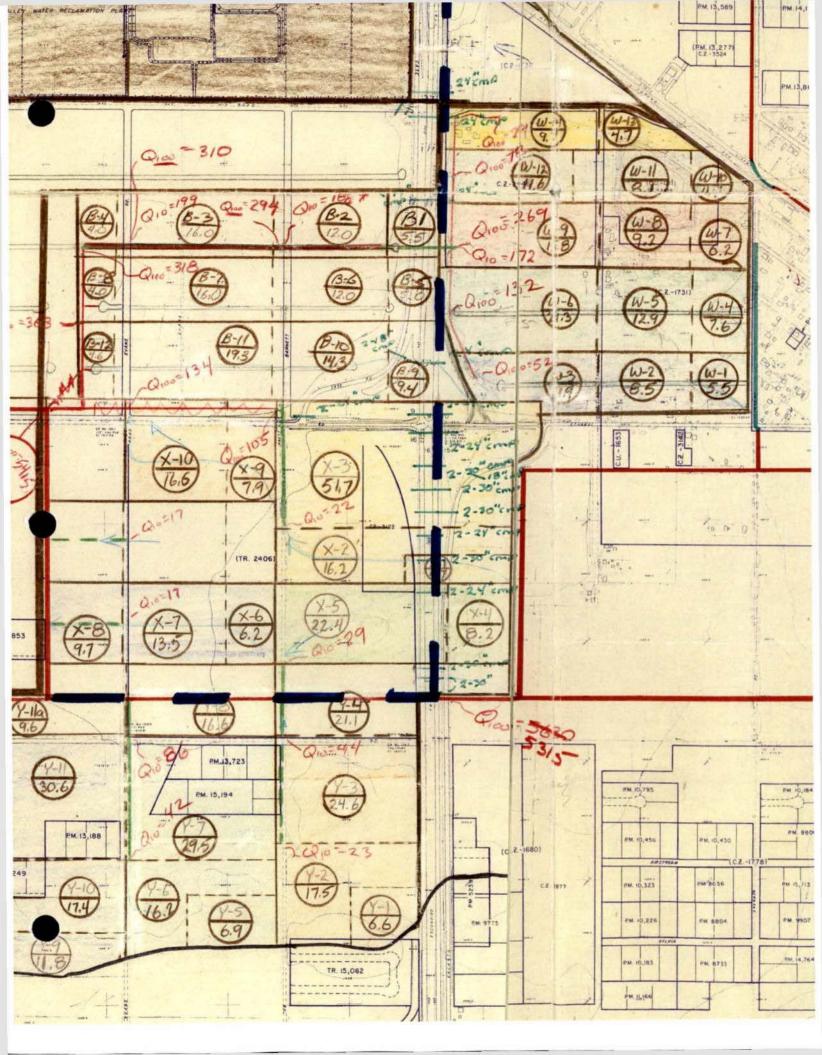
# **SECTION VIII – CONCLUSIONS**

Based on the studies and investigations made for this report it is concluded that:


- 1. The Romoland area has experienced serious flooding problems in the past. As this area continues to urbanize these damages are expected to increase. A more orderly growth pattern can safely occur with the construction of these proposed facilities.
- 2. A drainage system is required to safely convey storm runoff through the area with the least interruption to public services. The Master Drainage Plan presented in this report is such a system and is the most feasible of the alternatives studied.


- 3. The proposed Plan lends itself to stage construction as funds become available.
- 4. The total cost of the recommended improvements, including construction, rights of way, engineering, administration and contingencies, is estimated to be **\$64,221,206.00**.

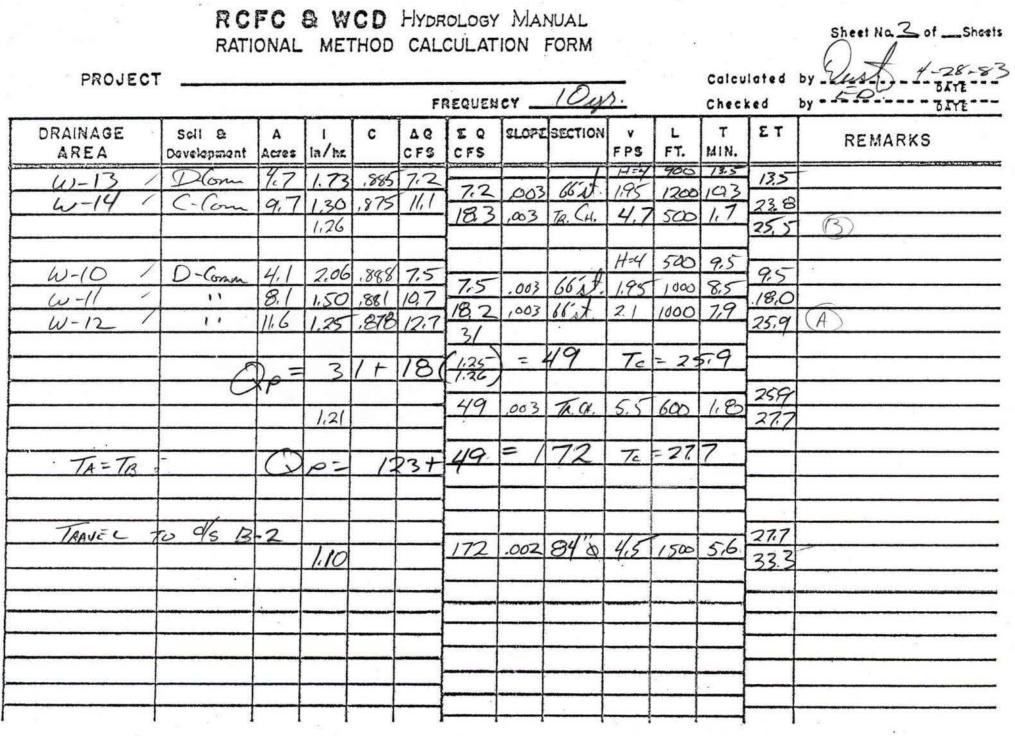
#### **SECTION IX – RECOMMENDATIONS**


It is recommended that:

- 1. The Master Drainage Plan, as set forth herein, be adopted by the Riverside County Flood Control and Water Conservation District's Board of Supervisors as part of the overall master plan for the County of Riverside.
- 2. The Master Drainage Plan, as set forth herein, be used as a guide for all future developments in the study area and that such developments be required to conform to the Plan insofar as possible.
- 3. The rights of way required for the Plan be protected from encroachment.






# Hydrology



| w.se              | •                     | жX                  |                              |                              | 4<br>x *            |                  | ( )                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           |                              |          |
|-------------------|-----------------------|---------------------|------------------------------|------------------------------|---------------------|------------------|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|------------------------------|----------|
| PROJECT           |                       | ONAL                | MET                          | HOD                          | CAL                 | CULAT            | ION                  | FORM                    | <u>M.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Calcu<br>Checi            |                              | by Listy |
| DRAINAGE<br>AREA  | Scil &<br>Davelopmant | A<br>Acres          | l<br>la/hz                   | C                            | AQ<br>CFS           | I Q<br>CFS       | SLOPE                | SECTION                 | V<br>FPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>FT.           | T<br>MIN.                 | ετ                           | REMARKS  |
| W-1<br>W-2<br>W-3 | 10-Comm<br>11         | 5.5<br>8,5<br>11,9  | 2.85<br>2.34<br>1.92<br>1.89 | 7892<br>,890<br>,888         |                     | 14.0<br>32<br>52 | .004<br>.003<br>.003 |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600<br>1250<br>350 | 12.1<br>5.8<br>8.7<br>1,0 | 12.1<br>17:9<br>26.6<br>27.6 |          |
| w-4<br>w-5<br>w-6 | D-(cam<br>11          | 7.6<br>12.9<br>21,3 |                              | ,89 <b>2</b><br>.890<br>.890 |                     | 19.3<br>47<br>85 | .004<br>.003         | 66 il.<br>66 il         | and the second s | 550<br>800<br>1250 |                           | .11.5<br>17.3<br>24.7        |          |
|                   |                       | Q                   | )=                           | 85                           | + 52                | (24.7)           | )= 1                 | 32                      | Te :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.7               |                           |                              |          |
| W-7<br>W-8<br>W-9 | D-Conva<br>           |                     | 3.00<br>2.50<br>2.02         | ,89                          | 16.6<br>20.5<br>2 B | 27               | ,005<br>,003         | 66'£<br>66'\$           | H=2<br>2,6<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500<br>750<br>1250 | 10.9<br>4.8<br>73         | 10.9<br>15.7<br>24.0         |          |
|                   | <br>                  |                     | 1.94<br>Opt                  | = 13                         |                     | 132<br>1'5-1     | .003<br>1.94<br>2.02 | <u>TR. 440</u><br>) = / | 6<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 550<br>Te =        |                           | 24.7<br>26.2                 | P<br>D   |
|                   |                       |                     |                              |                              |                     |                  |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           |                              |          |

|               |                      | •                     |                    |                      |                             |              |                    | ; <b>`</b>   |                |                 |                     |                     |                     | × *                       |
|---------------|----------------------|-----------------------|--------------------|----------------------|-----------------------------|--------------|--------------------|--------------|----------------|-----------------|---------------------|---------------------|---------------------|---------------------------|
|               | PROJECT              |                       | ONAL               | MET                  | гнор                        | CAL          | CULAT              | ION          | FORM           | 2               |                     | Calcu<br>Chec       | ilated<br>ked       | Sheet Na Dot Sheets<br>by |
|               | DRAINAGE<br>AREA     | Scil &<br>Development | A<br>Acres         | l<br>la/hr           | с                           | AQ<br>CFS    | E Q<br>CFS         | SLOPE        | SECTION        | V<br>FPS        | L<br>FT.            | T<br>MIN.           | ετ                  | REMARKS                   |
| 2             | W-13<br>W-14         | D-Comm<br>C-Comm      | 4.7<br>9.7         | 2,70<br>2.05<br>198  | ,891<br>,886                | 11.3<br>17.6 | 11.3               | ,003<br>003  |                | H=4<br>2.0<br>5 | 900<br>1200<br>500  | 13.5<br>10 0<br>1.7 | 13.5<br>235<br>25:2 | (B)                       |
|               | W-10<br>W-11<br>W-12 | D-6mm                 | 4,1<br>8,1<br>11,6 | 3.22<br>2.35<br>1.97 | , <b>891</b><br>,89<br>,888 | 16.9         | 11.8<br>29<br>49   | .003<br>.003 | 66 xt          | H=4<br>2<br>2.2 | 500<br>1000<br>1000 | 9,5<br>8,3<br>7,6   | 9.5<br>17.8<br>25.7 | Â                         |
|               |                      |                       | QP                 | = 4<br>1,89          | 7+                          | 29           | /197<br>198)<br>78 | =            | 78<br>Tr. (44) | 5               | 600                 | 2.0                 | 25.4                | (A)                       |
|               |                      |                       | C                  | 2p =                 | 194                         | +78          | (262<br>279)       | ) = ,        | 269            | Tc              | = 26.               | 2                   |                     |                           |
| ~ ~ ~ ~ ~ ~ ~ |                      | TRAUEL                | 70                 | d/<br>1.72           | 5 B-                        | Ź            | 269                | .002         | <i>84</i> &    | 7.5             | 3/00                | 6.9                 | 26.2<br>33/         | B                         |
| ł             |                      |                       |                    | .                    |                             |              |                    |              | [              |                 | [                   |                     |                     | s                         |

| 8                                     |                  |                            | 1242                |                      |                         |                     | 4                  | 2. 3                 |                               |                           |                           |                    |                              | <u> </u>                  |
|---------------------------------------|------------------|----------------------------|---------------------|----------------------|-------------------------|---------------------|--------------------|----------------------|-------------------------------|---------------------------|---------------------------|--------------------|------------------------------|---------------------------|
| PR                                    | OJECT            | PRATI                      | ONAL                | ME                   | THOD                    | CAL                 |                    | ION                  | FORM                          | <u>17.</u> «              | _                         | Calcu<br>Chec      | lated                        | Sheet Na of _Sheets<br>by |
| DRAINA                                | GE               | Scil &<br>Davelopmant      | A<br>Acres          | l<br>la/hz           | c                       | A Q<br>C F S        | E Q<br>CFS         | Y                    | SECTION                       | 1                         | L<br>FT.                  | T<br>MIN.          | εT                           | REMARKS                   |
| - W-1<br>- W-2<br>- W-2               |                  | D-Comm<br>D-Comm<br>D-Comm | 5.5<br>8.5<br>11.9  | 1.83<br>1.50<br>1.21 | _885<br>,88<br>,878     | 8.9<br>11.2<br>12.6 | 8,9<br>20<br>33    | .004<br>.003<br>.003 | 665 st.<br>665 st.<br>TR. GAN | 71-2<br>2.3<br>7.1<br>513 | 600<br>800<br>1250<br>350 |                    | 12.1<br>17.9<br>27.8<br>28.9 |                           |
|                                       | - /<br>- /       | D-Comm<br>1 1              | 7.6<br>12.9<br>21.3 | 1,87<br>1,53<br>1,24 | .887<br>.881<br>.877    | 12,6<br>17,4<br>23  | 12.6               | 203                  | 66 D .<br>86 D .              | 17=2<br>2.3<br>2.3        | 550<br>800<br>1250        | 5.8                | .11.5<br>17.3<br>24.4        | ,<br>B)                   |
|                                       |                  |                            | Qr                  | >= 5                 | 3+                      | 33                  | 28.9               | ) =                  | <del>8</del> 3                | 7                         | c= 2                      | 6.4                |                              |                           |
| · · · · · · · · · · · · · · · · · · · | •                |                            |                     | 1.21                 |                         |                     | 83                 | .003                 | TR. CHAN                      | 6.8                       | 550                       | 13                 | 26.4                         | A                         |
| 4-7<br>4-8<br>4-9                     | -<br>-<br>-<br>- | D. Comm<br>1'              | 6.2<br>9.2<br>15:8  | 1,59                 | , 883<br>, 883<br>, 878 | 12.9                | 10,6<br>235<br>41: | .005                 | 66 st.                        | 1+=2<br>2.5<br>2,1        |                           | 10,9<br>5,0<br>9,9 | 10.9<br>15.9<br>258          |                           |
|                                       |                  | Qp=                        | 8                   | 3+                   | 4                       | 7                   | 1,21<br>1,25       | = /                  | 23                            | Te                        | = 27                      | 2,7                |                              |                           |
|                                       |                  |                            |                     |                      | 34                      | 2.97                | 8                  | 510<br>9             |                               |                           | 542                       |                    |                              |                           |

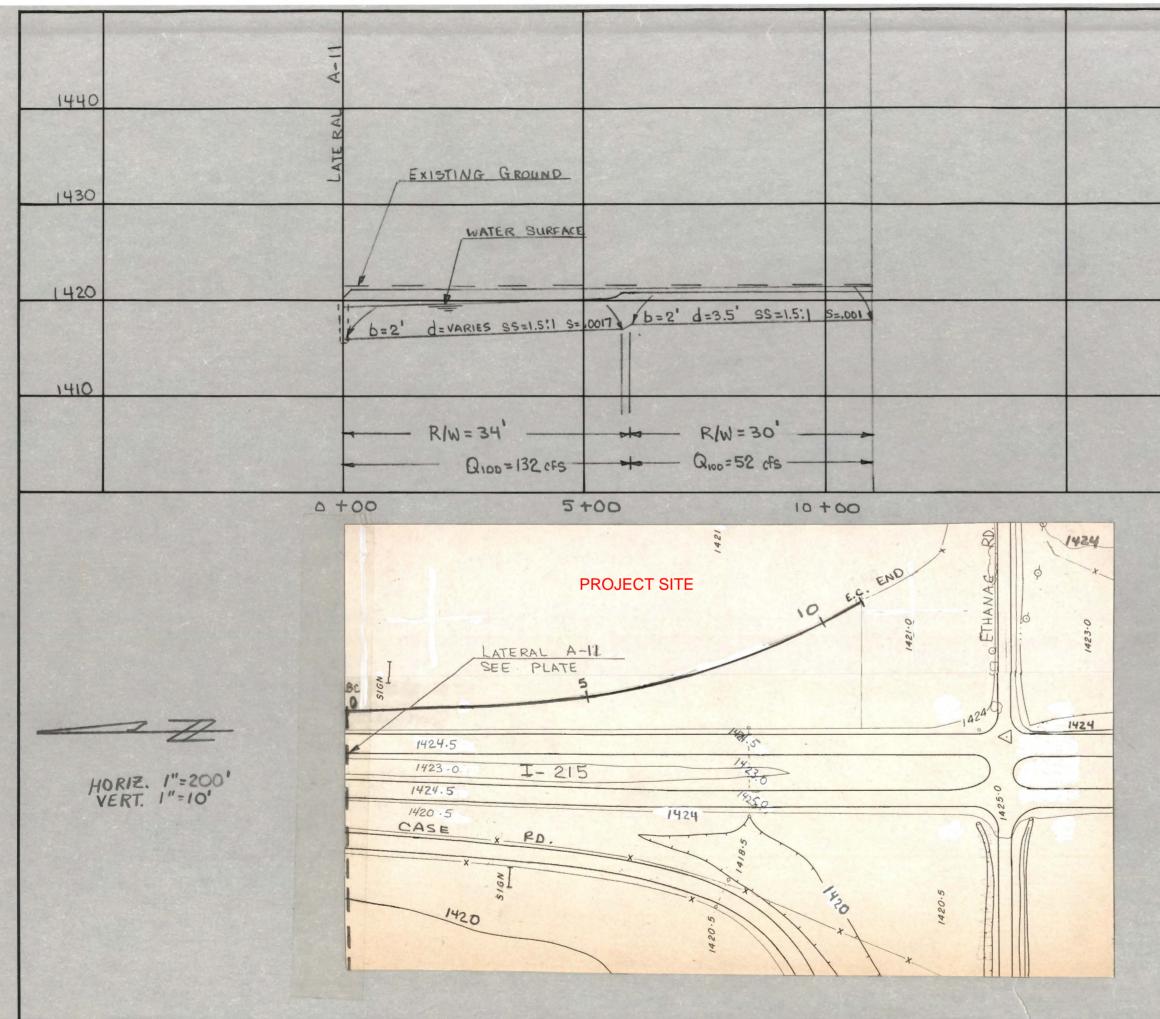


1 1

DA ATE D

1

## Hydraulics

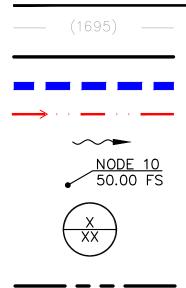

| DUSTY .PEN.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OMOLAND                                                                                                | FC1                       | 02-PGMF                                         | T                               | WED .                                                     | N 1. 1                                       | 983. 2.1                                                     | 7 PM PAGE                            | F 1               |                                          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------|-------------------|------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 | a.S.                                                      | <u>N 14 1</u>                                | 7039 2.1                                                     | T PH PAG                             |                   |                                          | 1        |
| RUJELI 4-6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -954-00 000-0                                                                                          | RUN:                      | LINE                                            | A                               | - 12a                                                     |                                              |                                                              | room oken my                         | A Real Providence | A CONTRACTOR                             | -        |
| ATER SURFAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CE PROFILE INPL                                                                                        | JT DIR                    | ECTION                                          | = UP                            | (SUBCR                                                    | ITICAL)                                      | STARTIN                                                      | G DEPTH =                            | 3.39              |                                          |          |
| STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INVERT                                                                                                 | Q                         | N DI                                            | IST                             | BOTTOM                                                    | SIDE                                         | RADIUS                                                       |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEV                                                                                                   |                           | a bla with his loss and have been been been and | INC                             | if per told said data and have per and they find, that is | SLOPE                                        | high day and one, but been only that the past and one one of | The second                           | Sel-              |                                          | 1997     |
| 0+00.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                        | 132 .                     |                                                 | 100                             | 2.00                                                      |                                              | -1                                                           | a sala n Mars                        |                   |                                          | Sarsa    |
| 5+80.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                        |                           |                                                 | 100                             |                                                           | 1.500                                        | -1                                                           |                                      |                   |                                          |          |
| 6+00.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a ding pant soon ding tapa mag- task-store and star and and some ding task task task and take task and | 52                        | to the set out the the last the set of the set  | 100                             | 2.00                                                      | and the part and the lost out on the last to | -1                                                           |                                      |                   |                                          |          |
| 11+00.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .410.00                                                                                                | 52 .                      | •015 1                                          | 100                             | 2.00                                                      | 1.500                                        | -1                                                           |                                      |                   |                                          |          |
| 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                           |                                                 | the part was well field that of |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contraction of the second                                                                              | 26,22, 253                | A day                                           | 2.5%                            | - The Day                                                 | Constant and                                 | -                                                            |                                      | 1.1.1.1.1.1.1     | AND STON                                 | 10-1-1-  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 | A. C. S.S.                                                |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| 19. A. A. A. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 | and the second                                            |                                              |                                                              |                                      |                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1.0      |
| A States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | and study                 |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   | 64. C. A. B.                             | and go   |
| A REAL PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACT PROVIDENT                                                                                   |                           | and the second second                           | and the second                  | Left (Astron                                              | 19. S. S. A.                                 | 20.000                                                       | And the second second                | Strate I          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1.1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 | 10-0-7                          |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| No. No. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                        |                           |                                                 |                                 | 7                                                         |                                              |                                                              |                                      |                   |                                          |          |
| 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The second second                                                                                      | 31 6 M                    | and show                                        | Gellen N                        |                                                           | 211-12-12                                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                     | A States                             | 2013431           | Chan St.                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           | 1.1.1                                        |                                                              | Sale Andreas                         |                   | MAN POWER                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATL & LOUNDARY ALL                                                                                     | Day Street and            | Strange -                                       | The Street                      | 1. S. C. M. S.                                            | K TRUK P                                     |                                                              | 1223499                              | 5. 18 S. 2        | 1 millister                              | 1.1.1.1. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          | - Nine   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           | *****                                           |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| A state and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N. TE SALLER                                                                                           |                           | en and and                                      | 100 40                          | Sand Lands                                                |                                              |                                                              |                                      |                   | Al-Seattle Sale                          | St m.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           | and an an and                                   |                                 |                                                           | al and a                                     |                                                              |                                      | State State       | Lange and the                            | 10-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                           |                                                 |                                 |                                                           |                                              |                                                              |                                      |                   |                                          |          |
| And the second s |                                                                                                        | Contraction - Second - BY | APPENDING COM                                   |                                 |                                                           | a to be an in the set of the set             |                                                              | CONTRACTOR OF CONTRACTOR OF CONTRACT | SU STREET STORES  | CHARLES CONTRACTOR                       |          |

-----

14 " S. P. G.

| WA                                     | TER SURFI    | ACE PROF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FILE FOR S                                                                       | SUBCRIT                                   | ICAL F       | LOW          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
|----------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------------|---------------------------|-------------------------|--------|
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
| STATION                                | WATER        | DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INVERT<br>ELEV                                                                   | VELO                                      | VH           | CD           | SUPER<br>M+P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q              | N        | BOTTOM            | SIDE                      |                         |        |
| 1 . W "Sane"                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | ANT ALL                                   | 1.5          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          | WIGHT             | SLOTE                     |                         |        |
| 0+00.00                                | 1419.39      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           | •47          | 2.8          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132            | .015     | 2.00              | 1.500                     | in the set              |        |
| 1+00.00                                | 1419.53      | of Ann and the and have not been been the star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1416.17                                                                          | 5.6                                       | .48          | 2.8          | the owner way, only sha have been used that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a start        |          |                   |                           |                         |        |
| 2+00.00                                | 1419.68      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1416.34                                                                          |                                           | .49          | 2.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           | - 14                    |        |
| 3+00.00                                | 1419.84      | and there is an inter the other than the local line into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I need total cash tank have been been find often over \$100. Here have \$100. He | 5.7                                       | .50          | 2.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second | A ANTINA | A CONTRACT        |                           | 6 12 U.S.               | 1.23   |
| 4+00.00                                | 1420.00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1416.69                                                                          |                                           | •51          | 2.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALL ST         |          | 4.00              |                           |                         |        |
| 5+00.00                                | 1420.17      | and the second se | 1416.86                                                                          | 5.7                                       | .51          | 2.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A STREET       | A. Maria | 2.2.2.2.2.2.2.2.2 | Contraction of the second | 25 HE                   | 174    |
| 5+80.00                                | 1420.75      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1417.00                                                                          |                                           | .05          | 1.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52             |          |                   | 1.500                     | 2                       |        |
| 6+00.00                                | 1420.73      | as not one and lost the lost the set and that as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1417.50                                                                          | 2.4                                       | .09          | 1.8          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52             | .015     | 2.00              | 1.500                     |                         |        |
| 7+00.00                                | 1420.75      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1417.60                                                                          | 2.5                                       | .09          | 1.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
| 8+00.00                                | 1420.78      | and have been more have been anal have must have been have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1417.70                                                                          | 2.6                                       | .10          | 1.8          | and the second sec |                |          | and the second    | 1                         | - and in the            | 7 5    |
| 9+00.00                                | 1420.81      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1417.80                                                                          |                                           | •11          | 1.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         | 1      |
| 10+00.00                               |              | and the second se | 1417.90                                                                          |                                           | .12          | 1.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND NO         | Sec. Co  | And I have        | COLOR STATISTICS          | and the second          | 1. 8   |
| 11+00.00                               | 1420.88      | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1418.00                                                                          | 2.9                                       | .13          | 1.8          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52             | .015     | 2.00              | 1.500                     | and they are            | -      |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           | and an and a |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           | - And the second second |        |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
| 6 411 1.2 1                            | S PERCENT    | SR.S.MAR'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.55 31-55.5                                                                     |                                           |              |              | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and war        | 12727    | 531 D D           | C R C                     |                         |        |
|                                        | A Participa  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | A. B. |              | 64.19        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          | Section Section   |                           |                         | -      |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           | 1.53.6                  |        |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         | -      |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
| 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | COLORADO AND | - 20. 755 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1813 1916 -                                                                      | TITLE I                                   | CHUR ST      | 120          | 10 10 Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the second     |          | -                 | and the second second     | CTRITY                  | 1      |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SHARE A                                                                          |                                           |              | Sector Stand |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A THE REAL PROPERTY                                                              |                                           | 1.1.191      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         | 112312 |
|                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                   |                           |                         |        |

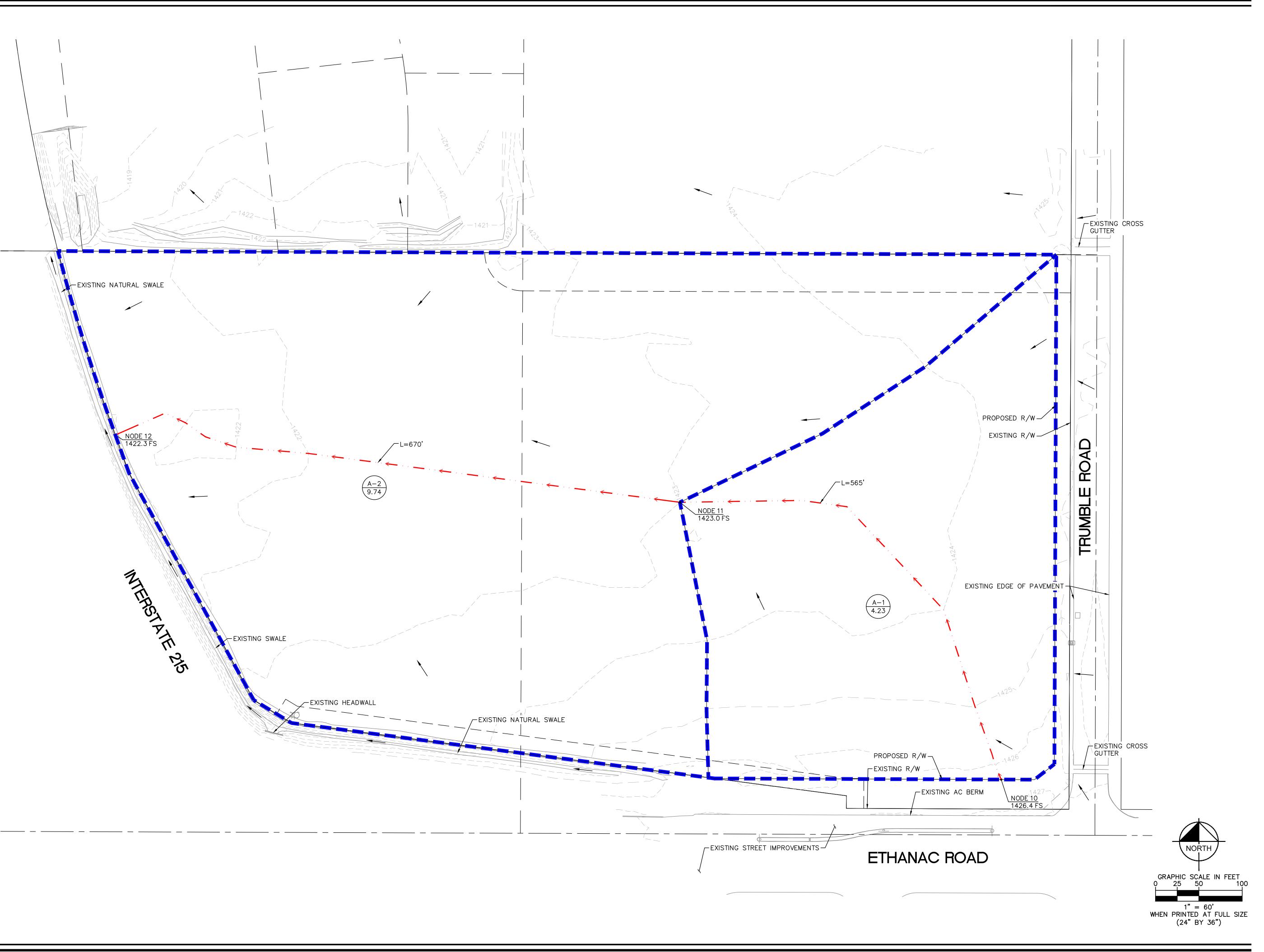
-




|                                                                                                                                                              |                                                            | 1440    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|--|--|--|--|--|--|
|                                                                                                                                                              |                                                            | 1430    |  |  |  |  |  |  |
|                                                                                                                                                              |                                                            | 1420    |  |  |  |  |  |  |
|                                                                                                                                                              |                                                            | 1410    |  |  |  |  |  |  |
|                                                                                                                                                              |                                                            |         |  |  |  |  |  |  |
|                                                                                                                                                              |                                                            |         |  |  |  |  |  |  |
| NOTE: Ground line in profile was taken<br>from orthophoto map dated <u>Aug. 8,1917</u> .<br>Plan view is from topographic<br>map dated <u>FeB. 25,1959</u> . |                                                            |         |  |  |  |  |  |  |
| Г                                                                                                                                                            | RIVERSIDE COUNTY FLOOD                                     | CONTROL |  |  |  |  |  |  |
|                                                                                                                                                              | MATER CONSERVATION DE<br>M. D. P ROMOLANE<br>LATERAL A-H.A | STRICT  |  |  |  |  |  |  |
|                                                                                                                                                              | APPROVED                                                   | 42      |  |  |  |  |  |  |

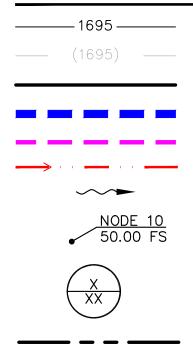
### Appendix H

Drainage Maps


## LEGEND

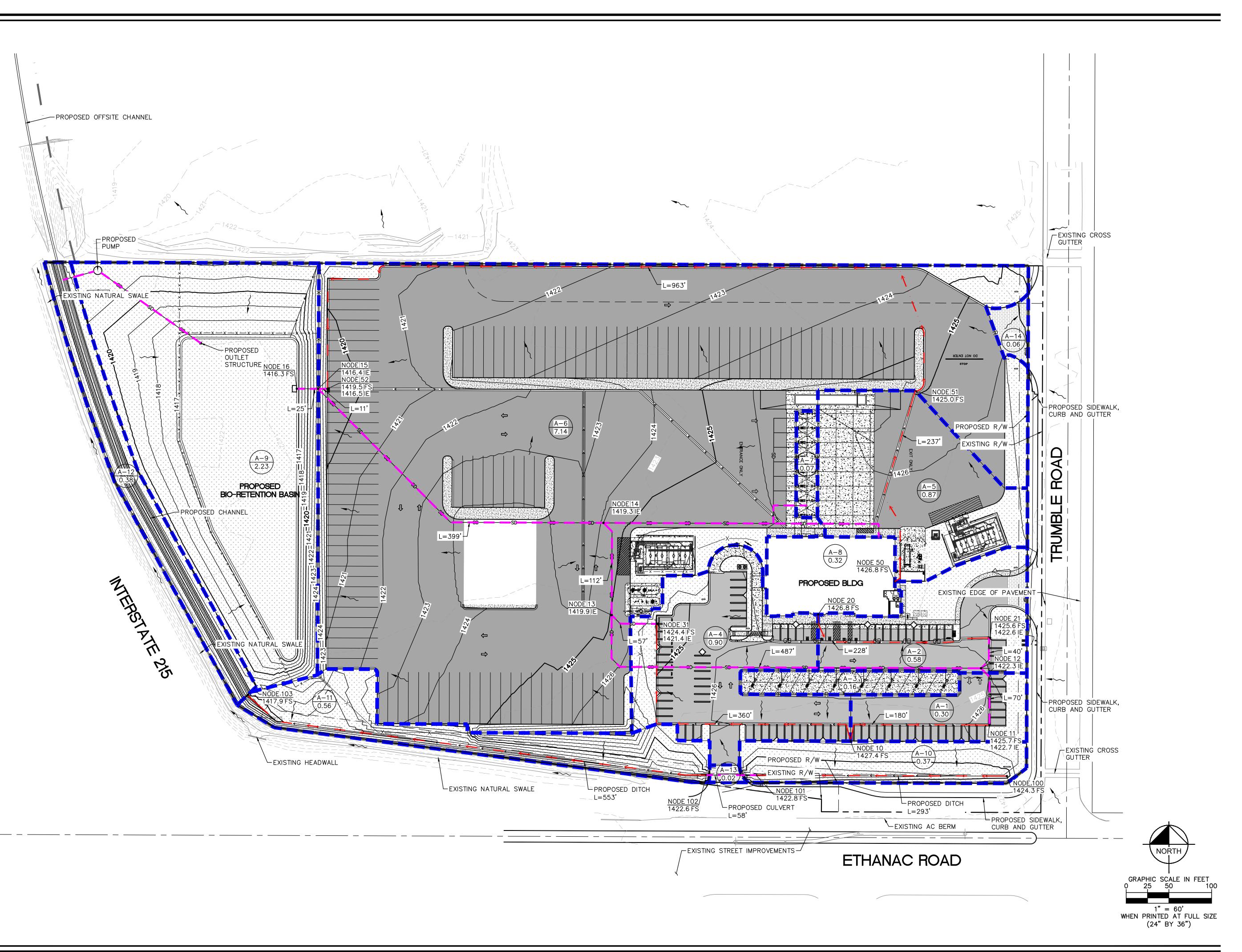


EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY FLOW PATH FLOW ARROW NODE ID AND ELEVATION


DA NAME DA AREA (IN ACRES)

RIGHT OF WAY




# **Kimley Horn**

## LEGEND



PROPOSED CONTOUR EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY PROPOSED STORM DRAIN FLOW PATH FLOW ARROW NODE ID AND ELEVATION DA NAME

DA AREA (IN ACRES) RIGHT OF WAY



# **Kimley**»Horn



### Appendix I

### **Rational Method Analysis**

Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 12/07/21 File:PP10E.out -----..... PILOT PERRIS EXIST 10-YR XO 12/7/21 -----\*\*\*\*\*\*\*\* Hydrology Study Control Information \*\*\*\*\*\*\*\*\* English (in-lb) Units used in input data file \_\_\_\_\_ Program License Serial Number 6443 \_\_\_\_\_ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Perris Valley ] area used. 10 year storm 10 minute intensity = 1.880(In/Hr) 10 year storm 60 minute intensity = 0.780(In/Hr) 100 year storm 10 minute intensity = 2.690(In/Hr) 100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.780(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 10.000 to Point/Station 11.000 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 565.000(Ft.) Top (of initial area) elevation = 26.400(Ft.) Bottom (of initial area) elevation = 23.000(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.00602 s(percent)= 0.60 TC =  $k(0.530)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 18.587 min. Rainfall intensity = 1.385(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.804 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000RI index for soil(AMC 2) = 89.00Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 4.712(CFS) Total initial stream area = 4.230(Ac.) Pervious area fraction = 1.000

```
Process from Point/Station 11.000 to Point/Station 12.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation =
                                    23.000(Ft.)
                                    22.300(Ft.)
End of natural channel elevation =
Length of natural channel = 670.000(Ft.)
Estimated mean flow rate at midpoint of channel =
                                                  10.138(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) = (7 + 8(q(English Units)^.352)(slope^0.5)
Velocity using mean channel flow = 0.81(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
       Normal channel slope = 0.0010
Corrected/adjusted channel slope = 0.0010
Travel time = 13.78 min.
                           TC = 32.36 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.778
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 89.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.056(In/Hr) for a 10.0 year storm
Subarea runoff = 8.003(CFS) for 9.740(
Total runoff = 12.716(CFS) Total area =
                  8.003(CFS) for 9.740(Ac.)
                                              13.970(Ac.)
```

End of computations, total study area = 13.97 (Ac.) The following figures may

be used for a unit hydrograph study of the same area.

```
Area averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 89.0
```

#### Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 03/15/22 File:PP10P.out

```
PILOT PERRIS
     PROP 10-YR
     XO 3/15/22
_____
      ******** Hydrology Study Control Information *********
      English (in-lb) Units used in input data file
Program License Serial Number 6523
       _____
_ _ _ _ _ _ _ _ _ _
     Rational Method Hydrology Program based on
     Riverside County Flood Control & Water Conservation District
     1978 hydrology manual
     Storm event (year) = 10.00 Antecedent Moisture Condition = 2
     Standard intensity-duration curves data (Plate D-4.1)
     For the [ Perris Valley ] area used.
     10 year storm 10 minute intensity = 1.880(In/Hr)
     10 year storm 60 minute intensity = 0.780(In/Hr)
     100 year storm 10 minute intensity = 2.690(In/Hr)
     100 year storm 60 minute intensity = 1.120(In/Hr)
     Storm event year = 10.0
     Calculated rainfall intensity data:
     1 hour intensity = 0.780(In/Hr)
     Slope of intensity duration curve = 0.4900
     Process from Point/Station 10.000 to Point/Station 11.000
     **** INITIAL AREA EVALUATION ****
```

Initial area flow distance = 180.000(Ft.) Top (of initial area) elevation = 27.400(Ft.) Bottom (of initial area) elevation = 25.700(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.00944 s(percent)= 0.94 TC =  $k(0.323)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.551 min. Rainfall intensity = 2.309(In/Hr) for a 10.0 year storm APARTMENT subarea type Runoff Coefficient = 0.871 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.603(CFS) Total initial stream area = 0.300(Ac.) Pervious area fraction = 0.200 Process from Point/Station 11.000 to Point/Station 12.000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 22.700(Ft.) Downstream point/station elevation = 22.300(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 0.603(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 0.603(CFS) 4.21(In.) Normal flow depth in pipe = Flow top width inside pipe = 8.98(In.) Critical Depth = 4.23(In.) Pipe flow velocity = 2.98(Ft/s)Travel time through pipe = 0.39 min. Time of concentration (TC) = 6.94 min. Process from Point/Station 12.000 to Point/Station 12.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.300(Ac.) Runoff from this stream = 0.603(CFS) Time of concentration = 6.94 min. Rainfall intensity = 2.244(In/Hr)

Τ

```
Initial area flow distance = 228.000(Ft.)
Top (of initial area) elevation =
                                    26.800(Ft.)
Bottom (of initial area) elevation =
                                       25.600(Ft.)
Difference in elevation =
                             1.200(Ft.)
Slope =
          0.00526 s(percent)=
                                     0.53
TC = k(0.336)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 8.419 min.
Rainfall intensity =
                         2.042(In/Hr) for a
                                               10.0 year storm
MOBILE HOME PARK subarea type
Runoff Coefficient = 0.860
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.250; Impervious fraction = 0.750
                             1.018(CFS)
Initial subarea runoff =
Total initial stream area =
                                  0.580(Ac.)
Pervious area fraction = 0.250
```

```
♠
```

```
Upstream point/station elevation = 22.600(Ft.)
Downstream point/station elevation =
                                    22.300(Ft.)
Pipe length = 40.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                        1.018(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow =
                                    1.018(CFS)
Normal flow depth in pipe =
                            5.32(In.)
Flow top width inside pipe =
                            8.85(In.)
Critical Depth =
                  5.56(In.)
Pipe flow velocity =
                        3.75(Ft/s)
Travel time through pipe = 0.18 min.
Time of concentration (TC) = 8.60 min.
```

```
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.580(Ac.)
Runoff from this stream = 1.018(CFS)
Time of concentration = 8.60 min.
```

Rainfall intensity = 2.021(In/Hr) Summary of stream data: тс Stream Flow rate Rainfall Intensity No. (CFS) (min) (In/Hr) 6.94 1 0.603 2.244 2 1.018 8.60 2.021 Largest stream flow has longer time of concentration 1.018 + sum of 0p = 0b Ia/Ib 0.603 \* 0.901 = 0.543 Qp = 1.561 Total of 2 streams to confluence: Flow rates before confluence point: 0.603 1.018 Area of streams before confluence: 0.300 0.580 Results of confluence: Total flow rate = 1.561(CFS) Time of concentration = 8.597 min. Effective stream area after confluence = 0.880(Ac.) Process from Point/Station 12.000 to Point/Station 13,000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 22.300(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 487.00(Ft.) Manning's N = 0.012No. of pipes = 1 Required pipe flow = 1.561(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 1.561(CFS) Normal flow depth in pipe = 6.53(In.) Flow top width inside pipe = 11.95(In.) Critical Depth = 6.37(In.) Pipe flow velocity = 3.57(Ft/s)Travel time through pipe = 2.27 min. Time of concentration (TC) = 10.87 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* SUBAREA FLOW ADDITION \*\*\*\* COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000

♠

```
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 10.87 min.
Rainfall intensity = 1.802(In/Hr) for a 10.0 year storm
Subarea runoff =0.254(CFS) for0.160(Ac.)Total runoff =1.816(CFS) Total area =1.
                 1.816(CFS) Total area = 1.040(Ac.)
Process from Point/Station
                             13.000 to Point/Station
                                                        13.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.040(Ac.)
Runoff from this stream =
                           1.816(CFS)
Time of concentration = 10.87 min.
Rainfall intensity = 1.802(In/Hr)
Process from Point/Station
                             10.000 to Point/Station
                                                       31.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 360.000(Ft.)
Top (of initial area) elevation = 27.400(Ft.)
Bottom (of initial area) elevation = 24.400(Ft.)
Difference in elevation =
                          3.000(Ft.)
         0.00833 s(percent)=
Slope =
                                  0.83
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.863 min.
Rainfall intensity =
                     1.991(In/Hr) for a 10.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.867
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 1.554(CFS)
Total initial stream area =
                               0.900(Ac.)
Pervious area fraction = 0.200
```

Upstream point/station elevation = 21.400(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 57.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 1.554(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.554(CFS) Normal flow depth in pipe = 4.68(In.) Flow top width inside pipe = 8.99(In.) Critical Depth = 6.88(In.) Pipe flow velocity = 6.69(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 9.00 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream = 1.554(CFS) Time of concentration = 9.00 min. Rainfall intensity = 1.976(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.816 10.87 1.802 2 1.554 9.00 1.976 Largest stream flow has longer time of concentration 1.816 + sum of 0p = Ob Ia/Ib 1.554 \* 0.912 = 1.4170p = 3.233 Total of 2 streams to confluence: Flow rates before confluence point: 1.816 1.554 Area of streams before confluence: 1.040 0.900 Results of confluence: Total flow rate = 3.233(CFS) Time of concentration = 10.870 min. Effective stream area after confluence = 1.940(Ac.) Process from Point/Station 13.000 to Point/Station 14.000

\*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\*

```
Upstream point/station elevation =
                                 19.900(Ft.)
Downstream point/station elevation = 19.300(Ft.)
Pipe length = 112.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 3.233(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow =
                                 3.233(CFS)
Normal flow depth in pipe =
                        8.65(In.)
Flow top width inside pipe =
                           14.82(In.)
Critical Depth =
                 8.68(In.)
                      4.41(Ft/s)
Pipe flow velocity =
Travel time through pipe = 0.42 min.
Time of concentration (TC) = 11.29 min.
Process from Point/Station
                            14.000 to Point/Station
                                                      14.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
                      11.29 min.
Time of concentration =
Rainfall intensity = 1.768(In/Hr) for a
                                         10.0 year storm
Subarea runoff = 0.109(CFS) for
                                    0.070(Ac.)
Total runoff =
                3.342(CFS) Total area = 2.010(Ac.)
Process from Point/Station 14.000 to Point/Station
                                                      14.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration =
                      11.29 min.
Rainfall intensity = 1.768(In/Hr) for a 10.0 year storm
Subarea runoff =
                   0.499(CFS) for 0.320(Ac.)
Total runoff = 3.841(CFS) Total area =
                                           2.330(Ac.)
```

```
Process from Point/Station
                            14.000 to Point/Station
                                                      15.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                19.300(Ft.)
Downstream point/station elevation =
                                  16.400(Ft.)
Pipe length = 399.00(Ft.)
                          Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                     3.841(CFS)
Nearest computed pipe diameter =
                               15.00(In.)
Calculated individual pipe flow =
                                 3.841(CFS)
Normal flow depth in pipe = 8.75(In.)
Flow top width inside pipe =
                          14.79(In.)
Critical Depth =
               9.50(In.)
Pipe flow velocity =
                      5.16(Ft/s)
Travel time through pipe = 1.29 min.
Time of concentration (TC) = 12.58 min.
Process from Point/Station
                            15.000 to Point/Station
                                                      15.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area =
                    2.330(Ac.)
Runoff from this stream =
                          3.841(CFS)
Time of concentration = 12.58 min.
Rainfall intensity = 1.677(In/Hr)
Process from Point/Station
                           50.000 to Point/Station
                                                      51.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 237.000(Ft.)
Top (of initial area) elevation =
                               26.800(Ft.)
Bottom (of initial area) elevation =
                                  25.000(Ft.)
Difference in elevation =
                         1.800(Ft.)
Slope =
        0.00759 s(percent)=
                                0.76
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.094 min.
Rainfall intensity =
                      2.220(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.885
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
```

```
Initial subarea runoff = 1.710(CFS)
Total initial stream area =
                          0.870(Ac.)
Pervious area fraction = 0.100
Process from Point/Station 51.000 to Point/Station
                                                        52,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 25.000(Ft.)
Downstream point elevation = 19.500(Ft.)
Channel length thru subarea = 963.000(Ft.)
Channel base width =
                         0.000(Ft.)
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 6.284(CFS)
Manning's 'N' = 0.015
Maximum depth of channel =
                           0.500(Ft.)
Flow(q) thru subarea = 6.284(CFS)
Depth of flow = 0.198(Ft.), Average velocity = 1.602(Ft/s)
Channel flow top width = 39.608(Ft.)
Flow Velocity = 1.60(Ft/s)
Travel time = 10.02 min.
Time of concentration = 17.11 min.
Sub-Channel No. 1 Critical depth = 0.189(Ft.)
 ' ' Critical flow top width =
                                              37.891(Ft.)
      .
              .
                 Critical flow velocity= 1.751(Ft/s)
                  Critical flow area = 3.589(Sq.Ft)
             .
Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.879
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 1.442(In/Hr) for a 10.0 year storm
Subarea runoff = 9.051(CFS) for
                                     7.140(Ac.)
Total runoff =
               10.760(CFS) Total area = 8.010(Ac.)
Depth of flow = 0.242(Ft.), Average velocity = 1.833(Ft/s)
Sub-Channel No. 1 Critical depth =
                               0.234(Ft.)
    ' Critical flow top width = 46.875(Ft.)
 .
      .
          ' Critical flow velocity= 1.959(Ft/s)
' Critical flow area = 5.493(Sq.Ft)
             .
  .
     .
```

```
Upstream point/station elevation =
                                   16.500(Ft.)
Downstream point/station elevation = 16.400(Ft.)
                11.00(Ft.) Manning's N = 0.012
Pipe length =
No. of pipes = 1 Required pipe flow =
                                       10.760(CFS)
Nearest computed pipe diameter =
                                   18.00(In.)
Calculated individual pipe flow =
                                 10.760(CFS)
Normal flow depth in pipe = 14.63(In.)
Flow top width inside pipe = 14.05(In.)
Critical Depth =
                 15.10(In.)
Pipe flow velocity =
                        7.00(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 17.14 min.
Process from Point/Station
                              15.000 to Point/Station
                                                          15.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area =
                     8.010(Ac.)
Runoff from this stream =
                           10.760(CFS)
Time of concentration = 17.14 min.
Rainfall intensity =
                       1.441(In/Hr)
Summary of stream data:
Stream
        Flow rate
                     TC
                                   Rainfall Intensity
          (CFS)
No.
                     (min)
                                         (In/Hr)
       3.841
                 12.58
1
                                     1.677
2
       10.760
                 17.14
                                      1.441
Largest stream flow has longer time of concentration
0p =
       10.760 + sum of
         0b
                   Ia/Ib
                    0.859 =
          3.841 *
                                3.301
Qp =
        14.061
Total of 2 streams to confluence:
Flow rates before confluence point:
      3.841
                10.760
Area of streams before confluence:
       2.330
                   8.010
Results of confluence:
Total flow rate =
                    14.061(CFS)
Time of concentration =
                        17.137 min.
Effective stream area after confluence =
                                         10.340(Ac.)
```

♠

```
Upstream point/station elevation = 16.400(Ft.)

Downstream point/station elevation = 16.300(Ft.)

Pipe length = 25.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 14.061(CFS)

Nearest computed pipe diameter = 24.00(In.)

Calculated individual pipe flow = 14.061(CFS)

Normal flow depth in pipe = 17.91(In.)

Flow top width inside pipe = 20.89(In.)

Critical Depth = 16.22(In.)

Pipe flow velocity = 5.59(Ft/s)

Travel time through pipe = 0.07 min.

Time of concentration (TC) = 17.21 min.
```

```
UNDEVELOPED (good cover) subarea

Runoff Coefficient = 0.731

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group D = 1.000

RI index for soil(AMC 2) = 80.00

Pervious area fraction = 1.000; Impervious fraction = 0.000

Time of concentration = 17.21 min.

Rainfall intensity = 1.438(In/Hr) for a 10.0 year storm

Subarea runoff = 2.343(CFS) for 2.230(Ac.)

Total runoff = 16.405(CFS) Total area = 12.570(Ac.)
```

```
Along Main Stream number: 1 in normal stream number 1

Stream flow area = 12.570(Ac.)

Runoff from this stream = 16.405(CFS)

Time of concentration = 17.21 min.

Rainfall intensity = 1.438(In/Hr)
```

```
♠
```

\*\*\*\* INITIAL AREA EVALUATION \*\*\*\*

```
Initial area flow distance = 293.000(Ft.)
Top (of initial area) elevation =
                                 24.300(Ft.)
Bottom (of initial area) elevation =
                                   22.800(Ft.)
Difference in elevation =
                          1.500(Ft.)
Slope =
       0.00512 s(percent)=
                                 0.51
TC = k(0.530)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 14.763 min.
Rainfall intensity =
                    1.551(In/Hr) for a
                                          10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.814
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 89.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff =
                          0.467(CFS)
Total initial stream area =
                              0.370(Ac.)
Pervious area fraction = 1.000
Process from Point/Station
                            101.000 to Point/Station
                                                       102.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                 22.800(Ft.)
                                   22.600(Ft.)
Downstream point/station elevation =
Pipe length = 58.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       0.467(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow =
                                  0.467(CFS)
Normal flow depth in pipe = 4.20(In.)
Flow top width inside pipe =
                            8.98(In.)
Critical Depth =
                 3.69(In.)
Pipe flow velocity =
                     2.31(Ft/s)
Travel time through pipe = 0.42 min.
Time of concentration (TC) = 15.18 min.
Process from Point/Station
                            102.000 to Point/Station
                                                       103.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation =
                          22.600(Ft.)
Downstream point elevation = 17.900(Ft.)
```

```
Channel length thru subarea = 553.000(Ft.)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'Z' of right channel bank = 2.000
```

```
Estimated mean flow rate at midpoint of channel = 0.783(CFS)
Manning's 'N' = 0.045
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.783(CFS)
Depth of flow = 0.567(Ft.), Average velocity = 1.219(Ft/s)
Channel flow top width = 2.267(Ft.)
Flow Velocity = 1.22(Ft/s)
Travel time = 7.56 min.
Time of concentration = 22.74 min.
Sub-Channel No. 1 Critical depth = 0.395(Ft.)
 ' ' Critical flow top width = 1.578(Ft.)
             .
 .
      .
          ' Critical flow velocity= 2.516(Ft/s)
' Critical flow area = 0.311(Sq.Ft)
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.796
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 89.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.255(In/Hr) for a 10.0 year storm
Subarea runoff =0.559(CFS) for0.560(Ac.)Total runoff =1.026(CFS) Total area =0.930(Ac.)
Depth of flow = 0.627(Ft.), Average velocity = 1.304(Ft/s)
Sub-Channel No. 1 Critical depth = 0.438(Ft.)
 ' ' Critical flow top width = 1.750(Ft.)
          ' Critical flow velocity= 2.679(Ft/s)
' Critical flow area = 0.383(Sq.Ft)
      .
  .
     .
Process from Point/Station 16.000 to Point/Station 103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.930(Ac.)
Runoff from this stream = 1.026(CFS)
Time of concentration = 22.74 min.
Rainfall intensity = 1.255(In/Hr)
Summary of stream data:
                    TC
Stream Flow rate
                                  Rainfall Intensity
No. (CFS)
                     (min)
                                        (In/Hr)
1 16.405 17.21
                                     1.438
```

```
1.026 22.74
2
                                    1.255
Largest stream flow has longer or shorter time of concentration
0p =
      16.405 + sum of
        Qa
                   Tb/Ta
         1.026 * 0.757 = 0.776
        17.181
Qp =
Total of 2 streams to confluence:
Flow rates before confluence point:
     16.405
              1.026
Area of streams before confluence:
      12,570
                  0.930
Results of confluence:
Total flow rate = 17.181(CFS)
Time of concentration = 17.212 min.
Effective stream area after confluence = 13.500(Ac.)
Process from Point/Station
                            103.000 to Point/Station
                                                       103.000
**** SUBAREA FLOW ADDITION ****
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.794
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Time of concentration = 17.21 min.
Rainfall intensity = 1.438(In/Hr) for a
                                          10.0 year storm
Subarea runoff = 0.434(CFS) for 0.380(Ac.)
Total runoff = 17.615(CFS) Total area = 13.880(Ac.)
End of computations, total study area = 13.88 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.331
Area averaged RI index number = 76.7
```

Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 11/30/21 File:PP100E.out \_\_\_\_\_ PILOT PERRIS EXIST 100-YR XO 11/30/21 \_\_\_\_\_ \*\*\*\*\*\*\*\* Hydrology Study Control Information \*\*\*\*\*\*\*\*\* English (in-lb) Units used in input data file -----Program License Serial Number 6443 \_\_\_\_\_ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4.1) For the [ Perris Valley ] area used. 10 year storm 10 minute intensity = 1.880(In/Hr) 10 year storm 60 minute intensity = 0.780(In/Hr) 100 year storm 10 minute intensity = 2.690(In/Hr) 100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.120(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 10.000 to Point/Station 11.000 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 565.000(Ft.) Top (of initial area) elevation = 26.400(Ft.) Bottom (of initial area) elevation = 23.000(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.00602 s(percent)= 0.60 TC =  $k(0.530)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 18.587 min. Rainfall intensity = 1.989(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.873 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 7.345(CFS) Total initial stream area = 4.230 4.230(Ac.) Pervious area fraction = 1.000

```
Top of natural channel elevation =
                                     23.000(Ft.)
                                     22.300(Ft.)
End of natural channel elevation =
Length of natural channel = 670.000(Ft.)
Estimated mean flow rate at midpoint of channel =
                                                    15.801(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) = (7 + 8(q(English Units)^.352)(slope^0.5)
Velocity using mean channel flow = 0.91(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
       Normal channel slope = 0.0010
Corrected/adjusted channel slope = 0.0010
Travel time = 12.28 min. TC = 30.87 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.866
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 95.60
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity =
                      1.551(In/Hr) for a 100.0 year storm
                  13.080(CFS) for
                                      9.740(Ac.)
Subarea runoff =
Total runoff = 20.425(CFS) Total area =
                                               13.970(Ac.)
End of computations, total study area =
                                                13.97 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
```

```
Area averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 89.0
```

#### Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 03/15/22 File:PP100P.out \_\_\_\_\_ PILOT PERRIS PROP 100-YR XO 3/15/22 \_\_\_\_\_ \*\*\*\*\*\* Hydrology Study Control Information \*\*\*\*\*\*\*\* English (in-lb) Units used in input data file Program License Serial Number 6523 . . . . . . . . \_\_\_\_\_ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4.1) For the [ Perris Valley ] area used. 10 year storm 10 minute intensity = 1.880(In/Hr) 10 year storm 60 minute intensity = 0.780(In/Hr) 100 year storm 10 minute intensity = 2.690(In/Hr) 100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.120(In/Hr)Slope of intensity duration curve = 0.4900

```
Initial area flow distance = 180.000(Ft.)
Top (of initial area) elevation =
                                 27.400(Ft.)
Bottom (of initial area) elevation =
                                    25.700(Ft.)
Difference in elevation =
                           1.700(Ft.)
        0.00944 s(percent)=
Slope =
                                  0.94
TC = k(0.323)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration =
                                   6.551 min.
Rainfall intensity =
                       3.315(In/Hr) for a 100.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.891
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff =
                          0.886(CFS)
Total initial stream area =
                               0.300(Ac.)
Pervious area fraction = 0.200
Process from Point/Station 11.000 to Point/Station
                                                        12.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                  22.700(Ft.)
Downstream point/station elevation = 22.300(Ft.)
Pipe length = 70.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 0.886(CFS)
Nearest computed pipe diameter =
                                   9.00(In.)
Calculated individual pipe flow =
                                   0.886(CFS)
Normal flow depth in pipe = 5.31(In.)
Flow top width inside pipe =
                            8.85(In.)
Critical Depth =
                 5.17(In.)
Pipe flow velocity =
                       3.27(Ft/s)
Travel time through pipe = 0.36 min.
Time of concentration (TC) =
                            6.91 min.
12.000 to Point/Station
Process from Point/Station
                                                        12.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area =
                 0.300(Ac.)
Runoff from this stream =
                           0.886(CFS)
Time of concentration =
                        6.91 min.
Rainfall intensity = 3.230(In/Hr)
```

```
♠
```

```
♠
```

```
Initial area flow distance = 228.000(Ft.)
Top (of initial area) elevation = 26.800(Ft.)
Bottom (of initial area) elevation = 25.600(Ft.)
                            1.200(Ft.)
Difference in elevation =
Slope =
         0.00526 s(percent)=
                                   0.53
TC = k(0.336)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.419 min.
Rainfall intensity =
                        2.932(In/Hr) for a 100.0 year storm
MOBILE HOME PARK subarea type
Runoff Coefficient = 0.887
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.250; Impervious fraction = 0.750
Initial subarea runoff =
                          1.508(CFS)
Total initial stream area =
                                0.580(Ac.)
Pervious area fraction = 0.250
Process from Point/Station 21.000 to Point/Station
                                                          12.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                   22.600(Ft.)
Downstream point/station elevation = 22.300(Ft.)
Pipe length = 40.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 1.508(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 1.508(CFS
                                    1.508(CFS)
Normal flow depth in pipe = 7.16(In.)
Flow top width inside pipe = 7.26(In.)
Critical Depth = 6.79(In.)
Pipe flow velocity = 4.00(Ft/s)
Travel time through pipe = 0.17 min.
Time of concentration (TC) = 8.59 min.
```

```
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.580(Ac.)
Runoff from this stream = 1.508(CFS)
```

Time of concentration = 8.59 min. Rainfall intensity = 2.904(In/Hr) Summary of stream data: Flow rate Stream TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.886 6.91 3.230 2 1.508 8.59 2.904 Largest stream flow has longer time of concentration 0p = 1.508 + sum of 0b Ia/Ib 0.886 \* 0.899 = 0.796 Qp = 2.304 Total of 2 streams to confluence: Flow rates before confluence point: 0.886 1.508 Area of streams before confluence: 0.300 0.580 Results of confluence: Total flow rate = 2.304(CFS) Time of concentration = 8.586 min. Effective stream area after confluence = 0.880(Ac.) Process from Point/Station 12.000 to Point/Station 13.000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 22.300(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 487.00(Ft.) Manning's N = 0.012No. of pipes = 1 Required pipe flow = 2.304(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 2.304(CFS) Normal flow depth in pipe = 8.51(In.) Flow top width inside pipe = 10.90(In.) Critical Depth = 7.79(In.) Pipe flow velocity = 3.87(Ft/s)Travel time through pipe = 2.10 min. Time of concentration (TC) = 10.68 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* SUBAREA FLOW ADDITION \*\*\*\*

COMMERCIAL subarea type Runoff Coefficient = 0.894

```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration =
                      10.68 min.
Rainfall intensity =
                      2.609(In/Hr) for a
                                        100.0 year storm
Subarea runoff = 0.373(CFS) for
                                   0.160(Ac.)
Total runoff =
                 2.678(CFS) Total area =
                                          1.040(Ac.)
Process from Point/Station 13.000 to Point/Station
                                                      13.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.040(Ac.)
Runoff from this stream =
                          2.678(CFS)
Time of concentration = 10.68 min.
Rainfall intensity = 2.609(In/Hr)
Process from Point/Station
                            10.000 to Point/Station
                                                      31.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 360.000(Ft.)
Top (of initial area) elevation =
                               27.400(Ft.)
Bottom (of initial area) elevation =
                                  24.400(Ft.)
Difference in elevation =
                         3.000(Ft.)
       0.00833 s(percent)=
Slope =
                                0.83
TC = k(0.323)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 8.863 min.
Rainfall intensity =
                      2.859(In/Hr) for a 100.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.889
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff =
                         2.288(CFS)
Total initial stream area =
                             0.900(Ac.)
Pervious area fraction = 0.200
```

\*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\*

Upstream point/station elevation = 21.400(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 57.00(Ft.) Manning's N = 0.012No. of pipes = 1 Required pipe flow = 2.288(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.288(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 8.47(In.) Critical Depth = 8.09(In.) Pipe flow velocity = 7.29(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 8.99 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream = 2.288(CFS) Time of concentration = 8.99 min. Rainfall intensity = 2.839(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity (min) No. (CFS) (In/Hr) 1 2.678 10.68 2.609 2.288 8.99 2.839 2 Largest stream flow has longer time of concentration 0p = 2.678 + sum of 0b Ia/Ib 2.288 \* 0.919 = 2.103 Qp = 4.781 Total of 2 streams to confluence: Flow rates before confluence point: 2.678 2.288 Area of streams before confluence: 1.040 0.900 Results of confluence: Total flow rate = 4.781(CFS) Time of concentration = 10.681 min. Effective stream area after confluence = 1.940(Ac.)

Process from Point/Station 13.000 to Point/Station \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\*

```
Upstream point/station elevation = 19.900(Ft.)

Downstream point/station elevation = 19.300(Ft.)

Pipe length = 112.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 4.781(CFS)

Nearest computed pipe diameter = 15.00(In.)

Calculated individual pipe flow = 4.781(CFS)

Normal flow depth in pipe = 11.48(In.)

Flow top width inside pipe = 12.71(In.)

Critical Depth = 10.63(In.)

Pipe flow velocity = 4.74(Ft/s)

Travel time through pipe = 0.39 min.

Time of concentration (TC) = 11.07 min.
```

♠

```
COMMERCIAL subarea type

Runoff Coefficient = 0.894

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

Decimal fraction soil group D = 1.000

RI index for soil(AMC 3) = 88.00

Pervious area fraction = 0.100; Impervious fraction = 0.900

Time of concentration = 11.07 min.

Rainfall intensity = 2.563(In/Hr) for a 100.0 year storm

Subarea runoff = 0.160(CFS) for 0.070(Ac.)

Total runoff = 4.941(CFS) Total area = 2.010(Ac.)
```

♠

```
COMMERCIAL subarea type

Runoff Coefficient = 0.894

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group C = 0.000

RI index for soil(AMC 3) = 88.00

Pervious area fraction = 0.100; Impervious fraction = 0.900

Time of concentration = 11.07 min.

Rainfall intensity = 2.563(In/Hr) for a 100.0 year storm

Subarea runoff = 0.733(CFS) for 0.320(Ac.)

Total runoff = 5.674(CFS) Total area = 2.330(Ac.)
```

14.000

Process from Point/Station 14.000 to Point/Station 15.000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 19.300(Ft.) Downstream point/station elevation = 16.400(Ft.) Pipe length = 399.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 5.674(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.674(CFS) Normal flow depth in pipe = 11.68(In.) Flow top width inside pipe = 12.45(In.) Critical Depth = 11.58(In.) Pipe flow velocity = 5.53(Ft/s) Travel time through pipe = 1.20 min. Time of concentration (TC) = 12.28 min. Process from Point/Station 15.000 to Point/Station 15.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.330(Ac.) Runoff from this stream = 5.674(CFS) Time of concentration = 12.28 min. Rainfall intensity = 2.437(In/Hr) Process from Point/Station 50.000 to Point/Station 51.000 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 237.000(Ft.) Top (of initial area) elevation = 26.800(Ft.) Bottom (of initial area) elevation = 25.000(Ft.) Difference in elevation = 1.800(Ft.) Slope = 0.00759 s(percent)= 0.76 TC =  $k(0.300)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 7.094 min. Rainfall intensity = 3.188(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 88.00

```
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.483(CFS)
Total initial stream area =
                               0.870(Ac.)
Pervious area fraction = 0.100
Process from Point/Station
                             51.000 to Point/Station
                                                        52.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 25.000(Ft.)
Downstream point elevation = 19.500(Ft.)
Channel length thru subarea = 963.000(Ft.)
Channel base width
                  =
                          0.000(Ft.)
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 9.305(CFS)
Manning's 'N'
             = 0.015
Maximum depth of channel = 0.500(Ft.)
Flow(q) thru subarea = 9.305(CFS)
Depth of flow = 0.229(Ft.), Average velocity = 1.768(Ft/s)
Channel flow top width = 45.888(Ft.)
Flow Velocity = 1.77(Ft/s)
Travel time =
                9.08 min.
Time of concentration = 16.17 min.
Sub-Channel No. 1 Critical depth = 0.223(Ft.)
    ' ' Critical flow top width = 44.531(Ft.)
 .
                   Critical flow velocity= 1.877(Ft/s)
             .
     .
             .
                   Critical flow area = 4.958(Sq.Ft)
Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity =
                       2.129(In/Hr) for a
                                          100.0 year storm
Subarea runoff =
                 13.573(CFS) for 7.140(Ac.)
Total runoff = 16.056(CFS) Total area = 8.010(Ac.)
Depth of flow = 0.282(Ft.), Average velocity = 2.026(Ft/s)
Sub-Channel No. 1 Critical depth =
                                    0.275(Ft.)
          .
     .
                   Critical flow top width =
                                             55.078(Ft.)
                   Critical flow velocity= 2.117(Ft/s)
             .
     ' Critical flow area = 7.584(Sq.Ft)
```

```
52.000 to Point/Station
Process from Point/Station
                                                     15.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                               16.500(Ft.)
Downstream point/station elevation =
                                 16.400(Ft.)
Pipe length =
               11.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                    16.056(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow =
                               16.056(CFS)
Normal flow depth in pipe =
                         16.88(In.)
Flow top width inside pipe = 16.69(In.)
Critical Depth =
               17.74(In.)
Pipe flow velocity =
                   7.76(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 16.20 min.
Process from Point/Station
                           15.000 to Point/Station
                                                     15.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area =
                8.010(Ac.)
Runoff from this stream =
                         16.056(CFS)
Time of concentration =
                     16.20 min.
Rainfall intensity =
                    2.128(In/Hr)
Summary of stream data:
```

```
StreamFlow rateTCRainfall IntensityNo.(CFS)(min)(In/Hr)
```

1 5.674 12.28 2.437 2 16.056 16.20 2.128 Largest stream flow has longer time of concentration Qp = 16.056 + sum of Ia/Ib Qb 5.674 \* 0.873 = 4.954 Qp = 21.010 Total of 2 streams to confluence: Flow rates before confluence point: 16.056 5.674 Area of streams before confluence: 2.330 8.010 Results of confluence: Total flow rate = 21.010(CFS)

16.198 min.

10.340(Ac.)

Time of concentration =

Effective stream area after confluence =

```
Process from Point/Station
                           15.000 to Point/Station
                                                     16.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                               16.400(Ft.)
Downstream point/station elevation =
                                 16.300(Ft.)
Pipe length =
               25.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                    21.010(CFS)
Nearest computed pipe diameter =
                              27.00(In.)
Calculated individual pipe flow =
                                21.010(CFS)
Normal flow depth in pipe = 21.89(In.)
Flow top width inside pipe = 21.15(In.)
Critical Depth = 19.26(In.)
Pipe flow velocity =
                     6.08(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 16.27 min.
Process from Point/Station
                           16.000 to Point/Station
                                                     16.000
**** SUBAREA FLOW ADDITION ****
UNDEVELOPED (good cover) subarea
Runoff Coefficient = 0.847
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 91.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Time of concentration =
                     16.27 min.
Rainfall intensity =
                     2.123(In/Hr) for a 100.0 year storm
Subarea runoff = 4.012(CFS) for 2.230(Ac.)
Total runoff = 25.022(CFS) Total area = 12.570(Ac.)
Process from Point/Station
                           16.000 to Point/Station
                                                    103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area =
                   12.570(Ac.)
Runoff from this stream =
                        25.022(CFS)
Time of concentration = 16.27 min.
                   2.123(In/Hr)
Rainfall intensity =
```

♠

٨

Process from Point/Station 100.000 to Point/Station 101.000 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\*

```
Initial area flow distance = 293.000(Ft.)
Top (of initial area) elevation =
                                 24.300(Ft.)
Bottom (of initial area) elevation =
                                    22.800(Ft.)
Difference in elevation =
                           1.500(Ft.)
Slope =
         0.00512 s(percent)=
                                  0.51
TC = k(0.530)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 14.763 min.
                       2.226(In/Hr) for a 100.0 year storm
Rainfall intensity =
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.876
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 95.60
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0.722(CFS)
                               0.370(Ac.)
Total initial stream area =
Pervious area fraction = 1.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                  22.800(Ft.)
Pipe length = 58.00(Ft.) Manning's N = 0.012
                                        0.722(CFS)
```

Process from Point/Station 101.000 to Point/Station 102.000

```
Downstream point/station elevation = 22.600(Ft.)
No. of pipes = 1 Required pipe flow =
Nearest computed pipe diameter =
                                    9.00(In.)
Calculated individual pipe flow =
                                    0.722(CFS)
Normal flow depth in pipe = 5.47(In.)
Flow top width inside pipe =
                              8.79(In.)
Critical Depth = 4.64(In.)
Pipe flow velocity =
                        2.57(Ft/s)
Travel time through pipe = 0.38 min.
Time of concentration (TC) = 15.14 min.
```

Process from Point/Station 102.000 to Point/Station 103.000 \*\*\*\* IMPROVED CHANNEL TRAVEL TIME \*\*\*\*

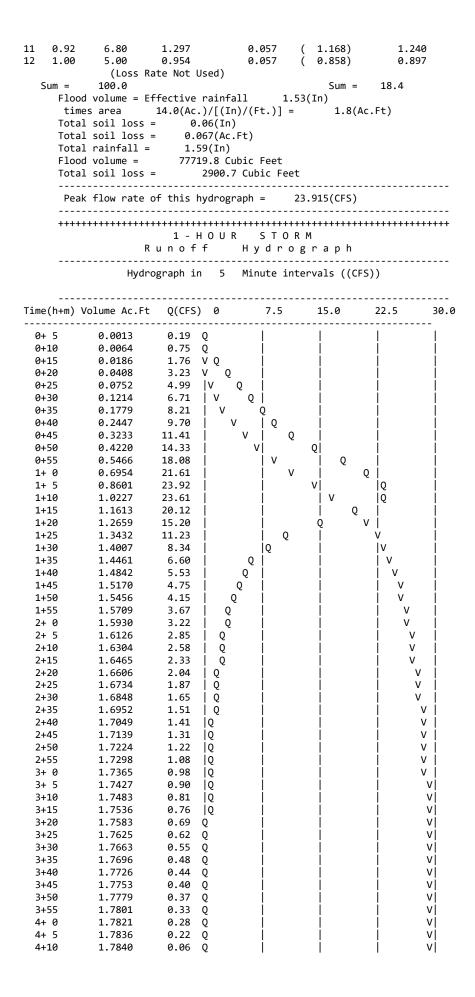
```
Upstream point elevation = 22.600(Ft.)
Downstream point elevation =
                              17.900(Ft.)
Channel length thru subarea = 553.000(Ft.)
                           0.000(Ft.)
Channel base width
                      =
Slope or 'Z' of left channel bank = 2.000
```

```
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 1.219(CFS)
Manning's N' = 0.045
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 1.219(CFS)
Depth of flow = 0.669(Ft.), Average velocity = 1.362(Ft/s)
Channel flow top width = 2.676(Ft.)
Flow Velocity = 1.36(Ft/s)
Travel time =
                6.77 min.
Time of concentration = 21.91 min.
Sub-Channel No. 1 Critical depth = 0.469(Ft.)
 .
    ' Critical flow top width =
                                               1.875(Ft.)
             .
                 Critical flow velocity= 2.773(Ft/s)
      .
             .
                 Critical flow area = 0.439(Sq.Ft)
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.871
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 3) = 95.60
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.835(In/Hr) for a 100.0 year storm
Subarea runoff = 0.895(CFS) for 0.560(Ac.)
Total runoff = 1.616(CFS) Total area = 0.
                 1.616(CFS) Total area = 0.930(Ac.)
Depth of flow = 0.744(Ft.), Average velocity = 1.461(Ft/s)
Sub-Channel No. 1 Critical depth = 0.527(Ft.)
 ' ' Critical flow top width =
                                               2.109(Ft.)
      .
              .
  .
                  Critical flow velocity= 2.906(Ft/s)
  .
      .
            .
                 Critical flow area =
                                        0.556(Sq.Ft)
Process from Point/Station
                             16.000 to Point/Station
                                                       103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.930(Ac.)
Runoff from this stream =
                           1.616(CFS)
Time of concentration = 21.91 min.
Rainfall intensity = 1.835(In/Hr)
Summary of stream data:
Stream
        Flow rate
                    тс
                                 Rainfall Intensity
No.
       (CFS)
                    (min)
                                        (In/Hr)
```

1 25.022 16.27 2.123 2 21.91 1.835 1.616 Largest stream flow has longer or shorter time of concentration 25.022 + sum of Qp = 0a Tb/Ta 1.616 \* 0.743 = 1,200 Qp = 26.222 Total of 2 streams to confluence: Flow rates before confluence point: 25.022 1.616 Area of streams before confluence: 0.930 12,570 Results of confluence: Total flow rate = 26.222(CFS) Time of concentration = 16.267 min. Effective stream area after confluence = 13.500(Ac.) Process from Point/Station 103.000 to Point/Station 103.000 \*\*\*\* SUBAREA FLOW ADDITION \*\*\*\* SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.865 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 88.00Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 16.27 min. Rainfall intensity = 2.123(In/Hr) for a 100.0 year storm Subarea runoff = 0.697(CFS) for 0.380(Ac.) Total runoff = <u>26.920</u>(CFS) Total area = 13.880(Ac.) End of computations, total study area = 13.88 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.331 Area averaged RI index number = 76.7

## Appendix J

Synthetic Unit Hydrograph Method Analysis


Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 12/07/21 File: PP1EUH1100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6443 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format \_\_\_\_\_ PILOT PERRIS EXIST 100-YR XO 12/7/21 -----Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) = 0.022 Sq. Mi. USER Entry of lag time in hours Lag time = 0.412 Hr. Lag time = 24.70 Min. 25% of lag time = 6.17 Min. 40% of lag time = 9.88 Min. Unit time = 5.00 Min. Duration of storm = 1 Hour(s)User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 13.97 0.51 7.07 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1\*2] Area(Ac.)[1] 13.97 1.59 22.21 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 0.506(In) Area Averaged 100-Year Rainfall = 1.590(In) Point rain (area averaged) = 1.590(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 1.590(In) Sub-Area Data: Area(Ac.)Runoff IndexImpervious %13.97089.000.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F (In/Hr) (Dec.) (In/Hr) 0.057 1.000 0.057 AMC2 AMC-3 (In/Hr) (Dec.%) 89.0 95.6 0.057 0.000 Sum(F) = 0.057Area averaged mean soil loss (F) (In/Hr) = 0.057Minimum soil loss rate ((In/Hr)) = 0.029

Slope of intensity-duration curve for a 1 hour storm =0.5000

## Unit Hydrograph VALLEY S-Curve

|     |       |         |                  | Unit Hydrograp |
|-----|-------|---------|------------------|----------------|
| (hi | rs)   |         | Graph %          | (CFS)          |
| 1   | 0.083 | 20.246  | 1.800            | 0.253          |
| 2   | 0.167 | 40.492  | 5.274            | 0.743          |
| 3   | 0.250 | 60.739  | 9.202            | 1.296          |
| 4   | 0.333 | 80.985  | 12.874           | 1.813          |
| 5   | 0.417 | 101.231 | 14.440<br>12.268 | 2.033          |
| 6   | 0.500 | 121.477 | 12.268           | 1.727          |
| 7   | 0.583 | 141.723 | 8.222            | 1.158          |
| 8   | 0.667 | 161.970 | 5.694            | 0.802          |
| 9   | 0.750 | 182.216 | 3.995            | 0.562          |
| 10  | 0.833 | 202.462 | 3.093            | 0.435          |
| 11  | 0.917 | 222.708 | 2.648            | 0.373          |
| 12  | 1.000 | 242.954 | 2.270            | 0.320          |
| 13  | 1.083 | 263.201 | 1.976            | 0.278          |
| 14  | 1.167 | 283.447 | 1.768            | 0.249          |
| 15  | 1.250 | 303.693 | 1.509            | 0.212          |
| 16  | 1.333 | 323.939 | 1.296            | 0.182          |
| 17  | 1.417 | 344.185 | 1.215            | 0.171          |
| 18  | 1.500 | 364.431 | 1.132            | 0.159          |
| 19  | 1.583 | 384.678 | 0.904            | 0.127          |
| 20  | 1.667 | 404.924 | 0.884            | 0.124          |
| 21  | 1.750 | 425.170 | 0.717            | 0.101          |
| 22  | 1.833 | 445.416 | 0.648            | 0.091          |
| 23  | 1.917 | 465.662 | 0.636            | 0.090          |
| 24  | 2.000 | 485.909 | 0.608            | 0.086          |
| 25  | 2.083 | 506.155 | 0.600            | 0.084          |
| 26  | 2.167 | 526.401 | 0.485            | 0.068          |
| 27  | 2.250 | 546.647 | 0.445            | 0.063          |
| 28  | 2.333 | 566.893 | 0.417            | 0.059          |
| 29  | 2.417 | 587.140 | 0.366            | 0.051          |
| 30  | 2.500 | 607.386 | 0.359            | 0.051          |
| 31  | 2.583 | 627.632 | 0.300            | 0.042          |
| 32  | 2.667 | 647.878 | 0.283            | 0.040          |
| 33  | 2.750 | 668.124 | 0.251            | 0.035          |
| 34  | 2.833 | 688.371 | 0.203            | 0.029          |
| 35  | 2.917 | 708.617 | 0.202            | 0.029          |
| 36  | 3.000 | 728.863 | 0.202            | 0.029          |
| 37  | 3.083 | 749.109 | 0.202            | 0.029          |
| 38  | 3.167 | 769.355 | 0.202            | 0.029          |
| 39  | 3.250 | 789.602 | 0.202            | 0.029          |
| 40  | 3.333 | 809.848 | 0.205            | 0.029          |
|     |       | Su      | ım = 100.000 Sı  | um= 14.079     |

| Unit | Time  | Pattern | Storm Rain | Loss rate(In./Hr) | Effective |
|------|-------|---------|------------|-------------------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max   Low         | (In/Hr)   |
| 1    | 0.08  | 4.20    | 0.801      | 0.057 ( 0.721)    | 0.744     |
| 2    | 0.17  | 4.30    | 0.820      | 0.057 ( 0.738)    | 0.763     |
| 3    | 0.25  | 5.00    | 0.954      | 0.057 ( 0.858)    | 0.897     |
| 4    | 0.33  | 5.00    | 0.954      | 0.057 ( 0.858)    | 0.897     |
| 5    | 0.42  | 5.80    | 1.106      | 0.057 ( 0.996)    | 1.049     |
| 6    | 0.50  | 6.50    | 1.240      | 0.057 ( 1.116)    | 1.183     |
| 7    | 0.58  | 7.40    | 1.412      | 0.057 ( 1.271)    | 1.355     |
| 8    | 0.67  | 8.60    | 1.641      | 0.057 ( 1.477)    | 1.583     |
| 9    | 0.75  | 12.30   | 2.347      | 0.057 ( 2.112)    | 2.289     |
| 10   | 0.83  | 29.10   | 5.552      | 0.057 ( 4.996)    | 5.494     |



| 4+15 | 1.7842 | 0.03 Q | I |      | V |
|------|--------|--------|---|------|---|
|      |        |        |   | <br> |   |

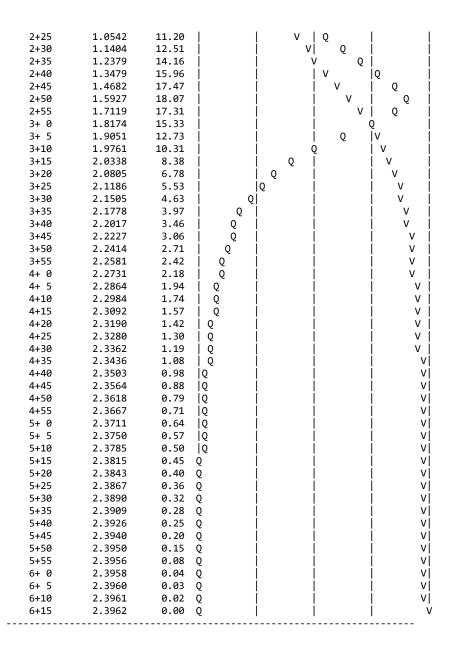
Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 12/07/21 File: PP1EUH3100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6443 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format \_\_\_\_\_ PILOT PERRIS EXIST 100-YR XO 12/7/21 -----Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) = 0.022 Sq. Mi. USER Entry of lag time in hours Lag time = 0.412 Hr. Lag time = 24.70 Min. 25% of lag time = 6.17 Min. 40% of lag time = 9.88 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s)User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 13.97 0.85 11.90 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1\*2] Area(Ac.)[1] 13.97 2.23 31.15 STORM EVENT (YEAR) = 100.00 Area Averaged 2-Year Rainfall = 0.852(In) Area Averaged 100-Year Rainfall = 2.230(In) Point rain (area averaged) = 2.230(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 2.230(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 13,970 89.00 0.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F (In/Hr) (Dec.) (In/Hr) 0.057 1.000 0.057 AMC2 AMC-3 (In/Hr) (Dec.%) 89.0 95.6 0.057 0.000 Sum(F) = 0.057Area averaged mean soil loss (F) (In/Hr) = 0.057Minimum soil loss rate ((In/Hr)) = 0.029

|                 |           | nit Hydrograph Da |              |               |
|-----------------|-----------|-------------------|--------------|---------------|
| Unit ti<br>(hr: | me period | Time % of lag     | Distribution | Unit Hydrogra |
| 1               | 0.083     | 20.246            | 1.800        | 0.253         |
| 2               | 0.167     | 40.492            | 5.274        | 0.743         |
| 3               | 0.250     | 60.739            | 9.202        | 1.296         |
| 4               | 0.333     | 80.985            | 12.874       | 1.813         |
| 5               | 0.417     | 101.231           | 14.440       | 2.033         |
| 6               | 0.500     | 121.477           | 12.268       | 1.727         |
| 7               | 0.583     | 141.723           | 8.222        | 1.158         |
| 8               | 0.667     | 161.970           | 5.694        | 0.802         |
| 9               | 0.750     | 182.216           | 3.995        | 0.562         |
| 10              | 0.833     | 202.462           | 3.093        | 0.435         |
| 11              | 0.917     | 222.708           | 2.648        | 0.373         |
| 12              | 1.000     | 242.954           | 2.270        | 0.320         |
| 13              | 1.083     | 263.201           | 1.976        | 0.278         |
| 14              | 1.167     | 283.447           | 1.768        | 0.249         |
| 15              | 1.250     | 303.693           | 1.509        | 0.245         |
| 16              | 1.333     | 323.939           | 1.296        | 0.182         |
| 10              | 1.417     | 344.185           | 1.215        | 0.182         |
| 18              | 1.500     | 364.431           | 1.132        | 0.171         |
| 18              | 1.583     | 384.678           | 0.904        | 0.139         |
| 20              | 1.667     | 404.924           | 0.884        | 0.127         |
| 20              | 1.750     | 404.924           | 0.884        | 0.124         |
|                 |           |                   |              |               |
| 22              | 1.833     | 445.416           | 0.648        | 0.091         |
| 23              | 1.917     | 465.662           | 0.636        | 0.090         |
| 24              | 2.000     | 485.909           | 0.608        | 0.086         |
| 25              | 2.083     | 506.155           | 0.600        | 0.084         |
| 26              | 2.167     | 526.401           | 0.485        | 0.068         |
| 27              | 2.250     | 546.647           | 0.445        | 0.063         |
| 28              | 2.333     | 566.893           | 0.417        | 0.059         |
| 29              | 2.417     | 587.140           | 0.366        | 0.051         |
| 30              | 2.500     | 607.386           | 0.359        | 0.051         |
| 31              | 2.583     | 627.632           | 0.300        | 0.042         |
| 32              | 2.667     | 647.878           | 0.283        | 0.040         |
| 33              | 2.750     | 668.124           | 0.251        | 0.035         |
| 34              | 2.833     | 688.371           | 0.203        | 0.029         |
| 35              | 2.917     | 708.617           | 0.202        | 0.029         |
| 36              | 3.000     | 728.863           | 0.202        | 0.029         |
| 37              | 3.083     | 749.109           | 0.202        | 0.029         |
| 38              | 3.167     | 769.355           | 0.202        | 0.029         |
| 39              | 3.250     | 789.602           | 0.202        | 0.029         |
| 40              | 3.333     | 809.848           | 0.205        | 0.029         |
|                 |           | Sum               | = 100.000 Si | um= 14.079    |

| Unit | Time  | Pattern | Storm Rain | Loss rate(In | ./Hr)  | Effective |
|------|-------|---------|------------|--------------|--------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max   L      | OW     | (In/Hr)   |
| 1    | 0.08  | 1.30    | 0.348      | 0.057 (      | 0.313) | 0.291     |
| 2    | 0.17  | 1.30    | 0.348      | 0.057 (      | 0.313) | 0.291     |
| 3    | 0.25  | 1.10    | 0.294      | 0.057 (      | 0.265) | 0.237     |
| 4    | 0.33  | 1.50    | 0.401      | 0.057 (      | 0.361) | 0.344     |
| 5    | 0.42  | 1.50    | 0.401      | 0.057 (      | 0.361) | 0.344     |
| 6    | 0.50  | 1.80    | 0.482      | 0.057 (      | 0.433) | 0.424     |
| 7    | 0.58  | 1.50    | 0.401      | 0.057 (      | 0.361) | 0.344     |
| 8    | 0.67  | 1.80    | 0.482      | 0.057 (      | 0.433) | 0.424     |
| 9    | 0.75  | 1.80    | 0.482      | 0.057 (      | 0.433) | 0.424     |
| 10   | 0.83  | 1.50    | 0.401      | 0.057 (      | 0.361) | 0.344     |
| 11   | 0.92  | 1.60    | 0.428      | 0.057 (      | 0.385) | 0.371     |
| 12   | 1.00  | 1.80    | 0.482      | 0.057 (      | 0.433) | 0.424     |
|      |       |         |            |              |        |           |

0.057 ( 0.530) 0.057 ( 0.530) 0.057 ( 0.530) 0.057 ( 0.400) 0.589 0.589 2.2 13 1.08 0.531 14 1.17 0.531 2.20 0.589 0.531 1.25 15 1.33 2.00 0.535 0.478 16 0.057 ( 0.626) 0.057 ( 0.650) 0.057 ( 0.578) 0.057 2.60 0.696 17 1.42 0.639 1.50 2.70 0.722 18 0.665 2.760.7220.057(0.578)2.400.6420.057(0.578)2.700.7220.057(0.578)3.300.8830.057(0.795)3.100.8300.057(0.747)2.900.7760.057(0.698)3.000.8030.057(0.747)2.900.7760.057(0.747)4.201.1240.057(1.011)5.001.3380.057(1.204)3.500.9370.057(1.638)7.301.9530.057(1.758)8.202.1940.057(1.975)5.901.5790.057(1.421)2.000.5350.057(0.482)1.800.4820.057(0.433)2.40 0.642 19 1.58 0.585 20 1.67 0.665 1.75 21 0.826 22 1.83 0.772 1.92 23 0.719 2.00 24 0.746 25 2.08 0.772 26 2.17 1.067 27 2.25 1.281 2.33 0.879 28 29 2.42 1.762 2.50 1.896 30 31 2.58 2.137 1.522 2.67 32 33 2.75 0.478 

 34
 2.83
 1.80
 0.482


 35
 2.92
 1.80
 0.482

 36
 3.00
 0.60
 0.161

 0.057 ( 0.433) 0.424 0.057 0.057 ( 0.433) 0.057 ( 0.144) 0.424 0.103 (Loss Rate Not Used) Sum = 100.0 Sum = 24.7 Flood volume = Effective rainfall 2.06(In) times area 14.0(Ac.)/[(In)/(Ft.)] = 2.4(Ac.Ft) Total soil loss = 0.17(In) Total soil loss = 0.200(Ac.Ft) Total rainfall = 2.23(In) Flood volume = 104376.8 Cubic Feet Total soil loss = 8702.0 Cubic Feet -----Peak flow rate of this hydrograph = 18.074(CFS) \_\_\_\_\_ 3-HOUR STORM Runoff Hydrograph \_\_\_\_\_ Hydrograph in 5 Minute intervals ((CFS)) \_\_\_\_\_ Time(h+m) Volume Ac.Ft Q(CFS) 0 5.0 10.0 15.0 20.0 \_\_\_\_\_ 
 0+ 5
 0.0005
 0.07
 Q
 Q

 0+10
 0.0025
 0.29
 Q
 Q

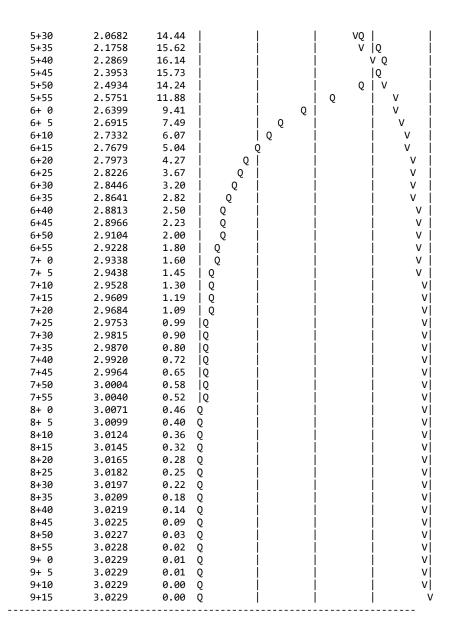
 0+15
 0.0070
 0.65
 VQ
 Q
 0+20 0.0150 1.17 V Q 0+25 0.0272 1.77 V Q 2.33 V 0.0433 0+30 Q 0+35 0.0625 2.79 V Q 0.0847 0+40 3.22 V Q 0.1095 0.1365 3.61 |V 3.91 | V 0+45 Q l v 0+50 Q 0+55 0.1650 4.15 | V Q 4.32 | V 1+ 0 0.1948 Q 1+ 5 0.2258 4.50 | V Q 1+10 0.2581 4.70 v Q 4.99 V Q 1+15 0.2925 ۷ Q 1+20 0.3293 5.34 |Q ∨ |Q ∨ |Q ∨ Q V Q V Q V Q V V 0.3686 V ĮQ 1+255.71 6.08 6.41 1+30 0.4105 1+35 0.4546 1+40 0.5011 6.75 v Q v Q |v Q ' V Q ' V Q 1+45 0.5503 7.15 V V 1+50 0.6026 7.59 1+55 0.6577 8.01 0.7158 2+ 0 8.43 2+ 5 0.7766 8.83 0.8398 9.18 0.9063 9.66 0.9771 10.28 9.18 V Q 2+10 2+15 Q V 2+20 0



Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 12/07/21 File: PP1EUH6100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6443 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format \_\_\_\_\_ PILOT PERRIS EXIST 100-YR XO 12/7/21 -----Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) = 0.022 Sq. Mi. USER Entry of lag time in hours Lag time = 0.412 Hr. Lag time = 24.70 Min. 25% of lag time = 6.17 Min. 40% of lag time = 9.88 Min. Unit time = 5.00 Min. Duration of storm = 6 Hour(s)User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 13.97 1.18 16.48 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1\*2] Area(Ac.)[1] 13.97 2.94 41.07 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 1.180(In) Area Averaged 100-Year Rainfall = 2.940(In) Point rain (area averaged) = 2.940(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.940(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 13,970 89.00 0.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F (In/Hr) (Dec.) (In/Hr) 0.057 1.000 0.057 AMC2 AMC-3 (In/Hr) (Dec.%) 89.0 95.6 0.057 0.000 Sum(F) = 0.057Area averaged mean soil loss (F) (In/Hr) = 0.057Minimum soil loss rate ((In/Hr)) = 0.029

-----

|           | Ur       | nit Hydrograph D | ata              |             |
|-----------|----------|------------------|------------------|-------------|
|           |          |                  |                  |             |
| Unit time | e period | Time % of lag    | Distribution     | Unit Hydrog |
| (11.2     | )<br>    | -                | Graph %          | (CFS)       |
|           | 0.083    | 20.246           | 1.800            | 0.25        |
| 2 (       | 0.167    | 40.492           | 5.274            | 0.74        |
| 3 (       | 0.250    | 60.739           | 9.202            | 1.29        |
| 4 (       | 0.333    | 80.985           | 12.874           | 1.81        |
| 5 (       | 9.417    | 101.231          | 12.874<br>14.440 | 2.03        |
| 6 (       | 0.500    | 121.477          | 12.268           | 1.72        |
| 7 (       | 0.583    | 141.723          | 8.222            | 1.15        |
| 8 (       | 0.667    | 161.970          | 5.694            | 0.80        |
| 9 (       | 0.750    | 182.216          | 3.995            | 0.56        |
| 10 (      | 0.833    | 202.462          | 3.093            | 0.43        |
| 11 (      | 0.917    | 222.708          | 2.648            | 0.37        |
| 12 :      | 1.000    | 242.954          | 2.270            | 0.320       |
| 13 :      | 1.083    | 263.201          | 1.976            | 0.27        |
|           | 1.167    | 283.447          | 1.768            | 0.249       |
|           | 1.250    | 303.693          | 1.509            | 0.21        |
| 16 :      | 1.333    | 323.939          | 1.296            | 0.18        |
| 17 :      | 1.417    | 344.185          | 1.215            | 0.17        |
| 18 :      | 1.500    | 364.431          | 1.132            | 0.15        |
| 19 :      | 1.583    | 384.678          | 0.904            | 0.12        |
| 20        | 1.667    | 404.924          | 0.884            | 0.124       |
|           | 1.750    | 425.170          | 0.717            | 0.10        |
|           | 1.833    | 445.416          | 0.648            | 0.09        |
| 23        | 1.917    | 465.662          | 0.636            | 0.09        |
| 24        | 2.000    | 485.909          | 0.608            | 0.08        |
| 25        | 2.083    | 506.155          | 0.600            | 0.084       |
|           | 2.167    | 526.401          | 0.485            | 0.06        |
| 27        | 2.250    | 546.647          | 0.445            | 0.06        |
| 28        | 2.333    | 566.893          | 0.417            | 0.05        |
| 29        | 2.417    | 587.140          | 0.366            | 0.05        |
| 30        | 2.500    | 607.386          | 0.359            | 0.05        |
| 31        | 2.583    | 627.632          | 0.300            | 0.04        |
| 32        | 2.667    | 647.878          | 0.283            | 0.04        |
|           | 2.750    | 668.124          | 0.251            | 0.03        |
|           | 2.833    | 688.371          | 0.203            | 0.02        |
|           | 2.917    | 708.617          | 0.202            | 0.02        |
|           | 3.000    | 728.863          | 0.202            | 0.02        |
|           | 3.083    | 749.109          | 0.202            | 0.02        |
|           | 3.167    | 769.355          | 0.202            | 0.02        |
|           | 3.250    | 789.602          | 0.202            | 0.02        |
| 40        | 3.333    | 809.848          | 0.205            | 0.02        |
|           |          | Cum              |                  | um= 14.079  |


| Unit | Time  | Pattern | Storm Rain | Loss rate( | In. | /Hr)   | Effective |
|------|-------|---------|------------|------------|-----|--------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max        | Lo  | W      | (In/Hr)   |
| 1    | 0.08  | 0.50    | 0.176      | 0.057      | (   | 0.159) | 0.119     |
| 2    | 0.17  | 0.60    | 0.212      | 0.057      | (   | 0.191) | 0.154     |
| 3    | 0.25  | 0.60    | 0.212      | 0.057      | (   | 0.191) | 0.154     |
| 4    | 0.33  | 0.60    | 0.212      | 0.057      | (   | 0.191) | 0.154     |
| 5    | 0.42  | 0.60    | 0.212      | 0.057      | (   | 0.191) | 0.154     |
| 6    | 0.50  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 7    | 0.58  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 8    | 0.67  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 9    | 0.75  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 10   | 0.83  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 11   | 0.92  | 0.70    | 0.247      | 0.057      | (   | 0.222) | 0.190     |
| 12   | 1.00  | 0.80    | 0.282      | 0.057      | (   | 0.254) | 0.225     |

| 13       | 1.08  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
|----------|-------|-------------|----------------------|-----------------------------------------|-----------|-----------------|
| 14       | 1.17  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 15       | 1.25  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 16       | 1.33  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 17       | 1.42  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 18       | 1.42  | 0.80        | 0.282                | 0.057                                   |           | 0.225           |
|          |       |             | 0.282                |                                         | • • •     |                 |
| 19<br>20 | 1.58  | 0.80        |                      | 0.057                                   |           | 0.225           |
| 20       | 1.67  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 21       | 1.75  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 22       | 1.83  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 23       | 1.92  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 24       | 2.00  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 25       | 2.08  | 0.80        | 0.282                | 0.057                                   | ( 0.254)  | 0.225           |
| 26       | 2.17  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 27       | 2.25  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 28       | 2.33  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 29       | 2.42  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 30       | 2.50  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 31       | 2.58  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 32       | 2.67  | 0.90        | 0.318                | 0.057                                   | ( 0.286)  | 0.260           |
| 33       | 2.75  | 1.00        | 0.353                | 0.057                                   | ( 0.318)  | 0.296           |
| 34       | 2.83  | 1.00        | 0.353                | 0.057                                   | ( 0.318)  | 0.296           |
| 35       | 2.92  | 1.00        | 0.353                | 0.057                                   | ( 0.318)  | 0.296           |
| 36       | 3.00  | 1.00        | 0.353                | 0.057                                   | ( 0.318)  | 0.296           |
| 37       | 3.08  | 1.00        | 0.353                | 0.057                                   | ( 0.318)  | 0.296           |
| 38       | 3.17  | 1.10        | 0.388                | 0.057                                   | ( 0.349)  | 0.331           |
| 39       | 3.25  | 1.10        | 0.388                | 0.057                                   | ( 0.349)  | 0.331           |
| 40       | 3.33  | 1.10        | 0.388                | 0.057                                   | ( 0.349)  | 0.331           |
| 41       | 3.42  | 1.20        | 0.423                | 0.057                                   | ( 0.381)  | 0.366           |
| 42       | 3.50  | 1.30        | 0.459                | 0.057                                   | ( 0.413)  | 0.401           |
| 43       | 3.58  | 1.40        | 0.494                | 0.057                                   | ( 0.445)  | 0.437           |
| 43<br>44 | 3.67  | 1.40        | 0.494                | 0.057                                   | · · ·     |                 |
| 44<br>45 | 3.75  |             |                      |                                         |           | 0.437           |
|          | 3.83  | 1.50        | 0.529                | 0.057                                   | • •       | 0.472           |
| 46       |       | 1.50        | 0.529                | 0.057                                   | ( 0.476)  | 0.472           |
| 47       | 3.92  | 1.60        | 0.564                | 0.057                                   | ( 0.508)  | 0.507           |
| 48       | 4.00  | 1.60        | 0.564                | 0.057                                   | ( 0.508)  | 0.507           |
| 49       | 4.08  | 1.70        | 0.600                | 0.057                                   | ( 0.540)  | 0.543           |
| 50       | 4.17  | 1.80        | 0.635                | 0.057                                   | ( 0.572)  | 0.578           |
| 51       | 4.25  | 1.90        | 0.670                | 0.057                                   | ( 0.603)  | 0.613           |
| 52       | 4.33  | 2.00        | 0.706                | 0.057                                   | ( 0.635)  | 0.648           |
| 53       | 4.42  | 2.10        | 0.741                | 0.057                                   | ( 0.667)  | 0.684           |
| 54       | 4.50  | 2.10        | 0.741                | 0.057                                   | ( 0.667)  | 0.684           |
| 55       | 4.58  | 2.20        | 0.776                | 0.057                                   | ( 0.699)  | 0.719           |
| 56       | 4.67  | 2.30        | 0.811                | 0.057                                   | ( 0.730)  | 0.754           |
| 57       | 4.75  | 2.40        | 0.847                | 0.057                                   | ( 0.762)  | 0.789           |
| 58       | 4.83  | 2.40        | 0.847                | 0.057                                   | ( 0.762)  | 0.789           |
| 59       | 4.92  | 2.50        | 0.882                | 0.057                                   | ( 0.794)  | 0.825           |
| 60       | 5.00  | 2.60        | 0.917                | 0.057                                   | ( 0.826)  | 0.860           |
| 61       | 5.08  | 3.10        | 1.094                | 0.057                                   | ( 0.984)  | 1.036           |
| 62       | 5.17  | 3.60        | 1.270                | 0.057                                   | ( 1.143)  | 1.213           |
| 63       | 5.25  | 3.90        | 1.376                | 0.057                                   | ( 1.238)  | 1.319           |
| 64       | 5.33  | 4.20        | 1.482                | 0.057                                   | ( 1.334)  | 1.424           |
| 65       | 5.42  | 4.70        | 1.658                | 0.057                                   | ( 1.492)  | 1.601           |
| 66       | 5.50  | 5.60        | 1.976                | 0.057                                   |           | 1.918           |
| 67       | 5.58  | 1.90        | 0.670                | 0.057                                   | ( 0.603)  | 0.613           |
| 68       |       | 0.90        | 0.318                | 0.057                                   | • • •     | 0.260           |
| 69       | 5.75  | 0.60        | 0.212                | 0.057                                   | ( 0.191)  | 0.154           |
| 70       | 5.83  | 0.50        | 0.176                | 0.057                                   | ( 0.159)  | 0.119           |
| 71       | 5.92  | 0.30        | 0.106                | 0.057                                   | ( 0.095)  | 0.049           |
| 72       | 6.00  | 0.20        | 0.071                | 0.057                                   | ( 0.055)  | 0.013           |
| 12       | 0.00  |             | Rate Not Used        | )                                       | ( 0.004)  | 0.010           |
| c        | Sum = | 100.0       |                      | '                                       | Sum =     | 31.2            |
| -        |       |             | Effective rai        | nfoll 2                                 |           | 51.2            |
|          |       |             |                      |                                         | = 3.0(Ac. | <b>C+</b> )     |
|          |       |             |                      |                                         | = 5.0(AC. | FL)             |
|          | Total | SULL 1055   | = 0.34(              | 11)<br>Ac E+)                           |           |                 |
|          | Total | SULL LOSS   | = 0.400(<br>= 2.94(I | AL.FL)                                  |           |                 |
|          | Iotal | raintall    | = 2.94(I             | n)<br>Cubi - E                          |           |                 |
|          | ⊢100d | voiume =    | 131679.4<br>= 1740   | CUDIC Feet                              | - 4       |                 |
|          | Iotal | soll loss   | = 1740               | 4.0 Cubic Fee                           | ετ        |                 |
|          |       |             |                      |                                         |           |                 |
|          |       |             | of this hydr         |                                         |           |                 |
|          |       |             |                      |                                         |           |                 |
|          | +++++ | +++++++++++ | ******               | +++++++++++++++++++++++++++++++++++++++ | *****     | ·++++++++++++++ |
|          |       |             |                      |                                         |           |                 |

6-HOUR STORM Runoff Hydrograph

Hydrograph in 5 Minute intervals ((CFS))

| me(h+m) Vo   | Lume AC.FT       | Q(CFS) | ש<br> | 0.0  | 10.0 | 15.0 | 20<br> |
|--------------|------------------|--------|-------|------|------|------|--------|
| 0+ 5         | 0.0002           |        | Q     | ļ    |      | ļ    |        |
| 0+10         | 0.0011           | 0.13   | Q     |      |      |      |        |
| 0+15         | 0.0032           | 0.31   | Q     |      |      |      |        |
| 0+20         | 0.0071           | 0.57   | VQ    |      |      |      |        |
| 0+25         | 0.0132           | 0.88   | VQ    |      |      |      |        |
| 0+30         | 0.0212           | 1.16   | VQ    | Í    | Í    | Í    | Í      |
| 0+35         | 0.0308           |        | νų    | i    | i    | i    | i      |
| 0+40         | 0.0416           |        | v v   | i    | i    | i    | i      |
| 0+45         | 0.0535           |        | νų    | i i  | i    | i    | i      |
| 0+50         | 0.0664           |        | νų    | ł    | ł    | ł    | - i    |
| 0+55         | 0.0801           |        | ÎV Q  |      | ł    |      | ł      |
| 1+ 0         | 0.0946           |        | V Q   |      | ł    |      |        |
|              |                  |        |       |      |      |      |        |
| 1+ 5         | 0.1097           |        | V Q   |      |      |      |        |
| 1+10         | 0.1255           |        | V Q   |      |      |      | !      |
| 1+15         | 0.1421           |        | V Q   |      |      |      | . !    |
| 1+20         | 0.1595           | 2.53   | V Q   |      | ļ    |      |        |
| 1+25         | 0.1776           | 2.63   | VQ    |      |      |      |        |
| 1+30         | 0.1962           | 2.70   | VQ    |      |      |      |        |
| 1+35         | 0.2152           | 2.76   | V Q   |      | I    |      |        |
| 1+40         | 0.2346           | 2.81   | VQ    |      | I    |      | Í      |
| 1+45         | 0.2542           | 2.84   | Ι ν ϙ | İ    | İ    | ĺ    | i      |
| 1+50         | 0.2740           | 2.88   | V Q   | i    | i    | i    | i      |
| 1+55         | 0.2940           | 2.91   | l v Q | i    | i    | İ    | l      |
| 2+ 0         | 0.3143           | 2.95   | vQ    |      | ł    |      |        |
|              |                  |        | -     |      |      |      |        |
| 2+ 5         | 0.3349           | 2.99   | VQ    |      |      |      |        |
| 2+10         | 0.3558           | 3.04   | VQ    |      |      |      |        |
| 2+15         | 0.3772           | 3.10   | VQ    |      |      |      | . !    |
| 2+20         | 0.3991           | 3.18   | l VQ  |      | ļ    |      | ļ      |
| 2+25         | 0.4215           | 3.25   | VQ    |      |      |      |        |
| 2+30         | 0.4443           | 3.31   | VQ    |      |      |      |        |
| 2+35         | 0.4675           | 3.38   | Q     |      |      |      |        |
| 2+40         | 0.4911           | 3.42   | Q     |      |      |      |        |
| 2+45         | 0.5149           | 3.46   | į Q   | i    | i    | i    | i      |
| 2+50         | 0.5391           | 3.52   | ją    | i    | i    | i    | i      |
| 2+55         | 0.5638           | 3.59   | į g   |      | i    | i    | i      |
| 3+ 0         | 0.5891           | 3.67   | į     |      | i    | i i  | i      |
| 3+ 5         | 0.6150           | 3.76   |       | V    |      |      |        |
|              |                  |        | : .   |      |      |      |        |
| 3+10<br>2+15 | 0.6415           | 3.85   | : .   | V    |      |      |        |
| 3+15         | 0.6685           | 3.93   | : .   | V    | ļ    |      |        |
| 3+20         | 0.6962           | 4.02   |       | QV   |      | -    |        |
| 3+25         | 0.7246           | 4.12   |       | QV   |      |      | . !    |
| 3+30         | 0.7538           | 4.25   |       | QV   |      |      |        |
| 3+35         | 0.7842           | 4.41   | !     | Qν   | ļ    |      | ļ      |
| 3+40         | 0.8160           | 4.61   | ļ     | QV   | I    | ļ    |        |
| 3+45         | 0.8493           | 4.84   |       | Q V  |      |      |        |
| 3+50         | 0.8844           | 5.10   |       | QV   | I    |      |        |
| 3+55         | 0.9213           | 5.35   |       | Qν   | I    |      | Í      |
| 4+ 0         | 0.9598           | 5.60   | Ì     | ĮQV  | İ    | İ    | i      |
| 4+ 5         | 1.0000           | 5.83   | i     | Q V  | i    | i    | i      |
| 4+10         | 1.0418           | 6.08   | i     | QV   | i    | i    | i      |
| 4+15         | 1.0854           | 6.33   | i     | Q V  | i    |      |        |
| 4+15<br>4+20 | 1.1310           | 6.62   | 1     |      | 1    |      |        |
|              |                  |        |       | QV   |      |      |        |
| 4+25         | 1.1789           | 6.95   | 1     | Q V  |      |      |        |
| 4+30         | 1.2291           | 7.30   | 1     | Q V  |      |      | !      |
| 4+35         | 1.2819           | 7.66   | !     | QV   |      | ļ    | ļ      |
| 4+40         | 1.3371           | 8.02   |       | Į Q' |      |      |        |
| 4+45         | 1.3948           | 8.37   |       |      | V    |      |        |
| 4+50         | 1.4548           | 8.72   |       |      | 2 V  |      |        |
| 4+55         | 1.5173           | 9.07   | Ì     | İ    | ζų ν | İ    | i      |
| 5+ 0         | 1.5822           | 9.42   | i     | i    | Q V  | i    | i      |
| 5+ 5         | 1.6498           | 9.82   | i     | i    | Q V  | i    |        |
|              | 1.7208           | 10.32  | 1     |      | Q V  |      |        |
| 5+10<br>5+15 |                  |        | 1     |      |      |      |        |
| 5+15         | 1.7966           | 11.01  | 1     |      | QV   |      | ļ      |
| 5+20         | 1.8787<br>1.9688 | 11.92  |       | -    | QV   |      | ļ      |
| 5+25         |                  | 13.07  |       |      | Q    |      |        |



Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 12/07/21 File: PP1EUH24100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6443 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format \_\_\_\_\_ PILOT PERRIS EXIST 100-YR XO 12/7/21 -----Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) = 0.022 Sq. Mi. USER Entry of lag time in hours Lag time = 0.412 Hr. Lag time = 24.70 Min. 25% of lag time = 6.17 Min. 40% of lag time = 9.88 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 13.97 2.05 28.64 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1\*2] Area(Ac.)[1] 13.97 5.33 74.46 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 2.050(In) Area Averaged 100-Year Rainfall = 5.330(In) Point rain (area averaged) = 5.330(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 5.330(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 13,970 89.00 0.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F (In/Hr) (Dec.) (In/Hr) 0.057 1.000 0.057 AMC2 AMC-3 (In/Hr) (Dec.%) 89.0 95.6 0.057 0.000 Sum(F) = 0.057Area averaged mean soil loss (F) (In/Hr) = 0.057Minimum soil loss rate ((In/Hr)) = 0.029

-----

|                | Ur                | nit Hydrograph Da  | <br>ata                 |                       |
|----------------|-------------------|--------------------|-------------------------|-----------------------|
|                |                   |                    |                         |                       |
| Unit ti<br>(hr | .me period<br>`s) | Time % of lag      | Distribution<br>Graph % | Unit Hydrogı<br>(CFS) |
|                |                   |                    |                         |                       |
| 1              | 0.083             | 20.246             | 1.800                   | 0.25                  |
| 2              | 0.167             | 40.492<br>60.739   | 5.274                   | 0.74                  |
| 3              | 0.250             | 60.739             | 9.202                   | 1.296                 |
| 4              | 0.333             | 80.985             | 12.874                  | 1.81                  |
| 5              | 0.417             | 101.231            | 14.440                  | 2.03                  |
| 6              | 0.500             | 121.477            | 12.268                  | 1.72                  |
| 7              | 0.583             | 141.723            | 8.222                   | 1.158                 |
| 8              | 0.667             | 161.970            | 5.694                   | 0.802                 |
| 9              | 0.750             | 182.216            | 3.995                   | 0.562                 |
| 10             | 0.833             | 202.462            | 3.093                   | 0.43                  |
| 11             | 0.917             | 222.708            | 2.648                   | 0.373                 |
| 12             | 1.000             | 242.954            | 2.270                   | 0.320                 |
| 13             | 1.083             | 263.201            | 1.976                   | 0.278                 |
| 14             | 1.167             | 283.447            | 1.768                   | 0.249                 |
| 15             | 1.250             | 303.693            | 1.509                   | 0.21                  |
| 16             | 1.333             | 323.939            | 1.296                   | 0.18                  |
| 17             | 1.417             | 344.185            | 1.215                   | 0.17                  |
| 18             | 1.500             | 364.431            | 1.132                   | 0.159                 |
| 19             | 1.583             | 384.678            | 0.904                   | 0.12                  |
| 20             | 1.667             | 404.924            | 0.884                   | 0.124                 |
| 21             | 1.750             | 425.170            | 0.717                   | 0.10                  |
| 22             | 1.833             | 445.416            | 0.648                   | 0.093                 |
| 23             | 1.917             | 465.662            | 0.636                   | 0.090                 |
| 24             | 2.000             | 485.909            | 0.608                   | 0.080                 |
| 25             | 2.083             | 506.155            | 0.600                   | 0.084                 |
| 26             | 2.167             | 526.401            | 0.485                   | 0.06                  |
| 27             | 2.250             | 546.647            | 0.445                   | 0.063                 |
| 28             | 2.333             | 566.893            | 0.417                   | 0.05                  |
| 29             | 2.417             | 587.140            | 0.366                   | 0.05                  |
| 30             | 2.500             | 607.386            | 0.359                   | 0.05                  |
| 31             | 2.583             | 627.632            | 0.300                   | 0.042                 |
| 32             | 2.667             | 647.878            | 0.283                   | 0.04                  |
| 33             | 2.750             | 668.124            | 0.251                   | 0.03                  |
| 34             | 2.833             | 688.371            | 0.203                   | 0.029                 |
| 35             | 2.917             | 708.617            | 0.202                   | 0.02                  |
| 36             | 3.000             | 728.863            | 0.202                   | 0.029                 |
| 37             | 3.083             | 749.109            | 0.202                   | 0.02                  |
| 38             | 3.167             | 769.355            | 0.202                   | 0.029                 |
| 39             | 3.250             | 700 600            | 0.202                   | 0.02                  |
| 40             | 3.333             | 789.602<br>809.848 | 0.205                   | 0.02                  |
| 10             | 2.222             |                    |                         | im= 14.079            |

| Unit | it Time Pattern Storm Rain |         | L       | oss rate | Effective |       |         |
|------|----------------------------|---------|---------|----------|-----------|-------|---------|
|      | (Hr.)                      | Percent | (In/Hr) |          | Max       | Low   | (In/Hr) |
| 1    | 0.08                       | 0.07    | 0.043   | (        | 0.101)    | 0.038 | 0.004   |
| 2    | 0.17                       | 0.07    | 0.043   | (        | 0.101)    | 0.038 | 0.004   |
| 3    | 0.25                       | 0.07    | 0.043   | (        | 0.101)    | 0.038 | 0.004   |
| 4    | 0.33                       | 0.10    | 0.064   | (        | 0.100)    | 0.058 | 0.006   |
| 5    | 0.42                       | 0.10    | 0.064   | (        | 0.100)    | 0.058 | 0.006   |
| 6    | 0.50                       | 0.10    | 0.064   | (        | 0.099)    | 0.058 | 0.006   |
| 7    | 0.58                       | 0.10    | 0.064   | (        | 0.099)    | 0.058 | 0.006   |
| 8    | 0.67                       | 0.10    | 0.064   | (        | 0.099)    | 0.058 | 0.006   |
| 9    | 0.75                       | 0.10    | 0.064   | (        | 0.098)    | 0.058 | 0.006   |
| 10   | 0.83                       | 0.13    | 0.085   | (        | 0.098)    | 0.077 | 0.009   |
| 11   | 0.92                       | 0.13    | 0.085   | (        | 0.098)    | 0.077 | 0.009   |
| 12   | 1.00                       | 0.13    | 0.085   | (        | 0.097)    | 0.077 | 0.009   |

| 13 | 1.08 | 0.10 | 0.064 | ( | 0.097) | 0.058    | 0.006 |
|----|------|------|-------|---|--------|----------|-------|
|    |      |      |       |   |        |          |       |
| 14 | 1.17 | 0.10 | 0.064 | ( | 0.096) | 0.058    | 0.006 |
| 15 | 1.25 | 0.10 | 0.064 | ( | 0.096) | 0.058    | 0.006 |
| 16 | 1.33 | 0.10 | 0.064 | Ì | 0.096) | 0.058    | 0.006 |
|    |      |      |       |   |        |          |       |
| 17 | 1.42 | 0.10 | 0.064 | ( | 0.095) | 0.058    | 0.006 |
| 18 | 1.50 | 0.10 | 0.064 | ( | 0.095) | 0.058    | 0.006 |
| 19 | 1.58 | 0.10 | 0.064 | Ì | 0.094) | 0.058    | 0.006 |
|    |      |      |       |   | ,      |          |       |
| 20 | 1.67 | 0.10 | 0.064 | ( | 0.094) | 0.058    | 0.006 |
| 21 | 1.75 | 0.10 | 0.064 | ( | 0.094) | 0.058    | 0.006 |
| 22 | 1.83 | 0.13 | 0.085 |   | 0.093) | 0.077    | 0.009 |
|    |      |      |       | ( | ,      |          |       |
| 23 | 1.92 | 0.13 | 0.085 | ( | 0.093) | 0.077    | 0.009 |
| 24 | 2.00 | 0.13 | 0.085 | ( | 0.093) | 0.077    | 0.009 |
|    |      |      |       |   | ,      |          |       |
| 25 | 2.08 | 0.13 | 0.085 | ( | 0.092) | 0.077    | 0.009 |
| 26 | 2.17 | 0.13 | 0.085 | ( | 0.092) | 0.077    | 0.009 |
| 27 | 2.25 | 0.13 | 0.085 | Ì | 0.091) | 0.077    | 0.009 |
|    |      |      |       |   | ,      |          |       |
| 28 | 2.33 | 0.13 | 0.085 | ( | 0.091) | 0.077    | 0.009 |
| 29 | 2.42 | 0.13 | 0.085 | ( | 0.091) | 0.077    | 0.009 |
| 30 | 2.50 | 0.13 | 0.085 | ì | 0.090) | 0.077    | 0.009 |
|    |      |      |       | ( | ,      |          |       |
| 31 | 2.58 | 0.17 | 0.107 |   | 0.090  | ( 0.096) | 0.017 |
| 32 | 2.67 | 0.17 | 0.107 |   | 0.090  | ( 0.096) | 0.017 |
| 33 | 2.75 | 0.17 |       |   | 0.089  | 2 2      |       |
|    |      |      | 0.107 |   |        | • •      | 0.017 |
| 34 | 2.83 | 0.17 | 0.107 |   | 0.089  | ( 0.096) | 0.018 |
| 35 | 2.92 | 0.17 | 0.107 |   | 0.088  | ( 0.096) | 0.018 |
|    |      |      |       |   |        | • •      |       |
| 36 | 3.00 | 0.17 | 0.107 |   | 0.088  | ( 0.096) | 0.018 |
| 37 | 3.08 | 0.17 | 0.107 |   | 0.088  | ( 0.096) | 0.019 |
| 38 | 3.17 | 0.17 | 0.107 |   | 0.087  | ( 0.096) | 0.019 |
|    |      |      |       |   |        |          |       |
| 39 | 3.25 | 0.17 | 0.107 |   | 0.087  | ( 0.096) | 0.020 |
| 40 | 3.33 | 0.17 | 0.107 |   | 0.087  | ( 0.096) | 0.020 |
| 41 | 3.42 | 0.17 | 0.107 |   | 0.086  | ( 0.096) | 0.020 |
|    |      |      |       |   |        | 2 2      |       |
| 42 | 3.50 | 0.17 | 0.107 |   | 0.086  | ( 0.096) | 0.021 |
| 43 | 3.58 | 0.17 | 0.107 |   | 0.086  | ( 0.096) | 0.021 |
| 44 | 3.67 | 0.17 |       |   |        |          |       |
|    |      |      | 0.107 |   | 0.085  | • •      | 0.021 |
| 45 | 3.75 | 0.17 | 0.107 |   | 0.085  | ( 0.096) | 0.022 |
| 46 | 3.83 | 0.20 | 0.128 |   | 0.085  | ( 0.115) | 0.043 |
|    |      |      |       |   |        |          |       |
| 47 | 3.92 | 0.20 | 0.128 |   | 0.084  | ( 0.115) | 0.044 |
| 48 | 4.00 | 0.20 | 0.128 |   | 0.084  | ( 0.115) | 0.044 |
| 49 | 4.08 | 0.20 | 0.128 |   | 0.083  | ( 0.115) | 0.044 |
|    |      |      |       |   |        |          |       |
| 50 | 4.17 | 0.20 | 0.128 |   | 0.083  | ( 0.115) | 0.045 |
| 51 | 4.25 | 0.20 | 0.128 |   | 0.083  | ( 0.115) | 0.045 |
| 52 |      |      |       |   |        | • •      |       |
|    | 4.33 | 0.23 | 0.149 |   | 0.082  | ( 0.134) | 0.067 |
| 53 | 4.42 | 0.23 | 0.149 |   | 0.082  | ( 0.134) | 0.067 |
| 54 | 4.50 | 0.23 | 0.149 |   | 0.082  | ( 0.134) | 0.068 |
|    |      |      |       |   |        | 2 2      |       |
| 55 | 4.58 | 0.23 | 0.149 |   | 0.081  | ( 0.134) | 0.068 |
| 56 | 4.67 | 0.23 | 0.149 |   | 0.081  | ( 0.134) | 0.068 |
| 57 | 4.75 | 0.23 | 0.149 |   | 0.081  | ( 0.134) | 0.069 |
|    |      |      |       |   |        | 2 2      |       |
| 58 | 4.83 | 0.27 | 0.171 |   | 0.080  | ( 0.153) | 0.090 |
| 59 | 4.92 | 0.27 | 0.171 |   | 0.080  | ( 0.153) | 0.091 |
|    |      |      |       |   |        |          | 0.091 |
| 60 | 5.00 | 0.27 | 0.171 |   | 0.080  | ( 0.153) |       |
| 61 | 5.08 | 0.20 | 0.128 |   | 0.079  | ( 0.115) | 0.049 |
| 62 | 5.17 | 0.20 | 0.128 |   | 0.079  | ( 0.115) | 0.049 |
|    |      |      |       |   |        |          |       |
| 63 | 5.25 | 0.20 | 0.128 |   | 0.079  | ( 0.115) | 0.049 |
| 64 | 5.33 | 0.23 | 0.149 |   | 0.078  | ( 0.134) | 0.071 |
| 65 | 5.42 | 0.23 | 0.149 |   | 0.078  | ( 0.134) | 0.071 |
| 66 | 5.50 | 0.23 | 0.149 |   | 0.078  | ( 0.134) | 0.072 |
|    |      |      |       |   |        |          |       |
| 67 | 5.58 | 0.27 | 0.171 |   | 0.077  | ( 0.153) | 0.093 |
| 68 | 5.67 | 0.27 | 0.171 |   | 0.077  | ( 0.153) | 0.094 |
| 69 | 5.75 | 0.27 | 0.171 |   | 0.077  |          | 0.094 |
|    |      |      |       |   |        |          |       |
| 70 | 5.83 | 0.27 | 0.171 |   | 0.076  | ( 0.153) | 0.094 |
| 71 | 5.92 | 0.27 | 0.171 |   | 0.076  | ( 0.153) | 0.095 |
| 72 |      |      |       |   |        |          |       |
|    | 6.00 | 0.27 | 0.171 |   | 0.076  | ( 0.153) | 0.095 |
| 73 | 6.08 | 0.30 | 0.192 |   | 0.075  | ( 0.173) | 0.117 |
| 74 | 6.17 | 0.30 | 0.192 |   | 0.075  | ( 0.173) | 0.117 |
| 75 | 6.25 | 0.30 |       |   |        |          |       |
|    |      |      | 0.192 |   | 0.074  |          | 0.117 |
| 76 | 6.33 | 0.30 | 0.192 |   | 0.074  | ( 0.173) | 0.118 |
| 77 | 6.42 | 0.30 | 0.192 |   | 0.074  | ( 0.173) | 0.118 |
|    |      |      |       |   |        |          |       |
| 78 | 6.50 | 0.30 | 0.192 |   | 0.074  | ( 0.173) | 0.118 |
| 79 | 6.58 | 0.33 | 0.213 |   | 0.073  | ( 0.192) | 0.140 |
| 80 | 6.67 | 0.33 | 0.213 |   | 0.073  | ( 0.192) | 0.140 |
|    |      |      |       |   |        |          |       |
| 81 | 6.75 | 0.33 | 0.213 |   | 0.073  | ( 0.192) | 0.141 |
| 82 | 6.83 | 0.33 | 0.213 |   | 0.072  | ( 0.192) | 0.141 |
| 83 | 6.92 | 0.33 | 0.213 |   | 0.072  | ( 0.192) | 0.141 |
|    |      |      |       |   |        |          |       |
| 84 | 7.00 | 0.33 | 0.213 |   | 0.072  | ( 0.192) | 0.142 |
| 85 | 7.08 | 0.33 | 0.213 |   | 0.071  | ( 0.192) | 0.142 |
|    |      |      |       |   |        |          | =     |

| 86  | 7.17  | 0.33 | 0.213 | 0.071 | ( 0.192) | 0.142 |
|-----|-------|------|-------|-------|----------|-------|
| 87  | 7.25  | 0.33 | 0.213 | 0.071 | ( 0.192) | 0.143 |
| 88  | 7.33  | 0.37 | 0.235 | 0.070 | ( 0.211) | 0.164 |
|     |       |      |       |       |          |       |
| 89  | 7.42  | 0.37 | 0.235 | 0.070 | ( 0.211) | 0.165 |
| 90  | 7.50  | 0.37 | 0.235 | 0.070 | ( 0.211) | 0.165 |
| 91  | 7.58  | 0.40 | 0.256 | 0.069 | ( 0.230) | 0.187 |
| 92  | 7.67  | 0.40 | 0.256 | 0.069 | ( 0.230) | 0.187 |
| 93  | 7.75  | 0.40 | 0.256 | 0.069 | ( 0.230) | 0.187 |
|     |       |      |       |       |          |       |
| 94  | 7.83  | 0.43 | 0.277 | 0.068 | ( 0.249) | 0.209 |
| 95  | 7.92  | 0.43 | 0.277 | 0.068 | ( 0.249) | 0.209 |
| 96  | 8.00  | 0.43 | 0.277 | 0.068 | ( 0.249) | 0.209 |
| 97  | 8.08  | 0.50 | 0.320 | 0.067 | ( 0.288) | 0.252 |
| 98  | 8.17  | 0.50 | 0.320 | 0.067 | ( 0.288) | 0.253 |
| 99  | 8.25  | 0.50 | 0.320 | 0.067 |          | 0.253 |
|     |       |      |       |       |          |       |
| 100 | 8.33  | 0.50 | 0.320 | 0.066 | ( 0.288) | 0.253 |
| 101 | 8.42  | 0.50 | 0.320 | 0.066 | ( 0.288) | 0.254 |
| 102 | 8.50  | 0.50 | 0.320 | 0.066 | ( 0.288) | 0.254 |
| 103 | 8.58  | 0.53 | 0.341 | 0.066 | ( 0.307) | 0.276 |
| 104 | 8.67  | 0.53 | 0.341 | 0.065 | ( 0.307) | 0.276 |
|     |       |      |       |       |          |       |
| 105 | 8.75  | 0.53 | 0.341 | 0.065 | ( 0.307) | 0.276 |
| 106 | 8.83  | 0.57 | 0.362 | 0.065 | ( 0.326) | 0.298 |
| 107 | 8.92  | 0.57 | 0.362 | 0.064 | ( 0.326) | 0.298 |
| 108 | 9.00  | 0.57 | 0.362 | 0.064 | ( 0.326) | 0.298 |
| 109 | 9.08  | 0.63 | 0.405 | 0.064 | ( 0.365) | 0.341 |
|     |       |      |       |       |          |       |
| 110 | 9.17  | 0.63 | 0.405 | 0.063 | ( 0.365) | 0.342 |
| 111 | 9.25  | 0.63 | 0.405 | 0.063 | ( 0.365) | 0.342 |
| 112 | 9.33  | 0.67 | 0.426 | 0.063 | ( 0.384) | 0.364 |
| 113 | 9.42  | 0.67 | 0.426 | 0.062 | ( 0.384) | 0.364 |
| 114 | 9.50  | 0.67 | 0.426 | 0.062 | ( 0.384) | 0.364 |
| 115 | 9.58  | 0.70 | 0.448 | 0.062 |          | 0.386 |
|     |       |      |       |       |          |       |
| 116 | 9.67  | 0.70 | 0.448 | 0.062 | ( 0.403) | 0.386 |
| 117 | 9.75  | 0.70 | 0.448 | 0.061 | ( 0.403) | 0.386 |
| 118 | 9.83  | 0.73 | 0.469 | 0.061 | ( 0.422) | 0.408 |
| 119 | 9.92  | 0.73 | 0.469 | 0.061 | ( 0.422) | 0.408 |
| 120 | 10.00 | 0.73 | 0.469 | 0.060 | ( 0.422) | 0.409 |
|     |       |      |       |       |          |       |
| 121 | 10.08 | 0.50 | 0.320 | 0.060 | ( 0.288) | 0.260 |
| 122 | 10.17 | 0.50 | 0.320 | 0.060 | ( 0.288) | 0.260 |
| 123 | 10.25 | 0.50 | 0.320 | 0.060 | ( 0.288) | 0.260 |
| 124 | 10.33 | 0.50 | 0.320 | 0.059 | ( 0.288) | 0.261 |
| 125 | 10.42 | 0.50 | 0.320 | 0.059 | ( 0.288) | 0.261 |
| 126 | 10.50 | 0.50 | 0.320 | 0.059 | ( 0.288) | 0.261 |
|     |       |      |       |       |          |       |
| 127 | 10.58 | 0.67 | 0.426 | 0.058 | ( 0.384) | 0.368 |
| 128 | 10.67 | 0.67 | 0.426 | 0.058 | ( 0.384) | 0.368 |
| 129 | 10.75 | 0.67 | 0.426 | 0.058 | ( 0.384) | 0.369 |
| 130 | 10.83 | 0.67 | 0.426 | 0.058 | ( 0.384) | 0.369 |
| 131 | 10.92 | 0.67 | 0.426 | 0.057 | ( 0.384) | 0.369 |
| 132 | 11.00 | 0.67 | 0.426 | 0.057 | ( 0.384) | 0.369 |
|     |       |      |       |       |          |       |
| 133 | 11.08 | 0.63 | 0.405 | 0.057 | ( 0.365) | 0.348 |
| 134 | 11.17 | 0.63 | 0.405 | 0.056 | ( 0.365) | 0.349 |
| 135 | 11.25 | 0.63 | 0.405 | 0.056 | ( 0.365) | 0.349 |
| 136 | 11.33 | 0.63 | 0.405 | 0.056 | ( 0.365) | 0.349 |
| 137 | 11.42 | 0.63 | 0.405 | 0.056 | ( 0.365) | 0.349 |
| 138 | 11.50 | 0.63 | 0.405 | 0.055 |          | 0.350 |
|     |       |      |       |       |          |       |
| 139 | 11.58 | 0.57 | 0.362 | 0.055 | ( 0.326) | 0.307 |
| 140 | 11.67 | 0.57 | 0.362 | 0.055 | ( 0.326) | 0.308 |
| 141 | 11.75 | 0.57 | 0.362 | 0.054 | ( 0.326) | 0.308 |
| 142 | 11.83 | 0.60 | 0.384 | 0.054 | ( 0.345) | 0.330 |
| 143 | 11.92 | 0.60 | 0.384 | 0.054 | ( 0.345) | 0.330 |
| 144 | 12.00 | 0.60 | 0.384 | 0.054 |          | 0.330 |
|     |       |      |       |       |          |       |
| 145 | 12.08 | 0.83 | 0.533 | 0.053 | ( 0.480) | 0.480 |
| 146 | 12.17 | 0.83 | 0.533 | 0.053 | ( 0.480) | 0.480 |
| 147 | 12.25 | 0.83 | 0.533 | 0.053 | ( 0.480) | 0.480 |
| 148 | 12.33 | 0.87 | 0.554 | 0.053 | ( 0.499) | 0.502 |
| 149 | 12.42 | 0.87 | 0.554 | 0.052 | ( 0.499) | 0.502 |
| 150 | 12.50 | 0.87 | 0.554 | 0.052 | ( 0.499) | 0.502 |
|     |       |      |       |       |          |       |
| 151 | 12.58 | 0.93 | 0.597 | 0.052 | ( 0.537) | 0.545 |
| 152 | 12.67 | 0.93 | 0.597 | 0.052 | ( 0.537) | 0.545 |
| 153 | 12.75 | 0.93 | 0.597 | 0.051 | ( 0.537) | 0.546 |
| 154 | 12.83 | 0.97 | 0.618 | 0.051 | ( 0.556) | 0.567 |
| 155 | 12.92 | 0.97 | 0.618 | 0.051 | ( 0.556) | 0.567 |
| 156 | 13.00 | 0.97 | 0.618 | 0.051 |          | 0.568 |
|     |       |      |       |       |          |       |
| 157 | 13.08 | 1.13 | 0.725 | 0.050 | ( 0.652) | 0.675 |
| 158 | 13.17 | 1.13 | 0.725 | 0.050 | ( 0.652) | 0.675 |
|     |       |      |       |       |          |       |

| 159 | 13.25 | 1.13    | 0.725 | 0.050 | ( 0.652)          | 0.675 |
|-----|-------|---------|-------|-------|-------------------|-------|
|     |       |         |       |       |                   |       |
| 160 | 13.33 | 1.13    | 0.725 | 0.049 | ( 0.652)          | 0.675 |
| 161 | 13.42 | 1.13    | 0.725 | 0.049 | ( 0.652)          | 0.676 |
| 162 | 13.50 | 1.13    | 0.725 | 0.049 | ( 0.652)          | 0.676 |
|     |       |         |       |       |                   |       |
| 163 | 13.58 | 0.77    | 0.490 | 0.049 | ( 0.441)          | 0.442 |
| 164 | 13.67 | 0.77    | 0.490 | 0.048 | ( 0.441)          | 0.442 |
| 165 | 13.75 | 0.77    | 0.490 | 0.048 | ( 0.441)          | 0.442 |
|     |       |         |       |       |                   |       |
| 166 | 13.83 | 0.77    | 0.490 | 0.048 | ( 0.441)          | 0.442 |
| 167 | 13.92 | 0.77    | 0.490 | 0.048 | ( 0.441)          | 0.443 |
| 168 | 14.00 | 0.77    | 0.490 | 0.048 | ( 0.441)          | 0.443 |
|     |       |         |       |       | : :               |       |
| 169 | 14.08 | 0.90    | 0.576 | 0.047 | ( 0.518)          | 0.528 |
| 170 | 14.17 | 0.90    | 0.576 | 0.047 | ( 0.518)          | 0.529 |
| 171 | 14.25 | 0.90    | 0.576 | 0.047 | ( 0.518)          | 0.529 |
|     |       |         |       |       |                   |       |
| 172 | 14.33 | 0.87    | 0.554 | 0.047 | ( 0.499)          | 0.508 |
| 173 | 14.42 | 0.87    | 0.554 | 0.046 | ( 0.499)          | 0.508 |
| 174 |       |         |       |       |                   |       |
|     | 14.50 | 0.87    | 0.554 | 0.046 | ( 0.499)          | 0.508 |
| 175 | 14.58 | 0.87    | 0.554 | 0.046 | ( 0.499)          | 0.508 |
| 176 | 14.67 | 0.87    | 0.554 | 0.046 | ( 0.499)          | 0.509 |
|     |       |         |       |       |                   |       |
| 177 | 14.75 | 0.87    | 0.554 | 0.045 | ( 0.499)          | 0.509 |
| 178 | 14.83 | 0.83    | 0.533 | 0.045 | ( 0.480)          | 0.488 |
| 179 | 14.92 | 0.83    | 0.533 | 0.045 | (0.480)           | 0.488 |
|     |       |         |       |       |                   |       |
| 180 | 15.00 | 0.83    | 0.533 | 0.045 | ( 0.480)          | 0.488 |
| 181 | 15.08 | 0.80    | 0.512 | 0.044 | ( 0.460)          | 0.467 |
| 182 | 15.17 | 0.80    | 0.512 | 0.044 | ( 0.460)          | 0.467 |
|     |       |         |       |       |                   |       |
| 183 | 15.25 | 0.80    | 0.512 | 0.044 | ( 0.460)          | 0.468 |
| 184 | 15.33 | 0.77    | 0.490 | 0.044 | ( 0.441)          | 0.447 |
| 185 | 15.42 | 0.77    | 0.490 | 0.044 | ( 0.441)          | 0.447 |
|     |       |         |       |       |                   |       |
| 186 | 15.50 | 0.77    | 0.490 | 0.043 | ( 0.441)          | 0.447 |
| 187 | 15.58 | 0.63    | 0.405 | 0.043 | ( 0.365)          | 0.362 |
| 188 |       | 0.63    |       |       |                   |       |
|     | 15.67 |         | 0.405 | 0.043 | · /               | 0.362 |
| 189 | 15.75 | 0.63    | 0.405 | 0.043 | ( 0.365)          | 0.362 |
| 190 | 15.83 | 0.63    | 0.405 | 0.042 | ( 0.365)          | 0.363 |
|     |       |         |       |       |                   |       |
| 191 | 15.92 | 0.63    | 0.405 | 0.042 | ( 0.365)          | 0.363 |
| 192 | 16.00 | 0.63    | 0.405 | 0.042 | ( 0.365)          | 0.363 |
| 193 | 16.08 | 0.13    | 0.085 | 0.042 | ( 0.077)          | 0.043 |
|     |       |         |       |       |                   |       |
| 194 | 16.17 | 0.13    | 0.085 | 0.042 | ( 0.077)          | 0.044 |
| 195 | 16.25 | 0.13    | 0.085 | 0.041 | ( 0.077)          | 0.044 |
| 196 | 16.33 | 0.13    | 0.085 | 0.041 | ( 0.077)          | 0.044 |
|     |       |         |       |       | : :               |       |
| 197 | 16.42 | 0.13    | 0.085 | 0.041 | ( 0.077)          | 0.044 |
| 198 | 16.50 | 0.13    | 0.085 | 0.041 | ( 0.077)          | 0.045 |
| 199 | 16.58 | 0.10    | 0.064 | 0.041 | ( 0.058)          | 0.023 |
|     |       |         |       |       |                   |       |
| 200 | 16.67 | 0.10    | 0.064 | 0.040 | ( 0.058)          | 0.024 |
| 201 | 16.75 | 0.10    | 0.064 | 0.040 | ( 0.058)          | 0.024 |
| 202 | 16.83 | 0.10    | 0.064 | 0.040 |                   | 0.024 |
|     |       |         |       |       | • •               |       |
| 203 | 16.92 | 0.10    | 0.064 | 0.040 | ( 0.058)          | 0.024 |
| 204 | 17.00 | 0.10    | 0.064 | 0.040 | ( 0.058)          | 0.024 |
| 205 | 17.08 | 0.17    | 0.107 | 0.039 | ( 0.096)          | 0.067 |
|     |       |         |       |       |                   |       |
| 206 | 17.17 | 0.17    | 0.107 | 0.039 | ( 0.096)          | 0.067 |
| 207 | 17.25 | 0.17    | 0.107 | 0.039 | ( 0.096)          | 0.068 |
|     |       |         |       |       |                   |       |
| 208 | 17.33 | 0.17    | 0.107 | 0.039 | ( 0.096)          | 0.068 |
| 209 | 17.42 | 0.17    | 0.107 | 0.039 | ( 0.096)          | 0.068 |
| 210 | 17.50 | 0.17    | 0.107 | 0.038 | ( 0.096)          | 0.068 |
| 211 | 17.58 | 0.17    | 0.107 | 0.038 | ( 0.096)          | 0.068 |
|     |       |         |       |       |                   |       |
| 212 | 17.67 | 0.17    | 0.107 | 0.038 | ( 0.096)          | 0.069 |
| 213 | 17.75 | 0.17    | 0.107 | 0.038 | ( 0.096)          | 0.069 |
| 214 | 17.83 | 0.13    | 0.085 | 0.038 | ( 0.077)          | 0.048 |
|     |       |         |       |       |                   |       |
| 215 | 17.92 | 0.13    | 0.085 | 0.037 | ( 0.077)          | 0.048 |
| 216 | 18.00 | 0.13    | 0.085 | 0.037 | ( 0.077)          | 0.048 |
| 217 | 18.08 | 0.13    | 0.085 | 0.037 |                   | 0.048 |
|     |       |         |       |       | : :               |       |
| 218 | 18.17 | 0.13    | 0.085 | 0.037 | ( 0.077)          | 0.048 |
| 219 | 18.25 | 0.13    | 0.085 | 0.037 | ( 0.077)          | 0.049 |
| 220 | 18.33 | 0.13    | 0.085 | 0.036 | ( 0.077)          | 0.049 |
|     |       |         |       |       |                   |       |
| 221 | 18.42 | 0.13    | 0.085 | 0.036 | ( 0.077)          | 0.049 |
| 222 | 18.50 | 0.13    | 0.085 | 0.036 | ( 0.077)          | 0.049 |
| 223 | 18.58 | 0.10    | 0.064 | 0.036 |                   | 0.028 |
|     |       |         |       |       | : :               |       |
| 224 | 18.67 | 0.10    | 0.064 | 0.036 | ( 0.058)          | 0.028 |
| 225 | 18.75 | 0.10    | 0.064 |       | ( 0.058)          | 0.028 |
| 226 |       |         |       |       |                   |       |
|     | 18.83 | 0.07    | 0.043 | 0.035 | ( 0.038)          | 0.007 |
| 227 | 18.92 | 0.07    | 0.043 | 0.035 | ( 0.038)          | 0.007 |
| 228 | 19.00 | 0.07    | 0.043 | 0.035 | ( 0.038)          | 0.008 |
|     |       |         |       |       | : :               |       |
| 229 | 19.08 | 0.10    | 0.064 | 0.035 | ( 0.058)          | 0.029 |
| 230 | 19.17 | 0.10    | 0.064 | 0.035 | ( 0.058)          | 0.029 |
| 231 | 19.25 | 0.10    | 0.064 |       | ( 0.058)          | 0.029 |
|     |       | · · - • |       |       | · · · · · · · · / |       |

| 232        | 19.33          | 0.13         | 0.085                   | 0.034           | (          | 0.077)           | 0.051          |
|------------|----------------|--------------|-------------------------|-----------------|------------|------------------|----------------|
| 233        | 19.42          | 0.13         | 0.085                   | 0.034           | Ì          | 0.077)           | 0.051          |
| 234        | 19.50          | 0.13         | 0.085                   | 0.034           | (          | 0.077)           | 0.051          |
| 235        | 19.58          | 0.10         | 0.064                   | 0.034           | (          | 0.058)           | 0.030          |
| 236<br>237 | 19.67          | 0.10<br>0.10 | 0.064<br>0.064          | 0.034<br>0.034  | (          | 0.058)<br>0.058) | 0.030<br>0.030 |
| 237        | 19.75<br>19.83 | 0.10         | 0.043                   | 0.034           | (          | 0.038)           | 0.009          |
| 239        | 19.92          | 0.07         | 0.043                   | 0.033           | (          | 0.038)           | 0.009          |
| 240        | 20.00          | 0.07         | 0.043                   | 0.033           | Ì          | 0.038)           | 0.009          |
| 241        | 20.08          | 0.10         | 0.064                   | 0.033           | Ì          | 0.058)           | 0.031          |
| 242        | 20.17          | 0.10         | 0.064                   | 0.033           | Ì          | 0.058)           | 0.031          |
| 243        | 20.25          | 0.10         | 0.064                   | 0.033           | (          | 0.058)           | 0.031          |
| 244        | 20.33          | 0.10         | 0.064                   | 0.033           | (          | 0.058)           | 0.031          |
| 245        | 20.42          | 0.10         | 0.064                   | 0.032           | (          | 0.058)           | 0.031          |
| 246        | 20.50          | 0.10         | 0.064                   | 0.032           | (          | 0.058)           | 0.032          |
| 247        | 20.58          | 0.10         | 0.064                   | 0.032           | (          | 0.058)           | 0.032          |
| 248<br>249 | 20.67          | 0.10         | 0.064                   | 0.032           | (          | 0.058)<br>0.058) | 0.032          |
| 249<br>250 | 20.75<br>20.83 | 0.10<br>0.07 | 0.064<br>0.043          | 0.032<br>0.032  | (          | 0.038)           | 0.032<br>0.011 |
| 251        | 20.05          | 0.07         | 0.043                   | 0.032           | (          | 0.038)           | 0.011          |
| 252        | 21.00          | 0.07         | 0.043                   | 0.032           | Ì          | 0.038)           | 0.011          |
| 253        | 21.08          | 0.10         | 0.064                   | 0.031           | ì          | 0.058)           | 0.033          |
| 254        | 21.17          | 0.10         | 0.064                   | 0.031           | Ì          | 0.058)           | 0.033          |
| 255        | 21.25          | 0.10         | 0.064                   | 0.031           | Ì          | 0.058)           | 0.033          |
| 256        | 21.33          | 0.07         | 0.043                   | 0.031           | (          | 0.038)           | 0.012          |
| 257        | 21.42          | 0.07         | 0.043                   | 0.031           | (          | 0.038)           | 0.012          |
| 258        | 21.50          | 0.07         | 0.043                   | 0.031           | (          | 0.038)           | 0.012          |
| 259        | 21.58          | 0.10         | 0.064                   | 0.031           | (          | 0.058)           | 0.033          |
| 260<br>261 | 21.67<br>21.75 | 0.10         | 0.064                   | 0.031           | (          | 0.058)           | 0.033          |
| 261        | 21.75          | 0.10<br>0.07 | 0.064<br>0.043          | 0.031<br>0.030  | (          | 0.058)<br>0.038) | 0.033<br>0.012 |
| 263        | 21.92          | 0.07         | 0.043                   | 0.030           | (          | 0.038)           | 0.012          |
| 264        | 22.00          | 0.07         | 0.043                   | 0.030           | Ì          | 0.038)           | 0.012          |
| 265        | 22.08          | 0.10         | 0.064                   | 0.030           | ì          | 0.058)           | 0.034          |
| 266        | 22.17          | 0.10         | 0.064                   | 0.030           | Ì          | 0.058)           | 0.034          |
| 267        | 22.25          | 0.10         | 0.064                   | 0.030           | (          | 0.058)           | 0.034          |
| 268        | 22.33          | 0.07         | 0.043                   | 0.030           | (          | 0.038)           | 0.013          |
| 269        | 22.42          | 0.07         | 0.043                   | 0.030           | (          | 0.038)           | 0.013          |
| 270        | 22.50          | 0.07         | 0.043                   | 0.030           | (          | 0.038)           | 0.013          |
| 271        | 22.58          | 0.07         | 0.043                   | 0.030           | (          | 0.038)           | 0.013          |
| 272<br>273 | 22.67<br>22.75 | 0.07<br>0.07 | 0.043<br>0.043          | 0.029<br>0.029  | (          | 0.038)<br>0.038) | 0.013<br>0.013 |
| 273        | 22.83          | 0.07         | 0.043                   | 0.029           | (          | 0.038)           | 0.013          |
| 275        | 22.92          | 0.07         | 0.043                   | 0.029           | Ì          | 0.038)           | 0.013          |
| 276        | 23.00          | 0.07         | 0.043                   | 0.029           | ì          | 0.038)           | 0.013          |
| 277        | 23.08          | 0.07         | 0.043                   | 0.029           | Ì          | 0.038)           | 0.014          |
| 278        | 23.17          | 0.07         | 0.043                   | 0.029           | (          | 0.038)           | 0.014          |
|            | 23.25          |              |                         | 0.029           | (          | 0.038)           | 0.014          |
|            | 23.33          | 0.07         | 0.043                   | 0.029           | •          | 0.038)           | 0.014          |
|            | 23.42          | 0.07         | 0.043                   | 0.029           | •          | 0.038)           | 0.014          |
|            | 23.50          | 0.07<br>0.07 | 0.043                   | 0.029           |            | 0.038)           | 0.014          |
|            | 23.58          | 0.0/<br>0.07 | 0.043<br>0.043          | 0.029           |            | 0.038)<br>0.038) | 0.014<br>0.014 |
| 285        | 23.07          | 0.07<br>0.07 | 0.043                   | 0.029<br>0.029  |            | 0.038)           | 0.014          |
|            |                | 0.07         |                         | 0.029           |            |                  | 0.014          |
| 287        | 23.92          | 0.07         | 0.043                   | 0.029           |            | 0.038)           | 0.014          |
|            |                | 0.07         | 0.043                   |                 |            | 0.038)           |                |
|            |                |              | Rate Not Used           |                 | •          |                  |                |
|            | Sum =          |              |                         |                 |            | Sum =            | 48.5           |
|            |                |              |                         | infall 4        |            |                  |                |
|            | time           | s area       | 14.0(Ac.)/              | (In)/(Ft.)]     | =          | 4.7(Ac           | .+t)           |
|            | I OTAL         | SOIL LOSS    | = 1.29<br>= 1.504       | (TU)<br>(VC E+) |            |                  |                |
|            | Total          | sull loss    | = 1.5040<br>= 5.33(1    | (ACIFI)<br>[n]  |            |                  |                |
|            |                |              | = 5.33(1<br>204755.2    |                 |            |                  |                |
|            |                |              |                         | 27.6 Cubic Fe   | et         |                  |                |
|            |                |              |                         |                 |            |                  |                |
|            | Peak           | flow rate    | of this hydr            | rograph =       | 8.         | 523(CFS)         |                |
|            |                |              |                         |                 |            |                  |                |
|            | +++++          | +++++++++    |                         |                 |            |                  | +++++++++++++  |
|            |                |              | 24 - H (<br>R u n o f f | )UR ST<br>Hydr  | 0 К<br>0 Ø | n<br>ranh        |                |
|            |                |              |                         |                 | - б<br>    |                  |                |
|            |                |              |                         |                 |            |                  |                |

|               |                  | , up         |             |   |       |     | //  |      |
|---------------|------------------|--------------|-------------|---|-------|-----|-----|------|
| <br>Time(h+m) | Volume Ac.Ft     | Q(CFS        | ) 0         |   | 2.5   | 5.0 | 7.5 | 10.0 |
| 0+ 5          | 0.0000           | 0.00         | Q           |   |       |     |     | Ι    |
| 0+10          | 0.0000           | 0.00         | Q           |   |       |     |     |      |
| 0+15          | 0.0001           | 0.01         | Q           |   |       |     |     |      |
| 0+20          | 0.0002           | 0.02         | Q           |   |       |     |     |      |
| 0+25<br>0+30  | 0.0004<br>0.0007 | 0.03<br>0.04 | Q<br>Q      |   |       |     |     |      |
| 0+35          | 0.0010           | 0.05         | Q           |   |       |     |     | ł    |
| 0+40          | 0.0014           | 0.05         | Q           |   |       | i i | İ   | i    |
| 0+45          | 0.0018           | 0.06         | Q           |   | İ     | İ   | İ   | İ    |
| 0+50          | 0.0023           | 0.07         | Q           |   |       |     |     | ļ    |
| 0+55          | 0.0028           | 0.07         | Q           |   |       |     |     | ļ    |
| 1+ 0<br>1+ 5  | 0.0033           | 0.08         | Q           |   |       |     |     |      |
| 1+ 5<br>1+10  | 0.0038<br>0.0044 | 0.08<br>0.09 | Q<br>Q      |   |       |     |     |      |
| 1+15          | 0.0050           | 0.09         | Q           |   | ĺ     |     | Ì   | i    |
| 1+20          | 0.0057           | 0.09         | Q           |   | İ     | i   | i   | İ    |
| 1+25          | 0.0063           | 0.09         | Q           |   |       |     |     |      |
| 1+30          | 0.0069           | 0.09         | Q           |   |       |     |     |      |
| 1+35<br>1+40  | 0.0074           | 0.09         | Q           |   |       |     |     |      |
| 1+40          | 0.0080<br>0.0086 | 0.09<br>0.09 | Q<br>Q      |   |       |     |     |      |
| 1+50          | 0.0092           | 0.09         | Q           |   |       |     | Ì   | i    |
| 1+55          | 0.0098           | 0.09         | Q           |   | İ     | i   | i   | İ    |
| 2+ 0          | 0.0105           | 0.09         | Q           |   |       |     |     | ļ    |
| 2+ 5          | 0.0111           | 0.10         | Q           |   |       |     |     | ļ    |
| 2+10<br>2+15  | 0.0118<br>0.0125 | 0.10<br>0.10 | Q           |   |       |     |     |      |
| 2+13          | 0.0133           | 0.10         | Q<br>Q      |   |       |     |     | ł    |
| 2+25          | 0.0140           | 0.11         | Q           |   | ĺ     |     | Ì   | i    |
| 2+30          | 0.0148           | 0.11         | Q           |   | İ     | i   | İ   | İ    |
| 2+35          | 0.0156           | 0.11         | Q           |   |       |     |     | ļ    |
| 2+40          | 0.0164           | 0.12         | Q           |   |       |     |     | ļ    |
| 2+45<br>2+50  | 0.0173<br>0.0183 | 0.13<br>0.15 | Q           |   |       |     |     |      |
| 2+50          | 0.0195           | 0.15         | Q<br>Q      |   |       |     |     | ł    |
| 3+ 0          | 0.0208           | 0.18         | Q           |   |       | i i | İ   | i    |
| 3+ 5          | 0.0221           | 0.20         | Q           |   | İ     | i   | İ   | İ    |
| 3+10          | 0.0235           | 0.21         | Q           |   |       |     |     | ļ    |
| 3+15          | 0.0250           | 0.22         | Q           |   |       |     |     |      |
| 3+20<br>3+25  | 0.0266<br>0.0282 | 0.22<br>0.23 | Q<br>Q      |   |       |     |     |      |
| 3+30          | 0.0298           | 0.23         | Q           |   |       |     |     | ł    |
| 3+35          | 0.0315           | 0.24         | Q           |   | ĺ     | Ì   | İ   | i    |
| 3+40          | 0.0332           | 0.25         | VQ          |   |       |     |     |      |
| 3+45          | 0.0350           | 0.26         | VQ          |   |       |     |     |      |
| 3+50<br>3+55  | 0.0369<br>0.0389 | 0.27<br>0.29 | VQ<br>VQ    |   |       |     |     |      |
| 4+ 0          | 0.0411           | 0.32         | VQ          |   |       |     |     | ł    |
| 4+ 5          | 0.0436           | 0.37         | võ          |   | ĺ     | İ   | İ   | i    |
| 4+10          | 0.0465           | 0.42         | VQ          |   |       |     |     |      |
| 4+15          | 0.0497           | 0.46         | VQ          |   |       |     |     |      |
| 4+20<br>4+25  | 0.0531           | 0.50<br>0.53 | VQ          |   |       |     |     |      |
| 4+25          | 0.0568<br>0.0608 | 0.55         | V Q<br>V Q  |   |       |     |     |      |
| 4+35          | 0.0652           | 0.63         | vų          |   |       |     |     | i    |
| 4+40          | 0.0699           | 0.69         | νų          |   | İ     | İ   | i   | i    |
| 4+45          | 0.0750           | 0.74         | VQ          |   |       |     |     |      |
| 4+50          | 0.0804           | 0.78         | VQ          |   |       |     |     | ļ    |
| 4+55<br>5+ 0  | 0.0860           | 0.82         | VQ          |   |       |     |     |      |
| 5+ 0<br>5+ 5  | 0.0921<br>0.0984 | 0.87<br>0.92 | V Ç<br>V Ç  |   | <br>  |     |     |      |
| 5+10          | 0.1049           | 0.92         | v ç         |   | '<br> |     |     |      |
| 5+15          | 0.1114           | 0.94         | V Ç         | 2 | İ     | İ   | İ   | i    |
| 5+20          | 0.1177           | 0.91         | V Q         |   |       |     |     | ļ    |
| 5+25          | 0.1237           | 0.87         |             |   |       |     |     | ļ    |
| 5+30<br>5+35  | 0.1295           | 0.85         | V Q<br> V Q |   | <br>  |     |     |      |
| 5+35<br>5+40  | 0.1355<br>0.1417 | 0.86<br>0.91 |             |   | I<br> |     |     |      |
| 5. 10         | 0.111/           | 0.71         | 1.4         | 2 | I     | 1   | I   | 1    |

## Hydrograph in 5 Minute intervals ((CFS))

| 5+45           | 0.1484           | 0.96         | V Q                  |
|----------------|------------------|--------------|----------------------|
| 5+50           | 0.1554           | 1.02         |                      |
| 5+55           | 0.1629           | 1.08         |                      |
| 6+ 0           | 0.1707           | 1.13         |                      |
| 6+ 5           | 0.1788           | 1.17         | iv či i i i          |
| 6+10           | 0.1871           | 1.21         | iv či i i i          |
| 6+15           | 0.1958           | 1.26         |                      |
| 6+20           | 0.2049           | 1.32         | iv či i i            |
| 6+25           | 0.2143           | 1.38         | iv či i i            |
| 6+30           | 0.2242           | 1.43         |                      |
| 6+35           | 0.2343           | 1.47         |                      |
| 6+40           | 0.2447           | 1.51         |                      |
| 6+45           | 0.2555           | 1.57         | iv či i i            |
| 6+50           | 0.2667           | 1.63         | iv či i i            |
| 6+55           | 0.2783           | 1.69         | iv çi i i            |
| 7+ 0           | 0.2903           | 1.74         | IVQI I I             |
| 7+ 5           | 0.3026           | 1.78         | iv qi i i            |
| 7+10           | 0.3150           | 1.81         | iv çi i i            |
| 7+15           | 0.3276           | 1.83         | iv çi i i            |
| 7+20           | 0.3404           | 1.86         |                      |
| 7+25           | 0.3535           | 1.89         |                      |
| 7+30           | 0.3668           | 1.94         |                      |
| 7+35           | 0.3806           | 2.00         |                      |
| 7+40           | 0.3949           | 2.07         | iv qi i i            |
| 7+45           | 0.4097           | 2.15         | iv qi i i            |
| 7+50           | 0.4250           | 2.23         |                      |
| 7+55           | 0.4410           | 2.32         | V Q                  |
| 8+ 0           | 0.4575           | 2.40         | V Q                  |
| 8+ 5           | 0.4747           | 2.50         | V Q                  |
| 8+10           | 0.4927           | 2.61         | V Q                  |
| 8+15           | 0.5115           | 2.73         | V Q                  |
| 8+20           | 0.5311           | 2.85         | V  Q                 |
| 8+25           | 0.5516           | 2.98         | V  Q                 |
| 8+30           | 0.5728           | 3.08         | V   Q                |
| 8+35           | 0.5946           | 3.16         | V   Q                |
| 8+40           | 0.6169           | 3.24         | V   Q                |
| 8+45           | 0.6397           | 3.31         | V   Q                |
| 8+50           | 0.6631           | 3.39         | V   Q                |
| 8+55           | 0.6871           | 3.49         | V   Q                |
| 9+ 0           | 0.7118           | 3.58         | V   Q                |
| 9+ 5           | 0.7372           | 3.68         | V   Q                |
| 9+10           | 0.7633           | 3.80         |                      |
| 9+15           | 0.7903           | 3.93         | V   Q                |
| 9+20           | 0.8183           | 4.06         | V   Q                |
| 9+25           | 0.8473           | 4.21         | V   Q                |
| 9+30           | 0.8772           | 4.34         |                      |
| 9+35           | 0.9080           | 4.47         |                      |
| 9+40           | 0.9396           | 4.59         |                      |
| 9+45           | 0.9720           | 4.70         |                      |
| 9+50           | 1.0051           | 4.81         |                      |
| 9+55           | 1.0391           | 4.93         |                      |
| 10+ 0          | 1.0737           | 5.03         |                      |
| 10+ 5          | 1.1089           | 5.10         |                      |
| 10+10          | 1.1439           | 5.08         |                      |
| 10+15          | 1.1781           | 4.97         |                      |
| 10+20          | 1.2109           | 4.76         |                      |
| 10+25<br>10+30 | 1.2419           | 4.51         | V Q      <br>  V Q   |
| 10+30          | 1.2714           | 4.29         | -                    |
| 10+35<br>10+40 | 1.3002           | 4.18         |                      |
| 10+40          | 1.3290           | 4.17<br>4.26 |                      |
| 10+45<br>10+50 | 1.3583<br>1.3887 | 4.41         | V Q      <br>   V Q  |
|                |                  | 4.41         |                      |
| 10+55<br>11+ 0 | 1.4203<br>1.4531 | 4.60         | V Q        <br>  V Q |
| 11+ 0<br>11+ 5 | 1.4865           | 4.75         |                      |
| 11+10          | 1.5202           | 4.90         |                      |
| 11+10          | 1.5541           | 4.90         |                      |
| 11+20          | 1.5880           | 4.92         |                      |
| 11+25          | 1.6217           | 4.90         |                      |
| 11+30          | 1.6554           | 4.89         |                      |
| 11+35          | 1.6890           | 4.87         |                      |
| 11+40          | 1.7223           | 4.84         |                      |
| 11+45          | 1.7553           | 4.80         |                      |
| -              |                  |              |                      |

| 11+50 | 1.7879 | 4.73 | V Q      |
|-------|--------|------|----------|
| 11+55 | 1.8201 | 4.67 | V Q      |
| 12+ 0 | 1.8519 | 4.63 | V Q      |
| 12+ 5 | 1.8840 | 4.66 | v č i i  |
|       |        |      |          |
| 12+10 | 1.9169 | 4.78 | V Q      |
| 12+15 | 1.9513 | 4.99 | V Q      |
| 12+20 | 1.9877 | 5.28 | V  Q     |
| 12+25 | 2.0263 | 5.60 | V Q I    |
| 12+30 |        |      |          |
|       | 2.0668 | 5.89 |          |
| 12+35 | 2.1090 | 6.12 | V   Q    |
| 12+40 | 2.1525 | 6.31 | V   Q    |
| 12+45 | 2.1972 | 6.49 | V Q      |
| 12+50 | 2.2431 | 6.67 |          |
|       |        |      |          |
| 12+55 | 2.2902 | 6.84 | V Q      |
| 13+ 0 | 2.3385 | 7.01 | V  Q     |
| 13+ 5 | 2.3879 | 7.17 | V Q      |
| 13+10 | 2.4387 | 7.38 | V Q      |
|       |        |      |          |
| 13+15 | 2.4911 | 7.61 |          |
| 13+20 | 2.5454 | 7.88 | V  Q     |
| 13+25 | 2.6016 | 8.17 | V   Q    |
| 13+30 | 2.6596 | 8.41 | V   Q    |
| 13+35 | 2.7183 | 8.52 | c        |
|       |        |      | c        |
| 13+40 | 2.7767 | 8.48 | V Q      |
| 13+45 | 2.8337 | 8.28 | V   Q    |
| 13+50 | 2.8883 | 7.93 | V  Q     |
| 13+55 | 2.9401 | 7.53 | I V Q I  |
|       |        |      | C C      |
| 14+ 0 | 2.9896 | 7.18 |          |
| 14+ 5 | 3.0377 | 6.99 | VQ       |
| 14+10 | 3.0854 | 6.91 | VQ       |
| 14+15 | 3.1331 | 6.94 | i vo i   |
| 14+20 | 3.1815 | 7.02 |          |
|       |        |      |          |
| 14+25 | 3.2306 | 7.13 | VQ       |
| 14+30 | 3.2803 | 7.21 | VQ       |
| 14+35 | 3.3301 | 7.23 | Q        |
| 14+40 | 3.3799 | 7.23 | i çi     |
|       |        |      |          |
| 14+45 | 3.4295 | 7.21 | QV       |
| 14+50 | 3.4791 | 7.20 | QV       |
| 14+55 | 3.5286 | 7.18 | Q V      |
| 15+ 0 | 3.5779 | 7.15 | Q V      |
| 15+ 5 | 3.6269 | 7.11 |          |
|       |        |      |          |
| 15+10 | 3.6755 | 7.06 | Q V      |
| 15+15 | 3.7237 | 7.00 | Q  V     |
| 15+20 | 3.7714 | 6.93 | Q   V    |
| 15+25 | 3.8187 | 6.86 | I QIVI   |
|       |        |      | -        |
| 15+30 | 3.8654 | 6.78 | Q V      |
| 15+35 | 3.9114 | 6.68 | Q   V    |
| 15+40 | 3.9565 | 6.55 | Q   V    |
| 15+45 | 4.0005 | 6.39 |          |
| 15+50 | 4.0432 | 6.19 |          |
|       |        |      |          |
| 15+55 | 4.0844 | 5.99 | Q V      |
| 16+ 0 | 4.1244 | 5.82 | Q V      |
| 16+ 5 | 4.1632 | 5.62 | Q   V    |
| 16+10 | 4.1996 | 5.30 | Q V      |
| 16+15 | 4.2328 | 4.82 | Q V      |
|       |        |      |          |
| 16+20 | 4.2617 | 4.19 |          |
| 16+25 | 4.2858 | 3.50 | Q   V    |
| 16+30 | 4.3059 | 2.91 | Q   V    |
| 16+35 | 4.3231 | 2.50 | Q   V    |
| 16+40 | 4.3382 | 2.20 |          |
|       |        |      | c        |
| 16+45 | 4.3517 | 1.96 | Q V      |
| 16+50 | 4.3639 | 1.76 | Q     V  |
| 16+55 | 4.3747 | 1.58 | Q   V    |
| 17+ 0 | 4.3846 | 1.43 | Q     V  |
| 17+ 5 | 4.3936 | 1.31 |          |
|       |        |      |          |
| 17+10 | 4.4022 | 1.24 | Q V      |
| 17+15 | 4.4105 | 1.21 | Q   V    |
| 17+20 | 4.4188 | 1.21 | Q I I VI |
| 17+25 | 4.4272 | 1.22 | Q V      |
|       |        |      |          |
| 17+30 | 4.4357 | 1.23 | Q   V    |
| 17+35 | 4.4441 | 1.23 | Q   V    |
| 17+40 | 4.4525 | 1.21 | Q     V  |
| 17+45 | 4.4607 | 1.19 | Q     V  |
|       |        |      | 6        |
| 17+50 | 4.4687 | 1.17 | Q     V  |
|       |        |      |          |

| 17+55 | 4.4765 | 1.13 | Q  |     |   |   | V    |
|-------|--------|------|----|-----|---|---|------|
| 18+ 0 | 4.4840 | 1.08 | Q  |     |   |   | V    |
| 18+ 5 | 4.4910 | 1.02 | Q  |     |   |   | V    |
| 18+10 | 4.4977 | 0.96 | ĮQ | i   |   | İ | i vi |
| 18+15 | 4.5040 | 0.91 | İQ | i   | i | i | i vi |
| 18+20 | 4.5100 | 0.87 | įõ | i   |   | i | i vi |
| 18+25 | 4.5158 | 0.85 | Į  | ł   |   |   | i vi |
|       |        |      |    |     |   |   |      |
| 18+30 | 4.5215 | 0.82 | Q  |     |   |   |      |
| 18+35 | 4.5270 | 0.80 | Q  | ļ   |   |   | V    |
| 18+40 | 4.5322 | 0.76 | ĮQ |     |   |   | V    |
| 18+45 | 4.5372 | 0.72 | Q  |     |   |   | V    |
| 18+50 | 4.5418 | 0.67 | Q  |     |   |   | V    |
| 18+55 | 4.5459 | 0.60 | Q  |     |   |   | V    |
| 19+ 0 | 4.5495 | 0.52 | İQ | i   | i | i | i vi |
| 19+ 5 | 4.5527 | 0.46 | ĮQ | i   |   |   | i vi |
| 19+10 | 4.5555 | 0.41 |    |     |   |   | i vi |
|       |        |      | Q  | -   |   |   |      |
| 19+15 | 4.5581 | 0.38 | Q  |     |   |   | V    |
| 19+20 | 4.5607 | 0.38 | ĮQ |     |   |   | V    |
| 19+25 | 4.5635 | 0.41 | ĮQ |     |   |   | V    |
| 19+30 | 4.5667 | 0.46 | Q  |     |   |   | V    |
| 19+35 | 4.5702 | 0.51 | Q  |     |   |   | V    |
| 19+40 | 4.5739 | 0.54 | Q  |     |   |   | V    |
| 19+45 | 4.5777 | 0.55 | İQ | i   | i | i | i vi |
| 19+50 | 4.5813 | 0.53 | Į  | i   |   | i | i vi |
| 19+55 | 4.5847 | 0.49 | -  | 1   |   |   | i vi |
|       |        |      | Q  | -   |   |   |      |
| 20+ 0 | 4.5877 | 0.44 | Q  |     |   |   |      |
| 20+ 5 | 4.5904 | 0.39 | ĮQ |     |   |   | V    |
| 20+10 | 4.5929 | 0.36 | ĮQ |     |   |   | V    |
| 20+15 | 4.5953 | 0.34 | Q  |     |   |   | V    |
| 20+20 | 4.5977 | 0.36 | Q  |     |   |   | V    |
| 20+25 | 4.6003 | 0.38 | Q  | Í   |   |   | i vi |
| 20+30 | 4.6031 | 0.40 | lõ | i   | i | i | i vi |
| 20+35 | 4.6060 | 0.42 | lõ | i i |   |   | i vi |
| 20+40 | 4.6089 | 0.43 |    |     |   |   | i vi |
|       |        |      | Q  | -   |   |   | : :  |
| 20+45 | 4.6119 | 0.43 | Q  |     |   |   | V    |
| 20+50 | 4.6148 | 0.43 | ĮQ |     |   |   | V    |
| 20+55 | 4.6176 | 0.41 | Q  |     |   |   | V    |
| 21+ 0 | 4.6203 | 0.39 | Q  |     |   |   | V    |
| 21+ 5 | 4.6228 | 0.36 | Q  | Í   |   |   | i vi |
| 21+10 | 4.6250 | 0.33 | ĮQ | i   | i | i | i vi |
| 21+15 | 4.6273 | 0.32 | lõ | i   |   | i | i vi |
| 21+20 | 4.6296 | 0.34 |    |     |   |   | i vi |
|       |        |      | Q  | -   |   |   | : :  |
| 21+25 | 4.6320 | 0.35 | Q  |     |   |   | V    |
| 21+30 | 4.6344 | 0.35 | ĮQ |     |   |   | V    |
| 21+35 | 4.6367 | 0.33 | Q  |     |   |   | V    |
| 21+40 | 4.6388 | 0.31 | Q  |     |   |   | V    |
| 21+45 | 4.6410 | 0.31 | Q  |     |   |   | V    |
| 21+50 | 4.6432 | 0.32 | Q  | Í   |   | ĺ | l V  |
| 21+55 | 4.6456 | 0.34 | ĮQ | i   | i | i | i vi |
| 22+ 0 | 4.6479 | 0.34 | Į  | i   |   | i | i vi |
| 22+ 5 | 4.6502 | 0.33 | lQ | ł   |   |   | i vi |
| 22+10 | 4.6523 | 0.31 |    |     |   |   | i vi |
|       |        |      | IQ |     |   |   | V    |
| 22+15 | 4.6545 | 0.31 | Q  |     |   |   | : :  |
| 22+20 | 4.6567 | 0.33 | Q  |     |   |   | V    |
| 22+25 | 4.6591 | 0.34 | ĮQ |     |   |   | V    |
| 22+30 | 4.6615 | 0.35 | Q  |     |   |   | V    |
| 22+35 | 4.6637 | 0.33 | Q  |     |   |   | V    |
| 22+40 | 4.6658 | 0.30 | Q  |     |   |   | V    |
| 22+45 | 4.6676 | 0.27 | Q  | i   |   | i | i vi |
| 22+50 | 4.6693 | 0.25 | Q  | i   |   | i | i vi |
| 22+55 | 4.6709 | 0.25 | Q  |     |   |   | i vi |
|       |        |      |    |     |   |   | : :  |
| 23+ 0 | 4.6725 | 0.23 | Q  |     |   | 1 |      |
| 23+ 5 | 4.6741 | 0.22 | Q  |     |   |   |      |
| 23+10 | 4.6756 | 0.22 | Q  | ļ   |   |   | V    |
| 23+15 | 4.6771 | 0.22 | Q  |     |   |   | V    |
| 23+20 | 4.6786 | 0.22 | Q  |     |   |   | V    |
| 23+25 | 4.6801 | 0.21 | Q  | i   | i |   | i vi |
| 23+30 | 4.6815 | 0.21 | Q  | i   | ĺ | ĺ | i vi |
| 23+35 | 4.6830 | 0.21 | Q  |     |   |   | V    |
|       |        |      |    |     |   |   | : :  |
| 23+40 | 4.6844 | 0.21 | Q  |     |   | 1 | V    |
| 23+45 | 4.6858 | 0.21 | Q  |     |   |   |      |
| 23+50 | 4.6872 | 0.21 | Q  |     |   |   | V    |
| 23+55 | 4.6887 | 0.20 | Q  |     |   |   | V    |
|       |        |      |    |     |   |   |      |

| 24+ 0 | 4.6901 | 0.20 | Q |   |   |   | V  |
|-------|--------|------|---|---|---|---|----|
| 24+ 5 | 4.6914 | 0.20 | Q |   |   |   | V  |
| 24+10 | 4.6927 | 0.19 | Q |   |   |   | V  |
| 24+15 | 4.6939 | 0.17 | Q |   |   |   | V  |
| 24+20 | 4.6949 | 0.15 | Q |   |   |   | V  |
| 24+25 | 4.6957 | 0.12 | Q |   |   |   | V  |
| 24+30 | 4.6964 | 0.09 | Q |   |   |   | V  |
| 24+35 | 4.6969 | 0.07 | Q |   |   |   | V  |
| 24+40 | 4.6973 | 0.06 | Q |   |   |   | V  |
| 24+45 | 4.6977 | 0.05 | Q |   |   |   | V  |
| 24+50 | 4.6980 | 0.05 | Q |   |   |   | V  |
| 24+55 | 4.6983 | 0.04 | Q |   |   |   | V  |
| 25+ 0 | 4.6986 | 0.04 | Q |   |   |   | V  |
| 25+ 5 | 4.6988 | 0.03 | Q |   |   |   | V  |
| 25+10 | 4.6990 | 0.03 | Q |   |   |   | V  |
| 25+15 | 4.6992 | 0.03 | Q |   |   |   | V  |
| 25+20 | 4.6993 | 0.02 | Q |   |   |   | V  |
| 25+25 | 4.6995 | 0.02 | Q |   |   |   | V  |
| 25+30 | 4.6996 | 0.02 | Q |   |   |   | V  |
| 25+35 | 4.6997 | 0.02 | Q |   |   |   | V  |
| 25+40 | 4.6998 | 0.01 | Q |   |   |   | V  |
| 25+45 | 4.6999 | 0.01 | Q | i | i | i | vj |
| 25+50 | 4.7000 | 0.01 | Q |   |   |   | V  |
| 25+55 | 4.7001 | 0.01 | Q |   |   |   | V  |
| 26+ 0 | 4.7001 | 0.01 | Q | i | i | i | vj |
| 26+ 5 | 4.7002 | 0.01 | Q | i | i | i | vj |
| 26+10 | 4.7003 | 0.01 | Q | İ | İ | Í | vj |
| 26+15 | 4.7003 | 0.01 | Q |   |   |   | V  |
| 26+20 | 4.7003 | 0.01 | Q | i | i | i | vj |
| 26+25 | 4.7004 | 0.01 | Q | i | i | i | vj |
| 26+30 | 4.7004 | 0.00 | Q | i | i | i | vj |
| 26+35 | 4.7004 | 0.00 | Q |   |   |   | V  |
| 26+40 | 4.7005 | 0.00 | Q |   |   |   | V  |
| 26+45 | 4.7005 | 0.00 | Q | i | i | i | vj |
| 26+50 | 4.7005 | 0.00 | Q | i | i | i | vj |
| 26+55 | 4.7005 | 0.00 | Q | İ | İ | İ | vj |
| 27+ 0 | 4.7005 | 0.00 | Q | İ | İ | İ | vj |
| 27+ 5 | 4.7005 | 0.00 | Q | i | i | i | vi |
| 27+10 | 4.7005 | 0.00 | Q | i | i | i | vi |
| 27+15 | 4.7005 | 0.00 | Q | i | i | i | vi |

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
                Study date 03/22/22 File: PP1PUH1100.out
_____
     Riverside County Synthetic Unit Hydrology Method
     RCFC & WCD Manual date - April 1978
     Program License Serial Number 6443
     _____
      English (in-lb) Input Units Used
      English Rainfall Data (Inches) Input Values Used
      English Units used in output format
     -----
     PILOT PERRIS
     PROP 100-YR
     XO 3/22/22
     Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi.
     Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) =
0.022 Sq. Mi.
     USER Entry of lag time in hours
     Lag time = 0.217 Hr.
     Lag time = 13.02 Min.
     25% of lag time = 3.25 Min.
40% of lag time = 5.21 Min.
     Unit time = 5.00 Min.
     Duration of storm = 1 Hour(s)
     User Entered Base Flow = 0.00(CFS)
     2 YEAR Area rainfall data:
     Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
          13.97 0.51
                                     7.07
     100 YEAR Area rainfall data:
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 1.59 22.21 13.97 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 0.506(In) Area Averaged 100-Year Rainfall = 1.590(In) Point rain (area averaged) = 1.590(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 1.590(In) Sub-Area Data: Area(Ac.)Runoff IndexImpervious %10.19075.000.9003.78087.000.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2AMC-3(In/Hr)(Dec.%)(In/Hr)(Dec.)(In/Hr)75.088.00.1530.9000.0290.7290.02187.094.80.0680.0000.0680.2710.018 Sum(F) = 0.039Area averaged mean soil loss (F) (In/Hr) = 0.039Minimum soil loss rate ((In/Hr)) = 0.020 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.364 -----Slope of intensity-duration curve for a 1 hour storm =0.5000 \_\_\_\_\_ Unit Hydrograph VALLEY S-Curve \_\_\_\_\_ Unit Hydrograph Data \_\_\_\_\_ Unit time period Time % of lag Distribution Unit Hydrograph Graph % (CFS) (hrs) -----1 0.083 38.402 4.099 0.577 16.642 25.801 18.225 2 0.167 76.805 3 0.250 115.207 2.343 3.633 153.610 4 0.333 2.566 0.417192.0120.500230.4150.583268.8170.667307.220 5 9.016 1.269 6 5.532 0.779 7 4.092 0.576 8 3.215 0.453 345.622 384.025 422.427 460.829 9 0.750 10 0.833 2.464 0.347 0.290 2.063 1.615 1.266 1.172 11 0.917 0.227 1.000 12 0.178 13 1.083 499.232 0.165 14 1.167 537.634 1.005 0.141

| 15 | 1.250 | 576.037 | 0.810         |      | 0.114  |
|----|-------|---------|---------------|------|--------|
| 16 | 1.333 | 614.439 | 0.688         |      | 0.097  |
| 17 | 1.417 | 652.842 | 0.567         |      | 0.080  |
| 18 | 1.500 | 691.244 | 0.450         |      | 0.063  |
| 19 | 1.583 | 729.647 | 0.384         |      | 0.054  |
| 20 | 1.667 | 768.049 | 0.384         |      | 0.054  |
| 21 | 1.750 | 806.452 | 0.512         |      | 0.072  |
|    |       |         | Sum = 100.000 | Sum= | 14.079 |
|    |       |         |               |      |        |

The following loss rate calculations reflect use of the minimum calculated loss

rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit |       |             | Storm Rain                              | •            | In./Hr)     |                |          |
|------|-------|-------------|-----------------------------------------|--------------|-------------|----------------|----------|
|      | (Hr.) | Percent     | (In/Hr)                                 | Max          | Low         | (In/Hr)        |          |
| 1    | 0.08  | 4.20        | 0.801                                   | 0.039        | ( 0.292)    | 0.762<br>0.781 |          |
| 2    |       | 4.30        | 0.820                                   | 0.039        | ( 0.299)    | 0.781          |          |
| 3    |       | 5.00        | 0.954                                   | 0.039        |             |                |          |
| 4    |       | 5.00        | 0.954                                   | 0.039        | · · /       |                |          |
| 5    |       | 5.80        | 1.106                                   | 0.039        | ( 0.403)    | 1.067          |          |
| 6    |       | 6.50        | 1.240                                   | 0.039        | • • •       |                |          |
| 7    |       | 7.40        | 1.412                                   | 0.039        | · · /       | 1.372          |          |
| 8    |       | 8.60        | 1.641                                   | 0.039        |             |                |          |
| 9    |       |             | 2.347                                   | 0.039        | ( 0.854)    | 2.307          |          |
| 10   | 0.83  | 29.10       | 5.552                                   | 0.039        | ( 2.021)    | 5.512          |          |
| 11   | 0.92  | 6.80        | 1.297                                   | 0.039        | ( 0.472)    | 1.258          |          |
| 12   | 1.00  | 5.00        | 0.954                                   | 0.039        | ( 0.347)    | 0.914          |          |
|      |       | (Loss       | Rate Not Used)                          |              |             |                |          |
| S    | um =  | 100.0       |                                         |              | Sum =       | = 18.6         |          |
|      | Flood | volume =    | Effective rain                          |              |             |                |          |
|      | time  | s area      | 14.0(Ac.)/[(                            | In)/(Ft.)] = | . 1.8       | (Ac.Ft)        |          |
|      |       |             | = 0.04(I                                |              |             |                |          |
|      | Total | . soil loss | = 0.046(A                               | c.Ft)        |             |                |          |
|      | Total | rainfall    | = 1.59(In                               | )            |             |                |          |
|      | Flood | volume =    | 78619.0                                 | Cubic Feet   |             |                |          |
|      | Total | soil loss   | = 2001                                  | .5 Cubic Fee | t           |                |          |
|      |       |             |                                         |              |             |                |          |
|      |       |             | of this hydro                           | • •          | 34.608(CFS) | )              |          |
|      |       |             | +++++++++++++++++++++++++++++++++++++++ |              |             |                |          |
|      | +++++ | ********    |                                         | R S T O      |             | **********     | +++      |
|      |       |             | Runoff                                  |              |             |                |          |
|      |       |             | K U II O I I                            | пуцгс        | og rapi     |                |          |
|      |       | Hvd         | rograph in 5                            | Minute in    | tervals ((( | `FS))          |          |
|      |       | - Tyo       |                                         |              |             |                |          |
| Timo |       | /olume Ac E | t Q(CFS) 0                              | <br>10 0     | <br>20 0    |                | <br>10 0 |
|      |       |             |                                         |              |             |                | 40.0     |
| 0+   | 5     | 0.0030      | 0.44 0                                  | I            | 1           | 1              | 1        |
|      |       |             | 2.24 V Q                                |              | i           | İ              | i        |
|      |       |             | · <b>t</b>                              | I            | I           | I              |          |

| 0+15 | 0.0537 | 5.13  | VQ        |   |
|------|--------|-------|-----------|---|
| 0+20 | 0.1052 | 7.47  |           |   |
| 0+25 | 0.1675 | 9.06  |           |   |
| 0+30 | 0.2395 | 10.45 | VQ        |   |
| 0+35 | 0.3224 | 12.04 |           |   |
| 0+40 | 0.4182 | 13.91 |           |   |
| 0+45 | 0.5310 | 16.37 | V Q       |   |
| 0+50 | 0.6806 | 21.72 | V  Q      |   |
| 0+55 | 0.8911 | 30.57 | V  Q      |   |
| 1+ 0 | 1.1295 | 34.61 | V   Q     |   |
| 1+ 5 | 1.3188 | 27.49 | Q V       |   |
| 1+10 | 1.4443 | 18.23 | Q   V     |   |
| 1+15 | 1.5261 | 11.87 | Q     V   |   |
| 1+20 | 1.5827 | 8.22  | Q     V   |   |
| 1+25 | 1.6259 | 6.27  | Q     V   |   |
| 1+30 | 1.6600 | 4.94  | Q       V |   |
| 1+35 | 6877   | 4.03  | Q       V |   |
| 1+40 | 1.7102 | 3.26  | Q     V   |   |
| 1+45 | 1.7288 | 2.70  | Q     V   |   |
| 1+50 | 1.7447 | 2.30  | Q     V   |   |
| 1+55 | 1.7580 | 1.93  | Q     V   |   |
| 2+ 0 | 1.7689 | 1.58  | Q     V   |   |
| 2+ 5 | 1.7779 | 1.31  |           |   |
| 2+10 | 1.7852 | 1.06  |           |   |
| 2+15 | 1.7911 | 0.85  | Q I I V   |   |
| 2+20 | 1.7958 | 0.69  | Q I I V   |   |
| 2+25 | 1.7999 | 0.59  | Q I I V   |   |
| 2+30 | 1.8034 | 0.51  | Q I I V   |   |
| 2+35 | 1.8044 | 0.14  | Q İ İ Vİ  |   |
| 2+40 | 1.8048 | 0.07  | Q     V   | 1 |
| <br> |        |       |           |   |

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
                 Study date 03/22/22 File: PP1PUH3100.out
_____
     Riverside County Synthetic Unit Hydrology Method
     RCFC & WCD Manual date - April 1978
     Program License Serial Number 6443
     _____
      English (in-lb) Input Units Used
      English Rainfall Data (Inches) Input Values Used
      English Units used in output format
     -----
     PILOT PERRIS
     PROP 100-YR
     XO 3/22/22
     Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi.
     Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) =
0.022 Sq. Mi.
     USER Entry of lag time in hours
     Lag time = 0.217 Hr.
     Lag time = 13.02 Min.
     25% of lag time = 3.25 Min.
40% of lag time = 5.21 Min.
     Unit time = 5.00 Min.
     Duration of storm = 3 Hour(s)
     User Entered Base Flow = 0.00(CFS)
     2 YEAR Area rainfall data:
     Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
13.97 0.85 11.90
     100 YEAR Area rainfall data:
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 2.23 31.15 13.97 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 0.852(In) Area Averaged 100-Year Rainfall = 2.230(In) Point rain (area averaged) = 2.230(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 2.230(In) Sub-Area Data: Area(Ac.)Runoff IndexImpervious %10.19075.000.9003.78087.000.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2AMC-3(In/Hr)(Dec.%)(In/Hr)(Dec.)(In/Hr)75.088.00.1530.9000.0290.7290.02187.094.80.0680.0000.0680.2710.018 Sum(F) = 0.039Area averaged mean soil loss (F) (In/Hr) = 0.039Minimum soil loss rate ((In/Hr)) = 0.020 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.364 -----Unit Hydrograph VALLEY S-Curve \_\_\_\_\_ Unit Hydrograph Data \_\_\_\_\_ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) \_\_\_\_\_ 0.577 2.343 3.633 2.566 1.269 0.779 0.576 3.215 2.464 2.063 1.615 1.266 1.172 1.005 0.810 0.453 0.347 0.290 422.427 11 0.917 0.227 12 1.000 460.829 0.178 13 1.083 499.232 0.165 537.634 1.167 14 0.141 15 1.250 576.037 0.114 16 1.333 614.439 0.688 0.097

| 17 | 1.417 | 652.842 | 0.567         |      | 0.080  |
|----|-------|---------|---------------|------|--------|
| 18 | 1.500 | 691.244 | 0.450         |      | 0.063  |
| 19 | 1.583 | 729.647 | 0.384         |      | 0.054  |
| 20 | 1.667 | 768.049 | 0.384         |      | 0.054  |
| 21 | 1.750 | 806.452 | 0.512         |      | 0.072  |
|    |       |         | Sum = 100.000 | Sum= | 14.079 |
|    |       |         |               |      |        |

The following loss rate calculations reflect use of the minimum calculated loss

rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit | Time         | Pattern | Storm Rain     | Loss rate(In./Hr) |    |                    | Effective |
|------|--------------|---------|----------------|-------------------|----|--------------------|-----------|
|      | (Hr.)        | Percent | (In/Hr)        | Max               | Lo | •                  | (In/Hr)   |
| 1    | <b>0.0</b> 8 | 1.30    | 0.348          | 0.039             | (  | 0.127)             | 0.308     |
| 2    | 0.17         | 1.30    | 0.348          | 0.039             | Ì  | 0.127)             | 0.308     |
| 3    | 0.25         | 1.10    | 0.294          | 0.039             | Ì  | 0.107)             | 0.255     |
| 4    | 0.33         | 1.50    | 0.401          | 0.039             | Ì  | 0.146)             | 0.362     |
| 5    | 0.42         | 1.50    | 0.401          | 0.039             | Ì  | 0.146)             | 0.362     |
| 6    | 0.50         | 1.80    | 0.482          | 0.039             | Ì  | 0.175)             | 0.442     |
| 7    | 0.58         | 1.50    | 0.401          | 0.039             | Ì  | 0.146)             | 0.362     |
| 8    | 0.67         | 1.80    | 0.482          | 0.039             | Ì  | 0.175 <sup>)</sup> | 0.442     |
| 9    | 0.75         | 1.80    | 0.482          | 0.039             | Ì  | 0.175)             | 0.442     |
| 10   | 0.83         | 1.50    | 0.401          | 0.039             | Ć  | 0.146)             | 0.362     |
| 11   | 0.92         | 1.60    | 0.428          | 0.039             | Ì  | 0.156)             | 0.389     |
| 12   | 1.00         | 1.80    | 0.482          | 0.039             | Ì  | 0.175)             | 0.442     |
| 13   | 1.08         | 2.20    | 0.589          | 0.039             | (  | 0.214)             | 0.549     |
| 14   | 1.17         | 2.20    | 0.589          | 0.039             | Ċ  | 0.214)             | 0.549     |
| 15   | 1.25         | 2.20    | 0.589          | 0.039             | Ì  | 0.214)             | 0.549     |
| 16   | 1.33         | 2.00    | 0.535          | 0.039             | (  | 0.195)             | 0.496     |
| 17   | 1.42         | 2.60    | 0.696          | 0.039             | (  | 0.253)             | 0.656     |
| 18   | 1.50         | 2.70    | 0.722          | 0.039             | (  | 0.263)             | 0.683     |
| 19   | 1.58         | 2.40    | 0.642          | 0.039             | (  | 0.234)             | 0.603     |
| 20   | 1.67         | 2.70    | 0.722          | 0.039             | (  | 0.263)             | 0.683     |
| 21   | 1.75         | 3.30    | 0.883          | 0.039             | (  | 0.321)             | 0.844     |
| 22   | 1.83         | 3.10    | 0.830          | 0.039             | (  | 0.302)             | 0.790     |
| 23   | 1.92         | 2.90    | 0.776          | 0.039             | (  | 0.282)             | 0.737     |
| 24   | 2.00         | 3.00    | 0.803          | 0.039             | (  | 0.292)             | 0.763     |
| 25   | 2.08         | 3.10    | 0.830          | 0.039             | (  | 0.302)             | 0.790     |
| 26   | 2.17         | 4.20    | 1.124          | 0.039             | (  | 0.409)             | 1.084     |
| 27   | 2.25         | 5.00    | 1.338          | 0.039             | (  | 0.487)             | 1.298     |
| 28   | 2.33         | 3.50    | 0.937          | 0.039             | (  | 0.341)             | 0.897     |
| 29   | 2.42         | 6.80    | 1.820          | 0.039             | (  | 0.662)             | 1.780     |
| 30   | 2.50         | 7.30    | 1.953          | 0.039             | (  | 0.711)             | 1.914     |
| 31   | 2.58         | 8.20    | 2.194          | 0.039             | (  | 0.799)             | 2.155     |
| 32   | 2.67         | 5.90    | 1.579          | 0.039             | (  | 0.575)             | 1.539     |
| 33   | 2.75         | 2.00    | 0.535          | 0.039             | (  | 0.195)             | 0.496     |
| 34   | 2.83         | 1.80    | 0.482          | 0.039             | (  | 0.175)             | 0.442     |
| 35   | 2.92         | 1.80    | 0.482          | 0.039             | (  | 0.175)             | 0.442     |
| 36   | 3.00         | 0.60    | 0.161          | 0.039             | (  | 0.058)             | 0.121     |
|      |              | (Loss   | Rate Not Used) |                   |    |                    |           |

| Flo<br>ti<br>Tot<br>Tot<br>Flo<br>Tot<br><br>Pe                      | 100.0<br>od volume = E<br>mes area<br>al soil loss<br>al soil loss<br>al rainfall =<br>od volume =<br>al soil loss<br> | 14.0(Ac<br>= 0.1<br>2.1<br>1070<br>=<br>of this 1<br>+++++++<br>3 - 1                | .)/[(In)<br>.12(In)<br>138(Ac.F<br>23(In)<br>74.5 Cub<br>6004.4<br><br>hydrogra<br><br>++++++++<br>H O U R | /(Ft<br>t)<br>cubi<br><br>ph =<br>-++++<br>S                                                | eet<br>c Feet<br>2<br>++++++<br>T O R | 1(In)<br>2.5(<br>2.197(CFS)                       |           | <br><br>++++++ |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|-----------|----------------|
|                                                                      | <br>Hydr                                                                                                               | ograph i                                                                             | n 5                                                                                                        | Minu                                                                                        | te int                                | ervals ((C                                        | <br>FS))  |                |
|                                                                      |                                                                                                                        |                                                                                      |                                                                                                            |                                                                                             |                                       |                                                   |           |                |
| Time(h+m)                                                            | Volume Ac.Ft                                                                                                           | Q(CFS                                                                                | ) 0                                                                                                        |                                                                                             | 7.5                                   | 15.0                                              | 22.5      | 30.0           |
| 0+10<br>0+15<br>0+20<br>0+25<br>0+30<br>0+35<br>0+40<br>0+45<br>0+50 | 0.3263                                                                                                                 | 0.90<br>1.99<br>2.72<br>3.17<br>3.71<br>4.23<br>4.62<br>4.88<br>5.15<br>5.24<br>5.20 | VQ<br>VQ<br> VQ<br> VQ<br> VQ<br> VQ<br> VQ<br> VQ<br> VQ<br> VQ<br> V                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                                       | V  <br>V  <br>2 V<br>Q  V<br> Q V<br> Q V<br> Q V | VQ <br>QV |                |

| 2+50 | 2.0144 | 18.96 |     |   |   | Q   | V |
|------|--------|-------|-----|---|---|-----|---|
| 2+55 | 2.1134 | 14.38 | Ì   | Ì | Q |     | V |
| 3+ 0 | 2.1906 | 11.21 |     | Q |   |     | V |
| 3+ 5 | 2.2523 | 8.96  |     | Q |   |     | V |
| 3+10 | 2.2983 | 6.69  | j Q | Ì | Í |     | V |
| 3+15 | 2.3316 | 4.84  | Q   |   |   |     | V |
| 3+20 | 2.3569 | 3.67  | Q   |   |   |     | V |
| 3+25 | 2.3771 | 2.93  | Q   |   |   |     | V |
| 3+30 | 2.3934 | 2.37  | Q   |   |   |     | V |
| 3+35 | 2.4068 | 1.95  | Q   |   |   |     | V |
| 3+40 | 2.4180 | 1.62  | Q   |   |   |     | V |
| 3+45 | 2.4271 | 1.33  | Q   |   |   |     | V |
| 3+50 | 2.4347 | 1.10  | Q   |   |   |     | V |
| 3+55 | 2.4409 | 0.89  | Q   |   |   |     | V |
| 4+ 0 | 2.4457 | 0.71  | Q   |   |   |     | V |
| 4+ 5 | 2.4498 | 0.60  | Q   |   |   |     | V |
| 4+10 | 2.4530 | 0.46  | Q   |   |   |     | V |
| 4+15 | 2.4553 | 0.34  | Q   |   |   | .20 | V |
| 4+20 | 2.4567 | 0.20  | Q   |   |   |     | V |
| 4+25 | 2.4573 | 0.09  | Q   |   |   |     | V |
| 4+30 | 2.4578 | 0.06  | Q   |   |   |     | V |
| 4+35 | 2.4580 | 0.04  | Q   |   |   |     | V |
| 4+40 | 2.4581 | 0.01  | Q   |   |   |     | V |

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
                 Study date 03/22/22 File: PP1PUH6100.out
_____
     Riverside County Synthetic Unit Hydrology Method
     RCFC & WCD Manual date - April 1978
     Program License Serial Number 6443
     _____
      English (in-lb) Input Units Used
      English Rainfall Data (Inches) Input Values Used
      English Units used in output format
     -----
     PILOT PERRIS
     PROP 100-YR
     XO 3/22/22
     Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi.
     Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) =
0.022 Sq. Mi.
     USER Entry of lag time in hours
     Lag time = 0.217 Hr.
     Lag time = 13.02 Min.
     25% of lag time = 3.25 Min.
40% of lag time = 5.21 Min.
     Unit time = 5.00 Min.
     Duration of storm = 6 \text{ Hour}(s)
     User Entered Base Flow = 0.00(CFS)
     2 YEAR Area rainfall data:
     Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
13.97 1.18 16.48
     100 YEAR Area rainfall data:
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 2.94 41.07 13.97 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 1.180(In) Area Averaged 100-Year Rainfall = 2.940(In) Point rain (area averaged) = 2.940(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.940(In) Sub-Area Data: 
 Area(Ac.)
 Runoff Index
 Impervious %

 10.190
 75.00
 0.900

 3.780
 87.00
 0.000
 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2AMC-3(In/Hr)(Dec.%)(In/Hr)(Dec.)(In/Hr)75.088.00.1530.9000.0290.7290.02187.094.80.0680.0000.0680.2710.018 Sum(F) = 0.039Area averaged mean soil loss (F) (In/Hr) = 0.039Minimum soil loss rate ((In/Hr)) = 0.020 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.364 -----Unit Hydrograph VALLEY S-Curve \_\_\_\_\_ Unit Hydrograph Data \_\_\_\_\_ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) \_\_\_\_\_ 38.4024.09976.80516.642115.20725.801153.61018.225192.0129.016 

 1
 0.083
 38.402

 2
 0.167
 76.805

 3
 0.250
 115.207

 4
 0.333
 153.610

 5
 0.417
 192.012

 6
 0.500
 230.415

 7
 0.583
 268.817

 8
 0.667
 307.220

 9
 0.750
 345.622

 10
 0.833
 384.025

 11
 0.917
 422.427

 1 0.083 0.577 2.343 3.633 2.566 9.016 1.269 5.532 0.779 0.576 4.092 3.215 2.464 2.063 1.615 1.266 0.453 0.347 0.290 11 0.917 422.427 0.227 12 1.000 460.829 0.178 1.172 1.005 9.810 13 1.083 499.232 0.165 537.634 1.167 14 0.141 15 1.250 576.037 0.114 16 1.333 614.439 0.688 0.097

| 17 | 1.417 | 652.842 | 0.567         |      | 0.080  |
|----|-------|---------|---------------|------|--------|
| 18 | 1.500 | 691.244 | 0.450         |      | 0.063  |
| 19 | 1.583 | 729.647 | 0.384         |      | 0.054  |
| 20 | 1.667 | 768.049 | 0.384         |      | 0.054  |
| 21 | 1.750 | 806.452 | 0.512         |      | 0.072  |
|    |       |         | Sum = 100.000 | Sum= | 14.079 |
|    |       |         |               |      |        |

rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit | Time  | Pattern | Storm Rain | Loss rate( | In./Hr)  | Effective |
|------|-------|---------|------------|------------|----------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max        | Low      | (In/Hr)   |
| 1    | 0.08  | 0.50    | 0.176      | 0.039      | ( 0.064) | 0.137     |
| 2    | 0.17  | 0.60    | 0.212      | 0.039      | ( 0.077) | 0.172     |
| 3    | 0.25  | 0.60    | 0.212      | 0.039      | ( 0.077) | 0.172     |
| 4    | 0.33  | 0.60    | 0.212      | 0.039      | ( 0.077) | 0.172     |
| 5    | 0.42  | 0.60    | 0.212      | 0.039      | ( 0.077) | 0.172     |
| 6    | 0.50  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 7    | 0.58  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 8    | 0.67  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 9    | 0.75  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 10   | 0.83  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 11   | 0.92  | 0.70    | 0.247      | 0.039      | ( 0.090) | 0.207     |
| 12   | 1.00  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 13   | 1.08  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 14   | 1.17  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 15   | 1.25  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 16   | 1.33  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 17   | 1.42  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 18   | 1.50  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 19   | 1.58  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 20   | 1.67  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 21   | 1.75  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 22   | 1.83  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 23   | 1.92  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 24   | 2.00  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 25   | 2.08  | 0.80    | 0.282      | 0.039      | ( 0.103) | 0.243     |
| 26   | 2.17  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 27   | 2.25  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 28   | 2.33  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 29   | 2.42  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 30   | 2.50  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 31   | 2.58  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 32   | 2.67  | 0.90    | 0.318      | 0.039      | ( 0.116) | 0.278     |
| 33   | 2.75  | 1.00    | 0.353      | 0.039      | ( 0.128) | 0.313     |
| 34   | 2.83  | 1.00    | 0.353      | 0.039      | ( 0.128) | 0.313     |
| 35   | 2.92  | 1.00    | 0.353      | 0.039      | ( 0.128) | 0.313     |
| 36   | 3.00  | 1.00    | 0.353      | 0.039      | ( 0.128) | 0.313     |
| 37   | 3.08  | 1.00    | 0.353      | 0.039      | ( 0.128) | 0.313     |
|      |       |         |            |            |          |           |

| 38                                              | 3.17  | 1.10      | 0.388            |        | 0.039         | (   | 0.141)     | 0.349 |  |  |
|-------------------------------------------------|-------|-----------|------------------|--------|---------------|-----|------------|-------|--|--|
| 39                                              | 3.25  | 1.10      |                  |        | 0.039         | Ì   | •          |       |  |  |
| 40                                              | 3.33  | 1.10      |                  |        | 0.039         | Ì   | •          | 0.349 |  |  |
| 41                                              | 3.42  | 1.20      | 0.423            |        | 0.039         | Ì   | •          |       |  |  |
| 42                                              | 3.50  | 1.30      | 0.459            |        | 0.039         | Ì   | •          | 0.419 |  |  |
| 43                                              | 3.58  | 1.40      | 0.494            |        | 0.039         | Ì   |            | 0.454 |  |  |
| 44                                              | 3.67  | 1.40      | 0.494            |        | 0.039         | Ì   |            | 0.454 |  |  |
| 45                                              | 3.75  | 1.50      |                  |        | 0.039         | Ì   |            |       |  |  |
| 46                                              |       | 1.50      |                  |        | 0.039         | Ì   |            |       |  |  |
| 47                                              | 3.92  | 1.60      | 0.564            |        | 0.039         |     |            |       |  |  |
| 48                                              | 4.00  |           | 0.564            |        | 0.039         |     |            |       |  |  |
| 49                                              | 4.08  | 1.70      | 0.600            |        | 0.039         | Ċ   |            |       |  |  |
| 50                                              | 4.17  |           |                  |        | 0.039         | Ì   |            | 0.596 |  |  |
| 51                                              | 4.25  | 1.90      |                  |        | 0.039         | Ì   |            | 0.631 |  |  |
| 52                                              | 4.33  | 2.00      |                  |        | 0.039         | Ì   |            |       |  |  |
| 53                                              | 4.42  |           | 0.741            |        | 0.039         |     |            |       |  |  |
| 54                                              | 4.50  |           | 0.741            |        | 0.039         | •   | •          |       |  |  |
| 55                                              | 4.58  | 2.20      |                  |        | 0.039         | Ì   | •          |       |  |  |
| 56                                              | 4.67  | 2.30      | 0.811            |        | 0.039         | Ì   | 0.295)     | 0.772 |  |  |
| 57                                              | 4.75  | 2.40      | 0.847            |        | 0.039         | Ì   |            | 0.807 |  |  |
| 58                                              | 4.83  | 2.40      |                  |        | 0.039         | Ì   |            |       |  |  |
| 59                                              | 4.92  | 2.50      |                  |        | 0.039         | Ì   |            |       |  |  |
| 60                                              |       | 2.60      |                  |        | 0.039         | Ì   |            |       |  |  |
| 61                                              |       | 3.10      |                  |        | 0.039         | •   |            |       |  |  |
| 62                                              | 5.17  |           |                  |        | 0.039         | Ì   | •          |       |  |  |
| 63                                              | 5.25  | 3.90      |                  |        | 0.039         | Ì   | •          |       |  |  |
| 64                                              | 5.33  | 4.20      |                  |        | 0.039         | Ì   |            | 1.442 |  |  |
| 65                                              | 5.42  | 4.70      |                  |        | 0.039         | Ì   |            |       |  |  |
| 66                                              | 5.50  | 5.60      |                  |        | 0.039         | Ì   |            |       |  |  |
| 67                                              | 5.58  | 1.90      |                  |        | 0.039         | Ì   |            |       |  |  |
| 68                                              | 5.67  | 0.90      |                  |        | 0.039         | •   | •          | 0.278 |  |  |
| 69                                              | 5.75  | 0.60      |                  |        | 0.039         |     | •          |       |  |  |
| 70                                              | 5.83  | 0.50      | 0.176            |        | 0.039         | Ì   |            |       |  |  |
| 71                                              | 5.92  |           | 0.106            | (      | 0.039)        | •   | 0.039      |       |  |  |
| 72                                              |       |           | 0.071            | ì      | 0.039)        |     |            |       |  |  |
|                                                 |       |           | Rate Not Us      |        | ,             |     |            |       |  |  |
|                                                 | Sum = | •         |                  | ,      |               |     | Sum =      | 32.5  |  |  |
|                                                 | Flood | volume =  | Effective r      | ainfal | 1 2.          | 70( |            |       |  |  |
|                                                 |       | s area    |                  |        |               | •   | 3.1(Ac     | .Ft)  |  |  |
|                                                 | Total | soil loss | = 0.2            | 4(In)  |               |     | `          |       |  |  |
|                                                 | Total | soil loss | = 0.27           | 4(Ac.F | t)            |     |            |       |  |  |
|                                                 | Total | rainfall  | = 0.27<br>= 2.94 | (In)   |               |     |            |       |  |  |
|                                                 | Flood | volume =  | 137137           | .0 Cub | ic Feet       |     |            |       |  |  |
|                                                 |       |           | = 11             |        |               | et  |            |       |  |  |
|                                                 |       |           |                  |        |               |     |            |       |  |  |
| Peak flow rate of this hydrograph = 19.548(CFS) |       |           |                  |        |               |     |            |       |  |  |
|                                                 |       |           |                  |        |               |     |            |       |  |  |
|                                                 |       |           |                  |        | S T 0         |     |            |       |  |  |
|                                                 |       |           | Runoff           | :      | Hydro         | ) g | raph       |       |  |  |
|                                                 |       | Hvd       | rograph in       | 5      | <br>Minute ir | ter | vals ((CFS | ))    |  |  |
|                                                 |       | ,         | <b>U</b> .       |        |               |     | • •        |       |  |  |

| <br>Time(h+m) | Volume Ac.Ft | Q(CFS) | 0    | 5.0 | 10.0 | 15.0 | 20.0 |
|---------------|--------------|--------|------|-----|------|------|------|
| 0+ 5          | 0.0005       | 0.08   | Q    |     |      |      | I    |
| 0+10          | 0.0034       | 0.42   | Q    |     |      |      |      |
| 0+15          | 0.0103       | 1.00   | VQ   |     |      |      |      |
| 0+20          | 0.0205       | 1.48   | VQ   |     |      |      |      |
| 0+25          | 0.0325       | 1.74   | VQ   |     |      |      |      |
| 0+30          | 0.0457       | 1.92   |      |     |      |      |      |
| 0+35          | 0.0603       | 2.11   | VQ   |     |      |      |      |
| 0+40          | 0.0762       | 2.32   | VQ   |     |      |      |      |
| 0+45          | 0.0932       | 2.47   | V Q  |     |      |      |      |
| 0+50          | 0.1109       | 2.57   | V Q  |     |      |      |      |
| 0+55          | 0.1291       |        | V Q  |     |      |      |      |
| 1+ 0          | 0.1477       | 2.71   | V Q  |     |      |      |      |
| 1+ 5          | 0.1673       | 2.84   | V Q  |     |      |      |      |
| 1+10          | 0.1879       |        | V Q  |     |      |      |      |
| 1+15          | 0.2095       |        | V Q  |     |      |      |      |
| 1+20          | 0.2315       | 3.19   | V Q  |     |      |      |      |
| 1+25          | 0.2538       | 3.24   | V Q  |     |      |      |      |
| 1+30          | 0.2764       | 3.28   | V Q  |     |      |      |      |
| 1+35          | 0.2992       |        | V Q  |     |      |      |      |
| 1+40          |              | 3.34   | V Q  |     |      |      |      |
| 1+45          | 0.3453       | 3.36   | VQ   |     | ļ    |      |      |
| 1+50          | 0.3685       | 3.38   | VQ   |     |      |      |      |
| 1+55          | 0.3918       | 3.38   | VQ   |     | ļ    |      |      |
| 2+ 0          | 0.4153       | 3.41   | VQ   |     | ļ    |      |      |
| 2+ 5          | 0.4393       | 3.48   | VQ   |     | ļ    |      |      |
| 2+10          | 0.4638       | 3.55   | V Q  |     |      |      |      |
| 2+15          | 0.4886       | 3.60   | l VQ |     |      |      |      |
| 2+20          | 0.5140       | 3.69   | l VQ |     |      |      |      |
| 2+25          | 0.5399       | 3.76   | l VQ |     | ļ    |      |      |
| 2+30          | 0.5661       | 3.80   | Q    |     | ļ    |      |      |
| 2+35          | 0.5924       | 3.83   | Q    |     | ļ    |      |      |
| 2+40          | 0.6189       | 3.85   | Q    |     | ļ    |      |      |
| 2+45          | 0.6457       | 3.88   | Q\   | -   | ļ    |      |      |
| 2+50          | 0.6730       | 3.97   | Q\   |     | ļ    |      |      |
| 2+55          | 0.7013       | 4.11   |      | 5   | ļ    |      | ļ    |
| 3+ 0          | 0.7303       | 4.21   | -    | 2V  | ļ    |      | ļ    |
| 3+ 5          | 0.7596       | 4.26   | -    | 2V  | ļ    | ļ    | ļ    |
| 3+10          | 0.7893       | 4.31   |      | ΣV  | ļ    | ļ    | ļ    |
| 3+15          | 0.8198       | 4.42   | (    | ζV  | ļ    | ļ    | ļ    |
| 3+20          | 0.8512       | 4.57   |      | QV  | ļ    | ļ    | ļ    |
| 3+25          | 0.8835       | 4.69   |      | QV  | ļ    | ļ    | ļ    |
| 3+30          | 0.9170       | 4.85   |      | QV  | ļ    | l    | ļ    |
| 3+35          | 0.9522       | 5.12   |      | QV  |      | ļ    | ļ    |
| 3+40          | 0.9898       | 5.45   |      | QV  |      | ļ    | ļ    |
| 3+45          | 1.0294       | 5.76   |      | Q V |      | ļ    | ļ    |
| 3+50          | 1.0709       | 6.02   |      | QV  |      | ļ    | ļ    |
| 3+55          | 1.1142       | 6.28   |      | QV  |      | ļ    | ļ    |
| 4+ 0          | 1.1591       | 6.53   |      | QV  |      | ļ    | ļ    |
| 4+ 5          | 1.2058       | 6.78   |      | QV  |      | !    | ļ    |
| 4+10          | 1.2543       | 7.05   | 1    | QV  | I    | I    | I    |

| 4+15 | 1.3051 | 7.38  |   |   |   |   | Qν |    |            |    |   |   |   |
|------|--------|-------|---|---|---|---|----|----|------------|----|---|---|---|
| 4+20 | 1.3587 | 7.78  |   |   |   |   | Q١ | /  |            |    |   |   |   |
| 4+25 | 1.4152 | 8.20  |   |   |   |   | Q١ | /  |            |    |   |   |   |
| 4+30 | 1.4745 | 8.62  |   |   |   |   | (  | ΣΛ |            |    |   |   |   |
| 4+35 | 1.5365 | 8.99  |   |   |   |   | (  | ΣV |            |    |   |   |   |
| 4+40 | 1.6007 | 9.32  |   |   |   |   |    | Q١ | /          |    |   |   |   |
| 4+45 | 1.6675 | 9.70  |   |   |   |   |    | Q  | V          |    |   |   |   |
| 4+50 | 1.7371 | 10.11 |   |   |   |   |    | ς  | <u>0</u> V |    |   |   |   |
| 4+55 | 1.8093 | 10.48 |   |   |   |   |    | ς  | <u>)</u> V |    |   |   |   |
| 5+ 0 | 1.8837 | 10.81 |   |   |   |   |    |    | Qν         |    |   |   |   |
| 5+ 5 | 1.9614 | 11.27 |   |   |   |   |    |    | Qν         |    |   |   |   |
| 5+10 | 2.0448 | 12.12 |   |   |   |   |    |    | QV         |    |   |   |   |
| 5+15 | 2.1375 | 13.45 |   |   |   |   |    |    | Q          | V  |   |   |   |
| 5+20 | 2.2408 | 15.00 |   |   |   |   |    |    |            | VQ |   |   |   |
| 5+25 | 2.3545 | 16.51 |   |   |   |   |    |    |            | V  | Q |   |   |
| 5+30 | 2.4798 | 18.21 |   |   |   |   |    |    |            |    | V | Q |   |
| 5+35 | 2.6145 | 19.55 |   |   |   |   |    |    |            |    | V | Q |   |
| 5+40 | 2.7408 | 18.34 |   |   |   |   |    |    |            |    | V | Q |   |
| 5+45 | 2.8377 | 14.08 |   |   |   |   |    |    |            | Q  |   | V |   |
| 5+50 | 2.9064 | 9.97  |   |   |   |   |    | Q  |            |    |   | V |   |
| 5+5  | 2.9578 | 7.46  |   |   |   |   | Q  |    |            |    |   | V |   |
| 6+ 0 | 2.9980 | 5.84  |   |   |   | Q |    |    |            |    |   | V |   |
| 6+ 5 | 3.0297 | 4.60  |   |   | Q |   |    |    |            |    |   | V |   |
| 6+10 | 3.0543 | 3.58  |   |   | Q |   |    |    |            |    |   | V |   |
| 6+15 | 3.0736 | 2.80  |   | Q |   |   |    |    |            |    |   | V |   |
| 6+20 | 3.0888 | 2.21  |   | Q |   |   |    |    |            |    |   | V |   |
| 6+25 | 3.1012 | 1.80  |   | Q |   |   |    |    |            |    |   | V |   |
| 6+30 | 3.1114 | 1.49  |   | 2 |   |   |    |    |            |    |   | V |   |
| 6+35 | 3.1199 | 1.22  | ( | 2 |   |   |    |    |            |    |   | V |   |
| 6+40 | 3.1267 | 1.00  | Q |   |   |   |    |    |            |    |   | V |   |
| 6+45 | 3.1323 | 0.82  | Q |   |   |   |    |    |            |    |   | V |   |
| 6+50 | 3.1369 | 0.66  | Q |   |   |   |    |    |            |    |   | V |   |
| 6+55 | 3.1405 | 0.52  | Q |   |   |   |    |    |            |    |   | V |   |
| 7+ 0 | 3.1433 | 0.41  | Q |   |   |   |    |    |            |    |   | V | • |
| 7+ 5 | 3.1454 | 0.31  | Q |   |   |   |    |    |            |    |   | V |   |
| 7+10 | 3.1470 | 0.22  | Q |   |   |   |    |    |            |    |   | V |   |
| 7+15 | 3.1476 | 0.09  | Q |   |   |   |    |    |            |    |   | V |   |
| 7+20 | 3.1479 | 0.04  | Q |   |   | ļ |    |    |            |    |   | V | : |
| 7+25 | 3.1481 | 0.03  | Q |   |   | ļ |    |    |            |    |   | V |   |
| 7+30 | 3.1482 | 0.02  | Q |   |   | ļ |    |    |            |    |   | V | : |
| 7+35 | 3.1482 | 0.01  | Q |   |   | ļ |    |    |            |    |   | V |   |
| 7+40 | 3.1482 | 0.00  | Q |   |   |   |    |    |            |    |   | ١ | / |
| <br> |        |       |   |   |   |   |    |    |            |    |   |   |   |

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
                 Study date 03/22/22 File: PP1PUH24100.out
_____
     Riverside County Synthetic Unit Hydrology Method
     RCFC & WCD Manual date - April 1978
     Program License Serial Number 6443
     _____
      English (in-lb) Input Units Used
      English Rainfall Data (Inches) Input Values Used
      English Units used in output format
     -----
     PILOT PERRIS
     PROP 100-YR
     XO 3/22/22
     Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi.
     Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) =
0.022 Sq. Mi.
     USER Entry of lag time in hours
     Lag time = 0.217 Hr.
     Lag time = 13.02 Min.
     25% of lag time = 3.25 Min.
40% of lag time = 5.21 Min.
     Unit time = 5.00 Min.
     Duration of storm = 24 Hour(s)
     User Entered Base Flow = 0.00(CFS)
     2 YEAR Area rainfall data:
     Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
13.97 2.05 28.64
     100 YEAR Area rainfall data:
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 5.33 74.46 13.97 STORM EVENT (YEAR) = 100.00Area Averaged 2-Year Rainfall = 2.050(In) Area Averaged 100-Year Rainfall = 5.330(In) Point rain (area averaged) = 5.330(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 5.330(In) Sub-Area Data: 
 Area(Ac.)
 Runoff Index
 Impervious %

 10.190
 75.00
 0.900

 3.780
 87.00
 0.000
 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2AMC-3(In/Hr)(Dec.%)(In/Hr)(Dec.)(In/Hr)75.088.00.1530.9000.0290.7290.02187.094.80.0680.0000.0680.2710.018 Sum(F) = 0.039Area averaged mean soil loss (F) (In/Hr) = 0.039Minimum soil loss rate ((In/Hr)) = 0.020 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.364 -----Unit Hydrograph VALLEY S-Curve \_\_\_\_\_ Unit Hydrograph Data \_\_\_\_\_ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) \_\_\_\_\_ 38.4024.09976.80516.642115.20725.801153.61018.225192.0129.016 

 1
 0.083
 38.402

 2
 0.167
 76.805

 3
 0.250
 115.207

 4
 0.333
 153.610

 5
 0.417
 192.012

 6
 0.500
 230.415

 7
 0.583
 268.817

 8
 0.667
 307.220

 9
 0.750
 345.622

 10
 0.833
 384.025

 11
 0.917
 422.427

 1 0.083 0.577 2.343 3.633 2.566 9.016 1.269 5.532 0.779 0.576 4.092 3.215 2.464 2.063 0.453 0.347 0.290 1.615 1.266 11 0.917 422.427 0.227 12 1.000 460.829 0.178 1.172 1.005 9.810 13 1.083 499.232 0.165 1.167 537.634 14 0.141 15 1.250 576.037 0.810 0.114 16 1.333 614.439 0.688 0.097

| 17 | 1.417 | 652.842 | 0.567         |      | 0.080  |
|----|-------|---------|---------------|------|--------|
| 18 | 1.500 | 691.244 | 0.450         |      | 0.063  |
| 19 | 1.583 | 729.647 | 0.384         |      | 0.054  |
| 20 | 1.667 | 768.049 | 0.384         |      | 0.054  |
| 21 | 1.750 | 806.452 | 0.512         |      | 0.072  |
|    |       |         | Sum = 100.000 | Sum= | 14.079 |
|    |       |         |               |      |        |

The following loss rate calculations reflect use of the minimum calculated loss

rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit | Time  | Pattern | Storm Rain | Loss rate( | In./Hr) | Effective |
|------|-------|---------|------------|------------|---------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max        | Low     | (In/Hr)   |
| 1    | 0.08  | 0.07    | 0.043      | ( 0.070)   | 0.016   | 0.027     |
| 2    | 0.17  | 0.07    | 0.043      | ( 0.070)   | 0.016   | 0.027     |
| 3    | 0.25  | 0.07    | 0.043      | ( 0.069)   | 0.016   | 0.027     |
| 4    | 0.33  | 0.10    | 0.064      | ( 0.069)   | 0.023   | 0.041     |
| 5    | 0.42  | 0.10    | 0.064      | ( 0.069)   | 0.023   | 0.041     |
| 6    | 0.50  | 0.10    | 0.064      | ( 0.069)   | 0.023   | 0.041     |
| 7    | 0.58  | 0.10    | 0.064      | ( 0.068)   | 0.023   | 0.041     |
| 8    | 0.67  | 0.10    | 0.064      | ( 0.068)   | 0.023   | 0.041     |
| 9    | 0.75  | 0.10    | 0.064      | ( 0.068)   | 0.023   | 0.041     |
| 10   | 0.83  | 0.13    | 0.085      | ( 0.068)   | 0.031   | 0.054     |
| 11   | 0.92  | 0.13    | 0.085      | ( 0.067)   | 0.031   | 0.054     |
| 12   | 1.00  | 0.13    | 0.085      | ( 0.067)   | 0.031   | 0.054     |
| 13   | 1.08  | 0.10    | 0.064      | ( 0.067)   | 0.023   | 0.041     |
| 14   | 1.17  | 0.10    | 0.064      | ( 0.066)   | 0.023   | 0.041     |
| 15   | 1.25  | 0.10    | 0.064      | ( 0.066)   | 0.023   | 0.041     |
| 16   | 1.33  | 0.10    | 0.064      | ( 0.066)   | 0.023   | 0.041     |
| 17   | 1.42  | 0.10    | 0.064      | ( 0.066)   | 0.023   | 0.041     |
| 18   | 1.50  | 0.10    | 0.064      | ( 0.065)   | 0.023   | 0.041     |
| 19   | 1.58  | 0.10    | 0.064      | ( 0.065)   | 0.023   | 0.041     |
| 20   | 1.67  | 0.10    | 0.064      | ( 0.065)   | 0.023   | 0.041     |
| 21   | 1.75  | 0.10    | 0.064      | ( 0.065)   | 0.023   | 0.041     |
| 22   | 1.83  | 0.13    | 0.085      | ( 0.064)   | 0.031   | 0.054     |
| 23   | 1.92  | 0.13    | 0.085      | ( 0.064)   | 0.031   | 0.054     |
| 24   | 2.00  | 0.13    | 0.085      | ( 0.064)   | 0.031   | 0.054     |
| 25   | 2.08  | 0.13    | 0.085      | ( 0.064)   | 0.031   | 0.054     |
| 26   | 2.17  | 0.13    | 0.085      | ( 0.063)   | 0.031   | 0.054     |
| 27   | 2.25  | 0.13    | 0.085      | ( 0.063)   | 0.031   | 0.054     |
| 28   | 2.33  | 0.13    | 0.085      | ( 0.063)   | 0.031   | 0.054     |
| 29   | 2.42  | 0.13    | 0.085      | ( 0.063)   | 0.031   | 0.054     |
| 30   | 2.50  | 0.13    | 0.085      | ( 0.062)   | 0.031   | 0.054     |
| 31   | 2.58  | 0.17    | 0.107      | ( 0.062)   | 0.039   | 0.068     |
| 32   | 2.67  | 0.17    | 0.107      | ( 0.062)   | 0.039   | 0.068     |
| 33   | 2.75  | 0.17    | 0.107      | ( 0.062)   | 0.039   | 0.068     |
| 34   | 2.83  | 0.17    | 0.107      | ( 0.061)   | 0.039   | 0.068     |
| 35   | 2.92  | 0.17    | 0.107      | ( 0.061)   | 0.039   | 0.068     |
| 36   | 3.00  | 0.17    | 0.107      | ( 0.061)   | 0.039   | 0.068     |
| 37   | 3.08  | 0.17    | 0.107      | ( 0.061)   | 0.039   | 0.068     |

| 38       | 3.17 | 0.17 | 0.107 | ( | 0.060) |   | 0.039   | 0.068 |
|----------|------|------|-------|---|--------|---|---------|-------|
| 39       | 3.25 | 0.17 | 0.107 | Ì | 0.060) |   | 0.039   | 0.068 |
| 40       | 3.33 | 0.17 | 0.107 | Ì | 0.060) |   | 0.039   | 0.068 |
| 41       | 3.42 | 0.17 | 0.107 | ì | 0.060) |   | 0.039   | 0.068 |
| 42       | 3.50 | 0.17 | 0.107 | ì | 0.059) |   | 0.039   | 0.068 |
| 43       | 3.58 | 0.17 | 0.107 | ì | 0.059) |   | 0.039   | 0.068 |
| 44       | 3.67 | 0.17 | 0.107 | ( | 0.059) |   | 0.039   | 0.068 |
| 45       | 3.75 | 0.17 | 0.107 | ( | 0.059) |   | 0.039   | 0.068 |
| 46       | 3.83 | 0.20 | 0.128 | ( | 0.058) |   | 0.047   | 0.081 |
| 47       | 3.92 | 0.20 | 0.128 | ( | 0.058) |   | 0.047   | 0.081 |
| 48       | 4.00 | 0.20 | 0.128 | ( | 0.058) |   | 0.047   | 0.081 |
| 49       | 4.08 | 0.20 | 0.128 | ( | 0.058) |   | 0.047   | 0.081 |
| 49<br>50 | 4.03 | 0.20 | 0.128 | ( | 0.057) |   | 0.047   | 0.081 |
| 51       | 4.17 | 0.20 | 0.128 |   | 0.057) |   | 0.047   | 0.081 |
| 52       | 4.23 |      |       |   | 0.057) |   |         |       |
| 53       | 4.33 | 0.23 | 0.149 |   | •      |   | 0.054   | 0.095 |
|          |      | 0.23 | 0.149 |   | 0.057) |   | 0.054   | 0.095 |
| 54       | 4.50 | 0.23 | 0.149 | ( | 0.056) |   | 0.054   | 0.095 |
| 55       | 4.58 | 0.23 | 0.149 | ( | 0.056) |   | 0.054   | 0.095 |
| 56       | 4.67 | 0.23 | 0.149 | ( | 0.056) |   | 0.054   | 0.095 |
| 57       | 4.75 | 0.23 | 0.149 | ( | 0.056) | , | 0.054   | 0.095 |
| 58       | 4.83 | 0.27 | 0.171 |   | 0.055  | ( | 0.062)  | 0.115 |
| 59       | 4.92 | 0.27 | 0.171 |   | 0.055  | ( | 0.062)  | 0.115 |
| 60       | 5.00 | 0.27 | 0.171 | , | 0.055  | ( | 0.062)  | 0.116 |
| 61       | 5.08 | 0.20 | 0.128 | ( | 0.055) |   | 0.047   | 0.081 |
| 62       | 5.17 | 0.20 | 0.128 | ( | 0.054) |   | 0.047   | 0.081 |
| 63       | 5.25 | 0.20 | 0.128 | ( | 0.054) |   | 0.047   | 0.081 |
| 64       | 5.33 | 0.23 | 0.149 |   | 0.054  | ( | 0.054)  | 0.095 |
| 65       | 5.42 | 0.23 | 0.149 |   | 0.054  | ( | 0.054)  | 0.096 |
| 66       | 5.50 | 0.23 | 0.149 |   | 0.053  | ( | 0.054)  | 0.096 |
| 67       | 5.58 | 0.27 | 0.171 |   | 0.053  | ( | 0.062)  | 0.117 |
| 68       | 5.67 | 0.27 | 0.171 |   | 0.053  | ( | 0.062)  | 0.118 |
| 69       | 5.75 | 0.27 | 0.171 |   | 0.053  | ( | 0.062)  | 0.118 |
| 70       | 5.83 | 0.27 | 0.171 |   | 0.053  | ( | 0.062)  | 0.118 |
| 71       | 5.92 | 0.27 | 0.171 |   | 0.052  | ( | 0.062)  | 0.118 |
| 72       | 6.00 | 0.27 | 0.171 |   | 0.052  | ( | 0.062)  | 0.118 |
| 73       | 6.08 | 0.30 | 0.192 |   | 0.052  | ( | 0.070)  | 0.140 |
| 74       | 6.17 | 0.30 | 0.192 |   | 0.052  | ( | 0.070)  | 0.140 |
| 75       | 6.25 | 0.30 | 0.192 |   | 0.051  | ( | 0.070)  | 0.140 |
| 76       | 6.33 | 0.30 | 0.192 |   | 0.051  | ( | 0.070)  | 0.141 |
| 77       | 6.42 | 0.30 | 0.192 |   | 0.051  | ( | 0.070)  | 0.141 |
| 78       | 6.50 | 0.30 | 0.192 |   | 0.051  | ( | 0.070)  | 0.141 |
| 79       | 6.58 | 0.33 | 0.213 |   | 0.050  | ( | 0.078)  | 0.163 |
| 80       | 6.67 | 0.33 | 0.213 |   | 0.050  | ĺ | 0.078)  | 0.163 |
| 81       | 6.75 | 0.33 | 0.213 |   | 0.050  | Ċ | 0.078)  | 0.163 |
| 82       | 6.83 | 0.33 | 0.213 |   | 0.050  | Ì | 0.078)  | 0.163 |
| 83       | 6.92 | 0.33 | 0.213 |   | 0.050  | Ì | 0.078)  | 0.164 |
| 84       | 7.00 | 0.33 | 0.213 |   | 0.049  | Ì | 0.078)́ | 0.164 |
| 85       | 7.08 | 0.33 | 0.213 |   | 0.049  | Ì | 0.078)́ | 0.164 |
| 86       | 7.17 | 0.33 | 0.213 |   | 0.049  | Ì | 0.078)  | 0.164 |
| 87       | 7.25 | 0.33 | 0.213 |   | 0.049  | Ì | 0.078)  | 0.165 |
| 88       | 7.33 | 0.37 | 0.235 |   | 0.048  | ì | 0.085)  | 0.186 |
| 89       | 7.42 | 0.37 | 0.235 |   | 0.048  | ì | 0.085)  | 0.186 |
| 90       | 7.50 | 0.37 | 0.235 |   | 0.048  | ì | 0.085)  | 0.186 |
|          | •    |      |       |   |        | ` |         |       |

| 91  | 7.58  | 0.40 | 0.256 | 0.048 | (                            | 0.093)  | 0.208 |
|-----|-------|------|-------|-------|------------------------------|---------|-------|
| 92  | 7.67  | 0.40 | 0.256 | 0.048 | (                            | 0.093)  | 0.208 |
| 93  | 7.75  | 0.40 | 0.256 | 0.047 | (                            | 0.093)  | 0.208 |
| 94  | 7.83  | 0.43 | 0.277 | 0.047 | (                            | 0.101)  | 0.230 |
| 95  | 7.92  | 0.43 | 0.277 | 0.047 | Ì                            | 0.101)  | 0.230 |
| 96  | 8.00  | 0.43 | 0.277 | 0.047 | ì                            | 0.101)  | 0.230 |
| 97  | 8.08  | 0.50 | 0.320 | 0.046 | ì                            | 0.116)  | 0.273 |
| 98  | 8.17  | 0.50 | 0.320 | 0.046 | (                            | 0.110)  | 0.274 |
| 99  | 8.25  | 0.50 | 0.320 | 0.046 | (                            | 0.110)  |       |
| 100 | 8.33  | 0.50 | 0.320 | 0.046 | $\langle \rangle$            | 0.110)  |       |
|     |       |      |       |       |                              |         |       |
| 101 | 8.42  | 0.50 | 0.320 | 0.046 | (                            | 0.116)  | 0.274 |
| 102 | 8.50  | 0.50 | 0.320 | 0.045 | (                            | 0.116)  |       |
| 103 | 8.58  | 0.53 | 0.341 | 0.045 | (                            | 0.124)  |       |
| 104 | 8.67  | 0.53 | 0.341 | 0.045 | (                            | 0.124)  | 0.296 |
| 105 | 8.75  | 0.53 | 0.341 | 0.045 | (                            | 0.124)  | 0.296 |
| 106 | 8.83  | 0.57 | 0.362 | 0.045 | (                            | 0.132)  |       |
| 107 | 8.92  | 0.57 | 0.362 | 0.044 | (                            | 0.132)  |       |
| 108 | 9.00  | 0.57 | 0.362 | 0.044 | (                            | 0.132)  | 0.318 |
| 109 | 9.08  | 0.63 | 0.405 | 0.044 | (                            | 0.147)  | 0.361 |
| 110 | 9.17  | 0.63 | 0.405 | 0.044 | (                            | 0.147)  | 0.361 |
| 111 | 9.25  | 0.63 | 0.405 | 0.044 | (                            | 0.147)  | 0.362 |
| 112 | 9.33  | 0.67 | 0.426 | 0.043 | (                            | 0.155)  | 0.383 |
| 113 | 9.42  | 0.67 | 0.426 | 0.043 | (                            | 0.155)  | 0.383 |
| 114 | 9.50  | 0.67 | 0.426 | 0.043 | Ć                            | 0.155)  | 0.383 |
| 115 | 9.58  | 0.70 | 0.448 | 0.043 | (                            | 0.163)  | 0.405 |
| 116 | 9.67  | 0.70 | 0.448 | 0.042 | Ì                            | 0.163)  | 0.405 |
| 117 | 9.75  | 0.70 | 0.448 | 0.042 | Ì                            | 0.163)  |       |
| 118 | 9.83  | 0.73 | 0.469 | 0.042 | Ì                            | 0.171)́ | 0.427 |
| 119 | 9.92  | 0.73 | 0.469 | 0.042 | Ì                            | 0.171)́ | 0.427 |
| 120 | 10.00 | 0.73 | 0.469 | 0.042 | Ì                            | 0.171)  | 0.427 |
| 121 | 10.08 | 0.50 | 0.320 | 0.041 | ì                            | 0.116)  |       |
| 122 | 10.17 | 0.50 | 0.320 | 0.041 | ì                            | 0.116)  | 0.279 |
| 123 | 10.25 | 0.50 | 0.320 | 0.041 | Ì                            | 0.116)  | 0.279 |
| 124 | 10.33 | 0.50 | 0.320 | 0.041 | ì                            | 0.116)  | 0.279 |
| 125 |       | 0.50 | 0.320 | 0.041 | (                            | 0.116)  | 0.279 |
| 126 | 10.50 | 0.50 | 0.320 | 0.040 |                              | 0.110)  | 0.279 |
| 127 | 10.58 | 0.67 | 0.426 | 0.040 | (                            | 0.155)  | 0.386 |
| 127 | 10.58 | 0.67 | 0.426 | 0.040 | $\left\langle \right\rangle$ | 0.155)  | 0.386 |
| 120 | 10.07 | 0.67 | 0.426 | 0.040 | $\left\langle \right\rangle$ | 0.155)  | 0.387 |
| 130 |       | 0.67 | 0.426 |       | (                            | 0.155)  | 0.387 |
|     | 10.83 |      |       | 0.040 | (                            | •       |       |
| 131 | 10.92 | 0.67 | 0.426 | 0.039 | (                            | 0.155)  | 0.387 |
| 132 | 11.00 | 0.67 | 0.426 | 0.039 | (                            | 0.155)  | 0.387 |
| 133 | 11.08 | 0.63 | 0.405 | 0.039 | (                            | 0.147)  | 0.366 |
| 134 | 11.17 | 0.63 | 0.405 | 0.039 | (                            | 0.147)  | 0.366 |
| 135 | 11.25 | 0.63 | 0.405 | 0.039 | (                            | 0.147)  | 0.366 |
| 136 | 11.33 | 0.63 | 0.405 | 0.039 | (                            | 0.147)  | 0.367 |
| 137 | 11.42 | 0.63 | 0.405 | 0.038 | (                            | 0.147)  | 0.367 |
| 138 | 11.50 | 0.63 | 0.405 | 0.038 | (                            | 0.147)  | 0.367 |
| 139 | 11.58 | 0.57 | 0.362 | 0.038 | (                            | 0.132)  | 0.324 |
| 140 | 11.67 | 0.57 | 0.362 | 0.038 | (                            | 0.132)  | 0.325 |
| 141 | 11.75 | 0.57 | 0.362 | 0.038 | (                            | 0.132)  | 0.325 |
| 142 | 11.83 | 0.60 | 0.384 | 0.037 | (                            | 0.140)  | 0.346 |
| 143 | 11.92 | 0.60 | 0.384 | 0.037 | (                            | 0.140)  | 0.347 |
|     |       |      |       |       |                              |         |       |

| 144        | 12.00          | 0.60 | 0.384          | 0.037 | ( 0.140) | 0.347 |
|------------|----------------|------|----------------|-------|----------|-------|
| 145        | 12.08          | 0.83 | 0.533          | 0.037 | ( 0.194) | 0.496 |
| 146        | 12.17          | 0.83 | 0.533          | 0.037 | ( 0.194) | 0.496 |
| 147        | 12.25          | 0.83 | 0.533          | 0.036 | ( 0.194) | 0.497 |
| 148        | 12.33          | 0.87 | 0.554          | 0.036 | ( 0.202) | 0.518 |
| 149        | 12.42          | 0.87 | 0.554          | 0.036 | ( 0.202) | 0.518 |
| 150        | 12.50          | 0.87 | 0.554          | 0.036 | ( 0.202) | 0.518 |
| 151        | 12.58          | 0.93 | 0.597          | 0.036 | ( 0.217) | 0.561 |
| 152        | 12.67          | 0.93 | 0.597          | 0.036 | ( 0.217) | 0.561 |
| 153        | 12.75          | 0.93 | 0.597          | 0.035 | ( 0.217) | 0.562 |
| 154        | 12.83          | 0.97 | 0.618          | 0.035 | ( 0.225) | 0.583 |
| 155        | 12.92          | 0.97 | 0.618          | 0.035 | ( 0.225) | 0.583 |
| 156        | 13.00          | 0.97 | 0.618          | 0.035 | ( 0.225) | 0.583 |
| 157        | 13.08          | 1.13 | 0.725          | 0.035 | ( 0.264) | 0.690 |
| 158        | 13.17          | 1.13 | 0.725          | 0.035 | ( 0.264) | 0.690 |
| 159        | 13.25          | 1.13 | 0.725          | 0.034 | ( 0.264) | 0.691 |
| 160        | 13.33          | 1.13 | 0.725          | 0.034 | ( 0.264) | 0.691 |
| 161        | 13.42          | 1.13 | 0.725          | 0.034 | ( 0.264) | 0.691 |
| 162        | 13.50          | 1.13 | 0.725          | 0.034 | ( 0.264) | 0.691 |
| 163        | 13.58          | 0.77 | 0.490          | 0.034 | ( 0.178) | 0.457 |
| 164        | 13.67          | 0.77 | 0.490          | 0.033 | ( 0.178) | 0.457 |
| 165        | 13.75          | 0.77 | 0.490          | 0.033 | ( 0.178) | 0.457 |
| 166        | 13.83          | 0.77 | 0.490          | 0.033 | ( 0.178) | 0.457 |
| 167        | 13.92          | 0.77 | 0.490          | 0.033 | ( 0.178) | 0.457 |
| 168        | 14.00          | 0.77 | 0.490          | 0.033 | ( 0.178) | 0.458 |
| 169        | 14.00          | 0.90 | 0.490          | 0.033 | ( 0.210) | 0.438 |
| 170        | 14.00<br>14.17 | 0.90 | 0.576          | 0.032 | ( 0.210) | 0.543 |
| 171        | 14.17          | 0.90 | 0.576          | 0.032 | ( 0.210) | 0.543 |
| 172        | 14.33          | 0.87 | 0.554          | 0.032 | ( 0.202) | 0.522 |
| 173        | 14.33          | 0.87 | 0.554<br>0.554 | 0.032 | ( 0.202) | 0.522 |
| 174        | 14.42          | 0.87 | 0.554<br>0.554 | 0.032 | ( 0.202) | 0.523 |
| 175        | 14.58          | 0.87 | 0.554          | 0.032 | ( 0.202) | 0.523 |
| 176        | 14.58          | 0.87 | 0.554          | 0.031 | ( 0.202) | 0.523 |
| 177        | 14.07          | 0.87 | 0.554<br>0.554 | 0.031 | ( 0.202) | 0.523 |
| 178        |                | 0.83 | 0.533          | 0.031 | ( 0.194) | 0.502 |
| 179        | 14.92          | 0.83 | 0.533          | 0.031 | ( 0.194) | 0.502 |
| 180        | 14.92          | 0.83 | 0.533          | 0.031 |          | 0.502 |
| 180        | 15.08          | 0.80 | 0.535          | 0.031 |          | 0.302 |
| 182        | 15.08          | 0.80 | 0.512          | 0.031 | •        | 0.481 |
| 183        | 15.17          | 0.80 | 0.512          | 0.030 | •        | 0.481 |
| 184        | 15.33          | 0.80 | 0.490          | 0.030 |          | 0.481 |
| 185        | 15.42          | 0.77 | 0.490          | 0.030 | • •      | 0.460 |
| 185        |                |      | 0.490          |       | • •      |       |
|            | 15.50          | 0.77 |                | 0.030 | • •      | 0.460 |
| 187<br>100 | 15.58          | 0.63 | 0.405          | 0.030 | (0.147)  | 0.375 |
| 188        | 15.67          | 0.63 | 0.405          | 0.030 | ( 0.147) | 0.375 |
| 189        | 15.75          | 0.63 | 0.405          | 0.029 | (0.147)  | 0.376 |
| 190        | 15.83          | 0.63 | 0.405          | 0.029 | (0.147)  | 0.376 |
| 191        | 15.92          | 0.63 | 0.405          | 0.029 | (0.147)  | 0.376 |
| 192        | 16.00          | 0.63 | 0.405          | 0.029 | (0.147)  | 0.376 |
| 193        | 16.08          | 0.13 | 0.085          | 0.029 | ( 0.031) | 0.056 |
| 194<br>105 | 16.17          | 0.13 | 0.085          | 0.029 | ( 0.031) | 0.057 |
| 195<br>106 | 16.25          | 0.13 | 0.085          | 0.029 | ( 0.031) | 0.057 |
| 196        | 16.33          | 0.13 | 0.085          | 0.028 | ( 0.031) | 0.057 |

| 197 | 16.42 | 0.13 | 0.085          |    | 0.028  | (  | 0.031)  | 0.057 |
|-----|-------|------|----------------|----|--------|----|---------|-------|
| 198 | 16.50 | 0.13 | 0.085          |    | 0.028  | Ċ  | 0.031)  | 0.057 |
| 199 | 16.58 | 0.10 | 0.064          | (  | 0.028) | `` | 0.023   | 0.041 |
| 200 | 16.67 | 0.10 | 0.064          | (  | 0.028) |    | 0.023   | 0.041 |
|     |       |      |                | -  | •      |    |         |       |
| 201 | 16.75 | 0.10 | 0.064          | (  | 0.028) |    | 0.023   | 0.041 |
| 202 | 16.83 | 0.10 | 0.064          | (  | 0.028) |    | 0.023   | 0.041 |
| 203 | 16.92 | 0.10 | 0.064          | (  | 0.027) |    | 0.023   | 0.041 |
| 204 | 17.00 | 0.10 | 0.064          | (  | 0.027) |    | 0.023   | 0.041 |
| 205 | 17.08 | 0.17 | 0.107          |    | 0.027  | (  | 0.039)  | 0.079 |
| 206 | 17.17 | 0.17 | 0.107          |    | 0.027  | (  | 0.039)  | 0.080 |
| 207 | 17.25 | 0.17 | 0.107          |    | 0.027  | Ċ  | 0.039)  | 0.080 |
| 208 | 17.33 | 0.17 | 0.107          |    | 0.027  | Ì  | 0.039)  | 0.080 |
| 209 | 17.42 | 0.17 | 0.107          |    | 0.027  | (  | 0.039)  | 0.080 |
| 210 | 17.50 | 0.17 | 0.107          |    | 0.026  | (  | 0.039)  | 0.080 |
| 211 | 17.58 | 0.17 | 0.107          |    | 0.026  | (  | 0.039)  | 0.080 |
| 212 |       | 0.17 | 0.107          |    |        |    |         |       |
|     | 17.67 |      |                |    | 0.026  |    | 0.039)  | 0.080 |
| 213 | 17.75 | 0.17 | 0.107          |    | 0.026  | Ç  | 0.039)  | 0.081 |
| 214 | 17.83 | 0.13 | 0.085          |    | 0.026  | (  | 0.031)  | 0.059 |
| 215 | 17.92 | 0.13 | 0.085          |    | 0.026  | (  | 0.031)  | 0.059 |
| 216 | 18.00 | 0.13 | 0.085          |    | 0.026  | (  | 0.031)  | 0.060 |
| 217 | 18.08 | 0.13 | 0.085          |    | 0.026  | (  | 0.031)  | 0.060 |
| 218 | 18.17 | 0.13 | 0.085          |    | 0.025  | (  | 0.031)  | 0.060 |
| 219 | 18.25 | 0.13 | 0.085          |    | 0.025  | ĺ  | 0.031)  | 0.060 |
| 220 | 18.33 | 0.13 | 0.085          |    | 0.025  | Ò  | 0.031)  | 0.060 |
| 221 | 18.42 | 0.13 | 0.085          |    | 0.025  | Ì  | 0.031)  | 0.060 |
| 222 | 18.50 | 0.13 | 0.085          |    | 0.025  | (  | 0.031)  | 0.060 |
| 223 | 18.58 | 0.10 | 0.064          | (  | 0.025) | (  | 0.023   | 0.041 |
| 224 | 18.67 | 0.10 | 0.064<br>0.064 | -  | 0.025) |    | 0.023   | 0.041 |
|     |       |      |                | (  | •      |    |         |       |
| 225 | 18.75 | 0.10 | 0.064          | (  | 0.025) |    | 0.023   | 0.041 |
| 226 | 18.83 | 0.07 | 0.043          | (  | 0.024) |    | 0.016   | 0.027 |
| 227 | 18.92 | 0.07 | 0.043          | (  | 0.024) |    | 0.016   | 0.027 |
| 228 | 19.00 | 0.07 | 0.043          | (  | 0.024) |    | 0.016   | 0.027 |
| 229 | 19.08 | 0.10 | 0.064          | (  | 0.024) |    | 0.023   | 0.041 |
| 230 | 19.17 | 0.10 | 0.064          | (  | 0.024) |    | 0.023   | 0.041 |
| 231 | 19.25 | 0.10 | 0.064          | (  | 0.024) |    | 0.023   | 0.041 |
| 232 | 19.33 | 0.13 | 0.085          |    | 0.024  | (  | 0.031)  | 0.062 |
| 233 | 19.42 | 0.13 | 0.085          |    | 0.024  | (  | 0.031)  | 0.062 |
| 234 | 19.50 | 0.13 | 0.085          |    | 0.024  | Ì  | 0.031)́ | 0.062 |
| 235 | 19.58 | 0.10 | 0.064          | (  | 0.023) | `  | 0.023   | 0.041 |
| 236 | 19.67 | 0.10 | 0.064          | (  | 0.023) |    | 0.023   | 0.041 |
| 237 | 19.75 | 0.10 | 0.064          | `` | 0.023  | (  | 0.023)  | 0.041 |
| 238 | 19.83 | 0.07 | 0.004          | (  | 0.023) | (  | 0.015   | 0.027 |
|     |       |      |                | (  | •      |    |         |       |
| 239 | 19.92 | 0.07 | 0.043          | (  | 0.023) |    | 0.016   | 0.027 |
| 240 | 20.00 | 0.07 | 0.043          | (  | 0.023) | ,  | 0.016   | 0.027 |
| 241 | 20.08 | 0.10 | 0.064          |    | 0.023  | (  |         | 0.041 |
| 242 | 20.17 | 0.10 | 0.064          |    | 0.023  | (  | 0.023)  | 0.041 |
| 243 | 20.25 | 0.10 | 0.064          |    | 0.023  | (  | 0.023)  | 0.041 |
| 244 | 20.33 | 0.10 | 0.064          |    | 0.023  | (  | 0.023)  | 0.041 |
| 245 | 20.42 | 0.10 | 0.064          |    | 0.022  | (  | 0.023)  | 0.042 |
| 246 | 20.50 | 0.10 | 0.064          |    | 0.022  | (  | 0.023)  | 0.042 |
| 247 | 20.58 | 0.10 | 0.064          |    | 0.022  | Ċ  | 0.023)  | 0.042 |
| 248 | 20.67 | 0.10 | 0.064          |    | 0.022  | Ì  | 0.023)  | 0.042 |
| 249 | 20.75 | 0.10 | 0.064          |    | 0.022  | Ì  | 0.023)  | 0.042 |
|     |       |      |                |    |        | `  | /       |       |

| 250 | 20.83 | 0.07       | 0.043        | (      | 0.022)    |    | 0.016    | 0.027                                   |
|-----|-------|------------|--------------|--------|-----------|----|----------|-----------------------------------------|
| 251 | 20.92 | 0.07       | 0.043        | (      | 0.022)    |    | 0.016    | 0.027                                   |
| 252 | 21.00 | 0.07       | 0.043        | Ì      | 0.022)    |    | 0.016    | 0.027                                   |
| 253 | 21.08 | 0.10       | 0.064        |        | 0.022     | (  | 0.023)   | 0.042                                   |
| 254 | 21.17 | 0.10       | 0.064        |        | 0.022     | Ì  |          | 0.042                                   |
| 255 | 21.25 | 0.10       | 0.064        |        | 0.022     | Ì  | -        | 0.042                                   |
| 256 | 21.33 | 0.07       | 0.043        | (      | 0.021)    | `  | 0.016    | 0.027                                   |
| 257 | 21.42 | 0.07       | 0.043        | (      | 0.021)    |    | 0.016    | 0.027                                   |
| 258 | 21.50 | 0.07       | 0.043        | ì      | ,         |    | 0.016    | 0.027                                   |
| 259 | 21.58 | 0.10       | 0.064        | ``     | 0.021     | (  |          | 0.043                                   |
| 260 | 21.67 | 0.10       | 0.064        |        | 0.021     | ì  |          | 0.043                                   |
| 261 | 21.75 | 0.10       | 0.064        |        | 0.021     | ì  |          | 0.043                                   |
| 262 | 21.83 | 0.07       | 0.043        | (      | 0.021)    | (  | 0.016    | 0.027                                   |
| 263 | 21.92 | 0.07       | 0.043        | (      | 0.021)    |    | 0.016    | 0.027                                   |
| 264 | 22.00 | 0.07       | 0.043        | (      | 0.021)    |    | 0.010    | 0.027                                   |
| 265 | 22.08 | 0.10       | 0.064        | (      | 0.021)    | (  |          | 0.043                                   |
| 266 | 22.00 | 0.10       | 0.064        |        | 0.021     | (  |          | 0.043                                   |
| 267 | 22.17 | 0.10       | 0.064        |        | 0.021     | (  | 0.023)   | 0.043                                   |
| 268 | 22.23 | 0.10       | 0.004        | (      | 0.021     | (  | 0.023)   | 0.027                                   |
| 268 | 22.33 | 0.07       | 0.043        | (      | 0.021)    |    | 0.010    | 0.027                                   |
| 209 | 22.42 | 0.07       | 0.043        | (      | 0.021)    |    | 0.010    | 0.027                                   |
| 270 | 22.50 | 0.07       |              |        | •         |    |          |                                         |
|     |       |            | 0.043        |        | 0.020)    |    | 0.016    | 0.027                                   |
| 272 | 22.67 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 273 | 22.75 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 274 | 22.83 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 275 | 22.92 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 276 | 23.00 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 277 | 23.08 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 278 | 23.17 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 279 | 23.25 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 280 | 23.33 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 281 | 23.42 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 282 | 23.50 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
| 283 | 23.58 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
|     | 23.67 | 0.07       | 0.043        |        | 0.020)    |    | 0.016    | 0.027                                   |
|     |       | 0.07       |              |        | 0.020)    |    | 0.016    |                                         |
|     |       |            | 0.043        |        | 0.020)    |    |          |                                         |
|     |       |            | 0.043        |        | 0.020)    |    |          | 0.027                                   |
| 288 | 24.00 | 0.07       | 0.043        | (      | 0.020)    |    | 0.016    | 0.027                                   |
|     |       | •          | Rate Not Use | ed)    |           |    |          |                                         |
|     | Sum = |            |              |        |           |    |          | 54.5                                    |
|     |       |            | Effective ra |        |           | •  | •        |                                         |
|     | time  | es area    | 14.0(Ac.),   | /[(In) | /(Ft.)] : | =  | 5.3(A    | c.Ft)                                   |
|     | Total | soil loss  | = 0.79       | Ə(In)  |           |    |          |                                         |
|     | Total | soil loss  | = 0.922      | 2(Ac.F | t)        |    |          |                                         |
|     |       |            | = 5.33       |        |           |    |          |                                         |
|     | Flood | d volume = | 230127       | .4 Cub | ic Feet   |    |          |                                         |
|     | Total | soil loss  | = 403        | 155.4  | Cubic Fe  | et |          |                                         |
|     |       |            |              |        |           |    | 210(050) |                                         |
|     |       |            | of this hyd  |        |           |    |          |                                         |
|     |       |            |              |        |           |    |          | +++++++++++++++++++++++++++++++++++++++ |
|     |       |            |              |        | STO       |    |          |                                         |
|     |       |            |              |        |           |    |          |                                         |

Runoff Hydrograph

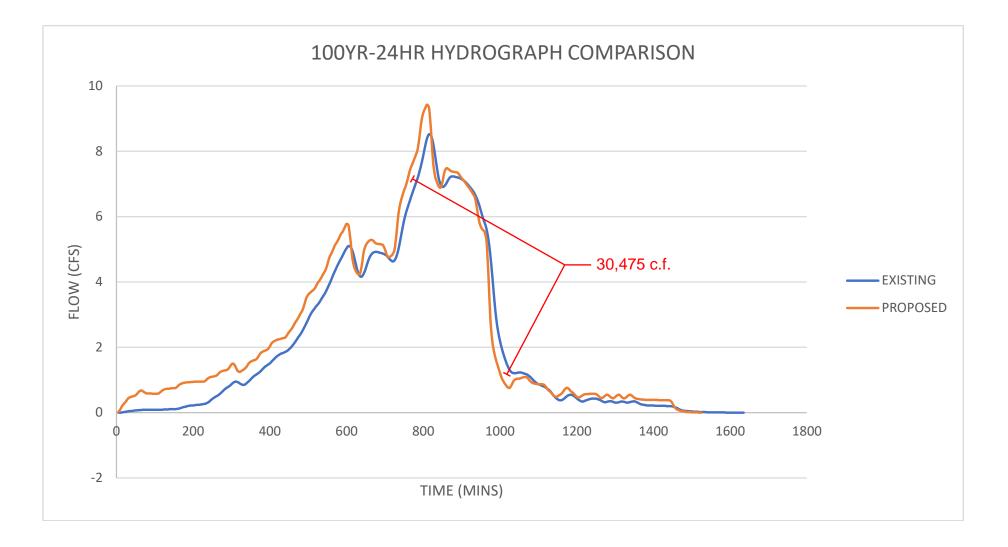
#### ----------\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

Hydrograph in 5 Minute intervals ((CFS))

| Time(h+m) | Volume Ac.Ft | Q(CFS | ) 0 | 2.5   | 5.0   | 7.5 | 10.0  |
|-----------|--------------|-------|-----|-------|-------|-----|-------|
| 0+ 5      | 0.0001       | 0.02  | Q   | <br>I | <br>I |     | <br>I |
| 0+10      | 0.0007       | 0.02  | Q   |       |       | I   |       |
| 0+10      | 0.0019       | 0.18  | Q   |       |       | I   |       |
| 0+10      | 0.0036       |       | vq  |       |       | I   |       |
| 0+25      | 0.0058       |       | võ  |       | ł     | I   |       |
| 0+30      | 0.0085       |       | võ  |       | ł     |     |       |
| 0+35      | 0.0116       |       | võ  |       | ł     |     |       |
| 0+40      | 0.0148       |       | võ  |       | ł     |     |       |
| 0+45      | 0.0182       | 0.49  |     | ł     | ł     |     |       |
| 0+50      | 0.0218       |       | vQ  | i     | i     |     |       |
| 0+55      | 0.0256       |       | νų  | ł     | ł     |     |       |
| 1+ 0      | 0.0299       |       | νų  | i     | i     |     |       |
| 1+ 5      | 0.0344       |       | νų  | i     | i     |     | i i   |
| 1+10      | 0.0388       |       | νų  | i     | i     |     | i i   |
| 1+15      | 0.0431       |       | νų  | i     | i     |     | i i   |
| 1+20      | 0.0471       |       | νų  | i     | i     |     | i     |
| 1+25      | 0.0511       |       | νų  | i     | i     |     | İ     |
| 1+30      | 0.0552       |       | νų  | i     | i     |     |       |
| 1+35      | 0.0591       |       | νų  | i     | i     |     | İ     |
| 1+40      | 0.0631       |       | νų  | Ì     | i     |     | i     |
| 1+45      | 0.0671       |       | νų  | İ     | i     | l   | i     |
| 1+50      | 0.0712       |       | νų  | İ     | İ     |     | i     |
| 1+55      | 0.0754       |       | νų  | İ     | i     |     | i     |
| 2+ 0      | 0.0800       |       | νų  | İ     | i     |     | i     |
| 2+ 5      | 0.0849       |       | νų  | İ     | i     | i   | İ     |
| 2+10      | 0.0898       |       | νų  | İ     | i     | i   | i     |
| 2+15      | 0.0948       |       | νQ  | İ     | İ     | i   | i     |
| 2+20      | 0.0999       |       | νQ  | İ     | İ     | İ   | i     |
| 2+25      | 0.1050       | 0.74  | VQ  | ĺ     | Ì     | İ   | İ     |
| 2+30      | 0.1101       | 0.75  | νQ  | Í     | Ì     | ĺ   | ĺ     |
| 2+35      | 0.1153       | 0.76  | VQ  | ĺ     | Ì     | ĺ   | İ     |
| 2+40      | 0.1208       | 0.79  | VQ  |       |       |     |       |
| 2+45      | 0.1266       | 0.84  | VQ  |       |       |     |       |
| 2+50      | 0.1326       | 0.88  | V Q |       |       |     |       |
| 2+55      | 0.1388       | 0.90  | V Q |       |       |     |       |
| 3+ 0      | 0.1451       | 0.91  | V Q |       |       |     |       |
| 3+ 5      | 0.1514       | 0.92  | V Q |       |       |     |       |
| 3+10      | 0.1578       | 0.93  | V Q |       |       |     |       |
| 3+15      | 0.1642       | 0.93  | V Q |       |       |     |       |
| 3+20      | 0.1706       | 0.94  | V Q |       |       |     |       |
| 3+25      | 0.1771       | 0.94  | V Q |       | ļ     | ļ   |       |
| 3+30      | 0.1836       | 0.94  | V Q |       |       |     |       |
| 3+35      | 0.1901       | 0.95  | V Q |       | ļ     | ļ   |       |
| 3+40      | 0.1967       | 0.95  | V Q |       | ļ     | ļ   |       |
| 3+45      | 0.2032       | 0.95  | V Q |       |       | ļ   |       |
| 3+50      | 0.2098       | 0.96  | V Q | I     |       |     |       |
|           |              |       |     |       |       |     |       |

| 3+55         | 0.2166 | 0.99 | V Q          |        |     |   |
|--------------|--------|------|--------------|--------|-----|---|
| 4+ 0         | 0.2238 | 1.04 | V Q          |        |     |   |
| 4+ 5         | 0.2312 | 1.08 | V Q          |        |     |   |
| 4+10         | 0.2387 | 1.09 | V Q          |        |     |   |
| 4+15         | 0.2464 | 1.11 | V Q          |        | Í   | Ì |
| 4+20         | 0.2541 | 1.12 | V Q          |        | Í   | Ì |
| 4+25         | 0.2621 | 1.16 | V Q          |        | İ   | İ |
| 4+30         | 0.2704 | 1.21 | VQ           | İ      | i   | İ |
| 4+35         | 0.2791 | 1.25 | VQ           | ĺ      | i   | i |
| 4+40         | 0.2878 | 1.27 | V Q          | ĺ      | i   | Ì |
| 4+45         | 0.2967 | 1.29 | V Q          |        | i   | Ì |
| 4+50         | 0.3057 | 1.31 | V Q          |        | i   | i |
| 4+55         | 0.3151 | 1.36 | V Q          |        | i   | Ì |
| 5+ 0         | 0.3250 | 1.44 | V Q          | 1      | ł   | 1 |
| 5+ 5         | 0.3353 | 1.48 | V Q          |        | ł   | 1 |
| 5+10         | 0.3451 | 1.43 | V Q          |        | ł   |   |
| 5+15         | 0.3543 | 1.33 | V Q          | 1      | 1   | 1 |
| 5+15<br>5+20 | 0.3630 | 1.26 |              |        |     | 1 |
| 5+20<br>5+25 | 0.3717 | 1.20 |              |        |     |   |
| 5+25<br>5+30 | 0.3807 | 1.27 | V Q<br>  V Q |        | 1   |   |
| 5+35         | 0.3899 | 1.30 |              |        |     | 1 |
| 5+35<br>5+40 | 0.3995 |      |              |        |     | 1 |
|              |        | 1.40 | V Q          |        |     | 1 |
| 5+45         | 0.4097 | 1.48 | V Q          |        |     |   |
| 5+50         | 0.4203 | 1.54 | V Q          |        | ļ   | 1 |
| 5+55         | 0.4311 | 1.57 | V Q          |        | ļ   | 1 |
| 6+ 0         | 0.4421 | 1.59 | VQ           |        | ļ   | 1 |
| 6+ 5         | 0.4533 | 1.62 | VQ           |        | ļ   | 1 |
| 6+10         | 0.4649 | 1.68 | VQ           |        | ļ   | 1 |
| 6+15         | 0.4771 | 1.77 | VQ           |        | ļ   |   |
| 6+20         | 0.4897 | 1.84 | VQ           |        | ļ   |   |
| 6+25         | 0.5026 | 1.87 | V Q          |        | ļ   |   |
| 6+30         | 0.5157 | 1.90 | V Q          |        | ļ   |   |
| 6+35         | 0.5290 | 1.93 | VQ           |        |     |   |
| 6+40         | 0.5427 | 1.99 | VQ           |        |     |   |
| 6+45         | 0.5570 | 2.08 | V Q          |        |     |   |
| 6+50         | 0.5718 | 2.15 | V Q          |        |     |   |
| 6+55         | 0.5869 | 2.19 | V Q          |        |     |   |
| 7+ 0         | 0.6021 | 2.21 | V Q          |        |     |   |
| 7+ 5         | 0.6175 | 2.23 | V Q          |        |     |   |
| 7+10         | 0.6329 | 2.25 | V Q          |        |     |   |
| 7+15         | 0.6485 | 2.26 | V Q          |        |     |   |
| 7+20         | 0.6643 | 2.29 | V Q          |        | Í   |   |
| 7+25         | 0.6804 | 2.35 | V Q          |        | Í   |   |
| 7+30         | 0.6972 | 2.43 | V Q          |        | Í   |   |
| 7+35         | 0.7145 | 2.51 |              | ,<br>2 | İ   |   |
| 7+40         | 0.7323 | 2.59 |              | 2<br>2 | i   |   |
| 7+45         | 0.7509 | 2.69 | :            | Ž      | i   | İ |
| 7+50         | 0.7700 | 2.78 |              | ĮQ     | i   | İ |
| 7+55         | 0.7897 | 2.87 |              | Q      | i   | i |
| 8+ 0         | 0.8102 | 2.97 |              | Q      | i   | Ì |
| 8+ 5         | 0.8314 | 3.08 | i v          | Q      | l l | İ |
| 8+10         | 0.8536 | 3.22 | i v          | Q      | ļ   |   |
| 8+15         | 0.8771 | 3.41 | i v          | Q      | l l | İ |
|              | ,      |      |              | i t    | I   | I |

| 8+20           | 0.9015           | 3.54         | V   Q                                   |
|----------------|------------------|--------------|-----------------------------------------|
| 8+25           | 0.9264           | 3.62         | V   Q                                   |
| 8+30           | 0.9517           | 3.67         | V   Q                                   |
| 8+35           | 0.9773           | 3.72         | V   Q                                   |
| 8+40           | 1.0035           | 3.80         | V   Q                                   |
| 8+45           | 1.0304           | 3.91         | V   Q                                   |
| 8+50           | 1.0579           | 3.99         | V   Q                                   |
| 8+55           | 1.0861           | 4.09         |                                         |
| 9+ 0           | 1.1150           | 4.20         |                                         |
| 9+ 5           | 1.1447           | 4.31         |                                         |
| 9+10           | 1.1754           | 4.45         | V Q                                     |
| 9+15           | 1.2073           | 4.64         | V Q                                     |
| 9+20           | 1.2403           | 4.79         | V  Q                                    |
| 9+25           | 1.2742           | 4.92         | V  Q                                    |
| 9+30           | 1.3090           | 5.05         | V  Q                                    |
| 9+35           | 1.3445           | 5.15         | V Q                                     |
| 9+40           | 1.3807           | 5.26         | V  Q                                    |
| 9+45           | 1.4178           | 5.38         | V  Q                                    |
| 9+50           | 1.4556           | 5.48         | V  Q                                    |
| 9+55           | 1.4941           | 5.59         | V  Q                                    |
| 10+ 0          | 1.5333           | 5.70         | V  Q                                    |
| 10+ 5          | 1.5726           | 5.70         | V  Q                                    |
| 10+10          | 1.6099           | 5.41         | V  Q                                    |
| 10+15          | 1.6437           | 4.90         |                                         |
| 10+20          | 1.6750           | 4.55         |                                         |
| 10+25          | 1.7052           | 4.39         |                                         |
| 10+30          | 1.7348           | 4.29         |                                         |
| 10+35          | 1.7643           | 4.28         |                                         |
| 10+40          | 1.7951           | 4.48         |                                         |
| 10+45          | 1.8284           | 4.83         |                                         |
| 10+50          | 1.8633           | 5.07         |                                         |
| 10+55          | 1.8990           | 5.18         |                                         |
| 11+ 0          | 1.9351           | 5.24         |                                         |
| 11+ 5          | 1.9714           | 5.27         | V  Q  <br>  V  Q                        |
| 11+10<br>11,15 | 2.0076           | 5.26         |                                         |
| 11+15<br>11+20 | 2.0435           | 5.21         |                                         |
| 11+20<br>11+25 | 2.0791<br>2.1146 | 5.17<br>5.16 |                                         |
| 11+23<br>11+30 | 2.1140           | 5.16         | V Q  <br>  V Q                          |
| 11+35          | 2.1855           | 5.13         |                                         |
| 11+40          | 2.2201           | 5.03         |                                         |
| 11+40<br>11+45 | 2.2537           | 4.87         |                                         |
| 11+50          | 2.2866           | 4.78         |                                         |
| 11+55          | 2.3196           | 4.79         |                                         |
| 12+ 0          | 2.3529           | 4.84         |                                         |
| 12+ 5          | 2.3871           | 4.96         | VQ                                      |
| 12+ 5          | 2.4237           | 5.32         |                                         |
| 12+10          | 2.4641           | 5.87         |                                         |
| 12+15          | 2.5073           | 6.27         |                                         |
| 12+25          | 2.5521           | 6.51         | V  Q                                    |
| 12+25          | 2.5983           | 6.70         |                                         |
| 12+30          | 2.6456           | 6.87         |                                         |
| 12+55          | 2.6943           | 7.06         |                                         |
| 12.40          | 2,0775           |              | I I • • • • • • • • • • • • • • • • • • |


| 12+45 | 2.7445 | 7.29 | V Q         |
|-------|--------|------|-------------|
| 12+50 | 2.7959 | 7.47 | V Q         |
| 12+55 | 2.8483 | 7.62 | V Q         |
| 13+ 0 | 2.9018 | 7.76 | v  Q        |
| 13+ 5 | 2.9565 | 7.94 |             |
| 13+10 | 3.0134 | 8.26 | I IVIQI     |
| 13+15 | 3.0733 | 8.70 |             |
| 13+20 | 3.1355 | 9.02 | i iviqi     |
| 13+25 | 3.1988 | 9.20 | I I V I Q I |
| 13+30 | 3.2629 | 9.31 |             |
| 13+35 | 3.3267 | 9.26 | i iviqi     |
| 13+40 | 3.3872 | 8.78 |             |
| 13+45 | 3.4422 | 7.99 |             |
| 13+50 | 3.4934 | 7.43 |             |
| 13+55 | 3.5428 | 7.17 |             |
| 14+ 0 | 3.5911 | 7.01 |             |
| 14+ 5 | 3.6389 | 6.95 |             |
| 14+10 | 3.6876 | 7.07 |             |
| 14+15 | 3.7380 | 7.31 |             |
| 14+20 | 3.7894 | 7.47 |             |
| 14+25 | 3.8409 | 7.48 |             |
| 14+30 | 3.8922 | 7.44 |             |
| 14+35 | 3.9432 | 7.41 |             |
| 14+40 | 3.9941 | 7.39 | QV          |
| 14+45 | 4.0450 | 7.39 |             |
| 14+50 | 4.0957 | 7.37 |             |
| 14+55 | 4.1461 | 7.31 |             |
| 15+ 0 | 4.1958 | 7.23 |             |
| 15+ 5 | 4.2451 | 7.16 |             |
| 15+10 | 4.2939 | 7.08 |             |
| 15+15 | 4.3419 | 6.98 |             |
| 15+20 | 4.3895 | 6.90 |             |
| 15+25 | 4.4365 | 6.82 |             |
| 15+30 | 4.4828 | 6.73 |             |
| 15+35 | 4.5283 | 6.61 |             |
| 15+40 | 4.5722 | 6.37 |             |
| 15+45 | 4.6138 | 6.04 |             |
| 15+50 | 4.6538 | 5.80 |             |
| 15+55 | 4.6929 | 5.68 |             |
| 16+ 0 | 4.7314 | 5.60 |             |
| 16+ 5 | 4.7683 | 5.35 |             |
| 16+10 | 4.7997 | 4.56 |             |
| 16+15 | 4.8228 | 3.36 |             |
| 16+20 | 4.8401 | 2.51 |             |
| 16+25 | 4.8545 | 2.08 |             |
| 16+30 | 4.8669 | 1.81 |             |
| 16+35 | 4.8780 | 1.60 |             |
| 16+40 | 4.8877 | 1.41 |             |
| 16+45 | 4.8961 | 1.23 |             |
| 16+50 | 4.9036 | 1.08 |             |
| 16+55 | 4.9103 | 0.98 |             |
| 17+ 0 | 4.9166 | 0.90 |             |
| 17+ 5 | 4.9225 | 0.86 |             |
|       |        |      | 1 T I I V I |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |      |     |   |   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|-----|---|---|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+10 | 4.9286 | 0.89 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+15 | 4.9354 | 0.99 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+20 | 4.9427 | 1.05 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+25 | 4.9501 | 1.07 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+30 | 4.9575 | 1.08 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+35 | 4.9650 | 1.09 | Q   |   |   | V    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+40 | 4.9725 | 1.09 | -   | Ì | i | i vi |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+45 | 4.9799 | 1.08 |     | Ì | i | i vi |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17+50 | 4.9873 | 1.07 |     | i | i | i vi |
| 18+0 $5.0010$ $0.96$ $Q$ $V$ $18+15$ $5.0073$ $0.92$ $Q$ $V$ $18+15$ $5.0135$ $0.90$ $Q$ $V$ $18+15$ $5.0196$ $0.88$ $Q$ $V$ $18+20$ $5.0256$ $0.88$ $Q$ $V$ $18+25$ $5.0316$ $0.87$ $Q$ $V$ $18+25$ $5.0316$ $0.87$ $Q$ $V$ $18+25$ $5.0316$ $0.87$ $Q$ $V$ $18+35$ $5.0435$ $0.87$ $Q$ $V$ $V$ $18+45$ $5.0435$ $0.86$ $Q$ $V$ $V$ $18+45$ $5.06541$ $0.74$ $Q$ $V$ $V$ $18+55$ $5.0668$ $0.55$ $Q$ $V$ $V$ $19+5$ $5.0703$ $0.511$ $Q$ $V$ $V$ $19+25$ $5.0859$ $0.63$ $Q$ $V$ $V$ $19+25$ $5.0859$ $0.75$ $Q$ $V$ <td< td=""><td>17+55</td><td>4.9944</td><td>1.03</td><td></td><td>i</td><td>i</td><td>i vi</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17+55 | 4.9944 | 1.03 |     | i | i | i vi |
| 18+ 5       5.0073 $0.92$ $Q$ V         18+10       5.0135 $0.90$ $Q$ V         18+15       5.0196 $0.88$ $Q$ V         18+25       5.0256 $0.88$ $Q$ V         18+25       5.0316 $0.87$ $Q$ V         18+35       5.0435 $0.86$ $Q$ V         18+35       5.0435 $0.86$ $Q$ V         18+35       5.0435 $0.86$ $Q$ V         18+35       5.0630 $0.62$ $Q$ V       V         18+55       5.0630 $0.62$ $Q$ V       V         18+55       5.0668 $0.55$ $Q$ V       V         19+10       5.0738 $0.51$ $Q$ V       V         19+15       5.0776 $0.54$ $Q$ V       V         19+20       5.0816 $0.57$ $Q$ V       V         19+30       5.0959 $0.75$ $Q$ V       V         19+45       5.1056 $0.67$ $Q$ V                                                                                                                                                                                                                                                                                                                                             |       |        |      |     | i | i | ! !  |
| 18+10 $5.0135$ $0.90$ $Q$ V         18+15 $5.0196$ $0.88$ $Q$ V         18+20 $5.0256$ $0.88$ $Q$ V         18+20 $5.0256$ $0.88$ $Q$ V         18+25 $5.0316$ $0.87$ $Q$ V         18+30 $5.0376$ $0.87$ $Q$ V       V         18+35 $5.0435$ $0.86$ $Q$ V       V         18+45 $5.0435$ $0.86$ $Q$ V       V         18+45 $5.0630$ $0.62$ $Q$ V       V         18+55 $5.0668$ $0.55$ $Q$ V       V         19+ 5 $5.0703$ $0.51$ $Q$ V       V         19+ 40 $5.0776$ $0.54$ $Q$ V       V         19+20 $5.0816$ $0.58$ $Q$ V       V         19+30 $5.0908$ $0.71$ $Q$ V       V         19+35 $5.1030$ $0.62$ $Q$ V       V         19+40                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |      |     | i | i | i vi |
| 18+15       5.0196       0.88       Q       V         18+20       5.0256       0.88       Q       V         18+25       5.0316       0.87       Q       V         18+35       5.0435       0.86       Q       V         18+40       5.0435       0.86       Q       V         18+45       5.0541       0.74       Q       V         18+45       5.0541       0.74       Q       V         18+45       5.0538       0.67       Q       V       V         18+55       5.0630       0.62       Q       V       V         19+5       5.0703       0.51       Q       V       V         19+5       5.0738       0.51       Q       V       V         19+25       5.0816       0.58       Q       V       V         19+25       5.0859       0.63       Q       V       V         19+30       5.0908       0.71       Q       V       V         19+45       5.1026       0.67       Q       V       V         19+45       5.1036       0.67       Q       V       V         20+40 </td <td></td> <td></td> <td></td> <td></td> <td>İ</td> <td>l</td> <td>! !</td> |       |        |      |     | İ | l | ! !  |
| 18+20 $5.0256$ $0.88$ $Q$ V $18+25$ $5.0316$ $0.87$ $Q$ V $18+30$ $5.0376$ $0.87$ $Q$ V $18+35$ $5.0435$ $0.86$ $Q$ V $18+35$ $5.0435$ $0.86$ $Q$ V $18+40$ $5.0491$ $0.81$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $19+5$ $5.0703$ $0.51$ $Q$ V       V $19+40$ $5.0776$ $0.54$ $Q$ V       V $19+20$ $5.0816$ $0.58$ $Q$ V       V $19+35$ $5.0959$ $0.75$ $Q$ V       V $19+35$ $5.0968$ $0.67$ $Q$ V       V $19+35$ $5.1098$ $0.62$ $Q$ V       V $19+40$ $5.1173$ $0.57$ $Q$ V       V $19+55$ $5.1137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |      | -   | i | i |      |
| 18+25 $5.0316$ $0.87$ $Q$ V $18+36$ $5.0376$ $0.87$ $Q$ V $18+36$ $5.0376$ $0.87$ $Q$ V $18+48$ $5.0435$ $0.86$ $Q$ V $18+45$ $5.0435$ $0.74$ $Q$ V $18+45$ $5.0541$ $0.74$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $19+6$ $5.0668$ $0.55$ $Q$ V       V $19+5$ $5.0703$ $0.51$ $Q$ V       V $19+25$ $5.0763$ $0.51$ $Q$ V       V $19+25$ $5.0859$ $0.63$ $Q$ V       V $19+25$ $5.0959$ $0.75$ $Q$ V       V $19+36$ $5.1098$ $0.62$ $Q$ V       V $19+45$ $5.1056$ $0.67$ $Q$ V       V $20+6$ $5.1137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |     | i | i |      |
| 18+30 $5.0376$ $0.87$ $Q$ $V$ $18+435$ $5.0435$ $0.86$ $Q$ $V$ $18+440$ $5.0435$ $0.81$ $Q$ $V$ $18+45$ $5.0541$ $0.74$ $Q$ $V$ $18+45$ $5.0558$ $0.67$ $Q$ $V$ $18+55$ $5.0630$ $0.62$ $Q$ $V$ $19+5$ $5.0703$ $0.51$ $Q$ $V$ $19+5$ $5.0703$ $0.51$ $Q$ $V$ $19+5$ $5.0776$ $0.54$ $Q$ $V$ $19+20$ $5.0816$ $0.58$ $Q$ $V$ $19+25$ $5.0859$ $0.63$ $Q$ $V$ $19+30$ $5.0908$ $0.71$ $Q$ $V$ $V$ $19+30$ $5.0908$ $0.71$ $Q$ $V$ $V$ $19+35$ $5.1056$ $0.67$ $Q$ $V$ $V$ $19+40$ $5.1010$ $0.73$ $Q$ $V$ $V$ $19+45$ $5.1206$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |      | -   | i | i |      |
| 18+35 $5.0435$ $0.86$ $Q$ V $18+40$ $5.0431$ $0.74$ $Q$ V $18+45$ $5.0541$ $0.74$ $Q$ V $18+56$ $5.0588$ $0.67$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $19+5$ $5.06703$ $0.51$ $Q$ V $19+5$ $5.0776$ $0.54$ $Q$ V $19+10$ $5.0776$ $0.54$ $Q$ V $19+20$ $5.0816$ $0.58$ $Q$ V $19+20$ $5.0859$ $0.63$ $Q$ V $19+35$ $5.0959$ $0.75$ $Q$ V $19+35$ $5.0959$ $0.75$ $Q$ V $19+40$ $5.1010$ $0.73$ $Q$ V       V $19+45$ $5.1056$ $0.67$ $Q$ V       V $19+45$ $5.1026$ $0.67$ $Q$ V       V $19+45$ $5.1026$ $0.67$ $Q$ V <td< td=""><td></td><td></td><td></td><td></td><td>i</td><td>i</td><td>! !</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |      |     | i | i | ! !  |
| 18+40       5.0491       0.81       Q       V         18+45       5.0541       0.74       Q       V         18+55       5.0588       0.67       Q       V         18+55       5.0660       0.62       Q       V         19+0       5.0668       0.55       Q       V         19+1       5.0703       0.51       Q       V         19+15       5.0776       0.54       Q       V         19+20       5.0816       0.58       Q       V         19+25       5.0859       0.63       Q       V         19+30       5.0908       0.71       Q       V       V         19+35       5.0959       0.75       Q       V       V         19+45       5.1010       0.73       Q       V       V         19+45       5.1026       0.67       Q       V       V         19+45       5.1010       0.73       Q       V       V         19+45       5.1026       0.67       Q       V       V         20+ 0       5.1173       0.51       Q       V       V         20+ 0       5.1237 <t< td=""><td></td><td></td><td></td><td></td><td>ł</td><td>ł</td><td></td></t<>   |       |        |      |     | ł | ł |      |
| 18+45 $5.0541$ $0.74$ $Q$ V $18+50$ $5.0588$ $0.67$ $Q$ V $18+55$ $5.0630$ $0.62$ $Q$ V $19+0$ $5.0668$ $0.55$ $Q$ V $19+5$ $5.0703$ $0.51$ $Q$ V $19+10$ $5.0776$ $0.54$ $Q$ V $19+25$ $5.0859$ $0.53$ $Q$ V $19+25$ $5.0859$ $0.63$ $Q$ V $19+25$ $5.0959$ $0.75$ $Q$ V $19+30$ $5.0908$ $0.71$ $Q$ V       V $19+40$ $5.1010$ $0.73$ $Q$ V       V $19+45$ $5.1056$ $0.67$ $Q$ V       V $19+45$ $5.1056$ $0.67$ $Q$ V       V $19+55$ $5.1137$ $0.51$ $Q$ V       V $20+6$ $5.1173$ $0.51$ $Q$ V       V $20+10$ $5.1239$ $0.49$ </td <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td>ł</td> <td>! !</td>                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |      |     | ł | ł | ! !  |
| 18+50       5.0588       0.67       Q       V         18+55       5.0630       0.62       Q       V         19+0       5.0668       0.55       Q       V         19+5       5.0703       0.51       Q       V         19+15       5.0776       0.54       Q       V         19+12       5.0776       0.54       Q       V         19+20       5.0816       0.58       Q       V         19+20       5.0816       0.58       Q       V         19+35       5.0908       0.71       Q       V         19+36       5.0909       0.75       Q       V       V         19+45       5.1010       0.73       Q       V       V         19+45       5.1026       0.67       Q       V       V         19+50       5.1098       0.62       Q       V       V         20+6       5.1137       0.57       Q       V       V         20+5       5.1206       0.48       Q       V       V         20+10       5.1275       0.53       Q       V       V         20+15       5.1313                                                                                      |       |        |      | : - | ł | ł |      |
| 18+55 $5.0630$ $0.62$ $Q$ V $19+0$ $5.0668$ $0.55$ $Q$ V $19+5$ $5.0703$ $0.51$ $Q$ V $19+16$ $5.0776$ $0.54$ $Q$ V $19+15$ $5.0776$ $0.54$ $Q$ V $19+20$ $5.0816$ $0.58$ $Q$ V $19+25$ $5.0859$ $0.63$ $Q$ V $19+30$ $5.0908$ $0.71$ $Q$ V $19+35$ $5.0959$ $0.75$ $Q$ V $19+445$ $5.1010$ $0.73$ $Q$ V       V $19+45$ $5.1026$ $0.67$ $Q$ V       V $19+45$ $5.1026$ $0.67$ $Q$ V       V $19+55$ $5.1137$ $0.57$ $Q$ V       V $20+6$ $5.1173$ $0.51$ $Q$ V       V $20+10$ $5.1275$ $0.53$ $Q$ V       V $20+20$ $5.1313$ $0.57$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |      |     | i | ł | ! !  |
| 19+0 $5.0668$ $0.55$ $Q$ $V$ $19+5$ $5.0703$ $0.51$ $Q$ $V$ $19+10$ $5.0738$ $0.51$ $Q$ $V$ $19+10$ $5.0738$ $0.51$ $Q$ $V$ $19+15$ $5.0776$ $0.54$ $Q$ $V$ $19+20$ $5.0816$ $0.58$ $Q$ $V$ $19+25$ $5.0859$ $0.63$ $Q$ $V$ $19+25$ $5.0859$ $0.75$ $Q$ $V$ $19+36$ $5.0908$ $0.71$ $Q$ $V$ $19+35$ $5.0959$ $0.75$ $Q$ $V$ $19+40$ $5.1010$ $0.73$ $Q$ $V$ $19+45$ $5.1098$ $0.62$ $Q$ $V$ $19+56$ $5.1098$ $0.62$ $Q$ $V$ $19+55$ $5.1137$ $0.51$ $Q$ $V$ $20+6$ $5.1226$ $0.48$ $Q$ $V$ $20+10$ $5.1239$ $0.49$ $Q$ $V$ $20+25$ $5.1320$ $0.55$ $Q$ $V$ $20+26$ $5.1313$ $0.55$ $Q$ $V$ $20+25$ $5.1352$ $0.56$ $Q$ $V$ $20+30$ $5.1391$ $0.57$ $Q$ $V$ $20+35$ $5.1431$ $0.57$ $Q$ $V$ $20+35$ $5.1550$ $0.57$ $Q$ $V$ $20+35$ $5.1550$ $0.57$ $Q$ $V$ $20+35$ $5.1550$ $0.57$ $Q$ $V$ $20+35$ $5.1550$ $0.57$ $Q$ $V$ $20+40$                                                                                                                                                                                                                          |       |        |      |     |   |   |      |
| 19+5 $5.0703$ $0.51$ $Q$ $V$ $19+10$ $5.0738$ $0.51$ $Q$ $V$ $19+10$ $5.0738$ $0.51$ $Q$ $V$ $19+15$ $5.0776$ $0.54$ $Q$ $V$ $19+20$ $5.0816$ $0.58$ $Q$ $V$ $19+25$ $5.0859$ $0.63$ $Q$ $V$ $19+35$ $5.0908$ $0.71$ $Q$ $V$ $19+35$ $5.0908$ $0.71$ $Q$ $V$ $19+35$ $5.0959$ $0.75$ $Q$ $V$ $19+40$ $5.1010$ $0.73$ $Q$ $V$ $19+55$ $5.1076$ $0.67$ $Q$ $V$ $19+55$ $5.1098$ $0.62$ $Q$ $V$ $19+55$ $5.1137$ $0.51$ $Q$ $V$ $20+6$ $5.1173$ $0.51$ $Q$ $V$ $20+6$ $5.1226$ $0.48$ $Q$ $V$ $20+10$ $5.1239$ $0.49$ $Q$ $V$ $20+20$ $5.1313$ $0.55$ $Q$ $V$ $20+20$ $5.1313$ $0.57$ $Q$ $V$ $20+20$ $5.1352$ $0.56$ $Q$ $V$ $20+30$ $5.1391$ $0.57$ $Q$ $V$ $20+40$ $5.1431$ $0.57$ $Q$ $V$ $20+40$ $5.1511$ $0.58$ $Q$ $V$ $20+45$ $5.1550$ $0.57$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $21+0$ <                                                                                                                                                                                                                         |       |        |      |     |   |   |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |      |     |   |   |      |
| 19+155.07760.54Q19+205.08160.58Q19+255.08590.63Q19+305.09080.71Q19+355.09590.75Q19+405.10100.73Q19+455.10560.67Q19+555.11370.57Q19+555.11370.51Q20+ 05.12260.48Q20+105.12390.49Q20+155.12750.53Q20+205.13130.55Q20+255.13520.56Q20+355.14310.57Q20+405.14710.58Q20+455.15110.58Q20+555.15870.54Q20+555.15870.54Q21+65.16230.46Q21+55.17590.52Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |      |     |   |   | ! !  |
| 19+20 $5.0816$ $0.58$ $Q$ $V$ $19+25$ $5.0859$ $0.63$ $Q$ $V$ $19+30$ $5.0908$ $0.71$ $Q$ $V$ $19+35$ $5.0959$ $0.75$ $Q$ $V$ $19+40$ $5.1010$ $0.73$ $Q$ $V$ $19+45$ $5.1056$ $0.67$ $Q$ $V$ $19+50$ $5.1098$ $0.62$ $Q$ $V$ $19+55$ $5.1137$ $0.57$ $Q$ $V$ $19+55$ $5.1137$ $0.57$ $Q$ $V$ $20+6$ $5.1173$ $0.51$ $Q$ $V$ $20+5$ $5.1206$ $0.48$ $Q$ $V$ $20+10$ $5.1239$ $0.49$ $Q$ $V$ $20+10$ $5.1275$ $0.53$ $Q$ $V$ $20+20$ $5.1313$ $0.55$ $Q$ $V$ $20+25$ $5.1352$ $0.56$ $Q$ $V$ $20+25$ $5.1351$ $0.57$ $Q$ $V$ $20+30$ $5.1431$ $0.57$ $Q$ $V$ $20+40$ $5.1471$ $0.58$ $Q$ $V$ $20+45$ $5.1511$ $0.58$ $Q$ $V$ $20+50$ $5.1550$ $0.57$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $21+0$ $5.1653$ $0.46$ $Q$ $V$ $21+6$ $5.1653$ $0.46$ $Q$ $V$ $21+20$ $5.1759$ $0.52$ $Q$ $V$ $21+20$ $5.1759$ $0.52$ $Q$ $V$                                                                                                                                                                                                                                   |       |        |      | -   |   | ł | ! !  |
| 19+25 $5.0859$ $0.63$ $Q$ $V$ $19+30$ $5.0908$ $0.71$ $Q$ $V$ $19+35$ $5.0959$ $0.75$ $Q$ $V$ $19+40$ $5.1010$ $0.73$ $Q$ $V$ $19+45$ $5.1056$ $0.67$ $Q$ $V$ $19+50$ $5.1098$ $0.62$ $Q$ $V$ $19+55$ $5.1173$ $0.57$ $Q$ $V$ $20+6$ $5.1173$ $0.51$ $Q$ $V$ $20+5$ $5.1206$ $0.48$ $Q$ $V$ $20+10$ $5.1275$ $0.53$ $Q$ $V$ $20+10$ $5.1275$ $0.53$ $Q$ $V$ $20+20$ $5.1313$ $0.55$ $Q$ $V$ $20+25$ $5.1352$ $0.56$ $Q$ $V$ $20+30$ $5.1391$ $0.57$ $Q$ $V$ $20+35$ $5.1431$ $0.57$ $Q$ $V$ $20+40$ $5.1471$ $0.58$ $Q$ $V$ $20+45$ $5.1511$ $0.58$ $Q$ $V$ $20+45$ $5.1550$ $0.57$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $21+6$ $5.1653$ $0.46$ $Q$ $V$ $21+6$ $5.1653$ $0.46$ $Q$ $V$ $21+5$ $5.1759$ $0.52$ $Q$ $V$ $21+20$ $5.1759$ $0.52$ $Q$ $V$                                                                                                                                                                                                                                                                                                    |       |        |      | -   | ł | ł |      |
| 19+305.09080.71Q $\vee$ 19+355.09590.75Q $\vee$ 19+405.10100.73Q $\vee$ 19+455.10560.67Q $\vee$ 19+505.10980.62Q $\vee$ 19+555.11370.57Q $\vee$ 20+ 05.11730.51Q $\vee$ 20+ 55.12060.48Q $\vee$ 20+105.12750.53Q $\vee$ 20+155.12750.53Q $\vee$ 20+255.13520.56Q $\vee$ 20+255.13910.57Q $\vee$ 20+305.13910.57Q $\vee$ 20+405.14710.58Q $\vee$ 20+455.15110.58Q $\vee$ 20+455.15200.57Q $\vee$ 20+555.15870.54Q $\vee$ 21+05.16230.48Q $\vee$ 21+155.17210.52Q $\vee$ 21+255.17950.52Q $\vee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |      | -   |   | ł |      |
| 19+355.09590.75QV19+405.10100.73QV19+455.10560.67QV19+505.10980.62QV19+555.11370.57QV20+ 05.11730.51QV20+ 55.12060.48QV20+105.12390.49QV20+155.12750.53QV20+205.13130.55QV20+355.13910.57QV20+305.13910.57QV20+4455.15110.58QV20+455.15110.58QV20+555.15870.54QV20+565.16530.46QV21+105.16630.48QV21+255.17950.52QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |      |     |   |   |      |
| 19+40 $5.1010$ $0.73$ $Q$ $V$ $19+45$ $5.1056$ $0.67$ $Q$ $V$ $19+50$ $5.1098$ $0.62$ $Q$ $V$ $19+55$ $5.1137$ $0.57$ $Q$ $V$ $20+0$ $5.1173$ $0.51$ $Q$ $V$ $20+5$ $5.1206$ $0.48$ $Q$ $V$ $20+10$ $5.1239$ $0.49$ $Q$ $V$ $20+15$ $5.1275$ $0.53$ $Q$ $V$ $20+20$ $5.1313$ $0.55$ $Q$ $V$ $20+25$ $5.1352$ $0.56$ $Q$ $V$ $20+30$ $5.1391$ $0.57$ $Q$ $V$ $20+30$ $5.1391$ $0.57$ $Q$ $V$ $20+445$ $5.1511$ $0.58$ $Q$ $V$ $20+455$ $5.1550$ $0.57$ $Q$ $V$ $20+455$ $5.1550$ $0.57$ $Q$ $V$ $20+455$ $5.1550$ $0.57$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $20+55$ $5.1587$ $0.54$ $Q$ $V$ $21+5$ $5.1653$ $0.46$ $Q$ $V$ $21+10$ $5.1686$ $0.48$ $Q$ $V$ $21+15$ $5.1721$ $0.52$ $Q$ $V$ $21+25$ $5.1795$ $0.52$ $Q$ $V$                                                                                                                                                                                                                                                                                                                              |       |        |      |     |   |   |      |
| 19+45       5.1056       0.67       Q       V         19+50       5.1098       0.62       Q       V         19+55       5.1137       0.57       Q       V         20+0       5.1173       0.51       Q       V         20+5       5.1206       0.48       Q       V       V         20+10       5.1239       0.49       Q       V       V         20+20       5.1313       0.55       Q       V       V         20+22       5.1313       0.55       Q       V       V         20+30       5.1391       0.57       Q       V       V         20+30       5.1391       0.57       Q       V       V         20+35       5.1431       0.57       Q       V       V         20+40       5.1471       0.58       Q       V       V         20+45       5.1511       0.58       Q       V       V         20+50       5.1550       0.57       Q       V       V         20+55       5.1587       0.54       Q       V       V         21+0       5.1653       0.46       Q       V                                                                                |       |        |      |     |   |   |      |
| 19+50       5.1098       0.62       Q       V         19+55       5.1137       0.57       Q       V         20+0       5.1173       0.51       Q       V         20+5       5.1206       0.48       Q       V         20+10       5.1239       0.49       Q       V         20+15       5.1275       0.53       Q       V         20+20       5.1313       0.55       Q       V         20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+440       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+0       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+10       5.1686       0.                                                                             |       |        |      |     |   |   |      |
| 19+55       5.1137       0.57       Q       V         20+0       5.1173       0.51       Q       V         20+5       5.1206       0.48       Q       V         20+10       5.1239       0.49       Q       V         20+15       5.1275       0.53       Q       V         20+20       5.1313       0.55       Q       V         20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+40       5.1550       0.57       Q       V         20+45       5.1587       0.54       Q       V         20+45       5.1587       0.54       Q       V         20+55       5.1653       0.46       Q       V         21+0       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+10       5.1686       0.48       Q       V         21+20       5.1759       0.5                                                                             |       |        |      |     |   |   |      |
| 20+ 0       5.1173       0.51       Q       V         20+ 5       5.1206       0.48       Q       V         20+10       5.1239       0.49       Q       V         20+15       5.1275       0.53       Q       V         20+20       5.1313       0.55       Q       V         20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+45       5.1587       0.54       Q       V         20+55       5.1653       0.46       Q       V         20+55       5.1653       0.46       Q       V         21+ 0       5.1686       0.48       Q       V         21+10       5.1686       0.48       Q       V         21+10       5.1686       0.48       Q       V         21+20       5.1799       0.52       Q       V                                                                                                               |       |        |      |     |   |   |      |
| 20+ 5       5.1206       0.48       Q               V         20+10       5.1239       0.49       Q               V         20+15       5.1275       0.53       Q               V         20+20       5.1313       0.55       Q               V         20+25       5.1352       0.56       Q               V         20+30       5.1391       0.57       Q               V         20+35       5.1431       0.57       Q               V         20+40       5.1471       0.58       Q               V         20+45       5.1511       0.58       Q               V         20+45       5.1550       0.57       Q               V         20+50       5.1550       0.57       Q               V          20+55       5.1587       0.54       Q               V          21+0       5.1621       0.49       Q               V          21+10       5.1686       0.48       Q               V          21+10       5.1686       0.48       Q               V          21+20                                                                                 |       |        |      |     |   |   |      |
| 20+10       5.1239       0.49       Q       V         20+15       5.1275       0.53       Q       V         20+20       5.1313       0.55       Q       V         20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+45       5.1550       0.57       Q       V         20+50       5.1653       0.46       Q       V         20+55       5.1653       0.46       Q       V         21+ 0       5.1686       0.48       Q       V         21+10       5.1686       0.48       Q       V         21+20       5.1759       0.52       Q       V       V                                                                                                                                                                                                                                                                         |       |        |      |     |   |   |      |
| 20+15       5.1275       0.53       Q       V         20+20       5.1313       0.55       Q       V         20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V       V         20+55       5.1587       0.54       Q       V       V         21+ 0       5.1621       0.49       Q       V       V         21+10       5.1686       0.48       Q       V       V         21+15       5.1721       0.52       Q       V       V         21+20       5.1759       0.54       Q       V       V         21+25       5.1795       0.52       Q       V       V                                                                                                                                                                                                                         |       |        |      |     |   |   |      |
| 20+20       5.1313       0.55       Q       I       V         20+25       5.1352       0.56       Q       V       V         20+30       5.1391       0.57       Q       V       V         20+35       5.1431       0.57       Q       V       V         20+40       5.1471       0.58       Q       V       V         20+45       5.1511       0.58       Q       V       V         20+50       5.1550       0.57       Q       V       V         20+55       5.1587       0.54       Q       V       V         21+ 0       5.1621       0.49       Q       V       V         21+ 5       5.1653       0.46       Q       V       V         21+10       5.1686       0.48       Q       V       V         21+15       5.1721       0.52       Q       V       V         21+20       5.1799       0.54       Q       V       V         21+25       5.1795       0.52       Q       V       V                                                                                                                                                                 |       |        |      |     |   |   |      |
| 20+25       5.1352       0.56       Q       V         20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                           |       |        |      |     |   |   | ! !  |
| 20+30       5.1391       0.57       Q       V         20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V       V         20+55       5.1587       0.54       Q       V       V         21+ 0       5.1621       0.49       Q       V       V         21+ 5       5.1653       0.46       Q       V       V         21+10       5.1686       0.48       Q       V       V         21+20       5.1759       0.54       Q       V       V         21+25       5.1795       0.52       Q       V       V                                                                                                                                                                                                                                                                                                                                                                                           |       |        |      |     |   |   |      |
| 20+35       5.1431       0.57       Q       V         20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |      |     |   |   |      |
| 20+40       5.1471       0.58       Q       V         20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |      |     |   |   | ! !  |
| 20+45       5.1511       0.58       Q       V         20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |      | -   |   |   |      |
| 20+50       5.1550       0.57       Q       V         20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |      |     | ļ |   | ! !  |
| 20+55       5.1587       0.54       Q       V         21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |      |     |   |   | ! !  |
| 21+ 0       5.1621       0.49       Q       V         21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V         21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |      |     | ļ | ļ |      |
| 21+ 5       5.1653       0.46       Q       V         21+10       5.1686       0.48       Q       V       V         21+15       5.1721       0.52       Q       V       V         21+20       5.1759       0.54       Q       V       V         21+25       5.1795       0.52       Q       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |     | ļ |   |      |
| 21+10       5.1686       0.48       Q       I       VI         21+15       5.1721       0.52       Q       I       VI         21+20       5.1759       0.54       Q       I       VI         21+25       5.1795       0.52       Q       I       VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |      | -   | ļ |   |      |
| 21+15       5.1721       0.52       Q       V         21+20       5.1759       0.54       Q       V         21+25       5.1795       0.52       Q       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |      |     | ļ | ļ |      |
| 21+20       5.1759       0.54       Q       I       VI         21+25       5.1795       0.52       Q       VI       VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |      |     | ļ | ļ |      |
| 21+25 5.1795 0.52 Q V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |     | ļ |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |      |     | ļ | ļ | ! !  |
| 21+30 5.1827 0.47  Q     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |      |     | ļ | ļ |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21+30 | 5.1827 | 0.47 | Q   | 1 |   | V    |

| 21+35 | 5.1858 | 0.45 | Q |   |   | V   |
|-------|--------|------|---|---|---|-----|
| 21+40 | 5.1890 | 0.47 | Q |   |   | V   |
| 21+45 | 5.1926 | 0.52 | Q |   |   | V   |
| 21+50 | 5.1963 | 0.54 | Q |   |   | V   |
| 21+55 | 5.1999 | 0.52 | Q |   |   | V   |
| 22+ 0 | 5.2032 | 0.47 | Q |   |   | V   |
| 22+ 5 | 5.2062 | 0.45 | Q |   |   | V   |
| 22+10 | 5.2095 | 0.47 | Q |   |   | V   |
| 22+15 | 5.2130 | 0.52 | Q |   |   | V   |
| 22+20 | 5.2168 | 0.54 | Q |   |   | V   |
| 22+25 | 5.2204 | 0.52 | Q |   |   | V   |
| 22+30 | 5.2236 | 0.47 | Q |   |   | V V |
| 22+35 | 5.2266 | 0.44 | Q |   |   | V   |
| 22+40 | 5.2295 | 0.42 | Q |   |   | V V |
| 22+45 | 5.2324 | 0.41 | Q |   |   | V   |
| 22+50 | 5.2352 | 0.41 | Q |   |   | V   |
| 22+55 | 5.2380 | 0.40 | Q |   |   | V V |
| 23+ 0 | 5.2407 | 0.40 | Q |   |   | V V |
| 23+ 5 | 5.2434 | 0.39 | Q |   |   | V   |
| 23+10 | 5.2461 | 0.39 | Q |   |   | V   |
| 23+15 | 5.2488 | 0.39 | Q |   |   | V   |
| 23+20 | 5.2515 | 0.39 | Q |   |   | V V |
| 23+25 | 5.2542 | 0.39 | Q |   |   | V   |
| 23+30 | 5.2568 | 0.39 | Q |   |   | V   |
| 23+35 | 5.2595 | 0.39 | Q |   |   | V V |
| 23+40 | 5.2621 | 0.38 | Q |   |   | V   |
| 23+45 | 5.2648 | 0.38 | Q |   |   | V   |
| 23+50 | 5.2674 | 0.38 | Q |   |   | V   |
| 23+55 | 5.2701 | 0.38 | Q |   |   | V   |
| 24+ 0 | 5.2727 | 0.38 | Q |   |   | V   |
| 24+ 5 | 5.2752 | 0.37 | Q |   |   | V   |
| 24+10 | 5.2773 | 0.30 | Q |   |   | V   |
| 24+15 | 5.2787 | 0.20 | Q |   |   | V   |
| 24+20 | 5.2796 | 0.13 | Q |   |   | V   |
| 24+25 | 5.2803 | 0.10 | Q |   |   | V   |
| 24+30 | 5.2809 | 0.08 | Q |   |   | V   |
| 24+35 | 5.2813 | 0.06 | Q |   |   | V   |
| 24+40 | 5.2817 | 0.05 | Q |   |   | V   |
| 24+45 | 5.2819 | 0.04 | Q |   |   | V   |
| 24+50 | 5.2822 | 0.03 | Q |   |   | V   |
| 24+55 | 5.2824 | 0.03 | Q |   |   | V   |
| 25+ 0 | 5.2825 | 0.02 | Q |   |   | V   |
| 25+ 5 | 5.2826 | 0.02 | Q |   |   | V   |
| 25+10 | 5.2827 | 0.01 | Q | ļ | ļ | V   |
| 25+15 | 5.2828 | 0.01 | Q | ļ | ļ | V   |
| 25+20 | 5.2829 | 0.01 | Q | ļ | ļ | V   |
| 25+25 | 5.2829 | 0.01 | Q | ļ |   | V   |
| 25+30 | 5.2830 | 0.00 | Q | ļ | ļ | V   |
| 25+35 | 5.2830 | 0.00 | Q | ļ |   | V   |
| 25+40 | 5.2830 | 0.00 | Q | I | I | V V |
|       |        |      |   |   |   |     |

### Appendix K

### **Retention Volume Calculations**



| Prelim Basin Volum<br>Project:<br>Basin Description: | Pilot Perris |       |             |            |             |            |
|------------------------------------------------------|--------------|-------|-------------|------------|-------------|------------|
| Contour                                              | Contour      | Depth | Incremental | Cumulative | Incremental | Cumulative |
| Elevation                                            | Area         | (ft)  | Volume      | Volume     | Volume      | Volume     |
|                                                      | (sq. ft)     |       | Avg. End    | Avg. End   | Conic       | Conic      |
|                                                      |              |       | (cu. ft)    | (cu. ft)   | (cu. ft)    | (cu. ft)   |
| 1,416.300                                            | 36,306.67    | N/A   | N/A         | 0.00       | N/A         | 0.00       |
| 1,416.500                                            | 37,040.35    | 0.200 | 7334.70     | 7334.70    | 7334.58     | 7334.58    |
| 1,417.000                                            | 40,050.26    | 0.500 | 19272.65    | 26607.35   | 19267.75    | 26602.33   |
| 1,417.500                                            | 44,986.52    | 0.500 | 21259.19    | 47866.55   | 21247.24    | 47849.58   |
| 1,418.000                                            | 50,208.87    | 0.500 | 23798.85    | 71665.39   | 23786.90    | 71636.48   |
| 1,418.500                                            | 55,728.50    | 0.500 | 26484.34    | 98149.73   | 26472.35    | 98108.83   |
| 1,419.000                                            | 61,542.39    | 0.500 | 29317.72    | 127467.45  | 29305.70    | 127414.53  |
| 1,419.500                                            | 67,647.94    | 0.500 | 32297.58    | 159765.04  | 32285.55    | 159700.08  |
| 1,420.000                                            | 74,043.99    | 0.500 | 35422.98    | 195188.02  | 35410.95    | 195111.03  |
| 1,420.400                                            | 79,369.27    | 0.400 | 30682.65    | 225870.67  | 30676.49    | 225787.52  |
|                                                      |              |       |             |            |             |            |

### Appendix L

## Sizing Calculations

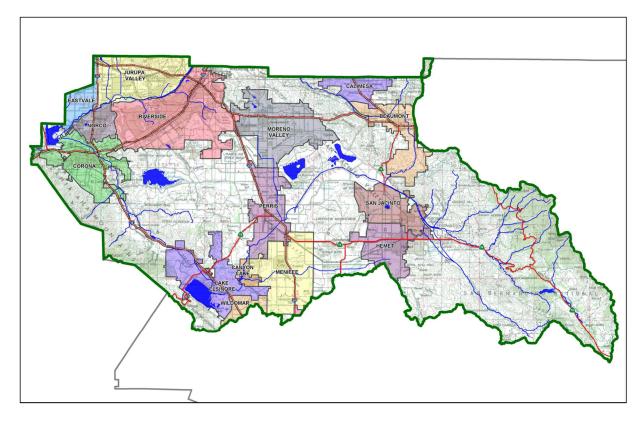
| Project Description   |                      |  |
|-----------------------|----------------------|--|
| Friction Method       | Manning              |  |
|                       | Formula              |  |
| Solve For             | Normal Depth         |  |
| Input Data            |                      |  |
| Roughness Coefficient | 0.045                |  |
| Channel Slope         | 0.005 ft/ft          |  |
| Left Side Slope       | 3.000 H:V            |  |
| Right Side Slope      | 2.000 H:V            |  |
| Discharge             | 32.00 cfs            |  |
| Results               |                      |  |
| Normal Depth          | 27.5 in              |  |
| Flow Area             | 13.2 ft <sup>2</sup> |  |
| Wetted Perimeter      | 12.4 ft              |  |
| Hydraulic Radius      | 12.8 in              |  |
| Top Width             | 11.47 ft             |  |
| Critical Depth        | 19.1 in              |  |
| Critical Slope        | 0.035 ft/ft          |  |
| Velocity              | 2.43 ft/s            |  |
| Velocity Head         | 0.09 ft              |  |
| Specific Energy       | 2.39 ft              |  |
| Froude Number         | 0.400                |  |
| Flow Type             | Subcritical          |  |
| GVF Input Data        |                      |  |
| Downstream Depth      | 0.0 in               |  |
| Length                | 0.0 ft               |  |
| Number Of Steps       | 0                    |  |
| GVF Output Data       |                      |  |
| Upstream Depth        | 0.0 in               |  |
| Profile Description   | N/A                  |  |
| Profile Headloss      | 0.00 ft              |  |
| Downstream Velocity   | 0.00 ft/s            |  |
| Upstream Velocity     | 0.00 ft/s            |  |
| Normal Depth          | 27.5 in              |  |
| Critical Depth        | 19.1 in              |  |
| Channel Slope         | 0.005 ft/ft          |  |
| Critical Slope        | 0.035 ft/ft          |  |

### **Worksheet for Triangular Channel - OFF**

| Project Description         |                     |  |
|-----------------------------|---------------------|--|
| , i                         | Manning             |  |
| Friction Method             | Formula             |  |
| Solve For                   | Discharge           |  |
| In with Dete                |                     |  |
| Input Data                  |                     |  |
| Roughness Coefficient       | 0.013               |  |
| Channel Slope               | 0.007 ft/ft         |  |
| Normal Depth                | 30.0 in             |  |
| Diameter                    | 30.0 in             |  |
| Results                     |                     |  |
| Discharge                   | 34.32 cfs           |  |
| Flow Area                   | 4.9 ft <sup>2</sup> |  |
| Wetted Perimeter            | 7.9 ft              |  |
| Hydraulic Radius            | 7.5 in              |  |
| Top Width                   | 0.00 ft             |  |
| Critical Depth              | 23.9 in             |  |
| Percent Full                | 100.0 %             |  |
| Critical Slope              | 0.007 ft/ft         |  |
| Velocity                    | 6.99 ft/s           |  |
| Velocity Head               | 0.76 ft             |  |
| Specific Energy             | 3.26 ft             |  |
| Froude Number               | (N/A)               |  |
| Maximum Discharge           | 36.91 cfs           |  |
| Discharge Full              | 34.32 cfs           |  |
| Slope Full                  | 0.007 ft/ft         |  |
| Flow Type                   | Subcritical         |  |
| GVF Input Data              |                     |  |
| Downstream Depth            | 0.0 in              |  |
| Length                      | 0.0 ft              |  |
| Number Of Steps             | 0                   |  |
| GVF Output Data             |                     |  |
| Upstream Depth              | 0.0 in              |  |
| Profile Description         | N/A                 |  |
| Profile Headloss            | 0.00 ft             |  |
| Average End Depth Over Rise | 0.0 %               |  |
| Normal Depth Over Rise      | 0.0 %               |  |
| Downstream Velocity         | 0.00 ft/s           |  |
| Upstream Velocity           | 0.00 ft/s           |  |
| Normal Depth                | 30.0 in             |  |
| Critical Depth              | 23.9 in             |  |
| Channel Slope               | 0.007 ft/ft         |  |
| Critical Slope              | 0.007 ft/ft         |  |

### **Worksheet for Circular Pipe - 1**

PilotPerris\_FlowMaster.fm8 12/7/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1


## Project Specific Water Quality Management Plan

A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: Pilot Perris

Development No: Ethanac Road and Trumble Road

Design Review/Case No: CUP22-05002 & CUP22-05003



#### **Contact Information:**

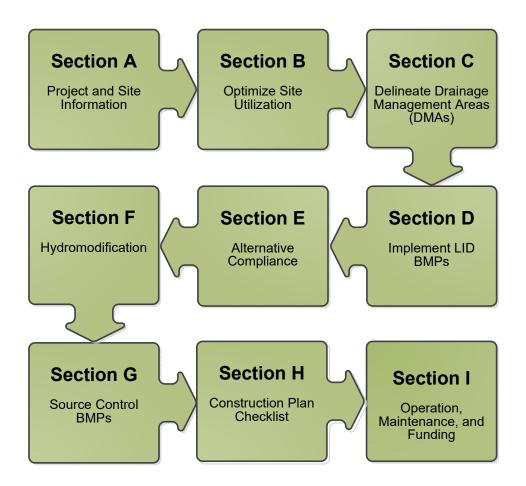
#### Prepared for:

Pilot Travel Centers, LLC 5508 Lonas Drive Knoxville, TN 37909 (865) 588-7488

#### Prepared by:

Shea-Michael Anti, PE Kimley-Horn and Associates 3880 Lemon Street Suite 420 Riverside, CA 92501 (951) 335-8272

#### 🔀 Preliminary 🗌 Final


Original Date Prepared: December 8, 2021

Revision Date(s): June 8, 2022

Prepared for Compliance with Regional Board Order No. <u>R8-2010-0033</u> <u>Template revised June 30, 2016</u>

### **A Brief Introduction**

This Project-Specific WQMP Template for the **Santa Ana Region** has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your "how-to" manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.



### **OWNER'S CERTIFICATION**

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Pilot Travel Centers, LLC by Kimley-Horn and Associates for the Pilot Perris project.

This WQMP is intended to comply with the requirements of City of Perris for Ordinance 1194 which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under the City of Perris Water Quality Ordinance 1194.

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

| $\mathcal{A}$         | MINIMUM III                | 6/2/22                                |
|-----------------------|----------------------------|---------------------------------------|
| Owner's Signature     | WHAC. PETAIN               | Date                                  |
| Brad Alsup            | STATE DU                   | Director of Construction Development  |
| Owner's Printed Name  | N TENNESSEE Z              | Owner's Title/Position                |
|                       | NOTARY<br>NOTARY<br>PUBLIC | My Commission Expires October 7, 2024 |
| PREPARER'S CERTIFICAT | ION                        |                                       |

#### PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. R8-2010-0033 and any subsequent amendments thereto."

Preparer's Signature

Shea-Michael Anti **Preparer's Printed Name** 

Preparer's Licensure: CA 78274 (Civil)

06/02/22

Date

**Project Engineer** Preparer's Title/Position



### **Table of Contents**

| Section A: Project and Site Information                                                                                                                          | 6        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul> <li>A.1 Maps and Site Plans</li> <li>A.2 Identify Receiving Waters</li> <li>A.3 Additional Permits/Approvals required for the Project:</li> </ul>           | 8        |
| Section B: Optimize Site Utilization (LID Principles)                                                                                                            |          |
| Section C: Delineate Drainage Management Areas (DMAs)                                                                                                            | 12       |
| Section D: Implement LID BMPs                                                                                                                                    | 14       |
| D.1 Infiltration Applicability<br>D.2 Harvest and Use Assessment<br>D.3 Bioretention and Biotreatment Assessment                                                 | 15       |
| D.4 Feasibility Assessment Summaries<br>D.5 LID BMP Sizing                                                                                                       | 18       |
| Section E: Alternative Compliance (LID Waiver Program)                                                                                                           | 19       |
| <ul> <li>E.1 Identify Pollutants of Concern</li> <li>E.2 Stormwater Credits</li> <li>E.3 Sizing Criteria</li> <li>E.4 Treatment Control BMP Selection</li> </ul> | 21<br>21 |
| Section F: Hydromodification                                                                                                                                     | 23       |
| F.1 Hydrologic Conditions of Concern (HCOC) Analysis<br>F.2 HCOC Mitigation                                                                                      | 24       |
| Section G: Source Control BMPs                                                                                                                                   |          |
| Section H: Construction Plan Checklist                                                                                                                           | 29       |
| Section I: Operation, Maintenance and Funding                                                                                                                    |          |

### List of Tables

| Table A.1 Identification of Receiving Waters                 | 8  |
|--------------------------------------------------------------|----|
| Table A.2 Other Applicable Permits                           | 8  |
| Table C.1 DMA Classifications                                | 12 |
| Table C.2 Type 'A', Self-Treating Areas                      | 12 |
| Table C.3 Type 'B', Self-Retaining Areas                     | 12 |
| Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas | 13 |
| Table C.5 Type 'D', Areas Draining to BMPs                   | 13 |
| Table D.1 Infiltration Feasibility                           |    |
| Table D.2 LID Prioritization Summary Matrix                  | 18 |
| Table D.3 DCV Calculations for LID BMPs                      |    |
| Table E.1 Potential Pollutants by Land Use Type              | 20 |
| Table E.2 Water Quality Credits                              |    |
| Table E.3 Treatment Control BMP Sizing                       | 21 |
| Table E.4 Treatment Control BMP Selection                    | 22 |
| Table F.1 Hydrologic Conditions of Concern Summary           | 23 |
| Table G.1 Permanent and Operational Source Control Measures  | 26 |
| Table H.1 Construction Plan Cross-reference                  | 29 |

## List of Appendices

| Appendix 1: Maps and Site Plans        | 31  |
|----------------------------------------|-----|
| Appendix 2: Construction Plans         | 32  |
| Appendix 3: Soils Information          | 33  |
| Appendix 4: Historical Site Conditions | 34  |
| Appendix 5: LID Infeasibility          | 35  |
| Appendix 6: BMP Design Details         | 36  |
| Appendix 7: Hydromodification          |     |
| Appendix 8: Source Control             |     |
| Appendix 9: O&M                        |     |
| Appendix 10: Educational Materials     | 6 - |

# Section A: Project and Site Information

| PROJECT INFORMATION                                                                           |                                                                |                               |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|--|--|
| Type of Project:                                                                              | Community Commercial - (Travel center with drive-thru fueling) | restaurant and car/truck      |  |  |
| Planning Area:                                                                                | Community Commercial                                           |                               |  |  |
| Community Name:                                                                               | Perris                                                         |                               |  |  |
| Development Name:                                                                             | Pilot Perris                                                   |                               |  |  |
| PROJECT LOCATION                                                                              |                                                                |                               |  |  |
| Latitude & Longitude (DMS):                                                                   | Lat: 33.744, Long: -117.1866                                   |                               |  |  |
| Project Watershed and Sub-Watershed: Santa Ana Region Watershed, Santa Ana River Subwatershed |                                                                |                               |  |  |
| Gross Acres: <b>13.97 acres</b><br>APN(s): <b>329-250-011 and 329-250-012</b>                 |                                                                |                               |  |  |
| Map Book and Page No.:                                                                        |                                                                |                               |  |  |
| PROJECT CHARACTERISTICS                                                                       |                                                                |                               |  |  |
| Proposed or Potential Land L                                                                  | Jse(s)                                                         | Restaurant/Fueling<br>Station |  |  |
| Proposed or Potential SIC Co                                                                  | de(s)                                                          | 5541, 5812                    |  |  |
| Area of Impervious Project Fo                                                                 | ootprint (SF)                                                  | 395,859                       |  |  |
| Total Area of <u>proposed</u>                                                                 | Impervious Surfaces within the Project Footprint (SF)/or       | 395,859                       |  |  |
| Replacement                                                                                   |                                                                |                               |  |  |
| Does the project consist of o                                                                 |                                                                | ⊠ Y 🗌 N                       |  |  |
| Does the project propose to                                                                   | •                                                              | <u>□</u> Y <u>⊠</u> N         |  |  |
|                                                                                               | common plan of development (phased project)?                   | 🗌 Y 🛛 N                       |  |  |
| EXISTING SITE CHARACTERISTICS                                                                 |                                                                |                               |  |  |
|                                                                                               | ious Surfaces within the Project limits Footprint (SF)         | 0 sf                          |  |  |
| Is the project located within a                                                               | -                                                              | □ Y ⊠ N                       |  |  |
| If so, identify the Cell numbe                                                                |                                                                | N/A                           |  |  |
|                                                                                               | ogic features on the project site?                             |                               |  |  |
| Is a Geotechnical Report atta                                                                 |                                                                | ⊠ Y □ N                       |  |  |
|                                                                                               | e NRCS soils type(s) present on the site (A, B, C and/or D)    | Type D                        |  |  |
| What is the Water Quality De                                                                  | esign Storm Depth for the project?                             | 0.60                          |  |  |

### A.1 Maps and Site Plans

The proposed Pilot Perris development will include the construction of a truck stop and gas station with associated commercial landscaping, concrete hardscape, and asphalt paving parking. The project site is approximately 14 acres and is located at the northwest corner of Ethanac Road and Trumble Road in the City of Perris. The project will not be phased. The existing site is approximately 0% impervious. Once the site is developed, the site will be approximately 67% impervious and 33% pervious.

Under the existing condition, the project site drains northwest. The existing condition of the project site is vacant and land cover consists mostly of annual grass. Under existing conditions, the project site was subdivided into two drainage areas (A-1 and A-2). Both A-1 and A-2 confluence and sheet flow out along the western boundary into an existing natural swale. The existing natural swale also accepts additional flows from an existing headwall southwest of the project site. The swale flows north and is intercepted by an existing double 6'x5' RCB culvert near Illinois Avenue and Interstate 215. Flows from the existing culvert are conveyed west across Interstate 215 and then continue west through existing drainage facilities until discharging into the San Jacinto River. Under existing conditions, the project site accepts some offsite flows from the adjacent vacant properties on the east. Offsite runoff flows through the site, confluence with the onsite flows, and sheet flow out along the western boundary. Ultimately, existing storm water discharge from offsite and onsite areas are intercepted by the existing double 6'x5' RCB culvert and are tributary to the San Jacinto River.

Similar to existing condition, the post-developed project site will predominantly drain northwest to maintain the existing flow pattern to the maximum extent possible. The proposed development includes the construction of the proposed Pilot Perris Travel Center. The proposed site will encompass one (1) new building with a restaurant, drive thru, and fueling areas. The site will include landscaping, concrete hardscape, asphalt parking, a new concrete channel, a drainage ditch for offsite flows, and a bio-retention basin. Under proposed conditions, the project site will not obstruct conveyance of the existing offsite flows. Under the developed condition, the offsite runoff will be accepted from the existing cross gutter near the intersection of Trumble Road and Ethanac Road. The project is proposing a drainage ditch along the south that flows west and into the proposed channel.

The developed project site includes six (6) drainage management areas (DMA's). DMA A-1 includes most of the proposed development. Runoff from A-1 predominantly drains in a northwest direction and is conveyed by a proposed storm drain system into a proposed bio-retention basin west of the project site. The bio-retention area also contributes to the flows into the basin. Discharge from the basin will be controlled by an outlet structure and, due to the elevations, will be pumped to discharge into the proposed channel. DMA's A-2 and A-3 include the proposed drainage ditch that will convey offsite flows, which is considered self-treating. DMA A-4 includes the proposed channel which is also considered self-treating. DMA's A-5 and A-6 are driveway areas that were unfeasible to capture onsite and will drain toward the adjacent streets which ultimately drain into the proposed channel. DMA A-5 and A-6 are de-minimis areas.

On-site flows will predominately be intercepted by four proposed grated inlets with filter inserts which will screen trash prior to entering the bio-retention basin. The bio-retention basin is proposed

for dual purposes: stormwater quality treatment and mitigation. The volume of storage provided in the basins along with the size of the outflow riser structure is intended to restrict peak flows in the proposed condition to levels equal to or less than the existing flows. The bio-retention basin will be owner owned and maintained.

The project site proposes two trash enclosures, one by the truck stop and one by the shop building. The trash enclosure by the truck stop will include a solid roof over the yard storage area and a chain link over the compactor area for the purposes of debris retention. The trash enclosure by the shop building will include a solid roof over the enclosure.

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

### A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

| Receiving Waters         | iving Waters EPA Approved 303(d) List Impairments   |                        | Proximity to<br>RARE<br>Beneficial Use |
|--------------------------|-----------------------------------------------------|------------------------|----------------------------------------|
| San Jacinto River Reach  | None                                                | MUN, AGR, GWR, REC1,   | N/A; Not a RARE                        |
| 3                        |                                                     | REC2, WARM, WILD       | Water Body                             |
| Canyon Lake (San Jacinto | Nutrients, Pathogens                                | MUN, AGR, GWR, REC1,   | N/A; Not a RARE                        |
| River Reach 2)           |                                                     | REC2, WARM, WILD       | Water Body                             |
| Lake Elsinore (San       | Nutrients, Organic Enrichment/Low Dissolved Oxygen, | REC1, REC2, WARM, WILD | N/A; Not a RARE                        |
| Jacinto River Reach 1)   | PCBs, Sediment Toxicity, Unknown Toxicity           |                        | Water Body                             |

Table A.1 Identification of Receiving Waters

### A.3 Additional Permits/Approvals required for the Project:

 Table A.2 Other Applicable Permits

| Agency                                                                                     | Permit Re  | Permit Required |  |
|--------------------------------------------------------------------------------------------|------------|-----------------|--|
| State Department of Fish and Game, 1602 Streambed Alteration Agreement                     | □ Y        | N               |  |
| State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert. | □ Y        | N               |  |
| US Army Corps of Engineers, CWA Section 404 Permit                                         | <u>Г</u> ү | N 🛛             |  |
| US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion                  | □ Y        | N               |  |
| Statewide Construction General Permit Coverage                                             | ×Ν         | □ N             |  |
| Statewide Industrial General Permit Coverage                                               | <u>Г</u> ү | N 🛛             |  |
| Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)                            | □ Y        | N 🛛             |  |
| Other (please list in the space below as required)                                         |            |                 |  |
| City of Perris Building Permit                                                             |            |                 |  |
| City of Perris Electrical Permit                                                           |            |                 |  |
| City of Perris Mechanical Permit                                                           |            |                 |  |
| City of Perris Site Plan Approval                                                          | ×Υ         | 🗌 N             |  |
| City of Perris Landscape Approval                                                          |            |                 |  |
| City of Perris Fire Underground Approval                                                   |            |                 |  |
| Eastern Municipal Water District Water and Sewer Approval                                  |            |                 |  |
| City of Perris WQMP Approval                                                               |            |                 |  |

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

### **Section B: Optimize Site Utilization (LID Principles)**

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. **Opportunities** might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of "highest and best use" of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e. no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.

#### **Site Optimization**

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

### Yes. The proposed site grading intends to maintain the existing flow pattern by predominantly draining in the northwest direction.

Did you identify and protect existing vegetation? If so, how? If not, why?

No. The existing site is currently vacant and does not have any existing vegetation, other than annual grass. The proposed development will add landscape throughout the site, making the proposed development approximately 33% pervious.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

Yes, based on the Geotechnical Investigation and Percolation Test Results Report prepared by Geotechnical Solutions, Inc the proposed site experiences an average percolation rate of 1.14in/hr. The reported average

infiltration rate based on the Porchet Method was determined to be 0.05 in/hr (without a factor of safety applied). Therefore, bio-retention basins are proposed.

Did you identify and minimize impervious area? If so, how? If not, why?

Yes. The site plan was done with the intent of maximizing the pervious area on the site. This was accomplished by using landscape planters throughout the site and perimeter planter areas.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

Yes. All roof drains and site drainage will be routed to the proposed pervious bioretention basins.

### Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

| Table C.1 DMA Classificati | ions                                |                |              |
|----------------------------|-------------------------------------|----------------|--------------|
| DMA Name or ID             | Surface Type(s) <sup>12</sup>       | Area (Sq. Ft.) | DMA Type     |
| A-1                        | Concrete/Asphalt/Landscape<br>Areas | 547,937        | Туре "D"     |
| A-2                        | Landscape Areas                     | 16,086         | Type "A"     |
| A-3                        | Landscape Areas                     | 24,391         | Type "A"     |
| A-4                        | Concrete/Landscape                  | 16,688         | Туре "А"     |
| A-5                        | Asphalt/Concrete                    | 766            | (De-Minimis) |
| A-6                        | Asphalt/Concrete                    | 2,470          | (De-Minimis) |

<sup>1</sup>Reference Table 2-1 in the WQMP Guidance Document to populate this column <sup>2</sup>If multi-surface provide back-up

#### Table C.2 Type 'A', Self-Treating Areas

| DMA Name or ID | Area (Sq. Ft.) | Stabilization Type | Irrigation Type (if any) |
|----------------|----------------|--------------------|--------------------------|
| A-2            | 16,086         | Proposed Landscape | Drip Irrigation          |
| A-3            | 26,819         | Proposed Landscape | Drip Irrigation          |
| A-4            | 16,688         | Proposed Landscape | Drip Irrigation          |
|                |                |                    |                          |

#### Table C.3 Type 'B', Self-Retaining Areas

| Self-Retai      | ning Area                    |                                 |                                   | Type 'C' DM<br>Area               | As that are drain               | ing to the Self-Retaining                   |
|-----------------|------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------------------|
| DMA<br>Name/ ID | Post-project<br>surface type | Area<br>(square<br>feet)<br>[A] | Storm<br>Depth<br>(inches)<br>[B] | - DMA Name ,<br>ID                | [C] from Table C.4<br>/=<br>[C] | Required Retention Depth<br>(inches)<br>[D] |
| N/A             | N/A                          | N/A                             | N/A                               | N/A                               | N/A                             | N/A                                         |
|                 |                              |                                 |                                   |                                   |                                 |                                             |
|                 |                              |                                 |                                   |                                   |                                 |                                             |
|                 |                              |                                 | [ <i>D</i> ] =                    | $[B] + \frac{[B] \cdot [C]}{[A]}$ | <u>']</u>                       | ·]                                          |

[A]

#### Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas

| DMA          |                                  |                              |     | Receiving Self-F           | Retaining DMA |     |                  |
|--------------|----------------------------------|------------------------------|-----|----------------------------|---------------|-----|------------------|
| DMA Name/ ID | S       Area       (square feet) | Post-project<br>surface type |     | Product<br>[C] = [A] x [B] | DMA name /ID  |     | Ratio<br>[C]/[D] |
| N/A          | N/A                              | N/A                          | N/A | N/A                        | N/A           | N/A | N/A              |
|              |                                  |                              |     |                            |               |     |                  |
|              |                                  |                              |     |                            |               |     |                  |
|              |                                  |                              |     |                            |               |     |                  |

#### Table C.5 Type 'D', Areas Draining to BMPs

| DMA Name or ID | BMP Name or ID              |
|----------------|-----------------------------|
| A-1            | Bio-retention Basin (BMP-1) |
|                |                             |
|                |                             |
|                |                             |
|                |                             |

<u>Note</u>: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

### **Section D: Implement LID BMPs**

### **D.1 Infiltration Applicability**

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)?  $\Box$  Y  $\boxtimes$  N

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

#### **Geotechnical Report**

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document?  $\Box$  Y  $\boxtimes$  N

#### **Infiltration Feasibility**

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

| Table D.1 Infiltration Feasibility                                                                                                                 |     |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Does the project site                                                                                                                              | YES | NO |
| have any DMAs with a seasonal high groundwater mark shallower than 10 feet?                                                                        |     | Х  |
| If Yes, list affected DMAs:                                                                                                                        |     |    |
| have any DMAs located within 100 feet of a water supply well?                                                                                      |     | Х  |
| If Yes, list affected DMAs:                                                                                                                        |     |    |
| have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact? |     | х  |
| If Yes, list affected DMAs:                                                                                                                        |     |    |
| have measured in-situ infiltration rates of less than 1.6 inches / hour?                                                                           | Х   |    |
| If Yes, list affected DMAs: All DMA's                                                                                                              |     |    |
| have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface?           |     | х  |
| If Yes, list affected DMAs:                                                                                                                        |     |    |
| geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?                                      |     | Х  |
| Describe here:                                                                                                                                     |     |    |

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

### **D.2 Harvest and Use Assessment**

Please check what applies:

 $\square$  Reclaimed water will be used for the non-potable water demands for the project.

 $\Box$  Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).

□ The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

#### Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape: 4.61

Type of Landscaping (Conservation Design or Active Turf): Conservation Design

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 9.35

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: 0.79

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: 7.39

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

| Minimum required irrigated area (Step 4) | Available Irrigated Landscape (Step 1) |
|------------------------------------------|----------------------------------------|
| 7.39                                     | 4.61                                   |

The project is not feasible for harvesting stormwater runoff for irrigation use.

#### Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: 50

Project Type: Commercial

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 9.35

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number or toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: 132

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: 1234

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

| Minimum required Toilet Users (Step 4) | Projected number of toilet users (Step 1) |
|----------------------------------------|-------------------------------------------|
| 1234                                   | 50                                        |

#### The project is not feasible for harvesting stormwater runoff for toilet use.

#### **Other Non-Potable Use Feasibility**

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

N/A

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table
 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: N/A

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

| Minimum required non-potable use (Step 4) | Projected average daily use (Step 1) |
|-------------------------------------------|--------------------------------------|
| N/A                                       | N/A                                  |

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

#### **D.3 Bioretention and Biotreatment Assessment**

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

 $\boxtimes$  LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).

□ A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

### **D.4 Feasibility Assessment Summaries**

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

|                |                 | No LID             |                 |                 |                             |
|----------------|-----------------|--------------------|-----------------|-----------------|-----------------------------|
| DMA<br>Name/ID | 1. Infiltration | 2. Harvest and use | 3. Bioretention | 4. Biotreatment | (Alternative<br>Compliance) |
| A-1            |                 |                    | $\boxtimes$     |                 |                             |
| A-2            |                 |                    |                 |                 | $\boxtimes$                 |
| A-3            |                 |                    |                 |                 | $\square$                   |
| A-4            |                 |                    |                 |                 | $\boxtimes$                 |
| A-5            |                 |                    |                 |                 | $\square$                   |
| A-6            |                 |                    |                 |                 | $\square$                   |

 Table D.2 LID Prioritization Summary Matrix

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

A-1 is feasible for a structural LID BMP – Bioretention Basin. A-2, A-3 and A-4 are considered self-treating. A-5 and A-6 are considered de-minimis areas. Refer to Appendix 1 for WQMP Exhibit.

### **D.5 LID BMP Sizing**

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the  $V_{BMP}$  worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required  $V_{BMP}$  using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

| DMA<br>Type/ID | DMA<br>Area<br>(square<br>feet)<br>[A] | Post-Project<br>Surface<br>Type      | Effective<br>Impervious<br>Fraction, I <sub>f</sub><br>[B] | DMA<br>Runoff<br>Factor | DMA<br>Areas x<br>Runoff<br>Factor | BMP-1                            |                                                                  |                                       |
|----------------|----------------------------------------|--------------------------------------|------------------------------------------------------------|-------------------------|------------------------------------|----------------------------------|------------------------------------------------------------------|---------------------------------------|
| 1A<br>1B       | 395,859<br>152,078                     | Concrete or<br>Asphalt<br>Ornamental | 1                                                          | 0.89                    | 353,106<br>16,798                  |                                  |                                                                  | Proposed                              |
|                |                                        | Landscaping                          |                                                            |                         |                                    | Design<br>Storm<br>Depth<br>(in) | Design Capture<br>Volume, <b>V<sub>вмр</sub></b><br>(cubic feet) | Volume<br>on Plans<br>(cubic<br>feet) |
|                | A <sub>T</sub> = 547,937               |                                      |                                                            |                         | Σ=<br>369,904                      | [E]<br><b>0.60</b>               | [F]<br>18,619                                                    | [G]<br>48,658                         |

Table D.3 DCV Calculations for LID BMPs

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

### Section E: Alternative Compliance (LID Waiver Program)

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:

 $\boxtimes$  LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- Or -

□ The following Drainage Management Areas are unable to be addressed using LID BMPs. A site-specific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

N/A

### E.1 Identify Pollutants of Concern

Utilizing Table A.1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

| Priori      | ty Development                                                            | General Po       | ollutant Ca | ategories        |                  |                               |                  |                   |                  |
|-------------|---------------------------------------------------------------------------|------------------|-------------|------------------|------------------|-------------------------------|------------------|-------------------|------------------|
| Proje       | Project Categories and/or<br>Project Features (check those<br>that apply) |                  | Metals      | Nutrients        | Pesticides       | Toxic<br>Organic<br>Compounds | Sediments        | Trash &<br>Debris | Oil &<br>Grease  |
|             | Detached Residential<br>Development                                       | Ρ                | N           | Р                | Р                | Ν                             | Ρ                | Ρ                 | Ρ                |
|             | Attached Residential<br>Development                                       | Ρ                | N           | Р                | Р                | Ν                             | Р                | Ρ                 | P <sup>(2)</sup> |
|             | Commercial/Industrial<br>Development                                      | P <sup>(3)</sup> | Р           | P <sup>(1)</sup> | P <sup>(1)</sup> | P <sup>(5)</sup>              | P <sup>(1)</sup> | Р                 | Р                |
|             | Automotive Repair<br>Shops                                                | Ν                | Р           | N                | N                | P <sup>(4, 5)</sup>           | Ν                | Р                 | Р                |
|             | Restaurants<br>(>5,000 ft <sup>2</sup> )                                  | Ρ                | N           | N                | N                | N                             | Ν                | Р                 | Ρ                |
|             | Hillside Development<br>(>5,000 ft <sup>2</sup> )                         | Ρ                | N           | Р                | Р                | Ν                             | Р                | Ρ                 | Ρ                |
|             | Parking Lots<br>(>5,000 ft <sup>2</sup> )                                 | P <sup>(6)</sup> | Ρ           | P <sup>(1)</sup> | P <sup>(1)</sup> | P <sup>(4)</sup>              | P <sup>(1)</sup> | Ρ                 | Ρ                |
| $\boxtimes$ | Retail Gasoline Outlets                                                   | Ν                | Р           | Ν                | N                | Р                             | N                | Р                 | Р                |
|             | ect Priority Pollutant(s)<br>oncern                                       | $\boxtimes$      |             |                  |                  |                               |                  |                   |                  |

#### Table E.1 Potential Pollutants by Land Use Type

P = Potential

N = Not Potential

<sup>(1)</sup> A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected

<sup>(2)</sup> A potential Pollutant if the project includes uncovered parking areas; otherwise not expected

<sup>(3)</sup> A potential Pollutant is land use involving animal waste

<sup>(4)</sup> Specifically petroleum hydrocarbons

<sup>(5)</sup> Specifically solvents

<sup>(6)</sup> Bacterial indicators are routinely detected in pavement runoff

### **E.2 Stormwater Credits**

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A.

#### Table E.2 Water Quality Credits

| Qualifying Project Categories        | Credit Percentage <sup>2</sup> |
|--------------------------------------|--------------------------------|
| N/A                                  |                                |
|                                      |                                |
|                                      |                                |
| Total Credit Percentage <sup>1</sup> |                                |

<sup>1</sup>Cannot Exceed 50%

<sup>2</sup>Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

### E.3 Sizing Criteria

After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

| DMA<br>Type/ID | DMA<br>Area<br>(square<br>feet) | Post-<br>Project<br>Surface<br>Type | Effective<br>Impervious<br>Fraction, I <sub>f</sub> | DMA<br>Runoff<br>Factor | DMA<br>Area x<br>Runoff<br>Factor |                                  | Enter BMP Na                                                                            | Enter BMP Name / Identifier Here              |                                                                        |  |  |
|----------------|---------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|--|--|
|                | [A]                             |                                     | [B]                                                 | [C]                     | [A] x [C]                         |                                  |                                                                                         |                                               |                                                                        |  |  |
|                |                                 |                                     |                                                     |                         |                                   | Design<br>Storm<br>Depth<br>(in) | Minimum<br>Design<br>Capture<br>Volume or<br>Design Flow<br>Rate (cubic<br>feet or cfs) | Total Storm<br>Water<br>Credit %<br>Reduction | Proposed<br>Volume<br>or Flow<br>on Plans<br>(cubic<br>feet or<br>cfs) |  |  |
|                | A <sub>T</sub> =<br>Σ[A]        |                                     |                                                     |                         | Σ= [D]                            | [E]                              | $[F] = \frac{[D]x[E]}{[G]}$                                                             | [F] X (1-[H])                                 | [1]                                                                    |  |  |

 Table E.3 Treatment Control BMP Sizing

[B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

[I] as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6

### **E.4 Treatment Control BMP Selection**

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- **High**: equal to or greater than 80% removal efficiency
- **Medium**: between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

| Table E.4 Treatment Control BMP Selection |                                  |                         |  |  |  |  |  |  |
|-------------------------------------------|----------------------------------|-------------------------|--|--|--|--|--|--|
| Selected Treatment Control BMP            | Priority Pollutant(s) of         | Removal Efficiency      |  |  |  |  |  |  |
| Name or ID <sup>1</sup>                   | Concern to Mitigate <sup>2</sup> | Percentage <sup>3</sup> |  |  |  |  |  |  |
|                                           |                                  |                         |  |  |  |  |  |  |
|                                           |                                  |                         |  |  |  |  |  |  |
|                                           |                                  |                         |  |  |  |  |  |  |
|                                           |                                  |                         |  |  |  |  |  |  |

 Table E.4 Treatment Control BMP Selection

<sup>1</sup> Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may

be listed more than once if they possess more than one qualifying pollutant removal efficiency.

<sup>2</sup> Cross Reference Table E.1 above to populate this column.

<sup>3</sup> As documented in a Co-Permittee Approved Study and provided in Appendix 6.

### Section F: Hydromodification

#### F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

**HCOC EXEMPTION 1**: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply.

**HCOC EXEMPTION 2**: The volume and time of concentration<sup>1</sup> of storm water runoff for the postdevelopment condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption?

🗌 Y 🛛 N

Ν

Υ

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

|                          | 2 year – 24 hour |                |              |  |  |  |
|--------------------------|------------------|----------------|--------------|--|--|--|
|                          | Pre-condition    | Post-condition | % Difference |  |  |  |
| Time of<br>Concentration | INSERT VALUE     | INSERT VALUE   | INSERT VALUE |  |  |  |
| Volume (Cubic Feet)      | INSERT VALUE     | INSERT VALUE   | INSERT VALUE |  |  |  |

 Table F.1 Hydrologic Conditions of Concern Summary

<sup>1</sup> Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

**HCOC EXEMPTION 3**: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier: INSERT TEXT HERE

#### F.2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

- a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
- b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
- c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the predevelopment 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

|                          | 2 year – 24 hour |                |              |
|--------------------------|------------------|----------------|--------------|
|                          | Pre-condition    | Post-condition | % Difference |
| Time of<br>Concentration | 34.58            | 18.31          | 53%          |
| Flow (CFS)               | 6.51             | 10.99          | 69%          |
| Volume (Cubic Feet)      | 10,454           | 66,115         | 532%         |

The required retention volume was governed by the 2-year, 24-hour storm. To estimate the retention volume required for preliminary purposes, the pre-development volume was compared to the post-development volume to determine the increase in volume discharged from the project site. Since the detention system outlet riser structure will be sized in the Final Report, an additional 20% was added to the calculated difference in volume to account for the efficiency of the outlet structure. The resulting volume (66,804 cf) is the estimated retention volume for preliminary purposes. The proposed bio-retention basin will provide 225,788 cf of storage. Through the mitigation that the bio-retention basin will provide, the proposed development is expected to mitigate for HCOC criteria.

### **Section G: Source Control BMPs**

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

- 1. *Identify Pollutant Sources*: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
- 2. **Note Locations on Project-Specific WQMP Exhibit:** Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
- 3. **Prepare a Table and Narrative:** Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. Add additional narrative in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
- 4. *Identify Operational Source Control BMPs:* To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

| Table G.1 Fermanen                              | Table G.1 Permanent and Operational Source Control Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Potential<br>Sources of<br>Runoff<br>pollutants | Permanent Structural Source<br>Control BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Operational Source Control BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| On-site storm<br>drain inlets                   | Mark all inlets with the words<br>"Only Rain Down the Storm<br>Drain" or similar. Catch Basin<br>Markers may be available from<br>the Riverside County Flood<br>Control and Water<br>Conservation District, call<br>951.955.1200 to verify.<br>(CASQQ BMP SD-13, "Storm<br>Drain Signage")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maintain and periodically repaint or replace inlet markings;<br>Provide storm water pollution prevention information to new site<br>owners, lessees, or operators;<br>See applicable operational BMPs in Fact Sheet SC-74 "Drainage System<br>Maintenance" provided in Appendix 8 of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Landscape/<br>Outdoor<br>pesticide use          | State that final landscape plans<br>will accomplish all of the<br>following.<br>Preserve existing native trees,<br>shrubs, and ground cover to<br>the maximum extent possible.<br>Design landscaping to minimize<br>irrigation and runoff, to<br>promote surface infiltration<br>where appropriate, and to<br>minimize the use of fertilizers<br>and pesticides that can<br>contribute to storm water<br>pollution.<br>Where landscaped areas are<br>used to retain or detain storm<br>water, specify plants that are<br>tolerant of saturated soil<br>conditions.<br>Consider using pest-resistant<br>plants, especially adjacent to<br>hardscape.<br>To ensure successful<br>establishment, select plants<br>appropriate to site soils,<br>slopes, climate, sun, wind, rain,<br>land use, air movement,<br>ecological consistency, and<br>plant interactions.<br>(CASQA BMP SD-10, "Site<br>Design and Landscape<br>Planning" and SD-12, "Efficient<br>Irrigation") | <ul> <li>Maintain landscaping using minimum or no pesticides.</li> <li>For Bioswales: Remove any dead or diseased vegetation</li> <li>See applicable operational BMPs in "What you should know forLandscape and Gardening" at</li> <li>http://rcflood.org/stormwater/Downloads/LandscapeGardenBrochure.pdf.</li> <li>Provide IPM information to new owners, lessees and operators.</li> <li>Applicable operational BMPS in "What you should know for Landscape and Gardening": <ul> <li>Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.</li> <li>Do not overwater.</li> </ul> </li> <li>Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Dispose of green waste by composting, hauling it to a permitted landfill, or recycling it through city's program.</li> </ul> |  |  |  |  |

#### Table G.1 Permanent and Operational Source Control Measures

| Sidewalks, and parking lots. | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sweep sidewalks and parking lot regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect wash water containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refuse areas                 | State how site refuse will be<br>handled and provide<br>supporting detail to what is<br>shown on plans.<br>State that signs will be posted<br>on or near dumpsters with the<br>words "Do not dump<br>hazardous materials here" or<br>similar.<br>Trash enclosures shall have a<br>solid impermeable roof with a<br>minimum clearance height to<br>allow the bin lid to completely<br>open.<br>Trash enclosures to be<br>constructed of reinforced<br>masonry without wooden<br>gates. Walls shall be at least 6'<br>high.<br>Trash enclosures shall have a<br>concrete slab floor. The<br>concrete slab floor. The<br>concrete slab shall be graded<br>to collect any spill within the<br>enclosure.<br>All trash bins in the trash<br>enclosure shall be leak free and<br>shall have a lid and be<br>continuously closed.<br>The enclosure area shall be<br>protected from receiving direct<br>rainfall or run-on from<br>collateral surfaces.<br>Method to handle site refuse:<br>• Waste will be hauled<br>by either public or<br>commercial carriers.<br><b>(CASQA BMP SD-32, "Trash<br/>Storage Areas")</b> | <ul> <li>Source control BMP will be implanted based on the following:</li> <li>Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Storm water Quality Handbooks at www.cabmphandbooks.com</li> <li>Any standing liquids must be cleaned up and disposed of properly using a mop and a bucket or a wet/dry vacuum machine. All non-hazardous liquids without solid trash may be put in the sanitary sewer.</li> </ul> |

| Miscellaneous                                                                                                                                                                                        | Boiler drain lines shall be                                                                                                                                                                                                                                                                                                                                                                                                                                           | Additional Operational BMPs suggested on Fact Sheet SC-10:                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Miscellaneous<br>Drain or Wash<br>Water or Other<br>Sources:<br>Boiler drain<br>lines<br>Condensate<br>drain lines<br>Rooftop<br>equipment<br>Drainage<br>sumps<br>Roofing,<br>gutters,<br>and trim. | <ul> <li>Boiler drain lines shall be<br/>directly or indirectly<br/>connected to the sanitary<br/>sewer system and may not<br/>discharge to the storm<br/>drain system.</li> <li>Condensate drain lines<br/>may discharge to<br/>landscaped areas if the<br/>flow is small enough that<br/>runoff will not occur.<br/>Condensate drain lines<br/>may not discharge to the<br/>storm drain system.</li> <li>Rooftop equipment with<br/>potential to produce</li> </ul> | <ul> <li>Additional Operational BMPs suggested on Fact Sheet SC-10:</li> <li>Train employees to identify non-storm water discharges and report them to the appropriate departments.</li> </ul> |
| Other sources                                                                                                                                                                                        | <ul> <li>pollutants shall be roofed<br/>and/or have secondary<br/>containment.</li> <li>Any drainage sumps on-<br/>site shall feature a<br/>sediment sump to reduce<br/>the quantity of sediment in<br/>pumped water.</li> </ul>                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
|                                                                                                                                                                                                      | <ul> <li>Avoid roofing, gutters, and<br/>trim made of copper or<br/>other unprotected metals<br/>that may leach into runoff.</li> </ul>                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |
|                                                                                                                                                                                                      | (CASQA BMP SD-10, "Site<br>Design and Landscape<br>Planning" and SD-11, "Roof<br>Runoff Controls")                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |

### **Section H: Construction Plan Checklist**

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

| BMP No.<br>or ID | BMP Identifier and Description                                  | Corresponding Plan Sheet(s) | BMP Location (Lat/Long) |
|------------------|-----------------------------------------------------------------|-----------------------------|-------------------------|
| BMP-1            | Bioretention Basin<br>Located near the western<br>property line | TBD*                        | TBD*                    |
|                  |                                                                 |                             |                         |
|                  |                                                                 |                             |                         |
|                  |                                                                 |                             |                         |
|                  |                                                                 |                             |                         |

Table H.1 Construction Plan Cross-reference

#### \*To be completed in FWQMP

Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

### Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

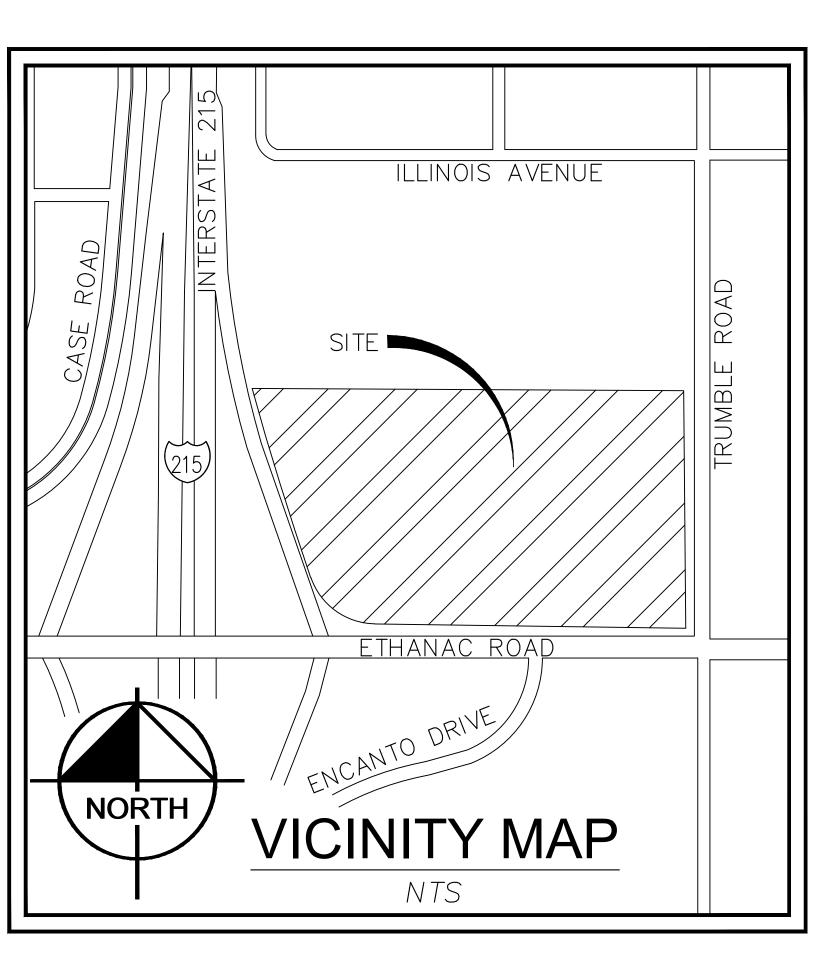
- 1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
- 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
- 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
- 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
- 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

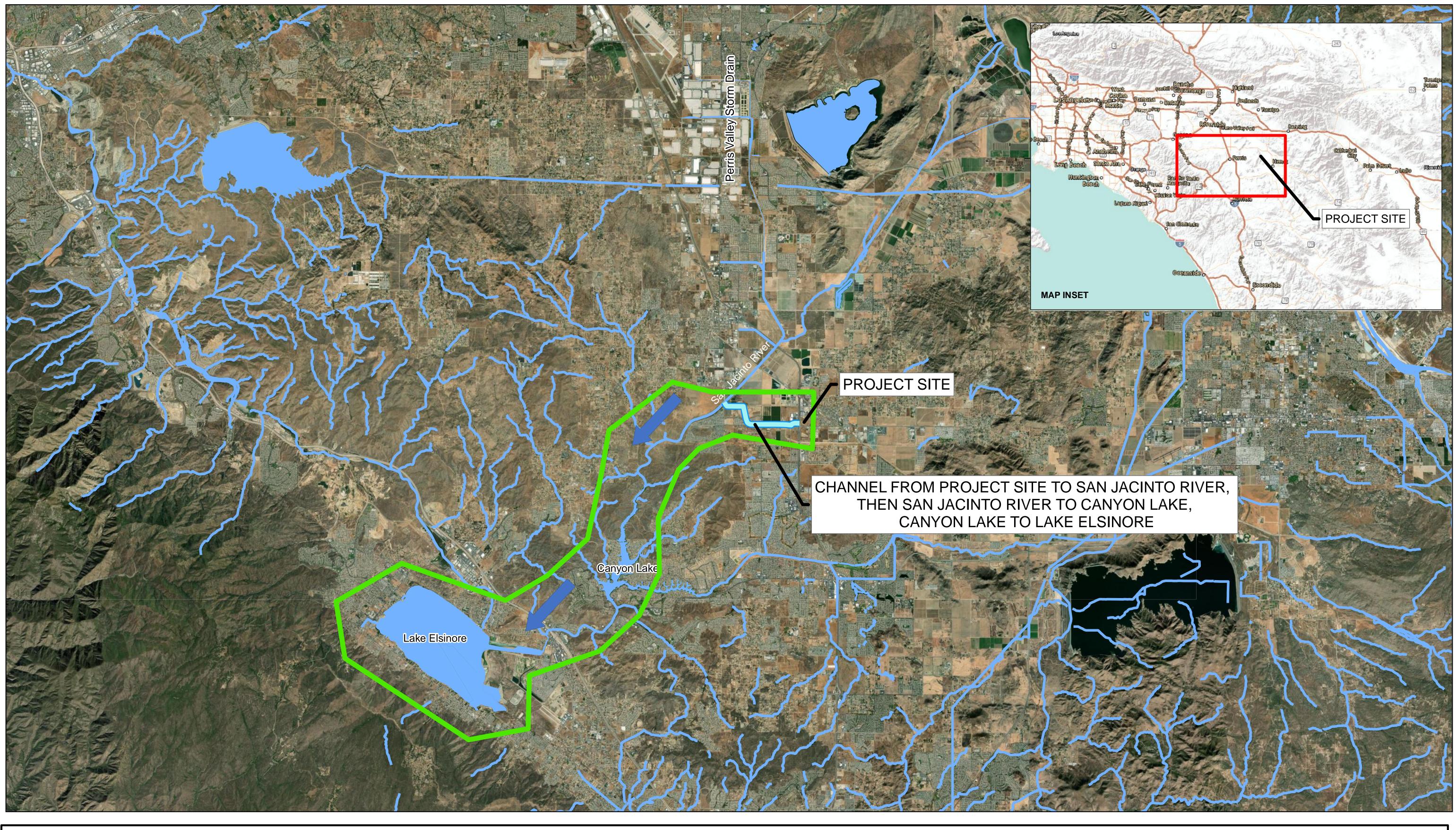
Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

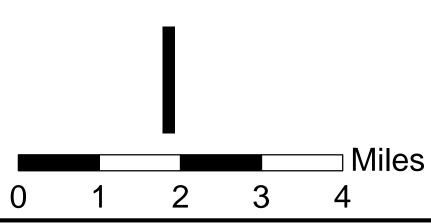
#### Maintenance Mechanism: Pilot Travel Centers, LLC

Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?




Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9\*\*. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.

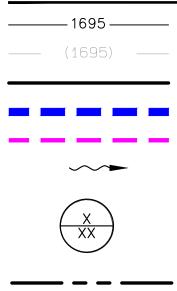

#### \*\*To be completed in FWQMP


### Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map



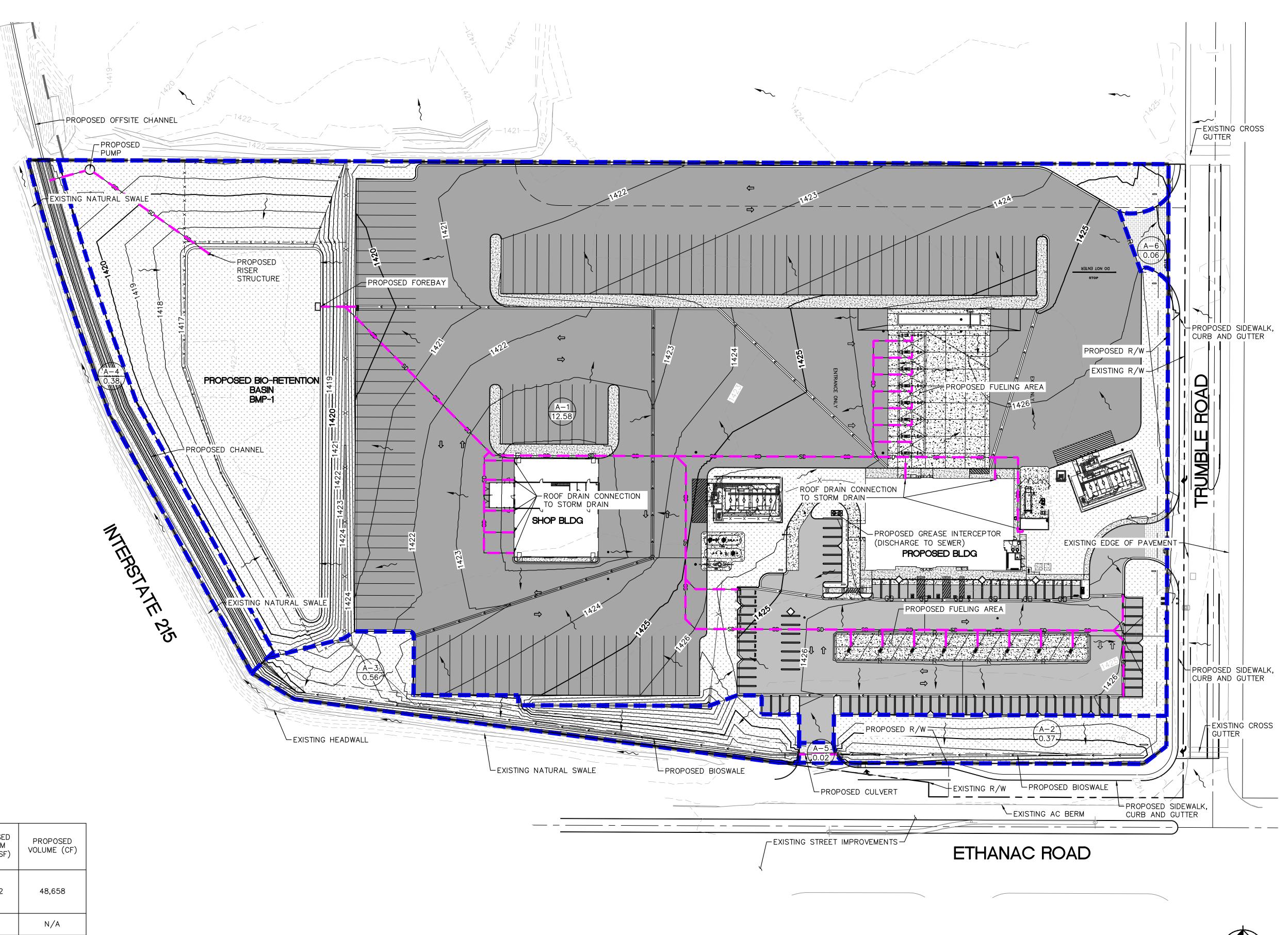






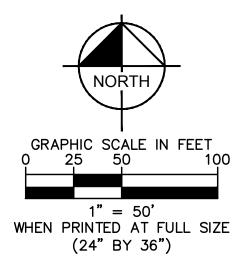

### PILOT PERRIS MAP OF RECEIVING WATERS

# Kimley»Horn


### LEGEND

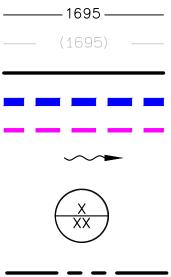


PROPOSED CONTOUR EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY PROPOSED STORM DRAIN FLOW ARROW


DA NAME DA AREA (IN ACRES)

RIGHT OF WAY




| DMA | SURFACE TYPE              | AREA<br>(SF) | AREA<br>(AC) | BMP ID            | REQUIRED DESIGN<br>CAPTURE<br>VOLUME (CF) | MINIMUM<br>BOTTOM<br>AREA (SF) | PROPOSED<br>BOTTOM<br>AREA (SF) | PROPOSED<br>VOLUME (CF) |
|-----|---------------------------|--------------|--------------|-------------------|-------------------------------------------|--------------------------------|---------------------------------|-------------------------|
| A 1 | CONCRETE/ASPHALT          | 395,859      | 12.58        | BMP-1             | 18,619                                    | 13,864                         | 36,312                          | 48,658                  |
| A-1 | ORNAMENTAL<br>LANDSCAPING | 152,078      | 12.56        |                   | 10,019                                    | 13,804                         | 50,512                          | +0,000                  |
| A-2 | LANDSCAPING               | 16,086       | 0.37         | SELF-<br>TREATING | N/A                                       | N/A                            | N/A                             | N/A                     |
| A-3 | LANDSCAPING               | 24,391       | 0.56         | SELF-<br>TREATING | N/A                                       | N/A                            | N/A                             | N/A                     |
| A-4 | LANDSCAPING               | 16,688       | 0.38         | SELF-<br>TREATING | N/A                                       | N/A                            | N/A                             | N/A                     |
| A-5 | LANDSCAPING               | 766          | 0.02         | DE-<br>MINIMIS    | N/A                                       | N/A                            | N/A                             | N/A                     |
| A-6 | LANDSCAPING               | 2,470        | 0.06         | DE-<br>MINIMIS    | N/A                                       | N/A                            | N/A                             | N/A                     |

# **Kimley**»Horn

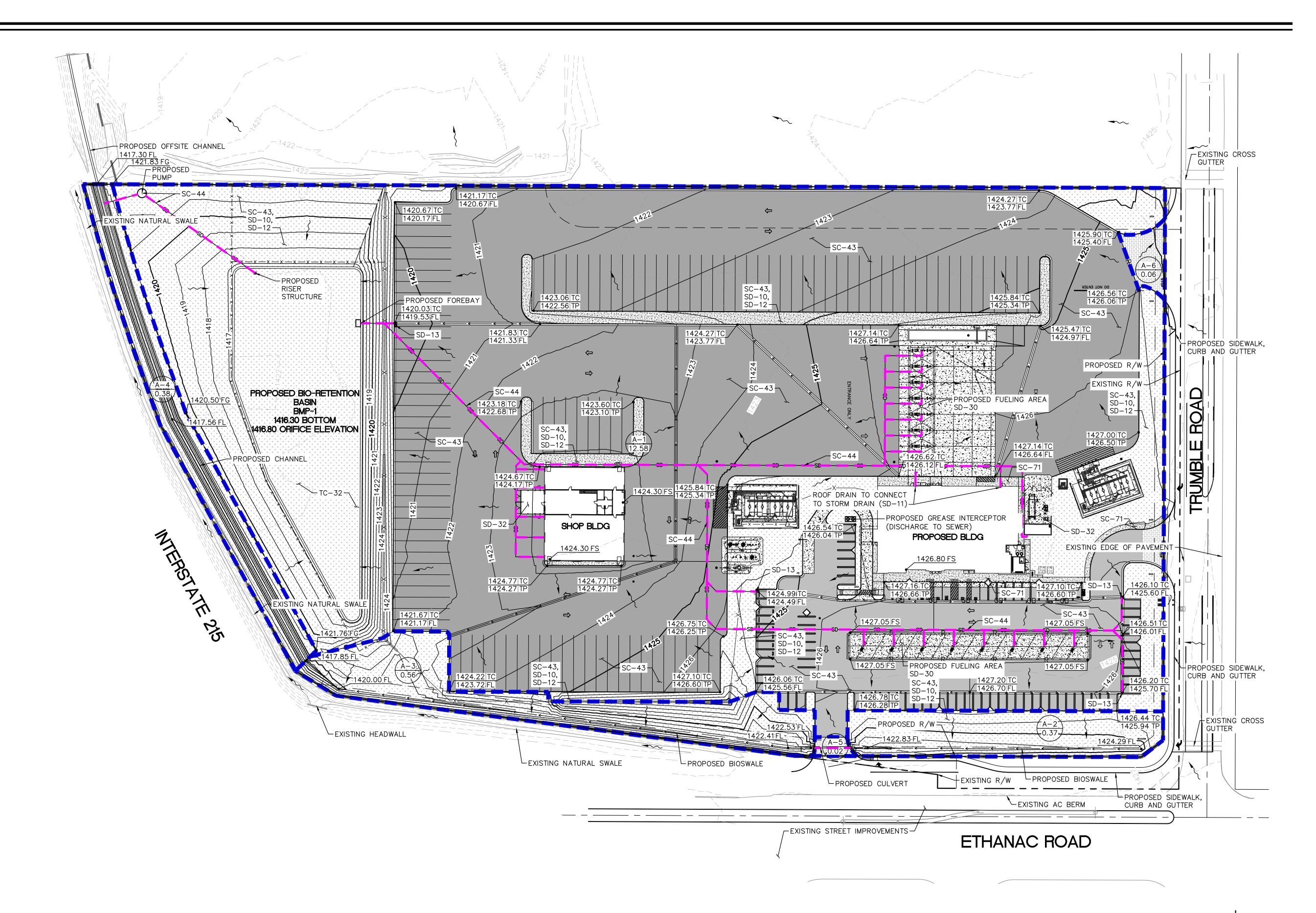


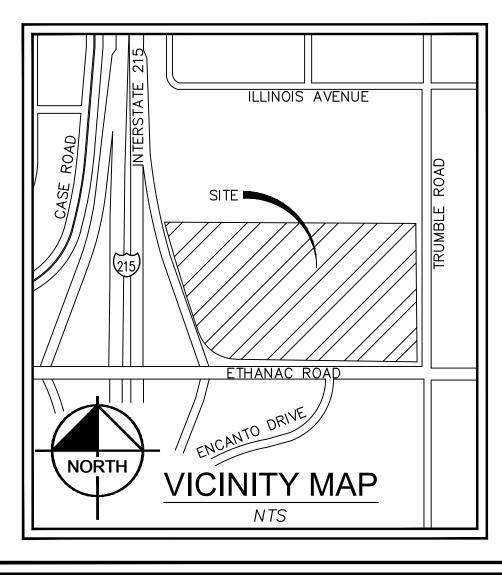
DMA PLAN PILOT FUELING AND TRUCK STOP PERRIS (P22-05002) SHEET 1 OF 1





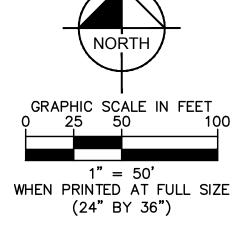
PROPOSED CONTOUR EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY PROPOSED STORM DRAIN FLOW ARROW

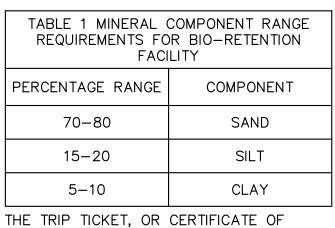

DA NAME DA AREA (IN ACRES)


RIGHT OF WAY

### LANDSCAPE NOTE

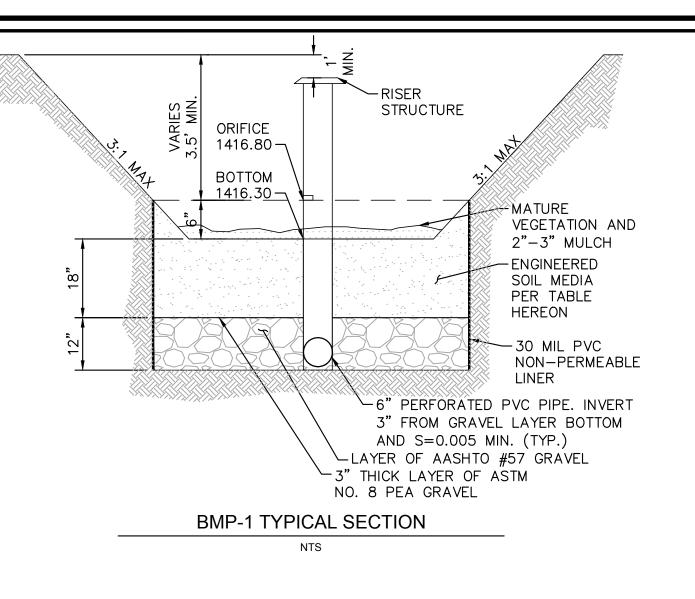
FINISH GRADE OF LANDSCAPE AREAS IS TO BE DEPRESSED 1–2 INCHES (MIN.) BELOW TOP OF CURB, SIDEWALK OR PAVEMENT.

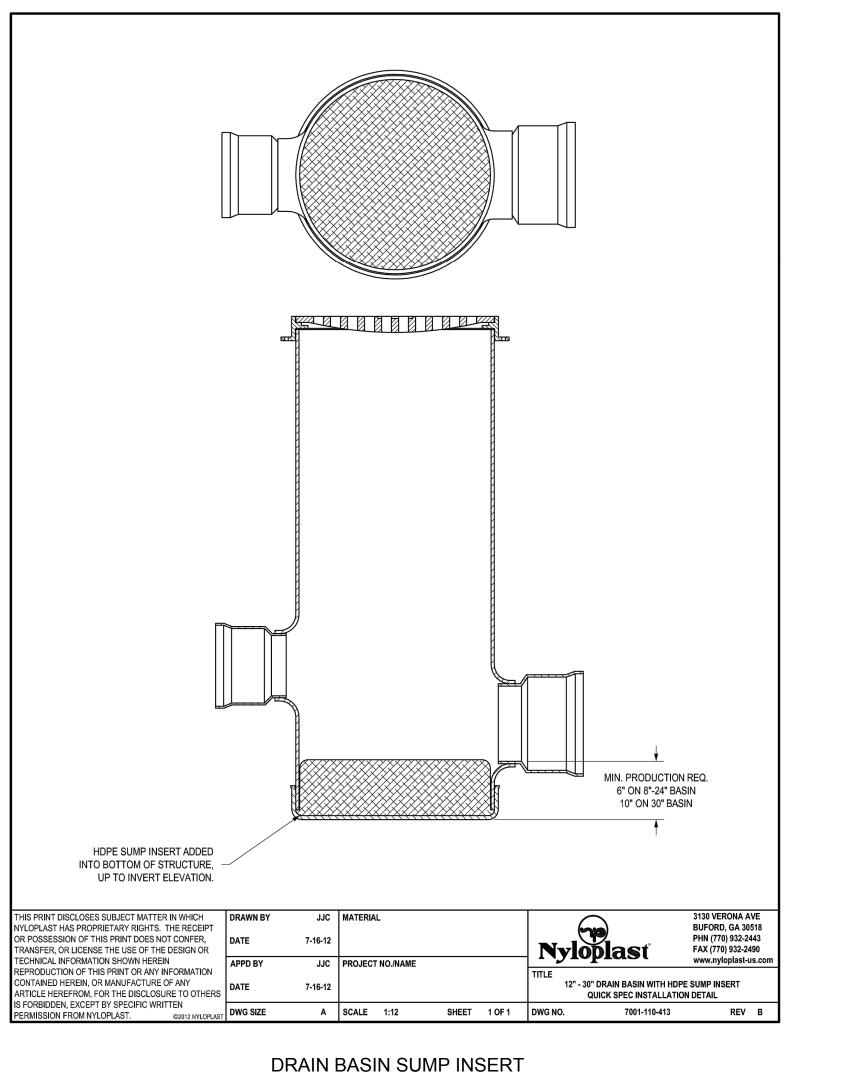

| TREATM | IENT CONTROL & SOURCE CONTROL BMP'S |
|--------|-------------------------------------|
| BMP ID | BMP DESCRIPTION                     |
| TC-32  | BIO-RETENTION FACILITY              |
| SC-43  | PARKING AREA MAINTENANCE            |
| SC-44  | DRAINAGE SYSTEM MAINTENANCE         |
| SC-71  | PLAZA & SIDEWALK CLEANING           |
| SC-73  | LANDSCAPE MAINTENANCE               |
| SD-10  | SITE DESIGN AND LANDSCAPE PLANNING  |
| SD-11  | ROOF RUNOFF CONTROL                 |
| SD-12  | EFFICIENT IRRIGATION                |
| SD-13  | STORM DRAIN SIGNAGE                 |
| SD-30  | FUELING AREAS                       |
| SD-32  | TRASH STORAGE AREAS                 |





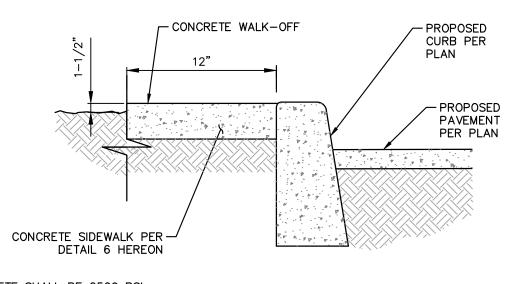

**Kimley**»Horn


### POST-CONSTRUCTION BMP SITE PLAN PILOT FUELING AND TRUCK STOP PERRIS (P22-05002) SHT 1 OF 3






COMPLIANCE, SHALL BE MADE AVAILABLE TO THE INSPECTOR TO PROVE THE ENGINEERED MIX MEETS THIS SPECIFICATION.


THE ENGINEERED SOIL MEDIA SHALL BE COMPRISED OF 85 PERCENT MINERAL COMPONENT AND 15 PERCENT ORGANIC COMPONENT, BY VOLUME, DRUM MIXED PRIOR TO PLACEMENT. THE MINERAL COMPONENT SHALL BE A CLASS A SANDY LOAM TOPSOIL THAT MEETS THE RANGE SPECIFIED IN TABLE 1 BELOW. THE ORGANIC COMPONENT SHALL BE NITROGEN STABILIZED COMPOST 1, SUCH THAT NITROGEN DOES NOT LEACH FROM THE MEDIA.





NTS

**Kimley**»Horn



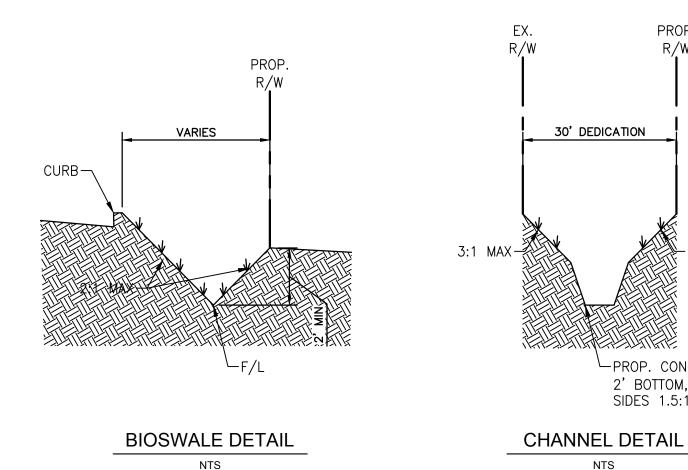
1. CONCRETE SHALL BE 2500 PSI. 2. ISOLATION JOINTS SHALL BE PLACED ONLY AS SPECIFIED 3. CONTRACTION JOINTS CONSISTING OF 1" DEEP SCORES SHALL BE PLACED AT 15' INTERVALS O.C. 4. WHERE A WALK IS ADJACENT TO THE CURB THE JOINTS SHALL ALIGN WITH JOINTS IN THE WALK.

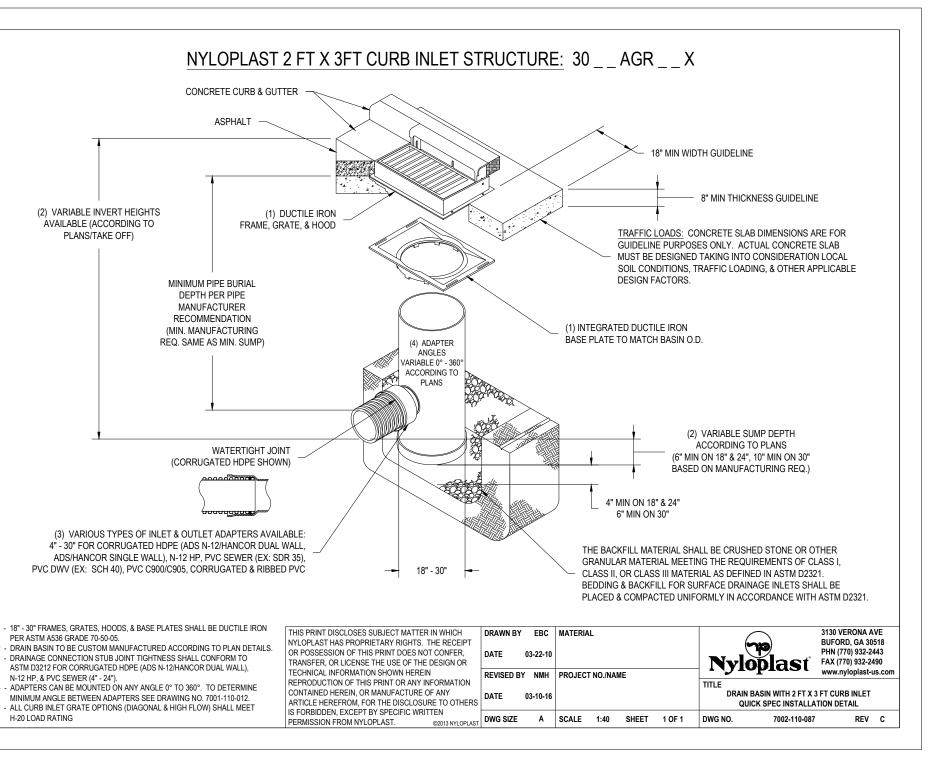
NOTES:

(2) VARIABLE INVERT HEIGHTS

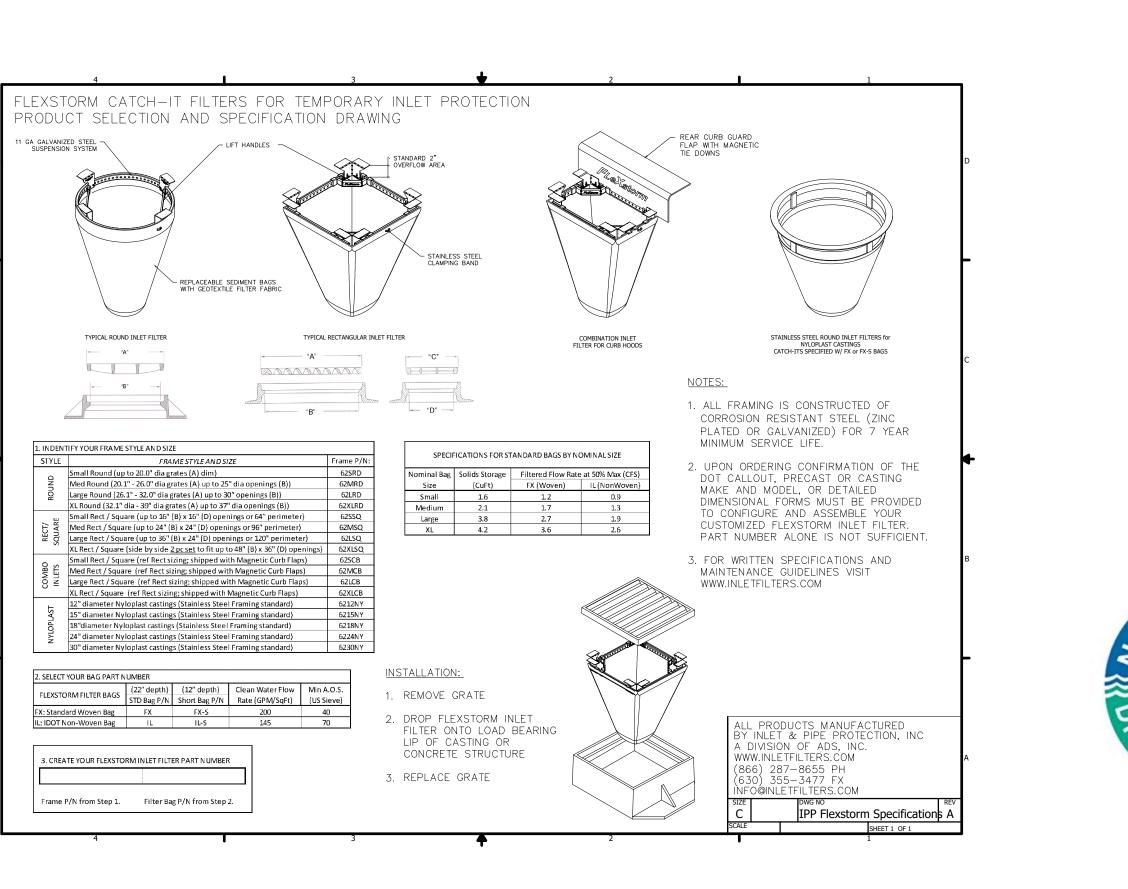
AVAILABLE (ACCORDING TO

PLANS/TAKE OFF)


PER ASTM A536 GRADE 70-50-05.

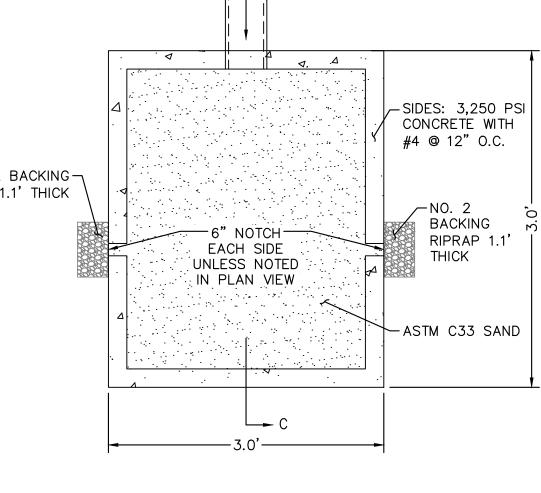

N-12 HP. & PVC SEWER (4" - 24").

H-20 LOAD RATING


DEPRESSED LANDSCAPE DETAIL

NTS

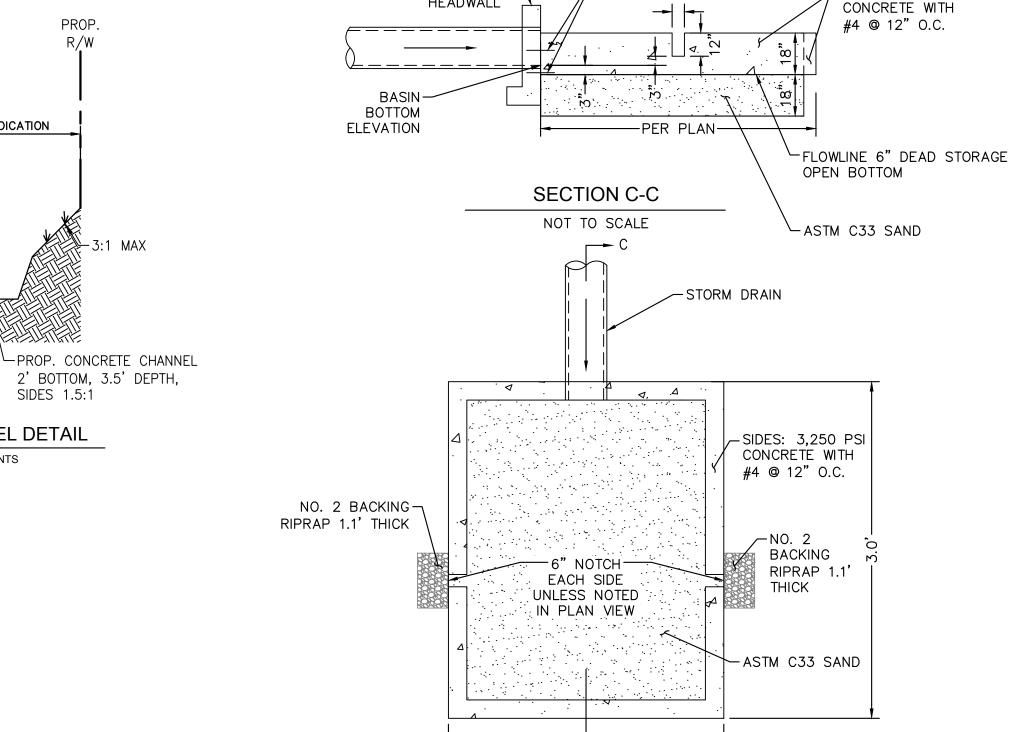





DRAIN BASIN STANDARD DETAIL NTS





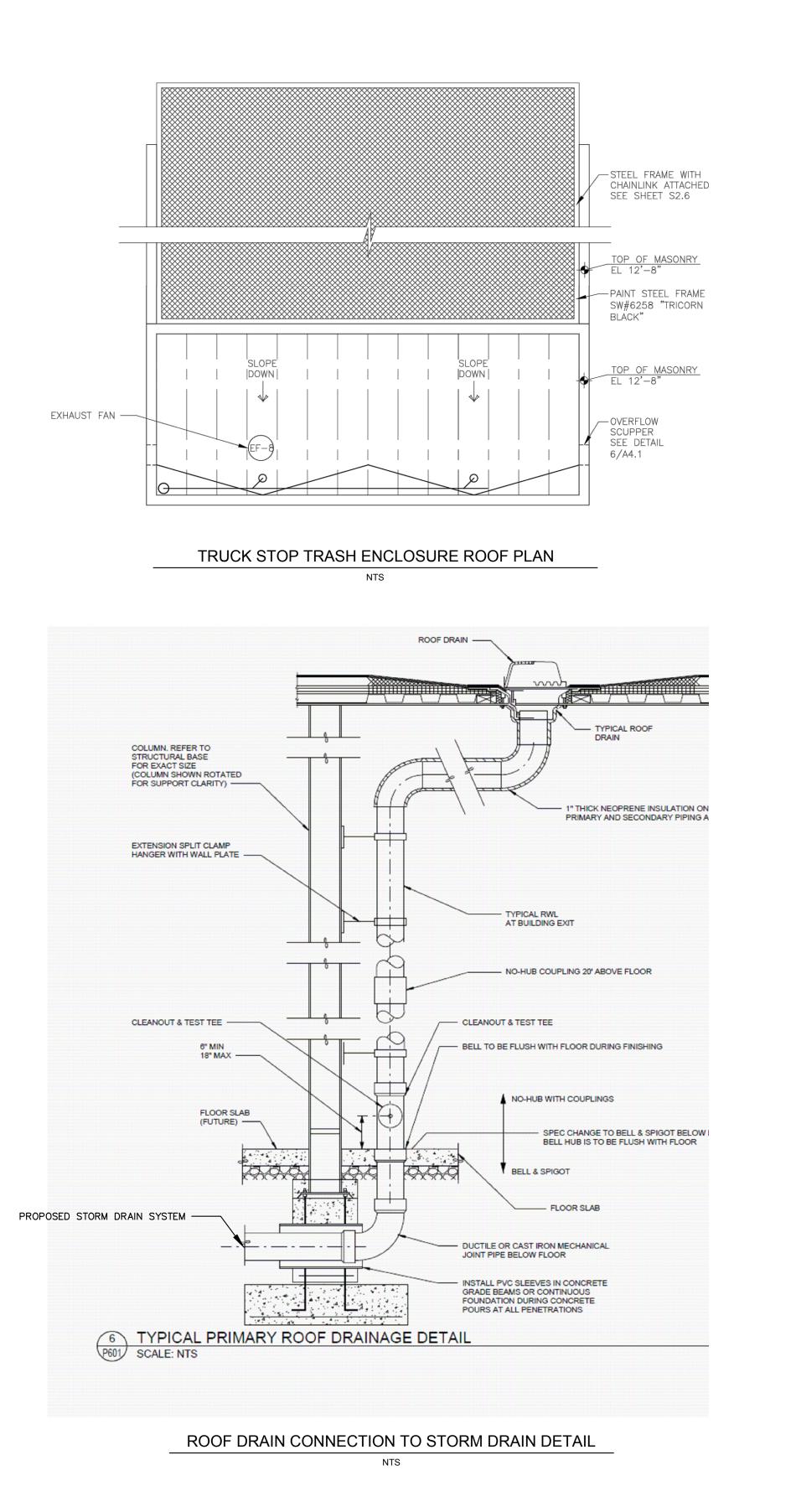

FLEXSTORM CATCH-IT INLET FILTER STENCIL EXAMPLE NTS NTS



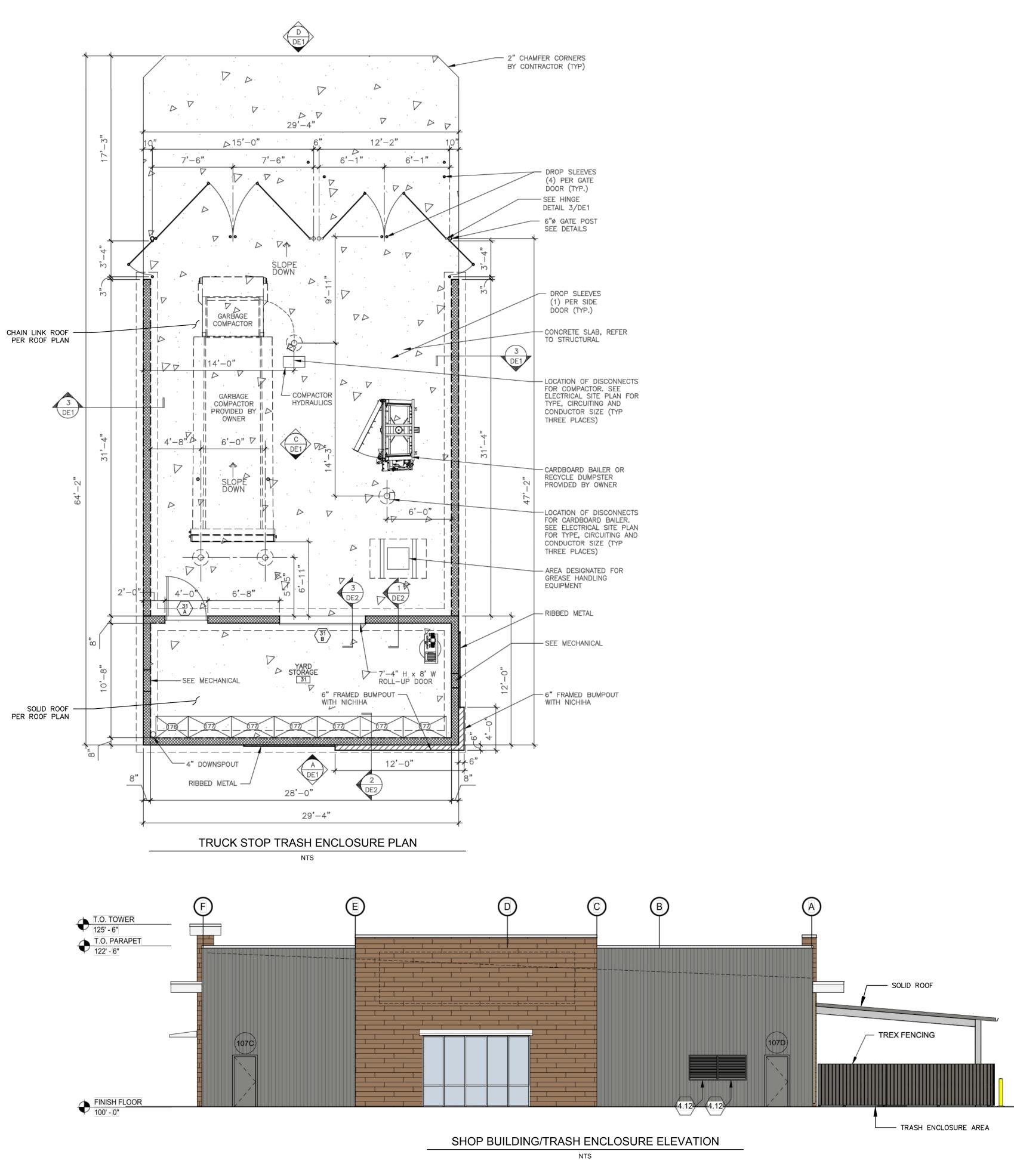
,−6" #5 DOWELS

-SIDES: 3,250 PSI

SAND FOREBAY DETAIL NTS




CALTRANS STD.


PLAN D89

STRAIGHT

HEADWALL



**Kimley**»Horn



### Appendix 2: Construction Plans

Grading and Drainage Plans

### **PROJECT TEAM**

OWNER/DEVELOPER PILOT TRAVEL CENTERS LLC 5508 LONAS DRIVE KNOXVILLE, TN 37909 (865) 588-7488

SURVEYOR LG LAND SURVEYING, INC 30355 CALLE FELIZ TER VALLEY CENTER, CA 92082 ATTN: JOHN GERVAIS. PLS 8674 (619) 535-1172 JOHN@LGLSINC.COM DATE OF FIELD SURVEY: 07/13/2021

CIVIL ENGINEER SHEA-MICHAEL ANTI. PE, LSIT, QSP/QSD KIMLEY-HORN AND ASSOCIATES, INC. 3880 LEMON STREET, SUITE 420, RIVERSIDE, CA 92501

(951) 335-8272 SHEA.ANTI@KIMLEY-HORN.COM

GEOTECHNICAL CONSULTANT GEOTECHNICAL SOLUTIONS, INC 27 MAUCHLY #210 IRVINE, CA 92618 PROJECT No.: G-5908-01 DATED: JUNE 11, 2021

### UTILITY PURVEYORS

EASTERN MUNICIPAL WATER DISTRICT P.O. BOX 8300 2270 TRUMBLE ROAD PERRIS, CA 92572 (951) 928-3777

EASTERN MUNICIPAL WATER DISTRICT P.O. BOX 8300 2270 TRUMBLE ROAD PERRIS, CA 92572

(951) 928-3777

<u>ELECTRICITY</u> SOUTHERN CALIFORNIA EDISON 26100 MENIFEE ROAD MENIFEE, CA 92585 PHONE: (800) 655-4555

SOUTHERN CALIFORNIA GAS 1981 W. LUGONIA AVENUE REDLANDS, CA 92374 PHONE: (800) 427-2200

TELEPHONE/CABLE FRONTIER COMMUNICATIONS E 3RD ST PERRIS, CA, 92570 PHONE: (909) 793-2826

### PRIVATE ENGINEER'S NOTICE TO CONTRACTOR:

THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON THESI PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THESE LOCATIONS ARE APPROXIMATE AND SHALL BE CONFIRMED IN THE FIELD BY THE CONTRACTOR SO THAT ANY NECESSARY ADJUSTMENTS CAN BE MADE IN ALIGNMENT AND/OR GRADE OF THE PROPOSED IMPROVEMENTS. THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PREVENT ANY UTILITY LINES SHOWN AND ANY OTHER LINES NOT OF RECORD OR NOT SHOWN ON THESE PLANS

ACTUAL THICKNESS OR BASE MATERIAL TO BE DETERMINED BY THE SOILS TEST AND RECOMMENDED BY THE SOILS ENGINEER.

CARE SHOULD BE TAKEN TO PREVENT GRADED DITCHES AND SWALES FROM UNDERMINING STREET IMPROVEMENTS.

### **ATTENTION CONTRACTORS:**

CONTRACTOR SHALL VERIFY ALL CONDITIONS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.

CONSTRUCTION CONTRACTOR AGREES THAT, IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES. CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS. CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY. REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPTING LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF DESIGN PROFESSIONAL.

### **BASIS OF BEARINGS:**

THE BASIS OF BEARINGS FOR THIS SURVEY IS THE CENTERLINE OF TRUMBLE ROAD PER RS 85/71, I.E. N00°13'05"E.

### **FLOOD ZONE INFORMATION**

THE LAND SHOWN IS MAINLY LOCATED IN FLOOD ZONE "X" BEING DESCRIBED AS AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN. PER FLOOD INSURANCE RATE MAP (FIRM) - COMMUNITY PANEL NUMBER 06065C2055H AND 06065C2060H, DATED AUGUST 18, 2014.

### **BUILDING NOTE:**

ALL INFORMATION WITH BUILDING (INCLUDING SETBACKS AND FINISH FLOOR ELEVATIONS) IS FOR REFERENCE ONLY AND THE APPROVAL OF THESE GRADING PLANS DO NOT INCLUDE ANY PROVISIONS ASSOCIATED WITH BUILDINGS.

### NOTE:

A PRE-GRADING/PRE-CONSTRUCTION MEETING AND SITE INSPECTION SHALL BE ARRANGED FOR BY THE SITE DEVELOPER PRIOR TO COMMENCING GRADING OPERATIONS. THOSE PARTIES REQUIRED TO ATTEND THE PRE-CONSTRUCTION MEETING SHALL INCLUDE BUT ARE NOT LIMITED TO THE DEVELOPER, PROJECT SUPERINTENDENT, ENGINEER OF RECORD, SOIL ENGINEER, GRADING CONTRACTOR, THE UNDERGROUND UTILITIES CONTRACTOR AND CITY INSPECTOR. THE FOCUS OF THE PRE-CONSTRUCTION MEETING SHALL BE TO DISCUSS THE VARIOUS ASPECTS AND RESPONSIBILITIES OF THE GRADING PROJECT AND TO PROVIDE AN APPROXIMATE TIME-TABLE FOR THE COMPLETION OF ROUGH GRADING. ARRANGE FOR A PRE-GRADING/PRE-CONSTRUCTION MEETING BY CALLING THE CITY OFFICE RESPONSIBLE FOR PROVIDING YOUR GRADING AND BUILDING INSPECTIONS. CALL CITY DISPATCH AT (951) 943-6504 TO SETUP PRE-CONSTRUCTION MEETING.

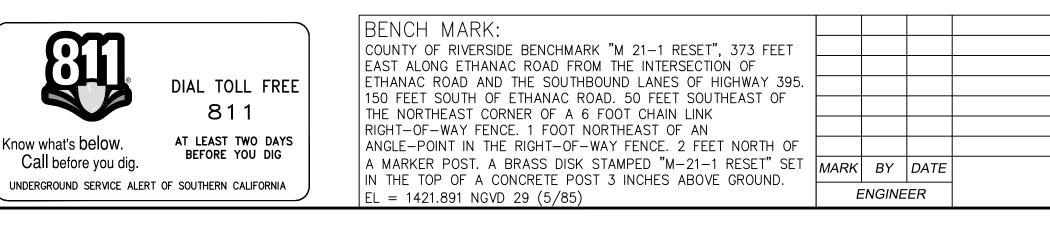
NO WORK SHALL COMMENCE WITHIN THE ROAD RIGHT-OF-WAY (R/W) PRIOR TO ISSUANCE OF AN ENCROACHMENT PERMIT BY CITY OF PERRIS.

PROJECT WILL COMPLY WITH PM10 REQUIREMENTS

### NOTIFICATIONS:

AT LEAST 48 HOURS PRIOR TO COMMENCING CONSTRUCTION, CONTRACTOR SHALL NOTIFY:

- 1. EASTERN MUNICIPAL WATER DISTRICT
- (FIELD ENGINEERING DEPARTMENT)
- 2. CITY OF PERRIS


3. UNDERGROUND SERVICE ALERT (USA)

- 4. ALL OTHER AFFECTED UTILITIES AND PERMIT AGENCIES: A. THE GAS COMPANY
  - B. SO. CAL EDISON (USA)
  - C. VERIZON D. TIME WARNER CABLE
- 1-800-427-2200 1-800-684-8123 1-800-483-4000 1-887-475-3127

(951) 943-5003

(951) 928-3777, EXT 4830

1(800) 227-2600 OR 811



## **CITY OF PERRIS** PRELIMINARY GRADING PLANS PILOT PERRIS

### ETHANAC ROAD AND TRUMBLE ROAD

### LEGAL DESCRIPTION

THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE CITY OF PERRIS, IN THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS: PARCEL A:

LOT 13 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681, SAN DIEGO COUNTY RECORDS.

EXCEPT FROM SAID LOT 13 THAT PORTION THEREOF GRANTED TO THE STATE OF CALIFORNIA FOR FREEWAY PURPOSES BY DEED RECORDED JULY 3, 1951 IN BOOK 1284, PAGE 162, OFFICIAL RECORDS, RIVERSIDE COUNTY RECORDS.

ALSO EXCEPT THOSE PORTIONS OF LOT 13 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681 OF MAPS, SAN DIEGO COUNTY RECORDS, LYING WESTERLY AND SOUTHERLY OF THE FOLLOWING DESCRIBED LINE:

BEGINNING ON THE NORTHERLY LINE OF SAID LOT 12, DISTANT ALONG SAID NORTHERLY LINE SOUTH 89° 17' 04" EAST 50.61 FEET FROM THE WESTERLY LINE OF SAID SECTION;

THENCE COURSE (1) SOUTH 0° 21' 45" EAST 82.75 FEET;

THENCE ALONG A TANGENT CURVE CONCAVE EASTERLY WITH A RADIUS OF 2947 FEET, THROUGH AN ANGLE OF 3° 11' 29", 164.15 FEET;

THENCE ALONG A COMPOUND CURVE CONCAVE EASTERLY WITH A RADIUS OF 2197 FEET FROM A TANGENT BEARING SOUTH 3° 33' 14" EAST, THROUGH AN ANGLE OF 15° 40' 18", 600.93 FEET; THENCE SOUTH 19° 13' 32" EAST 67.41 FEET;

THENCE SOUTH 28° 16' 41" EAST 298.72 FEET;

THENCE SOUTH 58° 11' 26" EAST, 50.93 FEET;

THENCE SOUTH 82° 01' 10" EAST 438.46 FEET; THENCE COURSE (2) CONTINUING SOUTH 82° 01' 10" EAST 207.28 FEET;

THENCE COURSE (3) SOUTH 0° 46' 23" WEST 24.30 FEET TO THE SOUTHERLY LINE OF SAID LOT 14, AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED JUNE 18, 1965 AS INSTRUMENT NO. 70888 OF OFFICIAL RECORDS OF RIVERSIDE COUNTY.

APN: 329-250-011

PARCEL B:

LOT 14 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10. TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681, SAN DIEGO COUNTY RECORDS.

EXCEPT THE EASTERLY RECTANGULAR 30 FEET OF SAID LOT 14, AS GRANTED TO COUNTY OF RIVERSIDE BY DEED RECORDED AUGUST 16, 1950 IN BOOK 1197, PAGE 206 AND BY DEED RECORDED AUGUST 16, 1950 IN BOOK 1197, PAGE 229, BOTH OF OFFICIAL RECORDS, RIVERSIDE COUNTY RECORDS.

EXCEPT THOSE PORTIONS OF LOT 14 OF WATERS HOMESTEAD, A SUBDIVISION OF THE SOUTHWEST QUARTER OF SECTION 10. TOWNSHIP 5 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, AS SHOWN BY MAP OF SAID SUBDIVISION ON FILE IN BOOK 14, PAGE 681 OF MAPS, SAN DIEGO COUNTY RECORDS, LYING WESTERLY AND SOUTHERLY OF THE FOLLOWING DESCRIBED LINE:

BEGINNING ON THE NORTHERLY LINE OF SAID LOT 12, DISTANT ALONG SAID NORTHERLY LINE

SOUTH 89° 17' 04" EAST 50.61 FEET FROM THE WESTERLY LINE OF SAID SECTION; THENCE COURSE (1) SOUTH 0° 21' 45" EAST 82.75 FEET;

THENCE ALONG A TANGENT CURVE CONCAVE EASTERLY WITH A RADIUS OF 2947 FEET. THROUGH AN ANGLE OF 3° 11' 29", 164.15 FEET;

THENCE ALONG A COMPOUND CURVE CONCAVE EASTERLY WITH A RADIUS OF 2197 FEET FROM A TANGENT BEARING SOUTH 3' 33' 14" EAST, THROUGH AN ANGLE OF 15' 40' 18", 600.93 FEET; THENCE SOUTH 19° 13' 32" EAST 67.41 FEET;

THENCE SOUTH 28° 16' 41" EAST 298.72 FEET; THENCE SOUTH 58° 11' 26" EAST, 50.93 FEET; THENCE SOUTH 82° 01' 10" EAST 438.46 FEET;

THENCE COURSE (2) CONTINUING SOUTH 82° 01' 10" EAST 207.28 FEET;

THENCE COURSE (3) SOUTH 0° 46' 23" WEST 24.30 FEET TO THE SOUTHERLY LINE OF SAID LOT 14, AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED JUNE 18, 1965 AS INSTRUMENT NO. 70888 OF OFFICIAL RECORDS OF RIVERSIDE COUNTY.

### ESTIMATED EARTHWORK QUANTITIES

CUT:

APN: 329-250-012

REVISIONS

FILL: 20,864 CY

21,176 CY

NET: 312 CY CUT

NOTE:

THE ABOVE QUANTITIES ARE APPROXIMATE AND FOR PERMIT PROCESS ONLY. QUANTITIES HAVE BEEN CALCULATED FROM EXISTING GRADE SURFACE TO PROPOSED FINAL GRADE. QUANTITIES ACCOUNT FOR THICKNESS OF PAVEMENT SECTIONS, BUILDING SLAB, AND DETENTION SPOILS. THEY DO NOT REFLECT SHRINKAGE, SWELL, SUBSIDENCE AND REMOVAL OF EXISTING BUILDING STRUCTURES AND SURFACE IMPROVEMENTS.

THE CONTRACTOR SHALL RELY ON THEIR OWN EARTHWORK ESTIMATES FOR BIDDING PURPOSES.

### STATEMENT BY ENGINEER OF RECORD

ALL EASEMENTS SHOWN ON THIS PLAN ARE PER THE ALTA PREPARED BY LG LAND SURVEYING DATED 07/13/21.

### **APPLICABLE CODES:**

ALL NEW CONSTRUCTION SHALL MEET OR EXCEED THE MINIMUM REQUIREMENTS OF THE CALIFORNIA BUILDING CODE 2016 EDITION THAT INCLUDE THE BUILDING, PLUMBING, MECHANICAL, ELECTRICAL, FIRE AND ENERGY COMMISSION SERIES. IN CASES WHERE THE CODES MAY CONFLICT WITH THE PROVISIONS IN THESE PLANS OR SPECIFICATIONS, THE MORE RESTRICTIVE PROVISIONS SHALL GOVERN.

| ABBR | EVIA | NS |
|------|------|----|

| AB -           | – AGGREGATE BASE                                                                                                                                           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | – ASPHALT                                                                                                                                                  |
|                | - AUTHORITY HAVING JURISDICTION                                                                                                                            |
|                | – BACK OF CURB                                                                                                                                             |
|                | - BOTTOM OF STAIR                                                                                                                                          |
|                | - BUILDING                                                                                                                                                 |
|                | – BACK OF WALK<br>– COMPACTED AGGREGATE BASE                                                                                                               |
|                | - COMPACTED AGGREGATE BASE<br>- CATCH BASIN                                                                                                                |
|                | - CURB FACE                                                                                                                                                |
|                | - CENTERLINE                                                                                                                                               |
|                | - CONCRETE                                                                                                                                                 |
|                | - CONSTRUCT, CONSTRUCTION                                                                                                                                  |
|                | - COMPACTED SUBGRADE                                                                                                                                       |
|                | - DEEPENED FOOTING                                                                                                                                         |
|                | – DRAIN INLET                                                                                                                                              |
|                | - DOMESTIC WATER                                                                                                                                           |
|                | - EAST                                                                                                                                                     |
|                | – EDGE OF GUTTER<br>– ELECTRIC                                                                                                                             |
|                | - EDGE OF PAVEMENT                                                                                                                                         |
|                | - FINISHED FLOOR                                                                                                                                           |
|                | - FINISHED GRADE                                                                                                                                           |
|                | - FLOW LINE                                                                                                                                                |
|                | – FINISHED SURFACE                                                                                                                                         |
|                | – FIRE WATER                                                                                                                                               |
|                | - GAS                                                                                                                                                      |
|                | - GRADE BREAK                                                                                                                                              |
|                | – HIGH POINT<br>– INVERT                                                                                                                                   |
|                | - IRRIGATION WATER                                                                                                                                         |
|                | - JUNCTION STRUCTURE                                                                                                                                       |
|                | – LENGTH                                                                                                                                                   |
|                | - LOW POINT                                                                                                                                                |
| MH -           | – MANHOLE                                                                                                                                                  |
| N -            | – NORTH                                                                                                                                                    |
|                | - PORTLAND CEMENT CONCRETE                                                                                                                                 |
|                | - PROPERTY LINE                                                                                                                                            |
| PUE -<br>PVC - | – PUBLIC UTILITY EASEMENT<br>– POLYVINYL CHLORIDE                                                                                                          |
| R -            | - RADIUS OR RIDGE                                                                                                                                          |
| RD -           | - ROOF DRAIN                                                                                                                                               |
| RW -           | - RECLAIMED WATER                                                                                                                                          |
| ROW -          | - RIGHT-OF-WAY                                                                                                                                             |
| c .            | SLADE CRADIENT                                                                                                                                             |
| SD -           | <ul> <li>SLOPE GRADIENT</li> <li>STORM DRAIN</li> <li>STATION</li> <li>SANITARY SEWER</li> <li>STANDARD PLANS FOR PUBLIC<br/>WORKS CONSTRUCTION</li> </ul> |
| STA -          | - STATION                                                                                                                                                  |
| SS -           | - SANITARY SEWER                                                                                                                                           |
| SPPWC -        | WORKS CONSTRUCTION                                                                                                                                         |
| SW -           | - SIDE WALK                                                                                                                                                |
|                | – TELEPHONE                                                                                                                                                |
| TC -           | - TOP OF CURB                                                                                                                                              |
| TS -           | - TOP OF STAIR                                                                                                                                             |
| VIF -          | – VERIFY IN FIELD                                                                                                                                          |
| W -            | - WATER OR WEST                                                                                                                                            |

XXX.XX - PROPOSED ELEVATION (XXX.XX) - EXISTING ELEVATION

### SHEET INDEX

| S            | SHEET INDEX                          |
|--------------|--------------------------------------|
| SHEET NUMBER | SHEET TITLE                          |
| 1            | COVER SHEET                          |
| 2            | GENERAL NOTES                        |
| 3            | SITE PLAN                            |
| 4            | SITE PLAN                            |
| 5            | HORIZONTAL CONTROL PLAN              |
| 6            | HORIZONTAL CONTROL PLAN              |
| 7            | SIGNING, STRIPING, AND PAVEMENT PLAN |
| 8            | SIGNING, STRIPING, AND PAVEMENT PLAN |
| 9            | GRADING PLAN                         |
| 10           | GRADING PLAN                         |
| 11           | UTILITY PLAN                         |
| 12           | UTILITY PLAN BLOW UPS                |
| 13           | STORM DRAIN PLAN                     |
| 14           | STORM DRAIN PLAN BLOW UPS            |
| 15           | LANDSCAPE PLAN                       |
| 16           | LANDSCAPE PLAN                       |

| CITY OF PERRIS | 5    | SHEA-MICHAEL ANTI                                                  | K                 |
|----------------|------|--------------------------------------------------------------------|-------------------|
| BY:            |      | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ | 765 T<br>PREPARED |
| CITY ENGINEER  | DATE |                                                                    | SHEA-MIC          |

|      |      | APPROVED BY: |
|------|------|--------------|
| APPR | DATE |              |

CITY

CONTRACT CITY ENGINEER

| SITE DATA<br>APN'S: 329-250-011 AND 329-250-012                                                                                       | D D D D D D D D D D D D D D D D D D D |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| GROSS PARCEL ±14.4 ACRES<br>DISTURBED ±14.4 ACRES<br>TOTAL PERVIOUS ±4.5 ACRES<br>TOTAL IMPERVIOUS ±9.9 ACRES<br>(INCLUDING BUILDING) |                                       |
| TOTAL GROSS FLOOR AREA: 13,980 SF                                                                                                     |                                       |
| EXISTING: COMMERCIAL COMMUNITY (CC)                                                                                                   |                                       |
| PROPOSED: COMMERCIAL COMMUNITY (CC)                                                                                                   |                                       |
| PARKING PROVIDED:                                                                                                                     |                                       |
| STANDARD88SPACESACCESSIBLE5SPACESTRUCK116SPACES                                                                                       | ETHANAC ROAD                          |
| BICYCLE SPACES 2 PROPOSED                                                                                                             | ENCANTO 2                             |
|                                                                                                                                       |                                       |

### LEGEND

| - $ -$                                 |
|----------------------------------------|
|                                        |
| SS                                     |
| SDSD                                   |
|                                        |
| —————————————————————————————————————— |
| W                                      |
|                                        |
| ows ows                                |
| UGT UGT                                |
| UE UE                                  |
| GBGB                                   |
| R                                      |
| - K                                    |
|                                        |
| _ x x x x x x x x x _                  |
|                                        |
|                                        |
| (1422.27 TC)                           |
| (1422.27 TC)<br>(1421.77 TP)           |
|                                        |
| 1422.27 TC<br>1421.77 TP               |
| <u>1.2%</u>                            |
| 1.270                                  |

| PROPERTY LINE CIVIL           |
|-------------------------------|
| CENTERLINE                    |
| SETBACKS                      |
| EASEMENT LINE                 |
| LIMITS OF WORK LINE           |
| PROPOSED SANITARY SEWER PIPE  |
| PROPOSED STORM DRAIN PIPE     |
| PROPOSED AIR                  |
| PROPOSED WATER PIPE           |
| PROPOSED OIL WATER SEPARATOR  |
| PROPOSED TELEPHONE LINE       |
| PROPOSED UNDERGROUND ELECTRIC |
| GRADE BREAK                   |
| RIDGE LINE                    |
| ACCESSIBLE ROUTE              |
| FENCE                         |
| PARKING COUNT                 |
| PROPOSED ELEVATION            |
| EXISTING ELEVATION            |

|                                 | + + + +<br>+ + + +<br>+ + + + + |   |   |     |             |   |
|---------------------------------|---------------------------------|---|---|-----|-------------|---|
| + + + +<br>+ + + +<br>+ + + + + | + + + +<br>+ + + +<br>+ + + + + |   |   |     |             |   |
| + + + +<br>+ + + +<br>+ + + + + | + + + +<br>+ + + +<br>+ + + + + |   |   |     |             |   |
| + + + +<br>+ + + +<br>+ + + + + | + + + +<br>+ + + +<br>+ + + + + |   |   |     |             |   |
| * * * *<br>* * * *              | * * * *<br>* * * *              | ÷ | ÷ |     | Ψ           |   |
| * * * *                         | * * * * *                       | * | * | , . | ν<br>ν<br>ν | * |
|                                 |                                 | ÷ | ¥ | Ψ   | $\Psi$      |   |

NTS

HEAVY DUTY CONCRETE PAVEMENT

HEAVY DUTY ASPHALT PAVEMENT

STANDARD DUTY ASPHALT PAVEMENT

LANDSCAPE/PLANTER AREA

DETECTABLE WARNINGS

DECORATIVE PAVEMENT

### **GEOTECHNICAL REPORT**

Men Man 5

THE GEOTECHNICAL EVALUATION REPORT TRAVEL PLAZA PERRIS PROJECT NO. G-5908-01 DATED JUNE 11, 2021 PREPARED BY GEOTECHNICAL SOLUTIONS, INC. AND ALL ADDENDA SHALL BE CONSIDERED PART OF THESE CONSTRUCTION DOCUMENTS. THE PROJECT IS CONSISTENT WITH SOILS REPORT REQUIREMENTS AND RECOMMENDATIONS; AS WELL AS, ALL REQUIRED TESTS, INSPECTIONS AND REPORTS WILL BE CONDUCTED AS NECESSARY.

GEOTECHNICAL ENGINEER OF RECORD GEOTECHNICAL SOLUTIONS, INC

SLOPE

### **DECLARATION OF ENGINEER OF RECORD**

I HEREBY DECLARE THAT IN MY PROFESSIONAL OPINION, THE DESIGN OF THE IMPROVEMENTS AS SHOW ON THESE PLANS COMPLIES WITH THE CURRENT PROFESSIONAL ENGINEERING STANDARDS AND PRACTICES AS THE ENGINEER IN RESPONSIBLE CHARGE OF THE DESIGN OF THESE IMPROVEMENTS. I ACCEPT FULI RESPONSIBILITY FOR SUCH DESIGN. I UNDERSTAND AND ACKNOWLEDGE THAT THE PLAN CHECK OF THESE PLANS BY THE CITY OF PERRIS IS A REVIEW FOR THE LIMITED PURPOSE OF ENSURING THAT THESE PLANS COMPLY WITH CITY PROCEDURES AND OTHER APPLICABLE CODES AND ORDINANCES. THE PLAN REVIEW PROCESS IS NOT A DETERMINATION OF THE TECHNICAL ADEQUACY OF THE DESIGN OF THE IMPROVEMENTS SUCH PLAN CHECK DOES NOT THEREFORE RELIEVE ME OF MY DESIGN RESPONSIBILITY.

SIGNATURE

LICENSE NO. 78274

DATE 6/8/2022

EXP. <u>9/30/2023</u>





### **GENERAL NOTES**:

- 1. NOTIFY CITY ENGINEER, CITY OF PERRIS, AT (951) 943-6504, AT LEAST 24 HOURS PRIOR TO START OF CONSTRUCTION.
- 2. PROOF ROLL BUILDING AND ALL PARKING AREAS. NOTIFY ARCHITECT OF ALL UNACCEPTABLE AREAS.
- 3. EDGE OF NEW PAVEMENT TO BE FLUSH WITH EXISTING PAVEMENT.
- 4. ALL SIDEWALK, CURB AND GUTTER, STREET PAVING, CURB CUTS, DRIVEWAY APPROACHES, ACCESSIBLE RAMPS, ETC. CONSTRUCTED OUTSIDE THE PROPERTY LINE IN THE RIGHT-OF-WAY SHALL CONFORM TO ALL MUNICIPAL AND/OR STATE SPECIFICATIONS AND REQUIREMENTS.
- 5. FOR AREAS OUTSIDE THE PROPERTY LINES, REPAIR AND REPLACE ALL DAMAGE DONE TO EXISTING ELEMENTS (SIDEWALKS, PAVING, LANDSCAPING, ETC.) AS REQUIRED BY OWNERS AND/OR GOVERNING AUTHORITY
- 6. FOR PROPOSED UTILITY LOCATIONS, SEE UTILITY PLAN.
- 7. ALL DIMENSIONS REFER TO THE FACE OF CURB UNLESS OTHERWISE NOTED.
- 8. CONTRACTOR TO VERIFY ALL EXISTING CONDITIONS PRIOR TO ORDERING MATERIALS AND STARTING WORK, AND NOTIFY ENGINEER OF ANY DISCREPANCIES IMMEDIATELY.
- 9. CONTRACTOR SHALL ENSURE CLEAN JOINTS AND PROTECT PAVEMENT WHEREVER PROPOSED PAVEMENT MATCHES EXISTING PAVEMENT.
- 10. REFER TO ARCHITECTURAL PLANS FOR SIGN DETAILS. SEE MEP PLANS FOR SITE ELECTRICAL DRAWINGS.
- 11. REFER TO ARCHITECTURAL AND STRUCTURAL PLANS TO VERIFY ALL BUILDING DIMENSIONS.
- 12. ANY WORK IN THE RIGHT-OF-WAY SHALL BE APPROVED BY THE CITY ENGINEER.
- 13. ALL EARTHWORK TO COMPLY WITH RECOMMENDATIONS IN GEOTECHNICAL REPORT.
- 14. ALL PAINT STRIPING TO BE TWO COATS.
- 15. ALL PROPERTY LINES, EASEMENTS AND BUILDING, EXISTING AND PROPOSED, ARE SHOWN ON THIS SITE PLAN.
- 16. THE CONTRACTOR AND SUBCONTRACTORS SHOULD BE FAMILIAR WITH ALL STATE AND LOCAL REQUIREMENTS RELATED TO SITE CONSTRUCTION ACTIVITIES PRIOR TO COMMENCING WORK. ALL WORK SHALL CONFORM AS APPLICABLE TO THESE GOVERNING STANDARDS AND SPECIFICATIONS.
- 17. THE CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING ALL MATERIAL AND LABOR TO CONSTRUCT THE FACILITY AS SHOWN AND DESCRIBED IN THE CONSTRUCTION DOCUMENTS IN ACCORDANCE WITH THE APPROPRIATE APPROVING AUTHORITIES, SPECIFICATIONS AND REQUIREMENTS. CONTRACTOR SHALL CLEAR AND GRUB ALL AREAS UNLESS OTHERWISE INDICATED, REMOVING TREES, STUMPS, ROOTS, MUCK, EXISTING PAVEMENT AND ALL OTHER DELETERIOUS MATERIAL.
- 18. EXISTING UTILITIES SHOWN ARE LOCATED ACCORDING TO THE INFORMATION AVAILABLE TO THE ENGINEER AT THE TIME OF THE TOPOGRAPHIC SURVEY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR THE ENGINEER. GUARANTEE IS NOT MADE THAT ALL EXISTING UNDERGROUND UTILITIES ARE SHOWN OR THAT THE LOCATION OF THOSE SHOWN ARE ENTIRELY ACCURATE. FINDING THE ACTUAL LOCATION OF ANY EXISTING UTILITIES IS THE CONTRACTOR'S RESPONSIBILITY AND SHALL BE DONE BEFORE COMMENCING ANY WORK IN THE VICINITY. FURTHERMORE, THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES DUE TO THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. THE OWNER OR ENGINEER WILL ASSUME NO LIABILITY FOR ANY DAMAGES SUSTAINED OR COST INCURRED BECAUSE OF THE OPERATIONS IN THE VICINITY OF EXISTING UTILITIES OR STRUCTURES, NOR FOR TEMPORARY BRACING AND SHORING OF SAME. IF IT IS NECESSARY TO SHORE, BRACE, SWING OR RELOCATE A UTILITY, THE UTILITY COMPANY OR DEPARTMENT AFFECTED SHALL BE CONTACTED AND THEIR PERMISSION OBTAINED REGARDING THE METHOD TO USE FOR SUCH WORK.
- 19. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONTACT THE VARIOUS UTILITY COMPANIES WHICH MAY HAVE BURIED OR AERIAL UTILITIES WITHIN OR NEAR THE CONSTRUCTION AREA BEFORE COMMENCING WORK. THE CONTRACTOR SHALL PROVIDE 48 HOURS MINIMUM NOTICE TO ALL UTILITY COMPANIES PRIOR TO BEGINNING CONSTRUCTION. AN APPROXIMATE LIST OF THE UTILITY COMPANIES WHICH THE CONTRACTOR MUST CALL BEFORE COMMENCING WORK IS PROVIDED ON THE UTILITY SHEET OF THESE CONSTRUCTION PLANS. THIS LIST SERVES AS A GUIDE ONLY AND IS NOT INTENDED TO LIMIT THE UTILITY COMPANIES WHICH THE CONTRACTOR MAY WISH TO NOTIFY.
- 20. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL REQUIRED CONSTRUCTION PERMITS AND BONDS IF REQUIRED PRIOR TO CONSTRUCTION.
- 21. THE CONTRACTOR SHALL HAVE AVAILABLE AT THE JOB SITE AT ALL TIMES ONE COPY OF THE CONSTRUCTION DOCUMENTS INCLUDING PLANS, SPECIFICATIONS, GEOTECHNICAL REPORT AND SPECIAL CONDITIONS AND COPIES OF ANY REQUIRED CONSTRUCTION PERMITS.
- 22. ANY DISCREPANCIES ON THE DRAWINGS SHALL BE IMMEDIATELY BROUGHT TO THI ATTENTION OF THE OWNER AND ENGINEER BEFORE COMMENCING WORK. NO FIELD CHANGES OR DEVIATIONS FROM DESIGN ARE TO BE MADE WITHOUT PRIOR APPROVAL OF THE OWNER AND NOTIFICATION TO THE ENGINEER.
- 23. ALL COPIES OF COMPACTION, CONCRETE AND OTHER REQUIRED TEST RESULTS ARE TO BE SENT TO THE OWNER AND DESIGN ENGINEER OF RECORD DIRECTLY FROM THE TESTING AGENCY.
- 24. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUBMITTING TO THE ENGINEER A CERTIFIED RECORD SURVEY SIGNED AND SEALED BY A PROFESSIONAL LAND SURVEYOR REGISTERED IN THE STATE OF ARIZONA DEPICTING THE ACTUAL FIELD LOCATION OF ALL CONSTRUCTED IMPROVEMENTS THAT ARE REQUIRED BY THE JURISDICTIONAL AGENCIES FOR THE CERTIFICATION PROCESS. ALL SURVEY COSTS WILL BE THE CONTRACTORS RESPONSIBILITY.
- 25. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DOCUMENTING AND MAINTAINING AS-BUILT INFORMATION WHICH SHALL BE RECORDED AS CONSTRUCTION PROGRESSES OR AT THE COMPLETION OF APPROPRIATE CONSTRUCTION INTERVALS AND SHALL BE RESPONSIBLE FOR PROVIDING AS-BUILT DRAWINGS TO THE OWNER FOR THE PURPOSE OF CERTIFICATION TO JURISDICTIONAL AGENCIES AS REQUIRED. ALL AS-BUILT DATA SHALL BE COLLECTED BY A STATE OF CALIFORNIA PROFESSIONAL LAND SURVEYOR WHOSE SERVICES ARE ENGAGED BY THE CONTRACTOR
- 26. ANY WELLS DISCOVERED ON SITE THAT WILL HAVE NO USE MUST BE PLUGGED BY A LICENSED WELL DRILLING CONTRACTOR IN A MANNER APPROVED BY ALL JURISDICTIONAL AGENCIES. CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ANY WELL ABANDONMENT PERMITS REQUIRED.
- 27. ANY WELL DISCOVERED DURING EARTH MOVING OR EXCAVATION SHALL BE REPORTED TO THE APPROPRIATE JURISDICTIONAL AGENCIES WITHIN 24 HOURS AFTER DISCOVERY IS MADE.
- 28. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THAT THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS DO NOT CONFLICT WITH ANY KNOWN EXISTING OR OTHER PROPOSED IMPROVEMENTS. IF ANY CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITE WORK THAT WOULD BE AFFECTED. FAILURE TO NOTIFY OWNER OF AN IDENTIFIABLE CONFLICT PRIOR TO PROCEEDING WITH INSTALLATION RELIEVES OWNER OF ANY OBLIGATION TO PAY FOR A RELATED CHANGE ORDER.
- 29. ANY EXISTING UTILITY, WHICH IS TO BE EXTENDED, WHICH IS THE CONNECTION POINT FOR NEW UNDERGROUND UTILITIES, OR WHICH NEW FACILITIES CROSS, SHALL BE EXPOSED BY THE CONTRACTOR PRIOR TO PLACEMENT OF THE NEW UTILITIES. COST OF SUCH EXCAVATION AND SUBSEQUENT BACKFILL SHALL BE INCLUDED IN THE PRICES PAID FOR THE VARIOUS ITEMS OF WORK. THE ELEVATIONS AND LOCATIONS OF THE EXISTING FACILITIES WILL BE CHECKED BY THE PUBLIC WORKS INSPECTOR AND THE ENGINEER. IF IN THE OPINION OF THE INSPECTOR A CONFLICT EXISTS, THEN THE ENGINEER SHALL MAKE ANY NEEDED GRADE AND/ OR ALIGNMENT ADJUSTMENTS AND REVISE THE PLANS ACCORDINGLY. ALL GRAVITY FLOW PIPELINES TO BE LAID UPGRADE FROM THE LOWEST POINT STARTING AT THE END OF EXISTING IMPROVEMENTS. THE CONTRACTOR SHALL NOTIFY THE ENGINEER AT LEAST 24 HOURS PRIOR TO BACKFILLING OF ANY PIPE WHICH STUBS TO A FUTURE PHASE OF CONSTRUCTION FOR INVERT VERIFICATION. TOLERANCE SHALL BE IN ACCORDANCE WITH CITY STANDARD SPECIFICATIONS.

### GENERAL NOTES CONTINUATION:

- 1. ALL WORK TO BE PERFORMED PER CITY OF PERRIS, RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT (R.C.T.D.), EASTERN MUNICIPAL WATER DISTRICT (E.M.W.D), CALTRANS AND THE 2009 MANUAL ON UNIFORM CONTROL DEVICES (M.U.T.C.D.) STANDARDS WITH CALIFORNIA SUPPLEMENT.
- NOTIFY CITY ENGINEER, CITY OF PERRIS, AT (951) 943-6504, AT LEAST 24 HOURS PRIOR 2. TO START OF CONSTRUCTION.
- CONTRACTOR IS REQUIRED TO LOCATE AND ADJUST TO GRADE ALL EXISTING MANHOLES. METERS, AND VALVE COVERS FOR WATER, SEWER, TELEPHONE, ELECTRIC, CABLE TV AND OTHER FACILITIES AS REQUIRED (WHEATEAR CALLED-OUT OR NOT ON PLANS).
- 4. ALL STRIPING & LEGENDS SHALL BE REPLACED IN ACCORDANCE WITH THE STRIPING PLANS HEREIN. ALL STRIPING TO BE PAINT (TWO COATS) AND ALL MARKINGS (INCLUDING CROSSWALKS) TO BE THERMOPLASTIC ALL STRIPING AND PAVEMENT MARKINGS TO BE PER 2006 M.U.T.C.D. STANDARDS WITH CALIFORNIA SUPPLEMENT.
- 5. ALL EXISTING A.C. AND CONCRETE TO BE SAW-CUT WHERE WIDENING IS TO TAKE PLACE OR ADJACENT TO WHERE CONCRETE IS TO BE CONSTRUCTED (1' MINIMUM). 6. ANY STOCKPILE OR STORAGE YARD ON PRIVATE PROPERTY MUST HAVE CITY'S AND
- OWNER'S APPROVAL THE CITY INSPECTOR WILL MARK ALL CONCRETE REMOVALS PRIOR TO CONSTRUCTION ALL 7. CONCRETE WILL BE SAW-CUT WHERE REQUIRED PRIOR TO BEING REMOVED.
- CONTRACTOR SHALL VERIFY THE EXISTENCE OF EXISTING SURVEY MONUMENTS AND PROTECT THEM IN PLACE. ANY SURVEY MONUMENTS MISSING AND/OR DAMAGED DURING CONSTRUCTION WILL HAVE TO BE RESET PRIOR TO PROJECT COMPETITION BY A QUALIFIED REGISTERED SURVEYOR.
- 9. IT IS THE CONTRACTOR'S RESPONSIBILITY TO PROTECT THE NEW WORK, FROM VANDALISM UNTIL THE IMPROVEMENTS HAVE BEEN ACCEPTED BY THE CITY AND A NOTICE OF COMPLETION MUST BE FILED.
- 10. ALL ASPHALT REMOVALS TO BE MARKED BY THE CITY INSPECTOR PRIOR TO CONTRACTOR BEGINNING WORK ON THAT PARTICULAR STREET SEGMENT.
- CONTRACTOR SHALL CONTACT UNDERGROUND SERVICE ALERT OF SOUTHERN CALIFORNIA
- AND OTHER UTILITY COMPANIES AS NEEDED TO COORDINATE FOR PROTECTION AND/OR ADJUSTMENTS OF UTILITIES, AS REQUIRED.
- PRIOR TO BIDDING AND NOTIFY THE CITY OF DISCREPANCIES.
- 13. ALL DIMENSIONS ARE APPROXIMATE CONTRACTOR TO VERIFY IN FIELD. 14. CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL TRAFFIC CONTROL DEVICES AS NEEDED AND PROVIDE TWO-WAY ACCESS AT ALL TIMES THROUGH THE SITE. THE CONTRACTOR SHALL MAINTAIN THESE DEVICES AT ALL TIMES INCLUDING HOLIDAYS AND WEEKENDS. FLAGMAN SHALL BE UTILIZED AS REQUIRED TO PROVIDE TWO-WAY TRAFFIC DURING CONSTRUCTION.
- 15. CONTRACTOR SHALL PROVIDE TRAFFIC CONTROL IN COMPLIANCE WITH WATCH MANUAL, 2009 M.U.T.C.D., OR CURRENT EDITION, AND THE TRAFFIC PLANS PROVIDED HEREIN.
- 16. THE CONTRACTOR SHALL APPLY TO, AND BE ISSUED A NO FEE ENCROACHMENT PERMIT BY THE CITY OF PERRIS BEFORE BEGINNING ANY WORK WITH AN EXISTING CITY MAINTAINED PUBLIC STREET AND FOR UTILITY WORK WITHIN OFFERS OF DEDICATION FOR PUBLIC USE.
- 17. EXISTING PUBLIC STREETS, SHALL REMAIN OPEN TO THE PUBLIC DURING CONSTRUCTION AND SHALL BE MAINTAINED BY THE CONTRACTOR UNLESS OTHERWISE PROVIDED IN THE PLANS AND SPECIFICATIONS. PUBLIC INCONVENIENCE WILL BE MINIMIZED AT ALL TIMES AND SUCH STREETS SHALL BE LEFT FREE OF DIRT AND DEBRIS AT THE END OF EACH WORKING DAY UNLESS PERMISSION IS OTHERWISE GRANTED BY THE CITY ENGINEER.
- 18. THE CONTRACTOR IS RESPONSIBLE FOR CLEARING AND GRUBBING THE PROPOSED WORK AREA AND DISPOSAL OF EXCESS OR UNDESIRABLE MATERIAL CONTRACTOR SHALL RELOCATE OR CAUSE TO BE RELOCATED EXISTING CONFLICTING UTILITIES IF REQUIRED BY CONTRACT
- ANY PROPOSED DEVIATION FROM THESE PLANS BY THE CONTRACTOR MUST MET CITY'S 19. APPROVAL. THE CONTRACTOR IS RESPONSIBLE TO REIMBURSE THE CITY FOR ANY RELATED COST TO THE CITY ASSOCIATED WITH SUCH CHANGE. IN THIS EVENT, NO INCREASE IN CONTRACTOR'S COST WILL BE APPROVED.
- 20. CONTRACTOR IS REQUIRED TO INSTALL BLUE REFLECTIVE PAVEMENT AT ALL FIRE HYDRANT LOCATION IN THE WORK AREA.
- 21. THE CONTRACTOR IS REQUIRED TO REMOVE ALL CONFLICTING STRIPING AND LEGENDS BY WET SANDBLASTING.
- APPLY WEED KILL TO ALL EXISTING WEEDS BETWEEN 1-3 WEEKS PRIOR TO CONSTRUCTION 22. AND REMOVE WEEDS. WEEDS SHALL BE REMOVED FROM ALL EXISTING PAVEMENT, MEDIANS, CURB AND GUTTER, SIDEWALK (BETWEEN CURB AND SIDEWALK) AND WHEREVER IMPROVEMENTS ARE PROPOSED, AND UP TO 4.0° BEHIND E.P. OR CURB WHEN NO SIDEWALK EXISTS.
- 23. CONTRACTOR SHALL REPLACE ALL STRIPING, LEGENDS, AND SIGNS IF THEY ARE DAMAGED DURING CONSTRUCTION AT NO EXTRA COST TO THE CITY. EXISTING STRIPING WITHIN PROJECT VICINITY THAT BECOME DULL, SHALL BE REFRESHED AS DIRECTED BY THE CITY ENGINEER. CONFLICTING SIGNS SHALL BE REMOVED AS DIRECTED BY THE CITY ENGINEER OR HIS REPRESENTATIVE.
- EXISTING TO PROPOSED CONCRETE PAVEMENT JOINTS SHALL BE CONSTRUCTED PER CALTRANS REVISED STANDARD PLAN RSP P10. 1 INCH MINIMUM DIAMETER DOWEL BARS SHALL BE USED AND AS APPROVED BY THE CITY ENGINEER.
- 25. ALL GRADING AND CONSTRUCTION ACTIVITIES SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECTS SWPPP AND NOI. REFER TO NPDES NOTED ON EROSION CONTROL PLANS.
- 26. ALL STREET SECTION ARE MINIMUM REQUIREMENTS, ADDITIONAL SOILS TESTS SHALL BE TAKEN AFTER ROUGH GRADING TO DETERMINE THE RECOMMENDED STREET SECTIONS REQUIREMENTS. USE RIVERSIDE COUNTY STD 401 IF EXPANSIVE SOILS ARE ENCOUNTERED.
- 27. ON-SITE LIGHTING, LANDSCAPE, AND LAYOUT TO BE APPROVED BY THE CITY OF PERRIS PLANNING DEPARTMENT.
- 28. WALLS/FENCE REQUIRE A SEPARATE PERMIT.
- 29. HAULING ROUTE SHALL BE SUBMITTED FOR APPROVAL BY THE CITY ENGINEER PRIOR TO START OF THE IMPORTATION/EXPORTATION OF DIRT.

### CITY OF PERRIS WOMP INSPECTION NOTIFICATION REQUIREMENTS

- 1. GENERAL CONTRACTOR IS RESPONSIBLE TO CALL FOR WQMP (WATER QUALITY MANAGEMENT PLAN) INSPECTIONS. A MINIMUM OF TWO (2) WQMP INSPECTIONS ARE REQUIRED IN THE FOLLOWING ORDER:
  - A. AT THE TIME OF PRECISE GRADE AND CONSTRUCTION OF FLOW-BASED/VOLUME BASED BMP'S, AND/OR INSTALLATION OF STORM DRAIN AND WQMP EQUIPMENT, THE TRENCHES ARE STILL OPEN; AND
- B. AT FINAL INSPECTION, WHEN ALL PLANT MATERIALS, STRUCTURAL TREATMENT CONTROL BMP'S, STENCILING, EMPLOYEE SOURCE CONTROL HANDBOOKS, AND WOMP EQUIPMENT HAVE BEEN INSTALLED AND ARE FULLY OPERATIONAL.
- 2. A WRITTEN CLEARANCE LETTER SHALL BE SIGNED BY THE CITY'S ENGINEERING DEPARTMENT TO SIGNIFY APPROVAL OF WOMP SITE DESIGN, SOURCE CONTROL AND TREATMENT CONTROL BMP'S (BEST MANAGEMENT PRACTICES). THIS LETTER WILL NEED TO BE PRESENTED TO BUILDING AND SAFETY DEPARTMENT AS PART OF THE FINAL APPROVALS.



### BENCH MARK:

COUNTY OF RIVERSIDE BENCHMARK "M 21-1 RESET". 373 FEET EAST ALONG ETHANAC ROAD FROM THE INTERSECTION OF ETHANAC ROAD AND THE SOUTHBOUND LANES OF HIGHWAY 395. 150 FEET SOUTH OF ETHANAC ROAD. 50 FEET SOUTHEAST OF HE NORTHEAST CORNER OF A 6 FOOT CHAIN LINK RIGHT-OF-WAY FENCE. 1 FOOT NORTHEAST OF AN ANGLE-POINT IN THE RIGHT-OF-WAY FENCE. 2 FEET NORTH OF A MARKER POST. A BRASS DISK STAMPED "M-21-1 RESET" SET IN THE TOP OF A CONCRETE POST 3 INCHES ABOVE GROUND.

| MARK     | BY | DATE |   |
|----------|----|------|---|
| ENGINEER |    |      | • |

EL = 1421.891 NGVD 29 (5/85)

12. CONTRACTOR TO VISIT THE SITE AND FAMILIARIZE HIMSELF WITH THE WORK AND AREA

REVISIONS

WHEN

### UTILITY NOTES:

SHALL GOVERN.

- 1. THE CONTRACTOR SHALL CONSTRUCT GRAVITY SEWER LATERALS, CLEANOUTS, GRAVITY SEWER LINES, AND DOMESTIC WATER AND FIRE PROTECTION SYSTEM AS SHOWN ON THESE PLANS. THE CONTRACTOR SHALL FURNISH ALL NECESSARY MATERIALS. EQUIPMENT. MACHINERY TOOLS MEANS OF TRANSPORTATION AND LABOR NECESSARY TO COMPLETE THE WORK IN FULL AND COMPLETE ACCORDANCE WITH THE SHOWN, DESCRIBED AND REASONABLY INTENDED REQUIREMENTS OF THE CONTRACT DOCUMENTS AND JURISDICTIONAL AGENCY REQUIREMENTS. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT
- 2. ALL EXISTING UNDERGROUND UTILITY LOCATIONS SHOWN ARE APPROXIMATE THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS FOR UTILITY LOCATION AND COORDINATION IN ACCORDANCE WITH THE NOTES CONTAINED IN THE GENERAL CONSTRUCTION SECTION OF THIS SHEET.
- 3. THE CONTRACTOR SHALL RESTORE ALL DISTURBED VEGETATION IN KIND, UNLESS SHOWN OTHERWISE.
- 4. DEFLECTION OF PIPE JOINTS AND CURVATURE OF PIPE SHALL NOT EXCEED THE MANUFACTURER'S SPECIFICATIONS. SECURELY CLOSE ALL OPEN ENDS OF PIPE AND FITTINGS WITH A WATERTIGHT PLUG WHEN WORK IS NOT IN PROGRESS. THE INTERIOR OF ALL PIPES SHALL BE CLEAN AND JOINT SURFACES WIPED CLEAN AND DRY AFTER THE PIPE HAS BEEN LOWERED INTO THE TRENCH. VALVES SHALL BE PLUMB AND LOCATED ACCORDING TO THE PLANS.
- 5. ALL PHASES OF INSTALLATION, INCLUDING UNLOADING, TRENCHING, LAYING AND BACK FILLING, SHALL BE DONE IN A FIRST CLASS WORKMANLIKE MANNER. ALL PIPE AND FITTINGS SHALL BE CAREFULLY STORED FOLLOWING MANUFACTURER'S RECOMMENDATIONS. ANY PIPE OR FITTING WHICH IS DAMAGED OR WHICH HAS FLAWS OR IMPERFECTIONS WHICH. IN THE OPINION OF THE ENGINEER OR OWNER, RENDERS IT UNFIT FOR USE, SHALL NOT BE USED. ANY PIPE NOT SATISFACTORY FOR USE SHALL BE CLEARLY MARKED AND IMMEDIATELY REMOVED FROM THE JOB SITE, AND SHALL BE REPLACED AT THE CONTRACTOR'S EXPENSE.
- 6. WATER FOR FIRE FIGHTING SHALL BE AVAILABLE FOR USE PRIOR TO COMBUSTIBLES BEING BROUGHT ON SITE.
- 7. ALL UTILITY AND STORM DRAIN TRENCHES LOCATED UNDER AREAS TO RECEIVE PAVING SHALL BE COMPLETELY BACK FILLED IN ACCORDANCE WITH THE GOVERNING JURISDICTIONAL AGENCY'S SPECIFICATIONS. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT SHALL GOVERN
- 8. CONTRACTOR SHALL PERFORM, AT HIS OWN EXPENSE, ANY AND ALL TESTS REQUIRED BY THE SPECIFICATIONS AND/OR ANY AGENCY HAVING JURISDICTION. THESE TESTS MAY INCLUDE, BUT MAY NOT BE LIMITED TO, INFILTRATION AND EXFILTRATION, TELEVISION INSPECTION AND A MANDREL TEST ON GRAVITY SEWER. A COPY OF THE TEST RESULTS SHALL BE PROVIDED TO THE UTILITY PROVIDER, OWNER AND JURISDICTIONAL AGENCY AS REQUIRED.
- 9. THE EXISTING UTILITIES SHOWN ON THE PLAN ARE BASED ON AVAILABLE RECORDS. THE CONTRACTOR MUST FIELD DETERMINE THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION. REPORT DISCREPANCIES AND POTENTIAL CONFLICTS WITH PROPOSED UTILITIES TO ENGINEER PRIOR TO INSTALLATION OF ANY PIPING.
- 10. DIMENSIONS PROVIDED ARE TO OUTSIDE PIPE DIAMETERS.
- 11. ALL WATER LINES ARE TO BE BURIED A MINIMUM OF 40" DEEP, MEASURED TO TOP OF PIPE.
- 12. WATER PIPE TRENCHING PER EMWD STANDARD DETAIL B-408.
- 13. SEWER PIPE TRENCHING PER EMWD STANDARD DETAIL SB-157 AND SB-158. 14. CONFIRM UTILITY TIE-IN POINTS IN FIELD AND WITH MEP PLANS PRIOR TO CONSTRUCTION.

### **DEMOLITION NOTES:**

- 1. REFER TO THE TOPOGRAPHIC SURVEY FOR ADDITIONAL DETAILS OF EXISTING STRUCTURES, ETC., LOCATED WITHIN THE PROJECT SITE, UNLESS OTHERWISE NOTED, ALL EXISTING BUILDINGS, STRUCTURES, SLABS, CONCRETE, ASPHALT, DEBRIS PILES, SIGNS, AND ALL APPURTENANCES ARE TO BE REMOVED FROM THE SITE BY THE CONTRACTOR AND PROPERLY DISPOSED OF IN A LEGAL MANNER AS PART OF THIS CONTRACT. SOME ITEMS TO BE REMOVED MAY NOT BE DEPICTED ON THE TOPOGRAPHIC SURVEY. REFER TO THE DEMOLITION PLAN FOR THE LIMITS OF ASPHALT REMOVAL (THE EXISTING PARKING LOT IS TO REMAIN). IT IS THE CONTRACTOR'S RESPONSIBILITY TO VISIT THE SITE AND DETERMINE THE FULL EXTENT OF ITEMS TO BE REMOVED. IF ANY ITEMS ARE IN QUESTION, THE CONTRACTOR SHALL CONTACT THE OWNER PRIOR TO REMOVAL OF SAID ITEMS.
- 2. THE CONTRACTOR SHALL CLEAR THE PROJECT SITE AREA WITHIN THE CONFINES OF THE DEMOLITION LIMIT LINE. THE CONTRACTOR SHALL CAP IN PLACE ALL EXISTING UTILITIES AT THE DEMOLITION LIMIT LINE, UNLESS NOTED ON THE PLAN. THE CONTRACTOR SHALL DEMOLISH AND LEGALLY REMOVE/DISPOSE OF ITEMS FROM THE SITE, INCLUDING ALL EXISTING IILITY STRUCTURES, PLANTERS, TREES, AND ALL OTHER SITE FEATURES, UNLESS OTHERWISE NOTED ON THE PLAN.
- 3. DEMOLITION OF PAVEMENT INCLUDES PAVEMENT THICKNESS, REBAR IF ENCOUNTERED, AND BASE COURSE.
- 4. REMOVAL OF LANDSCAPING SHALL INCLUDE ROOTS AND ORGANIC MATERIAL.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ANY AND ALL PERMITS AND SHALL PAY ALL FEES NECESSARY FOR ENCROACHMENT, GRADING, DEMOLITION, AND DISPOSAL OF SAID MATERIALS AS REQUIRED BY PRIVATE, LOCAL AND STATE JURISDICTIONS.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR A SITE INSPECTION TO FULLY ACKNOWLEDGE THE EXTENT OF DEMOLITION WORK.
- 7. THE CONTRACTOR SHALL VERIFY AND LOCATE ALL EXISTING ABOVE AND UNDERGROUND UTILITIES LOCATIONS SHOWN ON THE PLANS ARE APPROXIMATE AND ARE SHOWN FOR GENERAL INFORMATION ONLY. CONTRACTOR SHALL ADJUST TO GRADE ANY EXISTING UTILITIES TO REMAIN
- 8. DAMAGE TO ANY EXISTING UTILITIES AND SERVICES TO REMAIN SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. CONTRACTOR SHALL REPAIR AND/OR REPLACE IN KIND.
- 9. EROSION CONTROL MEASURES SHALL BE IMPLEMENTED TO PREVENT DEBRIS AND UNSUITABLE MATERIALS FROM ENTERING SANITARY SEWERS AND STREETS.
- 10. DUST CONTROL MEASURES SHALL BE IMPLEMENTED DURING DEMOLITION.
- 11. DEMOLITION IS LIMITED TO WITHIN THE DEMOLITION LIMIT LINE UNLESS OTHERWISE NOTED. 12. CONTRACTOR SHALL REMOVE DEMOLISHED MATERIALS FROM THE SITE AS WORK PROGRESSES.
- 13. THE DRAWINGS MAY NOT INDICATE IN DETAIL ALL DEMOLITION WORK TO BE PERFORMED. THE CONTRACTOR SHALL EXAMINE EXISTING CONDITIONS TO DETERMINE THE FULL EXTENT OF DEMOLITION.
- 14. ALL DEMOLITION SHALL COMPLY WITH CHAPTER 24 AND ARTICLE 87 OF THE CALIFORNIA FIRE CODE.
- 15. CONTRACTOR TO USE CARE IN HANDLING DEBRIS FROM SITE TO ENSURE THE SAFETY OF THE PUBLIC. HAUL ROUTE TO BE CLOSELY MONITORED FOR DEBRIS OR MATERIALS TRACKED ONTO ADJOINING ROADWAYS, SIDEWALKS, ETC. ROADWAYS AND WALKWAYS TO BE CLEARED DAILY OR AS NECESSARY TO MAINTAIN PUBLIC SAFETY.
- 16. SEE EROSION CONTROL PLAN FOR EROSION PREVENTION.
- 17. CONTRACTOR TO INSTALL CHAIN LINK FENCE WITH MESH SCREEN TO PROTECT PUBLIC FROM ENTERING CONSTRUCTION AREA.
- 18. CONTINUOUS ACCESS SHALL BE MAINTAINED FOR SURROUNDING PROPERTIES AT ALL TIMES DURING DEMOLITION OF EXISTING FACILITIES. 19. MONITORING WELLS TO BE REMOVED PRIOR TO BEGINNING OF CONSTRUCTION.
- 20. FULL DEMOLITION LIMITS DUE TO CONSTRUCTION OF UTILITIES IS NOT SHOWN. CONTRACTOR TO REFER TO SHEET C3 AND UTILITY PLANS TO DETERMINE LIMITS. CONTRACTOR TO USE CAUTION AROUND EXISTING UTILITIES.
- 21. A CITY-APPROVED WASTE HAULER SHALL BE USED FOR ALL CONSTRUCTION/OTHER WASTE DISPOSAL.

APPROVED BY:

CONTRACT CITY ENGINEER

CITY OF PERRIS

DATE

22. CONTRACTOR SHALL ADJUST TO GRADE ANY EXISTING UTILITIES TO REMAIN.

APPR DATE

CITY

### PAVING, GRADING AND DRAINAGE NOTES:

- ALL PAVING, CONSTRUCTION, MATERIALS, AND WORKMANSHIP WITHIN JURISDICTION'S RIGHT-OF-WAY SHALL BE IN ACCORDANCE WITH LOCAL OR COUNTY SPECIFICATIONS AND STANDARDS (LATEST EDITION) OR SPPWS SPECIFICATIONS AND STANDARDS (LATEST EDITION) IF NOT COVERED BY LOCAL OR COUNTY REGULATIONS.
- ALL UNPAVED AREAS IN EXISTING RIGHTS-OF-WAY DISTURBED BY CONSTRUCTION SHALL BE REGRADED AND REPAIRED TO EXISTING CONDITION OR BETTER.
- 3. TRAFFIC CONTROL ON ALL CALTRANS, LOCAL AND COUNTY RIGHTS-OF-WAY SHALL MEET THE REQUIREMENTS OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (U.S. DOT/FHA) AND THE REQUIREMENTS OF THE STATE AND ANY LOCAL AGENCY HAVING JURISDICTION. IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT IN AGREEMENT, THE MOST STRINGENT SHALL GOVERN.
- 4. THE CONTRACTOR SHALL GRADE THE SITE TO THE ELEVATIONS INDICATED AND SHALL REGRADE WASHOUTS WHERE THEY OCCUR AFTER EVERY RAINFALL UNTIL AN ADEQUATE STABILIZATION OCCURS.
- 5. ALL AREAS INDICATED AS PAVEMENT SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE TYPICAL PAVEMENT SECTIONS AS INDICATED ON THE DRAWINGS.
- 6. WHERE EXISTING PAVEMENT IS INDICATED TO BE REMOVED AND REPLACED, THE CONTRACTOR SHALL SAW CUT A MINIMUM 2" DEEP FOR A SMOOTH AND STRAIGHT JOINT AND REPLACE THE PAVEMENT WITH THE SAME TYPE AND DEPTH OF MATERIAL AS EXISTING OR AS INDICATED.
- WHERE NEW PAVEMENT MEETS THE EXISTING PAVEMENT, THE CONTRACTOR SHALL SAW CUT THE EXISTING PAVEMENT A MINIMUM 2" DEEP FOR A SMOOTH AND STRAIGHT JOINT AND MATCH THE EXISTING PAVEMENT ELEVATION WITH THE PROPOSED PAVEMENT UNLESS OTHERWISE INDICATED.
- 8. IF DEWATERING IS REQUIRED, THE CONTRACTOR SHALL OBTAIN ANY APPLICABLE REQUIRED PERMITS. THE CONTRACTOR IS TO COORDINATE WITH THE OWNER AND THE DESIGN ENGINEER PRIOR TO ANY EXCAVATION.
- 9. STRIP TOPSOIL AND ORGANIC MATTER FROM ALL AREAS OF THE SITE AS REQUIRED. IN SOME CASES TOPSOIL MAY BE STOCKPILED ON SITE FOR PLACEMENT WITHIN LANDSCAPED AREAS BUT ONLY AS DIRECTED BY THE OWNER.
- 10. FIELD DENSITY TESTS SHALL BE TAKEN AT INTERVALS IN ACCORDANCE WITH THE LOCAL JURISDICTIONAL AGENCY. 11. ALL SLOPES AND AREAS DISTURBED BY CONSTRUCTION SHALL BE GRADED AS PER
- PLANS. THE AREAS SHALL THEN BE STABILIZED BY MEANS AND METHODS APPROVED BY THE LOCAL AGENCY. ANY AREAS DISTURBED FOR ANY REASON PRIOR TO FINAL ACCEPTANCE OF THE JOB SHALL BE CORRECTED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER. ALL EARTHEN AREAS WILL BE COVERED WITH ROCK OR MULCHED AS SHOWN ON THE LANDSCAPING PLAN.
- 12. ALL CUT OR FILL SLOPES SHALL BE 4 (HORIZONTAL) :1 (VERTICAL) OR FLATTER UNLESS OTHERWISE SHOWN.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CONTROL OF DUST AND DIRT RISING AND SCATTERING IN THE AIR DURING CONSTRUCTION AND SHALL PROVIDE WATER SPRINKLING OR OTHER SUITABLE METHODS OF CONTROL. THE CONTRACTOR SHALL COMPLY WITH ALL GOVERNING REGULATIONS PERTAINING TO ENVIRONMENTAL PROTECTION.
- 14. THE CONTRACTOR SHALL TAKE ALL REQUIRED MEASURES TO CONTROL TURBIDITY, INCLUDING BUT NOT LIMITED TO THE INSTALLATION OF TURBIDITY BARRIERS AT ALL LOCATIONS WHERE THE POSSIBILITY OF TRANSFERRING SUSPENDED SOLIDS INTO THE RECEIVING WATER BODY EXISTS DUE TO THE PROPOSED WORK. TURBIDITY BARRIERS MUST BE MAINTAINED IN EFFECTIVE CONDITION AT ALL LOCATIONS UNTIL CONSTRUCTION IS COMPLETED AND DISTURBED SOIL AREAS ARE STABILIZED. THEREAFTER, THE CONTRACTOR MUST REMOVE THE BARRIERS. AT NO TIME SHALL THERE BE ANY OFF-SITE DISCHARGE WHICH VIOLATES THE WATER QUALITY STANDARDS OF THE GOVERNING CODE.
- 15. EXPOSED SLOPES SHOULD BE STABILIZED WITHIN 48 HOURS OF COMPLETING FINAL GRADING. AND AT ANY OTHER TIME AS NECESSARY, TO PREVENT EROSION, SEDIMENTATION OR TURBID DISCHARGES.
- 16. THE CONTRACTOR MUST REVIEW AND MAINTAIN A COPY OF THE REQUIRED PERMITS COMPLETE WITH ALL CONDITIONS, ATTACHMENTS, EXHIBITS, AND PERMIT MODIFICATIONS IN GOOD CONDITION AT THE CONSTRUCTION SITE. THE COMPLETE PERMIT MUST BE AVAILABLE FOR REVIEW UPON REQUEST BY GOVERNING JURISDICTIONS.
- 17. THE CONTRACTOR SHALL ENSURE THAT ISLAND PLANTING AREAS AND OTHER PLANTING AREAS ARE NOT COMPACTED AND DO NOT CONTAIN ROAD BASE MATERIALS. THE CONTRACTOR SHALL ALSO EXCAVATE AND REMOVE ALL UNDESIRABLE MATERIAL FROM ALL AREAS ON THE SITE TO BE PLANTED AND PROPERLY DISPOSED OF IN A LEGAL MANNER.
- 18. CONTRACTOR TO VERIFY ALL EXISTING TOPOGRAPHY AND STRUCTURES ON THE SITE AND IMMEDIATELY NOTIFY THE ENGINEER OF ANY DISCREPANCIES PRIOR TO STARTING WORK. 19. ALL PAVEMENT SPOT GRADE ELEVATIONS WITHIN OR ALONG THE CURB REFER TO THE EDGE OF PAVEMENT ELEVATIONS UNLESS OTHERWISE NOTED.
- 20. ALL ELEVATIONS SHOWN DEPICT FINISHED GRADE UNLESS OTHERWISE NOTED. GENERAL CONTRACTOR TO COORDINATE WITH EXCAVATION. LANDSCAPING, AND PAVING SUBCONTRACTORS REGARDING TOPSOIL THICKNESS FOR LANDSCAPING AREAS AND PAVEMENT SECTION THICKNESS FOR PAVED AREAS TO PROPERLY ENSURE ADEQUATE CUT
- TO ESTABLISH SUBGRADE ELEVATIONS. 21. NO EARTHEN SLOPE SHALL BE GREATER THAN 4:1 UNLESS OTHERWISE NOTED.
- 22. MAXIMUM SLOPE IN ACCESSIBLE PARKING SPACES AND LOADING ZONES SHALL NOTE EXCEED 2.0% IN ALL DIRECTIONS.
- 23. MAXIMUM RUNNING SLOPE SHALL NOTE EXCEED 5% AND CROSS SLOPE SHALL NOTE EXCEED 2.0% ON ALL SIDEWALKS AND ACCESSIBLE ROUTES UNLESS OTHERWISE NOTED.
- 24. WHEN NATURAL FLOW OF DRAINAGE IS AWAY FROM CURB CONTRACTOR TO INSTALL REVERSE GUTTER PITCH.

SEAL COAT AREA.

SHEA-MICHAEL ANTI

RCE NO. 78274

- 25. REFERENCE ARCHITECTURAL PLANS FOR ROOF DRAIN AND LOCATIONS. 26. CONTRACTOR TO USE APPROPRIATE PAINT COLORS PER DETAILS SHEET. ADA BARRIER FREE AREAS TO COMPLY WITH ALL LOCAL AND FEDERAL ADA STANDARDS.
- 27. ACCESSIBLE ROUTE TO ACCESSIBLE SPACES, BUILDING ENTRANCES, AND PUBLIC STREETS SHALL NOT EXCEED 5% RUNNING SLOPE AND 2% CROSS SLOPE.
- 28. THE ACCESSIBLE ROUTE IN FRONT OF PARKING SHALL BE A MINIMUM OF 48" WIDE AND NOT REDUCED BY VEHICLE OVERHANGS, CURBING, SIGN POSTS, OR OTHER OBSTRUCTIONS. 29. ANY WALK THAT CROSSES OR ADJOINS A VEHICULAR WAY NOT SEPARATED BY CURBS,
- RAILINGS, OR OTHER ELEMENTS SHALL BE DEFINED BY A CONTINUOUS 36" WIDE DETECTABLE WARNING.
- 30. SPECIAL RAMP RULES APPLY FOR ANY RISE GREATER THAN 6" INCLUDING BUT NOT LIMITED TO RESTRICTION ON SLOPE, TOTAL RISE BETWEEN LANDINGS, AND USE OF HANDRAILS.
- 31. TRANSITION CHANGE IN ELEVATION IS NOT TO EXCEED 1/4" WITHIN AN ACCESSIBLE
- 32. JOINT WIDTHS ARE NOT TO EXCEED 1/2" OF WIDTH. 33. CURB RAMPS MUST HAVE A DIFFERENT FINISH FROM THE ADJACENT PAVEMENT.
- 34. 2% SLOPE IN ALL DIRECTIONS WITHIN ADA PARKING STALLS. AFTER PROPOSED GRADE BREAK, ALLOWABLE SLOPE TO MATCH EXISTING IS 5.0%.

PREPARED BY:

11h

35. ALL AREAS WHERE STRIPING IS TO BE ERADICATED. CONTRACTOR IS TO ERADICATE AND

### PRECISE GRADING NOTES (CITY OF PERRIS):

- 1. ALL GRADING SHALL CONFORM TO THE UNIFORM CODE, APPENDIX CHAPTER 33, AS AMENDED BY ORDINANCE NO. 457.
- 2. ALL PROPERTY CORNERS SHALL BE CLEARLY DELINEATED IN THE FIELD PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION/GRADING. 3. DURING ROUGH GRADING OPERATIONS AND PRIOR TO CONSTRUCTION OF PERMANENT
- DRAINAGE STRUCTURES, TEMPORARY DRAINAGE CONTROL SHOULD BE PROVIDED TO PREVENT PONDING WATER AND DAMAGE TO ADJACENT STRUCTURES.
- 4. DUST SHALL BE CONTROLLED BY WATERING OR OTHER APPROVED METHODS.
- 5. NO FILL SHALL BE PLACED ON EXISTING GROUND UNTIL THE GROUND HAS BEEN CLEARED OF WEEDS, DEBRIS, TOPSOIL, AND OTHER DELETERIOUS MATERIAL. 6. MAXIMUM CUT AND FILL SLOPE = 2:1, UNLESS OTHERWISE SHOWN ON PLANS.
- 7. STABILITY CALCULATIONS WITH A FACTOR OF SAFETY OF AT LEAST ONE AND FIVE TENTHS (1.5) SHALL BE SUBMITTED BY A SOILS ENGINEER TO THE BUILDING AND SAFETY DEPARTMENT FOR CUT AND FILL SLOPES OVER 30' IN VERTICAL HEIGHT.
- 8. PROVIDE 5' BY 1' HIGH BERM OR EQUIVALENT ALONG THE TOP OF ALL FILL SLOPES OVER 5' HIGH. 9. PROVIDE A BROW DITCH, DESIGNED TO HANDLE 100 YR. Q STORM FLOWS, ALONG THE TOP
- OF ALL FILL SLOPES OVER 5' HIGH. 10. MINIMUM BUILDING PAD AND DRAINAGE SWALE SLOPE SHALL BE 1% IF CUT OF FILL IS LESS THAN 10'. 2% IF CUT OR FILL IS GREATER THAN 10'. DRAINAGE SWALES SHALL BE A MINIMUM OF 0.2' DEEP AND BE CONSTRUCTED A MINIMUM OF 2' FROM THE TOP OF CUT OR FILL SLOPES.
- 11. NO OBSTRUCTION OF FLOOD PLAINS OR NATURAL WATER COURSES SHALL BE PERMITTED. 12. ALL EXISTING DRAINAGE COURSES ON THE PROJECT SITE MUST CONTINUE TO FUNCTION. ESPECIALLY DURING STORM CONDITIONS. PROTECTIVE MEASURES AND TEMPORARY DRAINAGE PROVISIONS MUST BE USED TO PROTECT ADJOINING PROPERTIES DURING GRADING
- OPERATIONS. 13. FINISHED GRADE SHALL BE SLOPED AWAY FROM ALL EXTERIOR WALLS AT NOT LESS THAN 3" PER FOOT FOR A MINIMUM OF 3'.
- 14. CUT AND FILL SLOPES EQUAL TO OR GREATER THAN 3' IN VERTICAL HEIGHT SHALL BE PLANTED WITH GRASS OR GROUND COVER TO PROTECT THE SLOPE FROM EROSION AND INSTABILITY IN ACCORDANCE WITH ORDINANCE NO. 457 PRIOR TO FINAL GRADING INSPECTION.
- 15. EROSION CONTROL: ALL SLOPES REQUIRED TO BE PLANTED SHALL BE PROVIDED WITH ROSEA ICE PLANT (OR EQUAL) GROUND COVER AT 12" ON CENTER. SLOPES EXCEEDING 15' IN VERTICAL HEIGHT SHALL BE PLANTED WITH APPROVED TREES SPACED NOT TO EXCEED 20' ON CENTER OR SHRUBS NOT TO EXCEED 10', OR A COMBINATION OF SHRUBS AND TREES NOT TO EXCEED 15' IN ADDITION TO A GRASS MIX OR GROUND COVER. SLOPES EXCEEDING 4' IN VERTICAL HEIGHT SHALL BE PROVIDED WITH AN IN-GROUND IRRIGATION SYSTEM. SLOPES EQUAL TO OR LESS THAN 4' MAY BE IRRIGATED BY HOSE BIB LOCATED AT THE TOP OR TOE OF THE SLOPE, SPACED TO MAKE USE OF A HOUSE NO LONGER THAN 50' IN HEIGHT. THE IRRIGATION SYSTEM SHALL BE PROVIDED WITH AN APPROPRIATE BACKFLOW DEVICE PER U.P.C., CHAPTER 10.
- 16. ALL GRADING SHALL BE DONE IN CONFORMANCE WITH RECOMMENDATIONS OF THE PRELIMINARY SOILS INVESTIGATION BY SALEM ENGINEERING GROUP, INC. TWO SETS OF THE FINAL COMPACTION REPORT SHALL BE SUBMITTED TO THE BUILDING AND SAFETY DEPARTMENT WHICH SHALL INCLUDE FOUNDATION DESIGN RECOMMENDATIONS AND CERTIFICATION THAT GRADING HAS BEEN DONE IN CONFORMANCE WITH THE RECOMMENDATIONS OF THE SITE INVESTIGATION REPORT.
- 17. IF STEEP SLOPING TERRAIN OCCURS UPON WHICH FILL IS TO BE PLACED, IT MUST BE CLEARED, KEYED AND BENCHED INTO FIRM NATURAL SOIL FOR FULL SUPPORT. PREPARATION SHALL BE APPROVED BY A SUITABLE QUALIFIED AND REGISTERED PROFESSIONAL PRIOR TO PLACEMENT OF FILL MATERIAL.
- 18. ALL GRADING SHALL BE DONE UNDER THE SUPERVISION OF A COMPETENT SOILS ENGINEER WHO SHALL CERTIFY THAT ALL FILL HAS BEEN PROPERLY PLACED AND WHO SHALL SUBMIT A FINAL COMPACTION REPORT FOR ALL FILLS OVER 1' DEEP.
- 19. FINAL COMPACTION REPORT WILL BE REQUIRED FOR ALL FILLS GREATER THAN 1'.
- 20. A SUITABLY QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT TO THE BUILDING AND SAFETY DEPARTMENT WRITTEN CERTIFICATION OF COMPLETION OF ROUGH GRADING IN ACCORDANCE WITH THE APPROVED GRADING PLAN PRIOR TO REQUESTING INSPECTION AND ISSUANCE OF THE BUILDING PERMIT. CERTIFICATION SHALL INCLUDE LINE, GRADE, ELEVATION AND LOCATION OF CUT/FILL SLOPES.
- 21. A SUITABLE QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT CERTIFICATION OF BUILDING PAD ELEVATION, WHERE SPECIFIC ELEVATIONS ARE REQUIRED. THE ELEVATION (WITH RESPECT TO MEAN SEA LEVEL) SHALL BE GIVEN. IF AN ELEVATION WITH RESPECT TO ADJACENT GROUND SURFACE IS REQUIRED, THE ACTUAL DISTANCE ABOVE THE ADJACENT SHALL BE GIVEN.
- 22. A SUITABLY QUALIFIED AND REGISTERED PROFESSIONAL SHALL SUBMIT TO THE BUILDING AND SAFETY DEPARTMENT WRITTEN CERTIFICATION OF COMPLETION OF FINAL GRADING IN ACCORDANCE WITH THE APPROVED PLANS FOR ALL GRADING AS "ENGINEERED GRADING".
- 23. THE CONTRACTOR SHALL NOTIFY UNDERGROUND SERVICE ALERT TWO DAYS BEFORE YOU DIG AT 1-800-227-2600. A GRADING PERMIT MUST BE OBTAINED FROM THE DEPARTMENT OF BUILDING AND SAFETY, CITY OF PERRIS, PRIOR TO GRADING.
- 24. THE CONTRACTOR SHALL NOTIFY THE BUILDING AND SAFETY DEPARTMENT. 101 NORTH "D" STREET, PERRIS, CA 92571, TELEPHONE (951) 943-5003, AT LEAST 24 HOURS IN ADVANCE REQUESTING LOT GRADE AND DRAINAGE INSPECTION. THE INSPECTION MUST BE APPROVED PRIOR TO BUILDING PERMIT FINAL INSPECTION.
- 25. THE EARTHWORK QUANTITIES SHOWN ARE SUBJECT TO FIELD CONDITIONS. THE GRADING CONTRACTOR SHALL SATISFY HIMSELF AS TO THE QUANTITIES AND ADDITIONAL WORK SHOWN ON THIS PLAN AS PART OF THIS BID.
- 26. CONSTRUCTION ACTIVITIES AND EQUIPMENT MAINTENANCE IS LIMITED TO THE HOURS BETWEEN 7:00 A.M. AND 7:00 P.M. PER ZONING ORDINANCE, NOISE CONTROL, SECTION 7.34.060. IT IS UNLAWFUL FOR ANY PERSONS BETWEEN THE HOURS OF 7:00 P.M. OF ANY DAY AND 7:00 A.M. OF THE FOLLOWING DAY, OR ON A LEGAL HOLIDAY, OR ON SUNDAYS TO ERECT, CONSTRUCT. DEMOLISH. EXCAVATE, ALTER OR REPAIR ANY BUILDING OR STRUCTURE IN A MANNER AS TO CREATE DISTURBING EXCESSIVE OR OFFENSIVE NOISE.
- 27. STATIONARY CONSTRUCTION EQUIPMENT THAT GENERATES NOISE IN EXCESS OF 65 DBA AT THE PROJECT BOUNDARIES MUST BE SHIELDED AND LOCATED AT LEAST 100 FEET FROM OCCUPIED RESIDENCES. THE EQUIPMENT AREA WITH APPROPRIATE ACOUSTIC SHIELDING SHALL BE DESIGNATED ON BUILDING AND GRADING PLANS. EQUIPMENT AND SHIELDING SHALL REMAIN IN THE DESIGNATED LOCATION THROUGHOUT CONSTRUCTION ACTIVITIES.
- 28. CONSTRUCTION ROUTES ARE LIMITED TO CITY OF PERRIS DESIGNATED TRUCK ROUTES.
- 29. WATER TRUCKS OR SPRINKLER SYSTEMS SHALL BE USED DURING CLEANING, GRADING, EARTH MOVING. EXCAVATION. TRANSPORTATION OF CUT OR FILL MATERIALS AND CONSTRUCTION PHASES TO PREVENT DUST FROM LEAVING THE SITE AND TO CREATE A CRUST AFTER EACH DAY'S ACTIVITIES CEASE. AT A MINIMUM, THIS WOULD INCLUDE WETTING DOWN SUCH AREAS IN THE LATER MORNING AND AFTER WORK IS COMPLETED FOR THE DAY AND WHENEVER WIND EXCEEDS 15 MILES PER HOUR.
- 30. A PERSON OR PERSONS SHALL BE DESIGNATED TO MONITOR THE DUST CONTROL PROGRAM AND TO ORDER INCREASED WATERING AS NECESSARY TO PREVENT TRANSPORT OF DUST OFF-SITE. THE NAME AND TELEPHONE NUMBER OF SUCH PERSON SHALL BE PROVIDED TO THE CITY.
- 31. PROJECT APPLICANTS SHALL PROVIDE CONSTRUCTION SITE ELECTRICAL HOOK-UPS FOR ELECTRIC HAND TOOLS SUCH AS SAWS, DRILLS, AND COMPRESSORS, TO ELIMINATE THE NEED FOR DIESEL-POWERED ELECTRIC GENERATORS OR PROVIDE EVIDENCE THAT ELECTRICAL HOOK-UPS AT CONSTRUCTION SITES ARE NOT PRACTICAL OR PROHIBITIVELY EXPENSIVE.

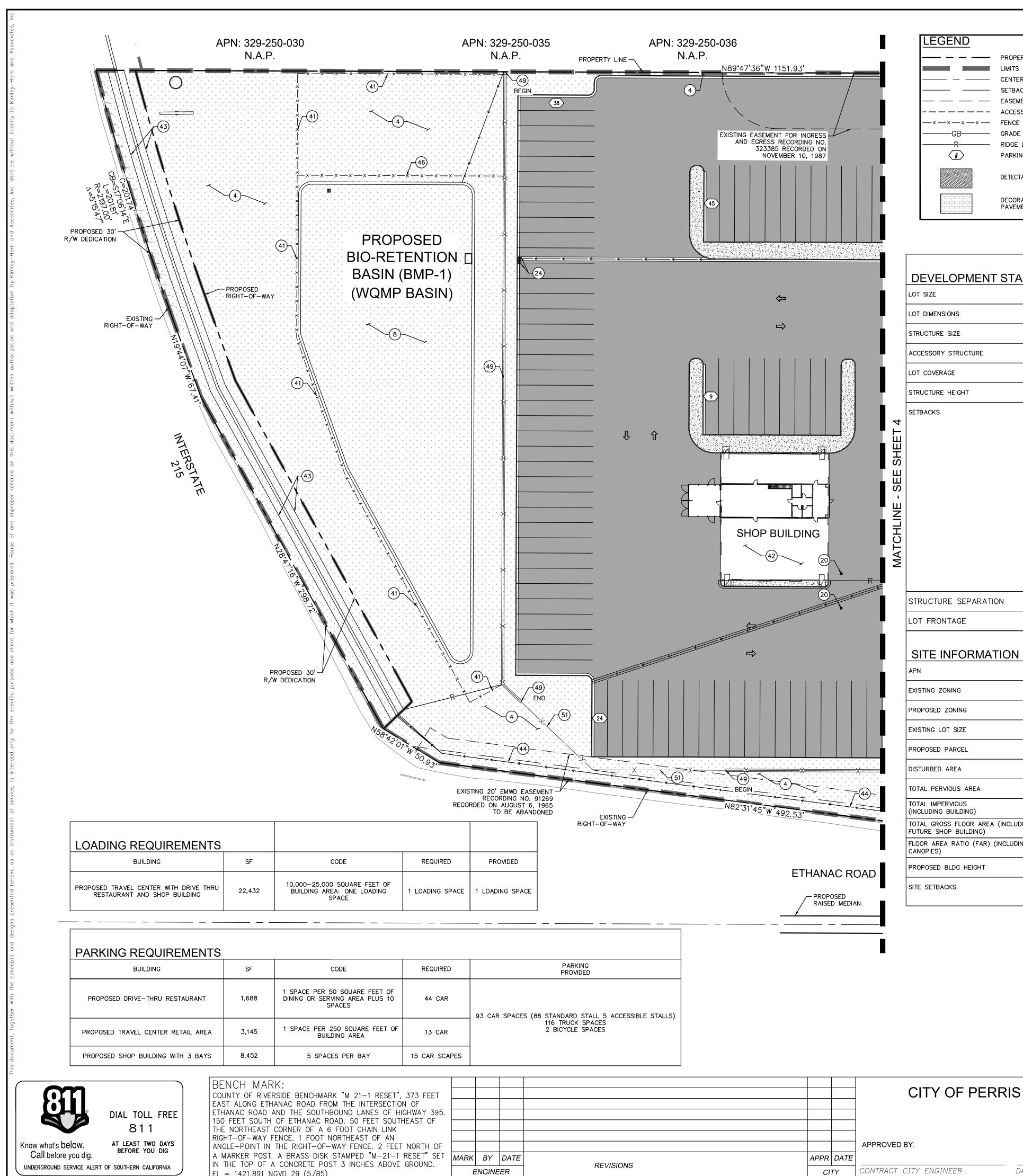
| im | ley» | Horn |
|----|------|------|
|    |      |      |

765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030

6/8/2022

Willy SF

SHEA-MICHAEL ANTI R.C.E 78274 DATE


GENERAL NOTES PRELIMINARY PRECISE GRADING PLAN PILOT PERRIS ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010

| SHEET NO |  |
|----------|--|
|----------|--|

0

OF 16 SHTS

FILE NO.:



| GEND         |                                          |                                       |
|--------------|------------------------------------------|---------------------------------------|
|              | PROPERTY LINE CIVIL<br>LIMITS OF WORK    | STANDARD DUTY<br>CONCRETE<br>PAVEMENT |
|              | CENTER LINE<br>SETBACKS<br>EASEMENT LINE | HEAVY DUTY<br>CONCRETE<br>PAVEMENT    |
|              | ACCESSIBLE ROUTE<br>FENCE                | HEAVY DUTY<br>ASPHALT<br>PAVEMENT     |
| GB<br>R      | GRADE BREAK<br>RIDGE LINE                | STANDARD DUTY<br>ASPHALT<br>PAVEMENT  |
| < <u>#</u> > | PARKING COUNT<br>DETECTABLE WARNINGS     | LANDSCAPE/<br>PLANTER AREA            |
|              | DECORATIVE<br>PAVEMENT                   |                                       |

MINIMUM LOT SIZE OF ONE ACRE

### DEVELOPMENT STANDARDS

| LOT DIMENSIONS                                                                                                                                                                                                                   | MINIMUM LOT WIDTH 100 FEET<br>MINIMUM LOT DEPTH 150 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRUCTURE SIZE                                                                                                                                                                                                                   | NO MINIMUM SIZE; HOWEVER FLOOR AREA<br>RATION CANNOT EXCEED 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ACCESSORY STRUCTURE                                                                                                                                                                                                              | NO MAXIMUM SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LOT COVERAGE                                                                                                                                                                                                                     | MAXIMUM LOT COVERAGE OF 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STRUCTURE HEIGHT                                                                                                                                                                                                                 | MAXIMUM HEIGHT OF 45 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SETBACKS                                                                                                                                                                                                                         | <ul> <li>FOR BUILDING THAT ARE 25 FEET FOR LESS<br/>IN HEIGHT</li> <li>MIN. FRONT YARD</li> <li>LOCAL AND COLLECTOR STREET 5<br/>FEET</li> <li>SECONDARY AND PRIMARY ARTERIALS<br/>10 FEET</li> <li>EXPRESSWAYS AND FREEWAYS 15<br/>FEET</li> <li>FOR BUILDING GREATER THAN 25 FEE<br/>IN HEIGHT SHALL BE SETBACK AN<br/>ADDITIONAL 5 FEET FOR EACH TEN<br/>FEET OF ADDITIONAL STRUCTURE<br/>HEIGHT</li> <li>MAX FRONT YARD: NONE</li> <li>MIN. SIDE YARD: NONE. IF ADJOINING A<br/>RESIDENTIAL ZONE THE SETBACK SHALL<br/>NOT BE LESS THAN 10 FEET. IF LOADING<br/>AND UNLOADING ARE PROVIDED THE<br/>SETBACK SHALL BE NOT LESS THAN 25<br/>FEET.</li> <li>MIN. STREET SIDE YARD: SEE<br/>REQUIREMENTS FOR FRONT YARDS</li> <li>MIN. REAR YARD: NONE. IF ADJOINING A<br/>RESIDENTAIL ZONE THE SETBACK SHALL<br/>BE THE DAME AD THE SIDE YARD<br/>REQUIREMENTS.</li> </ul> |
| STRUCTURE SEPARATION                                                                                                                                                                                                             | NONE REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LOT FRONTAGE                                                                                                                                                                                                                     | MINIMUM LOT FRONTAGE OF 100<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SITE INFORMATION                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| APN                                                                                                                                                                                                                              | 329-250-011 AND 329-250-012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXISTING ZONING                                                                                                                                                                                                                  | COMMERCIAL COMMUNITY (CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROPOSED ZONING                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                  | COMMERCIAL COMMUNITY (CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EXISTING LOT SIZE                                                                                                                                                                                                                | COMMERCIAL COMMUNITY (CC)<br>±14.4 ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EXISTING LOT SIZE                                                                                                                                                                                                                | ±14.4 ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXISTING LOT SIZE<br>PROPOSED PARCEL                                                                                                                                                                                             | ±14.4 ACRES<br>±14.0 ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EXISTING LOT SIZE<br>PROPOSED PARCEL<br>DISTURBED AREA                                                                                                                                                                           | ±14.4     ACRES       ±14.0     ACRES       ±14.4     ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXISTING LOT SIZE<br>PROPOSED PARCEL<br>DISTURBED AREA<br>TOTAL PERVIOUS AREA<br>TOTAL IMPERVIOUS                                                                                                                                | ±14.4     ACRES       ±14.0     ACRES       ±14.4     ACRES       ±4.5     ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EXISTING LOT SIZE<br>PROPOSED PARCEL<br>DISTURBED AREA<br>TOTAL PERVIOUS AREA<br>TOTAL IMPERVIOUS<br>(INCLUDING BUILDING)<br>TOTAL GROSS FLOOR AREA (INCLUDING                                                                   | ±14.4       ACRES         ±14.0       ACRES         ±14.4       ACRES         ±4.5       ACRES         ±9.9       ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EXISTING LOT SIZE<br>PROPOSED PARCEL<br>DISTURBED AREA<br>TOTAL PERVIOUS AREA<br>TOTAL IMPERVIOUS<br>(INCLUDING BUILDING)<br>TOTAL GROSS FLOOR AREA (INCLUDING<br>FUTURE SHOP BUILDING)<br>FLOOR AREA RATIO (FAR) (INCLUDING THE | ±14.4       ACRES         ±14.0       ACRES         ±14.4       ACRES         ±4.5       ACRES         ±9.9       ACRES         22,432       SQUARE FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

PROFESSIC

°∕SHEA-MICHAEL ANTI∖

RCE NO. 78274

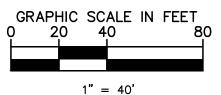
DATE

PREPARED BY:

Min

### CONSTRUCTION NOTES

- (1) PILOT TRAVEL CENTER BUILDING (SEE ARCHITECTURAL DRAWINGS), INSTALLED BY CONTRACTOR.
- (2) ABOVE GROUND STORAGE TANK FARM WITH CONTAINMENT. EACH AST FARM CONTAINS (4) 12,000 GALLON TACKS FOR DIESEL AND BIO. SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION.
- (3) 25'-0" x 253'-7" AUTO CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER. CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (4) LANDSCAPE AREA INSTALLED BY CONTRACTOR. REFER TO LANDSCAPE AND IRRIGATION PLANS FOR MORE INFORMATION.
- (5) GREASE TRAP. FURNISHED AND INSTALLED BY CONTRACTOR.
- (6) CONCRETE ISLAND WITH A GAS/AUTO DIESEL (3+1) DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (7) 2'-0' HIGH GUARDRAIL AROUND CONTAINMENT AREA, 1'-0" OUTSIDE OF FENCE.
- (8) PROPOSED BIORETENTION BASIN. SEE UTILITY PLAN FOR MORE INFORMATION.
- (9) 25'-0" x 124'-9" TRUCK CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER, CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (10) TRUCK AIR STAND, TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND, SUPPLIED BY OWNER AND INSTALLED BY CONTRACTOR.
- (11) CONCRETE ISLAND WITH A DIESEL DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (12) PREFABRICATED TRUCK ISLAND CATCH BASIN (TYP (7) PLACES). SUPPLIED BY OWNER INSTALLED BY CONTRACTOR
- (13) TRUCK FREEZE PROOF WATER STAND TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND FURNISHED AND INSTALLED BY CONTRACTOR. (14) TANK #1, PRODUCT #1. 20,000 GALLON, 10'-0"Ø X 37'-8 3/4" LONG, DOUBLE-WALL FIBERGLASS UNDERGROUND REGULAR UNLEADED GASOLINE TANK. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR (TYP (1) PLACE). SEE PP DRAWINGS FOR MORE INFORMATION.
- (15) TANK #2 AND TANK #3. 20,000 GALLON, 10'-0"ø X 37'-10" LONG (2) CHAMBER UNDERGROUND DOUBLE WALL FIBERGLASS TANK, TANK #2, PRODUCT #2 - 12,000 GALLON SUPER UNLEADED GASOLINE, TANK #3, PRODUCT #3 - 8,000 AUTO DIESEL. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR. (SEE PP DRAWINGS FOR MORE INFORMATION).
- (16) LOCAL UTILITY ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (17) TRAVEL CENTER DISTRIBUTION ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (18) PROPOSED WATER METER AND BACKFLOW. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (19) PROPOSED IRRIGATION METER AND BACKFLOW PREVENTOR. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (20) PROPOSED SEWER CLEANOUT. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (21) PROPOSED U-SHAPED BIKE RACKS PER CITY STANDARDS AND SPECIFICATIONS.


(22) INSTALL ACCESSIBLE RAMP. INSTALL CAST-IN-PLACE DETECTABLE WARNING SYSTEM (TRUNCATED DOMES) PER ARMOR TILE - 36" X 48" PANEL. PRODUCT NO. ADA-C-3648W PER DETAIL X, SHEET XX.

- (23) INSTALL DETECTABLE WARNINGS.
- (24) PROPOSED CATCH BASIN. SEE STORM DRAIN PLANS SHEET 13-14 FOR MORE INFORMATION.
- (25) AUTO AIR/VACUUM (PROVIDED BY OWNER, ELECTRICAL BY CONTRACTOR), YARD HYDRANT BY CONTRACTOR.
- (26) NEW TANK VENT RISER CLUSTER, INSTALLED BY CONTRACTOR.
- (27) 4,000 GALLON,  $6'-0'' \times 21'-11''$  LONG, SINGLE-WALL FIBERGLASS UNDERGROUND OIL/ WATER SEPARATOR, FURNISHED BY OWNER, INSTALLED BY CONTRACTOR.
- (28) CLEAN OUT FOR OIL/WATER SEPARATOR FURNISHED AND INSTALLED BY CONTRACTOR.
- (29) B99 INJECTION SHED WITH SUMP. SUPPLIED BY OWNER. (SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION).
- (30) 4" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (31) 6" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (32) 1'-0" CONCRETE BOLLARD FURNISHED, INSTALLED AND PAINTED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (33) GREASE CONTAINER, PROVIDED BY OWNER.
- (34) site light, furnished by owner, installed by contractor. (Location to be determined during final engineering)
- (35) truck scale, concrete truck scale pit and truck scale furnished and installed by truck scale supplier. Electrical, COMMUNICATIONS AND DRAINAGE PROVIDED TO THE SCALE PIT BY CONTRACTOR, COORDINATION BY CONTRACTOR.
- (36) parking area designated for GOLF Cart.
- (37) trash enclosure 8' chain link fence with vinyl inserts mounted on reinforced concrete pad with protective steel BOLLARDS, INSTALLED BY CONTRACTOR (SEE ARCH DWGS FOR DETAILS).
- (38) TRASH COMPACTOR, FURNISHED AND INSTALLED BY TRASH COMPACTOR SUPPLIER.
- (39) CARDBOARD BAILER OR RECYCLE DUMPSTER, FURNISHED AND INSTALLED BY DUMPSTER SUPPLIER.
- (40) STORAGE UNIT, FURNISHED BY OWNER. ELECTRICAL & A/C INSTALL BY CONTRACTOR.
- (41) PROPOSED "CERTAIN TEED BRAND; BUFFTECH VINYL FENCING; PRIVACY SERIES; STYLE "GALVESTON", 8' TALL;
- COLOR ALMOND." OR APPROVED EQUAL. FURNISHED AND INSTALLED BY CONTRACTOR.
- (42) PROPOSED SHOP BUILDING LOCATION.
- (43) PROPOSED CHANNEL (BOTTOM WIDTH 2', DEPTH 3.5', SIDE SLOPE 1.5:1) PER RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT PLAN FOR M.D.P. - ROMOLAND AREA LATERAL A-11A.
- (44) PROPOSED V-DITCH. REFER TO GRADING PLAN SHEET 9 AND 10 FOR MORE INFORMATION.
- (45) PROPOSED PORTE-COCHERE. REFER TO ARCHITECTURAL PLANS FOR MORE INFORMATION.
- (46) PROPOSED 4' CHAIN LINK FENCE.
- (47) INSTALL CHAIN LINK FENCE PER LANDSCAPE PLANS.
- (48) PROPOSED COMMERCIAL DRIVEWAY.
- (49) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) ON TOP OF 3' BERM.
- (50) PROPOSED 10' CONCRETE MASONRY UNITS WALL.
- (51) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) AT GRADE.

6/8/2022

(52) PROPOSED DECORATIVE PAVEMENT.



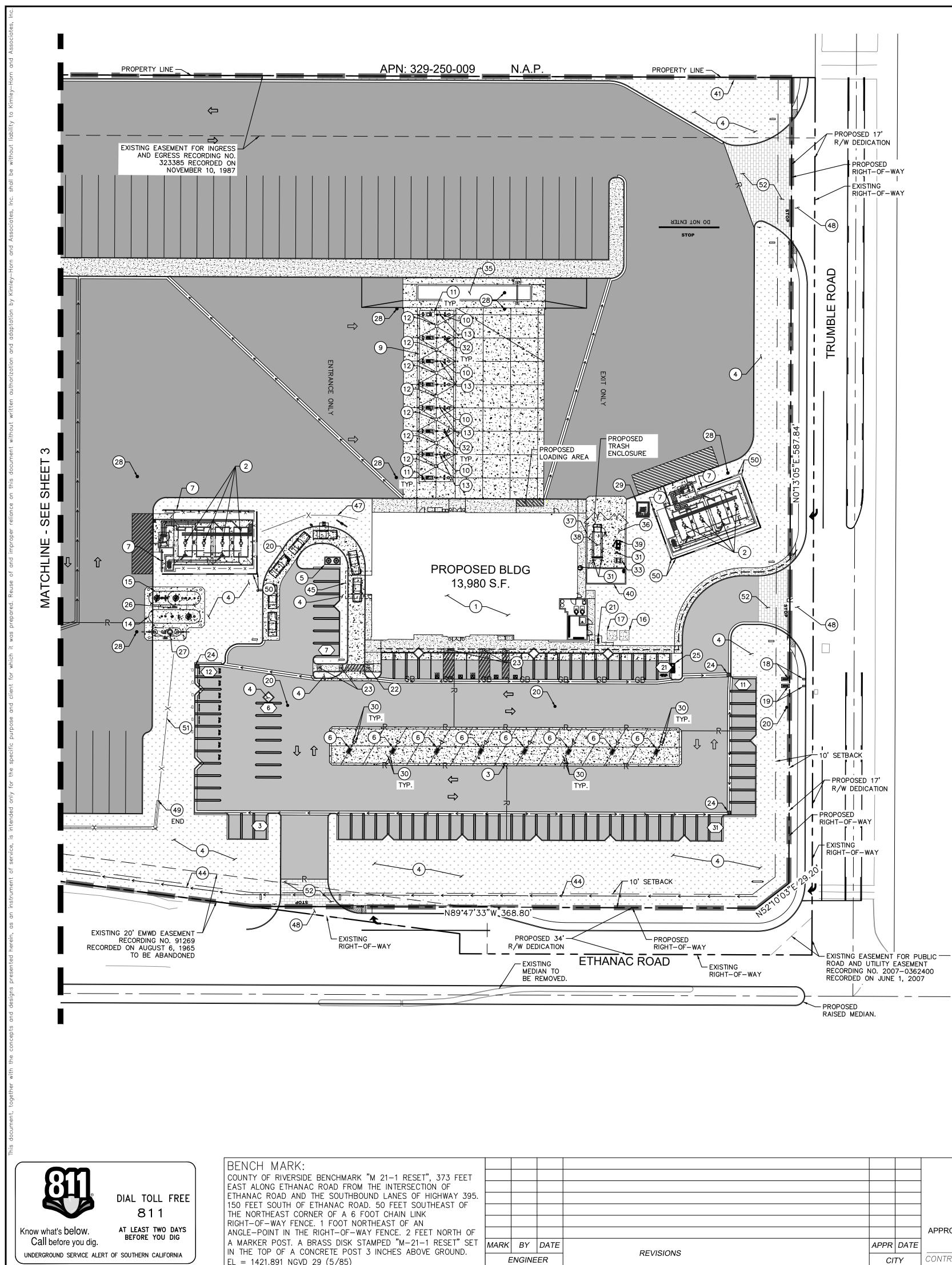


WHEN PRINTED AT FULL SIZE (24"X36")

SHEET NO.

3

OF 16 SHTS


# **Kimley Worn**

765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868 PHONE: 714-939-1030

NUM XF

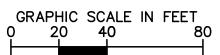
SHEA-MICHAEL ANTI R.C.E 78274 DATE

SITE PLAN PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:



| LEGEND  |                                          |                                                                                                                                                                                                                                                                                             |                                       |
|---------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|         | PROPERTY LINE CIVIL<br>LIMITS OF WORK    |                                                                                                                                                                                                                                                                                             | STANDARD DUTY<br>CONCRETE<br>PAVEMENT |
|         | CENTER LINE<br>SETBACKS<br>EASEMENT LINE |                                                                                                                                                                                                                                                                                             | HEAVY DUTY<br>CONCRETE<br>PAVEMENT    |
|         | ACCESSIBLE ROUTE<br>FENCE                |                                                                                                                                                                                                                                                                                             | HEAVY DUTY<br>ASPHALT<br>PAVEMENT     |
| GB<br>R | GRADE BREAK<br>RIDGE LINE                |                                                                                                                                                                                                                                                                                             | STANDARD DUTY<br>ASPHALT<br>PAVEMENT  |
|         | PARKING COUNT                            | *         *         *         *           *         *         *         *           *         *         *         *           *         *         *         *           *         *         *         *           *         *         *         *           *         *         *         * | LANDSCAPE/<br>PLANTER AREA            |
|         | DECORATIVE<br>PAVEMENT                   |                                                                                                                                                                                                                                                                                             |                                       |
|         |                                          |                                                                                                                                                                                                                                                                                             |                                       |

|           |                   | CITY OF PERRIS                                         | ROFESS/ONAL EN                       | <b>Kimley</b> »Horn                                                   |
|-----------|-------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|
|           |                   |                                                        | SHEA-MICHAEL ANTI<br>★ RCE NO. 78274 | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030 |
| REVISIONS | APPR DATE<br>CITY | APPROVED BY:       CONTRACT CITY ENGINEER         DATE | OF CALLEON                           | PREPARED BY:<br>SHEA-MICHAEL ANTI<br>R.C.E 78274<br>6/8/<br>DATE      |
|           | 0.11              |                                                        |                                      |                                                                       |


### CONSTRUCTION NOTES

- (1) PILOT TRAVEL CENTER BUILDING (SEE ARCHITECTURAL DRAWINGS), INSTALLED BY CONTRACTOR.
- (2) ABOVE GROUND STORAGE TANK FARM WITH CONTAINMENT. EACH AST FARM CONTAINS (4) 12,000 GALLON TACKS FOR DIESEL AND BIO. SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION.
- (3) 25'-0" x 253'-7" AUTO CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER. CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (4) LANDSCAPE AREA INSTALLED BY CONTRACTOR. REFER TO LANDSCAPE AND IRRIGATION PLANS FOR MORE INFORMATION.
- (5) GREASE TRAP. FURNISHED AND INSTALLED BY CONTRACTOR.
- 6 CONCRETE ISLAND WITH A GAS/AUTO DIESEL (3+1) DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (7) 2'-0' HIGH GUARDRAIL AROUND CONTAINMENT AREA, 1'-0" OUTSIDE OF FENCE.
- (8) PROPOSED BIORETENTION BASIN. SEE UTILITY PLAN FOR MORE INFORMATION.
- (9) 25'-0" x 124'-9" TRUCK CANOPY, FURNISHED AND INSTALLED BY CANOPY SUPPLIER, CANOPY FOUNDATIONS INSTALLED BY CONTRACTOR.
- (10) TRUCK AIR STAND, TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND, SUPPLIED BY OWNER AND INSTALLED BY CONTRACTOR.
- (11) CONCRETE ISLAND WITH A DIESEL DISPENSER AND CONTAINMENT BOX TYPICAL AT (8) PLACES, INSTALLED BY CONTRACTOR.
- (12) PREFABRICATED TRUCK ISLAND CATCH BASIN (TYP (7) PLACES). SUPPLIED BY OWNER INSTALLED BY CONTRACTOR
- (13) TRUCK FREEZE PROOF WATER STAND TYPICAL AT EVERY OTHER TRUCK FUELING ISLAND FURNISHED AND INSTALLED BY CONTRACTOR. (14) TANK #1, PRODUCT #1. 20,000 GALLON, 10'-0"ø X 37'-8 3/4" LONG, DOUBLE-WALL FIBERGLASS UNDERGROUND REGULAR UNLEADED
- GASOLINE TANK. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR (TYP (1) PLACE). SEE PP DRAWINGS FOR MORE INFORMATION.
- (15) TANK #2 AND TANK #3. 20,000 GALLON, 10'-0"Ø X 37'-10" LONG (2) CHAMBER UNDERGROUND DOUBLE WALL FIBERGLASS TANK, TANK #2, PRODUCT #2 – 12,000 GALLON SUPER UNLEADED GASOLINE, TANK #3, PRODUCT #3 – 8,000 AUTO DIESEL. FURNISHED BY OWNER, INSTALLED BY CONTRACTOR. (SEE PP DRAWINGS FOR MORE INFORMATION).
- (16) LOCAL UTILITY ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (17) TRAVEL CENTER DISTRIBUTION ELECTRICAL TRANSFORMER INSTALLED BY CONTRACTOR.
- (18) PROPOSED WATER METER AND BACKFLOW. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (19) PROPOSED IRRIGATION METER AND BACKFLOW PREVENTOR. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (20) PROPOSED SEWER CLEANOUT. SEE UTILITY PLANS SHEET 11-12 FOR MORE INFORMATION.
- (21) PROPOSED U-SHAPED BIKE RACKS PER CITY STANDARDS AND SPECIFICATIONS.

(22) INSTALL ACCESSIBLE RAMP. INSTALL CAST-IN-PLACE DETECTABLE WARNING SYSTEM (TRUNCATED DOMES) PER ARMOR TILE - 36" X 48" PANEL. PRODUCT NO. ADA-C-3648W PER DETAIL X, SHEET XX.

- (23) INSTALL DETECTABLE WARNINGS.
- (24) PROPOSED CATCH BASIN. SEE STORM DRAIN PLANS SHEET 13-14 FOR MORE INFORMATION.
- (25) AUTO AIR/VACUUM (PROVIDED BY OWNER, ELECTRICAL BY CONTRACTOR), YARD HYDRANT BY CONTRACTOR.
- (26) NEW TANK VENT RISER CLUSTER, INSTALLED BY CONTRACTOR.
- (27) 4,000 GALLON, 6'-0"ø x 21'-11" LONG, SINGLE-WALL FIBERGLASS UNDERGROUND OIL/ WATER SEPARATOR, FURNISHED BY OWNER, INSTALLED BY CONTRACTOR.
- (28) CLEAN OUT FOR OIL/WATER SEPARATOR FURNISHED AND INSTALLED BY CONTRACTOR.
- (29) B99 INJECTION SHED WITH SUMP. SUPPLIED BY OWNER. (SEE PRODUCT PIPING DRAWINGS FOR MORE INFORMATION).
- (30) 4" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (31) 6" STEEL PIPE BOLLARD FURNISHED, INSTALLED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (32) 1'-0" CONCRETE BOLLARD FURNISHED, INSTALLED AND PAINTED BY CONTRACTOR (SEE CIVIL DWGS FOR SPECS.).
- (33) GREASE CONTAINER, PROVIDED BY OWNER.
- (34) site light, furnished by owner, installed by contractor. (Location to be determined during final engineering)
- (35) TRUCK SCALE, CONCRETE TRUCK SCALE PIT AND TRUCK SCALE FURNISHED AND INSTALLED BY TRUCK SCALE SUPPLIER. ELECTRICAL, COMMUNICATIONS AND DRAINAGE PROVIDED TO THE SCALE PIT BY CONTRACTOR, COORDINATION BY CONTRACTOR.
- (36) parking area designated for GOLF Cart.
- (37) trash enclosure 8' chain link fence with vinyl inserts mounted on reinforced concrete pad with protective steel BOLLARDS, INSTALLED BY CONTRACTOR (SEE ARCH DWGS FOR DETAILS).
- (38) TRASH COMPACTOR, FURNISHED AND INSTALLED BY TRASH COMPACTOR SUPPLIER.
- (39) cardboard bailer or recycle dumpster, furnished and installed by dumpster supplier.
- (40) STORAGE UNIT, FURNISHED BY OWNER. ELECTRICAL & A/C INSTALL BY CONTRACTOR.
- (41) PROPOSED "CERTAIN TEED BRAND; BUFFTECH VINYL FENCING; PRIVACY SERIES; STYLE "GALVESTON", 8' TALL; COLOR ALMOND." OR APPROVED EQUAL. FURNISHED AND INSTALLED BY CONTRACTOR.
- (42) proposed shop building location.
- (43) PROPOSED CHANNEL (BOTTOM WIDTH 2', DEPTH 3.5', SIDE SLOPE 1.5:1) PER RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT PLAN FOR M.D.P. - ROMOLAND AREA LATERAL A-11A.
- (44) PROPOSED V-DITCH. REFER TO GRADING PLAN SHEET 9 AND 10 FOR MORE INFORMATION.
- (45) PROPOSED PORTE-COCHERE. REFER TO ARCHITECTURAL PLANS FOR MORE INFORMATION.
- (46) PROPOSED 4' CHAIN LINK FENCE.
- (47) INSTALL CHAIN LINK FENCE PER LANDSCAPE PLANS.
- (48) PROPOSED COMMERCIAL DRIVEWAY.
- (49) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) ON TOP OF 3' BERM. REFER TO SHEET 9-10 FOR MORE INFORMATION.
- (50) PROPOSED 10' CONCRETE MASONRY UNITS WALL.
- (51) PROPOSED 8' AMETCO TITAN DESIGN ALUMINUM FENCE (COLOR TO MATCH BUILDING) AT GRADE.
- (52) PROPOSED DECORATIVE PAVEMENT.



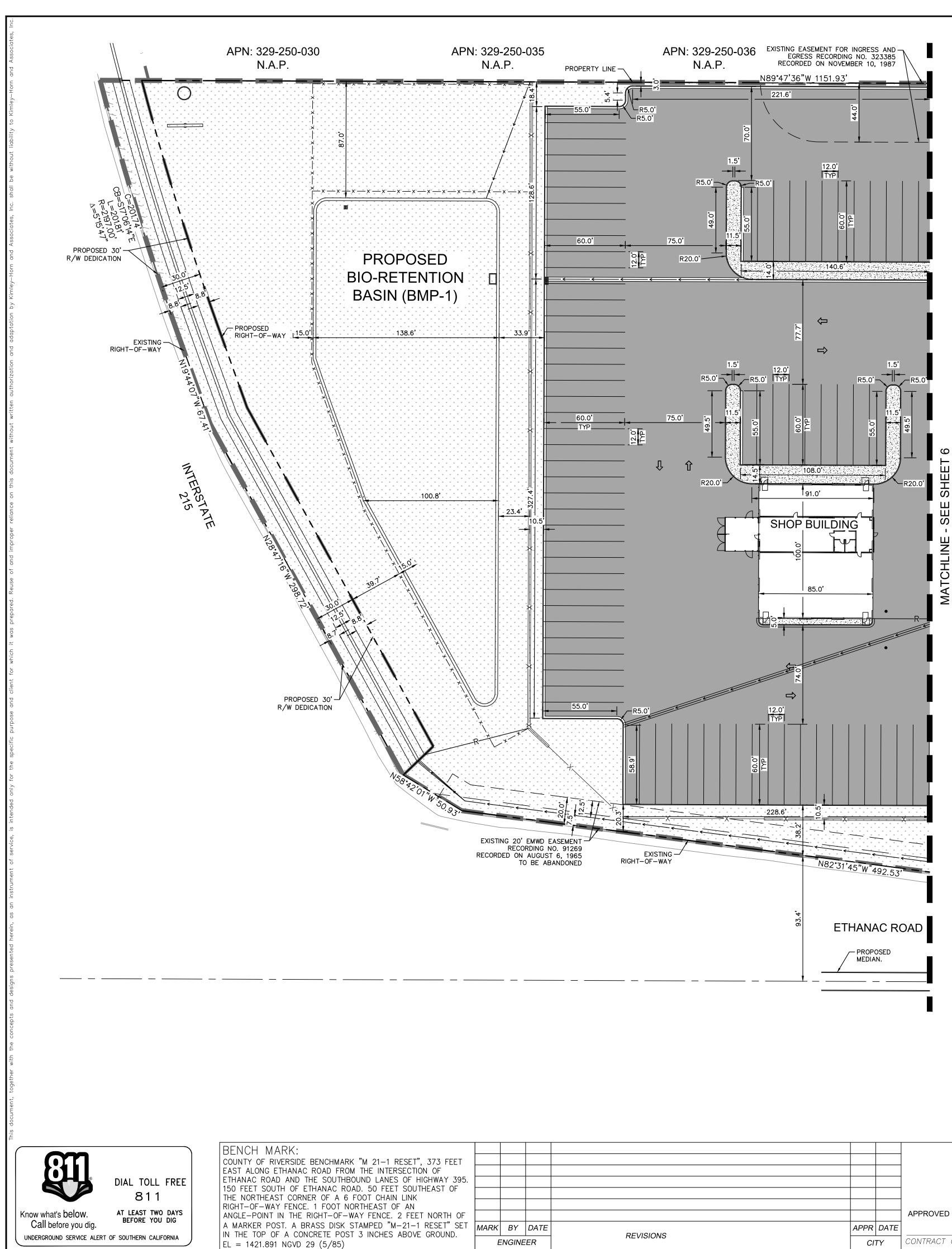


1" = 40' WHEN PRINTED AT FULL SIZE (24"X36")

SHEET NO.

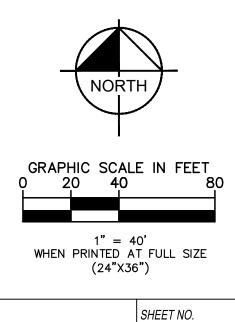
4

OF 16 SHTS


# THE CITY DRIVE SUITE 200, ORANGE, CA 92868

6/8/2022

PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010

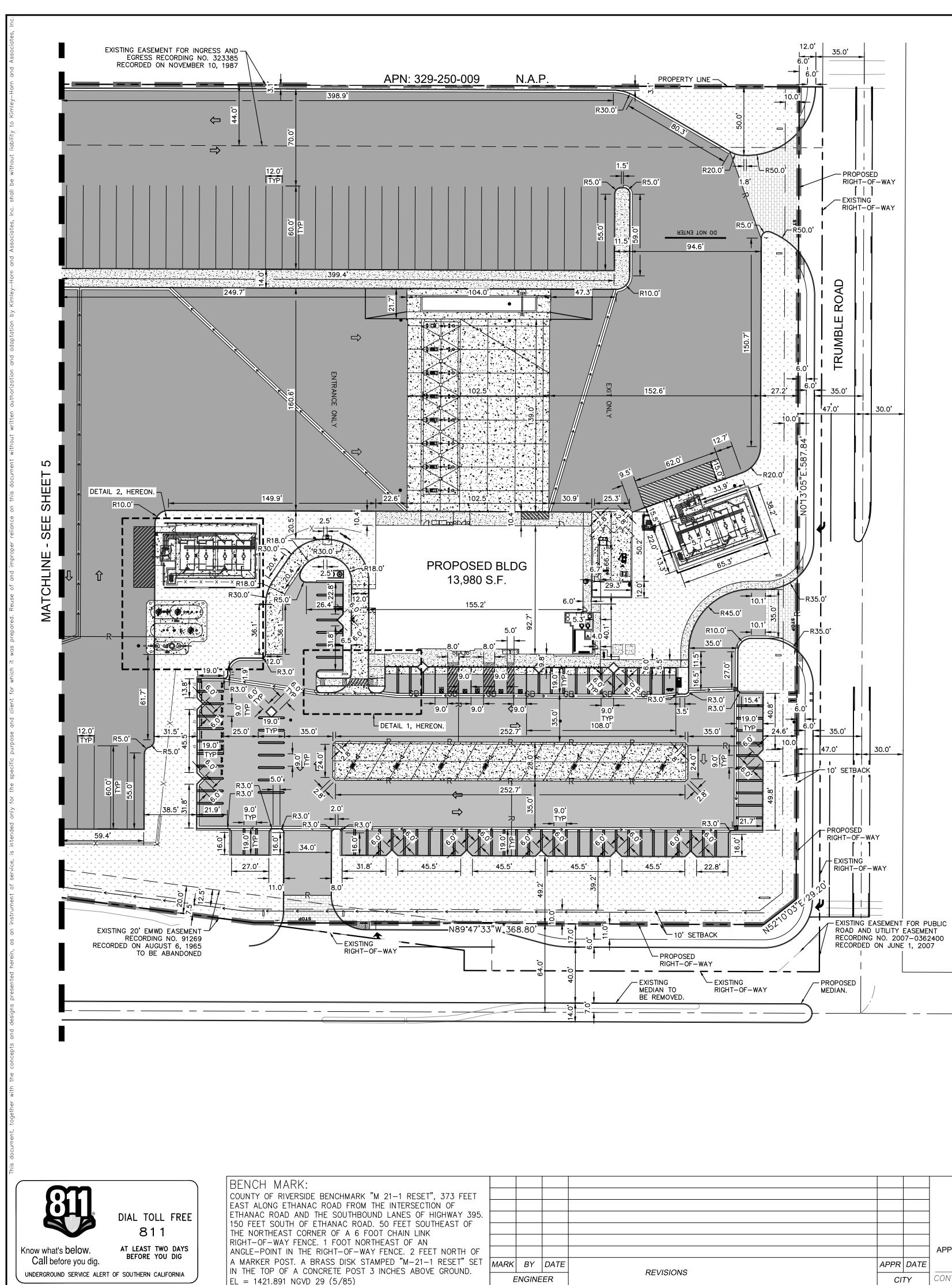

SITE PLAN

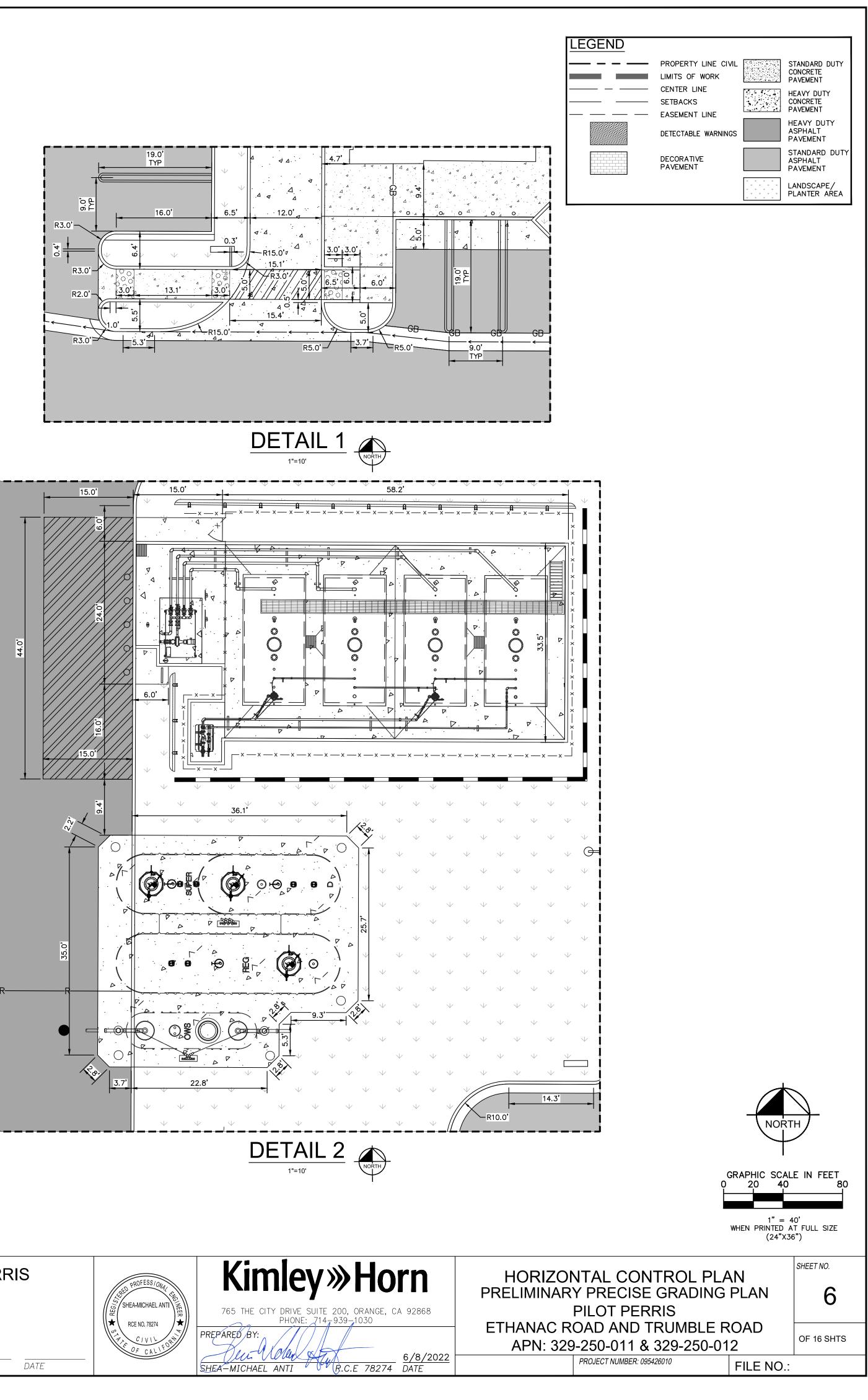
|  | _    |
|--|------|
|  |      |
|  | INU. |



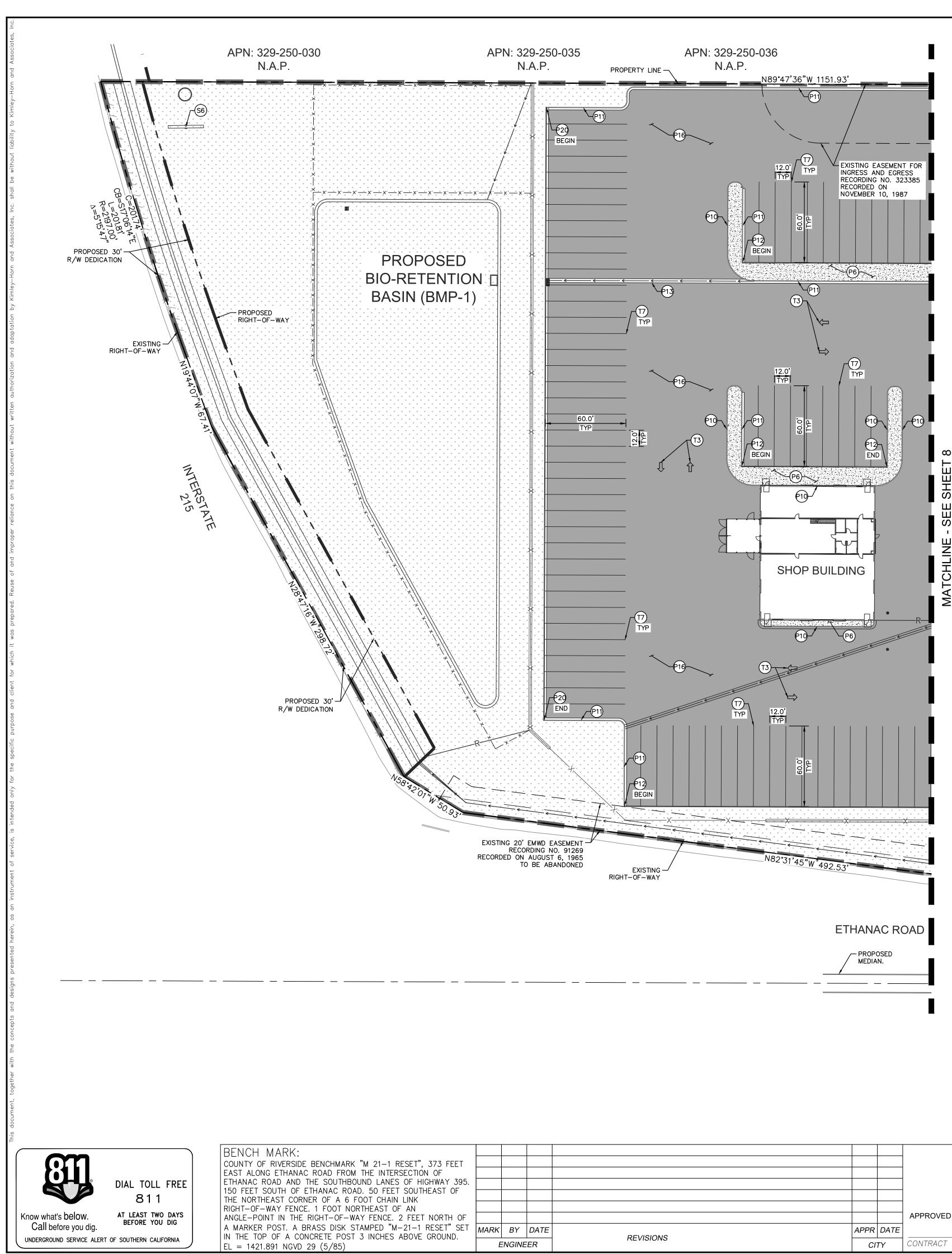
|           |           | CITY OF PERRIS              | Stel PROFESS/ONAL                                                       | <b>Kimley</b> »Horn                                                                   |
|-----------|-----------|-----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|           |           | APPROVED BY:                | SHEA-MICHAEL ANTI<br>CIVIA<br>CIVIA<br>CIVIA<br>CIVIA<br>CIVIA<br>CIVIA | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030<br>PREPARED BY: |
| REVISIONS | APPR DATE | CONTRACT CITY ENGINEER DATE | OF CALLED                                                               | SHEA-MICHAEL ANTI R.C.E 78274 6/8/2022<br>DATE                                        |

| LEGEND |                                                      |                                                     |                                                     |
|--------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|        | PROPERTY LINE CIVIL<br>LIMITS OF WORK<br>CENTER LINE |                                                     | STANDARD DUTY<br>CONCRETE<br>PAVEMENT<br>HEAVY DUTY |
|        | SETBACKS<br>EASEMENT LINE                            |                                                     | CONCRETE<br>PAVEMENT                                |
|        | DETECTABLE WARNINGS                                  |                                                     | HEAVY DUTY<br>ASPHALT<br>PAVEMENT                   |
|        | DECORATIVE<br>PAVEMENT                               |                                                     | STANDARD DUTY<br>ASPHALT<br>PAVEMENT                |
|        |                                                      | + + + +<br>+ + + +<br>+ + + +<br>+ + + +<br>+ + + + | LANDSCAPE/<br>PLANTER AREA                          |





5

OF 16 SHTS


# **Simley Worn**

HORIZONTAL CONTROL PLAN PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:





|    |         |      |      | CITY OF PERRIS              | pROFESS/04        | K        |
|----|---------|------|------|-----------------------------|-------------------|----------|
|    |         |      |      |                             | SHEA-MICHAEL ANTI | 765      |
|    |         |      |      | APPROVED BY:                | ★ RCE NO. 78274 ★ | PREPARED |
|    |         | APPR | DATE |                             | OF CALLEO         | Al       |
| RE | /ISIONS | Cľ   | TY   | CONTRACT CITY ENGINEER DATE |                   | SHEA-MI  |



|           |                | CITY OF PERRIS | PROFESS/ONAL                      | K               |
|-----------|----------------|----------------|-----------------------------------|-----------------|
|           |                | APPROVED BY:   | KEA-MICHAEL ANTI<br>KCE NO. 78274 | 765<br>PREPARED |
| REVISIONS | <br>DATE<br>TY |                | OF CALLEOR                        | SHEA-MI         |

| LEGEND |                     |                                                       |                                      |
|--------|---------------------|-------------------------------------------------------|--------------------------------------|
|        |                     |                                                       |                                      |
|        | PROPERTY LINE CIVIL |                                                       | STANDARD DUTY<br>CONCRETE            |
|        | LIMITS OF WORK      |                                                       | PAVEMENT                             |
|        | CENTER LINE         |                                                       | HEAVY DUTY                           |
|        | SETBACKS            |                                                       | CONCRETE                             |
|        | EASEMENT LINE       | 4                                                     | PAVEMENT                             |
|        | ACCESSIBLE ROUTE    |                                                       | HEAVY DUTY                           |
| xxx x  | FENCE               |                                                       | ASPHALT<br>PAVEMENT                  |
|        | DETECTABLE WARNINGS |                                                       | STANDARD DUTY<br>ASPHALT<br>PAVEMENT |
|        | DECORATIVE PAVEMENT | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | LANDSCAPE/<br>PLANTER AREA           |

## PAVEMENT NOTES

P16" REINFORCED CONCRETE PAD FOR AUTO CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE AUTO CANOPY. ASPHALT PAVING ON ALL (4) SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. SEE DETAIL X SHEET X, INSTALLED BY CONTRACTOR.

P2 8" REINFORCED CONCRETE PAD FOR TRUCK CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE TRUCK CANOPY. ASPHALT PAVING ON BOTH SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. CONCRETE PAD FOR THE TRUCK CANOPY MUST DRAIN TO CATCH BASIN. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P3)8" REINFORCED CONCRETE PAD AT TANK FARM. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P4)8" REINFORCED CONCRETE PAD TRASH ENCLOSURE. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P5)6" REINFORCED CONCRETE PARKING APRON AT PARKING SPACES IN FRONT OF BUILDING. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P6) 4" REINFORCED CONCRETE SIDEWALK. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

P7/-0" X 7'-0" X 6" REINFORCED CONCRETE PAD FOR ELECTRICAL TRANSFORMER. CONTRACTOR TO COORDINATE WITH UTILITY COMPANY FOR SIZE AND REINFORCING REQUIREMENTS. INSTALLED BY CONTRACTOR.

(P8)8" REINFORCED CONCRETE PAD AT OIL/WATER SEPARATOR. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P9) SEE BUILDING PLANS FOR AST AND BIO SHED FOUNDATION DESIGN.

(P19) STANDARD DUTY 6" CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P1) STANDARD DUTY CURB AND GUTTER. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(12) HEAVY DUTY CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P13) INSTALL RIBBON GUTTER PER DETAIL X, SHEET X.

(1) O" ELEVATION CURB. SEE GRADING PLANS FOR DETAILS AND SPECIFICATIONS.

(15)8" REINFORCED CONCRETE RAMP FOR CAT SCALE.

(16) construct heavy duty asphalt pavement per detail x sheet x.

 $e^{17}$  construct standard duty asphalt pavement detail x sheet x.

(18) CONSTRUCT THICKENED EDGE PER DETAIL X, SHEET X.

(19) CONSTRUCT CONCRETE WALK-OFF PER DETAIL X, SHEET X.

(2) HEAVY DUTY CURB AND GUTTER PER DETAIL X, SHEET X.

## (P2) DECORATIVE PAVEMENT

### STRIPING NOTES

(T1)INSTALL ACCESSIBLE PATH OF TRAVEL STRIPING.

INSTALL ACCESSIBLE STRIPING PARKING STALL AND ACCESSIBLE PARKING SYMBOL.

(T3) ALL DIRECTIONAL AND PARKING STRIPING TO BE SAFETY YELLOW-UNLESS NOTED OTHERWISE (TYP).

(T4) STOP LINE INSTALLED BY CONTRACTOR.

5'-0" x 20'-0" PASSENGER DROP-OFF/LOADING ZONE. TRAFFIC STRIPING 4" WIDE PAINTED (SAFETY YELLOW) PARALLEL STRIPES AT 16" O.C. FURNISHED AND INSTALLED BY CONTRACTOR.

 $(\overline{16})$ 4" Yellow double hairpin striping, typ. (color per city code).

 $(\overline{17})$ 4" yellow painted solid line, typ. (color per city code).

(18) PROPOSED "PARKING FOR SERVICE ISLAND USE ONLY." PAVEMENT MARKING.

(T9) PROPOSED "CLEAN AIR/ VAN POOL." PAVEMENT MARKING.

TIO PROPOSED FUTURE EVCS PARKING STALLS.

(T11) PROPOSED "ENTRANCE ONLY" PAVEMENT MARKING

(12) PROPOSED "EXIT ONLY" PAVEMENT MARKING.

## SIGNING NOTES

- (S1) INSTALL ACCESSIBLE PARKING STALL SIGN PER DETAIL X SHEET X AND SINGLE BASE SIGN POST PER DETAIL X SHEET X.
- (S2) install van accessible parking stall sign per detail x sheet x and single base sign post per detail x sheet x.
- (\$3) "PASSENGER LOADING ZONE ONLY" SIGN FURNISHED AND INSTALLED BY CONTRACTOR SHALL BE WALL MOUNTED.
- (S4) "STOP SIGN" SIGN INSTALLED BY CONTRACTOR.
- 55 "PED-XING" SIGN FURNISHED AND INSTALLED BY CONTRACTOR.
- (\$6) SEE BUILDING PLANS DRAWINGS FOR ALL OTHER SIGNAGE.

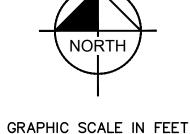
### RESTAURANT "DRIVE-THRU" (INTERNALLY ILLUMINATED) DIRECTIONAL SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(58) "DRIVE-THRU CLEARANCE 9 FT. 6 IN." SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION INSTALLED BY CONTRACTOR.

(S9) RESTAURANT PREVIEW BOARD (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR. (510)

"RESTAURANT" MENU BOARD (INTERNALLY ILLUMINATED) AND INTERCOM SYSTEM FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

(S11) "THANK YOU / DO NOT ENTER" DIRECTIONAL SIGN (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.


### **GENERAL PAVING NOTES**

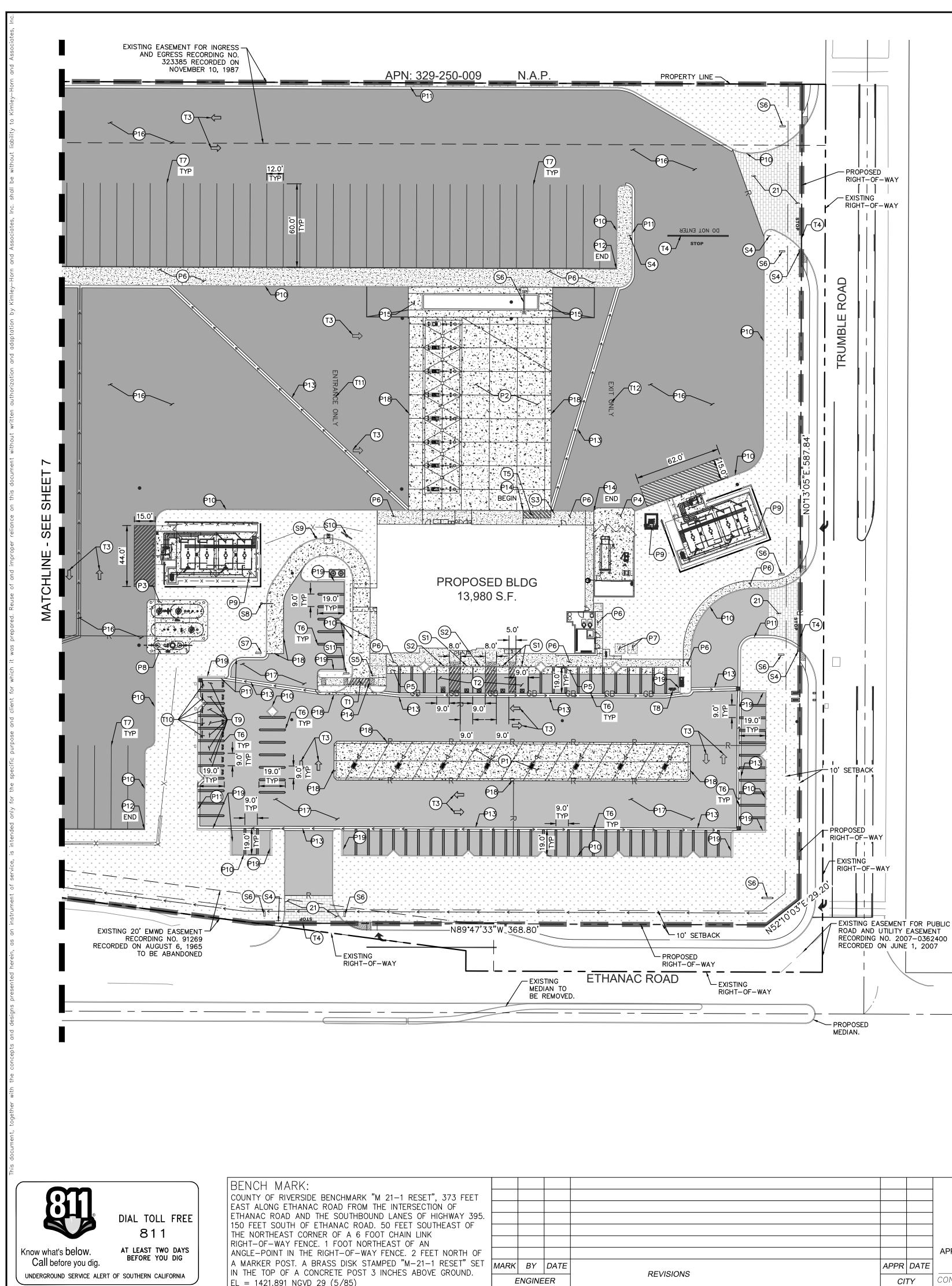
ALL MANHOLES MUST BE SET 2" HIGHER THAN PAVING TO PROVIDE A CROWN IN A 24"Ø AREA AROUND EACH MANHOLE.

2. SUB-BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN

- 1.5% OF OPTIMUM. 3. STONE BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN
- 1.5% OF OPTIMUM. 4. PRIOR TO INSTALLING BITUMINOUS PAVING CONTRACTOR IS TO PROOF-ROLL SUB-BASE USING HEAVY, PNEUMATIC-TIRED ROLLERS TO LOCATE AREAS THAT ARE UNSTABLE OR THAT REQUIRE
- FURTHER COMPACTION. NOTIFY CONSTRUCTION MANAGER IN WRITING OF ANY UNSATISFACTORY CONDITIONS. DO NOT BEGIN PAVING INSTALLATION UNTIL THESE CONDITIONS HAVE BEEN SATISFACTORILY CORRECTED. 5. ASPHALT PAVING @ EDGE OF CONCRETE PAD FOR THE TRUCK CANOPY SHOULD BE LAID @1/4"
- HIGHER THAN CONCRETE PAD ON EXIT SIDE CANOPY. 6. CONCRETE COLLAR IS REQUIRED FOR ALL STRUCTURES IN
- PAVEMENT.






\_4∩

1" = 40'

WHEN PRINTED AT FULL SIZE (24"X36")

20





|           | CITY OF PERRIS              | ROFESS/ONAL THE   | <b>Kimley</b> »Horn                                                   | SIGNING, STRIPING, AND PAVEMENT PLAN<br>PRELIMINARY PRECISE GRADING PLAN | SHEET NO.  |
|-----------|-----------------------------|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------|
|           |                             | SHEA-MICHAEL ANTI | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030 | PILOT PERRIS                                                             |            |
|           | APPROVED BY:                | RUE NO. TOZTA     | PREPARED BY:                                                          | ETHANAC ROAD AND TRUMBLE ROAD<br>APN: 329-250-011 & 329-250-012          | OF 16 SHTS |
| APPR DA   | re                          | OF CALIFO         | Alu Veller AT 6/8/2022                                                |                                                                          | <u> </u>   |
| REVISIONS | CONTRACT CITY ENGINEER DATE |                   | SHEA-MICHAEL ANTI R.C.E 78274 DATE                                    | PROJECT NUMBER: 095426010 FILE NO.:                                      |            |

| LEGEND |                     |                                                       |                                      |
|--------|---------------------|-------------------------------------------------------|--------------------------------------|
|        |                     |                                                       |                                      |
|        | PROPERTY LINE CIVIL |                                                       | STANDARD DUTY<br>CONCRETE            |
|        | LIMITS OF WORK      |                                                       | PAVEMENT                             |
|        | CENTER LINE         |                                                       | HEAVY DUTY                           |
|        | SETBACKS            |                                                       | CONCRETE                             |
|        | EASEMENT LINE       | 4                                                     | PAVEMENT                             |
|        | ACCESSIBLE ROUTE    |                                                       | HEAVY DUTY                           |
| xxx x  | FENCE               |                                                       | ASPHALT<br>PAVEMENT                  |
|        | DETECTABLE WARNINGS |                                                       | STANDARD DUTY<br>ASPHALT<br>PAVEMENT |
|        | DECORATIVE PAVEMENT | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | LANDSCAPE/<br>PLANTER AREA           |

## PAVEMENT NOTES

(P1)6" REINFORCED CONCRETE PAD FOR AUTO CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE AUTO CANOPY. ASPHALT PAVING ON ALL (4) SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. SEE DETAIL X SHEET X, INSTALLED BY CONTRACTOR.

P28" REINFORCED CONCRETE PAD FOR TRUCK CANOPY. WATER FROM SITE SHOULD NOT DRAIN ACROSS THE CONCRETE PAD FOR THE TRUCK CANOPY. ASPHALT PAVING ON BOTH SIDES OF THE CONCRETE PAD SHOULD DRAIN AWAY FROM CONCRETE PAD. CONCRETE PAD FOR THE TRUCK CANOPY MUST DRAIN TO CATCH BASIN. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P3)8" REINFORCED CONCRETE PAD AT TANK FARM. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P4)8" REINFORCED CONCRETE PAD TRASH ENCLOSURE. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

956" REINFORCED CONCRETE PARKING APRON AT PARKING SPACES IN FRONT OF BUILDING. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P6)4" REINFORCED CONCRETE SIDEWALK. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

P77'-0" X 7'-0" X 6" REINFORCED CONCRETE PAD FOR ELECTRICAL TRANSFORMER. CONTRACTOR TO COORDINATE WITH UTILITY COMPANY FOR SIZE AND REINFORCING REQUIREMENTS. INSTALLED BY CONTRACTOR.

(P8)8" REINFORCED CONCRETE PAD AT OIL/WATER SEPARATOR. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P9) see building plans for ast and bio shed foundation design.

(1) STANDARD DUTY 6" CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(P1) STANDARD DUTY CURB AND GUTTER. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(12) HEAVY DUTY CURB. SEE DETAIL X SHEET X. INSTALLED BY CONTRACTOR.

(1) INSTALL RIBBON GUTTER PER DETAIL X, SHEET X.

0" ELEVATION CURB. SEE GRADING PLANS FOR DETAILS AND SPECIFICATIONS.

(1) 8" REINFORCED CONCRETE RAMP FOR CAT SCALE.

(16) CONSTRUCT HEAVY DUTY ASPHALT PAVEMENT PER DETAIL X SHEET X.

CONSTRUCT STANDARD DUTY ASPHALT PAVEMENT DETAIL X SHEET X.

(18) CONSTRUCT THICKENED EDGE PER DETAIL X, SHEET X.

(1) CONSTRUCT CONCRETE WALK-OFF PER DETAIL X, SHEET X.

2HEAVY DUTY CURB AND GUTTER PER DETAIL X, SHEET X.

## P2) DECORATIVE PAVEMENT

#### STRIPING NOTES

(T1)INSTALL ACCESSIBLE PATH OF TRAVEL STRIPING.

 $(\overline{12})$ INSTALL ACCESSIBLE STRIPING PARKING STALL AND ACCESSIBLE PARKING SYMBOL.

(T3) ALL DIRECTIONAL AND PARKING STRIPING TO BE SAFETY YELLOW-UNLESS NOTED OTHERWISE (TYP).

(T4) STOP LINE INSTALLED BY CONTRACTOR.

5'-0" x 20'-0" passenger drop-off/loading zone. Traffic striping 4" wide painted (safety yellow) parallel stripes at 16" 0.C. furnished and installed by contractor.

 $(\overline{16})$ 4" yellow double hairpin striping, typ. (color per city code).

 $(\overline{17})$ 4" yellow painted solid line, typ. (color per city code).

(T8) PROPOSED "PARKING FOR SERVICE ISLAND USE ONLY." PAVEMENT MARKING.

(T9) PROPOSED "CLEAN AIR/ VAN POOL." PAVEMENT MARKING.

(1) PROPOSED FUTURE EVCS PARKING STALLS.

(T1) PROPOSED "ENTRANCE ONLY" PAVEMENT MARKING.

(12) PROPOSED "EXIT ONLY" PAVEMENT MARKING.

## SIGNING NOTES

#### (S1) install accessible parking stall sign per detail x sheet x and single base sign post per detail x sheet x.

- (\$2) INSTALL VAN ACCESSIBLE PARKING STALL SIGN PER DETAIL X SHEET X AND SINGLE BASE SIGN POST PER DETAIL X SHEET X.
- (\$3) "PASSENGER LOADING ZONE ONLY" SIGN FURNISHED AND INSTALLED BY CONTRACTOR SHALL BE WALL MOUNTED.
- (\$4) "STOP SIGN" SIGN INSTALLED BY CONTRACTOR.
- $\overline{S5}$  "PED-XING" SIGN FURNISHED AND INSTALLED BY CONTRACTOR.
- (\$6) SEE BUILDING PLANS DRAWINGS FOR ALL OTHER SIGNAGE.

## RESTAURANT "DRIVE-THRU" (INTERNALLY ILLUMINATED) DIRECTIONAL SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

## "DRIVE-THRU CLEARANCE 9 FT. 6 IN." SIGN FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION INSTALLED BY CONTRACTOR.

S9 RESTAURANT PREVIEW BOARD (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

NORTH

GRAPHIC SCALE IN FEET

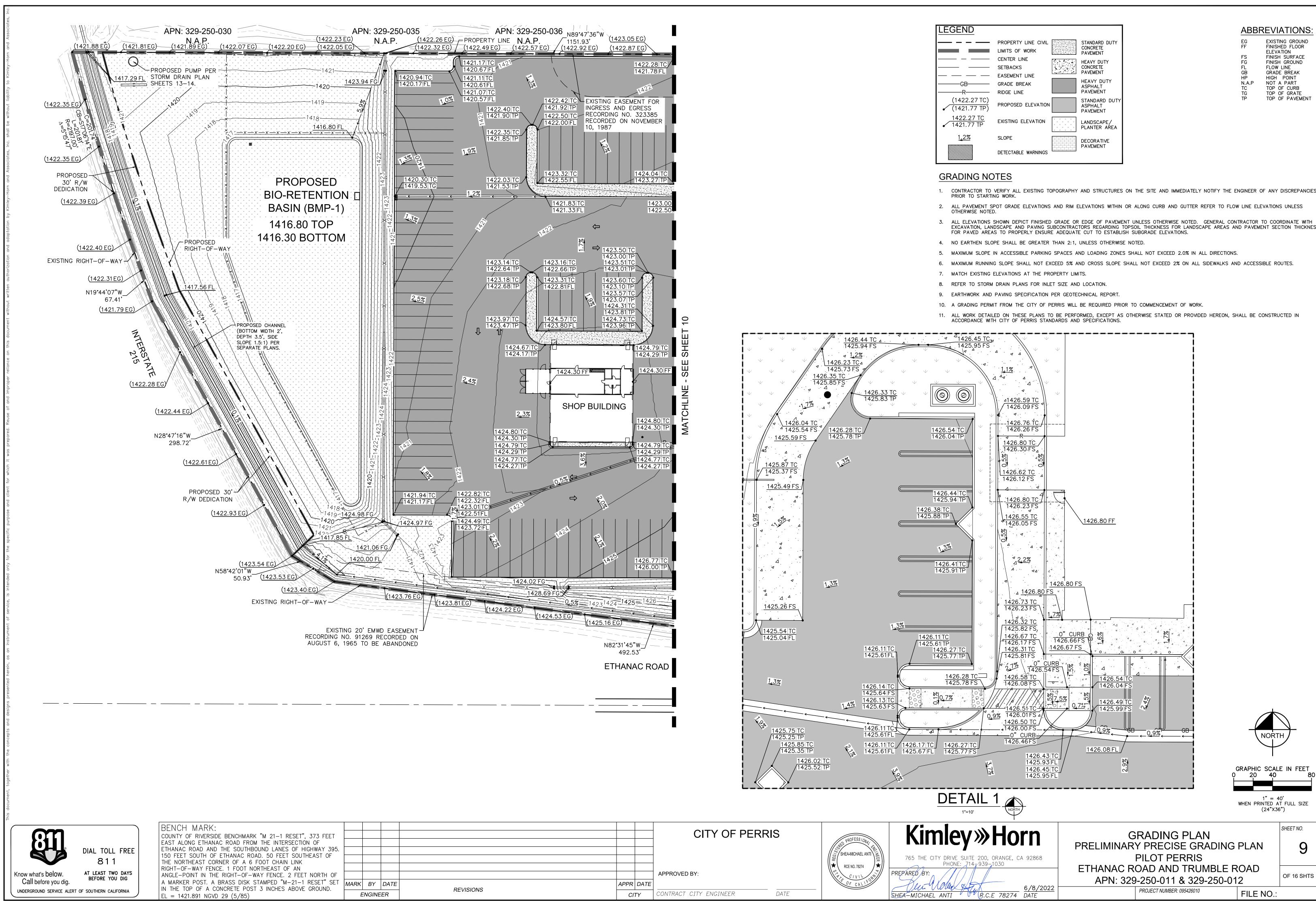
40

1" = 40'

WHEN PRINTED AT FULL SIZE (24"X36")

20

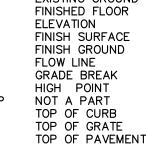
"RESTAURANT" MENU BOARD (INTERNALLY ILLUMINATED) AND INTERCOM SYSTEM FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.


(S1) "THANK YOU / DO NOT ENTER" DIRECTIONAL SIGN (INTERNALLY ILLUMINATED) FURNISHED BY OWNER, INSTALLED BY SIGN SUPPLIER. CONCRETE FOUNDATION AND ELECTRICAL INSTALLED BY CONTRACTOR.

### GENERAL PAVING NOTES

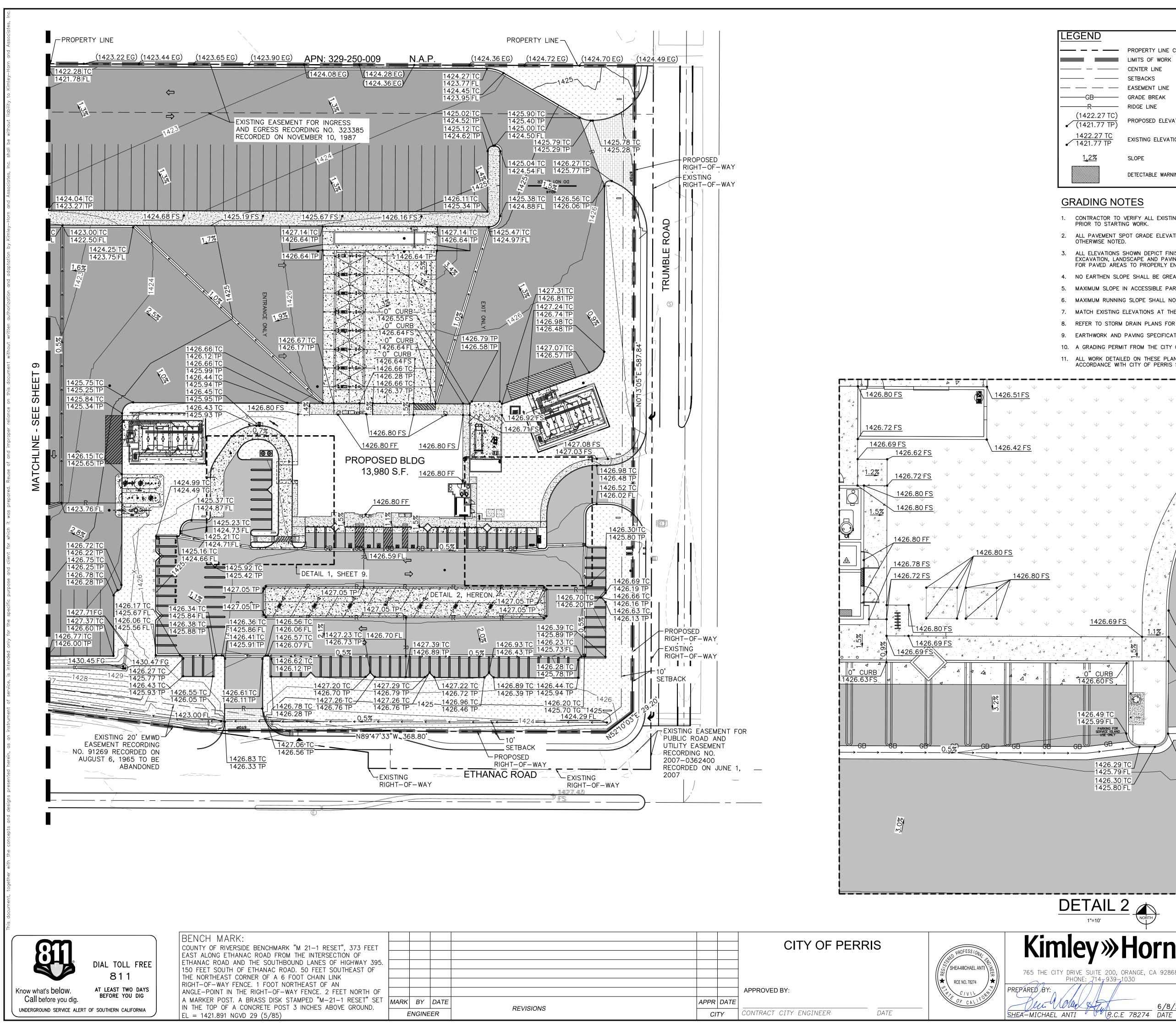
1. ALL MANHOLES MUST BE SET 2" HIGHER THAN PAVING TO PROVIDE A CROWN IN A 24"Ø AREA AROUND EACH MANHOLE.

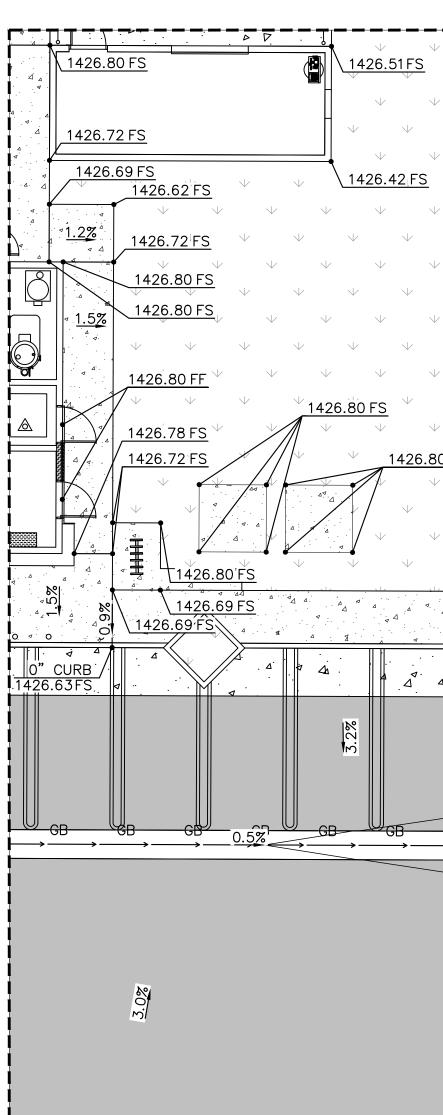
- SUB-BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN 1.5% OF OPTIMUM.
- 3. STONE BASE MUST BE COMPACTED TO 95% STANDARD PROCTOR WITH A WATER CONTENT WITHIN
- 1.5% OF OPTIMUM.
   PRIOR TO INSTALLING BITUMINOUS PAVING CONTRACTOR IS TO PROOF-ROLL SUB-BASE USING HEAVY, PNEUMATIC-TIRED ROLLERS TO LOCATE AREAS THAT ARE UNSTABLE OR THAT REQUIRE
- FURTHER COMPACTION. NOTIFY CONSTRUCTION MANAGER IN WRITING OF ANY UNSATISFACTORY CONDITIONS. DO NOT BEGIN PAVING INSTALLATION UNTIL THESE CONDITIONS HAVE BEEN SATISFACTORILY CORRECTED. 5. ASPHALT PAVING @ EDGE OF CONCRETE PAD FOR THE TRUCK CANOPY SHOULD BE LAID @1/4"
- HIGHER THAN CONCRETE PAD ON EXIT SIDE CANOPY. 6. CONCRETE COLLAR IS REQUIRED FOR ALL STRUCTURES IN






|           |      | CITY OF PERRIS              | SEE PROFESSIONAL SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K        |
|-----------|------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|           |      | APPROVED BY:                | SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>RCE NO. 78274<br>C / V \ \ SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>SHEA-M | 765 T    |
| REVISIONS | DATE | CONTRACT CITY ENGINEER DATE | OF CALLEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHEA-MIC |


| LEGEND                       |                     |                                      | ABE            |
|------------------------------|---------------------|--------------------------------------|----------------|
|                              | PROPERTY LINE CIVIL | STANDARD DUTY<br>CONCRETE            | EG<br>FF       |
|                              | LIMITS OF WORK      | PAVEMENT                             |                |
|                              | CENTER LINE         | HEAVY DUTY                           | FS<br>FG       |
|                              | SETBACKS            | CONCRETE                             | FL             |
|                              | EASEMENT LINE       | PAVEMENT                             | GB<br>HP       |
| GB                           | GRADE BREAK         | HEAVY DUTY<br>ASPHALT                | N.A.P          |
| R                            | RIDGE LINE          | PAVEMENT                             | TC<br>TG<br>TP |
| (1422.27 TC)<br>(1421.77 TP) | PROPOSED ELEVATION  | STANDARD DUTY<br>ASPHALT<br>PAVEMENT | TP             |
| 1422.27 TC<br>1421.77 TP     | EXISTING ELEVATION  | LANDSCAPE/<br>PLANTER AREA           |                |
| <u>1.2%</u>                  | SLOPE               | DECORATIVE                           |                |
|                              | DETECTABLE WARNINGS | PAVEMENT                             |                |
| GRADING NC                   | TES                 |                                      |                |
|                              |                     |                                      |                |






9

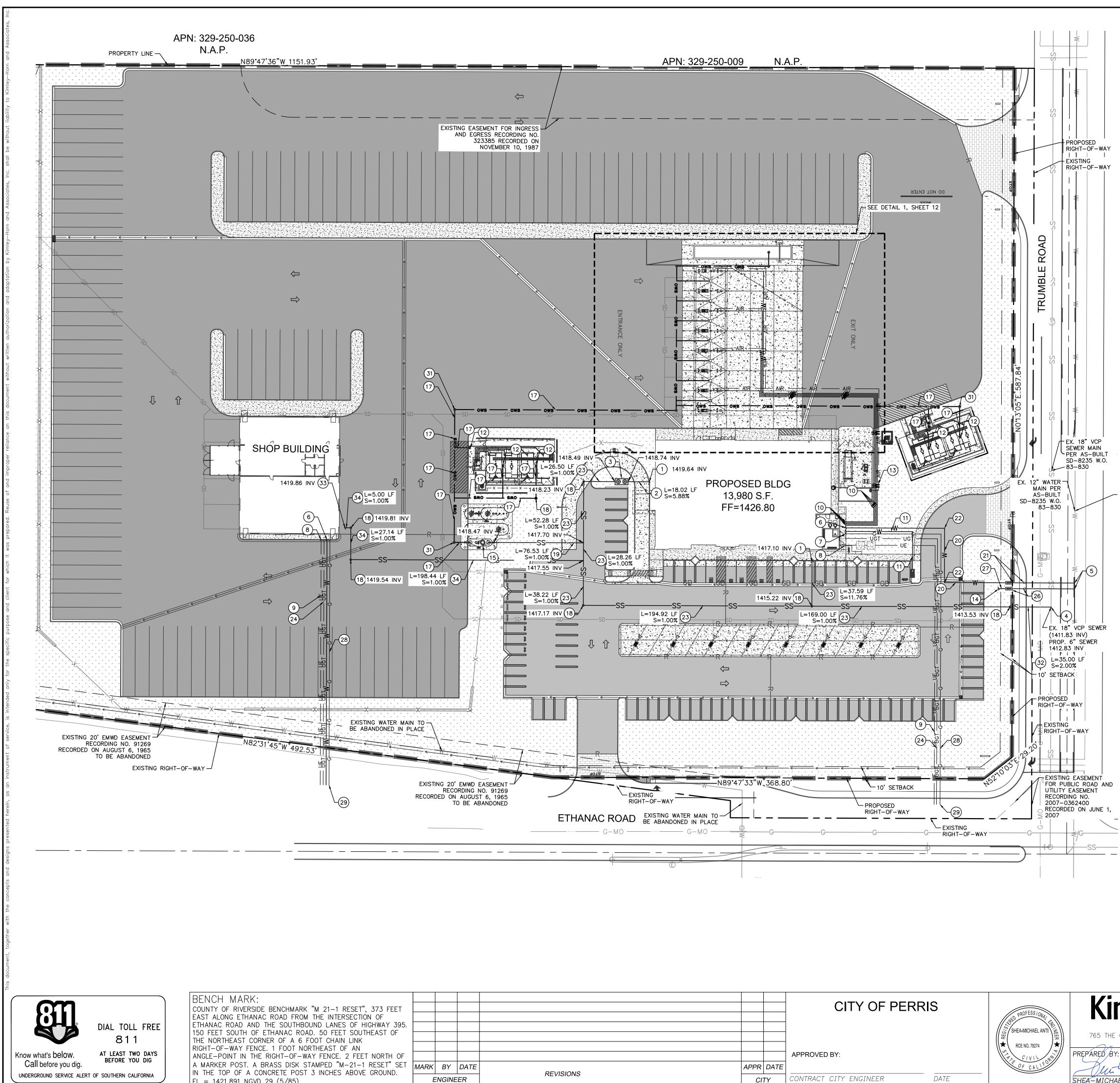
- 1. CONTRACTOR TO VERIFY ALL EXISTING TOPOGRAPHY AND STRUCTURES ON THE SITE AND IMMEDIATELY NOTIFY THE ENGINEER OF ANY DISCREPANCIES
- 2. ALL PAVEMENT SPOT GRADE ELEVATIONS AND RIM ELEVATIONS WITHIN OR ALONG CURB AND GUTTER REFER TO FLOW LINE ELEVATIONS UNLESS
- 3. ALL ELEVATIONS SHOWN DEPICT FINISHED GRADE OR EDGE OF PAVEMENT UNLESS OTHERWISE NOTED. GENERAL CONTRACTOR TO COORDINATE WITH EXCAVATION, LANDSCAPE AND PAVING SUBCONTRACTORS REGARDING TOPSOIL THICKNESS FOR LANDSCAPE AREAS AND PAVEMENT SECTION THICKNESS





Miller AFT.

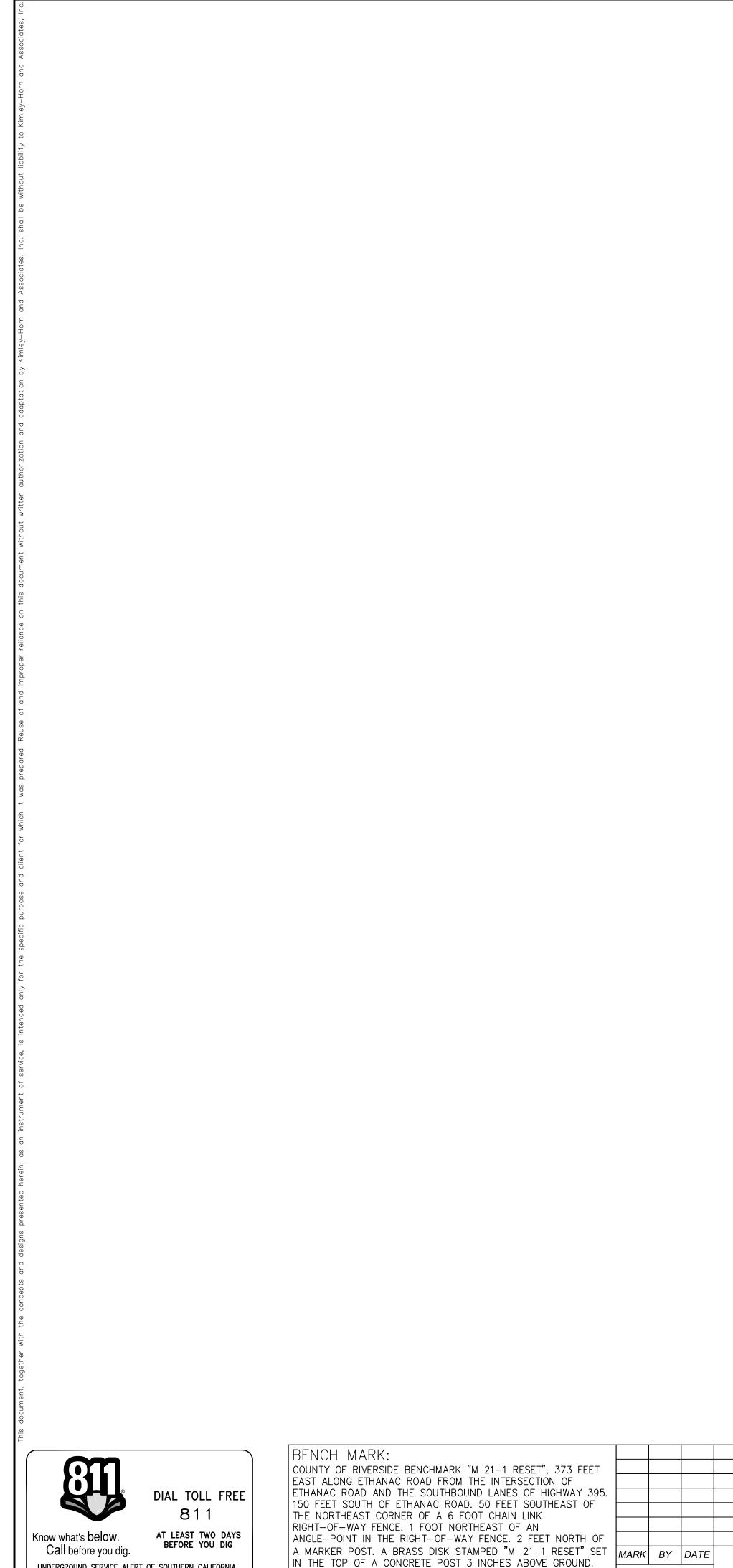
6/8/2022


| [            | LEGEND                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         | ABBREVI                                                             | ATIONS:                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STANDARD DUTY<br>CONCRETE<br>PAVEMENT<br>HEAVY DUTY<br>CONCRETE<br>PAVEMENT |                                                                                                         | FF FINISH<br>ELEVA<br>FS FINISH<br>FG FINISH<br>FL FLOW<br>GB GRADE | SURFACE<br>GROUND<br>LINE<br>BREAK |
|              | GB                                                                                                                                                | GRADE BREAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEAVY DUTY<br>ASPHALT<br>PAVEMENT                                           |                                                                                                         | N.A.P NOT A<br>TC TOP C                                             | POINT<br>PART<br>F CURB<br>F GRATE |
|              | (1422.27 TC)<br>(1421.77 TP)                                                                                                                      | PROPOSED ELEVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STANDARD DUTY<br>ASPHALT<br>PAVEMENT                                        |                                                                                                         |                                                                     | F PAVEMENT                         |
|              | 1422.27 TC<br>1421.77 TP                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LANDSCAPE/<br>PLANTER AREA                                                  |                                                                                                         |                                                                     |                                    |
|              | <u>1.2%</u>                                                                                                                                       | SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DECORATIVE<br>PAVEMENT                                                      |                                                                                                         |                                                                     |                                    |
|              | GRADING NO                                                                                                                                        | OTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                                         |                                                                     |                                    |
|              | 1. CONTRACTOR TO<br>PRIOR TO STARTIN                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DGRAPHY AND STRUCTURES                                                      | ON THE SITE AND IMMEDIATELY NOTIFY TH                                                                   | HE ENGINEER OF ANY                                                  | DISCREPANCIES                      |
|              | 2. ALL PAVEMENT SP<br>OTHERWISE NOTED                                                                                                             | POT GRADE ELEVATIONS A<br>).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND RIM ELEVATIONS WITHIN                                                    | OR ALONG CURB AND GUTTER REFER TO                                                                       | FLOW LINE ELEVATIONS                                                | S UNLESS                           |
|              | EXCAVATION, LANI                                                                                                                                  | DSCAPE AND PAVING SUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONTRACTORS REGARDING                                                       | ENT UNLESS OTHERWISE NOTED. GENERAL<br>TOPSOIL THICKNESS FOR LANDSCAPE AREA<br>ISH SUBGRADE ELEVATIONS. |                                                                     |                                    |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IAN 2:1, UNLESS OTHERWIS                                                    | E NOTED.<br>S SHALL NOT EXCEED 2.0% IN ALL DIRECTI                                                      | 10NS.                                                               |                                    |
|              | 6. MAXIMUM RUNNING                                                                                                                                | G SLOPE SHALL NOT EXCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ED 5% AND CROSS SLOPE                                                       | SHALL NOT EXCEED 2% ON ALL SIDEWALKS                                                                    |                                                                     | UTES.                              |
|              |                                                                                                                                                   | ELEVATIONS AT THE PROP<br>DRAIN PLANS FOR INLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         |                                                                     |                                    |
|              |                                                                                                                                                   | PAVING SPECIFICATION PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             | NOR TO COMMENCEMENT OF WORK.                                                                            |                                                                     |                                    |
|              | 11. ALL WORK DETAIL                                                                                                                               | ED ON THESE PLANS TO I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | S OTHERWISE STATED OR PROVIDED HEREON                                                                   | N, SHALL BE CONSTRU                                                 | CTED IN                            |
|              | · · · · · · · · · · · · · · · · · · ·                                                                                                             | $\psi$ $\psi$ $\psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\psi$ $\psi$ $\psi$                                                        | $\psi$ $\psi$                                                                                           |                                                                     |                                    |
| $\checkmark$ | $\vee$ $\vee$ $\vee$                                                                                                                              | $\psi \qquad \psi \qquad \psi \qquad \psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall  \forall  \forall$                                                 |                                                                                                         |                                                                     |                                    |
| $\checkmark$ | $\checkmark \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                                         |                                                                     |                                    |
|              | $\checkmark$ $\lor$ $\lor$                                                                                                                        | $\psi$ $\psi$ $\psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\psi$                                                                      |                                                                                                         |                                                                     |                                    |
| $\checkmark$ |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         |                                                                     |                                    |
| $\checkmark$ |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         |                                                                     |                                    |
| $\checkmark$ | $\psi$ $\psi$ $\psi$                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         |                                                                     |                                    |
| $\checkmark$ | $\checkmark \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$ | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                                                                           | 1426.37 TC                                                                                              |                                                                     |                                    |
|              | $\checkmark$ $\lor$ $\lor$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | 1425.87 FL                                                                                              |                                                                     |                                    |
| $\checkmark$ |                                                                                                                                                   | $\psi = \left( \begin{array}{c} \psi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                         |                                                                     |                                    |
| <u>FS</u>    |                                                                                                                                                   | $\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ $ |                                                                             |                                                                                                         |                                                                     |                                    |
| $\checkmark$ | $\psi$ $\psi$ $\psi$                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /                                                                           |                                                                                                         |                                                                     |                                    |
| $\checkmark$ | $\checkmark$ $\psi$ $\psi$ $\psi$ $\psi$ $1426.69$ FS                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .66 TC                                                                      | $\downarrow$                                                                                            |                                                                     |                                    |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .16 TP<br>.63 TC                                                            |                                                                                                         |                                                                     |                                    |
| -<br>-<br>   |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .13 TP                                                                      | $\downarrow$                                                                                            |                                                                     |                                    |
| · · ·        | <u>0" CURB</u><br>1426.60FS                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .60 TC<br>.10 TP                                                            |                                                                                                         |                                                                     |                                    |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | 1426.10 TC<br>1425.60 TG                                                                                |                                                                     |                                    |
|              | <u>1426.49 TC</u><br>1425.99 FL                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 <b>_ 6</b>                                                                |                                                                                                         |                                                                     |                                    |
|              | GB                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         |                                                                     |                                    |
| →            | → → → → → → → → → → → → → → → → → → →                                                                                                             | 1425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>.27 TC</u><br>.77 FL                                                     | <u>1426.15 TC</u><br>1425.65 TP                                                                         |                                                                     |                                    |
|              | 1425.79<br>1426.30                                                                                                                                | FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                                                                         |                                                                     |                                    |
|              | 1425.80                                                                                                                                           | r L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                                                                         |                                                                     |                                    |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                          |                                                                                                         |                                                                     | $\mathcal{I}$                      |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6%                                                                        |                                                                                                         | NORTI                                                               | ップ                                 |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         | T                                                                   |                                    |
|              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                         | GRAPHIC SCALE                                                       | E IN FEET<br>80                    |
|              | DETAIL 2                                                                                                                                          | 2 ক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                                                                         | 1" = 4(                                                             | o'                                 |
| -            | 1"=10'                                                                                                                                            | NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                                                                         | WHEN PRINTED AT<br>(24"X36                                          | FULL SIZE                          |
| in           |                                                                                                                                                   | Uara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                                         |                                                                     | SHEET NO.                          |
|              | nley»                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRELIMIN                                                                    | GRADING PLAN<br>ARY PRECISE GRADIN                                                                      | IG PLAN                                                             | 10                                 |
| HE CIT       | Y DRIVE SUITE 200, C<br>PHONE: 714-939-1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ETHANAC                                                                     | PILOT PERRIS<br>ROAD AND TRUMBLE                                                                        | ROAD                                                                | . •                                |

OF 16 SHTS

FILE NO.:

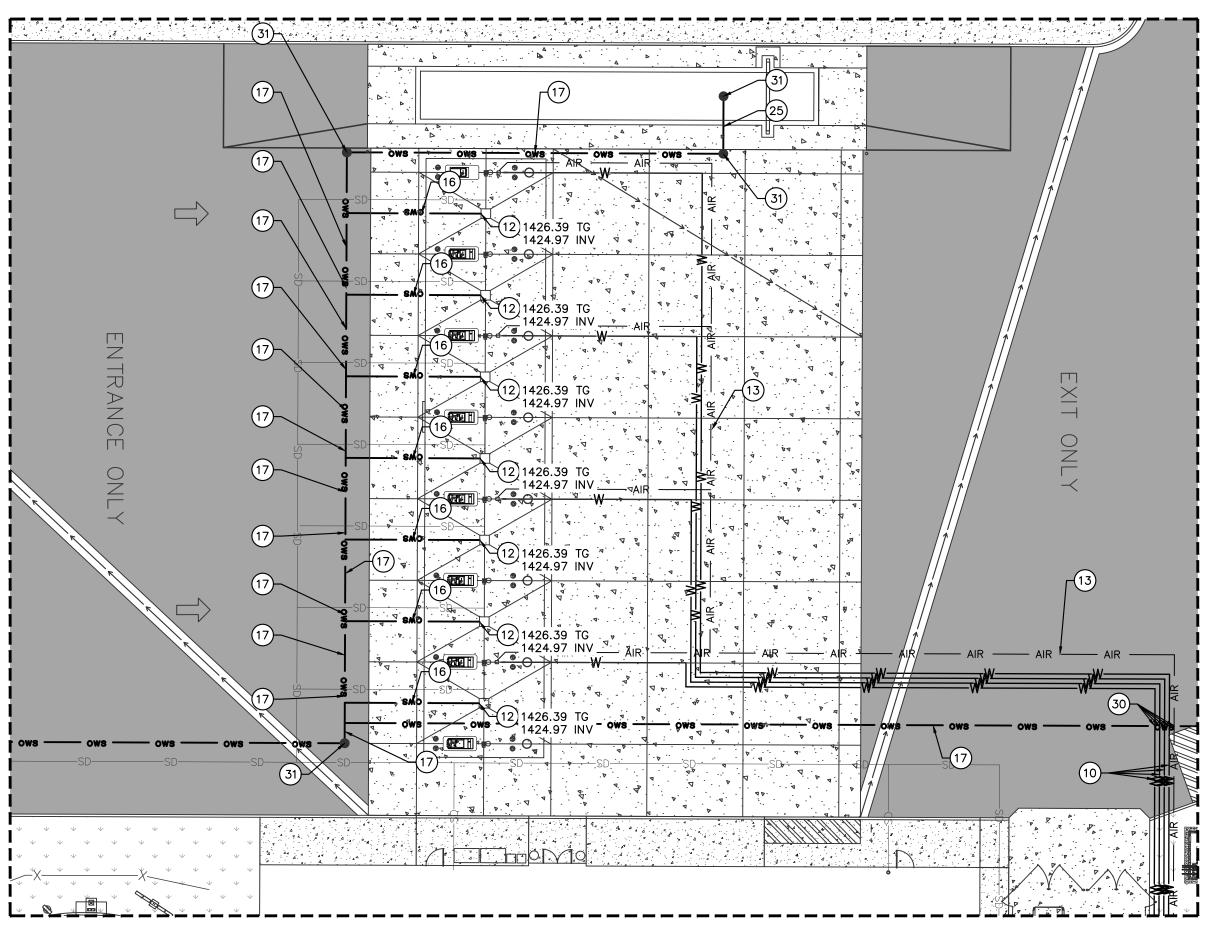
APN: 329-250-011 & 329-250-012


PROJECT NUMBER: 095426010

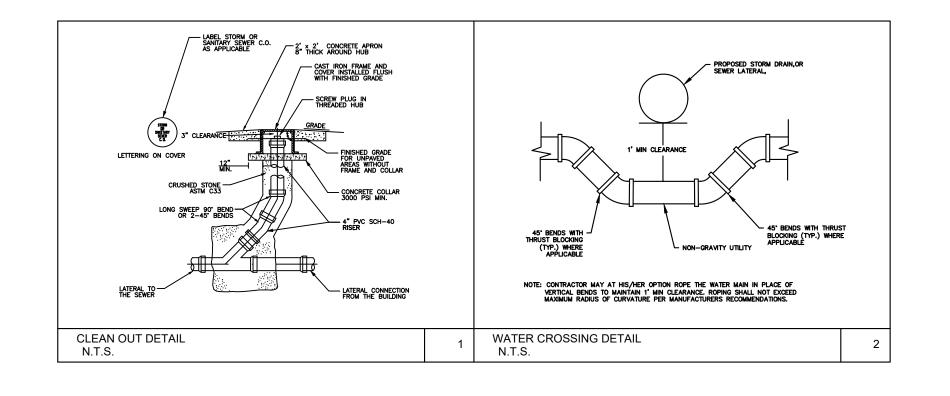


EL = 1421.891 NGVD 29 (5/85)

|           |           | CITY OF PERRIS              |                                      | <b>Kimley</b> »Horn                                                                   | UTILITY PLAN                                  | SHEET NO. |
|-----------|-----------|-----------------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-----------|
|           |           | _                           | PROFESS/ONAL<br>SC SHEA-MICHAEL ANTI |                                                                                       | PRELIMINARY PRECISE GRADING PLAN              | 11        |
|           |           |                             | RCE NO. 78274                        | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030<br>PREPARED BY: | PILOT PERRIS<br>ETHANAC ROAD AND TRUMBLE ROAD |           |
|           | APPR DATE | APPROVED BY:                | PAR OF CALLEOR                       | K. Alala                                                                              | APN: 329-250-011 & 329-250-012                | OF 16 SHT |
| REVISIONS | CITY      | CONTRACT CITY ENGINEER DATE |                                      | SHEA-MICHAEL ANTI R.C.E 78274 6/8/2022<br>DATE                                        | PROJECT NUMBER: 095426010 FILE NO             | J.:       |


| LEGEND                                                                                                                                                                                   |                                                                                                               |                                                      |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                          |                                                                                                               | 7                                                    |                                     |
|                                                                                                                                                                                          | PROPERTY LINE CIVIL                                                                                           |                                                      |                                     |
|                                                                                                                                                                                          | LIMITS OF WORK<br>CENTER LINE                                                                                 |                                                      |                                     |
|                                                                                                                                                                                          | SETBACKS                                                                                                      |                                                      |                                     |
|                                                                                                                                                                                          | EASEMENT LINE                                                                                                 |                                                      |                                     |
| SS<br>SD                                                                                                                                                                                 | PROPOSED SANITARY SEWER<br>PROPOSED STORM DRAIN PIPE                                                          |                                                      |                                     |
| AIR                                                                                                                                                                                      | PROPOSED AIR                                                                                                  |                                                      |                                     |
| W                                                                                                                                                                                        | PROPOSED WATER PIPE                                                                                           |                                                      |                                     |
| OWS                                                                                                                                                                                      | PROPOSED OIL WATER SEPARATOR<br>PROPOSED TELEPHONE LINE                                                       |                                                      |                                     |
| UE                                                                                                                                                                                       | PROPOSED UNDERGROUND ELECTRIC                                                                                 |                                                      |                                     |
|                                                                                                                                                                                          |                                                                                                               |                                                      |                                     |
|                                                                                                                                                                                          |                                                                                                               |                                                      |                                     |
|                                                                                                                                                                                          | I CONSTRUCTION NOTES                                                                                          |                                                      |                                     |
|                                                                                                                                                                                          | CONNECT TO 6" BUILDING SANITARY SEWER LINE.                                                                   |                                                      |                                     |
| 0                                                                                                                                                                                        | CONNECT 10 6 BUILDING SANITART SEWER LINE.                                                                    | . ,                                                  | T FLEVATION AT THE                  |
| (2) CONTRACTOR TO<br>GREASE TRAP OU                                                                                                                                                      |                                                                                                               | Dolebing to the one as invent                        |                                     |
| 3 INSTALL GREASE                                                                                                                                                                         | TRAP. REFER TO MEP PLANS FOR MORE INFORMA                                                                     | 10N.                                                 |                                     |
|                                                                                                                                                                                          | (ISTING 18" VCP SEWER MAIN PER EMWD STANDAF<br>AT CONNECTION PRIOR TO COMMENCEMENT OF V                       |                                                      |                                     |
| DISCREPANCIES.                                                                                                                                                                           |                                                                                                               |                                                      |                                     |
| $\sim$                                                                                                                                                                                   | ISTING 12" WATER MAIN. CONTRACTOR TO COORD                                                                    |                                                      |                                     |
| $\overset{\circ}{\sim}$                                                                                                                                                                  | CONNECT TO 2" WATER SERVICE LINE AT THE BU                                                                    | LDING. WATER SERVICE LINE SHALL BE CO                | JPPER.                              |
| $\overset{\smile}{\sim}$                                                                                                                                                                 | CONNECT TO 3" GAS LINE AT THE BUILDING.                                                                       |                                                      |                                     |
| $\overset{\circ}{\sim}$                                                                                                                                                                  | INSTALL ELECTRICAL SERVICE LINE FROM ELECTRIC                                                                 |                                                      |                                     |
|                                                                                                                                                                                          | INSTALL AND/OR COORDINATE ELECTRICAL SERVIC<br>Y BRINGS SERVICE.                                              | E LINE FROM ELECTRICAL TRANSFORMER                   | TO THE LOCATION WHERE               |
|                                                                                                                                                                                          | INSTALL 3/4" PEX WATER LINES INSIDE OF 2" PV                                                                  |                                                      |                                     |
| BE PROVIDED ANI                                                                                                                                                                          | D AND INSTALLED BY CONTRACTOR) LOCATED AT<br>D INSTALLED BY CONTRACTOR. SEE CIVIL SHEETS                      | VERY OTHER TRUCK FUELING ISLAND. PE><br>FOR DETAILS. | X AND PVC SLEEVE TO                 |
|                                                                                                                                                                                          | INSTALL 1/2" PEX WATER LINE INSIDE OF 2" PVC                                                                  |                                                      | ATER STAND (TYP. (1)                |
| $\frown$                                                                                                                                                                                 | SLEEVE TO BE PROVIDED AND INSTALLED BY CO                                                                     |                                                      |                                     |
| $\overset{\circ}{\sim}$                                                                                                                                                                  | ICATED TRUCK ISLAND CATCH BASIN 2' BY 2' FO                                                                   |                                                      |                                     |
|                                                                                                                                                                                          | INSTALL 1/2" COPPER AIR LINE FROM AIR COMPR<br>AT EVERY OTHER TRUCK FUELING ISLAND. SEE TO                    |                                                      | ING TO THE TRUCK AIR                |
| 14 REFER TO LANDS                                                                                                                                                                        | CAPE AND IRRIGATION PLANS FOR CONTINUATION.                                                                   |                                                      |                                     |
| 15 PROPOSED OIL/W                                                                                                                                                                        | ATER SEPARATOR.                                                                                               |                                                      |                                     |
|                                                                                                                                                                                          | INSTALL 4" SCHEDULE 40 PVC PIPE AND GLUED I<br>NO "FERNCO" TYPE FITTINGS ALLOWED AT ANY PA                    |                                                      | CATCH BASIN – TYPICAL               |
|                                                                                                                                                                                          | INSTALL 6" SCHEDULE 40 PVC PIPE AND GLUED I                                                                   |                                                      |                                     |
|                                                                                                                                                                                          | OR. INVERT ELEVATION AT INTERCEPTOR INLET PE                                                                  |                                                      |                                     |
| $\frown$                                                                                                                                                                                 | LEANOUT PER DETAIL 1, SHEET 12.                                                                               |                                                      |                                     |
| $\bigcirc$                                                                                                                                                                               | FURNISH AND INSTALL 6" SCHEDULE 40 PVC PIPE                                                                   | AND GLUED FITTINGS FROM OIL/WATER S                  | SEPARATOR TO THE                    |
| SEWER PIPE. INVE                                                                                                                                                                         | RT ELEVATION AT OIL/WATER SEPARATOR OUTLET<br>CO" TYPE FITTINGS ALLOWED AT ANY PART OF THE                    | PER PLAN. INVERT ELEVATION AT THE S                  |                                     |
| $\sim$                                                                                                                                                                                   | COPPER WATER SERVICE LINE. MAINTAIN 3' MINIMU                                                                 |                                                      |                                     |
|                                                                                                                                                                                          | ETER AND BACKFLOW PREVENTOR. CONTRACTOR                                                                       |                                                      | OVIDER.                             |
| 22) INSTALL 90° DOMI                                                                                                                                                                     | ESTIC WATER PIPE BEND.                                                                                        |                                                      |                                     |
| 23) INSTALL 6" SDR-                                                                                                                                                                      | 35 PVC AT MINIMUM 1% SLOPE.                                                                                   |                                                      |                                     |
|                                                                                                                                                                                          | INSTALL (2) 4" PVC SCH 40 CONDUIT BURIED TO                                                                   |                                                      |                                     |
| RIGHT ANGLES), N                                                                                                                                                                         | TELEPHONE SERVICE, TO LOCATION WHERE LOCAL<br>IO MORE THAN THREE 90 DEGREE TURNS WITHOU                       |                                                      |                                     |
| $\sim$                                                                                                                                                                                   | UIRE A PULL BOX.                                                                                              |                                                      |                                     |
| $\bigcup_{i=1}^{n}$                                                                                                                                                                      | INSTALL 3" PVC FROM TRUCK SCALE SUMP TO 6                                                                     |                                                      |                                     |
| $\sim$                                                                                                                                                                                   | TION METER AND 1.5" BACKFLOW PREVENTOR. CO                                                                    |                                                      |                                     |
| $\succeq$                                                                                                                                                                                | TION WATER SERVICE LINE. CONTRACTOR TO COO                                                                    | INATE WITH UTILITY SERVICE PURVEYOR.                 | •                                   |
| $\overset{\smile}{\sim}$                                                                                                                                                                 | INE. COORDINATE WITH GAS UTILITY COMPANY.                                                                     |                                                      |                                     |
| $\simeq$                                                                                                                                                                                 | MAINTAIN A VERTICAL SEPARATION OF A MINIMUM                                                                   | OF 1-FOOT FOR ALL UTILITY CROSSINGS                  | SHOWN ON THIS PLAN                  |
| PER DETAIL 2, SH                                                                                                                                                                         |                                                                                                               |                                                      |                                     |
| (31) CLEANOUT FOR O                                                                                                                                                                      | IL/WATER SEPARATOR. REFER TO MEP PLANS FOR                                                                    | MORE INFORMATION.                                    |                                     |
| (32) INSTALL 6" VCP                                                                                                                                                                      | SEWER LATERAL AT MINIMUM 2% SLOPE.                                                                            |                                                      |                                     |
| (33) CONTRACTOR TO                                                                                                                                                                       | CONNECT TO 4" BUILDING SANITARY SEWER LINE.                                                                   | (4.00' MIN. BELOW FF)                                |                                     |
| (34) INSTALL 4" SDR-<br>EXISTING UT                                                                                                                                                      | 35 PVC AT MINIMUM 1% SLOPE.                                                                                   |                                                      |                                     |
|                                                                                                                                                                                          |                                                                                                               |                                                      |                                     |
| CONTRACTOR MUST                                                                                                                                                                          | TIES SHOWN ON THE PLAN ARE BASED ON AVAIL<br>FIELD DETERMINE THE LOCATION AND DEPTH OF                        | ALL UTILITIES PRIOR TO ANY                           |                                     |
|                                                                                                                                                                                          | PORT DISCREPANCIES AND POTENTIAL CONFLICTS<br>) INSTALLATION OF ANY PIPING.                                   | WIH PROPOSED UTILITIES TO                            |                                     |
|                                                                                                                                                                                          | F EXISTING WATER MAIN TO BE DONE BY AND CO<br>ONTRACTOR SHALL NOTIFY ALL AFFECTED WATER                       |                                                      |                                     |
| ADVANCE OF SHUT                                                                                                                                                                          |                                                                                                               |                                                      |                                     |
| GENERAL NO                                                                                                                                                                               | DTES                                                                                                          |                                                      |                                     |
|                                                                                                                                                                                          | RK PERFORMED IN THE RIGHT-OF-WAY A PERMIT<br>PERRIS IS REQUIRED.                                              |                                                      |                                     |
|                                                                                                                                                                                          | COVERS/GRATES AND CLEANOUT/MANHOLE<br>TO VEHICULAR LOADS SHALL BE TRAFFIC RATED.                              |                                                      | NORTH /                             |
| COVERS EVROSED                                                                                                                                                                           | PE BEDDING & ROADWAY PAVEMENT REPAIRS<br>CATIONS, TRENCH AND BACKFILL PER EMWD                                |                                                      | $\bigvee$                           |
| COVERS EXPOSED<br>3. FOR TRENCHING, PI                                                                                                                                                   |                                                                                                               |                                                      | I                                   |
| COVERS EXPOSED<br>3. FOR TRENCHING, PI<br>DETAILS & SPECIFI<br>STANDARDS AND S                                                                                                           |                                                                                                               |                                                      |                                     |
| COVERS EXPOSED<br>3. FOR TRENCHING, PI<br>DETAILS & SPECIFI<br>STANDARDS AND S<br>4. STUB POINT OF CO<br>PLAN FOR CONTINU                                                                |                                                                                                               |                                                      | GRAPHIC SCALE IN FEET               |
| COVERS EXPOSED<br>3. FOR TRENCHING, PI<br>DETAILS & SPECIFI<br>STANDARDS AND S<br>4. STUB POINT OF CO<br>PLAN FOR CONTINU<br>5. CONTRACTOR TO M                                          | ATION OF BUIDING.<br>AINTAIN A VERTICAL SEPARATION OF A MINIMUM<br>L UTILITY CROSSINGS SHOWN ON THIS PLAN PER |                                                      | GRAPHIC SCALE IN FEET<br>0 20 40 80 |
| COVERS EXPOSED<br>3. FOR TRENCHING, PI<br>DETAILS & SPECIFI<br>STANDARDS AND S<br>4. STUB POINT OF CC<br>PLAN FOR CONTINU<br>5. CONTRACTOR TO M<br>OF 1-FOOT FOR AI<br>DETAIL X, SHEET X | ATION OF BUIDING.<br>AINTAIN A VERTICAL SEPARATION OF A MINIMUM<br>L UTILITY CROSSINGS SHOWN ON THIS PLAN PER |                                                      |                                     |




EL = 1421.891 NGVD 29 (5/85)

UNDERGROUND SERVICE ALERT OF SOUTHERN CALIFORNIA

ENGINEER

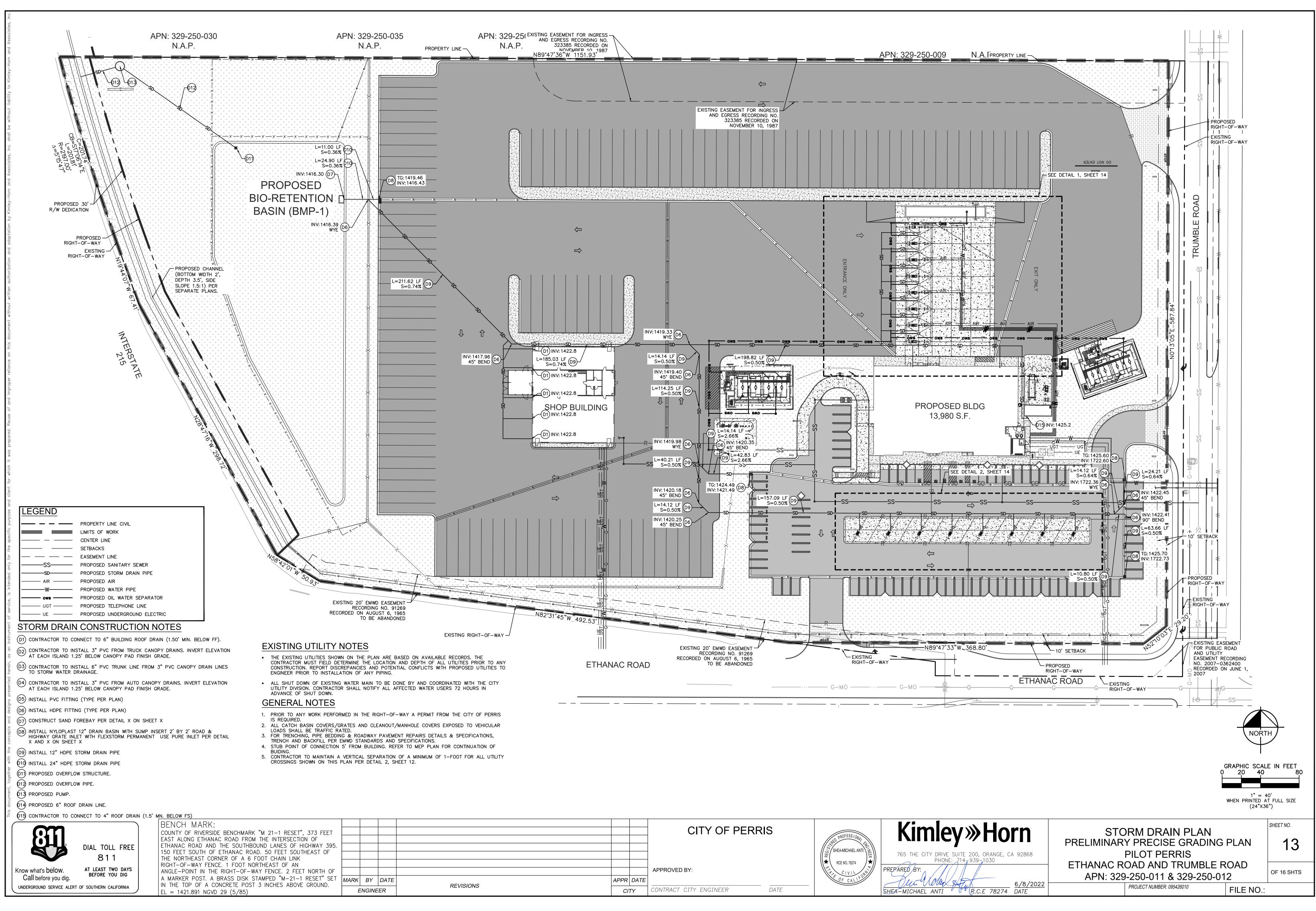


DETAIL 1 1"=20'



|           |           | CITY OF PERRIS              | LER PROFESS/ONAL SHE                                    | <b>Kimley</b> »Horn                                                   |
|-----------|-----------|-----------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
|           |           |                             | SHEA-MICHAEL ANTI<br>SHEA-MICHAEL ANTI<br>RCE NO. 78274 | 765 THE CITY DRIVE SUITE 200, ORANGE, CA 92868<br>PHONE: 714-939-1030 |
|           |           | APPROVED BY:                | CIVIL CIVIL                                             | PREPARED BY:                                                          |
| REVISIONS | APPR DATE |                             | COF CALIFO                                              | Au Ulle 57, 6/8/2022                                                  |
| REVISIUNS | CITY      | CONTRACT CITY ENGINEER DATE |                                                         | SHEA-MICHAEL ANTI R.C.E 78274 DATE                                    |

| LEGEND |                               |
|--------|-------------------------------|
|        | PROPERTY LINE CIVIL           |
|        | LIMITS OF WORK                |
|        | CENTER LINE                   |
|        | SETBACKS                      |
|        | EASEMENT LINE                 |
| SS     | PROPOSED SANITARY SEWER       |
| SD     | PROPOSED STORM DRAIN PIPE     |
| AIR    | PROPOSED AIR                  |
| W      | PROPOSED WATER PIPE           |
| ows    | PROPOSED OIL WATER SEPARATOR  |
| UGT    | PROPOSED TELEPHONE LINE       |
| UE     | PROPOSED UNDERGROUND ELECTRIC |




UTILITY PLAN BLOW UPS PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:

SHEET NO.

12

OF 16 SHTS

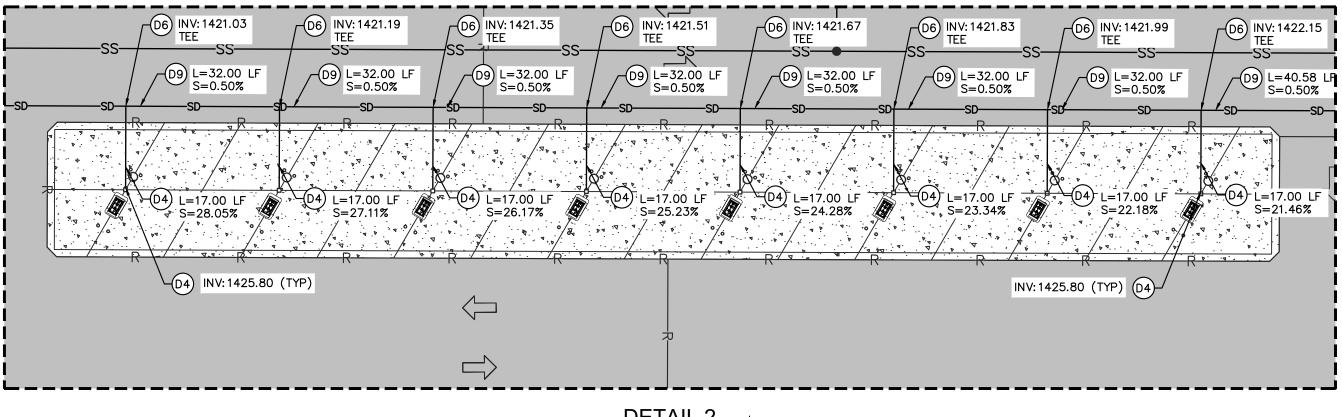


|           |           | CITY OF PERRIS              | PROFESS/ONAL                                             |
|-----------|-----------|-----------------------------|----------------------------------------------------------|
|           |           | APPROVED BY:                | RCE NO. 78274<br>C I V V V V V V V V V V V V V V V V V V |
| REVISIONS | APPR DATE |                             | OF CALLED                                                |
|           | CITY      | CONTRACT CITY ENGINEER DATE | SHEA-I                                                   |

|                                      | CENTER LINE                                                     |                                                 |                                                                                                    |
|--------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                      | SETBACKS                                                        |                                                 |                                                                                                    |
|                                      | EASEMENT LINE                                                   |                                                 |                                                                                                    |
| SS                                   | PROPOSED SANITARY SEWE                                          | R                                               |                                                                                                    |
| SD                                   | PROPOSED STORM DRAIN P                                          | IPE                                             |                                                                                                    |
| AIR                                  | PROPOSED AIR                                                    |                                                 |                                                                                                    |
| W                                    | PROPOSED WATER PIPE                                             |                                                 |                                                                                                    |
| ows                                  | PROPOSED OIL WATER SEP                                          | ARATOR                                          |                                                                                                    |
| UGT                                  | PROPOSED TELEPHONE LINE                                         | Ξ                                               |                                                                                                    |
| UE                                   | PROPOSED UNDERGROUND                                            | ELECTRIC                                        |                                                                                                    |
| STORM DRAI                           | N CONSTRUCTION                                                  | N NOTES                                         | •                                                                                                  |
| CONTRACTOR TO C                      | CONNECT TO 6" BUILDING ROOF                                     | F DRAIN (1.50' MIN. BEL                         | DW FF).                                                                                            |
| CONTRACTOR TO IN<br>AT EACH ISLAND 1 | NSTALL 3" PVC FROM TRUCK (<br>.25' BELOW CANOPY PAD FINI        | CANOPY DRAINS. INVERT<br>SH GRADE.              | ELEVATION                                                                                          |
| 3 CONTRACTOR TO IN<br>TO STORM WATER | NSTALL 6" PVC TRUNK LINE FI<br>DRAINAGE.                        | ROM 3" PVC CANOPY DF                            | AIN LINES                                                                                          |
|                                      | NSTALL 3" PVC FROM AUTO C.<br>.25' BELOW CANOPY PAD FINI        |                                                 | ELEVATION                                                                                          |
| 5) INSTALL PVC FITTIN                | NG (TYPE PER PLAN)                                              |                                                 |                                                                                                    |
| 6 INSTALL HDPE FITT                  | ING (TYPE PER PLAN)                                             |                                                 |                                                                                                    |
| 7) CONSTRUCT SAND                    | FOREBAY PER DETAIL X ON S                                       | HEET X                                          |                                                                                                    |
|                                      | T 12" DRAIN BASIN WITH SUM<br>ILET WITH FLEXSTORM PERMAN<br>T X |                                                 |                                                                                                    |
| 9 INSTALL 12" HDPE                   | STORM DRAIN PIPE                                                |                                                 |                                                                                                    |
| I) INSTALL 24" HDPE                  | STORM DRAIN PIPE                                                |                                                 |                                                                                                    |
| 1) PROPOSED OVERFL                   | OW STRUCTURE.                                                   |                                                 |                                                                                                    |
| PROPOSED OVERFL                      | OW PIPE.                                                        |                                                 |                                                                                                    |
| B PROPOSED PUMP.                     |                                                                 |                                                 |                                                                                                    |
| PROPOSED 6" ROO                      | F DRAIN LINE.                                                   |                                                 |                                                                                                    |
|                                      | DIAL TOLL FREE<br>811                                           | EAST ALONG ET<br>ETHANAC ROAD<br>150 FEET SOUTH | RK:<br>ERSIDE BENCHMARK<br>HANAC ROAD FROM<br>AND THE SOUTHBC<br>OF ETHANAC ROA<br>CORNER OF A 6 F |

AT LEAST TWO DAYS

BEFORE YOU DIG

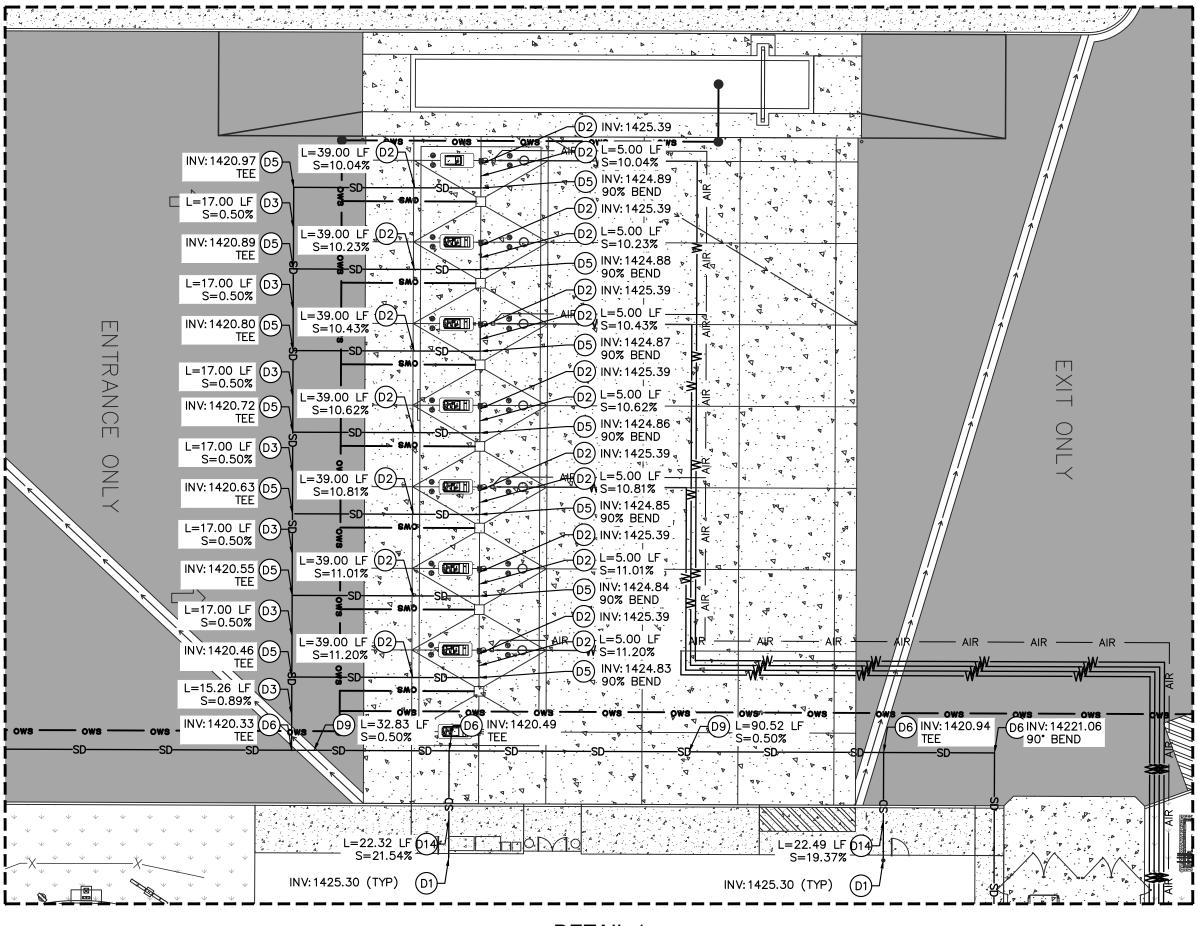

Know what's **below**.

Call before you dig.

UNDERGROUND SERVICE ALERT OF SOUTHERN CALIFORNIA

LEGEND

LIMITS OF WORK




## EXISTING UTILITY NOTES

- THE EXISTING UTILITIES SHOWN ON THE PLAN ARE BASED ON AVAILABLE RECORDS. THE CONTRACTOR MUST FIELD DETERMINE THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION. REPORT DISCREPANCIES AND POTENTIAL CONFLICTS WITH PROPOSED UTILITIES TO ENGINEER PRIOR TO INSTALLATION OF ANY PIPING.
- ALL SHUT DOWN OF EXISTING WATER MAIN TO BE DONE BY AND COORDINATED WITH THE CITY
   UTILITY DIVISION. CONTRACTOR SHALL NOTIFY ALL AFFECTED WATER USERS 72 HOURS IN ADVANCE OF SHUT DOWN. **GENERAL NOTES**
- 1. PRIOR TO ANY WORK PERFORMED IN THE RIGHT-OF-WAY A PERMIT FROM THE CITY OF PERRIS
- IS REQUIRED. 2. ALL CATCH BASIN COVERS/GRATES AND CLEANOUT/MANHOLE COVERS EXPOSED TO VEHICULAR
- LOADS SHALL BE TRAFFIC RATED. 3. FOR TRENCHING, PIPE BEDDING & ROADWAY PAVEMENT REPAIRS DETAILS & SPECIFICATIONS,
- TRENCH AND BACKFILL PER EMWD STANDARDS AND SPECIFICATIONS. 4. STUB POINT OF CONNECTION 5' FROM BUILDING. REFER TO MEP PLAN FOR CONTINUATION OF
- BUIDING.
- 5. CONTRACTOR TO MAINTAIN A VERTICAL SEPARATION OF A MINIMUM OF 1-FOOT FOR ALL UTILITY CROSSINGS SHOWN ON THIS PLAN PER DETAIL X, SHEET XX.

| ENCH MARK:                                            |    |
|-------------------------------------------------------|----|
| DUNTY OF RIVERSIDE BENCHMARK "M 21–1 RESET", 373 FEET |    |
| ST ALONG ETHANAC ROAD FROM THE INTERSECTION OF        |    |
| HANAC ROAD AND THE SOUTHBOUND LANES OF HIGHWAY 395.   |    |
| 0 FEET SOUTH OF ETHANAC ROAD. 50 FEET SOUTHEAST OF    |    |
| E NORTHEAST CORNER OF A 6 FOOT CHAIN LINK             |    |
| GHT-OF-WAY FENCE. 1 FOOT NORTHEAST OF AN              |    |
| IGLE-POINT IN THE RIGHT-OF-WAY FENCE. 2 FEET NORTH OF |    |
| MARKER POST. A BRASS DISK STAMPED "M-21-1 RESET" SET  | MA |
| THE TOP OF A CONCRETE POST 3 INCHES ABOVE GROUND.     |    |
| = 1421.891 NGVD 29 (5/85)                             |    |
|                                                       |    |

|                          |           |                   | CITY OF PERRIS              | Kimley»Horn                                                                                               |
|--------------------------|-----------|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|
|                          |           |                   | APPROVED BY:                | RCE NO. 78274<br>CIVIL STATE CITY DRIVE SUITE 200, ORANGE, CA 9286<br>PHONE: 714-939-1030<br>PREPARED BY: |
| MARK BY DATE<br>ENGINEER | REVISIONS | APPR DATE<br>CITY | CONTRACT CITY ENGINEER DATE | SHEA-MICHAEL ANTI B.C.E 78274 DATE                                                                        |



DETAIL 1 1"=20'

DETAIL 2 1"=20'





<u>6/8/2022</u>

STORM DRAIN PLAN BLOW UPS PRELIMINARY PRECISE GRADING PLAN **PILOT PERRIS** ETHANAC ROAD AND TRUMBLE ROAD APN: 329-250-011 & 329-250-012 PROJECT NUMBER: 095426010 FILE NO.:

SHEET NO.

14

OF 16 SHTS

## Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

# WQMP Project Report

#### **County of Riverside Stormwater Program**

Santa Ana River Watershed Geodatabase

Monday, August 16, 2021

Note: The information provided in this report and on the Stormwater Geodatabase for the County of Riverside Stormwater Program is intended to provide basic guidance in the preparation of the applicant�s Water Quality Management Plan (WQMP) and should not be relied upon without independent verification.

| Project Site Parcel Number(s):<br>Latitude/Longitude:<br>Thomas Brothers Page:                                                                             | 329250012, RW, 329250011, 329250009<br>33.744, -117.1866                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Site Acreage:<br>Watershed(s):                                                                                                                     | 14.52<br>SANTA ANA                                                                                                                                                                                                                                                                                                                                                        |
| This Project Site Resides in the following Hydrologic Unit(s) (HUC):                                                                                       | HUC Name - HUC Number<br>Perris Valley-San Jacinto River - 180702020306                                                                                                                                                                                                                                                                                                   |
| The HUCs Contribute stormwater<br>to the following 303d listed water<br>bodies and TMDLs which may<br>include drainage from your<br>proposed Project Site: |                                                                                                                                                                                                                                                                                                                                                                           |
| These 303d listed Water bodies<br>and TMDLs have the following<br>Pollutants of Concern (POC):                                                             | <ul> <li>Bacterial Indicators - Pathogens</li> <li>Nutrients - Nutrients, Organic Enrichment/Low</li> <li>Dissolved Oxygen</li> <li>Other Organics - PCBs (Polychlorinated biphenyls)</li> <li>Toxicity - Sediment Toxicity, Unknown Toxicity</li> </ul>                                                                                                                  |
| Is the Site subject to<br>Hydromodification:                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                       |
| Limitations on Infiltration:                                                                                                                               | Project Site Onsite Soils Group(s) - C, D<br>Known Groundwater Contamination Plumes within<br>1000' - No<br>Adjacent Water Supply Wells(s) - No information<br>available please contact your local water agency for<br>more information. Your local contact agency is<br>EASTERN MUNICIPAL W.D Your local wholesaler<br>contact agency is METROPOLITAN WATER<br>DISTRICT. |
| Environmentally Sensitive Areas<br>within 200'(Fish and Wildlife<br>Habitat/Species):                                                                      | None                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |

| Environmentally Sensitive Areas within 200'(CVMSHCP): |                                           |
|-------------------------------------------------------|-------------------------------------------|
| Environmentally Sensitive Areas within 200'(WRMSHCP): | Burrowing Owl Survey Required Area        |
| Groundwater elevation from Mean Sea Level:            | 1360                                      |
| 85th Percentile Design Storm<br>Depth (in):           | 0.604                                     |
| Groundwater Basin:                                    | Perris-South                              |
| MSHCP/CVMSHCP Criteria Cell<br>(s):                   | No Data                                   |
| <b>Retention Ordinance Information:</b>               | No Data                                   |
| Studies and Reports Related to                        | Comprehensive Nutrient Reduction Plan     |
| Project Site:                                         | IBI Scores - Southern Cal                 |
|                                                       | bulletin118_4-sc                          |
|                                                       | water_fact_3_7.11                         |
|                                                       | 8039-SAR-Hydromodification                |
|                                                       | Romoland MDP                              |
|                                                       | West San Jacinto GW Basin Management Plan |
|                                                       | Homeland/Romoland ADP Map                 |



United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

## Custom Soil Resource Report for Western Riverside Area, California



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

| Preface                                           | 2  |
|---------------------------------------------------|----|
| How Soil Surveys Are Made                         |    |
| Soil Map                                          | 8  |
| Soil Map                                          |    |
| Legend                                            |    |
| Map Unit Legend                                   |    |
| Map Unit Descriptions                             | 11 |
| Western Riverside Area, California                |    |
| EnA—Exeter sandy loam, 0 to 2 percent slopes      | 13 |
| MaA—Madera fine sandy loam, 0 to 2 percent slopes | 14 |
| References                                        | 16 |

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



|               | MAP LEGEND                                       |            |                                  | MAP INFORMATION                                                                                                                                                                                                                             |  |
|---------------|--------------------------------------------------|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Area of Int   | terest (AOI)<br>Area of Interest (AOI)           | 8          | Spoil Area<br>Stony Spot         | The soil surveys that comprise your AOI were mapped at 1:15,800.                                                                                                                                                                            |  |
| Soils         | Soil Map Unit Polygons                           | 8          | Very Stony Spot<br>Wet Spot      | Warning: Soil Map may not be valid at this scale.                                                                                                                                                                                           |  |
| ĩ             | Soil Map Unit Lines<br>Soil Map Unit Points      | Δ          | Other<br>Special Line Features   | Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of                                                      |  |
| అ             | Point Features<br>Blowout                        | Water Fea  |                                  | contrasting soils that could have been shown at a more detailed scale.                                                                                                                                                                      |  |
| ×             | Borrow Pit<br>Clay Spot                          | Transporta | <b>ation</b><br>Rails            | Please rely on the bar scale on each map sheet for map measurements.                                                                                                                                                                        |  |
| ¢<br>₩        | Closed Depression<br>Gravel Pit<br>Gravelly Spot | ~          | Interstate Highways<br>US Routes | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                |  |
| ∴<br>©<br>∧   | Landfill<br>Lava Flow                            | ~          | Major Roads<br>Local Roads       | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts                                                                                                                 |  |
| 大<br>少<br>次   | Marsh or swamp<br>Mine or Quarry                 | Backgroui  | n <b>a</b><br>Aerial Photography | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required.                                                   |  |
| 0             | Miscellaneous Water<br>Perennial Water           |            |                                  | This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.                                                                                                                                         |  |
| ~<br>+        | Rock Outcrop<br>Saline Spot                      |            |                                  | Soil Survey Area: Western Riverside Area, California<br>Survey Area Data: Version 13, May 27, 2020                                                                                                                                          |  |
|               | Sandy Spot<br>Severely Eroded Spot               |            |                                  | Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.                                                                                                                                                             |  |
| <b>◇</b><br>≫ | Sinkhole<br>Slide or Slip                        |            |                                  | Date(s) aerial images were photographed: May 25, 2019—Jun 25, 2019                                                                                                                                                                          |  |
| ø             | Sodic Spot                                       |            |                                  | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. |  |

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                 | Acres in AOI  | Percent of AOI |
|-----------------------------|-----------------------------------------------|---------------|----------------|
| Map Onit Symbol             | Map Onit Name                                 | Acres III AOI | Fercent of AOI |
| EnA                         | Exeter sandy loam, 0 to 2 percent slopes      | 0.5           | 3.3%           |
| MaA                         | Madera fine sandy loam, 0 to 2 percent slopes | 14.0          | 96.7%          |
| Totals for Area of Interest |                                               | 14.5          | 100.0%         |

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

#### Western Riverside Area, California

#### EnA—Exeter sandy loam, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: hctg Elevation: 20 to 700 feet Mean annual precipitation: 7 to 20 inches Mean annual air temperature: 61 to 64 degrees F Frost-free period: 250 to 300 days Farmland classification: Farmland of statewide importance

#### **Map Unit Composition**

Exeter and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Exeter**

#### Setting

Landform: Alluvial fans Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from granite

#### **Typical profile**

H1 - 0 to 16 inches: sandy loam

- H2 16 to 37 inches: sandy clay loam
- H3 37 to 50 inches: indurated
- H4 50 to 60 inches: stratified sandy loam to silt loam

#### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: 20 to 40 inches to duripan
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.3 inches)

#### Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 3s Hydrologic Soil Group: C Ecological site: R019XD029CA Hydric soil rating: No

#### **Minor Components**

#### Greenfield

Percent of map unit: 4 percent Hydric soil rating: No

#### Ramona

Percent of map unit: 4 percent Hydric soil rating: No

#### Monserate

Percent of map unit: 4 percent Hydric soil rating: No

#### Unnamed

Percent of map unit: 3 percent Hydric soil rating: No

#### MaA—Madera fine sandy loam, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: hcwt Elevation: 20 to 250 feet Mean annual precipitation: 14 inches Mean annual air temperature: 61 degrees F Frost-free period: 250 days Farmland classification: Farmland of statewide importance

#### Map Unit Composition

Madera and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Madera**

#### Setting

Landform: Alluvial fans Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from granite

#### **Typical profile**

H1 - 0 to 19 inches: fine sandy loam
H2 - 19 to 26 inches: clay
H3 - 26 to 37 inches: indurated
H4 - 37 to 62 inches: stratified coarse sandy loam to clay loam

#### **Properties and qualities**

*Slope:* 0 to 2 percent *Depth to restrictive feature:* More than 80 inches; 20 to 40 inches to duripan

Drainage class: Moderately well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

#### Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R019XD061CA Hydric soil rating: No

#### Minor Components

#### Unnamed, ponded

Percent of map unit: 3 percent Landform: Depressions Hydric soil rating: Yes

#### Monserate

Percent of map unit: 3 percent Hydric soil rating: No

#### Chino

Percent of map unit: 3 percent Hydric soil rating: No

#### Exeter

Percent of map unit: 3 percent Hydric soil rating: No

#### Willows

Percent of map unit: 3 percent Hydric soil rating: No

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

#### GEOTECHNICAL ENGINEERING PERCOLATION / INFILTRATION TEST REPORT

TRAVEL PLAZA PERRIS

AT

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. 8 WEST PACIFIC AVENUE HENDERSON, NEVADA 89015

PROJECT NO: G-5908-08

JUNE 11, 2021

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING





Geotechnical Solutions, Inc.

Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project: G-5908-08

#### **BROADBENT, INC.** 8 West Pacific Avenue

Henderson, Nevada 89015

#### Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelski@broadbentinc.com

#### Re: Geotechnical Engineering Percolation / Infiltration Report Travel Plaza - Perris Corner of Trumble Road & Ethanac Road Perris, California 92570

Gentlemen:

Per your authorization, we have performed our geotechnical engineering field percolation tests to evaluate the subgrade percolation and infiltration rate at the referenced Travel Plaza - Perris site located at the corner of Trumble Road and Ethanac Road, just west of Trumble Road, Perris, San Bernardino County, California. Proposed development consists of improving or incorporating Storm Water Permanent Best Management Practice (BMP).

The accompanying geotechnical engineering report presents the results of our field borings, sampling of subgrade material, field percolation tests, reviewing site plan, performing laboratory tests, analyzing field and laboratory data and our conclusions and recommendations for the project.

Our services were performed using the standard of care ordinarily exercised in this locality, at the time when the report was prepared.

Project No.: G-5908-08 Travel Plaza - Perris Percolation-Infiltration Tests

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary in the circumstances.

In the opinion of the undersigned, the accompanying report has been substantiated by data, observations, analysis, and opinions and presents fairly the design information requested by you.

This completes our scope of services for the initial design phase of the project. We have appreciated this opportunity to be of service to you on this project.

#### **Respectfully Submitted**,

#### **Geotechnical Solutions, Inc.**

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

Abraham S. Baha, PE, MASCE Sr. Principal





Distribution: (3 +pdf) Addressee

#### **TABLE OF CONTENTS**

| Introduction1                                                          |
|------------------------------------------------------------------------|
| Field Exploration Methods1                                             |
| Groundwater1                                                           |
| Laboratory Testing                                                     |
| Percolation Tests                                                      |
| Percolation Rate Evaluation4                                           |
| Results of the Tests                                                   |
| Conclusions                                                            |
| Additional Services                                                    |
| Closure                                                                |
| Appendix A - Plates                                                    |
| Appendix B – Pre-Tests & Percolation Test Results11                    |
| Appendix C – Infiltration Rates12                                      |
| Appendix $D$ – Infiltration Rates Using Reduction Factor Method, $R_f$ |

#### Introduction

Geotechnical Solutions, Inc. (GSI) has performed field investigations including borings and sampling of earth material and field percolation tests at the proposed locations as shown on Plot Plan & Percolation Tests Location Map (Plate B in Appendix A) at Travel Plaza, Perris, California.

The main purpose of this study is to provide infiltration rates of subgrade material based on field percolation tests so that an appropriate system incorporating Storm Water permanent best management practice (BMP) to manage surface water into the ground and the appropriate infiltration basin or any other approved system may be designed and existing drainage be improved.

#### **Field Exploration**

Field exploration consisted of drilling two borings for percolation tests, B-1 (PC-1) and B-2 (PC-2), 8-inches in diameter and extended to 10-feet below existing ground as shown on Plot Plan and Percolation Tests Location Map (Plate B).. The percolation test logs are presented on Plates D-1 and D-2 in Appendix A.

The attached logs tabulate data based on laboratory classification tests and visual observation by the field engineer at the site. During drilling bulk samples of earth material obtained for further laboratory test.

#### Groundwater

Groundwater was not encountered in any of our borings. Also, in accordance with the available groundwater well maps data, <u>http://wdl.water.ca.gov/water data library</u>, historical high groundwater level as shown on Plates C-1 and C-2 presented in Appendix A are much deeper than 50 feet. The potential for ground water to rise to the ground surface in the site area is considered very unlikely.

#### Laboratory Testing

Laboratory testing was programmed following a review of the field investigation data to be evaluated. Tests included physical testing to determine soil characteristics and selective tests. Test results are presented in Appendix A.

#### Mechanical Analysis (ASTM D-422)

Mechanical analyses by the hydrometer test method were performed to confirm field classifications. Test results are as follows:

| Test Hole<br>No. | Sample<br>Depth (ft) | Sand<br>Percent | Silt<br>Percent | Clay<br>Percent |
|------------------|----------------------|-----------------|-----------------|-----------------|
| B-1 (PC-1)       | 10.0                 | 89              | 7               | 4               |
| B-2 (PC-2)       | 10.0                 | 90              | 8               | 2               |

#### **Field Percolation Tests**

We performed field percolation tests at B-1 (PC-1) and B-11 (PC-2) locations as shown on Plot Plan and Percolation Tests Location Map (Plate B). The percolation test procedure performed in accordance with the current acceptable method for shallow percolation test (less than 10 feet) by qualified personnel under the supervision of registered geotechnical engineer as per Technical Guidance Document, Orange County Public Works.

- Borehole diameter was 8 inches.
- Bottom elevation of test holes correspond to bottom elevation of proposed retention basins which are proposed at 10-feet in depth below the ground surface in accordance with the following locations:

B-1 (PC-1) 10 feet below the ground surface

B-11 (PC-2) 10 feet below the ground surface

- The bottom of the test hole was covered with 2 inches of gravel prior to testing.
- Sides of the hole were not smeared after drilling and there was no caving.
- Holes were filled with clear water to appropriate depths from the ground surface (Minimum required is 5 x radius of the hole (5 x 4" = 20 inches) from the bottom.
- On these two locations, two consecutive measurements showed that less than 6 inches of water seeped away in 25 minutes test (Pre-Percolation Data Sheets, Plates 1 and 3 in Appendix B). Thus, pre-soaking overnight for about 24 hours was required.
- The tests were then run the next day for an additional 6-hours duration, measurements being taken every 30 minutes interval (Percolation Test Results).
- The drop that occurs during the final reading is used to calculate the percolation and then infiltration rate.
- Field Percolation Tests for both PC-1 and PC-2 are presented as Plate 2 and 4 in Appendix B.
- Infiltration calculations (Porchet Method) are shown on Plates 5 and 6 and presented in Appendix C.
- Infiltration results using another method, Reduction Factor Method, Rf are presented on Plates 7 and 8 in Appendix D.
- Measurements were taken with a precision of 0.25 inches or better.
- All the field percolation tests are tabulated and are presented in Appendix B.
- The holes were backfilled with soil cuttings.

#### **Percolation Rate Evaluation**

To evaluate the percolation rates, testing was performed by filling the borehole with water and observing the rate of water drop from the fixed reference point on the ground surface. The depths of water drop for every 30 minutes intervals were noted and tabulated and plotted as shown on Plates 2 and 4, respectively for PC-1 and PC-2 in Appendix B.

Percolation rate, k can be correlated with the data in the form of the straight line equation as shown below:

t/R = b + ktWhere, t = average time in minutes $R = \Delta t / d$  $\Delta t = Time Interval, minutes$ d = drop in inch = R1 - R2R1 = Initial Readings, inchR2 = Final Readings, inchk = Percolation Rate inch/minuteR = 1/k at equilibrium rate

t/R is plotted against t as shown on the plots (Plates 2 and 6 for B-1 (PC-1) and B-11 (PC-2), respectively) and the regression analyses were performed to interpolate the data obtained in the field. Straight line interpolation gives the slope as a percolation rate, k.

#### **Results of the Tests**

The results obtained from the analyses are as follows:

- 1. Near surface material consisted of mainly Clayey to Silty Sand (SC/SM), dry to slightly moist, firm, light brown in color having dense to very dense in consistency.
- 2. Around and below 10 feet, the subgrade materials consisted mainly of the sandy material, Sand (SP) with some gravel, slightly moist to moist, dark brown to gray in color having dense to very dense in consistency.
- 3. Field Percolation tests were performed at 10-feet depth for both B-1 (PC-1) and B-11 (PC-2) and the results are tabulated as shown on the Table-1 below:

|             |             | Coefficient of Permeability, k |                      |                                          |  |  |  |  |
|-------------|-------------|--------------------------------|----------------------|------------------------------------------|--|--|--|--|
| Location    | Inch/minute | Cm/sec                         | Inch/hour<br>Average | Inch/hr based on last 30 Minutes Reading |  |  |  |  |
| B-1 (PC-1)  | 0.0135      | 6.0 x E-04                     | 0.81                 | 1.0                                      |  |  |  |  |
| B-11 (PC-2) | 0.0206      | 9.0 x E-04                     | 1.236                | 1.5                                      |  |  |  |  |
| Average     | 0.0171      | 7.5 x E-04                     | 1.023                | 1.25                                     |  |  |  |  |
|             | 1           | Average:                       | 1.13                 | 7 inch/hour                              |  |  |  |  |

TABLE - 1Percolation Test Results

- 4. Based on the data presented in this report and the testing information accumulated, it is our judgment that the percolation rate is an average of 1.137 inch per hour. It takes about 53 minutes to percolate 1 inch. This conclusion regarding percolation rate is based on the results of our field exploration and testing.
- 5. General range of permeability for some of the subgrade soils are as follows:

| Type of Soil                    | Permeability (Cm/Sec)                            |
|---------------------------------|--------------------------------------------------|
| Medium to coarse gravel         | > 10 <sup>-1</sup>                               |
| Coarse sand to fine sand        | between 1x10 <sup>-1</sup> to 1x10 <sup>-3</sup> |
| fine sand and silty sand        | between 1x10 <sup>-3</sup> to 1x10 <sup>-5</sup> |
| silt, clayey silt or silty clay | between 1x10 <sup>-4</sup> to 1x10 <sup>-6</sup> |
| Clays                           | $1 \times 10^{-7}$ or less                       |

Since the percolation rate average is 7.5 x E-04 Cm/Sec, it falls into fine Sand and silty Sand category as tabulated above.

As per Technical Guidance Document, Infiltration rate,  $I_t$  is calculated based on Percolation Rate Conversion using Porchet Method, aka Inverse Borehole Method.

The bottom of the proposed infiltration basin would be at 10-feet below the existing ground surface. Percolation tests were performed with the depth of the test hole set at the infiltration surface level (bottom of basin).

After the minimum required number of testing intervals, the test was complete. The data collected at the final interval was used to calculate infiltration rates.

The calculations and the results are tabulated and presented on Plates 5 and 6 in Appendix C.

| Location   | Percolation Rate<br>inch/hour<br>Based on Average<br>Reading | Infiltration Rate<br>Inch/hour<br>Based on Porchet Method<br>aka Inverse Borehole<br>Method |
|------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| B-1 (PC-1) | 0.810                                                        | 0.0370                                                                                      |

| PC-2    | 1.236 | 0.0596 |
|---------|-------|--------|
| Average | 1.137 | 0.0483 |

Using factor of safety of 2.0 for uncertainty and bias, **percolation test result is 0.5685 inch per hour** and **Infiltration Rate = 0.0242 "/ hour**, which is less than 0.3"/hour as per the requirement in accordance with **TGD VII.2**.

Thus, it **does not meet** the standard criteria, hence **FAILED**.

### Reduction Factor (R<sub>f</sub>) Method

We have used Reduction Factor  $(R_f)$  Method which is another acceptable and approved method for calculating Infiltration Rate,  $I_f$ .

Infiltration Rates as calculated by this method have been tabulated on Plates 7 and 8 in Appendix D. The results are as follows:

| Location     | I <sub>f</sub> Using       |
|--------------|----------------------------|
|              | (Reduction Factor Method)  |
|              | (inch/hour)                |
| B-1 (PC-1)   | 0.0559                     |
| B-11 (PC-2)  | 0.0801                     |
| AVERAGE:     | 0.068                      |
| With FOS = 2 | 0.034                      |
|              | < 0.3 inch/hour - "FAILED" |

#### Conclusions

The subgrade soils consist entirely of very firm alluvial soils, mainly sand with some gravel, medium to coarse grained, dark brown to gray in color, dry to slightly moist to moist, dense to very dense and hard in consistency. Percolation tests performed at two locations, B-1 (PC-1) and B-11 (PC-2) at 10 feet depth <u>did not meet</u> the prescribed criteria.

Also, since the groundwater is very deep more than 50 feet, there is a room for the basin. However, infiltration rate at both locations indicated that it is much less than the required infiltration rate of 0.3 inch per hour (**TGD VII.2**), hence we conclude that the project is **not feasible**.

#### **Additional Services**

This office will be available for further consultation.

#### Closure

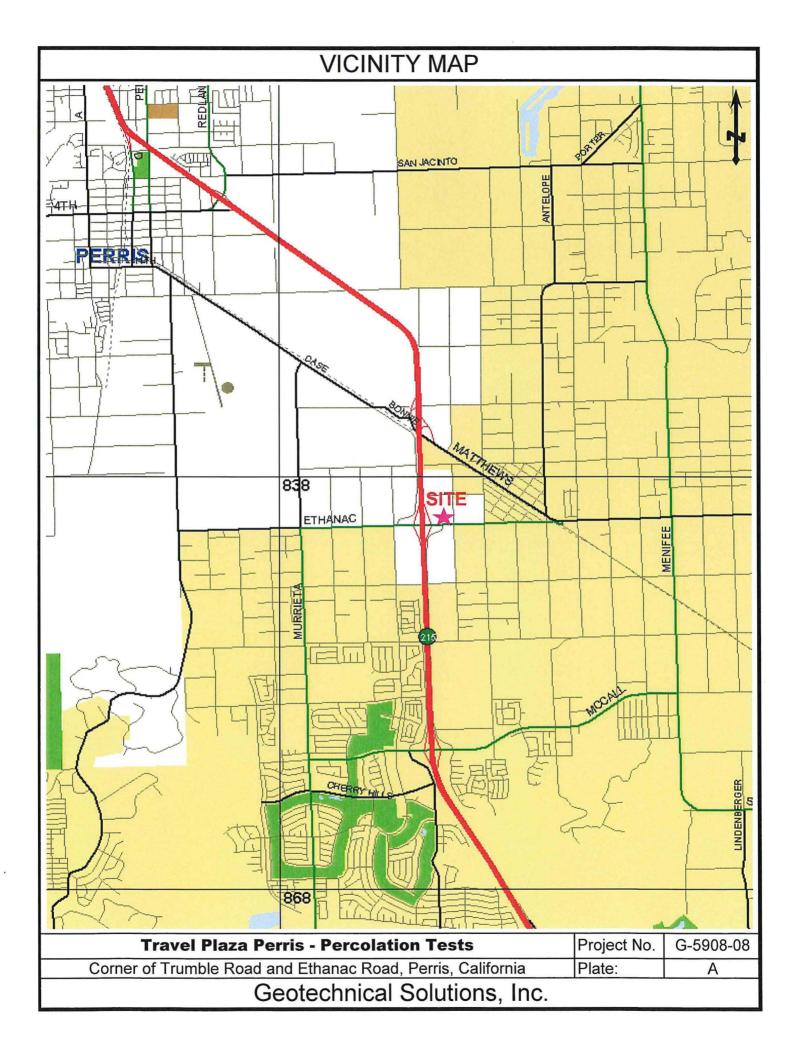
Based on the data presented in this report and the testing information accumulated, it is the judgment of the writers of this report that BMP infiltration system seems to be **not** <u>feasible</u> at these locations. The conclusions presented in this report are based on the results of our field exploration, percolation tests, infiltration tests, and other laboratory tests.

This report has been compiled for the exclusive use on the above referenced site, for the purpose stated above. It should not be transferred to or used by another party, or applied to any other project on this site, other than as described herein, without consent and/or thorough review by this office.

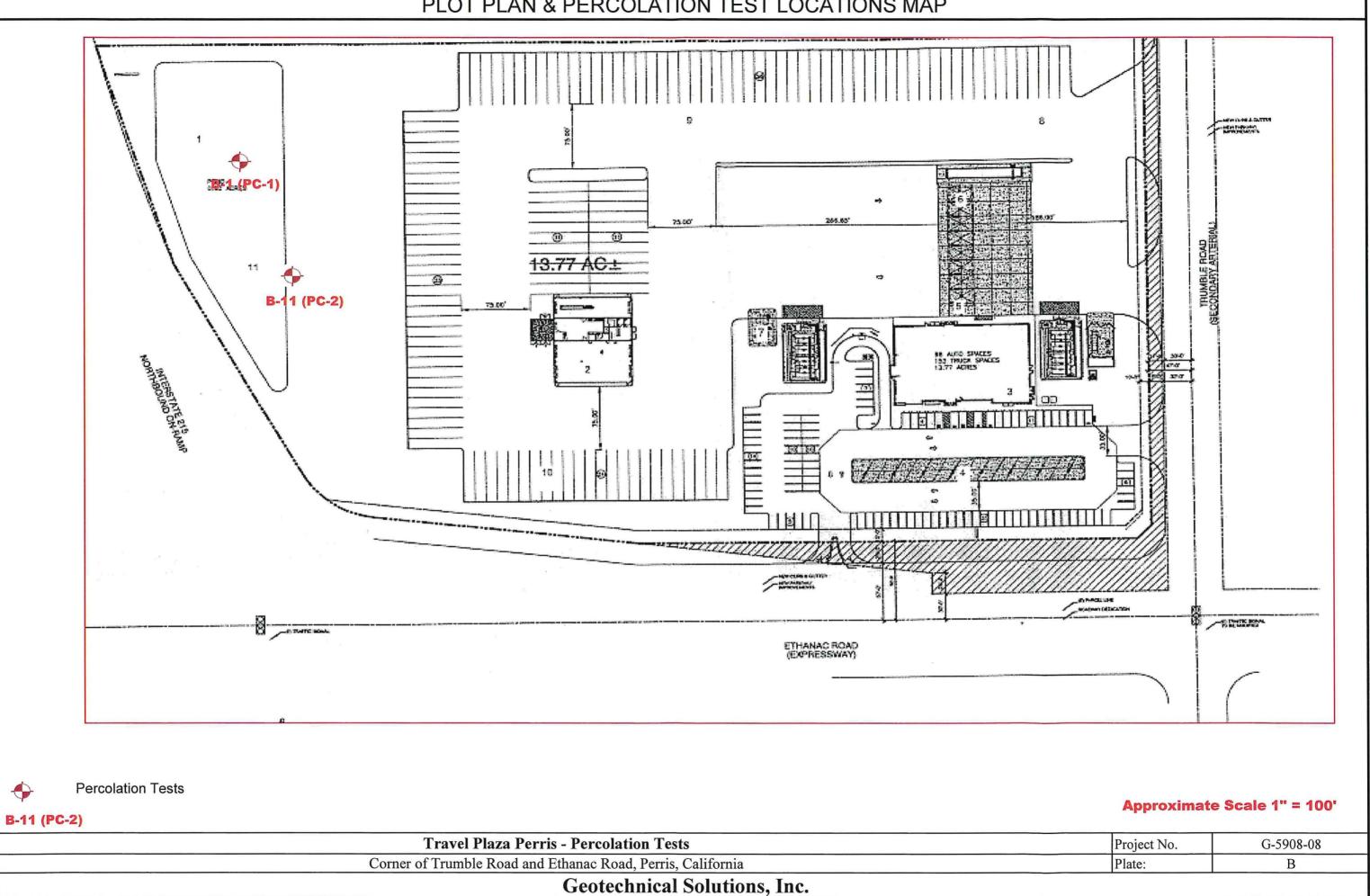
### Geotechnical Solutions, Inc.

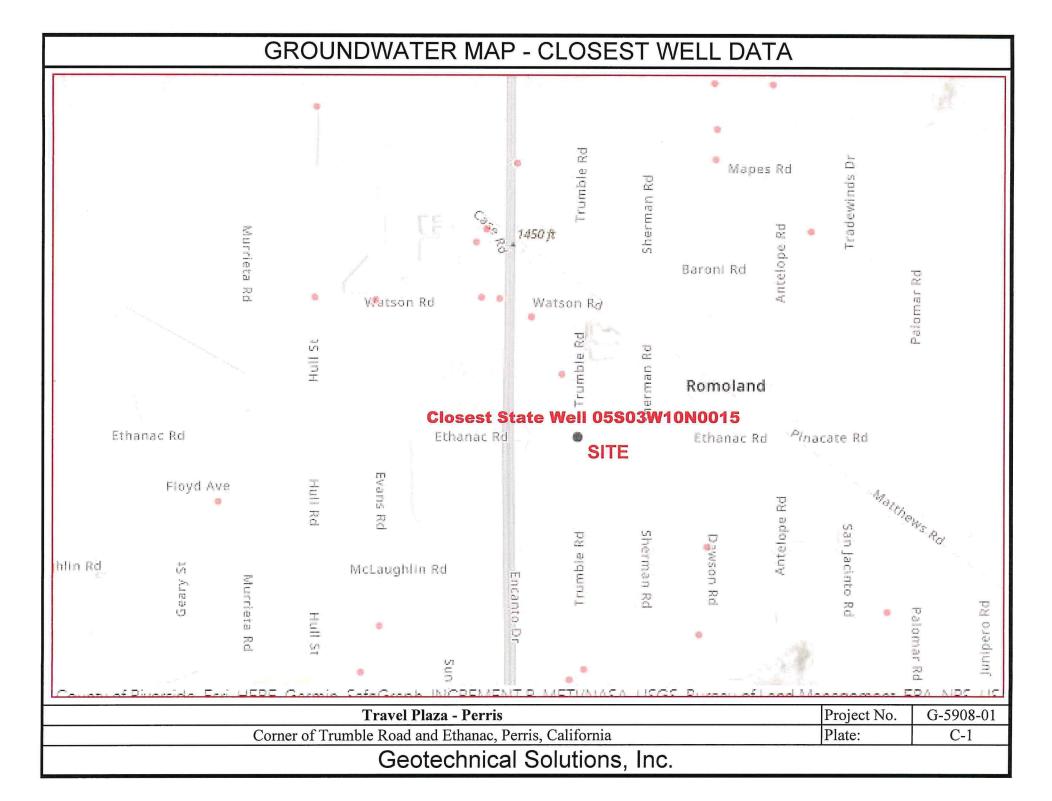
#### References

California Building Code, 2019, California Code of Regulations, Title 24, Volume 2 of Part 2.

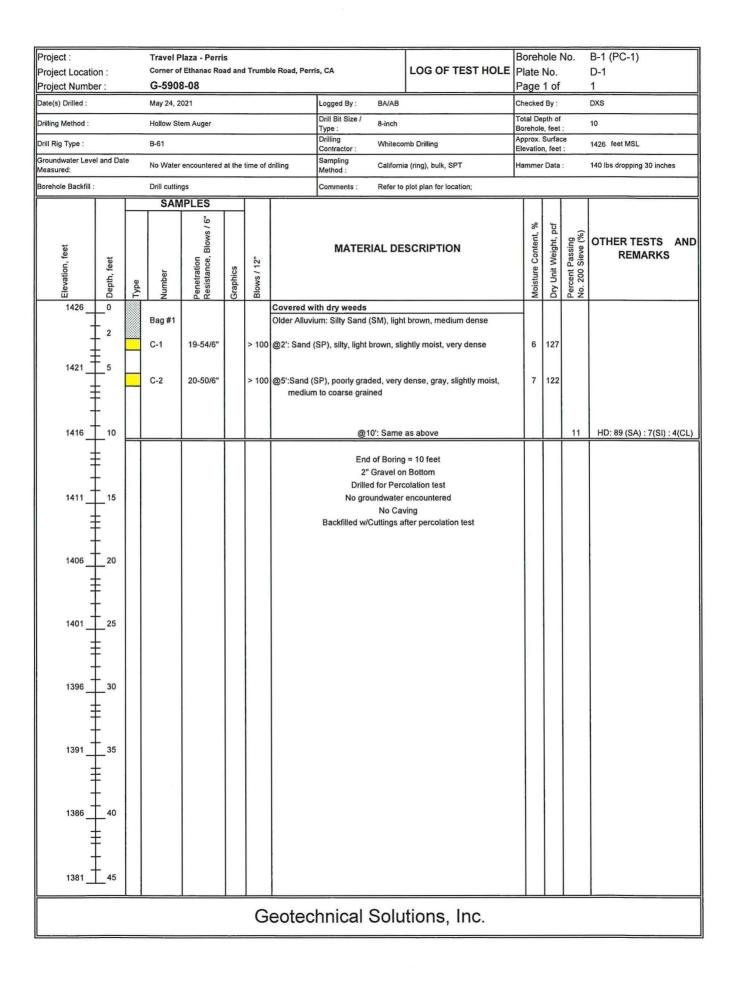

California Department of Water Resources groundwater well data <u>http://wdl.water.ca.gov</u>.

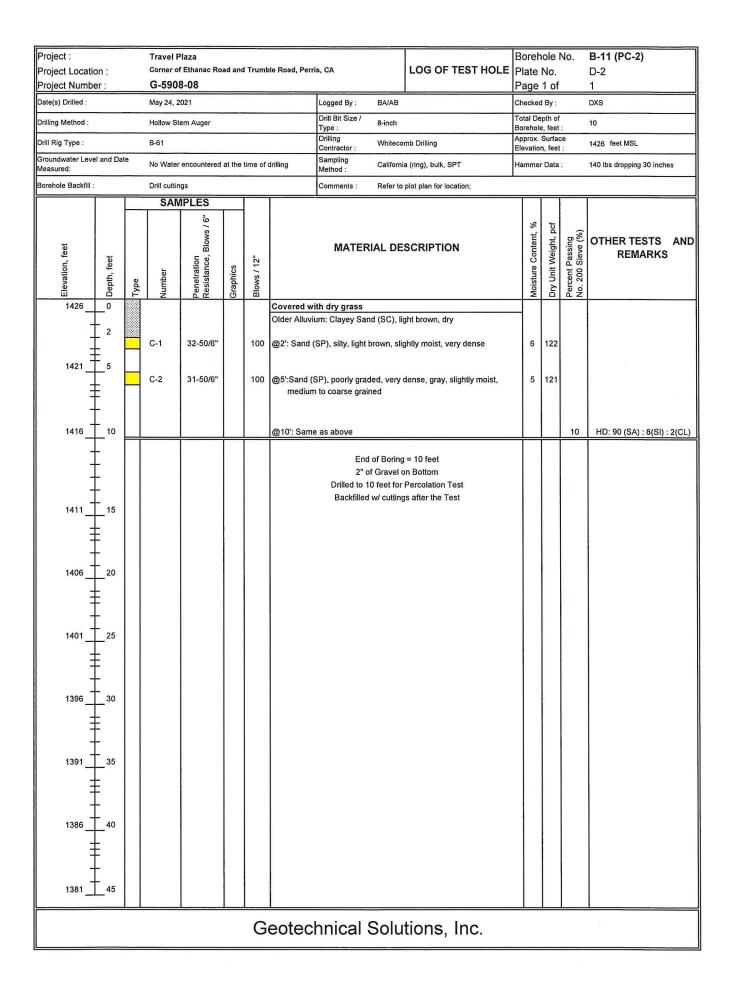
Orange County, Technical Guidance Document (TGD) for the Preparation of Conceptual / Preliminary and/or Project Water Quality Management Plans (WQMPs) dated December, 2013.


# Appendix A


#### **Plates:**

- Vicinity Map
- Plot Plan & Percolation Tests Location Map
- Groundwater Map (Closest Well Data)
- Groundwater Map Well Data
- Boring Logs, B-1 (PC-1) & B-11 (PC-2)








|                           |                              | GROUN                       | NDWATEF                   | r Map - We               | ELL DATA                           |                     |                 |                        |
|---------------------------|------------------------------|-----------------------------|---------------------------|--------------------------|------------------------------------|---------------------|-----------------|------------------------|
| Groundw                   | ater Level l                 | Report                      |                           |                          |                                    |                     |                 |                        |
| Station 3374              | 64N1171859W0                 | 01                          |                           |                          |                                    |                     |                 |                        |
| Station Data              | Froundwater Level Da         | ta                          |                           |                          |                                    |                     |                 |                        |
| Groundwat                 | er Levels for W              | ell 337464N11               | 71859W001 (               | Site Code)               |                                    |                     |                 |                        |
| 1440 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1420 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1400 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| (11)<br>uote 1380 ft      |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1360 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1340 ft                   |                              |                             |                           |                          |                                    |                     |                 |                        |
| 1320 ft                   |                              | 06/02/1995                  |                           |                          |                                    |                     | 0               |                        |
|                           |                              | 06/02/1993                  | Water Surface             | Ground Surface           | - Questionable Data                |                     |                 |                        |
| Measurement<br>Date (PST) | Reference Point<br>Elevation | Ground Surface<br>Elevation | Distance from<br>RP to WS | Groundwater<br>Elevation | Ground Surface<br>to Water Surface | Measuremen<br>Issue | t Colle<br>Ager | ecting V<br>ncy N      |
| 06/02/1995<br>00:00:00    | 1427.490                     | 1427.490                    | 97.98                     | 1329.51                  | 97.98                              |                     |                 | artment of<br>er Resou |
| 09/13/1995                | 1427.490                     | 1427.490                    | 95.63                     | 1331.86                  | 95.63                              |                     | •               | artment of<br>er Resou |
|                           | ~                            |                             | oject No.                 | G-5908-01                |                                    |                     |                 |                        |
|                           | Corner                       |                             |                           | Perris, California       |                                    | Pla                 | ate:            | C-2                    |
|                           |                              | Ge                          | Clecimica                 | i Solutions,             | IIIC.                              |                     |                 |                        |



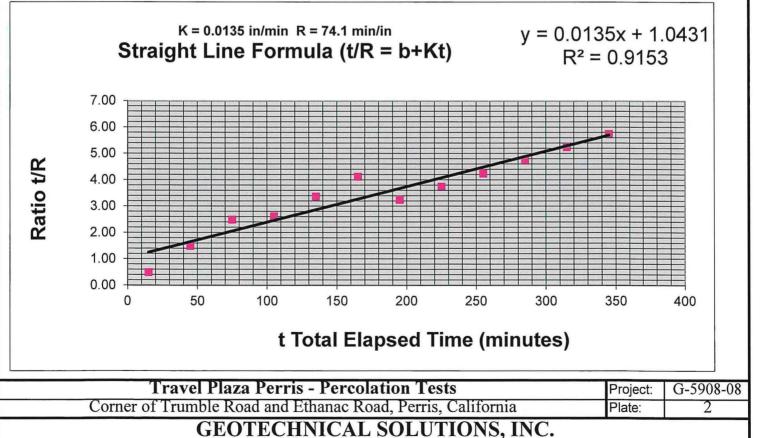


### **Appendix B**

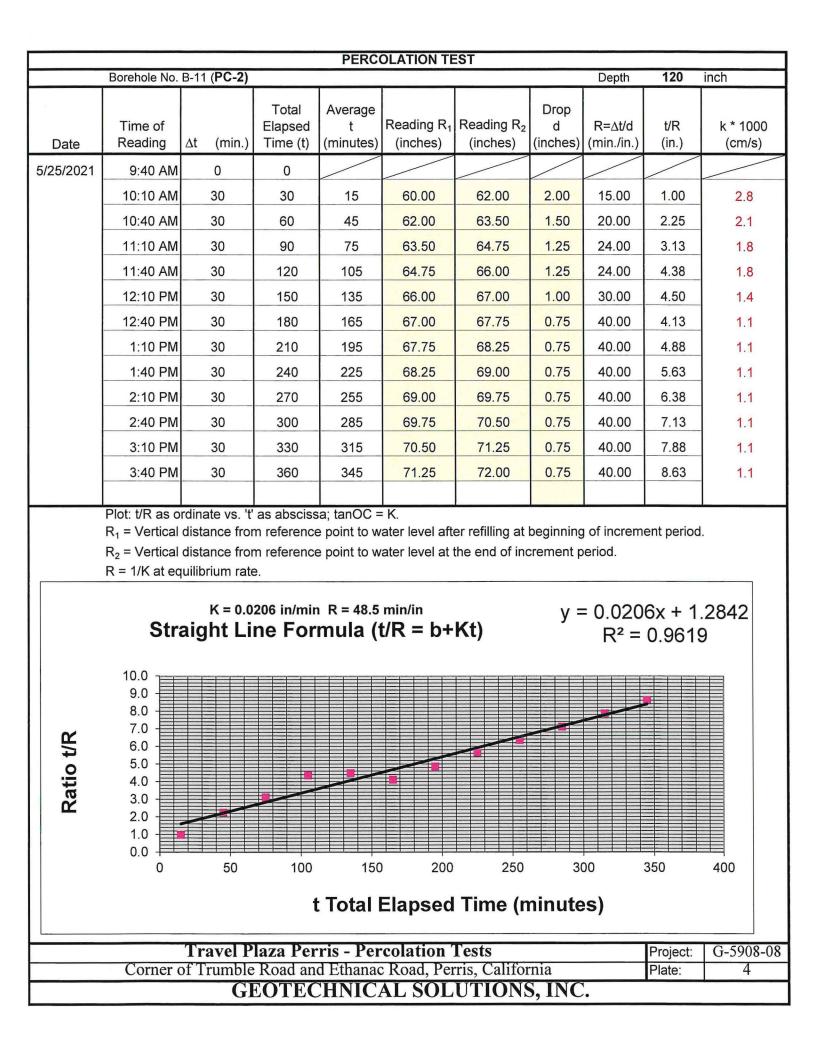
### **Pre-Test & Percolation Test Results**

- Pre-Test Percolation Data Sheet (PC-1)
- Percolation Test Result at Location PC-1
- Pre-Test Percolation Data Sheet (PC-2)
- Percolation Test Result at Location PC-2

|                 |             | PRE- F                                          | PERCOLATIO                                       | N TEST DATA                                                                                  | SHEET                                     |                                  |                                        |
|-----------------|-------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|
| Project:        | Travel Pla  | za - Perris                                     | Project No.:                                     | G-59                                                                                         | 08-08                                     | Date:                            | 5/24/2021                              |
| Test Hole Num   | ber:        | PC-1                                            | Tested By:                                       |                                                                                              | BA/AB                                     |                                  |                                        |
| Depth of Test H | Iole, DT    | 10'                                             | USCS Soil Clas                                   | sification:                                                                                  |                                           | Sand (SP)                        |                                        |
|                 | Test H      | ole Dimensions                                  | (inches)                                         |                                                                                              | Length                                    | Width                            |                                        |
| Diameter (      | if Round) = | 8"                                              | Sides (if Rectan                                 | gular) =                                                                                     |                                           |                                  |                                        |
|                 |             |                                                 | Sandy Soil C                                     | Criteria Test *                                                                              |                                           | <b>P</b>                         |                                        |
| Trial No.       | Start Time  | Stop Time                                       | Time Interval<br>(Min)                           | Initial Depth to<br>Water (in)                                                               | Final Depth to<br>Water (in)              | Change in<br>Water Level<br>(in) | Greater than or<br>Equal to 6"?<br>y/n |
| 1               | 8:30 AM     | 8:55 AM                                         | 25                                               | 65                                                                                           | 66.25                                     | 1.3                              | < 6"                                   |
| 2               | 8:55 AM     | 9:20 AM                                         | 25                                               | 66.25                                                                                        | 67.50                                     | 1.25                             | < 6"                                   |
|                 | minutes     | , the test shall be ru<br>se, pre-soak (fill) o | un for an additional h<br>vernight. Obtain at le | six inches of water s<br>our with measureme<br>east twelve measure<br>ervals) with a precisi | ents taken every 10<br>ments per hole ove | minutes.<br>r at least           |                                        |


|           | PERCOLATION TEST   |              |                              |                           |                                    |                                    |                       |                      |              |                    |  |  |
|-----------|--------------------|--------------|------------------------------|---------------------------|------------------------------------|------------------------------------|-----------------------|----------------------|--------------|--------------------|--|--|
|           | Borehole No        | . B-1 (PC-1) |                              |                           |                                    |                                    |                       | Depth                | 120          | inch               |  |  |
| Date      | Time of<br>Reading | ∆t (min.)    | Total<br>Elapsed<br>Time (t) | Average<br>t<br>(minutes) | Reading R <sub>1</sub><br>(inches) | Reading R <sub>2</sub><br>(inches) | Drop<br>d<br>(inches) | R=∆t/d<br>(min./in.) | t/R<br>(in.) | k * 1000<br>(cm/s) |  |  |
| 5/25/2021 | 9:30 AM            | 0            | 0                            |                           |                                    |                                    |                       |                      |              |                    |  |  |
|           | 10:00 AM           | 30           | 30                           | 15                        | 60.00                              | 61.00                              | 1.00                  | 30.00                | 0.50         | 1.4                |  |  |
|           | 10:30 AM           | 30           | 60                           | 45                        | 61.00                              | 62.00                              | 1.00                  | 30.00                | 1.50         | 1.4                |  |  |
|           | 11:00 AM           | 30           | 90                           | 75                        | 62.00                              | 63.00                              | 1.00                  | 30.00                | 2.50         | 1.4                |  |  |
|           | 11:30 AM           | 30           | 120                          | 105                       | 63.00                              | 63.75                              | 0.75                  | 40.00                | 2.63         | 1.1                |  |  |
|           | 12:00 PM           | 30           | 150                          | 135                       | 63.75                              | 64.50                              | 0.75                  | 40.00                | 3.38         | 1.1                |  |  |
|           | 12:30 PM           | 30           | 180                          | 165                       | 64.50                              | 65.25                              | 0.75                  | 40.00                | 4.13         | 1.1                |  |  |
|           | 1:00 PM            | 30           | 210                          | 195                       | 65.25                              | 65.75                              | 0.50                  | 60.00                | 3.25         | 0.7                |  |  |
|           | 1:30 PM            | 30           | 240                          | 225                       | 65.75                              | 66.25                              | 0.50                  | 60.00                | 3.75         | 0.7                |  |  |
|           | 2:00 PM            | 30           | 270                          | 255                       | 66.25                              | 66.75                              | 0.50                  | 60.00                | 4.25         | 0.7                |  |  |
|           | 2:30 PM            | 30           | 300                          | 285                       | 66.75                              | 67.25                              | 0.50                  | 60.00                | 4.75         | 0.7                |  |  |
|           | 3:00 PM            | 30           | 330                          | 315                       | 67.25                              | 67.75                              | 0.50                  | 60.00                | 5.25         | 0.7                |  |  |
|           | 3:30 PM            | 30           | 360                          | 345                       | 67.75                              | 68.25                              | 0.50                  | 60.00                | 5.75         | 0.7                |  |  |

Plot: t/R as ordinate vs. 't' as abscissa; tanOC = K.


R<sub>1</sub> = Vertical distance from reference point to water level after refilling at beginning of increment period.

R<sub>2</sub> = Vertical distance from reference point to water level at the end of increment period.

R = 1/K at equilibrium rate.



|                 |              | PRE - I                | PERCOLATIO             | N TEST DATA                                                         | SHEET                        | P                                |                                        |
|-----------------|--------------|------------------------|------------------------|---------------------------------------------------------------------|------------------------------|----------------------------------|----------------------------------------|
| Project:        | Travel Pl    | aza - Perris           | Project No.:           | G-59                                                                | 08-08                        | Date:                            | 5/24/2021                              |
| Test Hole Num   | ber:         | PC-2                   | Tested By:             |                                                                     | BA/AB                        |                                  |                                        |
| Depth of Test H | Iole, DT     | 10'                    | USCS Soil Clas         | sification:                                                         |                              | <b>r</b>                         |                                        |
|                 | Test H       | Iole Dimensions        | (inches)               |                                                                     | Length                       | Width                            |                                        |
| Diameter (      | (if Round) = | 8"                     | Sides (if Rectan       | gular) =                                                            |                              |                                  |                                        |
|                 |              |                        | Sandy Soil C           | Criteria Test *                                                     |                              | r                                |                                        |
| Trial No.       | Start Time   | Stop Time              | Time Interval<br>(Min) | Initial Depth to<br>Water (in)                                      | Final Depth to<br>Water (in) | Change in<br>Water Level<br>(in) | Greater than or<br>Equal to 6"?<br>y/n |
| 1               | 9:35 AM      | 10:00 AM               | 25                     | 65                                                                  | 67.0                         | 2                                | < 6"                                   |
| 2               | 10:00 AM     | 10:25 AM               | 25                     | 67                                                                  | 69.0                         | 2                                | < 6"                                   |
|                 | minutes      | s, the test shall be r | un for an additional h | six inches of water s<br>nour with measureme<br>east twelve measure | ents taken every 10          | minutes.                         |                                        |
|                 |              | six hours (approxi     | mately 30 minute Int   | ervals) with a precisi                                              | ion of at least 0.25".       |                                  |                                        |



# Appendix C – Infiltration Rates

Infiltration Rate If Calculations

- PC-1
- PC-2

# Percolation Rate Conversion Infiltration Rate, I<sub>t</sub> Porchet Method, aka Inverse Borehole Method

# Travel Plaza - Perris Project No: G-5908-08

### Percolation Test PC-1

### As per Test Result, Average Percolation Rate = 0.0135 inch/Min = 0.81 inch/hour

### Data collected at the Final Interval analysed: 1.0 inch/hour

| Time Interval, $\Delta$ t       | = <mark>30</mark>               | Minutes              |       | Initial Depth to       | Water, D <sub>0</sub>        | = 67.75 Inches                     |
|---------------------------------|---------------------------------|----------------------|-------|------------------------|------------------------------|------------------------------------|
| Total Depth of Test Hole, $D_t$ | = 120                           | Inches               |       | Final Depth to         | Water, D <sub>f</sub>        | = 68.25 Inches                     |
| Test Hole Radius, r             | = 4                             | Inches               |       |                        |                              |                                    |
| Initial Height of Water at the  | selected time inter             | ∿al, H₀              | =     | 52.25                  | Inches                       | (D <sub>t</sub> - D <sub>0</sub> ) |
| Final Height of Water at the S  | Selected time inter             | rval, H <sub>f</sub> | =     | 51.75                  | Inches                       | (D <sub>t</sub> - D <sub>f</sub> ) |
| Change in Height over the tin   | ne interval, $\Delta$ H         |                      | =     | 0.5                    | Inches                       | (H <sub>o</sub> - H <sub>f</sub> ) |
| Average Head Height over th     | e time interval, H <sub>a</sub> | avg                  | =     | 52                     | Inches                       | $(H_0 + H_f)/2$                    |
| Tested In                       | filtration Rate,                | l <sub>t</sub>       | =     | ∆ H (60 r) /((∆        | t)(r + 2 H <sub>avg</sub> )) | in/hr                              |
|                                 | Therefore,                      | Ι <sub>t</sub>       | =     | 0.037037               | inch/hour                    |                                    |
|                                 |                                 | l <sub>t</sub>       | =     | 0.018519               | inch/hour                    | FS: 2                              |
|                                 |                                 | < 0                  | .3 iı | nch/hour red<br>FAILED | quirement                    |                                    |

# Percolation Rate Conversion Infiltration Rate, I<sub>t</sub> Porchet Method, aka Inverse Borehole Method

# Travel Plaza - Perris Project No: G-5908-08

### Percolation Test PC-2

### As per Test Result, Average Percolation Rate = 0.0206 inch/Min = 1.236 inch/hour

# Data collected at the Final Interval analysed: 1.5 inch/hour

| Time Interval, $\Delta$ t        | = <mark>30</mark>       | Minutes              |     | Initial Depth to | o Water, D <sub>0</sub>        | = <mark>71.25</mark> Inches        |
|----------------------------------|-------------------------|----------------------|-----|------------------|--------------------------------|------------------------------------|
| Total Depth of Test Hole, $D_t$  | = 120                   | Inches               |     | Final Depth to   | o Water, D <sub>f</sub>        | = <mark>72.00</mark> Inches        |
| Test Hole Radius, r              | = 4                     | Inches               |     |                  |                                |                                    |
| Initial Height of Water at the s | selected time inte      | rval, H₀             | =   | 48.75            | Inches                         | (D <sub>t</sub> - D <sub>0</sub> ) |
| Final Height of Water at the S   | Selected time inte      | rval, H <sub>f</sub> | =   | 48               | Inches                         | (D <sub>t</sub> - D <sub>f</sub> ) |
| Change in Height over the tin    | ne interval, $\Delta$ H |                      | =   | 0.75             | Inches                         | (H <sub>o</sub> - H <sub>f</sub> ) |
| Average Head Height over th      | e time interval, H      | avg                  | =   | 48.375           | Inches                         | $(H_0 + H_f)/2$                    |
| Tested In                        | filtration Rate,        | l <sub>t</sub>       | =   | ∆ H (60 r) /((/  | \ t)(r + 2 H <sub>avg</sub> )) | in/hr                              |
|                                  | Therefore,              | Ι <sub>t</sub>       | =   | 0.0596           | inch/hour                      |                                    |
|                                  |                         | Ι <sub>t</sub>       | =   | 0.029777         | inch/hour                      | FS: 2                              |
|                                  |                         | <                    | 0.3 | inch/hour-       | FAILED                         |                                    |

# Appendix D

# Infiltration Rates Using Reduction Factor Method $R_{\rm f}$

- PC-1
- PC-2

|                     |                                                                                                                | REDUCTION                                                                                                                                                                                                                                     | I FACTOR, R <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Travel Pla          | za - Perris                                                                                                    | Project No.:                                                                                                                                                                                                                                  | G-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                                                                                                     | 5/25/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| er:                 | PC-1                                                                                                           | Tested By:                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /AB                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ole, DT             | 10'                                                                                                            | Initial Water De                                                                                                                                                                                                                              | pth (Inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.75                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | Test Hole Din                                                                                                  | nensions (inches)                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Length                                                                                                                                                                                                                                                    | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Round), Dia =       | 8                                                                                                              | Sides (if Rec                                                                                                                                                                                                                                 | tangular)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Percolation Test    |                                                                                                                | Pre-Adjusted<br>Percolation<br>Rate, in/hr                                                                                                                                                                                                    | Initial Depth to<br>Water, <b>d1</b> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water level<br>Drop, ∆ <b>d</b> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R <sub>f</sub>                                                                                                                                                                                                                                            | If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PC-1                |                                                                                                                | 1                                                                                                                                                                                                                                             | 67.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.88                                                                                                                                                                                                                                                     | 0.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| percolation rate mu | st be reduced to a<br>Formula: Reducti                                                                         | account for the dischaton $R_f = [(2d1)$                                                                                                                                                                                                      | arge of water from bo<br>- ∆d) / Dia] + 1 when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oth the sides and bore $d_1 = $ Initial water l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ottom of the boring (                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | er:<br>ole, DT<br>Round), Dia =<br>Percolation Test<br>PC-1<br>o of the stabilized rate<br>percolation rate mu | ole, DT       10'         Test Hole Dim         Round), Dia =       8         Percolation Test         PC-1         of the stabilized rate over the last thr         percolation rate must be reduced to a         Use the Formula: Reduction | er:       PC-1       Tested By:         ole, DT       10'       Initial Water De         Test Hole Dimensions (inches)       Test Hole Dimensions (inches)         Round), Dia =       8       Sides (if Rec         Percolation Test       Pre-Adjusted         Percolation Test       Rate, in/hr         PC-1       1         of the stabilized rate over the last three consecutive reading         percolation rate must be reduced to account for the dischard         Use the Formula: Reduction Factor, $R_f = [(2d1)]$ | PC-1       Tested By:         ole, DT       10'       Initial Water Depth (Inches)         Test Hole Dimensions (inches)         cound), Dia =       8       Sides (if Rectangular)         Recolation Test       Pre-Adjusted<br>Percolation<br>Rate, in/hr       Initial Depth to<br>Water, d1 (in)         PC-1       1       67.75         of the stabilized rate over the last three consecutive readings is the pre-adjust<br>percolation rate must be reduced to account for the discharge of water from bo<br>Use the Formula: Reduction Factor, $R_f = [(2d1 - \Delta d) / Dia] + 1$ when | er:PC-1Tested By:BAole, DT10'Initial Water Depth (Inches)Test Hole Dimensions (inches)Round), Dia =8Sides (if Rectangular)999999999999999191967.7590.590999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999< | er:       PC-1       Tested By:       BA/AB         ole, DT       10'       Initial Water Depth (Inches)       67.75         Test Hole Dimensions (inches)       Length         Round), Dia =       8       Sides (if Rectangular)       =         Percolation       Initial Depth to<br>Rate, in/hr       Water level<br>Water, d1 (in)       R <sub>f</sub> PC-1       1       67.75       0.5       17.88         of the stabilized rate over the last three consecutive readings is the pre-adjusted percolation rate at the test location is percolation rate must be reduced to account for the discharge of water from both the sides and bottom of the boring of Use the Formula: Reduction Factor, $R_r = [(2d1 - \Delta d) / Dia] + 1$ where $d_1 =$ Initial water Depth, in |

|                              | •                     |                          | REDUCTION                                                                           | I FACTOR, R <sub>f</sub>                  |                                      |                     |           |
|------------------------------|-----------------------|--------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------|-----------|
| Project:                     | Travel Pla            | za - Perris              | Project No.:                                                                        | G-5908-08                                 |                                      | Date:               | 5/25/2021 |
| Test Hole Number: PC-2       |                       | Tested By:               | BA/AB                                                                               |                                           |                                      |                     |           |
| Depth of Test Hole, DT       |                       | 10'                      | Initial Water De                                                                    | epth (Inches)                             |                                      | 71.25               |           |
| Test Hole Dime               |                       |                          | ensions (inches)                                                                    |                                           |                                      | Length              | Width     |
| Diameter (if Round), Dia = 8 |                       | Sides (if Rectangular) = |                                                                                     |                                           |                                      |                     |           |
|                              |                       |                          |                                                                                     | T                                         |                                      | T                   |           |
| Percolation Test             |                       |                          | Pre-Adjusted<br>Percolation<br>Rate, in/hr                                          | Initial Depth to<br>Water, <b>d1</b> (in) | Water level<br>Drop, ∆ <b>d</b> (in) | R <sub>f</sub>      | If        |
| PC-2                         |                       | 1.5                      | 71.25                                                                               | 0.75                                      | 18.72                                | 0.0801              |           |
|                              | l percolation rate mu | ist be reduced to a      | ee consecutive readi<br>account for the discha<br>on Factor, R <sub>f</sub> = [(2d1 | arge of water from bo                     | oth the sides and bo                 | ottom of the boring |           |
|                              |                       | $\Delta d = Water$       | level drop of Fina                                                                  | l Period or Stabil                        | ized Rate (in)                       |                     |           |

### GEOTECHNICAL EVALUATION REPORT

TRAVEL PLAZA PERRIS

AT

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. WEST PACIFIC AVENUE HENDERSON, NEVADA, 89015

PROJECT NO: G-5908-01

JUNE 11, 2021

PREPARED BY:

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING



# Geotechnical Solutions, Inc.

Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project No: G-5908-01

**Broadbent, Inc.** 8 West Pacific Avenue Henderson, Nevada, 89015

### Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelskis@broadbentinc.com

Re: Geotechnical Engineering Evaluation Report Travel Plaza Perris Corner of Trumble Road & Ethanac Road Perris, California

Gentlemen:

Submitted herewith is the report of the Geotechnical Engineering evaluation study conducted by this office for Perris Travel Plaza at the referenced vacant site.

The project site is located just northwest corner of Trumble Road and Ethanac Road Intersection, and east of Freeway 215 in Perris, San Bernardino County, California as shown on Vicinity Map (Plate A) and Google Map (Plate D).

Based on our study findings, it is our opinion that the site is suitable for the proposed development from a geotechnical-engineering standpoint, provided that the recommendations of this report are successfully implemented.

The closest known active faults capable of producing major earthquakes are the Elsinore (GI) (6.89 Mw) and Elsinore (W + GI) (7.27 Mw) faults, which are located approximately 9.56 miles (15.3 km) away from the project site.

The site does not lie within Alquist-Priolo Earthquake Fault Zone as designated by the California Geological Survey (CGS). The potential for direct surface fault rupture at the site is considered unlikely.

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary under the circumstances.

In the opinion of the undersigned, the accompanying report has been substantiated by mathematical and other data and presents fairly the design information requested by your organization.

Respectfully Submitted,

#### Geotechnical Solutions, Inc.

CROLETA

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

Abraham S. Baha, PE, M. ASCE Sr. Principal





Distribution: (3+pdf) Addressee

# **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                           | 1  |
|--------------------------------------------|----|
| 1.1 Purpose and Scope                      | 1  |
| 1.2 Project Description                    | 2  |
| 1.3 Site Description and Topography        | 3  |
| 1.4 Site Geologic Setting                  | 3  |
| 1.5 Other Geologic Hazards                 | 4  |
| 1.5.1 Earthquake-Induced Liquefactions     | 4  |
| 1.5.2 Induced Floodings                    | 5  |
| 1.5.3 Earthquake-Induced Landsliding       | 5  |
| 2.0 FIELD EXPLORATION                      | 5  |
| 2.1 Scope                                  | 5  |
| 2.2 Drilling and Sampling Procedures       | 5  |
| 2.3 Field Tests and Measurements           | 6  |
| 2.4 Standard Penetration Resistance        | 6  |
| 3.0 LABORATORY TESTING AND SUMMARY METHODS | 7  |
| 4.0 SUBSURFACE DISCUSSION                  | 9  |
| 4.1 General                                | 9  |
| 4.2 Material and Soil Conditions Summary   | 10 |

| 4.3 Groundwater                               | 10 |
|-----------------------------------------------|----|
| 4.4 Faulting and Seismicity                   | 11 |
| 4.4.1 Faults Close to the Site                | 11 |
| 4.4.2 U.S.G.S. Earthquake Hazard Program      | 12 |
| 4.4.3 Seismic Factors                         | 12 |
| 4.5 Design Values                             | 14 |
| 5.0 SITE CONSIDERATIONS                       | 15 |
| 5.1 Site Preparation                          | 15 |
| 5.1.1 General                                 | 15 |
| 5.1.2 Site Clearing                           | 15 |
| 5.1.3 Excavation                              | 16 |
| 5.1.4 ASTs Pad Preparation                    | 16 |
| 5.1.5 Compliance                              | 16 |
| 5.2 Lateral Earth Pressures                   | 17 |
| 5.2.1 Lateral Passive Resistance              | 17 |
| 5.2.2 Retaining Wall Recommendations (If Any) | 17 |
| 5.2.3 Active pressure                         | 18 |
| 5.2.4 At-Rest Earth Pressure                  | 18 |
| 5.2.5 Seismic Force on Wall                   | 19 |

| 5.3 On-Site Fill Soils                        | 19 |
|-----------------------------------------------|----|
| 5.3.1 Materials                               | 19 |
| 5.3.2 Placement and Compaction                | 20 |
| 5.4 Soil Corossvity                           | 21 |
| 5.4.1 Corrosion and Sulfate Attack Protection | 21 |
| 5.4.2 Concrete                                | 22 |
| 5.5 Building Foundation Recommendations       | 22 |
| 5.5.1 Conventional/Spread Foundation          | 22 |
| 5.5.2 Mat Foundation                          | 24 |
| 5.5.3 Drilled Shafts for Canopy Foundation    | 24 |
| 5.6 Slab Design Recommendation                | 26 |
| 5.7 General Drainage and Moisture Protection  | 26 |
| 5.8 Volume Changes                            | 27 |
| 5.9 Underground Utilities                     | 27 |
| 5.10 Pavement Design                          | 27 |
| 5.10.1 Pavement Section                       | 27 |
| 5.10.2 Pavement Grading Recommendation        | 29 |
| 5.10.3 General                                | 29 |
| 5.104 Subgrade Preparation                    | 29 |
| 5.10.5 Aggregate Base                         | 30 |

| 5.10.6 Asphalt Concrete Pavement                  | 30 |
|---------------------------------------------------|----|
| 5.10.7 Concrete Pavement Areas                    | 30 |
| 5.11 Exterior Concrete Flatwork                   | 31 |
| 5.12 Temporary Excavations                        | 31 |
| 6.0 GENERAL COMMENTS AND LIMITATIONS              | 32 |
| 6.1 Plan Review                                   | 32 |
| 6.2 Geotechnical Observation and Testing          | 32 |
| 6.3 Construction Verification Procedure           | 33 |
| 6.4 Recommendations for Construction              | 34 |
| 6.5 Limitations                                   | 34 |
| 6.6 Closure                                       | 35 |
| References                                        | 36 |
| Appendix A - Plates                               | 37 |
| Appendix B – Seismic Data                         | 38 |
| Appendix C – Recommended Earthwork Specifications | 39 |

### **1.0 INTRODUCTION**

#### 1.1 Purpose and Scope

The primary objectives of this study were to explore subsurface conditions beneath the project site and evaluate the existing earth materials relative to foundation support and lateral pressure design factors, seismic conditions and earthquake-induced liquefaction potential.

In general, the study objectives were met by a visual reconnaissance of the site and vicinity, review of available tentative development plans, exploratory drilling and sampling of earth materials, laboratory testing, seismic evaluations, geologic hazards study, and engineering analysis. The general scope and objectives of the study were established in collaboration with the client/project team. Items considered in our study relevant to this site included the following:

- Near surface and subsurface soil types,
- Expansion potential,
- Settlement and hydro-collapse potential,
- Bearing capacity and Foundation Design Parameters,
- Slabs-on-grade,
- Lateral earth pressures,
- Drainage considerations,
- Temporary excavation support,
- Corrosion potential,
- Groundwater conditions,
- Likely excavation conditions,
- Seismic Conditions,
- Earthquake induced liquefaction potential,

- Pavements,
- Grading considerations, and
- Construction observation and testing considerations.

To address these, the following scope of work was executed:

- 1. Review of preliminary project plans, available documents, and coordination with the owner's representatives and project design professionals.
- 2. Site reconnaissance.
- 3. Evaluation of seismic conditions for the subject location.
- 4. Excavator and Backhoe drilling, sampling and logging twelve (11) test holes to investigate subsurface conditions.
- 5. Laboratory testing of soil samples obtained from subsurface explorations, to determine their physical and engineering properties.
- 6. Geotechnical analysis of the data obtained.
- 7. Developing conclusions and recommendations for foundation design.
- 8. Preparation of this report.

#### 1.2 **Project Description**

Based on the information provided, the proposed Travel Plaza Perris will have total site area of 14.67 acres including 0.9 acre for the pond area and will consist mainly of constructing the Auto Fueling Island / Canopy, Truck Fueling Island / Canopy, Cat Scale, Aboveground (AST's) and underground (UST's) storage tanks, store building, shop building, pond area, and truck approaches at the location shown on Plot Plan and Boring Location Map (Plate B in Appendix A). Also, the project consists of heavy-duty asphalt pavement for parking and driveways with some rigid concrete pavement sections to accommodate 98 auto parking and 135 truck parking.

### 1.3 Site Description and Topography

The project site is located just northwest of Trumble Road and Ethanac Road Intersection and just east of freeway 215 as shown on Vicinity Map (Plate A) and Google Map (Plate D) in Appendix A. At the time of our field exploration, the site was vacant and covered mostly with grass and weeds all around.

The site is relatively flat at an elevation of 1,426 feet above the sea level. No hilly terrain or drainage problems exist at the subject property.

### 1.4 Site Geologic Setting

The Peninsular Ranges province is one of the largest geomorphic units in western North America. Basically, it extends from the Tranverse Ranges geomorphic province and the Los Angeles Basin, roughly 900 miles south to the tip of Baja California. This province varies in width from about 30 to 100 miles. It is bounded on the west by the Pacific Ocean, on the south by the Gulf of California and on the east by the Colorado Desert Province. The Peninsular Ranges are essentially a series of northwest-southeast oriented fault blocks. Three major fault zones are found in this province. The Elsinore Fault zone and the San Jacinto Fault zones trend northwest-southeast and are found in the near the middle of the province. The San Andreas Fault zone borders the northeasterly margin of the province.

The Perris Block is a large mass of granitic rock generally bounded by the San Jacinto Fault, the Elsinore Fault, the Santa Ana River and a non-defined southeast boundary. The Perris Block has had a history of vertical land movements of several thousand feet due to shifts in the Elsinore and San Jacinto Faults. The primary source of strong seismic ground shaking in the project area is the Elsinore Fault Zone and San Jacinto Fault Zone. Other

regional fault zone of significance that could affect the project area is the San Andreas. The Site Regional Geology Map is shown on the enclosed Plate D.

The site is underlain by alluvial soils over Cretaceous aged igneous rocks (Val Verde Tonalite). The materials encountered onsite generally consist of alluvial soils consist of dense to very dense silty sand to sand. The tonalite bedrock is grey in color and moderately weathered and becomes harder with depth. It should be noted that Special handling and coring could be required during the caisson excavation.

The most significant geologic hazard to the project is the potential for moderate to severe ground shaking resulting from earthquakes generated on the faults close to the site. The site is not located in an Alquist-Priolo Special Studies zone for earthquake rupture hazard. The potential for direct surface fault rupture in the project area is considered very low.

#### 1.5 Other Geologic Hazards

Since the site is located in a relatively flat area, we do not consider landslides or other forms of natural slope instability to represent a hazard to the project. The site is not located near any impounded bodies of water therefore tsunamis and seiches are not considered a potential hazard to the project. The proposed project is an area of stable soil conditions with low shrink-swell potential; hence, no impact is anticipated.

In addition to possible strong earthquake ground motion at the site, the secondary effects of earthquake-induced liquefaction, and earthquake-induced landsliding, were considered. Guidelines for evaluating and mitigation seismic hazards in California (CGS, 2008, SP-117A) summarize procedures for evaluating the earthquake-induced landslide and liquefaction potential.

#### 1.5.1 Earthquake-Induced Liquefaction

The site has not been evaluated for earthquake-induced liquefaction potential as per

California Geologic Survey (Plate F, Appendix A). Liquefaction is discussed in more detail in the proceeding sections.

# **1.5.2 Induced Flooding**

The site lies far and/or high enough from the coast or large inland body of water to preclude the hazards of tsunami or seiche waves or inundation from the rupture of an upgradient reservoir.

## 1.5.3 Eathquake-Induced Landsliding

The site has not been evaluated by California Geologic Survey (CGS) for earthquakeinduced landsliding potential. Since the site is far enough from steep slopes, landsliding will be unlikely.

# **2.0 FIELD EXPLORATION**

## 2.1 <u>Scope</u>

Hollow Stem auger was used to drill. Eleven (11) borings were drilled to get soil samples from the depths varying from 10- to 51.5-feet below the existing ground level in the proposed development areas. The Boring Logs, B-1 through B-11 are shown on the Plot Plan and Boring Location Map (Plate B) in Appendix A.

## 2.2 Drilling and Sampling Procedures

A continuous record of the materials encountered during the drilling was made by our field engineer and Log of all the borings are presented on Appendix A The lines designating the interface between soil strata on the log of Test Holes represent approximate boundaries. The transition between strata may be gradual. Undisturbed samples were secured at frequent intervals from various locations for laboratory testing.

Core samples and bulk samples were secured at frequent depth intervals for laboratory examination and testing. Both California standard ring samples (CA) and split spoon

samples with Penetration test (SPT) blow counts were obtained for further evaluation. Disturbed bulk samples, representative of the surficial subgrade materials were also obtained.

The relative sampler penetration resistance (SPT) exhibited by the deposits sample is tabulated in the Blow per Foot column of the pertinent test hole log. Recorded blow counts for 12 inches of sampler penetration were generally indicative of medium to high shear resistance (140 pounds hammer at a 30-inch drop).

## 2.3 Field Tests and Measurements

The drilled holes were examined and logged in the field. Representative samples were obtained to classify the soils. The Unified Soil Classification System (USCS) was used to classify the soils. The soil classification symbols appear on the boring logs and are briefly described in Appendix A. Local and regional geologic characteristics were used to estimate the seismic design criteria.

In addition, relatively undisturbed California ring samples were obtained for laboratory testing. The attached logs tabulate data based on laboratory classification tests and visual observation by the field geologist at the site.

# 2.4 Standard Penetration Resistance

A sediment is considered to be susceptible to transformation to a fluid mass during a strong seismic event only if the packing of the grains (relative density) is relatively low. Sediments with high relative densities cannot reduce their total volume through the compactive effort induced by the ground shaking.

The number of blows necessary to drive a standard sampler  $(1\frac{1}{2}$ " I.D.)-12 inches into the individual stratum is a measurement of a specific property that has been correlated to relative density. The sampling (penetration) resistance offered by sediment from

successive blows delivered by a 140-pound hammer falling 30 inches is counted. The number of blows to drive the standard sampler full 12 inches is recorded as the N-Value.

The on-site material yielded penetration resistance which indicates dense to very dense alluvial soils, fine to coarse grained, dry to slightly moist with trace of silt were encountered within the boring depth. The standard penetration resistances of the on-site materials at 5-feet intervals are presented on the boring logs (Appendix A).

# 3.0 LABORATORY TESTING AND SUMMARY METHODS

Laboratory testing was programmed following a review of field investigation data and after considering the various foundations, floor slabs, and grading elements to be evaluated. In general, this includes physical testing to establish foundation-bearing characteristics, and classification tests.

# A. In-Place Moisture & Density (ASTM D2216 & D2937)

In-situ moisture content and density were determined for all the undisturbed core samples obtained during test boring drilling operations. Test results are tabulated on Plates I-1 through I-11, Log of Test Holes.

# B. Mechanical Analysis (ASTM D-422)

The texture composition of a selected typical sample determined by the hydrometer test method was as follows:

| Boring<br>No. | Depth (Feet) | Percent Sand | Percent Silt | Percent Clay |
|---------------|--------------|--------------|--------------|--------------|
| B-2           | 0-3          | 72           | 10           | 18           |
| B-7           | 0-3          | 61           | 17           | 22           |
| B-8           | 0-3          | 56           | 22           | 22           |

| B-9 | 0-3 | 68 | 12 | 20 |
|-----|-----|----|----|----|
|     |     |    |    |    |

## C. Direct Shear (ASTM D-3080)

Direct shear test was performed on the representative sample of native soil and was considered most pertinent in the design of mat/ spread footings, and moderately deep pier. Tests were performed in the saturated condition at the field density. Individual test results are shown on Plate J.

## D. Expansion (ASTM D-4829)

Expansion characteristics were determined by the Expansion Index test on a typical bulk sample considered to be generally representative of the near subgrade soils. Test results were as follows:

| Test Boring | Moisture    | Dry Density | Expansion | Remarks            |
|-------------|-------------|-------------|-----------|--------------------|
| No.         | Content (%) | (pcf)       | Index     |                    |
| B-8         | 8.6         | 115.2       | 18        | Very Low Expansive |

According to the test results, the underlying soils generally exhibit very low expansive potential.

## E. Consolidation (ASTM D-2435)

Consolidation (load deformation) tests were performed on undisturbed samples at selected depths. Plotted test results are presented on Plates K, L, and M.

## F. Chemical Sulfate Analysis (CAL 417-A Method)

Chemical sulfate analysis was performed on a representative sample by the CAL 417-A method. A soluble sulfate of 390 parts per million was indicated, which is negligible exposure to concrete, however we recommend using Type II Portland cement for the foundation elements in contact with the underlying soil.

## G. R-Value Test (ASTM D-2844)

Representative samples of the subgrade soils were obtained and tested to determine the R-value. The material is thought to be typical and presumed to be representative of the subgrade soils. Testing was performed in general accordance with the latest revisions to the Department of Transportation, State of California, Material & Research Test Method No. 301. Pavement design recommendations are based on the latest Traffic Indices (TI's) and recently tested R-value.

An R-Value test was conducted on a representative sample of the near surface soil consisting of clayey sand with trace of silt. The specimens were tested in a state as near to full saturation as possible to simulate the condition the soil might attain at typical field density and under adverse moisture conditions. The R-Value for a representative soil was determined to be 30. Test results are as follows:

The R-Value for a representative soil was determined to be 40. Test results are as follows:

| Test<br><u>Number</u> | Moisture @<br>Compaction (%) | Density<br>(pcf) | Exudation<br>Pressure (psi) | Stabilometer<br>"R"-Value |
|-----------------------|------------------------------|------------------|-----------------------------|---------------------------|
| а                     | 7.4                          | 120.5            | 200                         | 37                        |
| b                     | 7.1                          | 122.0            | 350                         | 42                        |
| с                     | 6.7                          | 123.8            | 450                         | 47                        |

\* Interpolated 300 psi by Exudation, Rv = 40

## **4.0 SUBSURFACE DISCUSSION**

## 4.1 General

The recommendations presented are based on entirely upon data derived from a limited number of samples obtained from widely spaced borings. The attached logs, B-1 through

B-11 presented in Appendix A are indicators of subsurface conditions only at the specific locations and times noted. This report assumes the uniformity of the geology and soil structure between the borings, however variations can and often do exist. Whenever there is any deviation, difference or change is encountered or becomes known, we should be contacted.

## 4.2 Material and Soil Conditions Summary

No appreciable artificial fill was encountered at the boring locations during the exploratory drilling. The upper and underlying natural soils are older alluvium, light brown to dark brown, dry to slightly moist, generally fine to coarse grained, medium dense to very dense, sand with gravel, and some rock fragments as well. A more detailed soil profiles are shown on Plates I-1 through I-11, Log of Test Hole (Appendix A).

## 4.3 Groundwater

Surface water on this site is the likely result of precipitation or surface run-off from surrounding sites. Overall site drainage is in a north and northwesterly direction. Provisions for surface drainage will need to be accounted for by the project civil engineer.

We recommend that all surface runoff should not be allowed to pond above or flow freely over adjacent slope surfaces. Collected water should be conveyed via a non-erosive device to a suitable storm drain system.

Groundwater was not encountered at a drilled hole depth of 51.5-feet during the field study. No springs or perennial stream flow in local drainages exist based on older topographic maps.

The nearest well, 05S03W10N0015 as shown on Closest Well Groundwater Data (Plate H-1) and groundwater well data (Plate H-2) indicated the highest groundwater elevation to be 1331.86 above mean sea level. The elevation of our project area is about 1,426 feet.

Thus we believe the historic groundwater depth was around 95-feet below the existing ground surface.

Groundwater is not anticipated to affect the site adversely. However, these observations reflect site conditions at the time of the investigation and do not preclude changes in local groundwater conditions, localized seepage due to variations in rainfall, heavy irrigation, damaged structure (pipes, etc.), or altered site drainage pattern(s).

Proper surface drainage is imperative to collect and convey any surface water off site to a suitable storm drain system.

## 4.4 Faulting and Seismicity

The project site is located in the highly seismic Southern California region within the influence of several fault systems that are considered to be active or potentially active. An active fault is defined by the State of California as a "sufficiently active and well-defined fault" that has exhibited surface displacement within the Holocene time (about the last 11,000 years).

A potentially active fault is defined by the State as a fault with a history of movement within Pleistocene time (between 11,000 and 1.6 million years ago).

No faults have been mapped trending towards or through the site area. The site area does not lie within an Alquist-Priolo Earthquake Fault Zone as designated by the California Geological Survey (CGS) (Hart, 1997). For this reason, the potential for direct surface rupture is considered unlikely.

## 4.4.1 Faults Close to the Site

USGS National Seismic Hazard Maps for Source parameters interactive query has been used to determine the closest fault to the site within 50 miles and has been tabulated on Table -1 in Appendix B.

The closest known active faults capable of producing major earthquakes are the Elsinore (GI) and Elsinore (W + GI) Faults, which are both located approximately 9.56 miles (15.3 km) away from the project site. The Elsinore (GI) Fault has been assigned to 6.89 Mw magnitude and slip rate of 5 mm/year and Elsinore (W + GI) Fault has been assigned to 7.27 Mw magnitude and slip rate of N/A.

## 4.4.2 U.S.G.S. Earthquake Hazard Program

Latest Interactive U.S.G.S. Earthquake Hazard Program using Unified Hazard Tool

has been utilized for Conterminous U.S. 2008 (v3.2.x) and peak ground acceleration.

| Peak Horizontal Ground Acceleration for 10% probability of |         |
|------------------------------------------------------------|---------|
| exceedance in 50 years i.e. return period of 475 years     | 0.4423g |
| Peak Horizontal Ground Acceleration for 5% probability of  |         |
| exceedance in 50 years i.e. return period of 975 years     | 0.5487g |
| Peak Horizontal Ground Acceleration for 2% probability of  |         |

exceedance in 50 years i.e. return period of 2,475 years 0.6906g

Interactive Hazard Curve and Uniform Hazard Response Spectrum have been plotted and presented in Appendix B.

## 4.4.3 Seismic Factors

The following are the geotechnical parameters for earthquake design data in accordance with ASCE 7-16 and the latest CBC 2019. The details are presented in Appendix B:

| NO. | PARAMETERS                                                                                                                             | VALUES           | REFERENCE        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1   | 0.2-Second Mapped Spectral Response<br>Accelerations, S <sub>s</sub> (MCE <sub>R</sub> Ground Motion)                                  | 1.428g           | ASCE 7-16        |
| 2   | 1-Second Mapped Spectral Response<br>Accelerations, S <sub>1</sub> (MCE <sub>R</sub> Ground Motion)                                    | 0.532g           | ASCE 7-16        |
| 3   | Site Class                                                                                                                             | D                | ASCE 7-16        |
| 4   | Site Amplification Factor at 0.2 sec, Fa                                                                                               | 1.0              | ASCE 7-16        |
|     | According to Section 11.4.4, F <sub>a</sub> should not be less than 1.2                                                                | 1.2              | Use              |
| 5   | Site Amplification Factor at 1.0 sec, <b>F</b> <sub>v</sub> , however, according to Table 11.4.2, <b>F</b> <sub>v</sub> should be 1.77 | Null<br>1.77     | ASCE 7-16<br>Use |
| 6   | Site Modified Spectral Acceleration Value, $S_{MS}$<br>$S_{MS} = F_a S_s = 1.2 x 1.428 = 1.714$                                        | 1.714g<br>1.714g | ASCE 7-16<br>Use |
| 7   | Site Modified Spectral Acceleration Value, $S_{M1}$<br>$SM_1 = F_v S_1 = 1.77 \times 0.532 = 0.942$                                    | Null<br>0.942g   | ASCE 7-16<br>Use |
| 8   | Numeric Seismic Design value at 0.2 sec SA,<br>$S_{DS} = 2/3$ of $S_{MS} = 2/3 \times 1.714 = 1.143$                                   | 1.143g<br>1.143g | ASCE 7-16<br>Use |
| 9   | Numeric Seismic Design value at 1.0 sec SA,<br>$S_{D1} = 2/3$ of $SM_1 = 2/3 \times 0.942 = 0.628$                                     | Null<br>0.628g   | ASCE 7-16<br>Use |

# Latitude: $33.7441^{0}$ and Longitude: $-117.1658^{0}$

Other seismic parameters are as follows:

| Closest Fault Distance                    | 9.56 m                       | iles (15.3 km)  |
|-------------------------------------------|------------------------------|-----------------|
| Fault Name                                | Elsinore (GI) & Elsinore (   | (W + GI) Faults |
| Earthquake Magnitude                      | 6.89 M                       | w & 7.27 Mw     |
| Slip Rate (mm/year)                       |                              | 5.0 & N/A       |
| PGA <sub>M</sub> Site Modified Peak Grour | nd Acceleration              | 0.600g          |
| 5% Damped Design Spectral Accelerati      | on at short period, $S_{DS}$ | 1.143g          |
| 5% Damped Design Spectral Accelerati      | on at 1-sec period, $S_{D1}$ | 0.628g          |
| Seismic Design Category                   | D                            |                 |
| Risk Category                             | II                           |                 |
| Soil Site Class                           |                              | D               |

# 4.5 Design Values

Representative values were selected from the test data and other sources for design and is tabulated below:

| Field Density                         | 120 pcf               |
|---------------------------------------|-----------------------|
| Expansion Index                       | 0 & 18                |
| Angle of Internal Friction (Ult/Peak) | 32/33 & 34/35 deg.    |
| Cohesion (Ult/Peak) Remolded          | 200/250 & 200/250 psf |
| Subgrade K-Value                      | 100 pci               |

## **5.0 SITE CONSIDERATIONS**

## 5.1 Site Preparation

## 5.1.1 General

It is our professional opinion that the proposed construction will not be subject to geologic hazard from settlement, slippage, or landslide, provided the recommendations of this report are incorporated into the proposed construction. It is also our opinion that the proposed construction will not adversely affect the geologic stability of the site or adjacent properties provided the recommendations contained in this report are incorporated into the proposed construction.

The validity of the conclusions contained in this report is based on compliance with the recommendations presented in this section. Any excavating, trenching, or disturbances that occur after completion of the earthwork must be backfilled, compacted and tested in accordance with the recommendations contained herein. If any unobserved and untested earthwork, trenching, or backfilling occurs, then the conclusions and recommendations in this report may not be relied on.

## 5.1.2 Site Clearing

Prior to grading, all grasses, bushes, shrubs and debris including construction materials should entirely be removed from the site and disposed of off-site. Existing any undesirable materials should also be removed and hauled off-site. Existing utilities (if Any) should be removed and relocated as required. Any construction debris or ant buried or other contaminated exposed during site clearance should be removed and hauled away from the site. The resulting excavation from any removal should be cleared of loose material then backfilled with compacted soil. Oversized rocks greater than 6 inches should be removed.

## 5.1.3 Excavation

Excavations into the on-site soils may encounter a variety of challenges for example, firm alluvium, gravels, some fragments of rocks etc. Caving on clean sands may be encountered. The contractor should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of the excavation sides. All excavations should be sloped or shored in the interest of safety following local and federal regulations including current OSHA excavation and trench safety standards.

Heavy equipment for breaking the very dense and firm alluvium may be required for the excavations for shallow foundations, drilled shafts, and utility trenches for the proposed construction. The speed and ease of excavation are dependent on the nature of the deposit, the type of equipment used, and the skill and experience of the equipment operator.

## 5.1.4 ASTs Pad Preparation

At the locations where Above Ground Storage tanks (ASTs) are located, proof-roll the exposed subgrade to observe for any loose or disturbed soils that may remain. Remove and replace any loose or disturbed soils prior to placing any additional fill materials required to reach the finished subgrade elevation.

## 5.1.5 Compliance

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the **Site Preparation recommendations** and Recommended Earthwork Specifications in Appendix C.

To assess compliance, observation and testing should be performed under the direction of a geotechnical engineer. Please contact us to provide observation and testing services.

# 5.2 Lateral Earth Pressures

## 5.2.1 Lateral Passive Resistance

Horizontal forces may be resisted by passive pressure acting on the side and sliding resistance. The passive pressure may be 300 psf per foot of embedment from the lowest adjacent grade up to a maximum of 4,500 psf.

Friction between base of footings and/or floor slabs, and the underlying soils may be assumed to be 40 percent of the dead loads.

The allowable bearing capacity and the allowable resistance of horizontal forces may be increased one-third for transient forces.

Friction and lateral pressure may be combined, but not to exceed two-thirds of the allowable lateral pressure.

## 5.2.2 Retaining Wall Recommendations (If Any)

The retaining wall structures may be supported by shallow footings bearing on compacted fill or competent subgrade soil. Following bearing values may be used for foundation design.

Shallow footings for the wall and/or secondary structure may be designed for an allowable bearing value of 1,500 pounds per square foot (psf) embedded at least 18 inches, a minimum width of 12 inches, placed over a minimum of 12-inches thick engineered fill compacted to 90% relative density or over a competent subgrade soil. This basic bearing value may be increased by 200 psf for each one-foot increase in depth, and by 100 psf for each additional 12 inches in width to a maximum value of 2,500 psf.

Recommended bearing values are for dead plus live loads and may be increased by one-third for combined dead, live, and transient forces such as wind load and seismic forces. It is recommended that all foundations be reinforced per structural design, but no less than a minimum reinforcement of 2#5 bars top and 2#5 bars at the bottom.

It is estimated that total settlement will be less than 0.50" and differential settlement will be less than 0.25" over a horizontal distance of 30 feet.

# 5.2.3 Active Pressure

Recommended active lateral soil pressure values for design of drained retaining wall are as follows:

| Surface Slope of<br>Retained Material<br>(Horizontal:Vertical) | Equivalent<br>Fluid Weight (pcf)<br>(Native Backfill) | Allowable Bearing<br>Capacity |
|----------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| Level                                                          | 35                                                    | 1,500 psf                     |

A Pipe and gravel drain (4" perforated PVC embedded in at least three cubic feet of gravel per lineal foot of pipe wrapped with Mirafi geofabric 10N or equivalent) should be provided on the retained earth side and near the base of all the retaining walls. Backfill should consist of sand and/or gravel. While all backfills should be compacted to the required degree, care should be taken when working close to the walls to prevent excessive pressure.

# 5.2.4 At-Rest Earth Pressure (If Any)

Retaining walls (basement walls, underground vault, if applicable) should be designed for at-rest conditions. The recommended earth pressure for at-rest conditions is an equivalent fluid density of 60 pounds per cubic foot without surcharge loading.

## Note:

The equivalent fluid pressures presented herein do not include the lateral pressures arising from the presence of the following:

- Hydrostatic conditions, submergence or partial submergence
- Sloping backfill, positively or negatively
- Surcharge loading, permanent or temporary
- Seismic or dynamic conditions

#### 5.2.5 Seismic Force on Wall

Lateral forces on retaining walls (exceeding 6 feet in height) due to earthquake movements in accordance with Section 1803A.5.12 of the 2019 CBC for active and at-rest conditions may be calculated as follows:

| Seismic active Force  | = 13 $H^2$ pounds/ft of wall (Inverted triangular               |
|-----------------------|-----------------------------------------------------------------|
|                       | distribution, acting at 0.6H from bottom).                      |
| Seismic at-rest Force | = $24 \text{ H}^2$ pounds/ft of wall (Rectangular Distribution, |
|                       | acting at 0.6H from bottom).                                    |

Where, H = Height of the retaining wall in feet

## 5.3 On-Site Fill Soils

#### 5.3.1 Materials

On-site clean sand (after removing rocks, sizes greater than 6 inches), lowexpansive potential soils, or imported materials may be used as fill material for the following:

- Foundation Areas
- Interior Slab Areas
- Pavement Areas
- Backfill

Any earth materials imported or excavated on the property may be utilized in the fill provided that each material has been determined to be suitable by the soil engineer. These materials should be free of roots, tree branches, other organic matter or other deleterious materials. Soils of poor gradation, undesirable expansion potential, or substandard strength characteristics may be designated by the consultant as unsuitable and may require blending with other soils to serve as a satisfactory fill material.

Gradation (as per ASTM C136) should be as follows:

| Size          | <u>% by Weight</u> |
|---------------|--------------------|
| 6"            | 100                |
| 4"            | 85-100             |
| 3/4"          | 70-100             |
| No 4 Sieve    | 50-100             |
| No. 200 Sieve | 15 (max)           |

Any import material should have an expansion Index, EI less than 20.

## 5.3.2 Placement and Compaction

- a. Place and compact approved fill material in nearly horizontal layers that when compacted should not exceed 6 inches in thickness.
- b. Use appropriate equipment and procedures that will produce recommended densities and water contents throughout the lift. Moisture condition, blending, and mixing of the fill layer should continue until the fill materials have a uniform moisture content at or above optimum moisture.
- c. Uncompacted fill lifts should not exceed 8 inches.
- d. Materials should be compacted to the following:

• On-site or imported soil, reworked and fill:

Minimum % (ASTM D-1557

|                                | Laboratory Standard) |
|--------------------------------|----------------------|
| Subgrade Below Footings        | 90                   |
| Subgrade Below Slab-on Grade   | 90                   |
| Subgrade Below Pavement        | 90                   |
| Crush Rock Below Slab-on-Grade | 95                   |
| Aggregate Base below pavement  | 95                   |

#### 5.4 Soil Corrosivity

#### 5.4.1 Corrosion and Sulfate Attack Protection

A major factor in determining soil corrosivity is electrical Resistivity. The electrical Resistivity of a soil is a measure of its resistance to the flow of electrical current. Corrosion of buried metal is an electrochemical process in which the amount of metal loss due to corrosion is directly proportional to the flow of electrical current (DC) from the metal into the soil. Corrosion currents, following Ohm's Law, are inversely proportional to soil Resistivity. Lower electrical resistivities result from higher moisture and chemical contents and indicate corrosive soil. Other soil characteristics that can influence corrosivity toward metals are pH, chemical content, soil types and site drainage.

Based on test results and our past experience at this site, soils are classified as slightly corrosive to ferrous metals and negligible sulfate exposure to concrete. The type of alluvial deposits encountered at this site and in this area in general is known to cause corrosion problems. Ferrous metals and pipes should be properly coated and wrapped. Please be advised that this firm does not practice corrosion engineering; therefore, we recommend that upon completion of precise grading, onsite soils be

analyzed by a qualified corrosion engineer to evaluate the impact of chemical activity of these soils on buried metallic pipes and other underground structures. If necessary, more elaborate corrosion protection systems may be considered as may be recommended by a corrosion expert.

## 5.4.2 Concrete

Concrete for foundation where in contact with the underlying soils should be designed in accordance with the 2019 CBC, ACI 318 Section 4.3, Table 4.3.1 (2005). As the potential for sulfate attack on concrete appears negligible, however, we recommend that the use of type II Portland cement, with a maximum water-cement ratio of 0.50, and a minimum compressive strength of 3,000 psi should be taken into consideration for the foundation elements in contact with the soil.

For all concrete in contact with soil, concrete cover over rebar should be maintained per California Building Code (CBC 2019).

## 5.5 **Building Foundation Recommendations**

Based upon results of the field explorations, laboratory testing and engineering analysis, it is concluded that the site is suitable for the proposed development at the subject site. The site is subject to ground shaking typical of the Southern California area, any construction should conform to the current seismic design provision of the California Building Code (2019), and/or other regulatory codes.

Following are more specific recommendations:

## 5.5.1 Conventional/Spread Foundations

The planned ASTs and the proposed building may be supported by conventional continuous and/or isolated shallow spread pad footings, bearing on certified compacted fill. The foundations should bear on engineered fills achieved by removal and re-compaction of the soils below foundation and slab elements.

Footings placed at least 18 inches below finish subgrade and 3 feet x 3 feet spread footings, 24 inches deep may be designed for an allowable bearing value of 1,500 pounds per square foot (psf). The footing width should be a minimum of 18 inches. An increase of 100 psf and 200 psf are allowed for each additional foot of increase in width and depth, respectively to a maximum value of 2,000 psf.

This allowable bearing value is for dead plus live load and may be increased by one-third for combined dead, live, and transient loads such are wind or seismic forces.

All footings at minimum shall be incorporated with 2#5 bars at top and 2#5 bars at the bottom.

Isolated column footings should be connected to other foundation elements with reinforced grade beams.

Total settlement is estimated to be less than  $\frac{1}{2}$  inch for loading of 2 kips per square foot. Differential settlement will be  $\frac{1}{3}$  of an inch maximum for a horizontal distance of 30 feet. Additional foundation movements could occur if water from any source infiltrates the foundation soils. Therefore, proper drainage should be provided in the final design and during construction.

All footings, stem walls, and masonry walls should be steel-reinforced to reduce the potential for distress caused by differential foundation movements. The use of joints at openings or other discontinuities in masonry walls is recommended.

We recommend that geotechnical engineer, or his representative thereof, observe the footing excavations before reinforcing steel and concrete are placed. This observation is to assess whether the soils exposed are similar to those anticipated based on our exploration. Any soft, loose, or otherwise unacceptable soils should be undercut to suitable materials and backfilled with approved fill materials, or controlled density fill (i.e., lean concrete). Soil backfill should be properly placed and compacted.

# 5.5.2 Mat Foundation (Alternate Foundation for ASTs)

Alternatively, above ground storage tanks (ASTs) and proposed building may be supported on the mat foundation. The semi-rigid mat foundation should be at least 4-feet or more below the finish grade and may be designed for an allowable bearing capacity of 2,000 pounds per square foot. This basic allowable bearing value is for dead load plus live load and may be increased by one-third for short duration loading, such as wind or seismic forces. Modulus of subgrade reaction, k value may be taken as 150 pci for subgrade soil at 4 feet depth.

For lateral support, an average passive capacity of 300 pounds per square foot per foot to a maximum of 4,500 psf may be used for mat footing.

Minimum thickness of mat footing should be 24 inches. The bottom of excavation at 4 feet below the finish grade should be compacted to 90 % of the maximum density as per ASTM D-1557 Laboratory Standard, certified by the Geotechnical Engineer of record prior to pouring concrete. Other aspects of the design including reinforcement and the thickness of the mat should be determined by the project structural engineer. The mat may be buried and should be backfilled with on-site material compacted to 90 percent.

# 5.5.3 Drilled Shafts for Canopy Foundation

Proposed truck diesel and gas canopies may be supported by moderately deep cast-in-place concrete caisson bearing into natural subgrade materials. Very hard drilling may be encountered because of the presence of dense to very dense alluvial soils. Heavy-duty equipment may be required.

The lateral forces will be the controlling element in this case depending on the height of the canopies, wind load, and/or seismic loads. Therefore, it is

recommended that the minimum pier diameter should be 36 inches and should be extended to a minimum depth of 10 feet into the native material.

The pier may be designed for an allowable end bearing of 3,000 pounds per square foot or for an average frictional resistance of 300 pounds per square foot. Either skin resistance or end bearing or combined will provide adequate foundation support for the proposed canopies. The uppermost length of the drilled shaft foundation equal to the diameter of the shaft should be ignored when evaluating allowable capacities.

For lateral support, a passive capacity of 350 pounds per square foot per foot to a maximum of 5,000 psf may be used.

It is recommended that concrete be placed immediately after drilling. The concrete for the pier should be placed through tremmie or other directional devices. Pier drilling operations should be subject to observation by this office to confirm the conditions encountered are consistent with the conclusions and recommendations of this report and/or to make any appropriate modifications, if necessary. Please note that caving is very likely to be encountered during caisson drilling. The contractor should be ready to provide either casing or other methods to prevent caving. The contractor should bring the heavy duty equipment because very difficult drilling are anticipated due to presence of boulders and rocks.

We anticipate that total settlement of the proposed structures, supported by drilled shaft foundations as recommended, should be less than <sup>1</sup>/<sub>2</sub>-inch. Additional foundation could occur if water from any source infiltrates the foundation soils. Therefore, proper drainage should be provided in the final design and during construction.

In case, caisson drilling is not feasible for the canopies, mat foundation as explained on 5.5.2 for the support of the canopies may be anticipated.

25

#### 5.6 Slab Design Recommendation

Based on test results, the underlying surface soils are very low expansive, therefore it is recommended to maintain subgrade soil at near optimum moisture content during precise grading and / or by periodic watering following grading and incorporated slab reinforcement of No. 3 bars 16 inches center to center cross pattern. The slab thickness should be 5 inches minimum. However, the thickness and reinforcement requirements of the slab should be evaluated by the project structural engineer.

It is further recommended that moisture retarder (Stego 15 mil or approved equivalent) be provided over a minimum of 6 inches of  $\frac{3}{4}$ " aggregate rock rolled and compacted to 95% relative compaction, with the gradation (90-100% passing on sieve  $\frac{3}{4}$ " size, 1-10% passing on No. 4 sieve, and 0-3% passing on No. 100 sieve) over the compacted fill subgrade compacted to 90% relative compaction.

The modulus of subgrade reaction (k) is estimated to be 125 pounds per cubic inch (pci). All concrete placement and curing operations should follow the American Concrete Institute (ACI 318-19) manual recommendations. Improper curing techniques, high slump (high water-cement ratio), or both, could cause excessive shrinkage, cracking, or curling. Concrete slabs should be allowed to cure properly before placing vinyl or other moisture-sensitive floor coverings.

## 5.7 General Drainage and Moisture Protection

It is recommended to provide positive surface drainage systems consisting of a combination of sloped concrete flatwork, sheet flow gradients, swales, surface area drains (where needed) around the structures. Ground surface should have a minimum gradient of 2 percent away from any building foundations and similar structures. Surface waters should not be allowed to collect or pond against building foundations and within the level areas of the site. Buildings should be provided with gutters and downspouts. Downspouts shall be connected to area drains by pipes.

Planters near the building should be avoided if possible and if used, they should be water proofed. Irrigation should be controlled and an area drain system should be provided to avoid water intrusion beneath the structure.

# 5.8 Volume Changes

Based on our experience, there is typically a reduction in soil volume when the native soils are excavated and then compacted. Typical shrinkage percentages are usually in the range of 5 to 10 percent when the soils are compacted depending on the native in-place density.

## 5.9 Underground Utilities

Utility backfill should be placed and compacted by mechanical means as recommended in this report. Testing of the backfill should be conducted to verify conformance to the required specifications. Ponding or water jetting of the backfill should not be conducted.

Exterior trenches adjacent to, and within areas extending below a 1:1 plane projected from the outside bottom edge of the footing, and all trenches beneath hardscape features should be compacted to at least 90% of the laboratory standard. Sand backfill, unless excavated from the trench, should not be used in these backfill areas. Compaction testing and observations, along with probing, should be accomplished to verify the desired results.

All trench excavations should conform to CAL\_OSHA and local safety codes.

# 5.10 Pavement Design

## 5.10.1 Pavement Section

The pavement sections presented on the following page are based on the R-value data tested, the assumed TI values, and the guidelines presented in the latest revision to the California Department of Transportation "Highway Design Manual," latest edition.

Typical categories of paved areas with corresponding traffic indices are listed as follows:

T.I. 5.0 Parking Stalls
T.I. 6.0 Driveways
T.I. 8.0 Trucks Route, Fire Lane, Truck Parking

The recommended pavement sections provided below are intended as a minimum guideline. If thinner or highly variable pavement sections are constructed, increased maintenance and repair could be expected.

If the ADT (average daily traffic) or ADTT (average daily truck traffic) increases beyond that intended, as reflected by the TI used for design, increased maintenance and repair could be required for the pavement sections.

Consideration should be given to the increased potential for distress from overuse of paved areas by heavy equipment and/or construction related traffic (e.g., concrete trucks, loaded supply trucks, etc.), particularly when the final section is not in place (i.e., topcoat). Best management construction practices should be followed at all times, especially during inclement weather.

Based on an "R" Value of 40, the following thickness of aggregate base was determined for vehicular and non-vehicular areas.

| Pavement Areas                          | Traffic Index, TI | Asphalt Concrete<br>AC (inch) | Aggregate Base<br>AB (inch) |
|-----------------------------------------|-------------------|-------------------------------|-----------------------------|
| Truck Route, Fire lane<br>Truck Parking | 8                 | 4"                            | 12"                         |
| Driveway/U <u>nder</u><br><u>Canopy</u> | 6                 | 4"                            | 8"                          |
| Parking Stall                           | 5                 | 4"                            | 6"                          |

#### Asphalt Concrete Pavement Section Design Table

## Rigid Concrete Pavement Section Design Table

| Pavement Areas                 | Traffic Index, TI | Concrete<br>(inch) | Aggregate Base<br>AB (inch) |
|--------------------------------|-------------------|--------------------|-----------------------------|
| Heavy Truck<br>Vehicular Areas | <sup>.</sup> 6    | 6"                 | 10"                         |
| Walkways                       | -                 | 4"                 | 4"                          |

For concrete section, #4 reinforcement 12-inch center to center each way cross pattern are recommended. However structural design by structural engineer will suffix.

## 5.10.2 Pavement Grading Recommendations

# 5.10.3 General

A representative of Geotechnical Solutions, Inc. (GSI) should be present for the preparation of subgrade, aggregate base, and asphalt concrete for flexible pavement and concrete for rigid pavement.

# 5.10.4 Subgrade Preparation

After removing the existing deleterious materials on the pavement areas and hauled offsite, all surficial deposits of loose soil material should be removed and excavate 12 inches below the base and recompacted as recommended. The bottom is further scarified to a depth of at least 6 inches; moisture conditioned as necessary and compacted to 90 percent of the maximum laboratory density as determined by ASTM Test Method D-1557.

Deleterious material, grass/weeds, excessively wet or dry pockets, concentrated zones of oversized rock fragments, and any other unsuitable materials encountered during excavation or grading should be removed. The compacted fill material should then be brought to the elevation of the proposed subgrade for the pavement.

The subgrade should be proof-rolled in order to ensure a uniform, firm and unyielding surface. All grading and fill placement should be observed by the project soils engineer and/or his representative.

## 5.10.5 Aggregate Base

Compaction and rolling are required for the recommended base section. Minimum relative compaction required will be 95 percent of the laboratory maximum density as determined by ASTM Test Designation D-1557. Aggregate base should be in accordance with Crush Rock Class II aggregate base (minimum R-value=78) and sample should be brought for testing and approval prior to delivery to the site. Please note that crush miscellaneous base is not allowed.

## 5.10.6 Asphalt Concrete Pavement

Asphalt concrete pavement should be Performance Grade PG 64-10 1/2" maximum aggregate size and should be placed and compacted in two layers. Asphalt concrete shall be compacted to 95 percent of the Hveem Laboratory Standard.

## 5.10.7 Concrete Pavement Areas:

Concrete flatwork including sidewalks, patio-type slabs and concrete sub-slabs to be covered with decorative pavers should be at least 4 inches thick and provided with construction joints or expansion joints every 6 feet or less.

Concrete driveway slabs should be at least 6 inches thick over 6 inches of aggregate base or native base (for vehicular areas) and 4" of concrete over 4" of aggregate base or native base (Non-vehicular areas) over approved subgrade, providing #4 reinforcement 12" center to center each way cross pattern and provided with construction joints or expansion joints every 10 feet or less.

At the driveway areas, the top 12 inches of subgrade should be excavated; moisture conditioned and recompacted with minimum 90% compaction immediately prior to placing the rock base and asphalt concrete. Rock-base material shall be class II aggregate base and to be compacted to 95 percent minimum.

Design section must be verified during site grading, based on R value test and appropriate modifications shall be made, if required.

## 5.11 Exterior Concrete Flatwork

In order to reduce the potential for unsightly cracking, concrete sidewalks, deck and patio slabs and concrete sub-slabs to be covered with decorative pavers should be at least 4 inches thick and provided with construction joints or expansion joints every 6 feet or less. Concrete driveway slabs should be at least 5 inches thick and provided with construction joints or expansion joints every 10 feet or less.

#### **5.12 Temporary Excavations**

Temporary excavations may not be required but in case it is needed then the Contractor should be made fully responsible for adequate support of the excavation at all times. Temporary support of excavation structures plans should be designed by a Professional Engineer licensed in the State of California and experienced in such work and these plans should be reviewed by us and approved by the City of Perris, if necessary.

Since the site has adequate room to lay back with temporary excavation slopes, shoring may not be needed, but this should be evaluated based on field conditions.

The stability of temporary excavations depends on many factors, including the slope angle, the shearing strength of the existing material, orientation and inclination of geologic structure, the height of the slope and the length of time the excavation remains unsupported and exposed to equipment vibrations and rainfall. All excavations should be observed by the engineering geologist during excavation.

The possibility of temporary excavations failing may be minimized by: 1) keeping the time between cutting and filling operations to a minimum; 2) limiting excavation length exposed at any one time; and, 3) cutting no steeper than a 1:1 (horizontal to vertical [h:v]) inclination and no steeper for false cuts along the toe for key excavations, cleanouts, etc.

Following is the temporary excavation recommendation, subject to field verification by the geotechnical consultant.

| Excavation up to 4 feet                  | Vertical    |
|------------------------------------------|-------------|
| Excavation over 4' but not to exceed 10' | 1:1 (H: V)  |
| Excavation from 10' to 20'               | 1½:1 (H: V) |

## **6.0 GENERAL COMMENTS AND LIMITATIONS**

#### 6.1 Plan Review

Final project plans should be reviewed by this office prior to construction, so that construction is in accordance with the conclusions and recommendations of this report. Based on our review, supplemental recommendations and/or further geotechnical studies may be warranted.

#### 6.2 Geotechnical Observation and Testing

All footing trenches for the proposed structure should be observed by a representative of this firm to verify that they were excavated into competent bearing soils per the recommendations of this report as well as to the minimum depths recommended above. These observations should be performed prior to the placement of forms or reinforcement. The excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed prior to placing concrete.

## 6.3 Construction Verification Procedure

Construction of foundations and placement of engineered fill should be done under the observation and documentation of a representative of the project Geotechnical Engineer. The following are noted as items requiring verification during construction.

## **Pre-Grading Meeting:**

A pre-grading meeting should be held prior to the start of any grading activities. Attendees of this meeting should include the Owner, the Architect, the Geotechnical Engineer, and the Contractor, to review procedures and scheduling.

#### **Footing Observations:**

Construction of foundation and slab should be performed under inspection of the Geotechnical Engineer. Footings should be observed and certified by Geotechnical Engineer of Record after excavation and prior to placement of reinforcing bars.

## Earthwork Observations:

Relative compaction of all fill materials placed on site should be tested in accordance with ASTM D6938. All new fill shall be brought to near optimum moisture, placed in layers not exceeding six inches in thickness, and compacted to at least 90 percent relative compaction for subgrade and 95 percent relative compaction for aggregate base. No jetting or water tamping of fill soils shall be permitted. All imported soil for engineered fill should be pre-approved by the Geotechnical Engineer and consist of clean, granular, non-expansive soil, free of vegetation and other debris with an Expansion Index of 20 or less.

At all times, the contractor should have a responsible field superintendent on the project in full charge of the work, with authority to make decisions. He should cooperate fully with the Geotechnical Engineer in carrying out the work.

33

All footing trenches for continuous and spread footings and subgrade for the slab areas should be observed by the project Geotechnical Engineer to verify that overexcavation and re-compaction operations of adequate depth, thickness, and compaction have been performed as specified. All footing excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed and replaced with properly compacted soil.

#### 6.4 <u>Recommendations for Construction</u>

**Surveying:** The contractor shall set necessary stakes to verify lines and grades as shown on the plan.

**Changed Conditions**: Any changed conditions not found during exploration should be brought to the attention of the soil engineer. As a result of the changed conditions, the soil engineer will provide further recommendations.

**Site Drainage**: The site should be sloped to direct water away from all structures and divert to a positive drainage device at the street. Roof gutters and down spouts shall be provided for roof drainage. Down spouts shall be connected to the positive area drains.

**Footing and Utilities Trenches.** All the Footing excavations as well as utility trenches should be observed by a representative of Geotechnical Solutions, prior to placement of steel.

## 6.5 Limitations

This report is issued with the understanding that it is the responsibility of the owner or his representative to see that the information and recommendations contained herein are called to the attention of the other members of the design team for the project and that the applicable information is incorporated into the plans, and that the necessary steps are taken to see that the contractors and the subcontractors carry out such recommendations. The findings of this report are valid as of the present date. However, changes in the

conditions of a property can occur with the passage of time, whether due to natural processes or to the works of man, on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes outside of our control. The validity of the recommendations of this report assumes that Geotechnical Solutions, Inc. will be retained to provide construction monitoring services. The scope of our services did not include any investigation for the presence or absence of hazardous or toxic materials.

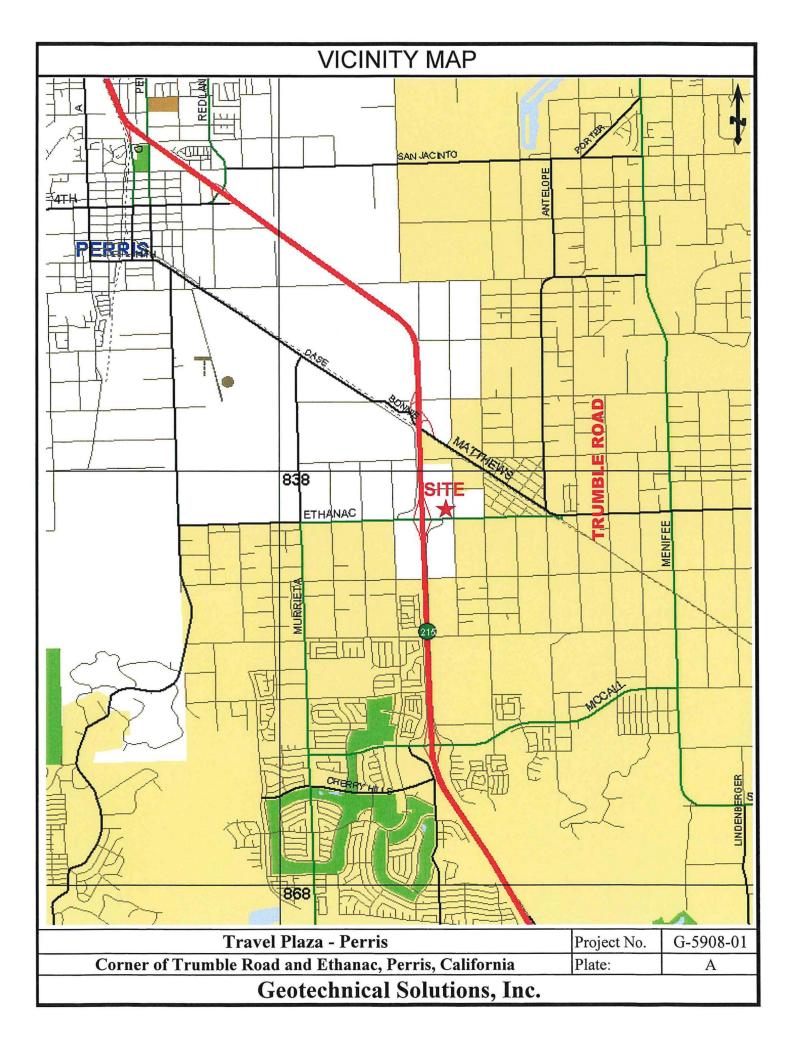
#### 6.6 Closure

The Conclusions and recommendations contained herein are based on the findings and observations made at the test boring locations. It is not unusual to find conditions between and beyond such locations, which differ from the conditions encountered. If conditions are encountered during construction, which appear to differ from those previously disclosed, this office should be notified so as to consider the need for modifications. On-site construction observations and wherever appropriate, tests should be performed during the course of construction by a representative of this office to evaluate compliance with the design concepts, specifications, and recommendations contained herein.

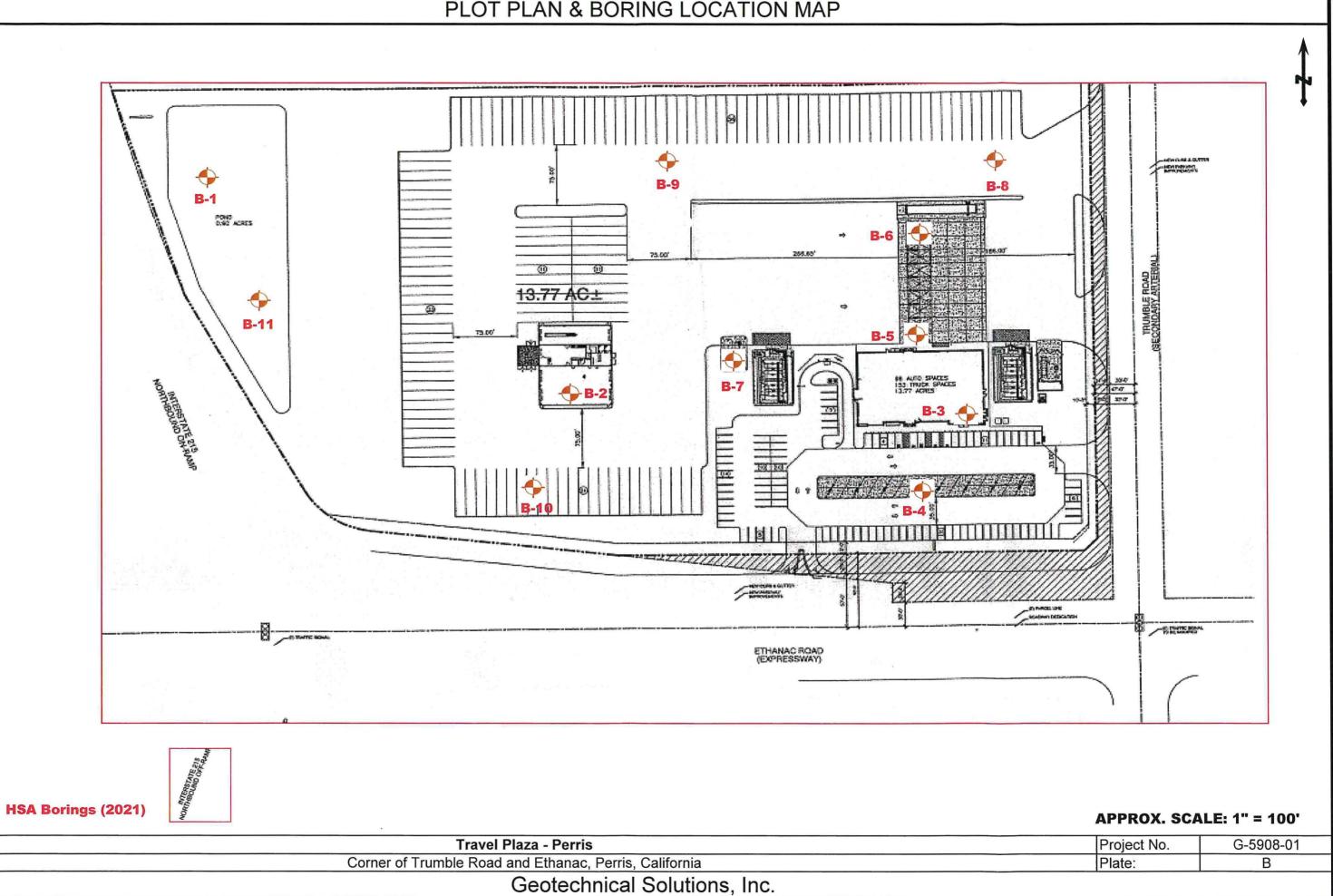
This report has been compiled for the exclusive use of our client, it shall not be transferred to, or used by, other parties, or applied to any project on this site other than described herein without consent and /or thorough review by this office.

#### **Geotechnical Solutions, Inc.**

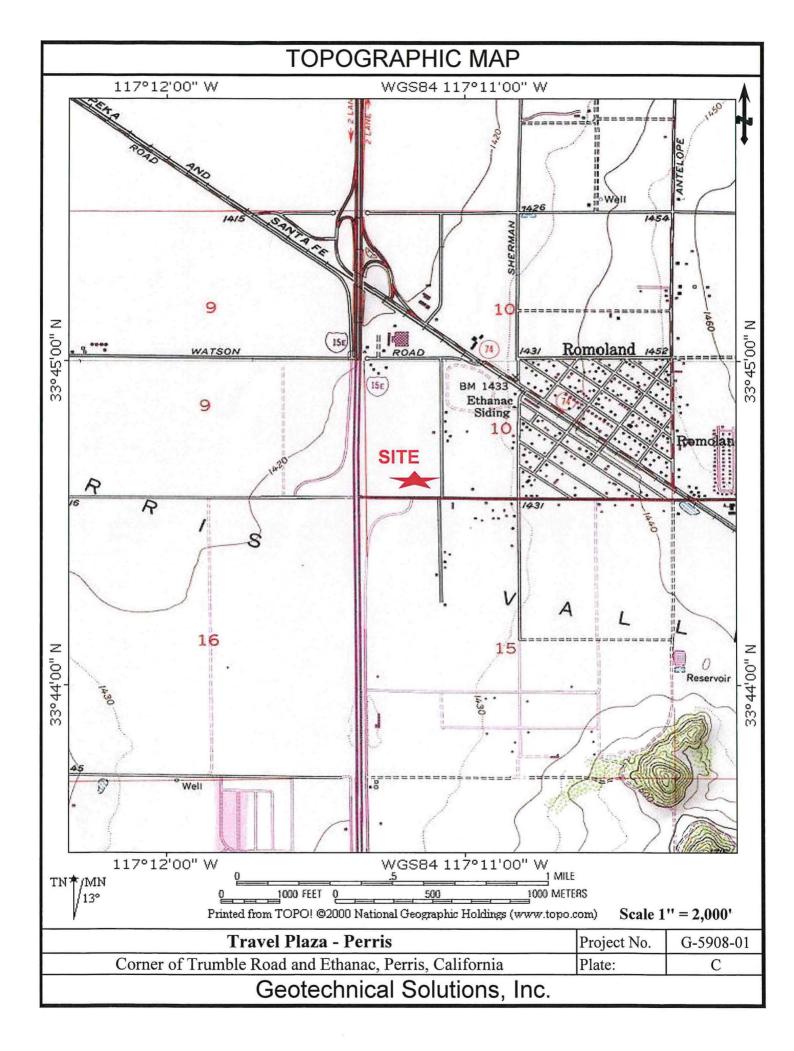
35

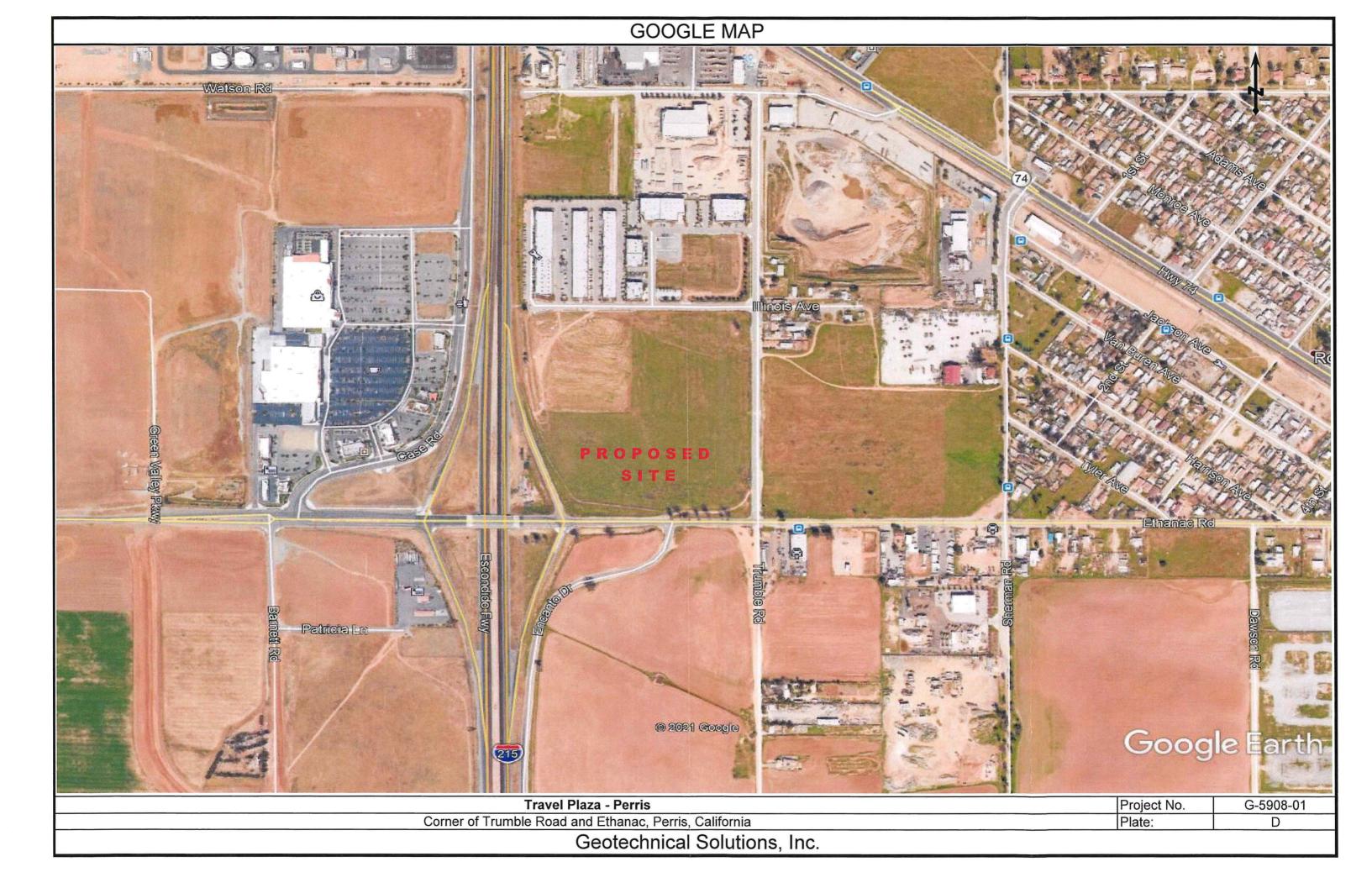

#### References

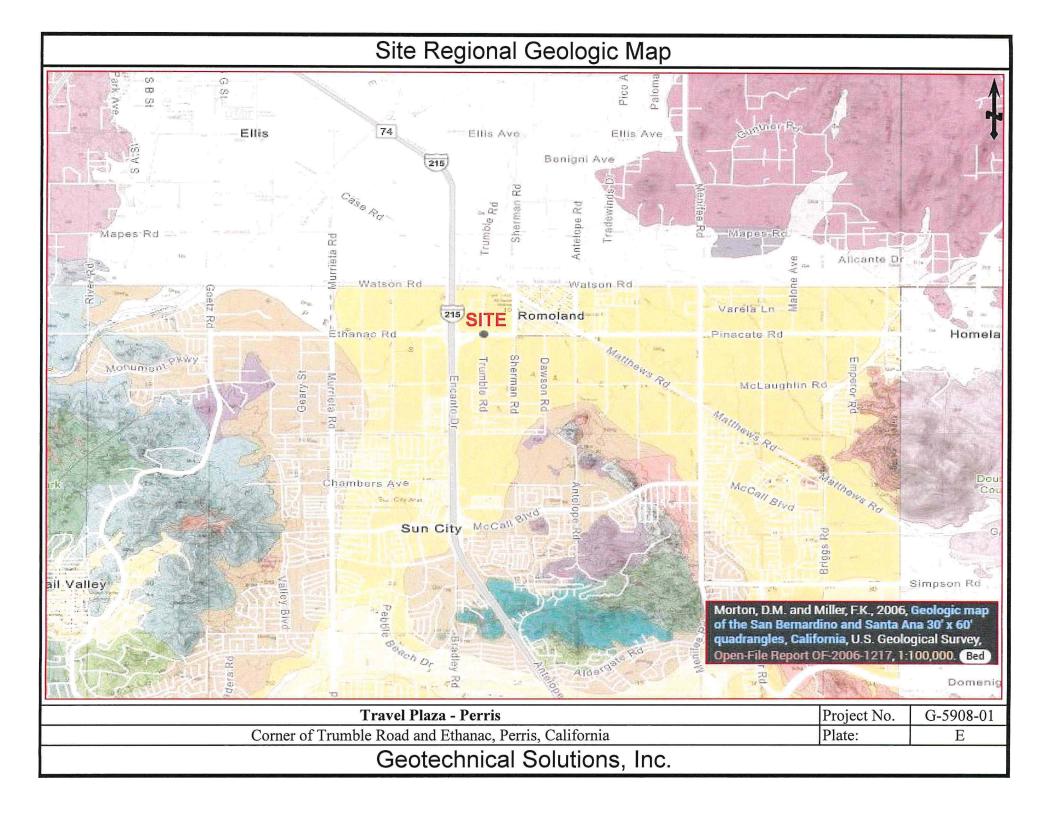
- California Department of Water Resources groundwater well data <u>http://wdl.water.ca.gov</u>.
- California Division of Mines and Geology, 1997, Fault-Rupture Hazard Zones in California, Special Publication 42.
- California, Division of Mines and Geology, 2008, Special Publication 117A, Guidelines for Evaluating and Mitigating Seismic Hazards.
- International Conference of Building Officials (ICBO), 2019, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2.
- Jennings, C.W., 1994, Preliminary Fault Activity Map of California, Scale 1:750,000, DMG Open File Report 92-03.
- Morton, D.M. and F.K. Miller, 2006, "Geologic Map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California: U.S. Geological Survey, Open-File Report OF-2006-1217, Scale 1:100,000.
- Thomas W. Dibblee, Jr., 2003," Geologic Map of the Devore Quadrangle, San Bernardino County, California", Edited by John A. Minch.
- U.S. Seismic Design Maps Summary & Detailed Report (SEAOC/OSHPOD)
- 2008 National Seismic Hazard Maps Source Parameters. https://earthquake.usgs.gov/cfusion/hazfaults\_2008\_search/query\_results.cfm
- U.S.G.S., Earthquake Hazards Program, Unified Hazard Tool Interactive Hazard Curve and Interactive Deaggregation web Site. https://earthquake.usgs.gov/hazards/interactive/

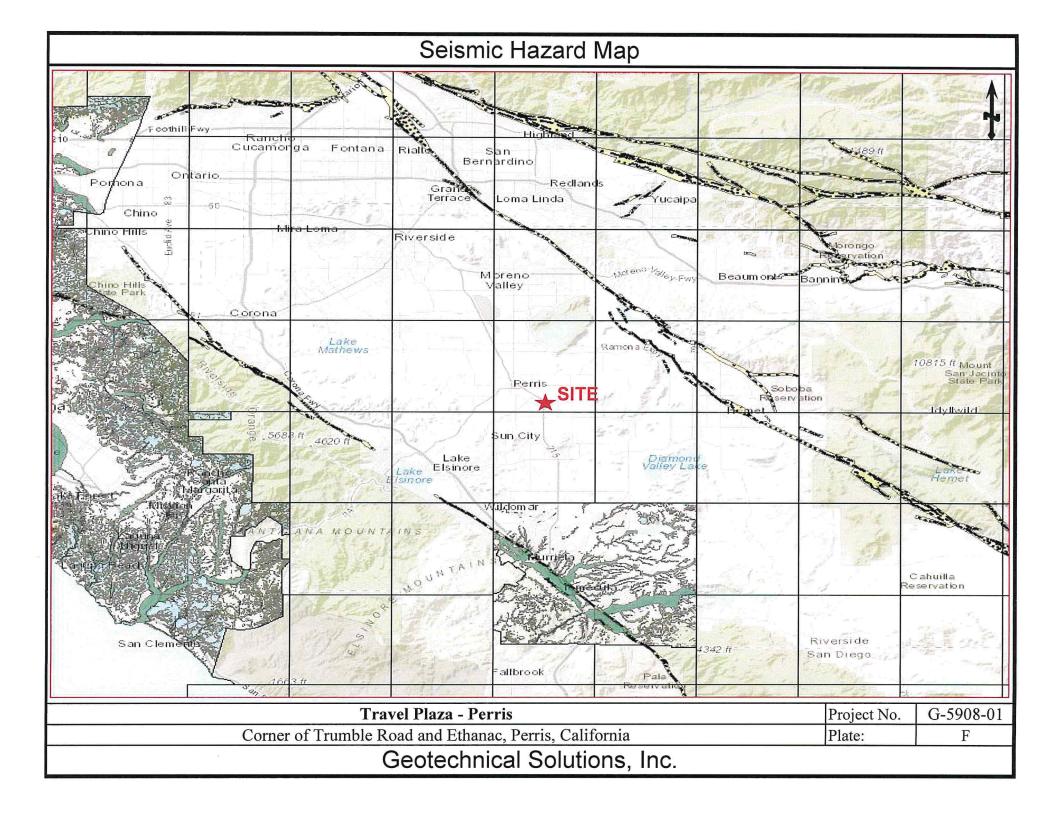

# Appendix A

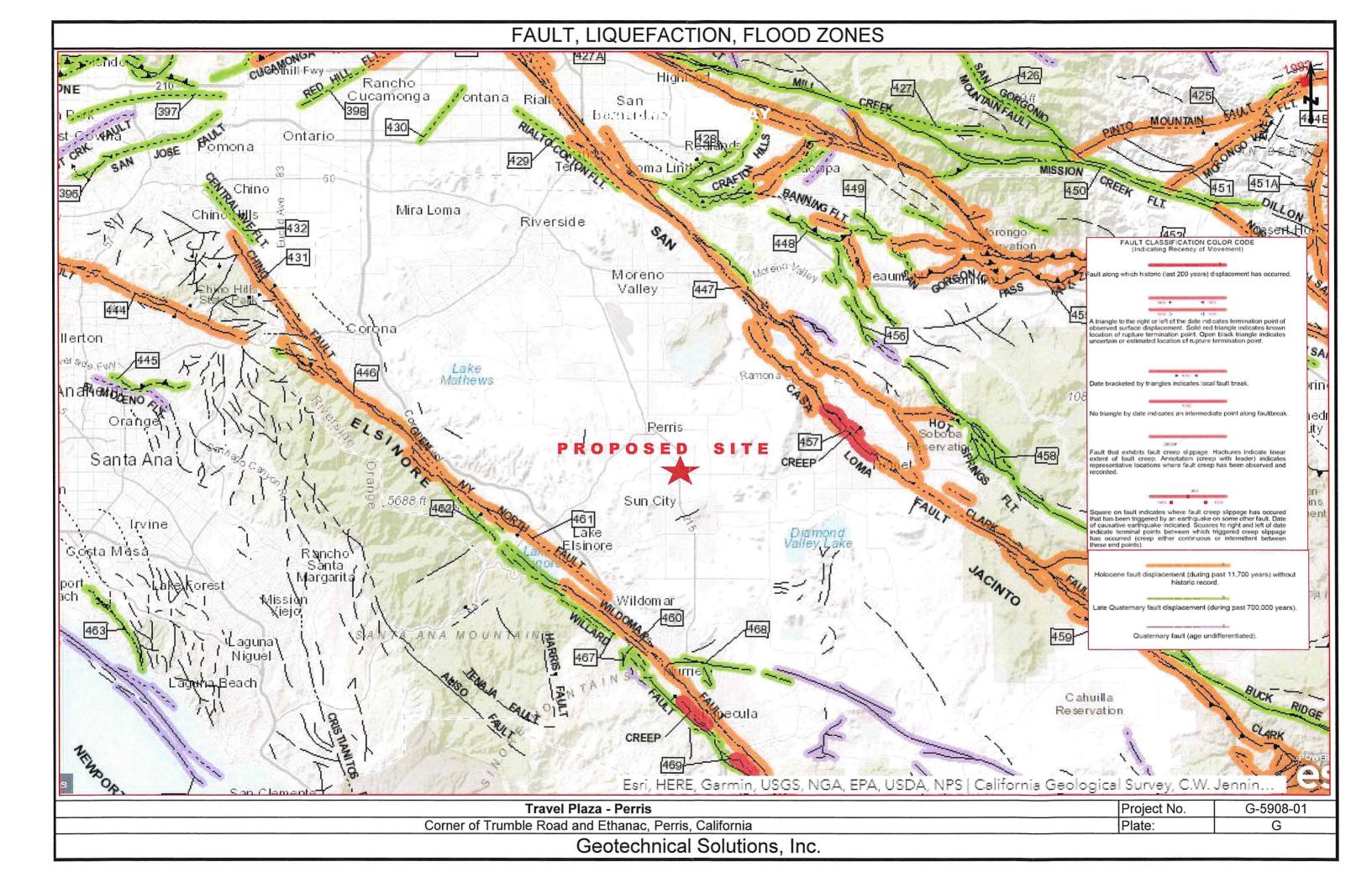
#### **Plates:**

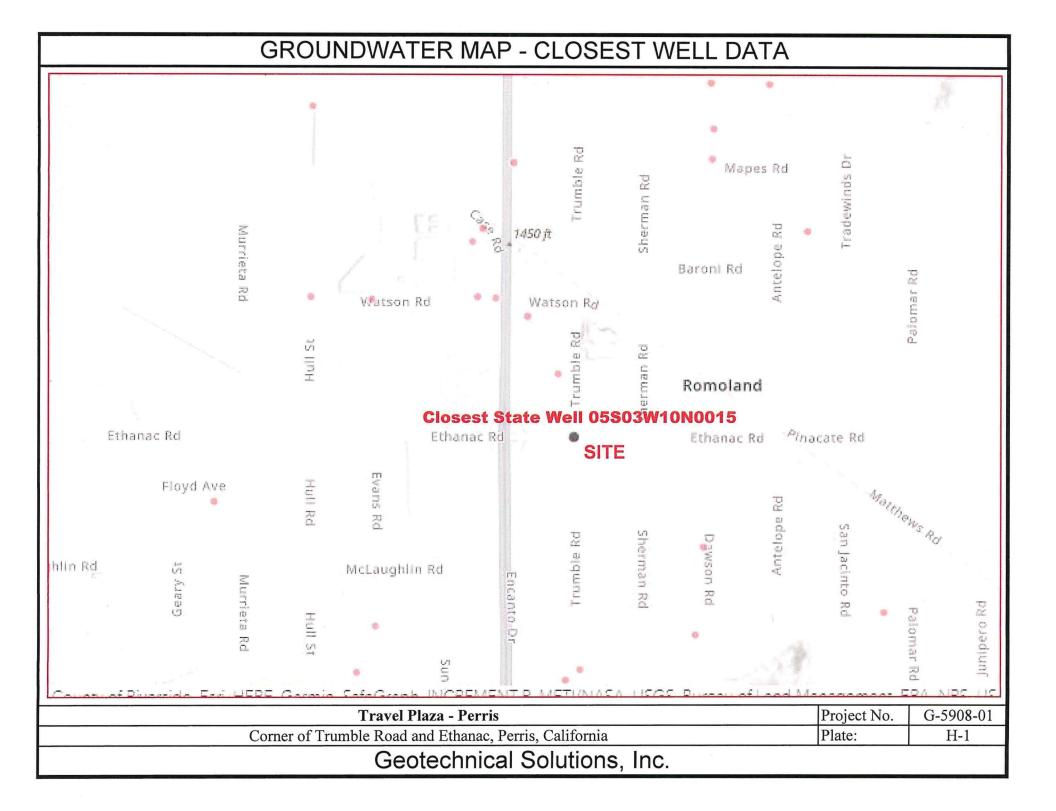

- Vicinity Map
- Plot Plan and Boring Location Map
- Topographic Map
- Google Map
- Site Regional Geology Map
- Seismic Hazard Map CGS
- Fault, Liquefaction and Flood Zones
- Groundwater Closest Well Data
- Groundwater Map Well Data
- Log of Test Borings
- Direct Shear Tests
- Consolidation Tests



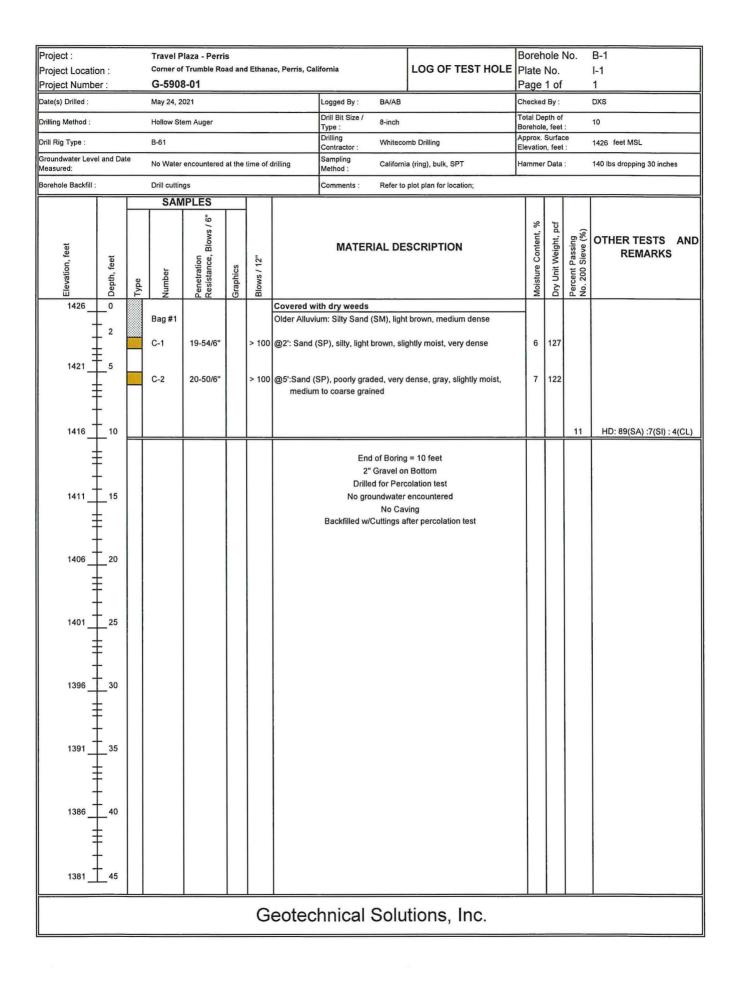


# PLOT PLAN & BORING LOCATION MAP



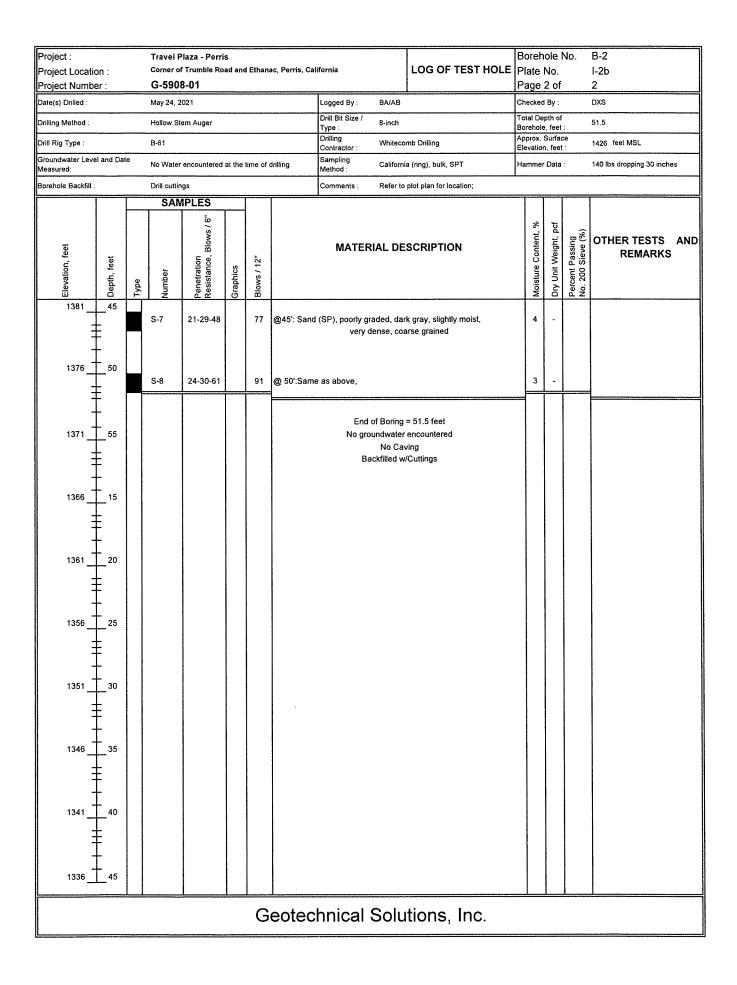


**B-11** 







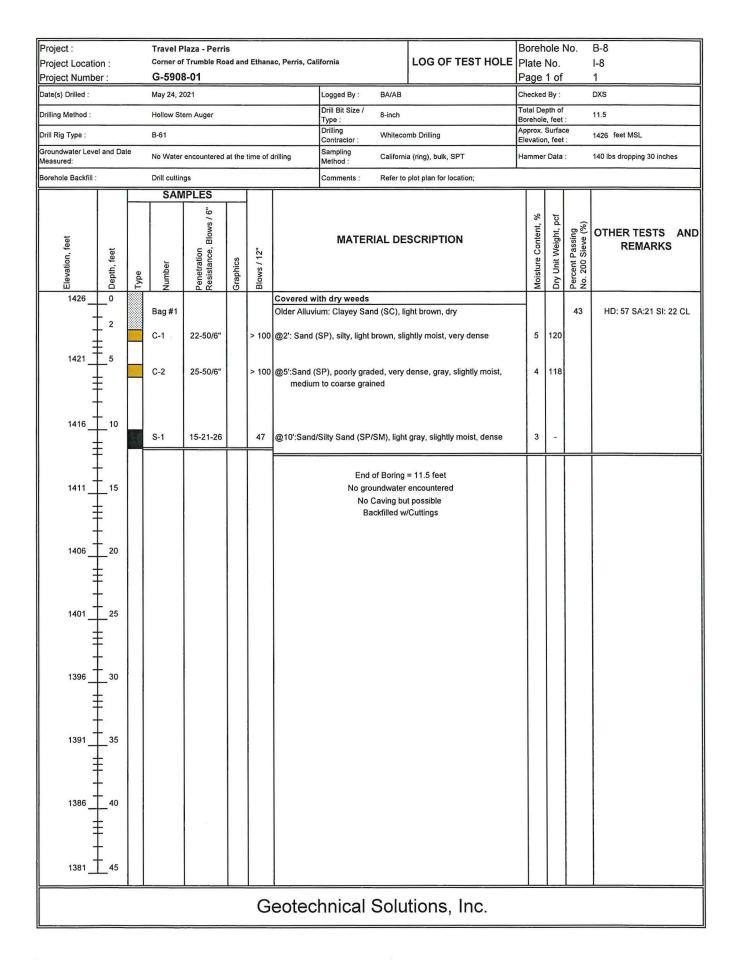


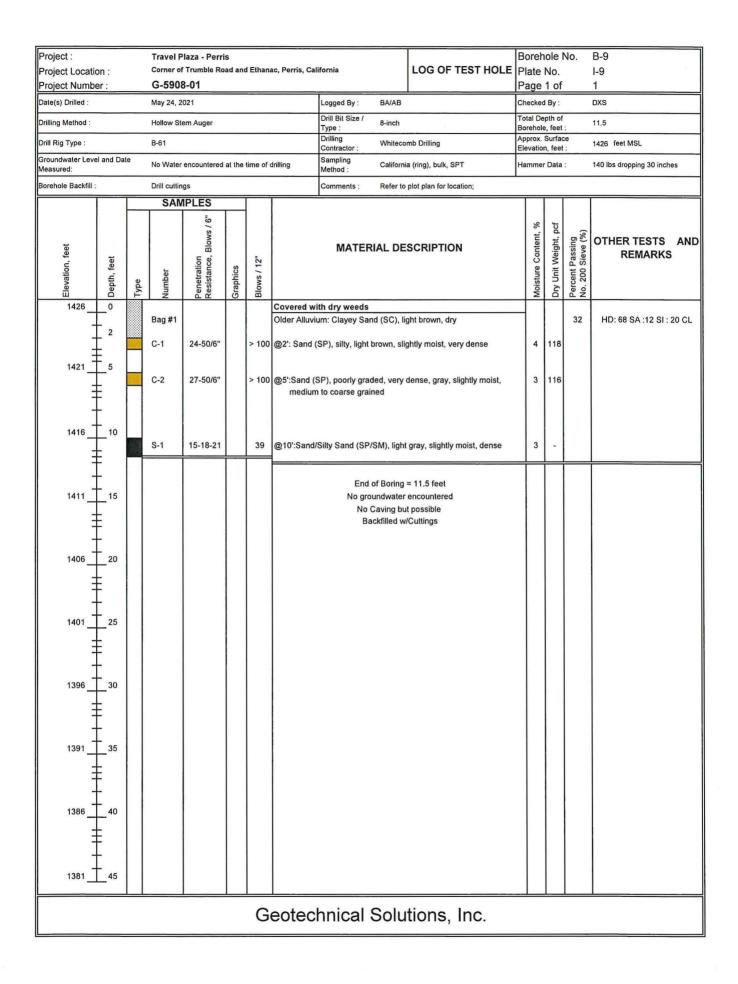

|                                            | GROUI                                    | NDWATEF                   | r Map - We               | ELL DATA                           |                      |                              |        |
|--------------------------------------------|------------------------------------------|---------------------------|--------------------------|------------------------------------|----------------------|------------------------------|--------|
| Groundwater L                              | evel Report.                             |                           |                          |                                    |                      |                              |        |
| Station 337464N117                         | 1859W001                                 |                           |                          |                                    |                      |                              |        |
| Station Data Groundwate                    | r Level Data                             |                           |                          |                                    |                      |                              |        |
| Groundwater Level                          | s for Well 337464N1                      | 171859W001 <b>(</b>       | Site Code)               |                                    |                      |                              |        |
| 1440 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1420 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1400 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| (II)<br>Hot 1380 ft                        |                                          |                           |                          |                                    |                      |                              |        |
| 五<br>1360 府                                |                                          |                           |                          |                                    |                      |                              |        |
| 1340 ft                                    |                                          |                           |                          |                                    |                      |                              |        |
| 1320 ft                                    | ø                                        |                           |                          |                                    | •                    |                              |        |
|                                            | 06/02/1995                               | - Water Surface           | Ground Surface           | - Questionable Data                |                      |                              |        |
| Measurement Referen<br>Date (PST) Elevatio | ice Point Ground Surface<br>In Elevation | Distance from<br>RP to WS | Groundwater<br>Elevation | Ground Surface<br>to Water Surface | Measurement<br>Issue | Collecting<br>Agency         | V<br>N |
| 06/02/1995 1427.49<br>00:00:00             | 0 1427.490                               | 97.98                     | 1329.51                  | 97.98                              |                      | Department of<br>Water Resou |        |
| 09/13/1995<br>00:00:00 1427.49             | 0 1427.490                               | 95.63                     | 1331.86                  | 95.63                              |                      | Department of<br>Water Resou |        |
|                                            |                                          | el Plaza - Perris         | Domia Califami           |                                    | Project              |                              |        |
|                                            | Corner of Trumble Roa                    |                           | I Solutions,             |                                    | Plate:               | H                            | -2     |
|                                            | 00                                       |                           |                          |                                    |                      |                              |        |

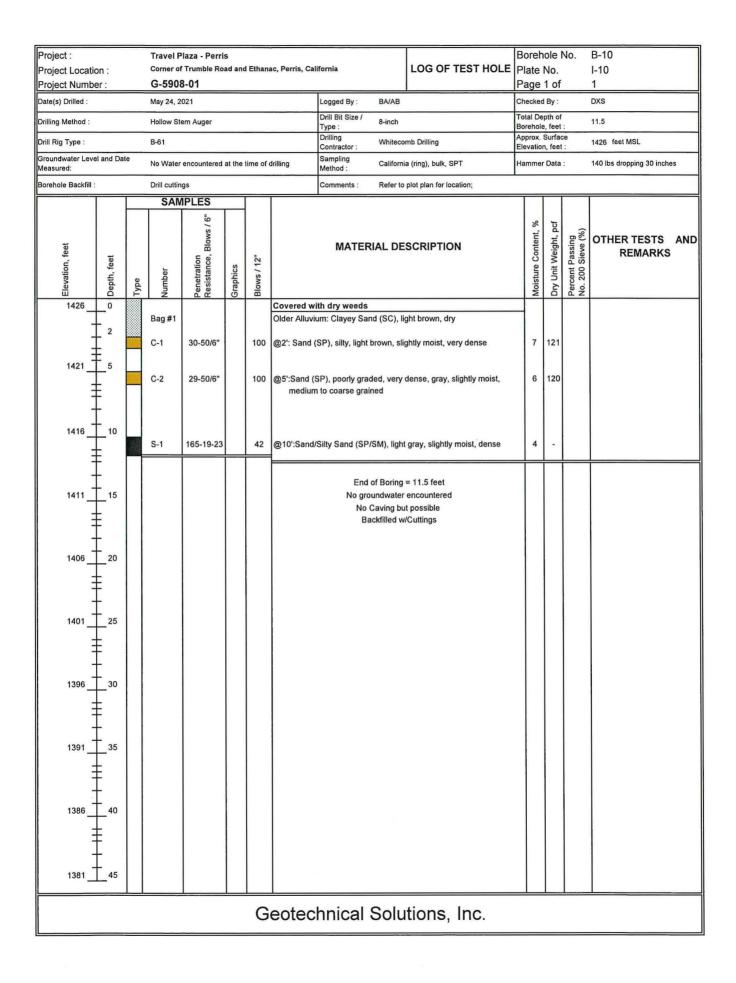


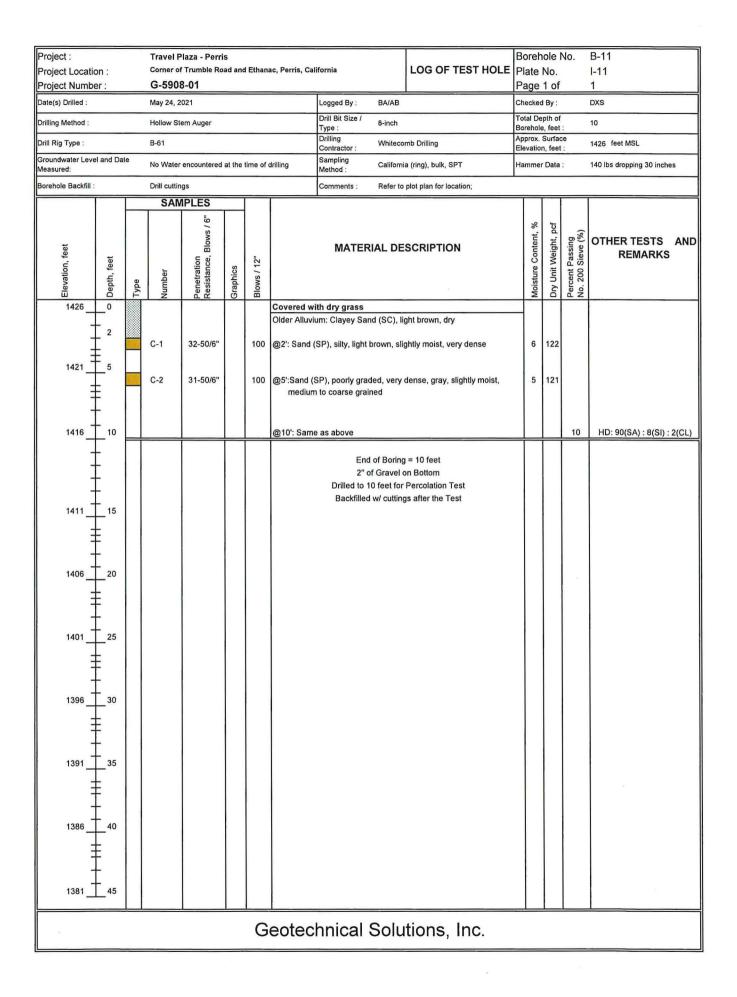
| Project :<br>Project Locatio | n ·         |      |               | laza - Perri<br>Trumble Ro            |          | d Ethan     | ac, Perris, Cal                                                                                   | lifornia                                        | LOG OF TEST HOLE                                   | Boreh               |                      | No.                                  | B-2<br>I-2a                                                                                               |
|------------------------------|-------------|------|---------------|---------------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------|----------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|
| roject Numbe                 |             |      | G-5908        |                                       | ad an    | - Cinan     | ac, r enns, ca                                                                                    | inorma                                          |                                                    | Plate               |                      |                                      | 2                                                                                                         |
| ate(s) Drilled :             |             |      | May 24, 2     |                                       |          |             |                                                                                                   | Logged By : BA/AB                               | 1                                                  | Checker             | _                    |                                      | DXS                                                                                                       |
| rilling Method :             |             |      | Hollow Ste    | em Auger                              |          |             |                                                                                                   | Drill Bit Size / 8-inch                         |                                                    | Total De            |                      |                                      | 51.5                                                                                                      |
| rill Rig Type :              |             |      | B-61          |                                       |          |             |                                                                                                   | Drilling Whiteco                                | mb Drilling                                        | Borehol<br>Approx.  |                      |                                      | 1426 feet MSL                                                                                             |
| Groundwater Level            | and Date    | e    |               |                                       |          |             |                                                                                                   | Sampling                                        |                                                    | Elevatio            |                      |                                      |                                                                                                           |
| leasured:                    |             |      |               | encountered                           | at the   | time of     | aniling                                                                                           | Method : Californi                              | a (ring), bulk, SPT                                | Hamme               | r Data               | :                                    | 140 lbs dropping 30 inches                                                                                |
| orehole Backfill :           |             |      | Drill cuttin  |                                       |          |             |                                                                                                   | Comments : Refer to                             | plot plan for location;                            |                     |                      |                                      |                                                                                                           |
| Elevation, feet              | Depth, feet | Type | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                                                   | MATERIAL DE                                     | SCRIPTION                                          | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AI<br>REMARKS                                                                                 |
| 1426                         | _0          |      |               |                                       |          |             | Baregroun                                                                                         |                                                 |                                                    | _                   |                      |                                      |                                                                                                           |
| +                            | 2           |      | Bag #1<br>C-1 | 50/6"                                 |          | 100         |                                                                                                   | um: Clayey Sand (SC), li                        | ght brown, medium dense<br>ghtly moist, very dense | 7                   | 121                  | 28                                   | HD:72 SA:10 SI: 18 CI                                                                                     |
| 1421                         | 5           |      | C-2           | 18-37-44                              |          | 81          |                                                                                                   | SP), poorly graded, very<br>n to coarse grained | dense, gray, moist,                                | 10                  | 126                  |                                      |                                                                                                           |
| 1416                         | 10          |      | C-3           | 17-32-34                              |          | 66          | @10':Sand<br>to coarse gr                                                                         | (SP), variety of color, mo<br>rained            | ist, very dense, medium                            | 9                   | 95                   |                                      | DS: P=Peak / Ult=Ultimate<br>$\phi = 34^{\circ}$ , c =250 psf (P<br>$\phi = 33^{\circ}$ , c = 200 psf (Ul |
| 1411                         | 15          |      | S-1           | 14-28-33                              |          | 61          | @15': Sand                                                                                        | l (SP), hard to drill, slightl                  | y moist, dark gray                                 | 5                   | -                    |                                      |                                                                                                           |
| 1406                         | 20          |      | S-2           | 15-34-39                              |          | 73          | @20': Same                                                                                        | e as above                                      |                                                    | 5                   | -                    |                                      |                                                                                                           |
| 1401                         | 25          | -    | S-3           | 19-31-37                              |          | 68          | @25': Same                                                                                        | e as above                                      |                                                    | 5                   | -                    |                                      |                                                                                                           |
| 1396                         | _30         |      | S-4           | 14-19-27                              |          | 46          | @ 30': Sam                                                                                        | e as above                                      |                                                    | 4                   | d -                  |                                      |                                                                                                           |
| 1391                         | _35         |      | S-5           | 11-18-26                              |          | 44          | @ 35': Sand                                                                                       | 11                                              | -                                                  |                     |                      |                                      |                                                                                                           |
| 1386                         | 40          |      | S-6           | 20-27-39                              |          | 66          | @40': Sand(SP), poorly graded, dark gray, slightly moist,<br>very dense, medium to coarse grained |                                                 |                                                    |                     |                      |                                      |                                                                                                           |
| 1381                         | 45          |      |               |                                       |          |             |                                                                                                   |                                                 |                                                    |                     |                      |                                      |                                                                                                           |
|                              |             |      |               |                                       |          | G           | eotec                                                                                             | hnical Solu                                     | tions, Inc.                                        |                     |                      |                                      |                                                                                                           |

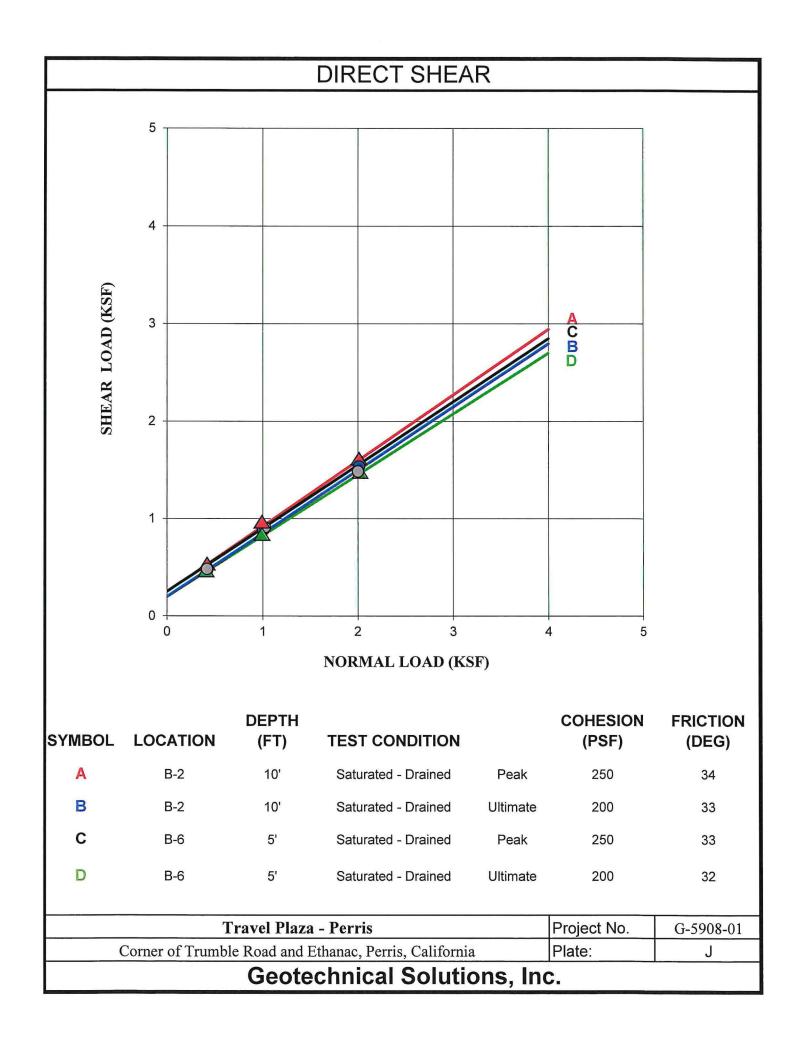



| Designation                      | _        | -             |                                       |          |             |                                       |                                                              |                         | D                   | al.                  | Nie                                                                                                                                          | D 2                        |
|----------------------------------|----------|---------------|---------------------------------------|----------|-------------|---------------------------------------|--------------------------------------------------------------|-------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Project :<br>Project Location :  |          |               | laza - Perri<br>Trumble Ro            |          | l Ethana    | ac, Perris, Cali                      | lifornia                                                     | LOG OF TEST HOLE        | Boreh               |                      | NO.                                                                                                                                          | B-3<br>I-3                 |
| Project Number :                 |          | G-590         |                                       |          |             | , , , , , , , , , , , , , , , , , , , |                                                              |                         | Page                |                      |                                                                                                                                              | 1                          |
| Date(s) Drilled :                |          | May 24, 2     |                                       |          |             |                                       | Logged By : BA/AB                                            |                         | Checked             |                      |                                                                                                                                              | DXS                        |
| Drilling Method :                |          | Hollow St     | em Auger                              |          |             |                                       | Drill Bit Size / 8-inch                                      |                         | Total De            |                      |                                                                                                                                              | 16.5                       |
| Drill Rig Type :                 |          | B-61          |                                       |          |             |                                       | Type :<br>Drilling<br>Whitecor                               | nb Drilling             | Borehole<br>Approx. | Surfac               | ce                                                                                                                                           | 1426 feet MSL              |
| Groundwater Level and Dat        | e        | No Water      | encountered                           | at the   | time of c   | frilling                              | Sampling California                                          | ı (ring), bulk, SPT     | Elevatio<br>Hamme   |                      |                                                                                                                                              | 140 lbs dropping 30 inches |
| Measured:<br>Borehole Backfill : |          | Drill cuttin  |                                       |          |             |                                       | Method :                                                     | plot plan for location; |                     | Duiu                 |                                                                                                                                              |                            |
| Borenole Backini .               | -        |               | IPLES                                 | _        |             |                                       | Comments . Refer to                                          | piot plan for location, | <b>—</b>            |                      |                                                                                                                                              |                            |
|                                  |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| Elevation, feet<br>Depth, feet   | Type     | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                       | MATERIAL DE                                                  | SCRIPTION               | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%)                                                                                                         | OTHER TESTS AND<br>REMARKS |
| 14260                            | <b>F</b> | 2             |                                       | 0        |             | Bareground                            | d                                                            |                         |                     |                      | <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                            |
| - 2<br>- 2                       |          | Bag #1<br>C-1 | 50/6"                                 |          |             | Older Alluviu                         | um: Silty Sand/ Sand (SM<br>SP), silty, dark brown, slig     |                         | 6                   | 127                  |                                                                                                                                              |                            |
| 14215                            |          | C-2           | 20-50/6"                              |          | 100         |                                       | SP), poorly graded, very on<br>nedium to coarse grained      |                         | 7                   | 122                  |                                                                                                                                              |                            |
| 141610                           |          | C-3           | 8-10-33                               |          | 43          | @10':Same                             | as above, slightly moist                                     |                         | 3                   |                      |                                                                                                                                              |                            |
| 141115                           |          | S-1           | 10-20-40                              |          | 60          | @10':Same                             | as above                                                     |                         | 3                   | -                    |                                                                                                                                              |                            |
| 1406 20                          |          |               |                                       |          |             |                                       | End of Boring =<br>No groundwater<br>No Cav<br>Backfilled w/ | encountered<br>ing      |                     |                      |                                                                                                                                              |                            |
| 140125                           |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 139630                           |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1391 35                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1386 40                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
| 1381 45                          |          |               |                                       |          |             |                                       |                                                              |                         |                     |                      |                                                                                                                                              |                            |
|                                  |          |               |                                       |          | G           | eotecl                                | hnical Solu                                                  | tions, Inc.             |                     |                      |                                                                                                                                              |                            |


| Project :                             |      | Traval        | lana Dawi                             |          |             |                 |                                                            |                         | Boreh               |                      | No                                   | B-4                        |
|---------------------------------------|------|---------------|---------------------------------------|----------|-------------|-----------------|------------------------------------------------------------|-------------------------|---------------------|----------------------|--------------------------------------|----------------------------|
| Project Location :                    |      |               | Plaza - Perri<br>f Trumble Ro         |          | l Ethana    | ac, Perris, Cal | ifornia                                                    | LOG OF TEST HOLE        |                     |                      |                                      | I-4                        |
| Project Number :                      |      | G-590         | 8-01                                  |          |             |                 |                                                            |                         | Page                |                      |                                      | 1                          |
| Date(s) Drilled :                     |      | May 24, 2     | 021                                   |          |             |                 | Logged By : BA/AB                                          |                         | Checke              | d By :               |                                      | DXS                        |
| Drilling Method :                     |      | Hollow St     | em Auger                              |          |             |                 | Drill Bit Size / 8-inch<br>Type :                          |                         | Total De<br>Borehol |                      |                                      | 21.5                       |
| Drill Rig Type :                      |      | B-61          |                                       |          |             |                 | Drilling<br>Contractor : Whitecor                          | nb Drilling             | Approx.<br>Elevatio |                      |                                      | 1426 feet MSL              |
| Groundwater Level and Da<br>Measured: | ite  | No Water      | encountered                           | at the   | time of o   | drilling        | Sampling<br>Method : California                            | a (ring), bulk, SPT     | Hamme               | r Data               | :                                    | 140 lbs dropping 30 inches |
| Borehole Backfill :                   |      | Drill cuttin  | (2))                                  |          |             |                 | Comments : Refer to                                        | plot plan for location; |                     |                      |                                      |                            |
|                                       |      | SAN           | IPLES                                 |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| Elevation, feet<br>Depth, feet        | Type | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                 | MATERIAL DE                                                | SCRIPTION               | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AND<br>REMARKS |
| 14260                                 |      |               |                                       | -        |             | Bareground      | d                                                          |                         |                     |                      |                                      |                            |
| 2<br>2<br>2                           |      | Bag #1<br>C-1 | 28-50/6"                              |          | 100         |                 | um: Silty Sand (SM), light<br>SP), Silty, light brown, sli |                         | 8                   | 117                  |                                      |                            |
| 14215                                 |      | C-2           | 9-13-16                               |          | 29          |                 | and (SM), medium dense,<br>a to coarse grained             | brown, moist,           | 6                   | 113                  |                                      |                            |
| 141610                                |      | C-3           | 10-12-18                              |          | 30          |                 | and/Sand (SM/SP), dark<br>ium to coarse grained            | brown, moist, medium    | 3                   | 103                  |                                      |                            |
| 1411 15                               |      | S-1           | 16-26-39                              |          | 65          | @15': Sand      | (SP), dark brown, slightly coarse gr                       |                         | 3                   | -                    |                                      |                            |
| 1406 20                               |      | S-2           | 20-27-43                              |          | 70          | @20': Same      | e as above                                                 |                         | 3                   | -                    |                                      |                            |
| 140125                                |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1396 30                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1391 35                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1386 40                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
| 1381 45                               |      |               |                                       |          |             |                 |                                                            |                         |                     |                      |                                      |                            |
|                                       |      |               |                                       |          | G           | eotec           | hnical Solu                                                | tions, Inc.             |                     |                      |                                      |                            |

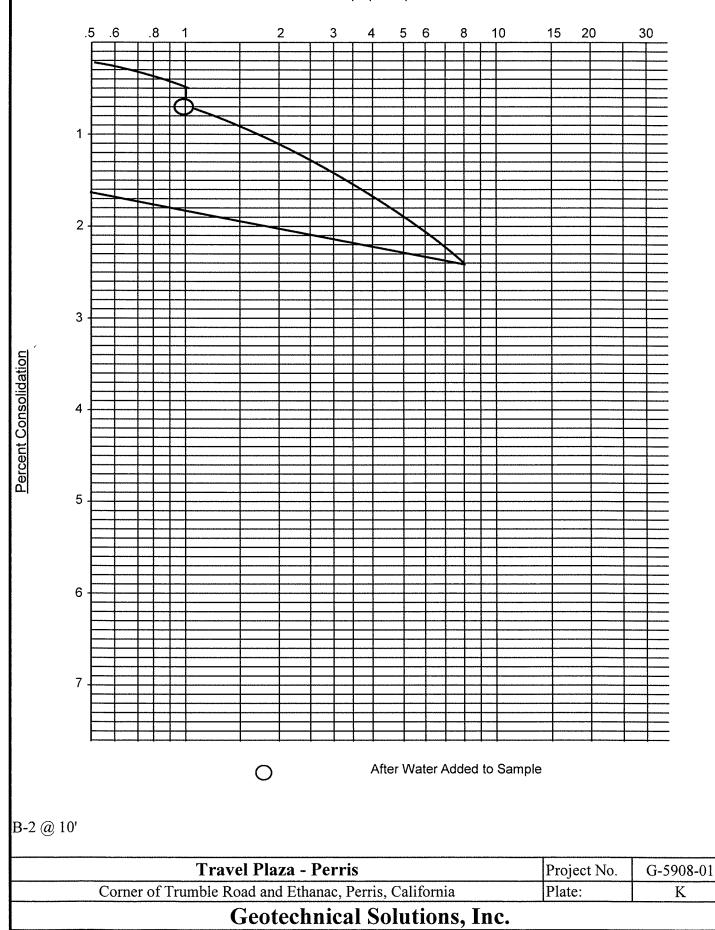

| Project :<br>Project Location<br>Project Number |             |      |              |                                       |          | i Ethana    | ic, Perris, Cali                                                           | ifornia                                 |            | LOG OF TEST HOLE        | Boreh<br>Plate<br>Page | No.                  |                                      | B-5<br>I-5<br>1            |
|-------------------------------------------------|-------------|------|--------------|---------------------------------------|----------|-------------|----------------------------------------------------------------------------|-----------------------------------------|------------|-------------------------|------------------------|----------------------|--------------------------------------|----------------------------|
| Date(s) Drilled :                               |             |      | May 24, 2    | 021                                   |          |             |                                                                            | Logged By :                             | BA/AB      |                         | Checkee                |                      |                                      | DXS                        |
| Drilling Method :                               |             |      | Hollow Ste   | em Auger                              |          |             |                                                                            | Drill Bit Size /<br>Type :              | 8-inch     |                         | Total De<br>Borehole   | epth of<br>e, feet   | :                                    | 21.5                       |
| Drill Rig Type :                                |             |      | B-61         |                                       |          |             |                                                                            | Drilling<br>Contractor :                | Whiteco    | mb Drilling             | Approx.<br>Elevatio    |                      |                                      | 1426 feet MSL              |
| Groundwater Level a<br>Neasured:                | and Date    | 9    | No Water     | encountered                           | at the   | time of c   | Irilling                                                                   | Sampling<br>Method :                    | Californi  | a (ring), bulk, SPT     | Hamme                  | r Data               | :                                    | 140 lbs dropping 30 inches |
| orehole Backfill :                              |             |      | Drill cuttin | -                                     | _        |             |                                                                            | Comments :                              | Refer to   | plot plan for location; |                        |                      |                                      |                            |
|                                                 | -           |      | SAN          | IPLES                                 |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| Elevation, feet                                 | Depth, feet | Type | Number       | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                            | MATERI                                  | AL DE      | SCRIPTION               | Moisture Content, %    | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AN<br>REMARKS  |
| 1426                                            | _0          |      | Bag #1       | 4                                     |          |             |                                                                            | th dry grass<br>um: Silty Sand (\$      | SM), light | brown, dry              | -                      |                      |                                      |                            |
| +                                               | 2           |      | C-1          | 51-50/1"                              |          | >100        |                                                                            | SP), trace Silt, li<br>ium to coarse gr |            | n, slightly moist, very | 10                     | 111                  |                                      |                            |
| 1421                                            | 5           |      | C-2          | 26-50/5"                              |          | >100        | @5':Same a                                                                 |                                         |            | 11                      | 103                    |                      |                                      |                            |
| 1416                                            | _10         |      | C-3          | 37-50/4"                              |          | >100        | @10':Same as above                                                         |                                         |            |                         |                        | 119                  |                                      |                            |
| 1411                                            | _15         | 16   | S-1          | 29-36-44                              |          | 80          | @15': Sand (SP), dark brown, slightly moist, very dense,<br>coarse grained |                                         |            |                         |                        | -                    |                                      |                            |
| 1406                                            | _20         |      | S-2          | 30-35-47                              |          | 82          | @20': Same                                                                 | e as above                              |            |                         | 5                      | -                    |                                      |                            |
| 1401                                            | _25         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1396                                            | _30         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1391                                            | _35         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1386                                            | _40         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
| 1381                                            | _45         |      |              |                                       |          |             |                                                                            |                                         |            |                         |                        |                      |                                      |                            |
|                                                 |             |      |              |                                       |          | G           | eotec                                                                      | hnical S                                | Solu       | tions, Inc.             |                        |                      |                                      |                            |


| Project :                               | Travel F      | Plaza - Perri                         | s        |             |                                                                                                                                       |                                                        |                           |   | Boreh               |                      | No.                                                                                                          | B-6                        |
|-----------------------------------------|---------------|---------------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|---|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| Project Location :                      |               |                                       | ad and   | l Ethana    | ac, Perris, Cal                                                                                                                       | lifornia                                               | LOG OF TEST H             |   |                     |                      |                                                                                                              | I-6                        |
| Project Number :                        | G-590         |                                       |          |             |                                                                                                                                       |                                                        |                           | Ť | Page                |                      |                                                                                                              | 1                          |
| Date(s) Drilled :                       | May 24, 2     | 021                                   |          |             |                                                                                                                                       | Logged By : BA/AB                                      |                           |   | Checke              |                      |                                                                                                              | DXS                        |
| Drilling Method :                       | Hollow St     | em Auger                              |          |             |                                                                                                                                       | Type : 8-inch                                          |                           | 1 | Total De<br>Borehol | e, feet              | :                                                                                                            | 11.5                       |
| Drill Rig Type :                        | B-61          |                                       |          |             |                                                                                                                                       | Drilling Whited                                        | omb Drilling              |   | Approx.<br>Elevatio |                      |                                                                                                              | 1426 feet MSL              |
| Groundwater Level and Date<br>Measured: | No Water      | encountered                           | at the   | time of c   | drilling                                                                                                                              | Sampling Califor<br>Method :                           | nia (ring), bulk, SPT     | 1 | Hamme               | r Data               | :                                                                                                            | 140 lbs dropping 30 inches |
| Borehole Backfill :                     | Drill cuttin  | IPLES                                 |          |             |                                                                                                                                       | Comments : Refer                                       | o plot plan for location; |   |                     | -                    |                                                                                                              |                            |
|                                         | Number        | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                                                                                       | MATERIAL D                                             | ESCRIPTION                |   | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%)                                                                         | OTHER TESTS AND<br>REMARKS |
|                                         | Bag #1<br>C-1 | 26-50/4"                              |          | > 100       |                                                                                                                                       | SM/SP), light brown, medi<br>lightly moist, very dense | ium                       | 6 | 123                 |                      |                                                                                                              |                            |
|                                         | C-2           | 28-50/5"                              |          | > 100       | @5':Sand (S<br>grained                                                                                                                | noist, medium to coarse                                |                           | 8 | 129                 |                      | DS: P=Peak / Ult=Ultimate<br>$\phi = 33^{\circ}$ , c =250 psf (P)<br>$\phi = 32^{\circ}$ , c = 200 psf (Ult) |                            |
| 141610                                  | S-1           | 15-25-30                              |          | 55          |                                                                                                                                       | nt gray, slightly moist, ver                           | у                         | 3 | i <del>n</del>      |                      |                                                                                                              |                            |
| 1411 15                                 |               |                                       |          |             | e dense, coarse grained<br>End of Boring = 11.5 feet<br>No groundwater encountered<br>No Caving but possible<br>Backfilled w/Cuttings |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1406 20                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1401 25                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 139630                                  |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 139135                                  |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1386 40                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
| 1381 45                                 |               |                                       |          |             |                                                                                                                                       |                                                        |                           |   |                     |                      |                                                                                                              |                            |
|                                         |               |                                       |          | G           | eotec                                                                                                                                 | hnical Solu                                            | utions, Inc.              |   |                     |                      |                                                                                                              |                            |


| Project :                              |      | Travel P     | laza - Perris                         | 5        |             |                                                                       |                                   |                      |                                  | Boreh               |                      | No.                                  | B-7                        |
|----------------------------------------|------|--------------|---------------------------------------|----------|-------------|-----------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------------|---------------------|----------------------|--------------------------------------|----------------------------|
| Project Location :                     |      | Corner of    | Trumble Roa                           | ad and   | l Ethana    | ic, Perris, Cali                                                      | fornia                            |                      | LOG OF TEST HOLE                 | Plate               | No.                  |                                      | I-7                        |
| Project Number :                       |      | G-590        | 3-01                                  |          |             |                                                                       |                                   |                      |                                  | Page                | 1 of                 |                                      | 1                          |
| Date(s) Drilled :                      |      | May 24, 2    | 021                                   |          |             |                                                                       | Logged By :                       | BA/AB                |                                  | Checker             |                      |                                      | DXS                        |
| Drilling Method :                      |      | Hollow St    | em Auger                              |          |             |                                                                       | Drill Bit Size /<br>Type :        | 8-inch               |                                  | Total De<br>Borehol | e, feet              | :                                    | 21.5                       |
| Drill Rig Type :                       |      | B-61         |                                       |          |             |                                                                       | Drilling<br>Contractor :          | Whiteco              | mb Drilling                      | Approx.<br>Elevatio |                      |                                      | 1426 feet MSL              |
| Groundwater Level and Dat<br>Measured: | e    | No Water     | encountered                           | at the   | time of c   | Irilling                                                              | Sampling<br>Method :              | Californi            | a (ring), bulk, SPT              | Hamme               | r Data               | 2                                    | 140 lbs dropping 30 inches |
| Borehole Backfill :                    |      | Drill cuttin | gs                                    |          |             |                                                                       | Comments :                        | Refer to             | plot plan for location;          |                     |                      |                                      |                            |
|                                        |      | SAN          | IPLES                                 |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| Elevation, feet<br>Depth, feet         | Type | Number       | Penetration<br>Resistance, Blows / 6" | Graphics | Blows / 12" |                                                                       | MATERI                            | AL DE                | SCRIPTION                        | Moisture Content, % | Dry Unit Weight, pcf | Percent Passing<br>No. 200 Sieve (%) | OTHER TESTS AND<br>REMARKS |
| 14260                                  |      |              |                                       |          |             |                                                                       | th dry grass                      |                      | - hé banung dar                  | _                   |                      | 39                                   | HD: 61 SA:17 SI: 22 CL     |
| <u> </u>                               |      | Bag #1       |                                       |          |             |                                                                       | im: Clayey San                    |                      |                                  |                     |                      | 39                                   | HD: 61 5A:17 5I: 22 CL     |
| <u>+</u>                               |      | C-1          | 50/4"                                 |          | >100        | -                                                                     | Sand (SC), trac<br>nse, medium to |                      | ht brown, very moist,<br>grained | 18                  | 95                   |                                      |                            |
| <sup>1421</sup> 5                      |      | C-2          | 24-50/5"                              |          | >100        | @5':Sand (S<br>coarse grain                                           |                                   | , very de            | nse, moist, medium to            | 6                   | 127                  |                                      |                            |
|                                        |      | C-3          | 18-24-32                              |          | 56          | @10':Sand                                                             | I), dense                         | , brown, very moist, | 14                               | 114                 |                      |                                      |                            |
| 1411 15                                |      | S-1          | 15-18-18                              |          | 36          | @15': Sand (SP), dark brown, slightly moist, dense,<br>coarse grained |                                   |                      |                                  |                     | -                    |                                      |                            |
| 140620                                 |      | S-2          | 20-20-23                              |          | 43          | @20': Same                                                            | as above                          |                      |                                  | 4                   | -                    |                                      |                            |
| 1401 25                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1396 30                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1391 <u>3</u> 35                       |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1386 <u>40</u>                         |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
| 1381 45                                |      |              |                                       |          |             |                                                                       |                                   |                      |                                  |                     |                      |                                      |                            |
|                                        |      |              |                                       |          | G           | eotec                                                                 | hnical S                          | Solu                 | tions, Inc.                      |                     |                      |                                      |                            |

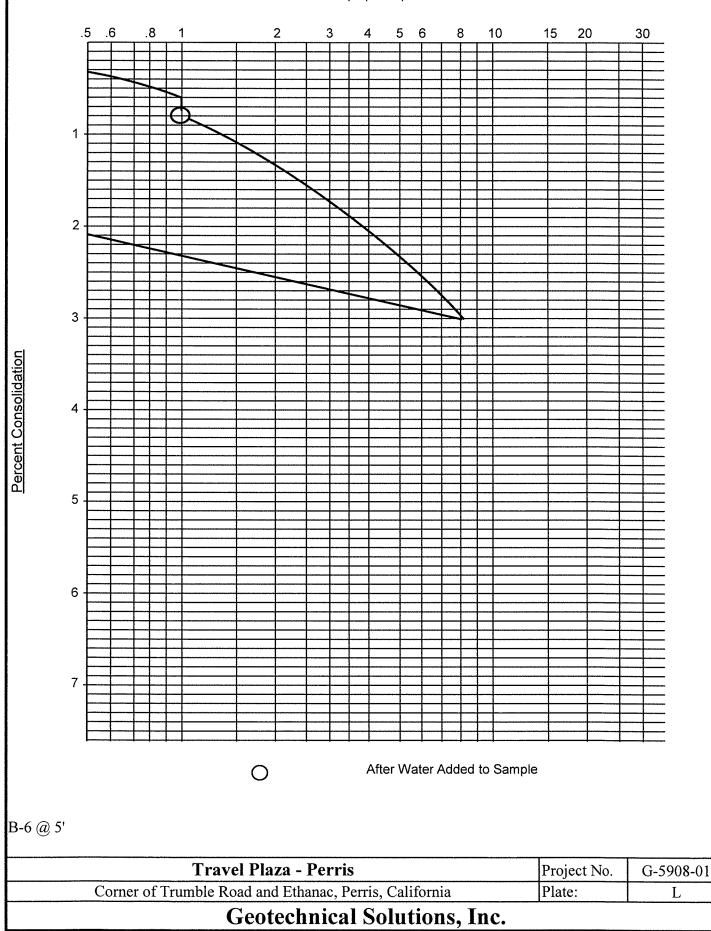












## CONSOLIDATION

Load In Kips per Square Foot



## CONSOLIDATION

Load In Kips per Square Foot



#### Appendix B

#### Seismic Data

- Table 1 Faults Table
- Unified Hazard Tool Hazard Curve
- U.S. Seismic Design Maps Summary & Detailed Report (SEAOC / OSHPD)

### Table - 1

### 2008 National Seismic Hazard Maps - Source Parameters Travel Plaza - Perris

| Distance in<br>Miles | Name                          | State | Pref Slip<br>Rate<br>(mm/yr) | Dip<br>(degrees) | Dip Dir | Slip Sense  | Rupture<br>Top<br>(km) | Rupture<br>Bottom<br>(km) | Length<br>(km) |
|----------------------|-------------------------------|-------|------------------------------|------------------|---------|-------------|------------------------|---------------------------|----------------|
| 9.56                 | Elsinore;Gl                   | CA    | 5                            | 90               | V       | strike slip | 0                      | 13                        | 37             |
| 9.56                 | Elsinore;W+GI                 | CA    | n/a                          | 81               | NE      | strike slip | 0                      | 14                        | 83             |
| 10.22                | San Jacinto;A+CC+B+SM         | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 178            |
| 10.22                | San Jacinto;A+CC+B            | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 152            |
| 10.22                | San Jacinto;A+C               | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 118            |
| 10.22                | San Jacinto;A                 | CA    | 9                            | 90               | V       | strike slip | 0                      | 17                        | 71             |
| 10.22                | San Jacinto;A+CC              | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 118            |
| 10.37                | Elsinore;GI+T+J+CM            | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 16                        | 195            |
| 10.37                | Elsinore;W+GI+T+J+CM          | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 16                        | 241            |
| 10.37                | Elsinore;GI+T                 | CA    | 5                            | 90               | V       | strike slip | 0                      | 14                        | 78             |
| 10.37                | Elsinore;W+GI+T+J             | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 16                        | 199            |
| 10.37                | Elsinore;W+GI+T               | CA    | n/a                          | 84               | NE      | strike slip | 0                      | 14                        | 124            |
| 10.37                | Elsinore;GI+T+J               | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 17                        | 153            |
| 10.63                | Elsinore;T+J                  | CA    | n/a                          | 86               | NE      | strike slip | 0                      | 17                        | 127            |
| 10.63                | Elsinore;T+J+CM               | CA    | n/a                          | 85               | NE      | strike slip | 0                      | 16                        | 169            |
| 10.63                | Elsinore;T                    | CA    | 5                            | 90               | V       | strike slip | 0                      | 14                        | 52             |
| 11.45                | San Jacinto;SBV+SJV+A+CC      | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 181            |
| 11.45                | San Jacinto;SBV+SJV+A+C       | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 181            |
| 11.45                | San Jacinto;SBV+SJV+A         | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 134            |
| 11.45                | San Jacinto;SJV+A+CC          | CA    | n/a                          | 90               | V       | strike slip | 0                      | 16                        | 136            |
| 11.45                | San Jacinto;SJV+A+C           | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 136            |
| 11.45                | San Jacinto;SJV+A             | CA    | n/a                          | 90               | V       | strike slip | 0                      | 17                        | 89             |
| 11.45                | San Jacinto;SBV+SJV+A+CC+B+SM | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 241            |
| 11.45                | San Jacinto;SBV+SJV+A+CC+B    | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 215            |
| 11.45                | San Jacinto;SJV+A+CC+B+SM     | CA    | n/a                          | 90               | V       | strike slip | 0.1                    | 15                        | 196            |

1

| 11.45 | San Jacinto;SJV+A+CC+B                             | CA | n/a | 90 | V  | strike slip | 0.1 | 15 | 170 |
|-------|----------------------------------------------------|----|-----|----|----|-------------|-----|----|-----|
| 12.01 | San Jacinto;SJV                                    | CA | 18  | 90 | V  | strike slip | 0   | 16 | 43  |
| 12.01 | San Jacinto;SBV+SJV                                | CA | n/a | 90 | V  | strike slip | 0   | 16 | 88  |
| 19.04 | San Jacinto;SBV                                    | CA | 6   | 90 | V  | strike slip | 0   | 16 | 45  |
| 22.54 | Chino, alt 2                                       | CA | 1   | 65 | SW | strike slip | 0   | 14 | 29  |
| 23.98 | Elsinore;W                                         | CA | 2.5 | 75 | NE | strike slip | 0   | 14 | 46  |
| 24.79 | S. San Andreas;NM+SM+NSB+SSB                       | CA | n/a | 90 | V  | strike slip | 0   | 13 | 213 |
| 24.79 | Chino, alt 1                                       | CA | 1   | 50 | SW | strike slip | 0   | 9  | 24  |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB+<br>BG+CO | CA | n/a | 86 |    | strike slip | 0.1 | 13 | 512 |
| 24.79 | S. San Andreas;SSB+BG                              | CA | n/a | 71 |    | strike slip | 0   | 13 | 101 |
| 24.79 | S. San Andreas;NSB+SSB+BG+CO                       | CA | n/a | 79 |    | strike slip | 0.2 | 12 | 206 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB              | CA | n/a | 90 | v  | strike slip | 0   | 14 | 322 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB+BG           | CA | n/a | 85 |    | strike slip | 0   | 14 | 380 |
| 24.79 | S. San<br>Andreas;CC+BB+NM+SM+NSB+SSB+BG+<br>CO    | CA | n/a | 86 |    | strike slip | 0.1 | 13 | 449 |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB           | CA | n/a | 90 | v  | strike slip | 0   | 14 | 384 |
| 24.79 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB+SSB+<br>BG    | CA | n/a | 86 |    | strike slip | 0   | 14 | 442 |
| 24.79 | S. San Andreas;NM+SM+NSB+SSB+BG                    | CA | n/a | 83 |    | strike slip | 0   | 14 | 271 |
| 24.79 | S. San<br>Andreas;NM+SM+NSB+SSB+BG+CO              | CA | n/a | 84 |    | strike slip | 0.1 | 13 | 340 |
| 24.79 | S. San Andreas;NSB+SSB                             | CA | n/a | 90 | V  | strike slip | 0   | 13 | 79  |
| 24.79 | S. San Andreas;NSB+SSB+BG                          | CA | n/a | 75 |    | strike slip | 0   | 14 | 136 |

|       | S. San                                                |    |     |    |   |             |     |    |   |
|-------|-------------------------------------------------------|----|-----|----|---|-------------|-----|----|---|
| 24.79 | Andreas; PK+CH+CC+BB+NM+SM+NSB+S<br>SB                | CA | n/a | 90 | V | strike slip | 0.1 | 13 | 2 |
| 24.79 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB+S<br>SB+BG    | CA | n/a | 86 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB+S<br>SB+BG+CO | CA | n/a | 86 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB                             | CA | n/a | 90 | V | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB+BG                          | CA | n/a | 81 |   | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SM+NSB+SSB+BG+CO                       | CA | n/a | 83 |   | strike slip | 0.1 | 13 |   |
| 24.79 | S. San Andreas;SSB                                    | CA | 16  | 90 | V | strike slip | 0   | 13 |   |
| 24.79 | S. San Andreas;SSB+BG+CO                              | CA | n/a | 77 |   | strike slip | 0.2 | 12 |   |
| 24.79 | S. San Andreas;BB+NM+SM+NSB+SSB                       | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 24.79 | S. San<br>Andreas;BB+NM+SM+NSB+SSB+BG                 | CA | n/a | 84 |   | strike slip | 0   | 14 |   |
| 24.79 | S. San<br>Andreas;BB+NM+SM+NSB+SSB+BG+CO              | CA | n/a | 85 |   | strike slip | 0.1 | 13 |   |
| 26.4  | S. San Andreas;BG+CO                                  | CA | n/a | 72 |   | strike slip | 0.3 | 12 |   |
| 26.4  | S. San Andreas;BG                                     | CA | n/a | 58 |   | strike slip | 0   | 13 |   |
| 28.06 | S. San Andreas;BB+NM+SM+NSB                           | CA | n/a | 90 | V | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;CC+BB+NM+SM+NSB                        | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;NSB                                    | CA | 22  | 90 | V | strike slip | 0   | 13 |   |
| 28.06 | S. San Andreas;SM+NSB                                 | CA | n/a | 90 | V | strike slip | 0   | 13 |   |
| 28.06 | S. San<br>Andreas;CH+CC+BB+NM+SM+NSB                  | CA | n/a | 90 | v | strike slip | 0   | 14 |   |
| 28.06 | S. San Andreas;NM+SM+NSB                              | CA | n/a | 90 | V | strike slip | 0   | 13 |   |

|       |                                         |    | Т   | I  | 1  | 1           |     | 1  |     |
|-------|-----------------------------------------|----|-----|----|----|-------------|-----|----|-----|
| 28.06 | S. San<br>Andreas;PK+CH+CC+BB+NM+SM+NSB | CA | n/a | 90 | v  | strike slip | 0.1 | 13 | 377 |
| 29.62 | Elsinore;J                              | CA | 3   | 84 | NE | strike slip | 0   | 19 | 75  |
| 29.62 | Elsinore;J+CM                           | CA | 3   | 84 | NE | strike slip | 0   | 17 | 118 |
| 29.9  | San Joaquin Hills                       | CA | 0.5 | 23 | SW | thrust      | 2   | 13 | 27  |
| 33.36 | Cucamonga                               | CA | 5   | 45 | N  | thrust      | 0   | 8  | 28  |
| 34.27 | Pinto Mtn                               | CA | 2.5 | 90 | V  | strike slip | 0   | 16 | 74  |
| 36.79 | Cleghorn                                | CA | 3   | 90 | V  | strike slip | 0   | 16 | 25  |
| 37.33 | Newport-Inglewood (Offshore)            | CA | 1.5 | 90 | V  | strike slip | 0   | 10 | 66  |
| 37.33 | Newport Inglewood Connected alt 1       | CA | 1.3 | 89 |    | strike slip | 0   | 11 | 208 |
| 37.33 | Newport Inglewood Connected alt 2       | CA | 1.3 | 90 | v  | strike slip | 0   | 11 | 208 |
| 38.59 | San Jose                                | CA | 0.5 | 74 | NW | strike slip | 0   | 15 | 20  |
| 39.78 | North Frontal (West)                    | CA | 1   | 49 | S  | reverse     | 0   | 16 | 50  |
| 40.6  | Puente Hills (Coyote Hills)             | CA | 0.7 | 26 | N  | thrust      | 2.8 | 15 | 17  |
| 41.18 | Sierra Madre                            | CA | 2   | 53 | N  | reverse     | 0   | 14 | 57  |
| 41.18 | Sierra Madre Connected                  | CA | 2   | 51 |    | reverse     | 0   | 14 | 76  |
| 41.65 | San Jacinto;CC+B                        | CA | n/a | 90 | V  | strike slip | 0.2 | 14 | 77  |
| 41.65 | San Jacinto;CC+B+SM                     | CA | n/a | 90 | V  | strike slip | 0.2 | 14 | 103 |
| 41.65 | San Jacinto;CC                          | CA | 4   | 90 | V  | strike slip | 0   | 16 | 43  |
| 42.56 | San Jacinto;C                           | CA | 14  | 90 | V  | strike slip | 0   | 17 | 47  |
| 44.04 | Newport-Inglewood, alt 1                | CA | 1   | 88 |    | strike slip | 0   | 15 | 65  |
| 44.6  | S. San Andreas;NM+SM                    | CA | n/a | 90 | V  | strike slip | 0   | 14 | 134 |
| 44.6  | S. San Andreas;PK+CH+CC+BB+NM+SM        | CA | n/a | 90 | v  | strike slip | 0.1 | 13 | 342 |
| 44.6  | S. San Andreas;BB+NM+SM                 | CA | n/a | 90 | V  | strike slip | 0   | 14 | 184 |
| 44.6  | S. San Andreas;CH+CC+BB+NM+SM           | CA | n/a | 90 | V  | strike slip | 0   | 14 | 306 |
| 44.6  | S. San Andreas;SM                       | CA | 29  | 90 | V  | strike slip | 0   | 13 | 98  |
| 44.6  | S. San Andreas;CC+BB+NM+SM              | CA | n/a | 90 | V  | strike slip | 0   | 14 | 243 |
| 44.97 | Rose Canyon                             | CA | 1.5 | 90 | V  | strike slip | 0   | 8  | 70  |
| 45.34 | Helendale-So Lockhart                   | CA | 0.6 | 90 | V  | strike slip | 0   | 13 | 114 |
| 46.48 | North Frontal (East)                    | CA | 0.5 | 41 | S  | thrust      | 0   | 16 | 27  |

| 47.6  | Burnt Mtn                       | CA | 0.6 | 67 | W | strike slip | 0   | 16 | 21 |
|-------|---------------------------------|----|-----|----|---|-------------|-----|----|----|
| 49.55 | Puente Hills (Santa Fe Springs) | CA | 0.7 | 29 | N | thrust      | 2.8 | 15 | 11 |

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

^ Input

Edition

Conterminous U.S. 2008 (v3.2.x)

#### Latitude

Decimal degrees

33.7441

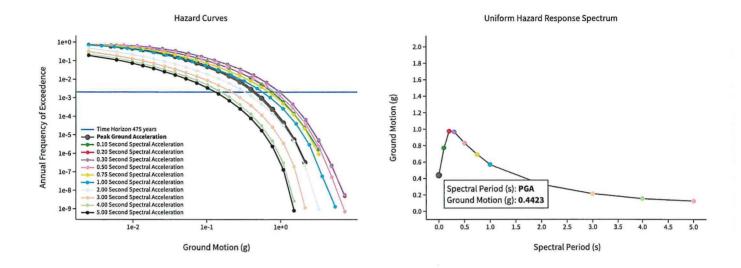
#### Longitude

Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)


Spectral Period

Peak Ground Acceleration

Time Horizon Return period in years

475 Travel Plaza Perris

#### Hazard Curve



View Raw Data

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

^ Input

Edition

Conterminous U.S. 2008 (v3.2.x)

#### Latitude

Decimal degrees

33.7441

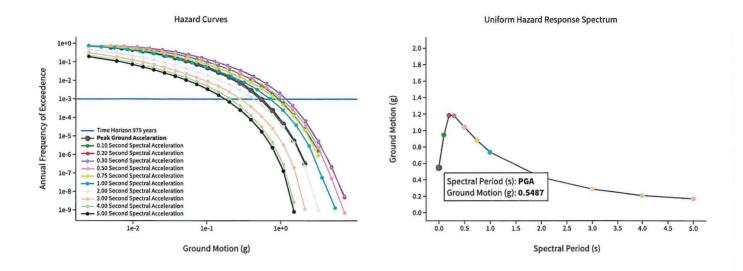
#### Longitude

Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)


Spectral Period

Peak Ground Acceleration

Time Horizon Return period in years

975 Travel Plaza Perris

#### Hazard Curve



#### View Raw Data

U.S. Geological Survey - Earthquake Hazards Program

## **Unified Hazard Tool**

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Input

Edition

Conterminous U.S. 2008 (v3.2.x)

#### Latitude

Decimal degrees

33.7441

#### Longitude

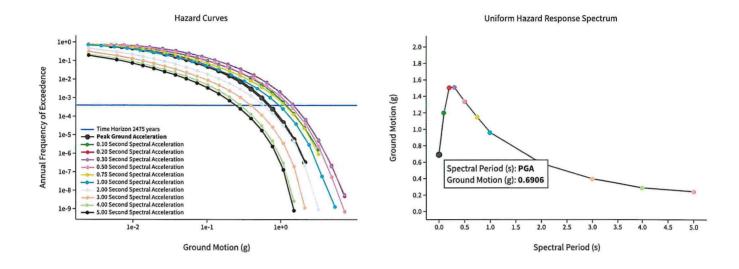
Decimal degrees, negative values for western longitudes

-117.1868

Site Class

259 m/s (Site class D)

Spectral Period


Peak Ground Acceleration

Time Horizon

Return period in years

2475 Travel Plaza Perris

#### Hazard Curve



#### View Raw Data



# OSHPD

## **Travel Plaza Perris**

#### Latitude, Longitude: 33.7441, -117.1658

| Latitud                                         | de, Longitude: 33.744           | 1, -117.1658                                                                              |                                    |                                  |
|-------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|
| 74                                              | Field Park<br>Romoland Head Sta | Acts Christian                                                                            | <mark>Chinese Bistro</mark><br>Ame | erimax Building<br>Products, Inc |
|                                                 | Holliday Rock                   | (74) (74)                                                                                 | 74                                 | 0                                |
| Goo                                             | V                               | Ahern Rentals 🗳                                                                           |                                    | •                                |
|                                                 | gic                             | Grand II.                                                                                 |                                    | Map data ©2021                   |
| Date                                            |                                 | 5/28/2021, 10:30:36 AM                                                                    |                                    |                                  |
| Design Code Reference Document<br>Risk Category |                                 | ASCE7-16                                                                                  |                                    |                                  |
| Site Cla                                        |                                 | II<br>D. Default (See Section 1                                                           | 1 4 2)                             |                                  |
| Sile Cia                                        | >>                              | D - Default (See Section 1                                                                | 1.4.3)                             |                                  |
| Туре                                            | Value                           | Description                                                                               |                                    |                                  |
| SS                                              | 1.428                           | MCE <sub>R</sub> ground motion. (for 0.2 second period)                                   |                                    |                                  |
| S <sub>1</sub>                                  | 0.532                           | MCE <sub>R</sub> ground motion. (for 1.0s period)                                         |                                    |                                  |
| S <sub>MS</sub>                                 | 1.714                           | Site-modified spectral acceleration value                                                 |                                    |                                  |
| S <sub>M1</sub>                                 | null -See Section 11.4.8        | Site-modified spectral acceleration value                                                 |                                    |                                  |
| S <sub>DS</sub>                                 | 1.143                           | Numeric seismic design value at 0.2 second SA                                             |                                    |                                  |
| S <sub>D1</sub>                                 | null -See Section 11.4.8        | Numeric seismic design value at 1.0 second SA                                             |                                    |                                  |
| Туре                                            | Value                           | Description                                                                               |                                    |                                  |
| SDC                                             | null -See Section 11.4.8        | Seismic design category                                                                   |                                    |                                  |
| Fa                                              | 1.2                             | Site amplification factor at 0.2 second                                                   |                                    |                                  |
| $F_v$                                           | null -See Section 11.4.8        | Site amplification factor at 1.0 second                                                   |                                    |                                  |
| PGA                                             | 0.5                             | MCE <sub>G</sub> peak ground acceleration                                                 |                                    |                                  |
| F <sub>PGA</sub>                                | 1.2                             | Site amplification factor at PGA                                                          |                                    |                                  |
| PGA <sub>M</sub>                                | 0.6                             | Site modified peak ground acceleration                                                    |                                    |                                  |
| ΤL                                              | 8                               | Long-period transition period in seconds                                                  |                                    |                                  |
| SsRT                                            | 1.428                           | Probabilistic risk-targeted ground motion. (0.2 second)                                   |                                    |                                  |
| SsUH                                            | 1.531                           | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration  |                                    |                                  |
| SsD                                             | 1.5                             | Factored deterministic acceleration value. (0.2 second)                                   |                                    |                                  |
| S1RT                                            | 0.532                           | Probabilistic risk-targeted ground motion. (1.0 second)                                   |                                    |                                  |
| S1UH                                            | 0.581                           | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. |                                    |                                  |
| S1D                                             | 0.6                             | Factored deterministic acceleration value. (1.0 second)                                   |                                    |                                  |
| PGAd                                            | 0.5                             | Factored deterministic acceleration value. (Peak Ground Acceleratio                       | n)                                 |                                  |
| C <sub>RS</sub>                                 | 0.933                           | Mapped value of the risk coefficient at short periods                                     |                                    |                                  |
|                                                 |                                 |                                                                                           |                                    |                                  |

#### DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Project No.: G-5908-01 Travel Plaza - Perris

### Appendix C

Recommended Earthwork Specifications

# **RECOMMENDED EARTHWORK SPECIFICATIONS**

#### 1.0 General

#### 1.1 Description

1.1.1 These specifications cover preparation of the subject site to receive fills, the type of soils suitable for use in fills, the compaction standards, and the methods of testing compacted fills.

1.1.2 The Contractor shall furnish all labor, supervision, equipment, operations, and materials to excavate to the required grade, support existing underground facilities, stockpile material, compact fill and backfill, and fine grade. The work of the Contractor shall include all clearing and grubbing, removing existing unsatisfactory material, preparing areas to be filled, spreading and compacting of fill in the areas to be filled and all other work necessary to complete the grading of the filled areas. It shall be the Contractor's responsibility to place, spread, moisten or dry, and compact the fill in strict accordance with these specifications to the lines and grades indicated on project plans or as directed in writing by the Civil Engineer.

1.1.3 Deviations from these specifications will be permitted only upon written authorization from the Owner or his representative.

1.2 Role of the Geotechnical Engineer

1.2.1 Construction - The Owner will employ a Geotechnical Consultant to observe and test this work as it is being performed. The Contractor shall cooperate with the Geotechnical Consultant and allow his unrestricted access to the site as required for the performance of his duties.

The Contractor shall provide a minimum notice of 48 hours to the Geotechnical Engineer before beginning or restarting earthwork operations that will require the presence of the Geotechnical Engineer or his representative on site. 1.2.2 Subsurface Investigations - A geotechnical engineering report for design purposes was prepared by Geotechnical Solutions, Inc., Irvine, California. Any recommendations made in the geotechnical report or subsequent reports are made part of these specifications. These reports are available for review upon request to the Owner.

1.2.3 Observation and Testing - The Geotechnical Engineer's representative shall observe the clearing and grubbing, excavation, filling and compacting operations and shall take density tests in the fill material so that he can state his opinion as to whether or not the fill was constructed in accordance with the specifications. All fill will be tested shortly after its placement to ascertain that the required compaction is achieved. A minimum of one density test will be made on each 500 cubic yards of fill placed, with a minimum of at least one test per every 2 feet of vertical height of fill. If the surface is disturbed, the density tests shall be made in the compacted materials below the disturbed zone. When these tests indicate that the density or water content of any layer of fill or portion thereof does not meet the specified density or water content, the particular layer or portions thereof shall be reworked until the specified density and water content have been obtained.

After the completion of grading, the Geotechnical Engineer will prepare a written opinion of grading. Neither the testing performed by the Geotechnical Consultant nor his opinion as to whether or not the fill was constructed in accordance with these Specifications shall relieve the Contractor of his responsibility to construct the fills in accordance with the Contract Documents.

#### 1.3 Reference Standards

The following ASTM (American Society for Testing and Materials) codes and standards shall be used to the extent indicated by references herein. The most recent revision of the standards shall be used.

D 1556 - "Standard Test Method for Density of Soil in Place by the Sand-Cone Method"

41

D1557 - "Standard Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using 10-lb (4.54 kg) and 18-inch (457-mm) Drop"

D2216 - "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures"

D4318 - "Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils"

D4718 - "Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles"

D4829 - "Standard Test Method for Expansion Index of Soils"

D4944 - "Standard Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester Method."

D5195 - "Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)"

D6938 - "Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)"

D7928 - "Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis"

1.4 Degree of Fill Compaction

The degree to which fill is to be compacted is expressed in terms of "relative compaction." Relative compaction is defined as the ratio; expressed in percent, of the in-place dry density of the compacted fill to the reference maximum dry density. The reference maximum dry density shall be obtained following ASTM D1557. Optimum water content shall be obtained in the same test used to obtain the reference maximum dry density. Correction of the maximum dry density and optimum water content for

oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate. The in-place density shall be obtained following ASTM D1556 (sand cone method) or ASTM D6938 (nuclear method-shallow depth) test method. The in-place water content shall be obtained following ASTM D4944 (calcium carbide gas pressure meter), ASTM D5195 (nuclear method-shallow depth), or ASTM D2216 (oven drying). Correction of the in-place density and water content for oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate.

If any of the test methods specified in this section are judged by the Geotechnical Engineer to be impractical or unreliable because the material has a coarse particle size distribution, or for other reasons, the Geotechnical Engineer shall establish other procedures to obtain the required soil characteristics.

2.0 Products

#### 2.1 Materials

2.1.1 General - During grading operations, soil types other than those identified in the geotechnical investigation report may be encountered by the Contractor. Consult the Geotechnical Consultant for his evaluation of the suitability of using these soils a fill material prior to placement or disposal.

2.1.2 General Fill - Materials for compacted fill shall consist of material imported from outside the site or excavated from the site that, in the opinion of the Geotechnical Engineer, is suitable for use in constructing engineered fills. The material shall not contain rocks or hard lumps greater than 6 inches in maximum dimension, and at least 70 percent (by weight) of its particles shall pass through a U.S. Standard 3/8 inch sieve. Material greater than 3 inches, but less than 6 inches in maximum dimension, shall be placed by the Contractor so that it is completely surrounded by compacted, finer material;

43

no nesting of rocks shall be permitted. Do not use any perishable, spongy, hazardous, or other undesirable materials as fill.

2.1.3 Select Fill - Select fill shall meet all criteria for general fill but shall also contain no rocks or hard lumps greater than 3 inches in maximum dimension, and at least 80 percent (by weight) shall pass through a U.S. Standard 3/8-inch sieve. The expansion index of select material shall be less than 50 (i.e., 5.0 percent swell) when tested in accordance with ASTM D4829.

#### 3.0 Execution

3.1 Clearing and Grubbing

Within the project limits, tile Contractor shall demolish structures as specified on the Drawings.

Unless otherwise indicated on the Drawings or by the Owner in writing, the Contractor shall clear and grub all trees, stumps, roots, brush, grass, and other vegetation within construction, fill and stockpile areas to a minimum depth of 3 feet below the existing ground surface or below finished grade, whichever is deeper, unless otherwise recommended by the Geotechnical Engineer's Field Representative.

Remove cleared and grubbed materials from the site and dispose of them legally. No onsite burning or burying of cleared and grubbed materials is permitted. No placement of cleared and grubbed materials in topsoil stockpiles is permitted. No mulching of branches or roots is permitted. Incorporating vegetative matter into stockpiled materials, which are to be used in fill, is not permitted.

Stockpile organic-laden topsoil separate from other fill materials.

Remove any remaining vegetative matter from the deeper excavated soils, which may result from roots deeper than those encountered during clearing and grubbing operations.

All material thereby removed shall be piled at a location away from the immediate work area so as to avoid burying of piled material.

# 3.2 Compacted Fills

3.2.1 Preparing Areas to be Filled - Brush, grass, and other objectionable materials shall be collected, piled, and disposed of as indicated in Section 3.1 by the Contractor so as to leave the areas that have been cleared with a neat and finished appearance, free from unsightly debris.

Remove all loose soil, uncertified fill, landslide debris, and weathered bedrock to firm material or in-situ bedrock, as approved by the Geotechnical Consultant. The Contractor shall obtain approval from the Geotechnical Engineer or his representative of stripping and site preparation before the compaction of any fill subgrade begins. The surface shall then be scarified to a minimum depth of 6 inches until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment used, and shall be brought to the specified water content and relative compaction. Compact scarified materials to a minimum relative compaction of 90 percent, relative to ASTM D1557, prior to placement of any fill material.

3.2.2 Placing, Spreading, and Compacting, Fill Material - Onsite soil obtained from removals, borrow, or cut areas may be reused as compacted fill provided it is free from deleterious debris and meets the other requirements of the "Materials" portion of this Specification Section.

Use of soil containing deleterious debris from the clearing and grubbing operation or from other sources is not permitted. The fill materials shall be placed by the Contractor in horizontal layers not greater than 8 inches thick, measured before compaction. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to obtain uniformity of material and moisture in each layer. The moisture content of material used for compacted fill should be adjusted to be at or above optimum water content as determined by ASTM D1557. When the water content of the fill material is too high, the

fill materials shall be aerated by the Contractor by blading, mixing, or other satisfactory methods until the water content is as specified.

After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent of the maximum dry density as determined by ASTM D1557 for general fill, and 95 percent of the maximum dry density as determined by ASTM D1557 for select fill, compacted fill pads, and the upper 1 foot of pavement subgrade. Compaction shall be accomplished by: sheepsfoot rollers; vibratory rollers; multiple-wheel, pneumatic-tired rollers; or other types of acceptable compacting equipment. Equipment shall be of such design that it is able to compact the fill to the specified density. Compaction shall be continuous over the entire area, and the equipment shall make sufficient passes to obtain the desired density uniformly. All fill placed on site shall be treated in like manner until finished grades are attained. Jetting, puddling, and hydro consolidation techniques shall not be used, including backfill of utility trenches.

The placement of topsoil is subject to the approval of the Geotechnical Engineer. Topsoil shall not be placed beneath concrete flatwork, beneath or behind retaining walls, or within structural fill. All topsoil material is subject to the same moisture conditioning, placement, and compaction requirements as General Fill. Roots, branches and other organic debris are not permitted within the compacted topsoil layer.

When backfilling around footings and compacting behind retaining walls and flexible retaining structures, the Contractor shall use lightweight compaction equipment such as hand-operated equipment, shoring, or other means to avoid over-stressing structural walls. When using lightweight compaction equipment, the fill materials shall be spread in horizontal layers not greater than 6 inches thick, measured before compaction.

As an alternative, sand-cement slurry may be used to backfill trenches. The slurry shall have minimum cement content of 3 sacks per cubic yard within the zone of influence of foundations and other settlement sensitive structures. A minimum of 2 sacks per cubic

yard of slurry shall be used elsewhere within building limits, and a minimum of one sack per cubic yard of slurry shall be used elsewhere. Slurry shall not be used in those areas where such placement would result in the obstruction of water flow, and is subject to the approval of the Geotechnical Engineer.

3.3 Protection of Work and Adjacent Properties

3.3.1 During Construction - The Contractor shall grade all excavated surfaces to provide good drainage away from construction slopes and prevent ponding of water. He shall control surface water and the transport of silt and sediment to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control measures have been installed.

Dispose of all water resulting from dewatering operations legally and in ways that will not cause damage to public or private property, or constitute a nuisance or menace to the public, in accordance with municipal requirements.

The Contractor shall make every effort to minimize the amount of dust raised in excavating, on haul roads and access roads, and all other work areas in the course of construction activities.

Protect benchmarks, monuments, and other reference points against displacement or damage. Repair or replace benchmarks, monuments, and other permanent survey data that become displaced or damaged due to the performance of this work.

3.3.2 After Completion - After earthwork is completed and the, Geotechnical Engineer has finished his observations of the work, no further excavation, filling or backfilling shall be performed except under the observation of the Geotechnical Engineer.

47

# GEOTECHNICAL ADDENDUM REPORT

TRAVEL PLAZA PERRIS

AT

ł

CORNER OF TRUMBLE ROAD & ETHANAC ROAD PERRIS, CALIFORNIA

PREPARED FOR:

BROADBENT, INC. WEST PACIFIC AVENUE HENDERSON, NEVADA, 89015

PROJECT NO: G-5908-01

JUNE 11, 2021

PREPARED BY:

GEOTECHNICAL SOLUTIONS, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING



# Geotechnical Solutions, Inc. Geotechnical, Structural & Environmental Engineering

June 11, 2021

Project No: G-5908-01

**Broadbent, Inc.** 8 West Pacific Avenue Henderson, Nevada, 89015

# Attention: Mr. Mark E. Kazelskis, PG, CHG, CEM Principal Geologist

Via Email: mkazelskis@broadbentinc.com

## Re: Geotechnical Engineering Addendum Report Travel Plaza - Perris Corner of Trumble Road & Ethanac Road Perris, California 92570

Gentlemen:

Submitted herewith is the addendum report to our geotechnical engineering report dated June 11, 2021 conducted by this office for Travel Plaza Perris at the referenced project site.

Recommendations regarding over excavation have been included in this addendum report for the Travel Plaza Perris located just northwest of the intersection of Trumble Road and Ethanac Road, just west of Trumble Road in Perris, San Bernardino County, California as shown on Vicinity Map (Plate A) and Google Map (Plate C).

# Site Clearing

Prior to grading, all debris, grass, weeds including construction materials should entirely be removed from the site and disposed of off-site. Existing any undesirable materials should also be removed and hauled off-site. Existing utilities (if Any) should be removed and relocated as required. Any construction debris or ant buried or other contaminated exposed during site clearance should be removed and hauled away from the site. The resulting excavation from any removal should be cleared of loose material then backfilled with compacted soil. Oversized rocks greater than 6 inches should be removed.

#### Excavation

Excavations into the on-site soils may encounter a variety of challenges for example, very firm and dense to very dense alluvial soils. Some Caving on clean sands may be encountered. The contractor should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of the excavation sides. All excavations should be sloped or shored in the interest of safety following local and federal regulations including current OSHA excavation and trench safety standards.

Heavy equipments for breaking the very dense alluvial materials may be required for the excavations for shallow foundations, drilled shafts, and utility trenches for the proposed construction. The speed and ease of excavation are dependent on the nature of the deposit, the type of equipment used, and the skill and experience of the equipment operator.

#### Building Pad Over-excavation (Above Ground Storage Tanks, AST's)

After removal of existing debris, the above ground storage tank areas should be overexcavated at least 3 feet below the lowest grade or 24 inches below the bottom of the footings whichever is greater. Excavation should be extended 3-feet outside building perimeters. Over-excavation may be hard due to the presence of very dense alluviums, therefore heavy equipments may be required. Remove and replace any loose or disturbed soils prior to placing any additional fill materials required to reach the finished subgrade elevations. The over-excavation should be backfilled to the foundation base elevation with the compacted engineering fill in accordance with the recommendations presented in this report.

# Compliance

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the General Grading **a**nd Recommended Earthwork Specifications in Appendix B.

To assess compliance, observation and testing should be performed under the direction of a geotechnical engineer. Please contact us to provide observation and testing services.

#### **Backfill Materials**

On-site clean, low-expansive potential soils, or imported materials may be used as fill material for the following:

- Foundation Areas
- Interior Slab Areas
- Pavement Areas
- Backfill

Any earth materials imported or excavated on the property may be utilized in the fill provided that each material has been determined to be suitable by the soil engineer. These materials should be free of roots, tree branches, other organic matter or other deleterious materials. Soils of poor gradation, undesirable expansion potential, or substandard strength characteristics may be designated by the consultant as unsuitable and may require blending with other soils to serve as a satisfactory fill material. Also, rocks of sizes bigger than 3 inches should be discarded for the site material to be used for backfill.

Gradation (as per ASTM C136) should be as follows:

| Size | % by Weight |
|------|-------------|
| 6"   | 100         |

| 4"            | 85-100   |
|---------------|----------|
| 3/2,          | 70-100   |
| No 4 Sieve    | 50-100   |
| No. 200 Sieve | 15 (max) |

Any import material should have an expansion Index, EI less than 20. Import material should also meet the following criteria:

| Soil Properties | <u>Values</u> |
|-----------------|---------------|
| Liquid Limit    | 35 (Max)      |
| Plastic Limit   | 6 (Max)       |

#### **Placement and Compaction**

Place and compact approved fill material in nearly horizontal layers that when compacted should not exceed 6 inches in thickness.

Use appropriate equipment and procedures that will produce recommended densities and water contents throughout the lift. Moisture condition, blending, and mixing of the fill layer should continue until the fill materials have a uniform moisture content at or above optimum moisture.

Uncompacted fill lifts should not exceed 8 inches.

Materials should be compacted to the following:

| On-site or imported soil, reworked and fill: | <u>Minimum % (ASTM D-1557</u><br>Laboratory Standard) |
|----------------------------------------------|-------------------------------------------------------|
| Subgrade Below Footings                      | 90                                                    |
| Subgrade Below Slab-on Grade                 | 90                                                    |
| Subgrade Below Pavement                      | 90                                                    |
| Crush Rock Below Slab-on-Grade               | 95                                                    |
| Aggregate Base below pavement                | 95                                                    |

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

#### **Excavations at Pavement Areas**

#### **Subgrade Preparation**

After removing the existing deleterious materials, dense to very dense alluvial materials on the pavement areas and hauled offsite, all surficial deposits of loose soil material should be removed and excavate 12 inches below the base and recompacted as recommended. The bottom is further scarified to a depth of at least 6 inches; moisture conditioned as necessary and compacted to 90 percent of the maximum laboratory density as determined by ASTM Test Method D-1557.

Deleterious material, excessively wet or dry pockets, and any other unsuitable materials encountered during excavation or grading should be removed. The compacted fill material should then be brought to the elevation of the proposed subgrade for the pavement. The subgrade should be proof-rolled in order to ensure a uniform, firm and unyielding surface. All grading and fill placement should be observed by the project soils engineer and/or his representative.

#### **Aggregate Base**

Compaction and rolling are required for the recommended base section. Minimum relative compaction required will be 95 percent of the laboratory maximum density as determined by ASTM Test Designation D-1557. Aggregate base should be in accordance with 200-2.2 crushed Aggregate base Class II base (minimum R-value=78) and sample should be brought for testing and approval prior to delivery to the site. No crushed miscellaneous base (CMB) should be accepted.

#### Asphalt Concrete Pavement

Asphalt concrete pavement should be Performance Grade PG 64-10 1/2" maximum aggregate size and should be placed and compacted in two layers. Asphalt concrete shall be compacted to 95 percent of the Hveem Laboratory Standard.

#### **Earthwork Observations:**

Relative compaction of all fill materials placed on site should be tested in accordance with ASTM D6938. All new fill shall be brought to near optimum moisture, placed in layers not exceeding six inches in thickness, and compacted to at least 90 percent relative compaction for subgrade and 95 percent relative compaction for aggregate base. No jetting or water tamping of fill soils shall be permitted. All imported soil for engineered fill should be pre-approved by the Geotechnical Engineer and consist of clean, granular, non-expansive soil, free of vegetation and other debris with an Expansion Index of 20 or less.

At all times, the contractor should have a responsible field superintendent on the project in full charge of the work, with authority to make decisions. He should cooperate fully with the Geotechnical Engineer in carrying out the work.

All footing trenches for continuous and spread footings and subgrade for the slab areas should be observed by the project Geotechnical Engineer to verify that over-excavation and re-compaction operations of adequate depth, thickness, and compaction have been performed as specified. All footing excavations should be trimmed neat, level and square. All loose, sloughed or moisture softened soil should be removed and replaced with properly compacted soil.

# **General Grading**

All grading should conform to the guidelines presented in the California Building Code (CBC, 2019), the City of Perris, San Bernardino County, International Conference of Building Officials (ICBO, 2018), and Appendix B in this report, except where specifically superceded in the text of this report. When code references are not equivalent, the more stringent code should be followed. During earthwork construction, all site preparation and the general grading procedures of the contractor should be observed, and the fill selectively tested by a representative (s) of Geotechnical Solutions, Inc. (GSI). If unusual or unexpected conditions are exposed in the field, they should be

reviewed by this office and if warranted, modified and /or additional recommendations will be offered. All applicable requirements of local and national construction and general industry safety orders, the Occupational Safety and Health Act and the construction Safety Act should be met.

#### Closure

The Conclusions and recommendations contained herein are based on the findings and observations made at the test boring locations. It is not unusual to find conditions between and beyond such locations, which differ from the conditions encountered. If conditions are encountered during construction, which appear to differ from those previously disclosed, this office should be notified so as to consider the need for modifications. On-site construction observations and wherever appropriate, tests should be performed during the course of construction by a representative of this office to evaluate compliance with the design concepts, specifications, and recommendations contained herein.

This report has been compiled for the exclusive use of our client, it shall not be transferred to, or used by, other parties, or applied to any project on this site other than described herein without consent and /or thorough review by this office.

The investigation was made in accordance with generally accepted geotechnical engineering principles and procedures and included such field and laboratory tests considered necessary under the circumstances.

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

In the opinion of the undersigned, the accompanying report has been substantiated by mathematical and other data and presents fairly the design information requested by your organization.

Respectfully Submitted,

**Geotechnical Solutions, Inc.** 

Dharma Shakya, PhD, PE, GE Principal Geotechnical Engineer

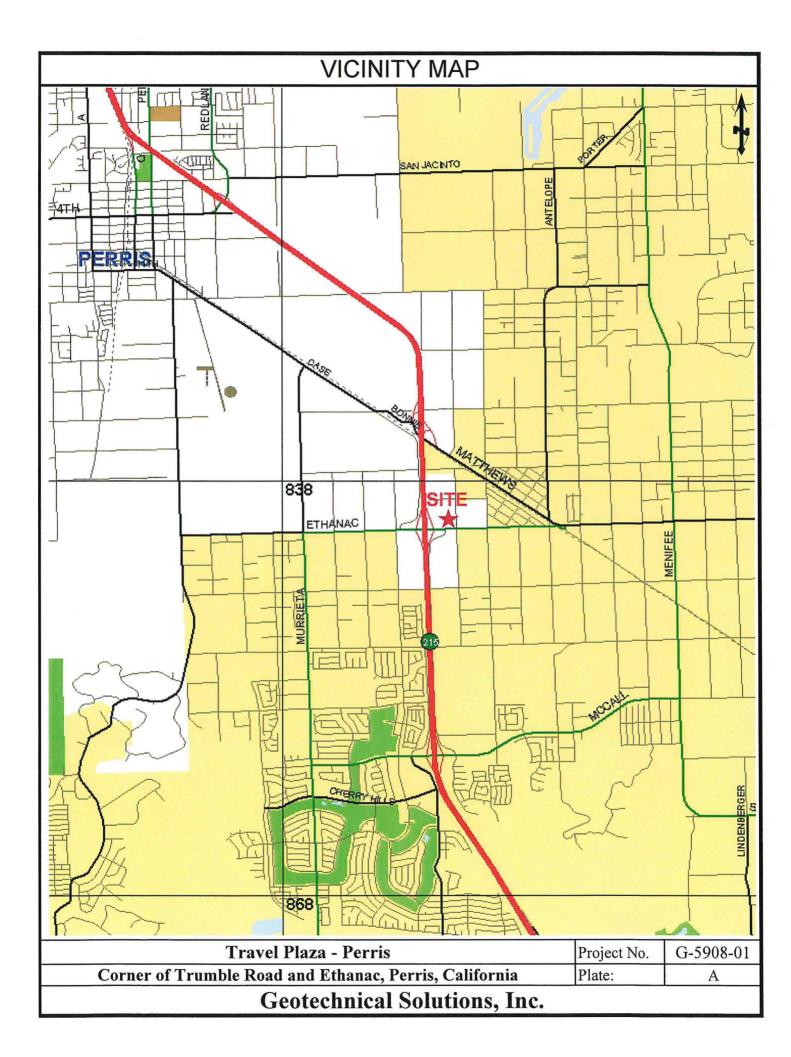
Abraham S. Baha, PE, M. ASCE Sr. Principal

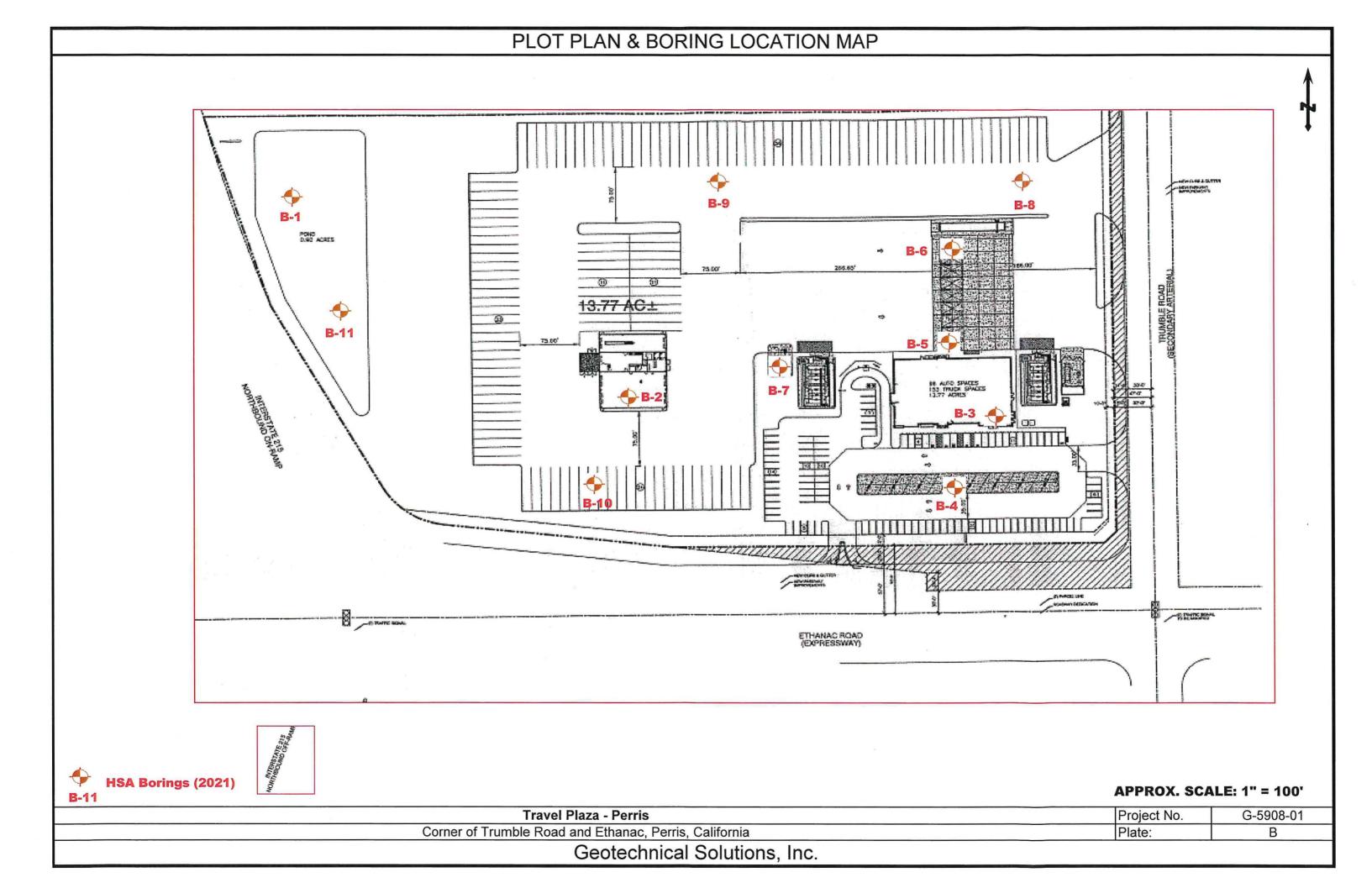
Distribution: (3+pdf) Addressee

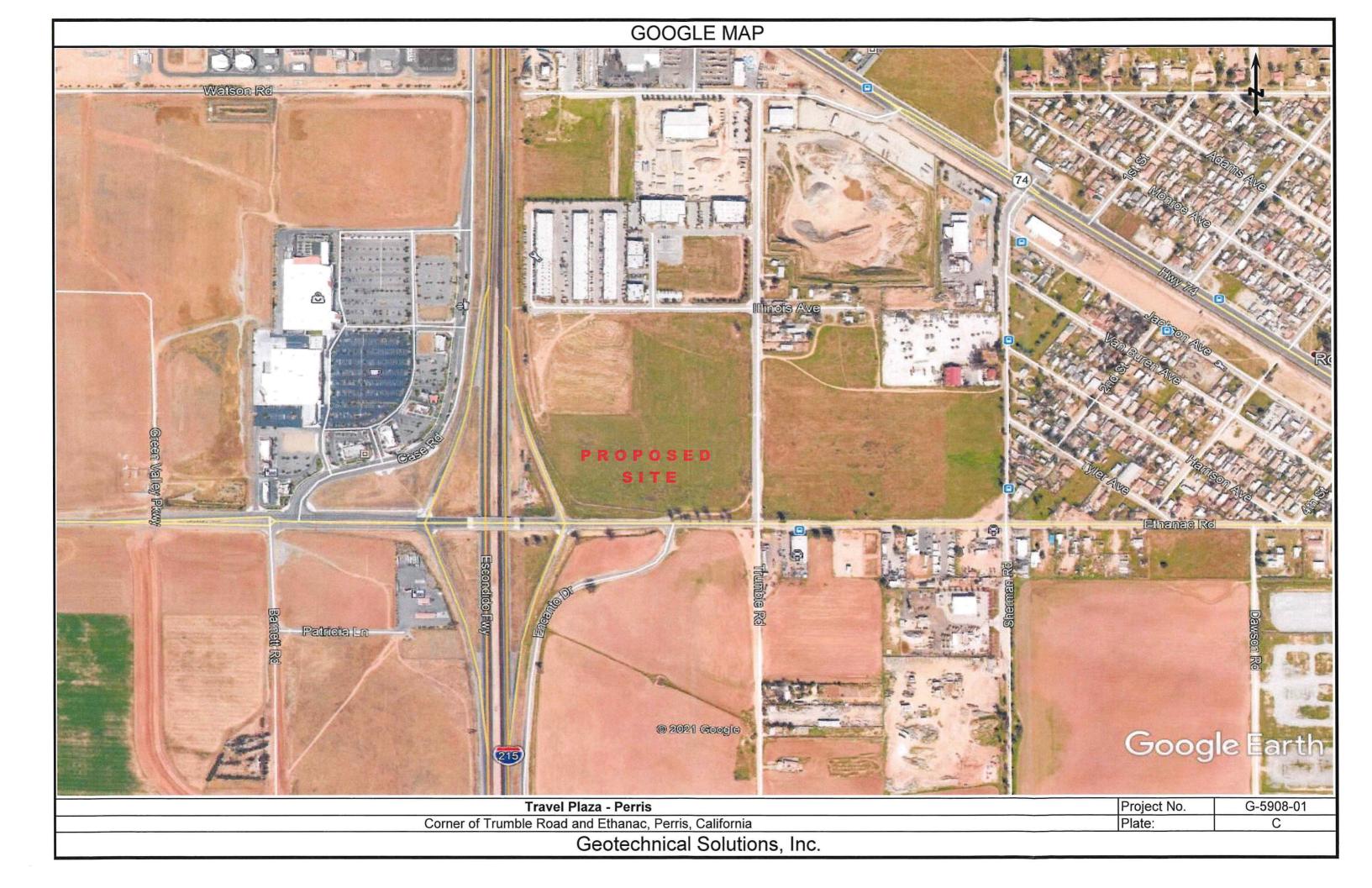




#### References


- Geotechnical Solutions, Inc., 2021, "Geotechnical Evaluation Report for Travel Plaza Perris, Located at the corner of Trumble Road and Ethanac Road, Perris, California", Project Number G-5908-01, dated June 11.
- International Conference of Building Officials (ICBO), 2019, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2.


Project No.: G-5908-01 Travel Plaza Perris - Addendum Report


Appendix A

Plates

- Vicinity Map
  - Plot Plan
- Google Map







Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

# Appendix B

Recommended Earthwork Specifications

# **RECOMMENDED EARTHWORK SPECIFICATIONS**

## 1.0 General

## 1.1 Description

1.1.1 These specifications cover preparation of the subject site to receive fills, the type of soils suitable for use in fills, the compaction standards, and the methods of testing compacted fills.

1.1.2 The Contractor shall furnish all labor, supervision, equipment, operations, and materials to excavate to the required grade, support existing underground facilities, stockpile material, compact fill and backfill, and fine grade. The work of the Contractor shall include all clearing and grubbing, removing existing unsatisfactory material, preparing areas to be filled, spreading and compacting of fill in the areas to be filled and all other work necessary to complete the grading of the filled areas. It shall be the Contractor's responsibility to place, spread, moisten or dry, and compact the fill in strict accordance with these specifications to the lines and grades indicated on project plans or as directed in writing by the Civil Engineer.

1.1.3 Deviations from these specifications will be permitted only upon written authorization from the Owner or his representative.

1.2 Role of the Geotechnical Engineer

1.2.1 Construction - The Owner will employ a Geotechnical Consultant to observe and test this work as it is being performed. The Contractor shall cooperate with the Geotechnical Consultant and allow his unrestricted access to the site as required for the performance of his duties.

The Contractor shall provide a minimum notice of 48 hours to the Geotechnical Engineer before beginning or restarting earthwork operations that will require the presence of the Geotechnical Engineer or his representative on site. 1.2.2 Subsurface Investigations - A geotechnical engineering report for design purposes was prepared by Geotechnical Solutions, Inc., Irvine, California. Any recommendations made in the geotechnical report or subsequent reports are made part of these specifications. These reports are available for review upon request to the Owner.

1.2.3 Observation and Testing - The Geotechnical Engineer's representative shall observe the clearing and grubbing, excavation, filling and compacting operations and shall take density tests in the fill material so that he can state his opinion as to whether or not the fill was constructed in accordance with the specifications. All fill will be tested shortly after its placement to ascertain that the required compaction is achieved. A minimum of one density test will be made on each 500 cubic yards of fill placed, with a minimum of at least one test per every 2 feet of vertical height of fill. If the surface is disturbed, the density tests shall be made in the compacted materials below the disturbed zone. When these tests indicate that the density or water content of any layer of fill or portion thereof does not meet the specified density or water content, the particular layer or portions thereof shall be reworked until the specified density and water content have been obtained.

After the completion of grading, the Geotechnical Engineer will prepare a written opinion of grading. Neither the testing performed by the Geotechnical Consultant nor his opinion as to whether or not the fill was constructed in accordance with these Specifications shall relieve the Contractor of his responsibility to construct the fills in accordance with the Contract Documents.

#### 1.3 Reference Standards

The following ASTM (American Society for Testing and Materials) codes and standards shall be used to the extent indicated by references herein. The most recent revision of the standards shall be used.

D 1556 - "Standard Test Method for Density of Soil in Place by the Sand-Cone Method"

13

Project No.: G-5908-01 Travel Plaza Perris - Addendum Report

D1557 - "Standard Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using 10-lb (4.54 kg) and 18-inch (457-mm) Drop"

D2216 - "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures"

D4318 - "Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils"

D4718 - "Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles"

D4829 - "Standard Test Method for Expansion Index of Soils"

D4944 - "Standard Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester Method."

D5195 - "Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)"

D6938 - "Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)"

D7928 - "Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis"

1.4 Degree of Fill Compaction

The degree to which fill is to be compacted is expressed in terms of "relative compaction." Relative compaction is defined as the ratio; expressed in percent, of the in-place dry density of the compacted fill to the reference maximum dry density. The reference maximum dry density shall be obtained following ASTM D1557. Optimum water content shall be obtained in the same test used to obtain the reference maximum dry density. Correction of the maximum dry density and optimum water content for

14

oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate. The in-place density shall be obtained following ASTM D1556 (sand cone method) or ASTM D6938 (nuclear method-shallow depth) test method. The in-place water content shall be obtained following ASTM D4944 (calcium carbide gas pressure meter), ASTM D5195 (nuclear method-shallow depth), or ASTM D2216 (oven drying). Correction of the in-place density and water content for oversize particles of gravel and cobbles shall be made following ASTM D4718 when, in the opinion of the Geotechnical Engineer, such correction is appropriate.

If any of the test methods specified in this section are judged by the Geotechnical Engineer to be impractical or unreliable because the material has a coarse particle size distribution, or for other reasons, the Geotechnical Engineer shall establish other procedures to obtain the required soil characteristics.

#### 2.0 Products

#### 2.1 Materials

2.1.1 General - During grading operations, soil types other than those identified in the geotechnical investigation report may be encountered by the Contractor. Consult the Geotechnical Consultant for his evaluation of the suitability of using these soils a fill material prior to placement or disposal.

2.1.2 General Fill - Materials for compacted fill shall consist of material imported from outside the site or excavated from the site that, in the opinion of the Geotechnical Engineer, is suitable for use in constructing engineered fills. The material shall not contain rocks or hard lumps greater than 6 inches in maximum dimension, and at least 70 percent (by weight) of its particles shall pass through a U.S. Standard 3/8 inch sieve. Material greater than 3 inches, but less than 6 inches in maximum dimension, shall be placed by the Contractor so that it is completely surrounded by compacted, finer material;

no nesting of rocks shall be permitted. Do not use any perishable, spongy, hazardous, or other undesirable materials as fill.

2.1.3 Select Fill - Select fill shall meet all criteria for general fill but shall also contain no rocks or hard lumps greater than 3 inches in maximum dimension, and at least 80 percent (by weight) shall pass through a U.S. Standard 3/8-inch sieve. The expansion index of select material shall be less than 50 (i.e., 5.0 percent swell) when tested in accordance with ASTM D4829.

#### 3.0 Execution

3.1 Clearing and Grubbing

Within the project limits, tile Contractor shall demolish structures as specified on the Drawings.

Unless otherwise indicated on the Drawings or by the Owner in writing, the Contractor shall clear and grub all trees, stumps, roots, brush, grass, and other vegetation within construction, fill and stockpile areas to a minimum depth of 3 feet below the existing ground surface or below finished grade, whichever is deeper, unless otherwise recommended by the Geotechnical Engineer's Field Representative.

Remove cleared and grubbed materials from the site and dispose of them legally. No onsite burning or burying of cleared and grubbed materials is permitted. No placement of cleared and grubbed materials in topsoil stockpiles is permitted. No mulching of branches or roots is permitted. Incorporating vegetative matter into stockpiled materials, which are to be used in fill, is not permitted.

Stockpile organic-laden topsoil separate from other fill materials.

Remove any remaining vegetative matter from the deeper excavated soils, which may result from roots deeper than those encountered during clearing and grubbing operations.

All material thereby removed shall be piled at a location away from the immediate work area so as to avoid burying of piled material.

#### 3.2 Compacted Fills

3.2.1 Preparing Areas to be Filled - Brush, grass, and other objectionable materials shall be collected, piled, and disposed of as indicated in Section 3.1 by the Contractor so as to leave the areas that have been cleared with a neat and finished appearance, free from unsightly debris.

Remove all loose soil, uncertified fill, landslide debris, and weathered bedrock to firm material or in-situ bedrock, as approved by the Geotechnical Consultant. The Contractor shall obtain approval from the Geotechnical Engineer or his representative of stripping and site preparation before the compaction of any fill subgrade begins. The surface shall then be scarified to a minimum depth of 6 inches until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment used, and shall be brought to the specified water content and relative compaction. Compact scarified materials to a minimum relative compaction of 90 percent, relative to ASTM D1557, prior to placement of any fill material.

3.2.2 Placing, Spreading, and Compacting, Fill Material - Onsite soil obtained from removals, borrow, or cut areas may be reused as compacted fill provided it is free from deleterious debris and meets the other requirements of the "Materials" portion of this Specification Section.

Use of soil containing deleterious debris from the clearing and grubbing operation or from other sources is not permitted. The fill materials shall be placed by the Contractor in horizontal layers not greater than 8 inches thick, measured before compaction. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to obtain uniformity of material and moisture in each layer. The moisture content of material used for compacted fill should be adjusted to be at or above optimum water content as determined by ASTM D1557. When the water content of the fill material is too high, the

fill materials shall be aerated by the Contractor by blading, mixing, or other satisfactory methods until the water content is as specified.

After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent of the maximum dry density as determined by ASTM D1557 for general fill, and 95 percent of the maximum dry density as determined by ASTM D1557 for select fill, compacted fill pads, and the upper 1 foot of pavement subgrade. Compaction shall be accomplished by: sheepsfoot rollers; vibratory rollers; multiple-wheel, pneumatic-tired rollers; or other types of acceptable compacting equipment. Equipment shall be of such design that it is able to compact the fill to the specified density. Compaction shall be continuous over the entire area, and the equipment shall make sufficient passes to obtain the desired density uniformly. All fill placed on site shall be treated in like manner until finished grades are attained. Jetting, puddling, and hydro consolidation techniques shall not be used, including backfill of utility trenches.

The placement of topsoil is subject to the approval of the Geotechnical Engineer. Topsoil shall not be placed beneath concrete flatwork, beneath or behind retaining walls, or within structural fill. All topsoil material is subject to the same moisture conditioning, placement, and compaction requirements as General Fill. Roots, branches and other organic debris are not permitted within the compacted topsoil layer.

When backfilling around footings and compacting behind retaining walls and flexible retaining structures, the Contractor shall use lightweight compaction equipment such as hand-operated equipment, shoring, or other means to avoid over-stressing structural walls. When using lightweight compaction equipment, the fill materials shall be spread in horizontal layers not greater than 6 inches thick, measured before compaction.

As an alternative, sand-cement slurry may be used to backfill trenches. The slurry shall have minimum cement content of 3 sacks per cubic yard within the zone of influence of foundations and other settlement sensitive structures. A minimum of 2 sacks per cubic

yard of slurry shall be used elsewhere within building limits, and a minimum of one sack per cubic yard of slurry shall be used elsewhere. Slurry shall not be used in those areas where such placement would result in the obstruction of water flow, and is subject to the approval of the Geotechnical Engineer.

# 3.3 Protection of Work and Adjacent Properties

3.3.1 During Construction - The Contractor shall grade all excavated surfaces to provide good drainage away from construction slopes and prevent ponding of water. He shall control surface water and the transport of silt and sediment to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control measures have been installed.

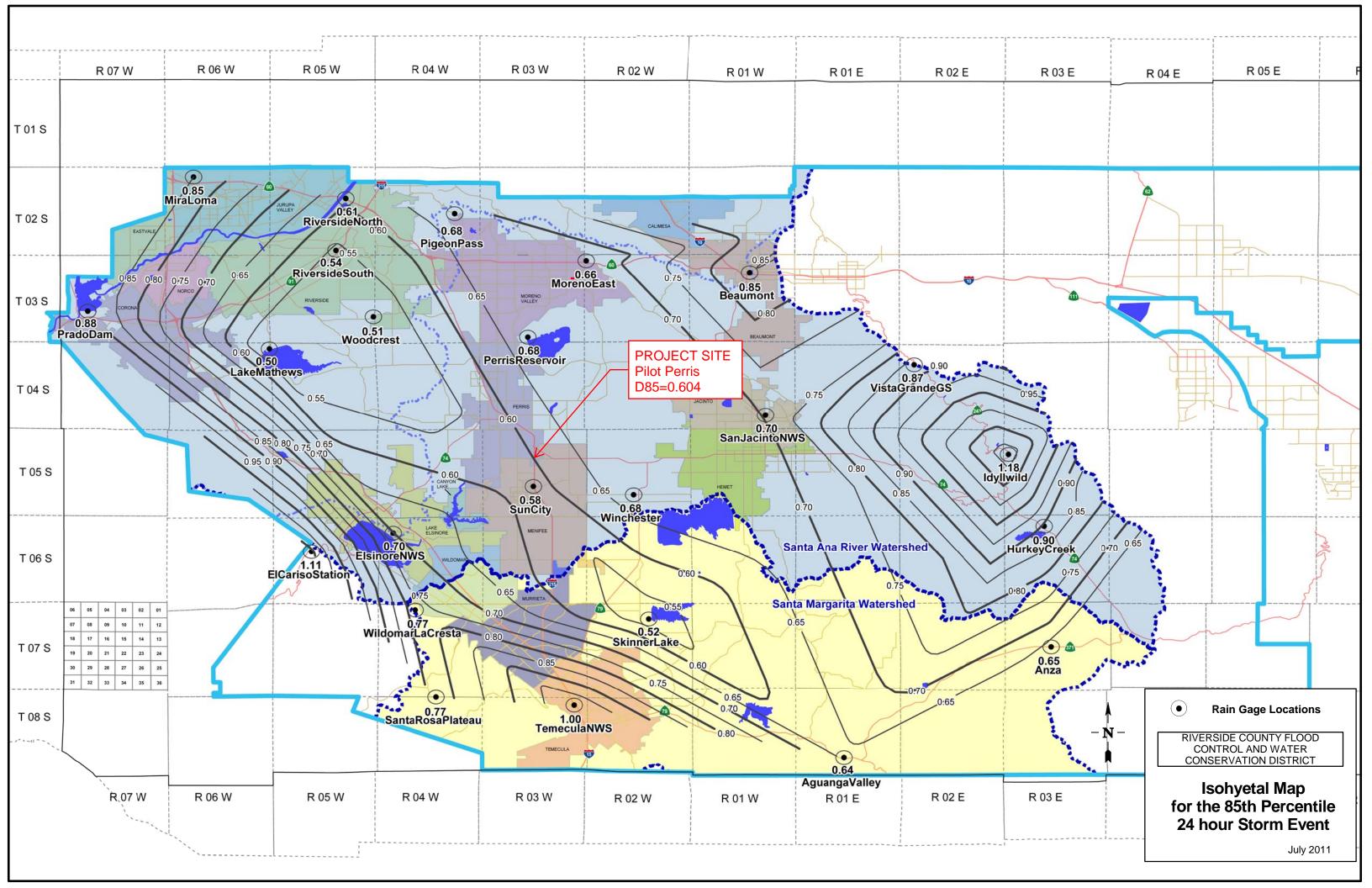
Dispose of all water resulting from dewatering operations legally and in ways that will not cause damage to public or private property, or constitute a nuisance or menace to the public, in accordance with municipal requirements.

The Contractor shall make every effort to minimize the amount of dust raised in excavating, on haul roads and access roads, and all other work areas in the course of construction activities.

Protect benchmarks, monuments, and other reference points against displacement or damage. Repair or replace benchmarks, monuments, and other permanent survey data that become displaced or damaged due to the performance of this work.

3.3.2 After Completion - After earthwork is completed and the, Geotechnical Engineer has finished his observations of the work, no further excavation, filling or backfilling shall be performed except under the observation of the Geotechnical Engineer.

# Appendix 4: Historical Site Conditions


Phase I Environmental Site Assessment or Other Information on Past Site Use

# Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

# Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation





 $V_{\text{BMP}}$  and  $Q_{\text{BMP}}$  worksheets

These worksheets are to be used to determine the required

Design Capture Volume ( $V_{BMP}$ ) or the Design Flow Rate ( $Q_{BMP}$ )

for BMPs in the Santa Ana Watershed

To verify which watershed your project is located within, visit

www.rcflood.org/npdes

and use the 'Locate my Watershed' tool

#### If your project is not located in the Santa Ana Watershed,

Do not use these worksheets! Instead visit

www.rcflood.org/npdes/developers.aspx

To access worksheets applicable to your watershed

Use the tabs across the bottom to access the worksheets for the Santa Ana Watershed

|        | Salita   | Ana wat                       | ershed - BMP ]<br>(Rev. 10-2011) | Design VO                | iune, v <sub>E</sub> | BMP              | Legend:           |                                                  | Required En<br>Calculated C           |
|--------|----------|-------------------------------|----------------------------------|--------------------------|----------------------|------------------|-------------------|--------------------------------------------------|---------------------------------------|
|        |          | (Note this works)             | heet shall <u>only</u> be used   | in conjunction           | n with RMP           | designs from the | LID RMP I         | Design Handbook                                  |                                       |
| ompan  |          | Kimley-Horr                   |                                  | conjunction              |                      |                  |                   |                                                  | 3/9/2022                              |
| esigne | •        | XO                            |                                  |                          |                      |                  |                   | Case No                                          |                                       |
|        |          | Number/Name                   | e                                |                          | Pilot Perri          | is               | -                 |                                                  |                                       |
|        |          |                               |                                  | BMP I                    | dentificati          | on               |                   |                                                  |                                       |
| MP N/  | AME / ID | BMP-1                         |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               | Mus                              |                          |                      | on BMP Design    | Calculation       | Sheet                                            |                                       |
|        |          |                               |                                  | Design I                 | Rainfall De          | epth             |                   |                                                  |                                       |
|        |          | 1-hour Rainfal<br>Map in Hand | l Depth,<br>book Appendix E      |                          |                      |                  | D <sub>85</sub> = | 0.60                                             | inches                                |
|        |          |                               | Drain                            | nage Manag               | ement Are            | a Tabulation     |                   |                                                  |                                       |
|        |          | Ir                            | nsert additional rows            | if needed to a           | accommode            | ate all DMAs dr  | aining to th      | e BMP                                            |                                       |
|        | DMA      | DMA Area                      | Post-Project Surface             | Effective<br>Imperivous  | DMA<br>Runoff        | DMA Areas x      | Design<br>Storm   | Design Capture<br>Volume, <b>V<sub>BMP</sub></b> | Proposed<br>Volume on<br>Plans (cubic |
|        | Type/ID  | (square feet)                 | Туре                             | Fraction, I <sub>f</sub> | Factor               | Runoff Factor    | Depth (in)        | (cubic feet)                                     | feet)                                 |
|        | 1A       | 395,859                       | Concrete or Asphalt              | 1                        | 0.89                 | 353106.2         |                   |                                                  |                                       |
|        | 18       | 152,078                       | Ornamental<br>Landscaping        | 0.1                      | 0.11                 | 16798.2          |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          |                               |                                  |                          |                      |                  |                   |                                                  |                                       |
|        |          | 547937                        | 7                                | otal                     |                      | 369904.4         | 0.60              | 18618.5                                          | 48,658                                |
|        |          | J-1331                        | I '                              |                          |                      | 303304.4         | 0.00              | 10010.5                                          | -0,050                                |

# **Effective Impervious Fraction**

| Developed Cover Types                      | Effective Impervious Fraction |
|--------------------------------------------|-------------------------------|
| Roofs                                      | 1.00                          |
| Concrete or Asphalt                        | 1.00                          |
| Grouted or Gapless Paving Blocks           | 1.00                          |
| Compacted Soil (e.g. unpaved parking)      | 0.40                          |
| Decomposed Granite                         | 0.40                          |
| Permeable Paving Blocks w/ Sand Filled Gap | 0.25                          |
| Class 2 Base                               | 0.30                          |
| Gravel or Class 2 Permeable Base           | 0.10                          |
| Pervious Concrete / Porous Asphalt         | 0.10                          |
| Open and Porous Pavers                     | 0.10                          |
| Turf block                                 | 0.10                          |
| Ornamental Landscaping                     | 0.10                          |
| Natural (A Soil)                           | 0.03                          |
| Natural (B Soil)                           | 0.15                          |
| Natural (C Soil)                           | 0.30                          |
| Natural (D Soil)                           | 0.40                          |
| Mixed Surface Types                        |                               |

Use this table to determine the effective impervious fraction for the V  $_{\text{BMP}}$  and  $Q_{\text{BMP}}$  calculation sheets

| Dispetantian East                                                                                 | ility Design Dragodyna                                                                                 | BMP ID                                         | Lagandu       | Require            | Required Entries |                 |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|--------------------|------------------|-----------------|
| Bioretention Fact                                                                                 | ility - Design Procedure                                                                               | BMP-1                                          | Legend:       | Calculated Cells   |                  |                 |
| Company Name:                                                                                     | Kimley-H                                                                                               | orn                                            |               | Date:              | 3/9/2022         |                 |
| Designed by:                                                                                      | XO                                                                                                     | <b>-</b> · · · · · · · · · · · · · · · · · · · | County/City ( | Case No.:          |                  |                 |
|                                                                                                   |                                                                                                        | Design Volume                                  |               |                    |                  |                 |
| Enter the are                                                                                     | ea tributary to this feature                                                                           |                                                |               | A <sub>T</sub> =   | 12.58            | acres           |
| Enter V <sub>BMP</sub>                                                                            | determined from Section 2.                                                                             | 1 of this Handbook                             |               | V <sub>BMP</sub> = | 18,619           | ft <sup>3</sup> |
|                                                                                                   | Type of B                                                                                              | ioretention Facility                           | Design        |                    |                  |                 |
| Side slopes r                                                                                     | equired (parallel to parking spaces or                                                                 | adiacent to walkways)                          |               |                    |                  |                 |
| -                                                                                                 | es required (perpendicular to parking                                                                  |                                                |               |                    |                  |                 |
|                                                                                                   |                                                                                                        | · · ·                                          |               |                    |                  |                 |
|                                                                                                   | Bioretent                                                                                              | ion Facility Surface                           | Area          |                    |                  |                 |
| Depth of So                                                                                       | il Filter Media Layer                                                                                  |                                                |               | $d_s =$            | 1.5              | ft              |
| Top Width o                                                                                       | of Bioretention Facility, exc                                                                          | luding curb                                    |               | $w_T =$            | 100.0            | ft              |
|                                                                                                   | Total Effective Depth, $d_E$<br>$d_E = (0.3) \times d_S + (0.4) \times 1 - (0.7/w_T) + 0.5$            |                                                |               |                    |                  | ft              |
| $\begin{array}{l} \text{Minimum S}\\ \text{A}_{\text{M}}\left(\text{ft}^{2}\right) = \end{array}$ | $\frac{\text{urface Area, A}_{\text{m}}}{\frac{V_{\text{BMP}}(\text{ft}^3)}{d_{\text{E}}(\text{ft})}}$ | _                                              |               | A <sub>M</sub> =   | 13,864           | ft-             |
| Proposed Su                                                                                       | irface Area                                                                                            |                                                |               | A=                 | 36,312           | $ft^2$          |
|                                                                                                   | Bioreter                                                                                               | ntion Facility Proper                          | rties         |                    |                  |                 |
| 0.1 01                                                                                            | · D' 4 4' E 11'4                                                                                       | <b>v</b> 1                                     |               |                    | 4                | 1               |
| Side Slopes                                                                                       | in Bioretention Facility                                                                               |                                                |               | Z =                | 4                | :1              |
| Diameter of                                                                                       | Underdrain                                                                                             |                                                |               |                    | 6                | inches          |
| Longitudinal Slope of Site (3% maximum)                                                           |                                                                                                        |                                                |               |                    |                  | %               |
| 6" Check Dam Spacing 0                                                                            |                                                                                                        |                                                |               |                    |                  | feet            |
| Describe Ve                                                                                       | getation: (                                                                                            | Other                                          |               |                    |                  |                 |
|                                                                                                   | e Bioretention Basin for sto                                                                           |                                                |               |                    |                  |                 |
|                                                                                                   | om and basin top is at least                                                                           |                                                |               | ser outlet         | structure wi     | ith an          |
| orifice and a grated to                                                                           | op. The basin width varies b                                                                           | out 100' was used as                           | an average.   |                    |                  |                 |

# 3.5 Bioretention Facility

| Type of BMP           | LID – Bioretention                                                                                                                                                                                                             |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment Mechanisms  | Infiltration, Evapotranspiration, Evaporation, Biofiltration                                                                                                                                                                   |
| Maximum Drainage Area | This BMP is intended to be integrated into a project's landscaped area in a distributed manner. Typically, contributing drainage areas to Bioretention Facilities range from less than 1 acre to a maximum of around 10 acres. |
| Other Names           | Rain Garden, Bioretention Cell, Bioretention Basin, Biofiltration Basin,<br>Landscaped Filter Basin, Porous Landscape Detention                                                                                                |

# **Description**

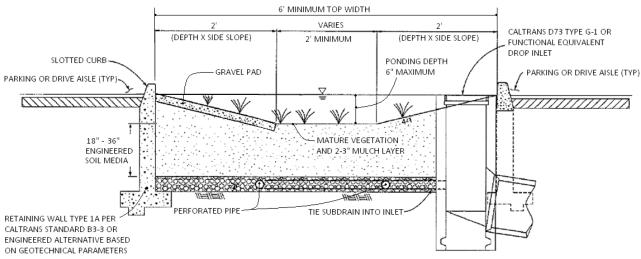
Bioretention Facilities are shallow, vegetated basins underlain by an engineered soil media. Healthy plant and biological activity in the root zone maintain and renew the macro-pore space in the soil and maximize plant uptake of pollutants and runoff. This keeps the Best Management Practice (BMP) from becoming clogged and allows more of the soil column to function as both a sponge (retaining water) and a highly effective and self-maintaining biofilter. In most cases, the bottom of a Bioretention Facility is unlined, which also provides an opportunity for infiltration to the extent the underlying onsite soil can accommodate. When the infiltration rate of the underlying soil is exceeded, fully biotreated flows are discharged via underdrains. Bioretention Facilities therefore will inherently achieve the maximum feasible level of infiltration and evapotranspiration and achieve the minimum feasible (but highly biotreated) discharge to the storm drain system.

# **Siting Considerations**

These facilities work best when they are designed in a relatively level area. Unlike other BMPs, Bioretention Facilities can be used in smaller landscaped spaces on the site, such as:

- ✓ Parking islands
- Medians
- ✓ Site entrances

Landscaped areas on the site (such as may otherwise be required through minimum landscaping ordinances), can often be designed as Bioretention Facilities. This can be accomplished by:


- *Depressing* landscaped areas below adjacent impervious surfaces, rather than elevating those areas
- Grading the site to direct runoff from those impervious surfaces *into* the Bioretention Facility, rather than away from the landscaping
- Sizing and designing the depressed landscaped area as a Bioretention Facility as described in this Fact Sheet

Bioretention Facilities should however not be used downstream of areas where large amounts of sediment can clog the system. Placing a Bioretention Facility at the toe of a steep slope should also be avoided due to the potential for clogging the engineered soil media with erosion from the slope, as well as the potential for damaging the vegetation.

# **Design and Sizing Criteria**

The recommended cross section necessary for a Bioretention Facility includes:

- Vegetated area
- 18' minimum depth of engineered soil media
- 12' minimum gravel layer depth with 6' perforated pipes (added flow control features such as orifice plates may be required to mitigate for HCOC conditions)



While the 18-inch minimum engineered soil media depth can be used in some cases, it is recommended to use 24 inches or a preferred 36 inches to provide an adequate root zone for the chosen plant palate. Such a design also provides for improved removal effectiveness for nutrients. The recommended ponding depth inside of a Bioretention Facility is 6 inches; measured from the flat bottom surface to the top of the water surface as shown in Figure 1.

Because this BMP is filled with an engineered soil media, pore space in the soil and gravel layer is assumed to provide storage volume. However, several considerations must be noted:

- Surcharge storage above the soil surface (6 inches) is important to assure that design flows do not bypass the BMP when runoff exceeds the soil's absorption rate.
- In cases where the Bioretention Facility contains engineered soil media deeper than 36 inches, the pore space within the engineered soil media can only be counted to the 36-inch depth.
- A maximum of 30 percent pore space can be used for the soil media whereas a maximum of 40 percent pore space can be use for the gravel layer.

Riverside County - Low Impact Development BMP Design Handbook

# **BIORETENTION FACILITY BMP FACT SHEET**

### **Engineered Soil Media Requirements**

The engineered soil media shall be comprised of 85 percent mineral component and 15 percent organic component, by volume, drum mixed prior to placement. The mineral component shall be a Class A sandy loam topsoil that meets the range specified in Table 1 below. The organic component shall be nitrogen stabilized compost<sup>1</sup>, such that nitrogen does not leach from the media.

| Percent Range | Component |
|---------------|-----------|
| 70-80         | Sand      |
| 15-20         | Silt      |
| 5-10          | Clay      |

#### Table 1: Mineral Component Range Requirements

The trip ticket, or certificate of compliance, shall be made available to the inspector to prove the engineered mix meets this specification.

### Vegetation Requirements

Vegetative cover is important to minimize erosion and ensure that treatment occurs in the Bioretention Facility. The area should be designed for at least 70 percent mature coverage throughout the Bioretention Facility. To prevent the BMP from being used as walkways, Bioretention Facilities shall be planted with a combination of small trees, densely planted shrubs, and natural grasses. Grasses shall be native or ornamental; preferably ones that do not need to be mowed. The application of fertilizers and pesticides should be minimal. To maintain oxygen levels for the vegetation and promote biodegradation, it is important that vegetation not be completely submerged for any extended period of time. Therefore, a maximum of 6 inches of ponded water shall be used in the design to ensure that plants within the Bioretention Facility remain healthy.

A 2 to 3-inch layer of standard shredded aged hardwood mulch shall be placed as the top layer inside the Bioretention Facility. The 6-inch ponding depth shown in Figure 1 above shall be measured from the top surface of the 2 to 3-inch mulch layer.

# Curb Cuts

To allow water to flow into the Bioretention Facility, 1-foot-wide (minimum) curb cuts should be placed approximately every 10 feet around the perimeter of the Bioretention Facility. Figure 2 shows a curb cut in a Bioretention Facility. <u>Curb cut flow lines must be at or above the  $V_{BMP}$ water surface level.</u>

<sup>&</sup>lt;sup>1</sup> For more information on compost, visit the US Composting Council website at: <u>http://compostingcouncil.org/</u>

# **BIORETENTION FACILITY BMP FACT SHEET**



Figure 2: Curb Cut located in a Bioretention Facility

To reduce erosion, a gravel pad shall be placed at each inlet point to the Bioretention Facility. The gravel should be 1- to 1.5-inch diameter in size. The gravel should overlap the curb cut opening a minimum of 6 inches. The gravel pad inside the Bioretention Facility should be flush with the finished surface at the curb cut and extend to the bottom of the slope.

In addition, place an apron of stone or concrete, a foot square or larger, inside each inlet to prevent vegetation from growing up and blocking the inlet. See Figure 3.

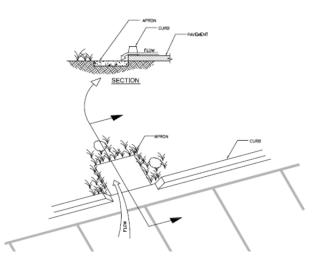



Figure 3: Apron located in a Bioretention Facility

# **Terracing the Landscaped Filter Basin**

It is recommended that Bioretention Facilities be level. In the event the facility site slopes and lacks proper design, water would fill the lowest point of the BMP and then discharge from the basin without being treated. To ensure that the water will be held within the Bioretention Facility on sloped sites, the BMP must be terraced with nonporous check dams to provide the required storage and treatment capacity.

The terraced version of this BMP shall be used on non-flat sites with no more than a 3 percent slope. The surcharge depth cannot exceed 0.5 feet, and side slopes shall not exceed 4:1. Table 2 below shows the spacing of the check dams, and slopes shall be rounded up (i.e., 2.5 percent slope shall use 10' spacing for check dams).

| Table 2: Check       | Dam Spacing |  |  |  |
|----------------------|-------------|--|--|--|
| 6" Check Dam Spacing |             |  |  |  |
| Slope                | Spacing     |  |  |  |
| 1%                   | 25'         |  |  |  |
| 2%                   | 15'         |  |  |  |
| 3%                   | 10'         |  |  |  |

#### Table 2: Check Dam Spacing

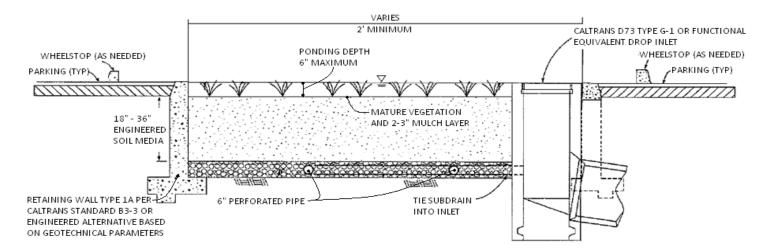
# **Roof Runoff**

Roof downspouts may be directed towards Bioretention Facilities. However, the downspouts must discharge onto a concrete splash block to protect the Bioretention Facility from erosion.

## **Retaining Walls**

It is recommended that Retaining Wall Type 1A, per Caltrans Standard B3-3 or equivalent, be constructed around the entire perimeter of the Bioretention Facility. This practice will protect the sides of the Bioretention Facility from collapsing during construction and maintenance or from high service loads adjacent to the BMP. Where such service loads would not exist adjacent to the BMP, an engineered alternative may be used if signed by a licensed civil engineer.

### Side Slope Requirements


# Bioretention Facilities Requiring Side Slopes

The design should assure that the Bioretention Facility does not present a tripping hazard. Bioretention Facilities proposed near pedestrian areas, such as areas parallel to parking spaces or along a walkway, must have a gentle slope to the bottom of the facility. Side slopes inside of a Bioretention Facility shall be 4:1. A typical cross section for the Bioretention Facility is shown in Figure 1.

# Bioretention Facilities Not Requiring Side Slopes

Where cars park perpendicular to the Bioretention Facility, side slopes are not required. A 6inch maximum drop may be used, and the Bioretention Facility must be planted with trees and shrubs to prevent pedestrian access. In this case, a curb is not placed around the Bioretention Facility,

but wheel stops shall be used to prevent vehicles from entering the Bioretention Facility, as shown in Figure 4.



# **BIORETENTION FACILITY BMP FACT SHEET**

#### **Planter Boxes**

Bioretention Facilities can also be placed above ground as planter boxes. Planter boxes must have a minimum width of 2 feet, a maximum surcharge depth of 6 inches, and no side slopes are necessary. Planter boxes must be constructed so as to ensure that the top surface of the engineered soil media will remain level. This option may be constructed of concrete, brick, stone or other stable materials that will not warp or bend. Chemically treated wood or galvanized steel, which has the ability to contaminate stormwater, should not be used. Planter boxes must be lined with an impermeable liner on all sides, including the bottom. Due to the impermeable liner, the inside bottom of the planter box shall be designed and constructed with a cross fall, directing treated flows within the subdrain layer toward the point where subdrain exits the planter box, and subdrains shall be oriented with drain holes oriented down. These provisions will help avoid excessive stagnant water within the gravel underdrain layer. Similar to the in-ground Bioretention Facility versions, this BMP benefits from healthy plants and biological activity in the root zone. Planter boxes should be planted with appropriately selected vegetation.



Figure 5: Planter Box Source: LA Team Effort

# Overflow

An overflow route is needed in the Bioretention Facility design to bypass stored runoff from storm events larger than  $V_{BMP}$  or in the event of facility or subdrain clogging. Overflow systems must connect to an acceptable discharge point, such as a downstream conveyance system as shown in Figure 1 and Figure 4. The inlet to the overflow structure shall be elevated inside the Bioretention Facility to be flush with the ponding surface for the design capture volume ( $V_{BMP}$ ) as shown in Figure 4. This will allow the design capture volume to be fully treated by the Bioretention Facility, and for larger events to safely be conveyed to downstream systems. The overflow inlet shall **not** be located in the entrance of a Bioretention Facility, as shown in Figure 6.

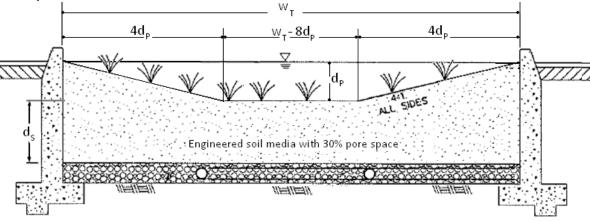
# **BIORETENTION FACILITY BMP FACT SHEET**

#### Underdrain Gravel and Pipes

An underdrain gravel layer and pipes shall be provided in accordance with Appendix B – Underdrains.



Figure 6: Incorrect Placement of an Overflow Inlet.


# Inspection and Maintenance Schedule

The Bioretention Facility area shall be inspected for erosion, dead vegetation, soggy soils, or standing water. The use of fertilizers and pesticides on the plants inside the Bioretention Facility should be minimized.

| Schedule           | Activity                                                                                                                                                                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ongoing            | <ul> <li>Keep adjacent landscape areas maintained. Remove clippings from landscape maintenance activities.</li> <li>Remove trash and debris</li> <li>Replace damaged grass and/or plants</li> <li>Replace surface mulch layer as needed to maintain a 2-3 inch soil cover.</li> </ul> |
| After storm events | Inspect areas for ponding                                                                                                                                                                                                                                                             |
| Annually           | Inspect/clean inlets and outlets                                                                                                                                                                                                                                                      |

# **Bioretention Facility Design Procedure**

- 1) Enter the area tributary,  $A_T$ , to the Bioretention Facility.
- 2) Enter the Design Volume,  $V_{BMP}$ , determined from Section 2.1 of this Handbook.
- 3) Select the type of design used. There are two types of Bioretention Facility designs: the standard design used for most project sites that include side slopes, and the modified design used when the BMP is located perpendicular to the parking spaces or with planter boxes that do not use side slopes.
- 4) Enter the depth of the engineered soil media, d<sub>s</sub>. The minimum depth for the engineered soil media can be 18' in limited cases, but it is recommended to use 24' or a preferred 36' to provide an adequate root zone for the chosen plant palette. Engineered soil media deeper than 36' will only get credit for the pore space in the first 36'.
- 5) Enter the top width of the Bioretention Facility.
- 6) Calculate the total effective depth, d<sub>E</sub>, within the Bioretention Facility. The maximum allowable pore space of the soil media is 30% while the maximum allowable pore space for the gravel layer is 40%. Gravel layer deeper than 12' will only get credit for the pore space in the first 12'.



a. For the design with side slopes the following equation shall be used to determine the total effective depth. Where,  $d_P$  is the depth of ponding within the basin.

$$d_{E}(ft) = \frac{0.3 \times \left[ \left( w_{T}(ft) \times d_{S}(ft) \right) + 4 \left( d_{P}(ft) \right)^{2} \right] + 0.4 \times 1(ft) + d_{P}(ft) \left[ 4 d_{P}(ft) + \left( w_{T}(ft) - 8 d_{P}(ft) \right) \right]}{w_{T}(ft)}$$

This above equation can be simplified if the maximum ponding depth of 0.5' is used. The equation below is used on the worksheet to find the minimum area required for the Bioretention Facility:

$$d_{\rm E}({\rm ft}) = (0.3 \times d_{\rm S}({\rm ft}) + 0.4 \times 1({\rm ft})) - \left(\frac{0.7 \, ({\rm ft}^2)}{w_{\rm T}({\rm ft})}\right) + 0.5({\rm ft})$$

b. For the design without side slopes the following equation shall be used to determine the total effective depth:

 $d_{E}(ft) = d_{P}(ft) + [(0.3) \times d_{S}(ft) + (0.4) \times 1(ft)]$ 

The equation below, using the maximum ponding depth of 0.5', is used on the worksheet to find the minimum area required for the Bioretention Facility:

$$d_E(ft) = 0.5 (ft) + [(0.3) \times d_S(ft) + (0.4) \times 1(ft)]$$

7) Calculate the minimum surface area, A<sub>M</sub>, required for the Bioretention Facility. This does not include the curb surrounding the Bioretention Facility or side slopes.

$$A_{\rm M}({\rm ft}^2) = \frac{V_{\rm BMP}({\rm ft}^3)}{d_{\rm E}({\rm ft})}$$

- 8) Enter the proposed surface area. This area shall not be less than the minimum required surface area.
- 9) Verify that side slopes are no steeper than 4:1 in the standard design, and are not required in the modified design.
- 10) Provide the diameter, minimum 6 inches, of the perforated underdrain used in the Bioretention Facility. See Appendix B for specific information regarding perforated pipes.
- 11) Provide the slope of the site around the Bioretention Facility, if used. The maximum slope is 3 percent for a standard design.
- 12) Provide the check dam spacing, if the site around the Bioretention Facility is sloped.
- 13) Describe the vegetation used within the Bioretention Facility.

# **References Used to Develop this Fact Sheet**

Anderson, Dale V. "Landscaped Filter Basin Soil Requirements." Riverside, May 2010.

California Department of Transportation. <u>CalTrans Standard Plans.</u> 15 September 2005. May 2010 <http://www.dot.ca.gov/hq/esc/oe/project\_plans/HTM/stdplns-met-new99.htm>.

Camp Dresser and McKee Inc.; Larry Walker Associates. <u>California Stormwater Best</u> <u>Management Practice Handbook for New Development and Redevelopment.</u> California Stormwater Quality Association (CASQA), 2004.

Contra Costa Clean Water Program. <u>Stormwater Quality Requirements for Development</u> <u>Applications.</u> 3rd Edition. Contra Costa, 2006.

County of Los Angeles Public Works. <u>Stormwater Best Management Practice Design and</u> <u>Maintenance Manual.</u> Los Angeles, 2009.

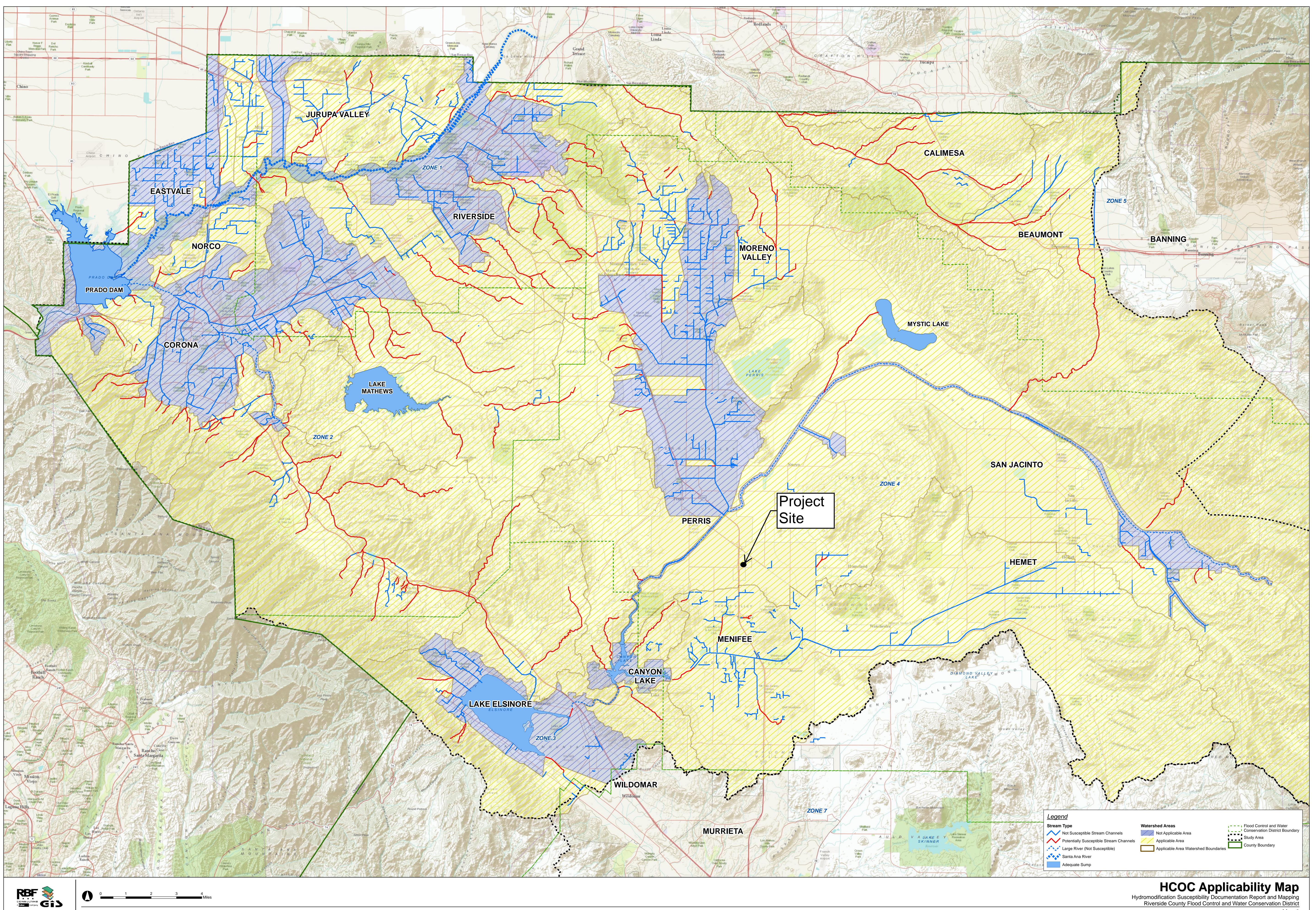
Kim, Hunho, Eric A. Seagren and Allen P. Davis. "Engineered Bioretention for Removal of Nitrate from Stormwater Runoff." <u>Water Environment Research</u> 75.4 (2003): 355-366.

LA Team Effort. <u>LA Team Effort: FREE Planter Boxes for Businesses.</u> 2 November 2009. May 2010 <http://lateameffort.blogspot.com/2009/11/free-planter-boxes-for-businesses-est.html>.

Montgomery County Maryland Department of Permitting Services Water Resources Section. <u>Biofiltration (BF)</u>. Montgomery County, 2005.

Program, Ventura Countywide Stormwater Quality Management. <u>Technical Guidance Manual</u> <u>for Stormwater Quality Control Measures.</u> Ventura, 2002.

United States Environmental Protection Agency. <u>Storm Water Technology Fact Sheet</u> <u>Bioretention</u>. Washington D.C, 1999.

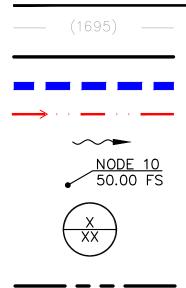

Urban Drainage and Flood Control District. <u>Urban Storm Drainage Criteria Manual Volume 3 -</u> <u>Best Management Practices.</u> Vol. 3. Denver, 2008. 3 vols.

Urbonas, Ben R. <u>Stormwater Sand Filter Sizing and Design: A Unit Operations Approach.</u> Denver: Urban Drainage and Flood Control District, 2002.

#### Riverside County - Low Impact Development BMP Design Handbook

# Appendix 7: Hydromodification

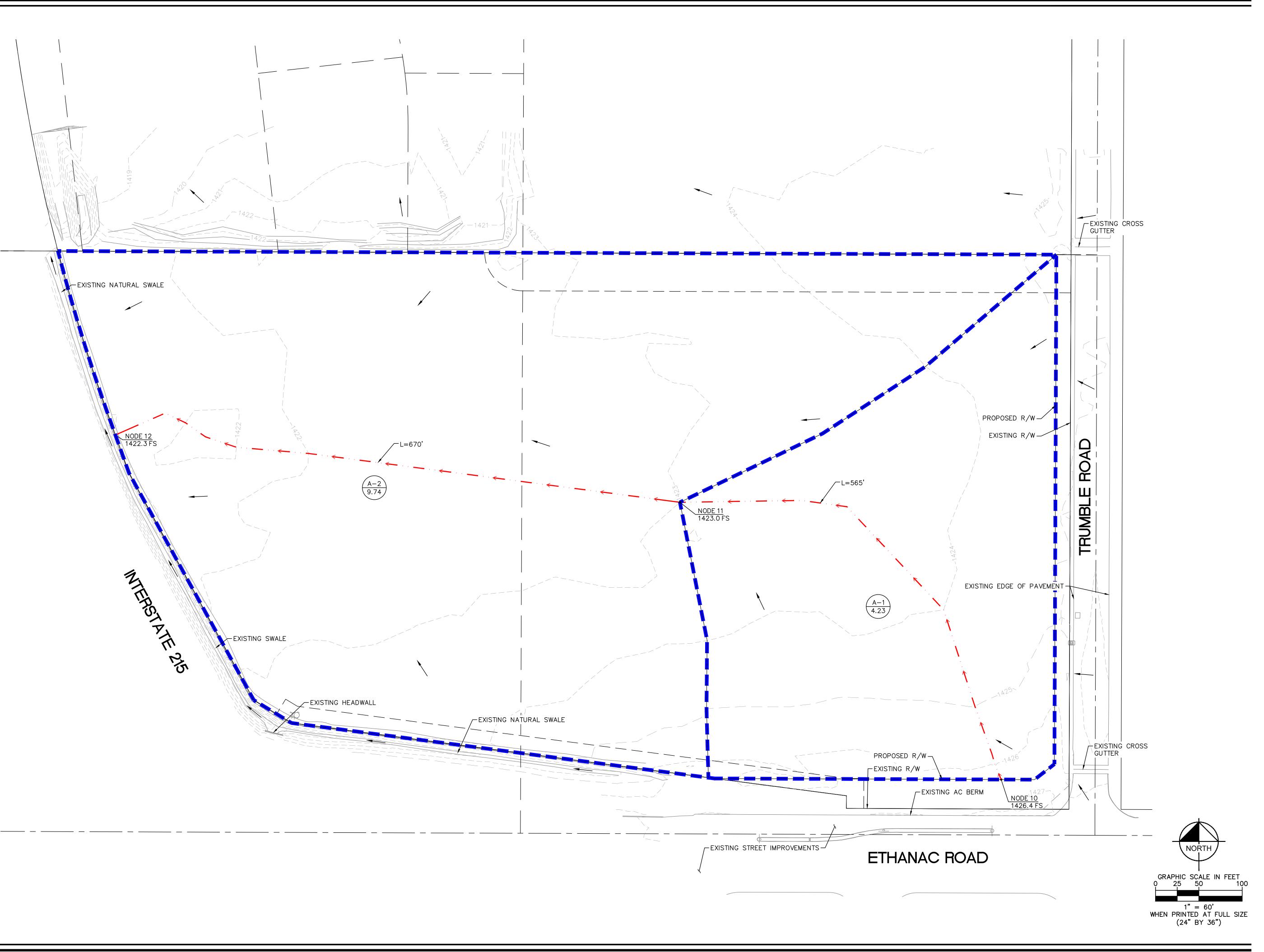
Supporting Detail Relating to Hydrologic Conditions of Concern





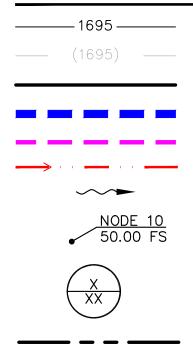

Map Document: (M:\Mdata\10108202\RCFCWCD\_Hydromodification\_Large\_5500.mxd.mxd - IRV) - 1/9/2012

Map 2


# LEGEND

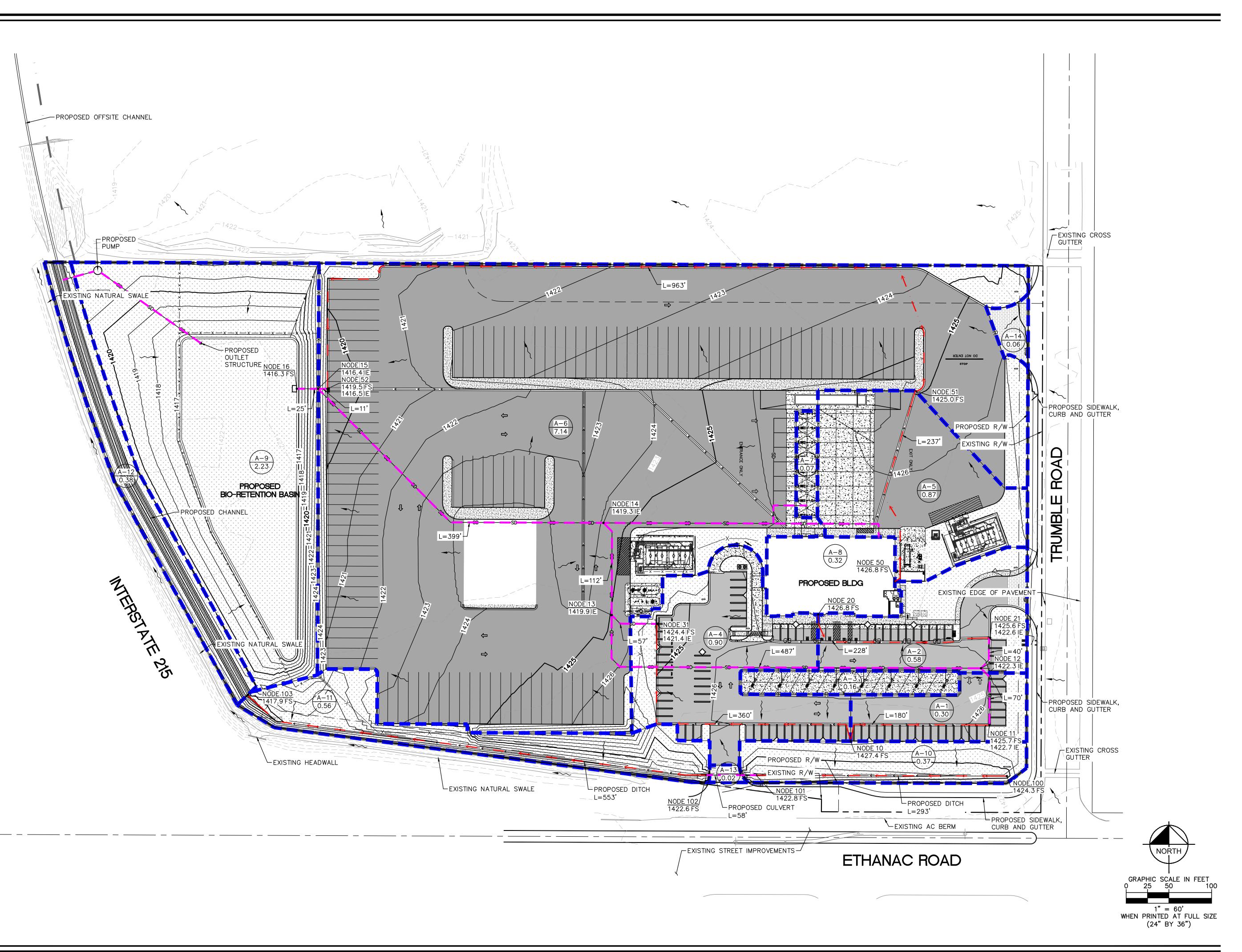


EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY FLOW PATH FLOW ARROW NODE ID AND ELEVATION


DA NAME DA AREA (IN ACRES)

RIGHT OF WAY




# **Kimley Horn**

# LEGEND



PROPOSED CONTOUR EXISTING CONTOUR PROPERTY LINE DMA BOUNDARY PROPOSED STORM DRAIN FLOW PATH FLOW ARROW NODE ID AND ELEVATION DA NAME

DA AREA (IN ACRES) RIGHT OF WAY



# **Kimley**»Horn



Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 12/07/21 File:PP2E.out \_\_\_\_\_ PILOT PERRIS EXIST 2-YR XO 12/7/21 \_\_\_\_\_ \*\*\*\*\*\*\*\* Hydrology Study Control Information \*\*\*\*\*\*\*\*\* English (in-lb) Units used in input data file -----Program License Serial Number 6443 \_\_\_\_\_ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 2.00 Antecedent Moisture Condition = 1 Standard intensity-duration curves data (Plate D-4.1) For the [ Perris Valley ] area used. 10 year storm 10 minute intensity = 1.880(In/Hr) 10 year storm 60 minute intensity = 0.780(In/Hr) 100 year storm 10 minute intensity = 2.690(In/Hr) 100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 2.0 Calculated rainfall intensity data: 1 hour intensity = 0.542(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 10.000 to Point/Station 11.000 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 565.000(Ft.) Top (of initial area) elevation = 26.400(Ft.) Bottom (of initial area) elevation = 23.000(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.00602 s(percent)= 0.60 TC =  $k(0.530)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 18.587 min. Rainfall intensity = 0.963(In/Hr) for a 2.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.630 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 1) = 76.40Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 2.568(CFS) Total initial stream area = 4.230 4.230(Ac.) Pervious area fraction = 1.000

```
Top of natural channel elevation =
                                     23.000(Ft.)
                                     22.300(Ft.)
End of natural channel elevation =
Length of natural channel = 670.000(Ft.)
Estimated mean flow rate at midpoint of channel =
                                                     5.525(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) = (7 + 8(q(English Units)^.352)(slope^0.5)
Velocity using mean channel flow = 0.70(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
       Normal channel slope = 0.0010
Corrected/adjusted channel slope = 0.0010
Travel time = 15.99 min. TC = 34.58 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.570
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 76.40
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity =
                         0.710(In/Hr) for a
                                               2.0 year storm
                                      9.740(Ac.)
                    3.943(CFS) for
Subarea runoff =
Total runoff =
                 6.511(CFS) Total area =
                                               13.970(Ac.)
End of computations, total study area =
                                                13.97 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
```

```
Area averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 89.0
```

#### Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2018 Version 9.0 Rational Hydrology Study Date: 03/22/22 File:PP2P.out

```
_____
     PILOT PERRIS
     PROP 2-YR
     XO 3/22/22
_____
      ******** Hydrology Study Control Information *********
      English (in-lb) Units used in input data file
Program License Serial Number 6443
       _____
_ _ _ _ _ _ _ _ _ _
     Rational Method Hydrology Program based on
     Riverside County Flood Control & Water Conservation District
     1978 hydrology manual
     Storm event (year) = 2.00 Antecedent Moisture Condition = 1
     Standard intensity-duration curves data (Plate D-4.1)
     For the [ Perris Valley ] area used.
     10 year storm 10 minute intensity = 1.880(In/Hr)
     10 year storm 60 minute intensity = 0.780(In/Hr)
     100 year storm 10 minute intensity = 2.690(In/Hr)
     100 year storm 60 minute intensity = 1.120(In/Hr)
     Storm event year = 2.0
     Calculated rainfall intensity data:
     1 hour intensity = 0.542(In/Hr)
     Slope of intensity duration curve = 0.4900
     Process from Point/Station 10.000 to Point/Station 11.000
     **** INITIAL AREA EVALUATION ****
```

Initial area flow distance = 180.000(Ft.) Top (of initial area) elevation = 27.400(Ft.) Bottom (of initial area) elevation = 25.700(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.00944 s(percent)= 0.94 TC =  $k(0.323)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.551 min. Rainfall intensity = 1.605(In/Hr) for a 2.0 year storm APARTMENT subarea type Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 1) = 57.00Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.400(CFS) Total initial stream area = 0.300(Ac.) Pervious area fraction = 0.200 Process from Point/Station 11.000 to Point/Station 12.000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 22.700(Ft.) Downstream point/station elevation = 22.300(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 0.400(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 0.400(CFS) Normal flow depth in pipe = 4.34(In.) Flow top width inside pipe = 5.37(In.) Critical Depth = 3.86(In.) Pipe flow velocity = 2.64(Ft/s)Travel time through pipe = 0.44 min. Time of concentration (TC) = 6.99 min. Process from Point/Station 12.000 to Point/Station 12.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.300(Ac.) Runoff from this stream = 0.400(CFS) Time of concentration = 6.99 min. Rainfall intensity = 1.555(In/Hr)

♠

```
Initial area flow distance = 228.000(Ft.)
Top (of initial area) elevation =
                                    26.800(Ft.)
Bottom (of initial area) elevation =
                                       25.600(Ft.)
Difference in elevation =
                             1.200(Ft.)
Slope =
          0.00526 s(percent)=
                                     0.53
TC = k(0.336)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 8.419 min.
                         1.420(In/Hr) for a 2.0 year storm
Rainfall intensity =
MOBILE HOME PARK subarea type
Runoff Coefficient = 0.807
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.250; Impervious fraction = 0.750
Initial subarea runoff =
                             0.664(CFS)
Total initial stream area =
                                  0.580(Ac.)
Pervious area fraction = 0.250
```

```
♠
```

```
Upstream point/station elevation = 22.600(Ft.)
Downstream point/station elevation =
                                     22.300(Ft.)
Pipe length = 40.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 0.664(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow =
                                    0.664(CFS)
Normal flow depth in pipe =
                            4.11(In.)
Flow top width inside pipe =
                             8.97(In.)
Critical Depth = 4.44(In.)
Pipe flow velocity = 3.38(Ft/s)
Travel time through pipe = 0.20 min.
Time of concentration (TC) = 8.62 min.
```

```
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.580(Ac.)
Runoff from this stream = 0.664(CFS)
Time of concentration = 8.62 min.
```

Rainfall intensity = 1.404(In/Hr) Summary of stream data: TC Stream Flow rate Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.400 6.99 1.555 2 0.664 8.62 1.404 Largest stream flow has longer time of concentration 0.664 + sum of 0p = 0b Ia/Ib 0.400 \* 0.903 = 0.361 Qp = 1.025 Total of 2 streams to confluence: Flow rates before confluence point: 0.400 0.664 Area of streams before confluence: 0.300 0.580 Results of confluence: Total flow rate = 1.025(CFS) Time of concentration = 8.616 min. Effective stream area after confluence = 0.880(Ac.) Process from Point/Station 12.000 to Point/Station 13,000 \*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\* Upstream point/station elevation = 22.300(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 487.00(Ft.) Manning's N = 0.012No. of pipes = 1 Required pipe flow = 1.025(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.025(CFS) 1.025(CFS) Normal flow depth in pipe = 6.18(In.) Flow top width inside pipe = 8.35(In.) Critical Depth = 5.58(In.) Pipe flow velocity = 3.17(Ft/s)Travel time through pipe = 2.56 min. Time of concentration (TC) = 11.17 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* SUBAREA FLOW ADDITION \*\*\*\* COMMERCIAL subarea type Runoff Coefficient = 0.860 Decimal fraction soil group A = 0.000

♠

۸

```
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 11.17 min.
Rainfall intensity = 1.236(In/Hr) for a 2.0 year storm
Subarea runoff = 0.170(CFS) for 0.160(Ac.)
Total runoff = 1.195(CFS) Total area = 1.
                 1.195(CFS) Total area = 1.040(Ac.)
Process from Point/Station
                             13.000 to Point/Station
                                                        13,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.040(Ac.)
Runoff from this stream =
                           1.195(CFS)
Time of concentration = 11.17 min.
Rainfall intensity = 1.236(In/Hr)
Process from Point/Station
                             10.000 to Point/Station
                                                       31.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 360.000(Ft.)
Top (of initial area) elevation = 27.400(Ft.)
Bottom (of initial area) elevation = 24.400(Ft.)
Difference in elevation =
                          3.000(Ft.)
Slope =
         0.00833 s(percent)=
                                  0.83
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.863 min.
Rainfall intensity =
                     1.384(In/Hr) for a 2.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.824
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 1.027(CFS)
Total initial stream area =
                               0.900(Ac.)
Pervious area fraction = 0.200
```

Upstream point/station elevation = 21.400(Ft.) Downstream point/station elevation = 19.900(Ft.) Pipe length = 57.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 1.027(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.027(CFS) Normal flow depth in pipe = 3.69(In.) Flow top width inside pipe = 8.85(In.) Critical Depth = 5.58(In.) Pipe flow velocity = 6.01(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 9.02 min. Process from Point/Station 13.000 to Point/Station 13.000 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream = 1.027(CFS) Time of concentration = 9.02 min. Rainfall intensity = 1.372(In/Hr) Summary of stream data: Stream Flow rate тс Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.195 11.17 1.236 2 1.027 9.02 1.372 Largest stream flow has longer time of concentration 1.195 + sum of 0p = Ob Ia/Ib 0.900 = 0.925 1.027 \* 0p = 2.120 Total of 2 streams to confluence: Flow rates before confluence point: 1.195 1.027 Area of streams before confluence: 1.040 0.900 Results of confluence: Total flow rate = 2.120(CFS) Time of concentration = 11.173 min. Effective stream area after confluence = 1.940(Ac.) Process from Point/Station 13.000 to Point/Station 14.000

\*\*\*\* PIPEFLOW TRAVEL TIME (Program estimated size) \*\*\*\*

```
Upstream point/station elevation =
                                 19.900(Ft.)
Downstream point/station elevation =
                                  19.300(Ft.)
Pipe length = 112.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 2.120(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                  2.120(CFS)
Normal flow depth in pipe =
                          7.76(In.)
Flow top width inside pipe =
                           11.47(In.)
Critical Depth =
                 7.46(In.)
Pipe flow velocity =
                      3.95(Ft/s)
Travel time through pipe = 0.47 min.
Time of concentration (TC) = 11.65 min.
Process from Point/Station
                            14.000 to Point/Station
                                                       14.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.859
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
                      11.65 min.
Time of concentration =
Rainfall intensity = 1.211(In/Hr) for a
                                          2.0 year storm
Subarea runoff = 0.073(CFS) for
                                    0.070(Ac.)
Total runoff =
                 2.193(CFS) Total area = 2.010(Ac.)
Process from Point/Station 14.000 to Point/Station
                                                      14,000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.859
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration =
                      11.65 min.
Rainfall intensity = 1.211(In/Hr) for a 2.0 year storm
Subarea runoff =
                   0.333(CFS) for 0.320(Ac.)
Total runoff = 2.526(CFS) Total area = 2.330(Ac.)
```

```
Process from Point/Station
                            14.000 to Point/Station
                                                      15.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                19.300(Ft.)
Downstream point/station elevation =
                                  16.400(Ft.)
Pipe length = 399.00(Ft.)
                          Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                     2.526(CFS)
Nearest computed pipe diameter =
                               12.00(In.)
Calculated individual pipe flow =
                                 2.526(CFS)
Normal flow depth in pipe = 7.89(In.)
Flow top width inside pipe =
                          11.39(In.)
Critical Depth = 8.17(In.)
Pipe flow velocity =
                      4.62(Ft/s)
Travel time through pipe = 1.44 min.
Time of concentration (TC) = 13.09 min.
Process from Point/Station
                            15.000 to Point/Station
                                                      15.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area =
                    2.330(Ac.)
Runoff from this stream =
                          2.526(CFS)
Time of concentration = 13.09 min.
Rainfall intensity = 1.144(In/Hr)
Process from Point/Station
                           50.000 to Point/Station
                                                      51.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 237.000(Ft.)
Top (of initial area) elevation =
                               26.800(Ft.)
Bottom (of initial area) elevation =
                                  25.000(Ft.)
Difference in elevation =
                         1.800(Ft.)
Slope =
        0.00759 s(percent)=
                                0.76
TC = k(0.300)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.094 min.
Rainfall intensity =
                      1.544(In/Hr) for a 2.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.864
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
```

```
Initial subarea runoff = 1.161(CFS)
Total initial stream area =
                           0.870(Ac.)
Pervious area fraction = 0.100
Process from Point/Station 51.000 to Point/Station
                                                         52,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 25.000(Ft.)
Downstream point elevation = 19.500(Ft.)
Channel length thru subarea = 963.000(Ft.)
Channel base width =
                          0.000(Ft.)
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 4.165(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 0.500(Ft.)
Flow(q) thru subarea = 4.165(CFS)
Depth of flow = 0.170(Ft.), Average velocity = 1.446(Ft/s)
Channel flow top width = 33.946(Ft.)
Flow Velocity = 1.45(Ft/s)
Travel time = 11.10 min.
Time of concentration =
                       18.20 min.
Sub-Channel No. 1 Critical depth = 0.161(Ft.)
 ' ' Critical flow top width =
                                               32.227(Ft.)
       .
              .
                  Critical flow velocity= 1.604(Ft/s)
                   Critical flow area = 2.596(Sq.Ft)
             .
 Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.854
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 0.973(In/Hr) for a 2.0 year storm
Subarea runoff = 5.936(CFS) for 7.140(Ac.)
Total runoff = 7.097(CFS) Total area = 8.010(Ac.)
Depth of flow = 0.207(Ft.), Average velocity = 1.652(Ft/s)
Sub-Channel No. 1 Critical depth =
                                0.199(Ft.)
    ' Critical flow top width =
  .
                                               39.844(Ft.)
       .
           ' Critical flow velocity= 1.788(Ft/s)
' Critical flow area = 3.969(Sq.Ft)
             .
  .
      .
```

```
Upstream point/station elevation =
                                   16.500(Ft.)
Downstream point/station elevation = 16.400(Ft.)
                11.00(Ft.) Manning's N = 0.012
Pipe length =
No. of pipes = 1 Required pipe flow = 7.097(CFS)
Nearest computed pipe diameter =
                                   18.00(In.)
Calculated individual pipe flow =
                                  7.097(CFS)
Normal flow depth in pipe = 10.62(In.)
Flow top width inside pipe = 17.71(In.)
Critical Depth =
                 12.37(In.)
Pipe flow velocity =
                        6.55(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 18.22 min.
Process from Point/Station
                              15.000 to Point/Station
                                                          15.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area =
                     8.010(Ac.)
                            7.097(CFS)
Runoff from this stream =
Time of concentration =
                        18.22 min.
Rainfall intensity =
                      0.972(In/Hr)
Summary of stream data:
Stream
        Flow rate
                     TC
                                   Rainfall Intensity
          (CFS)
No.
                     (min)
                                         (In/Hr)
        2.526
                 13.09
1
                                     1.144
2
        7.097
                 18.22
                                     0.972
Largest stream flow has longer time of concentration
0p =
         7.097 + sum of
         0b
                   Ia/Ib
                    0.850 =
          2.526 *
                                2.148
Qp =
         9.244
Total of 2 streams to confluence:
Flow rates before confluence point:
      2.526
                 7.097
Area of streams before confluence:
       2.330
                   8.010
Results of confluence:
Total flow rate =
                     9.244(CFS)
Time of concentration =
                        18.224 min.
Effective stream area after confluence =
                                         10.340(Ac.)
```

♠

```
Upstream point/station elevation = 16.400(Ft.)

Downstream point/station elevation = 16.300(Ft.)

Pipe length = 25.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 9.244(CFS)

Nearest computed pipe diameter = 21.00(In.)

Calculated individual pipe flow = 9.244(CFS)

Normal flow depth in pipe = 14.88(In.)

Flow top width inside pipe = 19.08(In.)

Critical Depth = 13.57(In.)

Pipe flow velocity = 5.07(Ft/s)

Travel time through pipe = 0.08 min.

Time of concentration (TC) = 18.31 min.
```

```
UNDEVELOPED (good cover) subarea

Runoff Coefficient = 0.498

Decimal fraction soil group A = 0.000

Decimal fraction soil group B = 0.000

Decimal fraction soil group D = 1.000

RI index for soil(AMC 1) = 63.00

Pervious area fraction = 1.000; Impervious fraction = 0.000

Time of concentration = 18.31 min.

Rainfall intensity = 0.970(In/Hr) for a 2.0 year storm

Subarea runoff = 1.078(CFS) for 2.230(Ac.)

Total runoff = 10.322(CFS) Total area = 12.570(Ac.)
```

```
♠
```

```
Along Main Stream number: 1 in normal stream number 1

Stream flow area = 12.570(Ac.)

Runoff from this stream = 10.322(CFS)

Time of concentration = 18.31 min.

Rainfall intensity = 0.970(In/Hr)
```

```
♠
```

\*\*\*\* INITIAL AREA EVALUATION \*\*\*\*

```
Initial area flow distance = 293.000(Ft.)
Top (of initial area) elevation =
                                24.300(Ft.)
Bottom (of initial area) elevation =
                                   22.800(Ft.)
Difference in elevation =
                          1.500(Ft.)
Slope =
       0.00512 s(percent)=
                                 0.51
TC = k(0.530)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration =
                                  14.763 min.
Rainfall intensity =
                    1.078(In/Hr) for a
                                        2.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.651
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 76.40
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff =
                          0.260(CFS)
Total initial stream area =
                              0.370(Ac.)
Pervious area fraction = 1.000
Process from Point/Station
                            101.000 to Point/Station
                                                      102.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                 22.800(Ft.)
                                   22.600(Ft.)
Downstream point/station elevation =
Pipe length = 58.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       0.260(CFS)
Nearest computed pipe diameter = 6.00(In.)
Calculated individual pipe flow =
                                  0.260(CFS)
Normal flow depth in pipe = 3.80(In.)
Flow top width inside pipe =
                            5.78(In.)
Critical Depth =
                 3.08(In.)
Pipe flow velocity =
                     1.98(Ft/s)
Travel time through pipe = 0.49 min.
Time of concentration (TC) = 15.25 min.
Process from Point/Station
                            102.000 to Point/Station
                                                       103.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation =
```

Upstream point elevation = 22.600(Ft.) Downstream point elevation = 17.900(Ft.) Channel length thru subarea = 553.000(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000

1

```
Estimated mean flow rate at midpoint of channel = 0.430(CFS)
Manning's 'N' = 0.045
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.430(CFS)
Depth of flow = 0.453(Ft.), Average velocity = 1.050(Ft/s)
Channel flow top width = 1.811(Ft.)
Flow Velocity = 1.05(Ft/s)
Travel time =
                8.78 min.
Time of concentration = 24.03 min.
Sub-Channel No. 1 Critical depth = 0.311(Ft.)
 ' ' Critical flow top width = 1.242(Ft.)
             .
      .
          ' Critical flow velocity= 2.231(Ft/s)
' Critical flow area = 0.193(Sq.Ft)
 .
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.606
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 76.40
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 0.849(In/Hr) for a 2.0 year storm
Subarea runoff =0.288(CFS) for0.560(Ac.)Total runoff =0.548(CFS) Total area =0.930(Ac.)
Depth of flow = 0.496(Ft.), Average velocity = 1.115(Ft/s)
Sub-Channel No. 1 Critical depth = 0.342(Ft.)
 ' ' Critical flow top width = 1.367(Ft.)
          ' Critical flow velocity= 2.345(Ft/s)
' Critical flow area = 0.234(Sq.Ft)
       .
  .
     .
Process from Point/Station 16.000 to Point/Station
                                                      103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.930(Ac.)
Runoff from this stream = 0.548(CFS)
Time of concentration = 24.03 min.
Rainfall intensity = 0.849(In/Hr)
Summary of stream data:
                    TC
Stream Flow rate
                                  Rainfall Intensity
No. (CFS)
                     (min)
                                        (In/Hr)
1 10.322 18.31
                                     0.970
```

```
0.548 24.03
                                    0.849
2
Largest stream flow has longer or shorter time of concentration
Qp = 10.322 + sum of
        Qa
                   Tb/Ta
         0.548 * 0.762 = 0.417
Qp =
        10.740
Total of 2 streams to confluence:
Flow rates before confluence point:
     10.322 0.548
Area of streams before confluence:
      12.570
                  0.930
Results of confluence:
Total flow rate = 10.740(CFS)
Time of concentration = 18.306 min.
Effective stream area after confluence = 13.500(Ac.)
Process from Point/Station
                            103.000 to Point/Station
                                                       103.000
**** SUBAREA FLOW ADDITION ****
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.671
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 1) = 57.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Time of concentration = 18.31 min.
Rainfall intensity = 0.970(In/Hr) for a 2.0 year storm
Subarea runoff = 0.247(CFS) for 0.380(Ac.)
Total runoff = <u>10.987(CFS)</u> Total area = 13.880(Ac.)
End of computations, total study area = 13.88 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.331
Area averaged RI index number = 76.7
```

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 12/07/21 File: PP1EUH242.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6443 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format \_\_\_\_\_ PILOT PERRIS EXIST 2-YR XO 12/7/21 -----Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) = 0.022 Sq. Mi. USER Entry of lag time in hours Lag time = 0.461 Hr. Lag time = 27.66 Min. 25% of lag time = 6.92 Min. 40% of lag time = 11.07 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 13.97 2.05 28.64 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1\*2] Area(Ac.)[1] 13.97 5.33 74.46 STORM EVENT (YEAR) = 2.00 Area Averaged 2-Year Rainfall = 2.050(In) Area Averaged 100-Year Rainfall = 5.330(In) Point rain (area averaged) = 2.050(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.050(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 13,970 89.00 0.000 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F (In/Hr) (Dec.) (In/Hr) 0.286 1.000 0.286 AMC2 AMC-1 (In/Hr) (Dec.%) 89.0 76.4 0.286 0.000 0.286 Sum(F) = 0.286Area averaged mean soil loss (F) (In/Hr) = 0.286Minimum soil loss rate ((In/Hr)) = 0.143

(for 24 hour storm duration) Soil low loss rate (decimal) = 0.900

-----

|                | UI    | nit Hydrograph D | ata                     |                        |
|----------------|-------|------------------|-------------------------|------------------------|
| Unit ti<br>(hr |       |                  | Distribution<br>Graph % | Unit Hydrogra<br>(CFS) |
| 1              | 0.083 | 18.074           | 1.584                   | 0.223                  |
| 2              | 0.167 | 36.148           | 4.339                   | 0.611                  |
| 3              | 0.250 | 54.222           | 7.448                   | 1.049                  |
| 4              | 0.333 | 72.296           | 10.625                  | 1.496                  |
| 5              | 0.417 | 90.370           | 12.568                  | 1.769                  |
| 6              | 0.500 | 108.443          | 12.628                  | 1.778                  |
| 7              | 0.583 | 126.517          | 9.581                   | 1.349                  |
| 8              | 0.667 | 144.591          | 6.576                   | 0.926                  |
| 9              | 0.750 | 162.665          | 4.850                   | 0.683                  |
| 10             | 0.833 | 180.739          | 3.515                   | 0.495                  |
| 11             | 0.917 | 198.813          | 2.773                   | 0.390                  |
| 12             | 1.000 | 216.887          | 2.454                   | 0.346                  |
| 13             | 1.083 | 234.961          | 2.115                   | 0.298                  |
| 14             | 1.167 | 253.035          | 1.841                   | 0.259                  |
| 15             | 1.250 | 271.109          | 1.666                   | 0.235                  |
| 16             | 1.333 | 289.182          | 1.501                   | 0.211                  |
| 17             | 1.417 | 307.256          | 1.291                   | 0.182                  |
| 18             | 1.500 | 325.330          | 1.123                   | 0.158                  |
| 19             | 1.583 | 343.404          | 1.084                   | 0.153                  |
| 20             | 1.667 | 361.478          | 1.026                   | 0.144                  |
| 21             | 1.750 | 379.552          | 0.815                   | 0.115                  |
| 22             | 1.833 | 397.626          | 0.795                   | 0.112                  |
| 23             | 1.917 | 415.700          | 0.713                   | 0.100                  |
| 24             | 2.000 | 433.774          | 0.580                   | 0.082                  |
| 25             | 2.083 | 451.848          | 0.578                   | 0.081                  |
| 26             | 2.167 | 469.921          | 0.557                   | 0.078                  |
| 27             | 2.250 | 487.995          | 0.542                   | 0.076                  |
| 28             | 2.333 | 506.069          | 0.534                   | 0.075                  |
| 29             | 2.417 | 524.143          | 0.430                   | 0.060                  |
| 30             | 2.500 | 542.217          | 0.398                   | 0.056                  |
| 31             | 2.583 | 560.291          | 0.386                   | 0.054                  |
| 32             | 2.667 | 578.365          | 0.332                   | 0.047                  |
| 33             | 2.750 | 596.439          | 0.325                   | 0.046                  |
| 34             | 2.833 | 614.513          | 0.302                   | 0.043                  |
| 35             | 2.917 | 632.587          | 0.254                   | 0.036                  |
| 36             | 3.000 | 650.660          | 0.253                   | 0.036                  |
| 37             | 3.083 | 668.734          | 0.214                   | 0.030                  |
| 38             | 3.167 | 686.808          | 0.181                   | 0.025                  |
| 39             | 3.250 | 704.882          | 0.181                   | 0.025                  |
| 40             | 3.333 | 722.956          | 0.181                   | 0.025                  |
| 41             | 3.417 | 741.030          | 0.181                   | 0.025                  |
| 42             | 3.500 | 759.104          | 0.181                   | 0.025                  |
| 43             | 3.583 | 777.178          | 0.181                   | 0.025                  |
| 43             | 3.667 | 795.252          | 0.181                   | 0.025                  |
| 44             | 3.750 | 813.326          | 0.138                   | 0.025                  |
| +5             | 0.10  | 010.020          | 0.100                   | 0.019                  |

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit | Time  | Pattern | Storm Rain | Loss rate |       | Effective |
|------|-------|---------|------------|-----------|-------|-----------|
|      | (Hr.) | Percent | (In/Hr)    | Max       | Low   | (In/Hr)   |
| 1    | 0.08  | 0.07    | 0.016      | ( 0.508)  | 0.015 | 0.002     |
| 2    | 0.17  | 0.07    | 0.016      | ( 0.506)  | 0.015 | 0.002     |
| 3    | 0.25  | 0.07    | 0.016      | ( 0.504)  | 0.015 | 0.002     |
| 4    | 0.33  | 0.10    | 0.025      | ( 0.502)  | 0.022 | 0.002     |
| 5    | 0.42  | 0.10    | 0.025      | ( 0.500)  | 0.022 | 0.002     |
| 6    | 0.50  | 0.10    | 0.025      | ( 0.498)  | 0.022 | 0.002     |
| 7    | 0.58  | 0.10    | 0.025      | ( 0.496)  | 0.022 | 0.002     |

| 8  | 0.67 | 0.10 | 0.025 | ( 0.494) | 0.022 | 0.002 |
|----|------|------|-------|----------|-------|-------|
| 9  | 0.75 | 0.10 | 0.025 | ( 0.492) | 0.022 | 0.002 |
|    |      |      |       | • •      |       |       |
| 10 | 0.83 | 0.13 | 0.033 | ( 0.490) | 0.030 | 0.003 |
| 11 | 0.92 | 0.13 | 0.033 | ( 0.488) | 0.030 | 0.003 |
| 12 | 1.00 | 0.13 | 0.033 | ( 0.486) | 0.030 | 0.003 |
| 13 | 1.08 | 0.10 | 0.025 |          | 0.022 | 0.002 |
|    |      |      |       |          |       |       |
| 14 | 1.17 | 0.10 | 0.025 | ( 0.483) | 0.022 | 0.002 |
| 15 | 1.25 | 0.10 | 0.025 | ( 0.481) | 0.022 | 0.002 |
| 16 | 1.33 | 0.10 | 0.025 | ( 0.479) | 0.022 | 0.002 |
|    |      |      |       | • • •    |       |       |
| 17 | 1.42 | 0.10 | 0.025 | ( 0.477) | 0.022 | 0.002 |
| 18 | 1.50 | 0.10 | 0.025 | ( 0.475) | 0.022 | 0.002 |
| 19 | 1.58 | 0.10 | 0.025 | ( 0.473) | 0.022 | 0.002 |
| 20 | 1.67 | 0.10 | 0.025 | ( 0.471) | 0.022 | 0.002 |
|    |      |      |       |          |       |       |
| 21 | 1.75 | 0.10 | 0.025 | ( 0.469) | 0.022 | 0.002 |
| 22 | 1.83 | 0.13 | 0.033 | ( 0.467) | 0.030 | 0.003 |
| 23 | 1.92 | 0.13 | 0.033 | ( 0.466) | 0.030 | 0.003 |
| 24 | 2.00 | 0.13 | 0.033 | ( 0.464) | 0.030 | 0.003 |
| 25 |      |      |       |          |       |       |
|    | 2.08 | 0.13 | 0.033 | ( 0.462) | 0.030 | 0.003 |
| 26 | 2.17 | 0.13 | 0.033 | ( 0.460) | 0.030 | 0.003 |
| 27 | 2.25 | 0.13 | 0.033 | ( 0.458) | 0.030 | 0.003 |
| 28 | 2.33 | 0.13 | 0.033 | ( 0.456) | 0.030 | 0.003 |
| 29 | 2.42 | 0.13 | 0.033 | ( 0.454) | 0.030 | 0.003 |
| 30 | 2.50 | 0.13 | 0.033 | ( 0.452) | 0.030 | 0.003 |
|    |      |      |       |          |       |       |
| 31 | 2.58 | 0.17 | 0.041 | ( 0.451) | 0.037 | 0.004 |
| 32 | 2.67 | 0.17 | 0.041 | ( 0.449) | 0.037 | 0.004 |
| 33 | 2.75 | 0.17 | 0.041 | ( 0.447) | 0.037 | 0.004 |
| 34 | 2.83 | 0.17 | 0.041 | ( 0.445) | 0.037 | 0.004 |
| 35 | 2.92 | 0.17 | 0.041 | ( 0.443) | 0.037 | 0.004 |
|    |      |      |       |          |       |       |
| 36 | 3.00 | 0.17 | 0.041 | ( 0.441) | 0.037 | 0.004 |
| 37 | 3.08 | 0.17 | 0.041 | ( 0.440) | 0.037 | 0.004 |
| 38 | 3.17 | 0.17 | 0.041 | ( 0.438) | 0.037 | 0.004 |
| 39 | 3.25 | 0.17 | 0.041 | ( 0.436) | 0.037 | 0.004 |
| 40 | 3.33 | 0.17 | 0.041 | ( 0.434) | 0.037 | 0.004 |
| 41 | 3.42 | 0.17 | 0.041 |          |       |       |
|    |      |      |       | • •      | 0.037 | 0.004 |
| 42 | 3.50 | 0.17 | 0.041 | ( 0.430) | 0.037 | 0.004 |
| 43 | 3.58 | 0.17 | 0.041 | ( 0.429) | 0.037 | 0.004 |
| 44 | 3.67 | 0.17 | 0.041 | ( 0.427) | 0.037 | 0.004 |
| 45 | 3.75 | 0.17 | 0.041 | ( 0.425) | 0.037 | 0.004 |
|    |      |      |       |          |       |       |
| 46 | 3.83 | 0.20 | 0.049 | ( 0.423) | 0.044 | 0.005 |
| 47 | 3.92 | 0.20 | 0.049 | ( 0.422) | 0.044 | 0.005 |
| 48 | 4.00 | 0.20 | 0.049 | ( 0.420) | 0.044 | 0.005 |
| 49 | 4.08 | 0.20 | 0.049 | ( 0.418) | 0.044 | 0.005 |
| 50 | 4.17 | 0.20 | 0.049 | ( 0.416) | 0.044 | 0.005 |
|    |      |      |       | • •      |       |       |
| 51 | 4.25 | 0.20 | 0.049 | ( 0.414) | 0.044 | 0.005 |
| 52 | 4.33 | 0.23 | 0.057 | ( 0.413) | 0.052 | 0.006 |
| 53 | 4.42 | 0.23 | 0.057 | ( 0.411) | 0.052 | 0.006 |
| 54 | 4.50 | 0.23 | 0.057 | ( 0.409) | 0.052 | 0.006 |
| 55 | 4.58 | 0.23 | 0.057 | ( 0.407) | 0.052 | 0.006 |
|    |      |      |       | 2        |       |       |
| 56 | 4.67 | 0.23 | 0.057 | ( 0.406) | 0.052 | 0.006 |
| 57 | 4.75 | 0.23 | 0.057 | ( 0.404) | 0.052 | 0.006 |
| 58 | 4.83 | 0.27 | 0.066 | ( 0.402) | 0.059 | 0.007 |
| 59 | 4.92 | 0.27 | 0.066 | ( 0.400) | 0.059 | 0.007 |
| 60 | 5.00 | 0.27 | 0.066 | ( 0.399) | 0.059 | 0.007 |
| 61 | 5.08 | 0.20 | 0.049 | ( 0.397) | 0.044 | 0.005 |
|    |      |      |       |          |       |       |
| 62 | 5.17 | 0.20 | 0.049 | ( 0.395) | 0.044 | 0.005 |
| 63 | 5.25 | 0.20 | 0.049 | ( 0.393) | 0.044 | 0.005 |
| 64 | 5.33 | 0.23 | 0.057 | ( 0.392) | 0.052 | 0.006 |
| 65 | 5.42 | 0.23 | 0.057 | ( 0.390) | 0.052 | 0.006 |
| 66 | 5.50 | 0.23 |       | 2        |       | 0.006 |
|    |      |      | 0.057 |          | 0.052 |       |
| 67 | 5.58 | 0.27 | 0.066 | ( 0.387) | 0.059 | 0.007 |
| 68 | 5.67 | 0.27 | 0.066 | ( 0.385) | 0.059 | 0.007 |
| 69 | 5.75 | 0.27 | 0.066 | ( 0.383) | 0.059 | 0.007 |
| 70 | 5.83 | 0.27 | 0.066 | ( 0.382) | 0.059 | 0.007 |
| 71 | 5.92 | 0.27 | 0.066 | ( 0.380) | 0.059 | 0.007 |
|    |      |      |       |          |       |       |
| 72 | 6.00 | 0.27 | 0.066 | ( 0.378) | 0.059 | 0.007 |
| 73 | 6.08 | 0.30 | 0.074 | ( 0.376) | 0.066 | 0.007 |
| 74 | 6.17 | 0.30 | 0.074 | ( 0.375) | 0.066 | 0.007 |
| 75 | 6.25 | 0.30 | 0.074 | ( 0.373) | 0.066 | 0.007 |
| 76 | 6.33 | 0.30 | 0.074 | ( 0.371) | 0.066 | 0.007 |
| 77 | 6.42 | 0.30 | 0.074 | ( 0.370) | 0.066 | 0.007 |
|    |      |      |       |          |       |       |
| 78 | 6.50 | 0.30 | 0.074 | ( 0.368) | 0.066 | 0.007 |
| 79 | 6.58 | 0.33 | 0.082 | ( 0.366) | 0.074 | 0.008 |
| 80 | 6.67 | 0.33 | 0.082 | ( 0.365) | 0.074 | 0.008 |
|    |      |      |       |          |       |       |

| 81  | 6.75  | 0.33 | 0.082 | ( 0.363) | 0.074 | 0.008 |
|-----|-------|------|-------|----------|-------|-------|
|     |       |      |       | • • •    |       |       |
| 82  | 6.83  | 0.33 | 0.082 | ( 0.362) | 0.074 | 0.008 |
| 83  | 6.92  | 0.33 | 0.082 | ( 0.360) | 0.074 | 0.008 |
| 84  | 7.00  | 0.33 | 0.082 | ( 0.358) | 0.074 | 0.008 |
|     |       |      |       |          |       |       |
| 85  | 7.08  | 0.33 | 0.082 | ( 0.357) | 0.074 | 0.008 |
| 86  | 7.17  | 0.33 | 0.082 | ( 0.355) | 0.074 | 0.008 |
| 87  | 7.25  | 0.33 | 0.082 | ( 0.353) | 0.074 | 0.008 |
|     |       |      |       | · · ·    |       |       |
| 88  | 7.33  | 0.37 | 0.090 | ( 0.352) | 0.081 | 0.009 |
| 89  | 7.42  | 0.37 | 0.090 | ( 0.350) | 0.081 | 0.009 |
| 90  | 7.50  | 0.37 | 0.090 | ( 0.349) | 0.081 | 0.009 |
|     |       |      |       |          |       |       |
| 91  | 7.58  | 0.40 | 0.098 | ( 0.347) | 0.089 | 0.010 |
| 92  | 7.67  | 0.40 | 0.098 | ( 0.345) | 0.089 | 0.010 |
| 93  | 7.75  | 0.40 | 0.098 | ( 0.344) | 0.089 | 0.010 |
| 94  | 7.83  | 0.43 | 0.107 |          |       | 0.011 |
|     |       |      |       | . ,      | 0.096 |       |
| 95  | 7.92  | 0.43 | 0.107 | ( 0.341) | 0.096 | 0.011 |
| 96  | 8.00  | 0.43 | 0.107 | ( 0.339) | 0.096 | 0.011 |
| 97  | 8.08  | 0.50 | 0.123 | ( 0.337) | 0.111 | 0.012 |
|     |       |      |       |          |       |       |
| 98  | 8.17  | 0.50 | 0.123 | ( 0.336) | 0.111 | 0.012 |
| 99  | 8.25  | 0.50 | 0.123 | ( 0.334) | 0.111 | 0.012 |
| 100 | 8.33  | 0.50 | 0.123 | ( 0.333) | 0.111 | 0.012 |
|     |       |      |       |          |       |       |
| 101 | 8.42  | 0.50 | 0.123 | ( 0.331) | 0.111 | 0.012 |
| 102 | 8.50  | 0.50 | 0.123 | ( 0.330) | 0.111 | 0.012 |
| 103 | 8.58  | 0.53 | 0.131 | ( 0.328) | 0.118 | 0.013 |
| 104 | 8.67  | 0.53 | 0.131 | . ,      | 0.118 | 0.013 |
|     |       |      |       |          |       |       |
| 105 | 8.75  | 0.53 | 0.131 | ( 0.325) | 0.118 | 0.013 |
| 106 | 8.83  | 0.57 | 0.139 | ( 0.323) | 0.125 | 0.014 |
| 107 | 8.92  | 0.57 | 0.139 | ( 0.322) | 0.125 | 0.014 |
|     |       |      |       | . ,      |       |       |
| 108 | 9.00  | 0.57 | 0.139 | ( 0.320) | 0.125 | 0.014 |
| 109 | 9.08  | 0.63 | 0.156 | ( 0.319) | 0.140 | 0.016 |
| 110 | 9.17  | 0.63 | 0.156 | ( 0.317) | 0.140 | 0.016 |
|     |       |      |       |          |       |       |
| 111 | 9.25  | 0.63 | 0.156 | ( 0.316) | 0.140 | 0.016 |
| 112 | 9.33  | 0.67 | 0.164 | ( 0.314) | 0.148 | 0.016 |
| 113 | 9.42  | 0.67 | 0.164 | ( 0.313) | 0.148 | 0.016 |
|     |       |      |       |          |       |       |
| 114 | 9.50  | 0.67 | 0.164 | ( 0.311) | 0.148 | 0.016 |
| 115 | 9.58  | 0.70 | 0.172 | ( 0.310) | 0.155 | 0.017 |
| 116 | 9.67  | 0.70 | 0.172 | ( 0.308) | 0.155 | 0.017 |
| 117 | 9.75  | 0.70 | 0.172 | • • •    | 0.155 | 0.017 |
|     |       |      |       | . ,      |       |       |
| 118 | 9.83  | 0.73 | 0.180 | ( 0.305) | 0.162 | 0.018 |
| 119 | 9.92  | 0.73 | 0.180 | ( 0.304) | 0.162 | 0.018 |
| 120 | 10.00 | 0.73 | 0.180 | ( 0.303) | 0.162 | 0.018 |
|     |       |      |       |          |       |       |
| 121 | 10.08 | 0.50 | 0.123 | ( 0.301) | 0.111 | 0.012 |
| 122 | 10.17 | 0.50 | 0.123 | ( 0.300) | 0.111 | 0.012 |
| 123 | 10.25 | 0.50 | 0.123 | ( 0.298) | 0.111 | 0.012 |
|     |       |      |       | · · ·    |       |       |
| 124 | 10.33 | 0.50 | 0.123 | ( 0.297) | 0.111 | 0.012 |
| 125 | 10.42 | 0.50 | 0.123 | ( 0.295) | 0.111 | 0.012 |
| 126 | 10.50 | 0.50 | 0.123 | ( 0.294) | 0.111 | 0.012 |
| 127 | 10.58 | 0.67 | 0.164 | ( 0.292) | 0.148 | 0.016 |
|     |       |      |       |          |       |       |
| 128 | 10.67 | 0.67 | 0.164 | ( 0.291) | 0.148 | 0.016 |
| 129 | 10.75 | 0.67 | 0.164 | ( 0.290) | 0.148 | 0.016 |
| 130 | 10.83 | 0.67 | 0.164 | ( 0.288) | 0.148 | 0.016 |
| 131 |       | 0.67 | 0.164 | . ,      |       | 0.016 |
|     | 10.92 |      |       |          | 0.148 |       |
| 132 | 11.00 | 0.67 | 0.164 | ( 0.285) | 0.148 | 0.016 |
| 133 | 11.08 | 0.63 | 0.156 | ( 0.284) | 0.140 | 0.016 |
| 134 | 11.17 | 0.63 | 0.156 | ( 0.282) | 0.140 | 0.016 |
|     |       |      |       |          |       |       |
| 135 | 11.25 | 0.63 | 0.156 | ( 0.281) | 0.140 | 0.016 |
| 136 | 11.33 | 0.63 | 0.156 | ( 0.280) | 0.140 | 0.016 |
| 137 | 11.42 | 0.63 | 0.156 | ( 0.278) | 0.140 | 0.016 |
| 138 | 11.50 |      |       | · · ·    | 0.140 |       |
|     |       | 0.63 | 0.156 | 2 2      |       | 0.016 |
| 139 | 11.58 | 0.57 | 0.139 | ( 0.276) | 0.125 | 0.014 |
| 140 | 11.67 | 0.57 | 0.139 | ( 0.274) | 0.125 | 0.014 |
| 141 | 11.75 | 0.57 | 0.139 | ( 0.273) | 0.125 | 0.014 |
|     |       |      |       | •        |       |       |
| 142 | 11.83 | 0.60 | 0.148 | ( 0.271) | 0.133 | 0.015 |
| 143 | 11.92 | 0.60 | 0.148 | ( 0.270) | 0.133 | 0.015 |
| 144 | 12.00 | 0.60 | 0.148 | ( 0.269) | 0.133 | 0.015 |
|     |       |      |       |          |       |       |
| 145 | 12.08 | 0.83 | 0.205 | ( 0.267) | 0.184 | 0.020 |
| 146 | 12.17 | 0.83 | 0.205 | ( 0.266) | 0.184 | 0.020 |
| 147 | 12.25 | 0.83 | 0.205 | ( 0.265) | 0.184 | 0.020 |
| 148 | 12.33 | 0.87 | 0.213 |          | 0.192 | 0.021 |
|     |       |      |       |          |       |       |
| 149 | 12.42 | 0.87 | 0.213 | ( 0.262) | 0.192 | 0.021 |
| 150 | 12.50 | 0.87 | 0.213 | ( 0.261) | 0.192 | 0.021 |
| 151 | 12.58 | 0.93 | 0.230 | ( 0.259) | 0.207 | 0.023 |
|     |       |      |       |          |       |       |
| 152 | 12.67 | 0.93 | 0.230 | ( 0.258) | 0.207 | 0.023 |
| 153 | 12.75 | 0.93 | 0.230 | ( 0.257) | 0.207 | 0.023 |
|     |       |      |       |          |       |       |

| 154 | 12.83 | 0.97 | 0.238 | ( | 0.256) |    | 0.214  | 0.024 |  |
|-----|-------|------|-------|---|--------|----|--------|-------|--|
|     |       |      |       |   |        |    |        |       |  |
| 155 | 12.92 | 0.97 | 0.238 | ( | 0.254) |    | 0.214  | 0.024 |  |
| 156 | 13.00 | 0.97 | 0.238 | ( | 0.253) |    | 0.214  | 0.024 |  |
| 157 | 13.08 | 1.13 | 0.279 | Ì | 0.252) |    | 0.251  | 0.028 |  |
|     |       |      |       | ( | •      | ,  |        |       |  |
| 158 | 13.17 | 1.13 | 0.279 |   | 0.250  | (  | 0.251) | 0.028 |  |
| 159 | 13.25 | 1.13 | 0.279 |   | 0.249  | (  | 0.251) | 0.030 |  |
| 160 | 13.33 | 1.13 | 0.279 |   | 0.248  |    | 0.251) | 0.031 |  |
|     |       |      |       |   |        | (  |        |       |  |
| 161 | 13.42 | 1.13 | 0.279 |   | 0.247  | (  | 0.251) | 0.032 |  |
| 162 | 13.50 | 1.13 | 0.279 |   | 0.245  | (  | 0.251) | 0.033 |  |
|     |       |      |       |   |        | `` |        |       |  |
| 163 | 13.58 | 0.77 | 0.189 | ( | 0.244) |    | 0.170  | 0.019 |  |
| 164 | 13.67 | 0.77 | 0.189 | ( | 0.243) |    | 0.170  | 0.019 |  |
| 165 | 13.75 | 0.77 | 0.189 | Ć | 0.242) |    | 0.170  | 0.019 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 166 | 13.83 | 0.77 | 0.189 | ( | 0.240) |    | 0.170  | 0.019 |  |
| 167 | 13.92 | 0.77 | 0.189 | ( | 0.239) |    | 0.170  | 0.019 |  |
| 168 | 14.00 | 0.77 | 0.189 |   | 0.238) |    | 0.170  | 0.019 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 169 | 14.08 | 0.90 | 0.221 | ( | 0.237) |    | 0.199  | 0.022 |  |
| 170 | 14.17 | 0.90 | 0.221 | ( | 0.236) |    | 0.199  | 0.022 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 171 | 14.25 | 0.90 | 0.221 | ( | 0.234) |    | 0.199  | 0.022 |  |
| 172 | 14.33 | 0.87 | 0.213 | ( | 0.233) |    | 0.192  | 0.021 |  |
| 173 | 14.42 | 0.87 | 0.213 | ( | 0.232) |    | 0.192  | 0.021 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 174 | 14.50 | 0.87 | 0.213 | ( | 0.231) |    | 0.192  | 0.021 |  |
| 175 | 14.58 | 0.87 | 0.213 | ( | 0.230) |    | 0.192  | 0.021 |  |
| 176 | 14.67 | 0.87 | 0.213 | ( | 0.228) |    | 0.192  | 0.021 |  |
|     |       |      |       |   |        |    |        |       |  |
| 177 | 14.75 | 0.87 | 0.213 | ( | 0.227) |    | 0.192  | 0.021 |  |
| 178 | 14.83 | 0.83 | 0.205 | ( | 0.226) |    | 0.184  | 0.020 |  |
| 179 | 14.92 | 0.83 | 0.205 | ì | 0.225) |    | 0.184  | 0.020 |  |
|     |       |      |       | ý |        |    |        |       |  |
| 180 | 15.00 | 0.83 | 0.205 | ( | 0.224) |    | 0.184  | 0.020 |  |
| 181 | 15.08 | 0.80 | 0.197 | ( | 0.223) |    | 0.177  | 0.020 |  |
| 182 | 15.17 | 0.80 | 0.197 |   | 0.221) |    | 0.177  | 0.020 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 183 | 15.25 | 0.80 | 0.197 | ( | 0.220) |    | 0.177  | 0.020 |  |
| 184 | 15.33 | 0.77 | 0.189 | ( | 0.219) |    | 0.170  | 0.019 |  |
|     |       |      |       |   |        |    |        |       |  |
| 185 | 15.42 | 0.77 | 0.189 | ( | 0.218) |    | 0.170  | 0.019 |  |
| 186 | 15.50 | 0.77 | 0.189 | ( | 0.217) |    | 0.170  | 0.019 |  |
| 187 | 15.58 | 0.63 | 0.156 | Ć | 0.216) |    | 0.140  | 0.016 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 188 | 15.67 | 0.63 | 0.156 | ( | 0.215) |    | 0.140  | 0.016 |  |
| 189 | 15.75 | 0.63 | 0.156 | ( | 0.214) |    | 0.140  | 0.016 |  |
| 190 | 15.83 | 0.63 | 0.156 | ì | 0.213) |    | 0.140  | 0.016 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 191 | 15.92 | 0.63 | 0.156 | ( | 0.211) |    | 0.140  | 0.016 |  |
| 192 | 16.00 | 0.63 | 0.156 | ( | 0.210) |    | 0.140  | 0.016 |  |
| 193 |       |      |       |   |        |    |        |       |  |
|     | 16.08 | 0.13 | 0.033 | ( | 0.209) |    | 0.030  | 0.003 |  |
| 194 | 16.17 | 0.13 | 0.033 | ( | 0.208) |    | 0.030  | 0.003 |  |
| 195 | 16.25 | 0.13 | 0.033 | Ć | 0.207) |    | 0.030  | 0.003 |  |
|     |       |      |       |   | ,      |    |        |       |  |
| 196 | 16.33 | 0.13 | 0.033 | ( | 0.206) |    | 0.030  | 0.003 |  |
| 197 | 16.42 | 0.13 | 0.033 | ( | 0.205) |    | 0.030  | 0.003 |  |
| 198 | 16.50 | 0.13 | 0.033 | Ì | 0.204) |    | 0.030  | 0.003 |  |
|     |       |      |       |   |        |    |        |       |  |
| 199 | 16.58 | 0.10 | 0.025 | ( | 0.203) |    | 0.022  | 0.002 |  |
| 200 | 16.67 | 0.10 | 0.025 | ( | 0.202) |    | 0.022  | 0.002 |  |
| 201 | 16.75 | 0.10 | 0.025 | ; | 0.201) |    | 0.022  | 0.002 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 202 | 16.83 | 0.10 | 0.025 | ( | 0.200) |    | 0.022  | 0.002 |  |
| 203 | 16.92 | 0.10 | 0.025 | ( | 0.199) |    | 0.022  | 0.002 |  |
| 204 | 17.00 | 0.10 | 0.025 |   | 0.198) |    | 0.022  | 0.002 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 205 | 17.08 | 0.17 | 0.041 | ( | 0.197) |    | 0.037  | 0.004 |  |
| 206 | 17.17 | 0.17 | 0.041 | ( | 0.196) |    | 0.037  | 0.004 |  |
| 207 | 17.25 | 0.17 | 0.041 | ì | 0.195) |    | 0.037  | 0.004 |  |
|     |       |      |       |   |        |    |        |       |  |
| 208 | 17.33 | 0.17 | 0.041 | ( | 0.194) |    | 0.037  | 0.004 |  |
| 209 | 17.42 | 0.17 | 0.041 | ( | 0.193) |    | 0.037  | 0.004 |  |
| 210 | 17.50 | 0.17 | 0.041 |   | 0.192) |    | 0.037  | 0.004 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 211 | 17.58 | 0.17 | 0.041 | ( | 0.191) |    | 0.037  | 0.004 |  |
| 212 | 17.67 | 0.17 | 0.041 | ( | 0.190) |    | 0.037  | 0.004 |  |
| 213 | 17.75 | 0.17 | 0.041 | ì | 0.189) |    | 0.037  | 0.004 |  |
|     |       |      |       |   |        |    |        |       |  |
| 214 | 17.83 | 0.13 | 0.033 | ( | 0.188) |    | 0.030  | 0.003 |  |
| 215 | 17.92 | 0.13 | 0.033 | ( | 0.187) |    | 0.030  | 0.003 |  |
| 216 | 18.00 | 0.13 | 0.033 |   | 0.186) |    | 0.030  | 0.003 |  |
|     |       |      |       | ( |        |    |        |       |  |
| 217 | 18.08 | 0.13 | 0.033 | ( | 0.185) |    | 0.030  | 0.003 |  |
| 218 | 18.17 | 0.13 | 0.033 | ( | 0.185) |    | 0.030  | 0.003 |  |
|     |       |      |       | , |        |    |        |       |  |
| 219 | 18.25 | 0.13 | 0.033 | ( | 0.184) |    | 0.030  | 0.003 |  |
| 220 | 18.33 | 0.13 | 0.033 | ( | 0.183) |    | 0.030  | 0.003 |  |
| 221 | 18.42 | 0.13 | 0.033 | Ì | 0.182) |    | 0.030  | 0.003 |  |
|     |       |      |       |   |        |    |        |       |  |
| 222 | 18.50 | 0.13 | 0.033 | ( | 0.181) |    | 0.030  | 0.003 |  |
| 223 | 18.58 | 0.10 | 0.025 | ( | 0.180) |    | 0.022  | 0.002 |  |
| 224 | 18.67 | 0.10 | 0.025 | ì | 0.179) |    | 0.022  | 0.002 |  |
|     |       |      |       |   |        |    |        |       |  |
| 225 | 18.75 | 0.10 | 0.025 | ( | 0.178) |    | 0.022  | 0.002 |  |
| 226 | 18.83 | 0.07 | 0.016 | ( | 0.177) |    | 0.015  | 0.002 |  |
|     |       |      |       | ` | ,      |    |        |       |  |

| 227                                                                                                                               |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   | 18.92                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 228                                                                                                                               | 19.00                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 176)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 229                                                                                                                               | 19.08                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 230                                                                                                                               | 19.17                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 231                                                                                                                               | 19.25                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 232                                                                                                                               | 19.33                                                                                                                                                                                                                                          | 0.13                                                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 173)                                                                                                                                                                                                 | 0.030                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                |
| 233                                                                                                                               | 19.42                                                                                                                                                                                                                                          | 0.13                                                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172)                                                                                                                                                                                                 | 0.030                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 234                                                                                                                               | 19.50                                                                                                                                                                                                                                          | 0.13                                                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 171)                                                                                                                                                                                                 | 0.030                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                |
| 235                                                                                                                               | 19.58                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 236                                                                                                                               | 19.67                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 169)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 237                                                                                                                               | 19.75                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 169)́                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 238                                                                                                                               | 19.83                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 168)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 239                                                                                                                               | 19.92                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 240                                                                                                                               | 20.00                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 241                                                                                                                               | 20.08                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 242                                                                                                                               | 20.17                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 165)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 243                                                                                                                               | 20.25                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 244                                                                                                                               | 20.33                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 163)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 245                                                                                                                               | 20.42                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 163)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 246                                                                                                                               | 20.50                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 162)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 247                                                                                                                               | 20.58                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 161)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 248                                                                                                                               | 20.67                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 249                                                                                                                               | 20.75                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 250                                                                                                                               | 20.83                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 159)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 251                                                                                                                               | 20.92                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 252                                                                                                                               | 21.00                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 253                                                                                                                               | 21.08                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 254                                                                                                                               | 21.17                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157)́                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 255                                                                                                                               | 21.25                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 156)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 256                                                                                                                               | 21.33                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 156)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 257                                                                                                                               | 21.42                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 258                                                                                                                               | 21.50                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 259                                                                                                                               | 21.58                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154)́                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 260                                                                                                                               | 21.67                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 153)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 261                                                                                                                               | 21.75                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 262                                                                                                                               | 21.83                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 263                                                                                                                               | 21.92                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 264                                                                                                                               | 22.00                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151)                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
| 265                                                                                                                               | 22.08                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 266                                                                                                                               | 22.17                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 267                                                                                                                               | 22.25                                                                                                                                                                                                                                          | 0.10                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150)                                                                                                                                                                                                 | 0.022                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 268                                                                                                                               | 22.33                                                                                                                                                                                                                                          | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 149)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                | 0.07                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
|                                                                                                                                   |                                                                                                                                                                                                                                                | 0 07                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 269                                                                                                                               | 22.42                                                                                                                                                                                                                                          | 0.07                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1481                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |
|                                                                                                                                   | 22.42<br>22.50                                                                                                                                                                                                                                 | 0.07<br>0.07                                                 | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 269                                                                                                                               |                                                                                                                                                                                                                                                |                                                              | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148)                                                                                                                                                                                                 |                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                |
| 269<br>270<br>271                                                                                                                 | 22.50<br>22.58                                                                                                                                                                                                                                 | 0.07<br>0.07                                                 | 0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148)                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                |
| 269<br>270<br>271<br>272                                                                                                          | 22.50<br>22.58<br>22.67                                                                                                                                                                                                                        | 0.07<br>0.07<br>0.07                                         | 0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.<br>(0.<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148)<br>148)                                                                                                                                                                                         | 0.015<br>0.015                                                                                                                                                                                                                | 0.002<br>0.002                                                                                                                                                                                                       |
| 269<br>270<br>271<br>272<br>273                                                                                                   | 22.50<br>22.58<br>22.67<br>22.75                                                                                                                                                                                                               | 0.07<br>0.07<br>0.07<br>0.07                                 | 0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)                                                                                                                                                                                 | 0.015<br>0.015<br>0.015                                                                                                                                                                                                       | 0.002<br>0.002<br>0.002                                                                                                                                                                                              |
| 269<br>270<br>271<br>272<br>273<br>274                                                                                            | 22.50<br>22.58<br>22.67<br>22.75<br>22.83                                                                                                                                                                                                      | 0.07<br>0.07<br>0.07<br>0.07<br>0.07                         | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)                                                                                                                                                                         | 0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                                                              | 0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                     |
| 269<br>270<br>271<br>272<br>273                                                                                                   | 22.50<br>22.58<br>22.67<br>22.75                                                                                                                                                                                                               | 0.07<br>0.07<br>0.07<br>0.07                                 | 0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)                                                                                                                                                                                 | 0.015<br>0.015<br>0.015                                                                                                                                                                                                       | 0.002<br>0.002<br>0.002                                                                                                                                                                                              |
| 269<br>270<br>271<br>272<br>273<br>274                                                                                            | 22.50<br>22.58<br>22.67<br>22.75<br>22.83                                                                                                                                                                                                      | 0.07<br>0.07<br>0.07<br>0.07<br>0.07                         | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)                                                                                                                                                                         | 0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                                                              | 0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                     |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276                                                                              | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00                                                                                                                                                                                    | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07         | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)                                                                                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                                            | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277                                                                       | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08                                                                                                                                                                           | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)                                                                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                                   | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                 |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278                                                                | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17                                                                                                                                                                  | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)                                                                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                          | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                        |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279                                                         | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25                                                                                                                                                         | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)                                                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                               |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280                                                  | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25                                                                                                                                                         | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)                                                                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                          | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                        |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279                                                         | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25                                                                                                                                                         | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)                                                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                                 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                               |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281                                           | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42                                                                                                                                       | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)                                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                                        | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                    |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282                                    | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50                                                                                                                              | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                                      | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                  |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283                             | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58                                                                                                                     | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                             | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                         |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284                      | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67                                                                                                            | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                        | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                    | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                       |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285               | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75                                                                                                   | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                        | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)                                                                                                 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                             | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                         |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284                      | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75                                                                                                   | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>( | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)                                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                                                    | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                       |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286        | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83                                                                                          | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>( | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                         | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                            |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92                                                               | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0, 0, 0)<br>(0, 0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0,   | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>144)<br>143)                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                   |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286        | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83                                                                                          | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>( | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)                                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                                         | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                            |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00                                                                        | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>(0, 0)<br>( | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>144)<br>143)                                                         | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                     | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002 |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =                                                               | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>Rate Not Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144                                                                                  | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                     | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                   |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =                                                               | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144                                                                                  | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                     | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002 |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood                                                      | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2                                                  | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time                                              | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2                                                  | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total                                     | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2                                                  | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total                            | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.0000000000                                                                                    | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2                                          | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total                            | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.0000000000                                                                                             | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2                                          | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total<br>Total                   | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2<br>(t.)] =                                       | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                                                       | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total<br>Total<br>Flood          | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006<br>0.006 | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2<br>t.)] =<br>Feet                                | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total<br>Total<br>Flood          | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.025<br>0.0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>143)<br>143)<br>0.2<br>t.)] =<br>Feet                                | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total<br>Total<br>Flood<br>Total | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>143)<br>143)<br>143)<br>0.2<br>t.)] =<br>Feet<br>Feet<br>Sector Feet | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                            | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |
| 269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287 | 22.50<br>22.58<br>22.67<br>22.75<br>22.83<br>22.92<br>23.00<br>23.08<br>23.17<br>23.25<br>23.33<br>23.42<br>23.50<br>23.58<br>23.67<br>23.75<br>23.83<br>23.92<br>24.00<br>Sum =<br>Flood<br>time<br>Total<br>Total<br>Total<br>Flood<br>Total | 0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.016<br>0.025<br>0.0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.<br>( 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148)<br>148)<br>147)<br>147)<br>146)<br>146)<br>146)<br>145)<br>145)<br>145)<br>145)<br>145)<br>145)<br>144)<br>144)<br>144)<br>143)<br>143)<br>143)<br>0.2<br>t.)] =<br>Feet<br>Feet<br>Sector Feet | 0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015                            | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002          |

|                                          | Ru               | unof         | HOUR<br>f H | ydrog | graph |     |      |  |
|------------------------------------------|------------------|--------------|-------------|-------|-------|-----|------|--|
| Hydrograph in 5 Minute intervals ((CFS)) |                  |              |             |       |       |     |      |  |
| <br>ime(h+m)                             | Volume Ac.Ft     | Q(CFS)       | ) 0         | 2.5   | 5.0   | 7.5 | 10.0 |  |
| 0+ 5                                     | 0.0000           | 0.00         | 0           | ļ     | ļ     | ļ   |      |  |
| 0+10                                     | 0.0000           |              |             |       |       |     |      |  |
| 0+15                                     |                  | 0.00         | -           |       |       |     |      |  |
| 0+20<br>0+25                             |                  | 0.01<br>0.01 | -           |       |       |     |      |  |
| 0+30                                     | 0.0002           | 0.01         | -           | i     | ł     |     | ł    |  |
| 0+35                                     |                  | 0.02         | -           | i     | i     | i   | i    |  |
| 0+40                                     | 0.0005           | 0.02         | -           | i     | i     |     | i    |  |
| 0+45                                     | 0.0006           | 0.02         | -           | İ     | i     | i   | i    |  |
| 0+50                                     | 0.0008           | 0.02         | -           |       |       |     | Ì    |  |
| 0+55                                     | 0.0010           | 0.03         | -           |       | ļ     |     |      |  |
| 1+ 0                                     | 0.0012           | 0.03         | -           |       |       |     | ļ    |  |
| 1+ 5                                     | 0.0014           | 0.03         | •           |       | -     |     |      |  |
| 1+10                                     | 0.0016           | 0.03         | -           |       |       |     |      |  |
| 1+15<br>1+20                             | 0.0018<br>0.0020 | 0.03<br>0.03 | Q<br>Q      |       |       |     | 1    |  |
| 1+20                                     | 0.0023           | 0.03         | -           |       |       |     |      |  |
| 1+30                                     | 0.0025           | 0.03         | -           | i     |       | i   | l    |  |
| 1+35                                     | 0.0027           | 0.03         | -           | i     | i     | i   | i    |  |
| 1+40                                     | 0.0029           | 0.03         | -           | i     | i     | İ   | i    |  |
| 1+45                                     | 0.0032           | 0.03         | Q           |       |       |     |      |  |
| 1+50                                     | 0.0034           | 0.03         | -           |       |       | ļ   |      |  |
| 1+55                                     | 0.0036           | 0.03         | -           |       |       |     |      |  |
| 2+0                                      | 0.0038           | 0.03         | -           |       |       |     |      |  |
| 2+ 5<br>2+10                             | 0.0041<br>0.0043 | 0.04<br>0.04 | -           |       |       |     | I    |  |
| 2+10<br>2+15                             | 0.0045           | 0.04<br>0.04 |             |       |       |     |      |  |
| 2+15                                     | 0.0049           | 0.04         | -           | i     |       | i i | l    |  |
| 2+25                                     | 0.0052           | 0.04         | -           | i     | i     |     | i    |  |
| 2+30                                     | 0.0055           | 0.04         | Q           | İ     | İ     | İ   | Í    |  |
| 2+35                                     | 0.0058           | 0.04         | Q           |       |       |     |      |  |
| 2+40                                     | 0.0061           | 0.04         | -           |       |       |     |      |  |
| 2+45                                     | 0.0064           | 0.04         | c           |       | -     |     |      |  |
| 2+50                                     | 0.0067           | 0.05         | •           |       |       |     |      |  |
| 2+55<br>3+ 0                             | 0.0070<br>0.0074 | 0.05<br>0.05 | -           |       |       |     |      |  |
| 3+ 5                                     | 0.0077           | 0.05         | QV          | Ì     | ł     |     | ł    |  |
| 3+10                                     | 0.0081           | 0.05         | QV          | i     | i     | i   | i    |  |
| 3+15                                     | 0.0084           | 0.05         | QV          | i     | i     | i   | i    |  |
| 3+20                                     | 0.0088           | 0.05         | Qν          | Ì     | ĺ     | Ì   | İ    |  |
| 3+25                                     | 0.0092           | 0.05         | QV          |       |       | ļ   | ļ    |  |
| 3+30                                     | 0.0095           | 0.05         | QV          |       |       |     | ļ    |  |
| 3+35                                     | 0.0099           | 0.05         | QV          |       |       |     |      |  |
| 3+40<br>3+45                             | 0.0103           | 0.05<br>0.06 | QV          |       |       |     |      |  |
| 3+45<br>3+50                             | 0.0107<br>0.0111 | 0.06         | QV<br>QV    |       |       |     |      |  |
| 3+55                                     | 0.0114           | 0.06         | QV          | i     |       | i i |      |  |
| 4+ 0                                     | 0.0118           | 0.06         | QV          | i     | İ     | i   | i    |  |
| 4+ 5                                     | 0.0122           | 0.06         | ųν          | İ     | i     | İ   | i    |  |
| 4+10                                     | 0.0127           | 0.06         | Qν          |       |       |     |      |  |
| 4+15                                     | 0.0131           | 0.06         | QV          |       |       | ļ   | ļ    |  |
| 4+20                                     | 0.0135           | 0.06         | QV          |       |       |     |      |  |
| 4+25                                     | 0.0140           | 0.06         | QV          |       |       |     |      |  |
| 4+30                                     | 0.0144           | 0.07         | QV          |       |       |     |      |  |
| 4+35<br>4+40                             | 0.0149<br>0.0154 | 0.07<br>0.07 | Q V<br>Q V  |       |       |     |      |  |
| 4+40<br>4+45                             | 0.0154           | 0.07         | Q V<br>Q V  |       |       | ł   |      |  |
| 4+45                                     | 0.0159           | 0.07         | Q V<br>Q V  | i     |       | i i |      |  |
| 4+55                                     | 0.0169           | 0.07         | ξv          | i     |       | i   | i    |  |
| 5+ 0                                     | 0.0174           | 0.08         | ųν          | İ     | i     | İ   | i    |  |
| 5+ 5                                     | 0.0180           | 0.08         | Qν          |       |       | ļ   |      |  |
| 5+10                                     | 0.0185           | 0.08         | Q V         |       |       | ļ   | ļ    |  |
| 5+15                                     | 0.0191           | 0.08         | QV          | 1     |       |     |      |  |

| 5+20  | 0.0196 | 0.08 | Q | V |     |     |  |
|-------|--------|------|---|---|-----|-----|--|
|       |        |      |   |   |     |     |  |
| 5+25  | 0.0201 | 0.08 | Q | V | I   |     |  |
| 5+30  | 0.0207 | 0.08 | Q | V |     |     |  |
| 5+35  | 0.0212 | 0.08 | - | V | i   | i i |  |
|       |        |      | Q |   |     |     |  |
| 5+40  | 0.0217 | 0.08 | Q | V |     | l i |  |
| 5+45  | 0.0223 | 0.08 | Q | V |     |     |  |
|       |        |      | - |   | i   |     |  |
| 5+50  | 0.0228 | 0.08 | Q | V |     |     |  |
| 5+55  | 0.0234 | 0.08 | Q | V |     |     |  |
| 6+ 0  | 0.0240 | 0.08 | Q | V | i   | i i |  |
|       |        |      | - |   |     |     |  |
| 6+ 5  | 0.0246 | 0.09 | Q | V |     | l i |  |
| 6+10  | 0.0252 | 0.09 | Q | V |     |     |  |
| 6+15  | 0.0258 | 0.09 |   | V | i   | i i |  |
|       |        |      | Q |   |     |     |  |
| 6+20  | 0.0264 | 0.09 | Q | V |     |     |  |
| 6+25  | 0.0270 | 0.09 | Q | V |     |     |  |
| 6+30  | 0.0277 | 0.09 | Q | V | i   | i i |  |
|       |        |      | - |   | 1   |     |  |
| 6+35  | 0.0284 | 0.10 | Q | V |     |     |  |
| 6+40  | 0.0290 | 0.10 | Q | V |     |     |  |
| 6+45  | 0.0297 | 0.10 | Q | V | i   | i i |  |
|       |        |      |   |   |     |     |  |
| 6+50  | 0.0304 | 0.10 | Q | V |     |     |  |
| 6+55  | 0.0311 | 0.10 | Q | V |     |     |  |
| 7+ 0  | 0.0318 | 0.11 | Q | V | ĺ   |     |  |
|       |        |      | - |   |     |     |  |
| 7+ 5  | 0.0326 | 0.11 | Q | V |     |     |  |
| 7+10  | 0.0333 | 0.11 | Q | V |     |     |  |
| 7+15  | 0.0341 | 0.11 | Q | V |     |     |  |
|       |        |      |   |   |     |     |  |
| 7+20  | 0.0348 | 0.11 | Q | V |     |     |  |
| 7+25  | 0.0356 | 0.11 | Q | V |     |     |  |
| 7+30  | 0.0364 | 0.11 | Q | V |     |     |  |
| 7+35  | 0.0372 | 0.11 |   | V | i   |     |  |
|       |        |      | Q |   |     |     |  |
| 7+40  | 0.0380 | 0.12 | Q | V |     |     |  |
| 7+45  | 0.0388 | 0.12 | Q | V |     |     |  |
| 7+50  | 0.0396 | 0.12 | Q | V | i   | i i |  |
|       |        |      |   |   |     |     |  |
| 7+55  | 0.0405 | 0.13 | Q | V |     | ļ   |  |
| 8+ 0  | 0.0414 | 0.13 | Q | V |     |     |  |
| 8+ 5  | 0.0423 | 0.13 | Q | V | i   | i i |  |
|       |        |      |   |   |     |     |  |
| 8+10  | 0.0432 | 0.14 | Q | V |     | ļ   |  |
| 8+15  | 0.0442 | 0.14 | Q | V |     |     |  |
| 8+20  | 0.0452 | 0.14 | Q | v | i   | i i |  |
|       |        |      |   |   | 1   |     |  |
| 8+25  | 0.0462 | 0.15 | Q | V |     |     |  |
| 8+30  | 0.0472 | 0.15 | Q | V |     |     |  |
| 8+35  | 0.0483 | 0.16 | Q | v | ĺ   | i i |  |
|       |        |      | - |   | 1   |     |  |
| 8+40  | 0.0494 | 0.16 | Q | V |     |     |  |
| 8+45  | 0.0505 | 0.16 | Q | V |     |     |  |
| 8+50  | 0.0517 | 0.16 | Q | V | i   | i i |  |
|       |        |      |   |   |     |     |  |
| 8+55  | 0.0528 | 0.17 | Q | V |     |     |  |
| 9+ 0  | 0.0540 | 0.17 | Q | V |     |     |  |
| 9+ 5  | 0.0552 | 0.17 | Q | V |     |     |  |
| 9+10  | 0.0564 | 0.18 | õ | v | i   | i i |  |
| 5+10  | 0.0304 | 0.10 | Q |   |     |     |  |
| 9+15  | 0.0577 | 0.18 | Q | V |     | ļ   |  |
| 9+20  | 0.0590 | 0.19 | Q | V |     |     |  |
| 9+25  | 0.0603 | 0.19 | Q | ١ |     | i i |  |
|       |        |      |   |   |     |     |  |
| 9+30  | 0.0617 | 0.20 | Q |   | V   |     |  |
| 9+35  | 0.0631 | 0.20 | Q | ١ | V   |     |  |
| 9+40  | 0.0645 | 0.21 | Q | ١ | V   |     |  |
| 9+45  | 0.0659 | 0.21 | Q |   | V   | j į |  |
|       |        |      |   |   |     |     |  |
| 9+50  | 0.0674 | 0.22 | Q |   | V   | ļ   |  |
| 9+55  | 0.0689 | 0.22 | Q |   | V   |     |  |
| 10+ 0 | 0.0705 | 0.22 | Q |   | İv  | i i |  |
| 10+ 5 |        | 0.22 |   |   |     |     |  |
|       | 0.0721 |      | Q |   | V   |     |  |
| 10+10 | 0.0736 | 0.23 | Q |   | l V |     |  |
| 10+15 | 0.0752 | 0.22 | Q |   | V   |     |  |
|       |        |      |   |   | l V | ¦   |  |
| 10+20 | 0.0767 | 0.22 | Q |   |     | ļ   |  |
| 10+25 | 0.0781 | 0.21 | Q |   | V   |     |  |
| 10+30 | 0.0795 | 0.20 | Q |   | V   |     |  |
|       |        |      |   |   | l v | i   |  |
| 10+35 | 0.0808 | 0.20 | Q |   |     |     |  |
| 10+40 | 0.0822 | 0.19 | Q |   | V   |     |  |
| 10+45 | 0.0835 | 0.20 | Q |   | i v |     |  |
| 10+50 | 0.0849 | 0.20 |   |   | v   |     |  |
|       |        |      | Q |   |     |     |  |
| 10+55 | 0.0863 | 0.21 | Q |   | V   |     |  |
| 11+ 0 | 0.0878 | 0.21 | Q |   | V   |     |  |
| 11+ 5 | 0.0892 | 0.22 |   |   | i v | i ł |  |
|       |        |      | Q |   |     |     |  |
| 11+10 | 0.0907 | 0.22 | Q |   | V   | ļ   |  |
| 11+15 | 0.0923 | 0.22 | Q |   | V   |     |  |
| 11+20 | 0.0938 | 0.22 | Q |   | i v | i i |  |
|       | 3.0000 | 0.22 | ų |   | I V | I   |  |
|       |        |      |   |   |     |     |  |

| 11+25          | 0.0953           | 0.22 Q  | V       |
|----------------|------------------|---------|---------|
| 11+30          | 0.0968           | 0.22 Q  | V       |
| 11+35          | 0.0983           | 0.22 Q  | viiii   |
| 11+40          | 0.0998           | 0.22 Q  | v i i i |
|                |                  | -       | 1 1 1   |
| 11+45          | 0.1013           | 0.22 Q  | V       |
| 11+50          | 0.1027           | 0.21 Q  | V       |
| 11+55          | 0.1042           | 0.21 Q  | V       |
| 12+ 0          | 0.1056           | 0.21 Q  | viiii   |
| 12+ 5          |                  | -       | v i i i |
|                | 0.1071           | -       | 1 1 1   |
| 12+10          | 0.1085           | 0.21 Q  | V       |
| 12+15          | 0.1100           | 0.22 Q  | V       |
| 12+20          | 0.1116           | 0.23 Q  | vi i i  |
| 12+25          | 0.1133           | 0.24 Q  | vi i i  |
|                |                  |         | 1 1 1   |
| 12+30          | 0.1150           | 0.25 Q  | V       |
| 12+35          | 0.1168           | 0.26  Q | V       |
| 12+40          | 0.1186           | 0.27 Q  | V       |
| 12+45          | 0.1205           | 0.27 Q  | v i i   |
| 12+50          | 0.1224           | 0.28 Q  | v i i   |
|                |                  |         |         |
| 12+55          | 0.1244           | 0.29 Q  | v I I   |
| 13+ 0          | 0.1264           | 0.29  Q | V       |
| 13+ 5          | 0.1285           | 0.30  Q | V       |
| 13+10          | 0.1306           | 0.31 Q  | iv i i  |
| 13+15          | 0.1328           |         | v i i   |
|                |                  |         |         |
| 13+20          | 0.1351           | 0.33 Q  | V I     |
| 13+25          | 0.1374           | 0.34  Q | V       |
| 13+30          | 0.1398           | 0.35  Q | V       |
| 13+35          | 0.1424           | 0.37 Q  | iv i i  |
| 13+40          | 0.1449           |         |         |
|                |                  |         | 1 1 1   |
| 13+45          | 0.1475           | 0.37 Q  | V I     |
| 13+50          | 0.1499           | 0.36  Q | V       |
| 13+55          | 0.1523           | 0.34 Q  | i v i i |
| 14+ 0          | 0.1545           | 0.32 Q  | V       |
|                |                  |         |         |
| 14+ 5          | 0.1566           | 0.31 Q  | V       |
| 14+10          | 0.1587           | 0.30  Q | V       |
| 14+15          | 0.1607           | 0.30  Q | V       |
| 14+20          | 0.1628           | 0.30 Q  | i vi i  |
| 14+25          | 0.1649           | 0.30  Q | i v i i |
|                |                  |         | 1 1 1   |
| 14+30          | 0.1670           | 0.31 Q  | V       |
| 14+35          | 0.1691           | 0.31  Q | V       |
| 14+40          | 0.1712           | 0.31  Q | V       |
| 14+45          | 0.1733           | 0.31 Q  | i vi i  |
| 14+50          | 0.1754           | 0.30 Q  |         |
|                |                  |         |         |
| 14+55          | 0.1775           | 0.30 Q  | V       |
| 15+ 0          | 0.1796           | 0.30  Q | V       |
| 15+ 5          | 0.1817           | 0.30  Q | V       |
| 15+10          | 0.1837           | 0.30 Q  | i v i   |
| 15+15          | 0.1858           | 0.30 Q  | v i     |
|                |                  |         |         |
| 15+20          | 0.1878           | 0.29 Q  | V       |
| 15+25          | 0.1898           | 0.29 Q  | V       |
| 15+30          | 0.1918           | 0.29  Q | V       |
| 15+35          | 0.1937           | 0.28 Q  |         |
| 15+40          | 0.1956           | 0.28 Q  |         |
| 15+45          | 0.1975           | 0.27  Q |         |
|                |                  |         | 1 1 1   |
| 15+50          | 0.1994           | 0.27 Q  | V I     |
| 15+55          | 0.2012           | 0.26 Q  |         |
| 16+ 0          | 0.2029           | 0.25  Q | V       |
| 16+ 5          | 0.2046           | 0.24 Q  | i ivi   |
| 16+10          | 0.2062           | 0.23 Q  |         |
|                |                  |         |         |
| 16+15          | 0.2077           | 0.22 Q  |         |
| 16+20          | 0.2090           | 0.20 Q  |         |
| 16+25          | 0.2102           | 0.17 Q  | V       |
| 16+30          | 0.2113           | 0.15 Q  | i i v i |
| 16+35          | 0.2122           | 0.13 Q  |         |
|                |                  | -       |         |
| 16+40          | 0.2130           | 0.12 Q  |         |
| 16+45          | 0.2137           | 0.11 Q  |         |
| 16+50          | 0.2144           | 0.10 Q  | V       |
| 16+55          | 0.2150           | 0.09 Q  | i i v i |
| 17+ 0          | 0.2156           | 0.09 Q  |         |
|                |                  |         |         |
| 17+ 5          | 0.2162           | 0.08 Q  |         |
| 17+10          | 0.2167           | 0.08 Q  |         |
| 17+15          | 0.2172           | 0.07 Q  | V       |
|                | 0122/2           |         |         |
| 17+20          |                  | -       | V       |
| 17+20<br>17+25 | 0.2177<br>0.2182 | 0.07 Q  |         |

| 17+30 | 0.2187 | 0.07 Q |          | V     |
|-------|--------|--------|----------|-------|
| 17+35 | 0.2192 | 0.07 Q | i i      | j v j |
| 17+40 | 0.2197 | 0.07 Q | i i      | i v i |
| 17+45 | 0.2202 | 0.07 Q | i i      | i vi  |
| 17+50 | 0.2206 | 0.07 Q | i i      | i vi  |
| 17+55 | 0.2211 | 0.07 Q | i i      | i vi  |
| 18+ 0 | 0.2216 | 0.07 Q | i i      | i v i |
| 18+ 5 | 0.2220 | 0.06 Q | i i      | i v i |
| 18+10 | 0.2224 | 0.06 Q |          | i vi  |
| 18+15 | 0.2228 | 0.06 Q |          | i v i |
| 18+15 | 0.2232 | •      |          |       |
|       |        | •      |          |       |
| 18+25 | 0.2236 | 0.06 Q |          |       |
| 18+30 | 0.2240 | 0.05 Q |          |       |
| 18+35 | 0.2244 | 0.05 Q |          |       |
| 18+40 | 0.2247 | 0.05 Q |          | V     |
| 18+45 | 0.2251 | 0.05 Q |          | V     |
| 18+50 | 0.2254 | 0.05 Q | ļ ļ      | I V   |
| 18+55 | 0.2257 | 0.05 Q |          | V     |
| 19+ 0 | 0.2260 | 0.04 Q |          | V     |
| 19+ 5 | 0.2263 | 0.04 Q |          | V     |
| 19+10 | 0.2265 | 0.04 Q |          | V     |
| 19+15 | 0.2268 | 0.04 Q |          | V     |
| 19+20 | 0.2270 | 0.04 Q |          | V     |
| 19+25 | 0.2273 | 0.04 Q | i i      | i vi  |
| 19+30 | 0.2275 | 0.04 Q | i i      | i vi  |
| 19+35 | 0.2278 | 0.04 Q | i i      | i vi  |
| 19+40 | 0.2281 | 0.04 Q | i i      | i vi  |
| 19+45 | 0.2284 | 0.04 Q | i i      | i vi  |
| 19+50 | 0.2286 | 0.04 Q | i i      | i vi  |
| 19+55 | 0.2289 | 0.04 Q | i i      | i vi  |
| 20+ 0 | 0.2291 | 0.04 Q |          | i vi  |
| 20+ 5 | 0.2294 | 0.03 Q |          | i vi  |
| 20+10 | 0.2294 | 0.03 Q |          |       |
| 20+10 |        | •      |          |       |
|       | 0.2298 | 0.03 Q |          |       |
| 20+20 | 0.2301 | 0.03 Q |          |       |
| 20+25 | 0.2303 | 0.03 Q |          |       |
| 20+30 | 0.2305 | 0.03 Q |          |       |
| 20+35 | 0.2307 | 0.03 Q |          |       |
| 20+40 | 0.2310 | 0.03 Q |          | V I   |
| 20+45 | 0.2312 | 0.03 Q | ļ ļ      | V     |
| 20+50 | 0.2315 | 0.03 Q |          | V     |
| 20+55 | 0.2317 | 0.03 Q |          | V     |
| 21+ 0 | 0.2319 | 0.03 Q |          | V     |
| 21+ 5 | 0.2321 | 0.03 Q |          | V     |
| 21+10 | 0.2323 | 0.03 Q |          | V     |
| 21+15 | 0.2326 | 0.03 Q |          | V     |
| 21+20 | 0.2328 | 0.03 Q | i i      | i vi  |
| 21+25 | 0.2330 | 0.03 Q | i i      | i vi  |
| 21+30 | 0.2332 | 0.03 Q | i i      | i vi  |
| 21+35 | 0.2334 | 0.03 Q | i i      | i vi  |
| 21+40 | 0.2336 | 0.03 Q | i i      | i vi  |
| 21+45 | 0.2338 | 0.03 Q | i i      | i vi  |
| 21+50 | 0.2340 | 0.03 Q | i i      | i vi  |
| 21+55 | 0.2342 | 0.03 Q | i i      | V     |
| 22+ 0 | 0.2344 | 0.03 Q | i i      | v v   |
| 22+ 5 | 0.2346 | 0.03 Q |          | i vi  |
| 22+10 | 0.2348 | 0.03 Q |          | i vi  |
| 22+10 | 0.2350 | 0.03 Q |          | i vi  |
| 22+13 | 0.2350 |        |          |       |
|       |        | 0.03 Q |          |       |
| 22+25 | 0.2354 | 0.03 Q |          |       |
| 22+30 | 0.2356 | 0.03 Q |          |       |
| 22+35 | 0.2358 | 0.03 Q |          |       |
| 22+40 | 0.2360 | 0.03 Q |          |       |
| 22+45 | 0.2362 | 0.03 Q |          |       |
| 22+50 | 0.2364 | 0.03 Q |          |       |
| 22+55 | 0.2366 | 0.03 Q |          | l V   |
| 23+ 0 | 0.2368 | 0.03 Q | <u> </u> | V V   |
| 23+ 5 | 0.2369 | 0.03 Q |          | V     |
| 23+10 | 0.2371 | 0.02 Q |          | V     |
| 23+15 | 0.2373 | 0.02 Q | l İ      | j vj  |
| 23+20 | 0.2374 | 0.02 Q | l İ      | j vj  |
| 23+25 | 0.2376 | 0.02 Q | i i      | i vi  |
| 23+30 | 0.2378 | 0.02 Q | i i      | i vi  |
|       |        | , i    |          |       |

| 23+35 | 0.2379 | 0.02 | Q |     |   | V      |
|-------|--------|------|---|-----|---|--------|
| 23+40 | 0.2381 | 0.02 | Q | !!! |   | V      |
| 23+45 | 0.2383 | 0.02 | Q |     |   | V      |
| 23+50 | 0.2384 | 0.02 | Q |     |   | V      |
| 23+55 | 0.2386 | 0.02 | Q |     |   | V      |
| 24+ 0 | 0.2388 | 0.02 | Q |     |   | V      |
| 24+ 5 | 0.2389 | 0.02 | Q |     |   | V      |
| 24+10 | 0.2391 | 0.02 | Q |     |   | V      |
| 24+15 | 0.2392 | 0.02 | Q |     |   | V      |
| 24+20 | 0.2393 | 0.02 | Q |     |   | V      |
| 24+25 | 0.2394 | 0.02 | Q |     |   | V      |
| 24+30 | 0.2395 | 0.01 | Q | i i | Í | V      |
| 24+35 | 0.2396 | 0.01 | Q | i i | i | V      |
| 24+40 | 0.2396 | 0.01 | Q | i i | i | v      |
| 24+45 | 0.2397 | 0.01 | Q | i i | i | v      |
| 24+50 | 0.2397 | 0.01 | Q | i i | i | v      |
| 24+55 | 0.2398 | 0.01 | Q | i i | i | v      |
| 25+ 0 | 0.2398 | 0.01 | Q | i i | i | v      |
| 25+ 5 | 0.2398 | 0.00 | Q | i i | İ | v      |
| 25+10 | 0.2399 | 0.00 | Q | i i | i | V      |
| 25+15 | 0.2399 | 0.00 | Q | i i | i | V      |
| 25+20 | 0.2399 | 0.00 | Q | i i | i | V      |
| 25+25 | 0.2399 | 0.00 | Q | i i | i | v      |
| 25+30 | 0.2400 | 0.00 | Q | i i | i | v      |
| 25+35 | 0.2400 | 0.00 | Q | i i | ł | v      |
| 25+40 | 0.2400 | 0.00 | Q | ; ; | ł | v      |
| 25+45 | 0.2400 | 0.00 | Q |     | ł | v      |
| 25+50 | 0.2400 | 0.00 | Q |     |   | v      |
| 25+55 | 0.2400 | 0.00 | Q |     |   | v      |
| 26+ 0 | 0.2400 | 0.00 | Q |     |   | v      |
| 26+ 5 | 0.2400 | 0.00 | Q |     |   | v      |
| 26+10 | 0.2400 | 0.00 | - |     |   | V      |
| 26+10 | 0.2401 | 0.00 | Q | -   |   | v<br>V |
| 26+15 | 0.2401 |      | Q | -   |   | v<br>V |
|       |        | 0.00 | Q |     |   | v<br>V |
| 26+25 | 0.2401 | 0.00 | Q |     |   |        |
| 26+30 | 0.2401 | 0.00 | Q |     |   | V      |
| 26+35 | 0.2401 | 0.00 | Q | ! ! | - | V      |
| 26+40 | 0.2401 | 0.00 | Q | ! ! | - | V      |
| 26+45 | 0.2401 | 0.00 | Q | ! ! |   | V      |
| 26+50 | 0.2401 | 0.00 | Q | ! ! |   | V      |
| 26+55 | 0.2401 | 0.00 | Q |     |   | V      |
| 27+ 0 | 0.2401 | 0.00 | Q |     |   | V      |
| 27+ 5 | 0.2401 | 0.00 | Q |     |   | V      |
| 27+10 | 0.2401 | 0.00 | Q | ļ ļ | ļ | V      |
| 27+15 | 0.2401 | 0.00 | Q | !!! | ļ | V      |
| 27+20 | 0.2401 | 0.00 | Q | ļ ļ | ļ | V      |
| 27+25 | 0.2401 | 0.00 | Q | ļ ļ | ļ | V      |
| 27+30 | 0.2401 | 0.00 | Q |     |   | V      |
| 27+35 | 0.2401 | 0.00 | Q |     |   | V      |
| 27+40 | 0.2401 | 0.00 | Q |     |   | ١      |

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
                 Study date 03/22/22 File: PP1PUH242.out
_____
     Riverside County Synthetic Unit Hydrology Method
     RCFC & WCD Manual date - April 1978
     Program License Serial Number 6443
     _____
      English (in-lb) Input Units Used
      English Rainfall Data (Inches) Input Values Used
      English Units used in output format
     -----
     PILOT PERRIS
     PROP 2-YR
     XO 3/22/22
     Drainage Area = 13.97(Ac.) = 0.022 Sq. Mi.
     Drainage Area for Depth-Area Areal Adjustment = 13.97(Ac.) =
0.022 Sq. Mi.
     USER Entry of lag time in hours
     Lag time = 0.244 Hr.
     Lag time = 14.64 Min.
     25% of lag time = 3.66 Min.
40% of lag time = 5.86 Min.
     Unit time = 5.00 Min.
     Duration of storm = 24 Hour(s)
     User Entered Base Flow = 0.00(CFS)
     2 YEAR Area rainfall data:
     Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
13.97 2.05 28.64
     100 YEAR Area rainfall data:
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1\*2] 5.33 74.46 13.97 STORM EVENT (YEAR) = 2.00Area Averaged 2-Year Rainfall = 2.050(In) Area Averaged 100-Year Rainfall = 5.330(In) Point rain (area averaged) = 2.050(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.050(In) Sub-Area Data: 
 Area(Ac.)
 Runoff Index
 Impervious %

 10.190
 75.00
 0.900

 3.780
 87.00
 0.000
 Total Area Entered = 13.97(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2AMC-1(In/Hr)(Dec.%)(In/Hr)(Dec.)(In/Hr)75.057.00.5010.9000.0950.7290.06987.073.20.3240.0000.3240.2710.088 Sum(F) = 0.157Area averaged mean soil loss (F) (In/Hr) = 0.157 Minimum soil loss rate ((In/Hr)) = 0.079 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.364 -----Unit Hydrograph VALLEY S-Curve \_\_\_\_\_ Unit Hydrograph Data \_\_\_\_\_ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) \_\_\_\_\_ 34.1533.46568.30613.463102.45922.544136.61219.842170.76510.757 1 0.083 0.488 

 2
 0.167

 3
 0.250
 102.459

 4
 0.333
 136.612

 5
 0.417
 170.765

 6
 0.500
 204.918

 7
 0.583
 239.071

 273.224

 1.895 3.174 2.794 1.514 6.115 0.861 0.583239.0710.667273.2240.750307.3770.833341.530 4.397 0.619 3.439 0.484 2.771 2.176 9 0.390 10 0.306 11 0.917 375.683 1.895 0.267 1.000 409.836 12 0.212 1.503 1.197 1.070 13 1.083 443.989 0.168 478.142 1.167 14 0.151 15 1.250 512.295 1.008 0.142 546.448 16 1.333 0.807 0.114

| 17 | 1.417 | 580.601 | 0.697         |      | 0.098  |
|----|-------|---------|---------------|------|--------|
| 18 | 1.500 | 614.754 | 0.603         |      | 0.085  |
| 19 | 1.583 | 648.907 | 0.500         |      | 0.070  |
| 20 | 1.667 | 683.060 | 0.414         |      | 0.058  |
| 21 | 1.750 | 717.213 | 0.342         |      | 0.048  |
| 22 | 1.833 | 751.366 | 0.342         |      | 0.048  |
| 23 | 1.917 | 785.519 | 0.342         |      | 0.048  |
| 24 | 2.000 | 819.672 | 0.316         |      | 0.044  |
|    |       |         | Sum = 100.000 | Sum= | 14.079 |
|    |       |         |               |      |        |

The following loss rate calculations reflect use of the minimum calculated loss

rate subtracted from the Storm Rain to produce the maximum Effective Rain value

| Unit | Time  | Pattern | Storm Rain |   | Loss rate | (In./Hr) | Effective |
|------|-------|---------|------------|---|-----------|----------|-----------|
|      | (Hr.) | Percent | (In/Hr)    |   | Max       | Low      | (In/Hr)   |
| 1    | 0.08  | 0.07    | 0.016      | ( | 0.279)    | 0.006    | 0.010     |
| 2    | 0.17  | 0.07    | 0.016      | ( | 0.277)    | 0.006    | 0.010     |
| 3    | 0.25  | 0.07    | 0.016      | ( | 0.276)    | 0.006    | 0.010     |
| 4    | 0.33  | 0.10    | 0.025      | ( | 0.275)    | 0.009    | 0.016     |
| 5    | 0.42  | 0.10    | 0.025      | ( | 0.274)    | 0.009    | 0.016     |
| 6    | 0.50  | 0.10    | 0.025      | ( | 0.273)    | 0.009    | 0.016     |
| 7    | 0.58  | 0.10    | 0.025      | ( | 0.272)    | 0.009    | 0.016     |
| 8    | 0.67  | 0.10    | 0.025      | ( | 0.271)    | 0.009    | 0.016     |
| 9    | 0.75  | 0.10    | 0.025      | ( | 0.270)    | 0.009    | 0.016     |
| 10   | 0.83  | 0.13    | 0.033      | ( | 0.269)    | 0.012    | 0.021     |
| 11   | 0.92  | 0.13    | 0.033      | ( | 0.268)    | 0.012    | 0.021     |
| 12   | 1.00  | 0.13    | 0.033      | ( | 0.267)    | 0.012    | 0.021     |
| 13   | 1.08  | 0.10    | 0.025      | ( | 0.266)    | 0.009    | 0.016     |
| 14   | 1.17  | 0.10    | 0.025      | ( | 0.265)    | 0.009    | 0.016     |
| 15   | 1.25  | 0.10    | 0.025      | ( | 0.264)    | 0.009    | 0.016     |
| 16   | 1.33  | 0.10    | 0.025      | ( | 0.263)    | 0.009    | 0.016     |
| 17   | 1.42  | 0.10    | 0.025      | ( | 0.262)    | 0.009    | 0.016     |
| 18   | 1.50  | 0.10    | 0.025      | ( | 0.260)    | 0.009    | 0.016     |
| 19   | 1.58  | 0.10    | 0.025      | ( | 0.259)    | 0.009    | 0.016     |
| 20   | 1.67  | 0.10    | 0.025      | ( | 0.258)    | 0.009    | 0.016     |
| 21   | 1.75  | 0.10    | 0.025      | ( | 0.257)    | 0.009    | 0.016     |
| 22   | 1.83  | 0.13    | 0.033      | ( | 0.256)    | 0.012    | 0.021     |
| 23   | 1.92  | 0.13    | 0.033      | ( | 0.255)    | 0.012    | 0.021     |
| 24   | 2.00  | 0.13    | 0.033      | ( | 0.254)    | 0.012    | 0.021     |
| 25   | 2.08  | 0.13    | 0.033      | ( | 0.253)    | 0.012    | 0.021     |
| 26   | 2.17  | 0.13    | 0.033      | ( | 0.252)    | 0.012    | 0.021     |
| 27   | 2.25  | 0.13    | 0.033      | ( | 0.251)    | 0.012    | 0.021     |
| 28   | 2.33  | 0.13    | 0.033      | ( | 0.250)    | 0.012    | 0.021     |
| 29   | 2.42  | 0.13    | 0.033      | ( |           | 0.012    | 0.021     |
| 30   | 2.50  | 0.13    | 0.033      | ( | 0.248)    | 0.012    | 0.021     |
| 31   | 2.58  | 0.17    | 0.041      | ( |           | 0.015    | 0.026     |
| 32   | 2.67  | 0.17    | 0.041      | ( |           | 0.015    | 0.026     |
| 33   | 2.75  | 0.17    | 0.041      | ( | •         | 0.015    | 0.026     |
| 34   | 2.83  | 0.17    | 0.041      | ( | 0.244)    | 0.015    | 0.026     |

| 35       | 2.92 | 0.17 | 0.041 | ( 0.243) | 0.015 | 0.026 |
|----------|------|------|-------|----------|-------|-------|
| 36       | 3.00 | 0.17 | 0.041 | ( 0.242) | 0.015 | 0.026 |
| 37       | 3.08 | 0.17 | 0.041 | ( 0.241) | 0.015 | 0.026 |
| 38       | 3.17 | 0.17 | 0.041 | ( 0.240) | 0.015 | 0.026 |
| 39       | 3.25 | 0.17 | 0.041 | ( 0.239) | 0.015 | 0.026 |
| 40       | 3.33 | 0.17 | 0.041 | ( 0.238) | 0.015 | 0.026 |
| 40       | 3.42 | 0.17 | 0.041 |          | 0.015 | 0.020 |
|          |      |      |       |          |       |       |
| 42       | 3.50 | 0.17 | 0.041 | ( 0.236) | 0.015 | 0.026 |
| 43       | 3.58 | 0.17 | 0.041 | ( 0.235) | 0.015 | 0.026 |
| 44       | 3.67 | 0.17 | 0.041 | ( 0.234) | 0.015 | 0.026 |
| 45       | 3.75 | 0.17 | 0.041 | ( 0.233) | 0.015 | 0.026 |
| 46       | 3.83 | 0.20 | 0.049 | ( 0.232) | 0.018 | 0.031 |
| 47       | 3.92 | 0.20 | 0.049 | ( 0.231) | 0.018 | 0.031 |
| 48       | 4.00 | 0.20 | 0.049 | ( 0.230) | 0.018 | 0.031 |
| 49       | 4.08 | 0.20 | 0.049 | ( 0.229) | 0.018 | 0.031 |
| 50       | 4.17 | 0.20 | 0.049 | ( 0.228) | 0.018 | 0.031 |
| 51       | 4.25 | 0.20 | 0.049 | ( 0.227) | 0.018 | 0.031 |
| 52       | 4.33 | 0.23 | 0.057 | ( 0.226) | 0.021 | 0.037 |
| 53       | 4.42 | 0.23 | 0.057 | ( 0.225) | 0.021 | 0.037 |
| 54       | 4.50 | 0.23 | 0.057 | ( 0.224) | 0.021 | 0.037 |
| 55       | 4.58 | 0.23 | 0.057 | ( 0.223) | 0.021 | 0.037 |
| 56       | 4.67 | 0.23 | 0.057 | ( 0.222) | 0.021 | 0.037 |
| 57       | 4.75 | 0.23 | 0.057 | ( 0.221) | 0.021 | 0.037 |
| 58       | 4.83 | 0.27 | 0.066 | ( 0.221) | 0.024 | 0.042 |
| 59       | 4.92 | 0.27 | 0.066 | ( 0.220) | 0.024 | 0.042 |
| 60       | 5.00 | 0.27 | 0.066 | ( 0.219) | 0.024 | 0.042 |
| 61       | 5.08 | 0.20 | 0.049 | ( 0.218) | 0.018 | 0.042 |
| 62       | 5.00 | 0.20 | 0.049 | ( 0.217) | 0.018 | 0.031 |
| 63       | 5.25 | 0.20 | 0.049 | ( 0.217) | 0.018 | 0.031 |
| 64       | 5.33 | 0.23 | 0.057 | ( 0.215) | 0.018 | 0.037 |
| 65       | 5.42 | 0.23 | 0.057 | ( 0.213) | 0.021 | 0.037 |
| 66       | 5.50 |      |       | • •      |       |       |
|          |      | 0.23 | 0.057 | ( 0.213) | 0.021 | 0.037 |
| 67       | 5.58 | 0.27 | 0.066 | ( 0.212) | 0.024 | 0.042 |
| 68       | 5.67 | 0.27 | 0.066 | ( 0.211) | 0.024 | 0.042 |
| 69<br>70 | 5.75 | 0.27 | 0.066 | ( 0.210) | 0.024 | 0.042 |
| 70       | 5.83 | 0.27 | 0.066 | ( 0.209) | 0.024 | 0.042 |
| 71       | 5.92 | 0.27 | 0.066 | ( 0.208) | 0.024 | 0.042 |
| 72       | 6.00 | 0.27 | 0.066 | ( 0.207) | 0.024 | 0.042 |
| 73       | 6.08 | 0.30 | 0.074 | ( 0.206) | 0.027 | 0.047 |
| 74       | 6.17 | 0.30 | 0.074 | ( 0.206) | 0.027 | 0.047 |
| 75       | 6.25 | 0.30 | 0.074 | ( 0.205) | 0.027 | 0.047 |
| 76       | 6.33 | 0.30 | 0.074 | ( 0.204) | 0.027 | 0.047 |
| 77       | 6.42 | 0.30 | 0.074 | ( 0.203) | 0.027 | 0.047 |
| 78       | 6.50 | 0.30 | 0.074 | ( 0.202) | 0.027 | 0.047 |
| 79       | 6.58 | 0.33 | 0.082 | ( 0.201) | 0.030 | 0.052 |
| 80       | 6.67 | 0.33 | 0.082 | ( 0.200) | 0.030 | 0.052 |
| 81       | 6.75 | 0.33 | 0.082 | ( 0.199) | 0.030 | 0.052 |
| 82       | 6.83 | 0.33 | 0.082 | ( 0.198) | 0.030 | 0.052 |
| 83       | 6.92 | 0.33 | 0.082 | ( 0.197) | 0.030 | 0.052 |
| 84       | 7.00 | 0.33 | 0.082 | ( 0.196) | 0.030 | 0.052 |
| 85       | 7.08 | 0.33 | 0.082 | ( 0.196) | 0.030 | 0.052 |
| 86       | 7.17 | 0.33 | 0.082 | ( 0.195) | 0.030 | 0.052 |
| 87       | 7.25 | 0.33 | 0.082 | ( 0.194) | 0.030 | 0.052 |
|          |      |      |       | · · ·    |       |       |

| 88         | 7.33         | 0.37 | 0.090 | ( 0.193) | 0.033 | 0.057          |
|------------|--------------|------|-------|----------|-------|----------------|
| 89         | 7.42         | 0.37 | 0.090 | ( 0.192) | 0.033 | 0.057          |
| 90         | 7.50         | 0.37 | 0.090 | ( 0.191) | 0.033 | 0.057          |
| 91         | 7.58         | 0.40 | 0.098 | ( 0.190) | 0.036 | 0.063          |
| 92         | 7.67         | 0.40 | 0.098 | ( 0.189) | 0.036 | 0.063          |
| 93         | 7.75         | 0.40 | 0.098 | ( 0.189) | 0.036 | 0.063          |
| 94         | 7.83         | 0.43 | 0.107 | ( 0.188) | 0.039 | 0.068          |
| 95         | 7.92         | 0.43 | 0.107 | ( 0.187) | 0.039 | 0.068          |
| 96         | 8.00         | 0.43 | 0.107 | ( 0.186) | 0.039 | 0.068          |
| 97         | 8.08         | 0.50 | 0.123 | ( 0.185) | 0.045 | 0.000          |
| 98         | 8.17         | 0.50 | 0.123 | ( 0.185) | 0.045 | 0.078          |
| 99         | 8.25         | 0.50 | 0.123 | ( 0.183) | 0.045 | 0.078          |
| 100        | 8.33         | 0.50 | 0.123 | ( 0.183) | 0.045 | 0.078          |
| 101        | 8.42         | 0.50 | 0.123 | ( 0.182) | 0.045 | 0.078          |
| 101        |              |      |       | ( 0.182) | 0.045 |                |
| 102        | 8.50<br>8.58 | 0.50 | 0.123 | • •      | 0.043 | 0.078<br>0.083 |
|            |              | 0.53 | 0.131 | ( 0.180) |       |                |
| 104<br>105 | 8.67         | 0.53 | 0.131 | ( 0.179) | 0.048 | 0.083          |
| 105        | 8.75         | 0.53 | 0.131 | ( 0.178) | 0.048 | 0.083          |
| 106        | 8.83         | 0.57 | 0.139 | ( 0.177) | 0.051 | 0.089          |
| 107        | 8.92         | 0.57 | 0.139 | ( 0.177) | 0.051 | 0.089          |
| 108        | 9.00         | 0.57 | 0.139 | ( 0.176) | 0.051 | 0.089          |
| 109        | 9.08         | 0.63 | 0.156 | ( 0.175) | 0.057 | 0.099          |
| 110        | 9.17         | 0.63 | 0.156 | ( 0.174) | 0.057 | 0.099          |
| 111        | 9.25         | 0.63 | 0.156 | ( 0.173) | 0.057 | 0.099          |
| 112        | 9.33         | 0.67 | 0.164 | ( 0.172) | 0.060 | 0.104          |
| 113        | 9.42         | 0.67 | 0.164 | ( 0.172) | 0.060 | 0.104          |
| 114        | 9.50         | 0.67 | 0.164 | ( 0.171) | 0.060 | 0.104          |
| 115        | 9.58         | 0.70 | 0.172 | ( 0.170) | 0.063 | 0.110          |
| 116        | 9.67         | 0.70 | 0.172 | ( 0.169) | 0.063 | 0.110          |
| 117        | 9.75         | 0.70 | 0.172 | ( 0.168) | 0.063 | 0.110          |
| 118        | 9.83         | 0.73 | 0.180 | ( 0.168) | 0.066 | 0.115          |
| 119        | 9.92         | 0.73 | 0.180 | ( 0.167) | 0.066 | 0.115          |
| 120        | 10.00        | 0.73 | 0.180 | ( 0.166) | 0.066 | 0.115          |
| 121        | 10.08        | 0.50 | 0.123 | ( 0.165) | 0.045 | 0.078          |
| 122        | 10.17        | 0.50 | 0.123 | ( 0.164) | 0.045 | 0.078          |
| 123        | 10.25        | 0.50 | 0.123 | ( 0.164) | 0.045 | 0.078          |
| 124        | 10.33        | 0.50 | 0.123 | ( 0.163) | 0.045 | 0.078          |
| 125        | 10.42        | 0.50 | 0.123 | ( 0.162) | 0.045 | 0.078          |
| 126        | 10.50        | 0.50 | 0.123 | ( 0.161) | 0.045 | 0.078          |
| 127        | 10.58        | 0.67 | 0.164 | ( 0.160) | 0.060 | 0.104          |
| 128        | 10.67        | 0.67 | 0.164 | ( 0.160) | 0.060 | 0.104          |
| 129        | 10.75        | 0.67 | 0.164 | ( 0.159) | 0.060 | 0.104          |
| 130        | 10.83        | 0.67 | 0.164 | ( 0.158) | 0.060 | 0.104          |
| 131        | 10.92        | 0.67 | 0.164 | ( 0.157) | 0.060 | 0.104          |
| 132        | 11.00        | 0.67 | 0.164 | ( 0.156) | 0.060 | 0.104          |
| 133        | 11.08        | 0.63 | 0.156 | ( 0.156) | 0.057 | 0.099          |
| 134        | 11.17        | 0.63 | 0.156 | ( 0.155) | 0.057 | 0.099          |
| 135        | 11.25        | 0.63 | 0.156 | ( 0.155) | 0.057 | 0.099          |
| 136        | 11.33        | 0.63 | 0.156 | ( 0.153) | 0.057 | 0.099          |
| 137        | 11.42        | 0.63 | 0.156 | ( 0.153) | 0.057 | 0.099          |
| 138        | 11.42        | 0.63 | 0.156 | ( 0.153) | 0.057 | 0.099          |
| 139        | 11.58        | 0.03 | 0.130 | ( 0.152) | 0.051 | 0.039          |
| 140        | 11.58        | 0.57 | 0.139 | ( 0.150) | 0.051 | 0.089          |
| 1-0        | ±±.0/        | 0.57 | 0.100 | ( 0.100) | 0.001 | 0.005          |
|            |              |      |       |          |       |                |

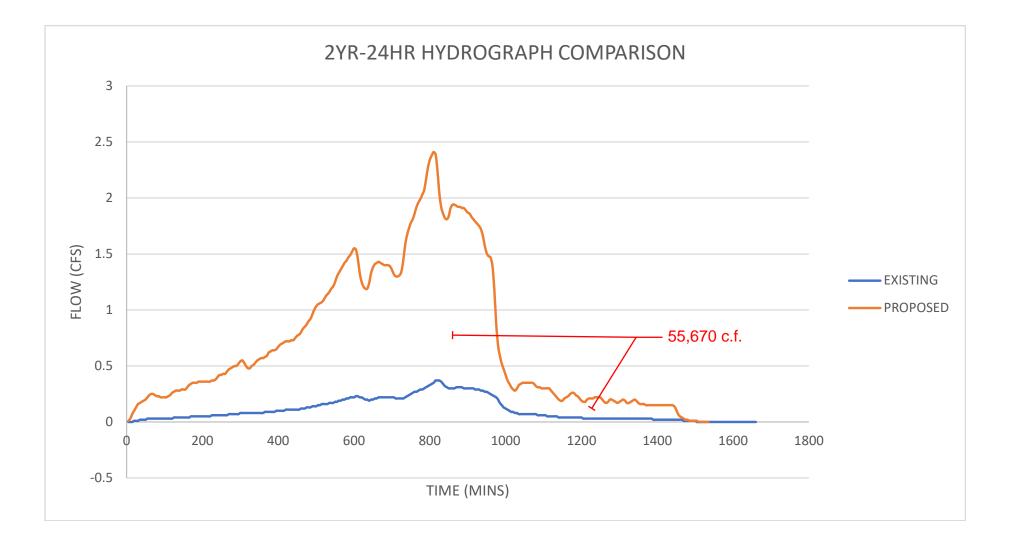
| 141        | 11.75 | 0.57 | 0.139 | ( 0.150) | 0.051 | 0.089 |
|------------|-------|------|-------|----------|-------|-------|
| 142        | 11.83 | 0.60 | 0.148 | ( 0.149) | 0.054 | 0.094 |
| 143        | 11.92 | 0.60 | 0.148 | ( 0.148) | 0.054 | 0.094 |
| 144        | 12.00 | 0.60 | 0.148 | ( 0.147) | 0.054 | 0.094 |
| 145        | 12.08 | 0.83 | 0.205 | ( 0.147) | 0.075 | 0.130 |
| 146        | 12.17 | 0.83 | 0.205 | ( 0.146) | 0.075 | 0.130 |
| 147        | 12.25 | 0.83 | 0.205 | ( 0.145) | 0.075 | 0.130 |
| 148        | 12.33 | 0.87 | 0.213 | ( 0.144) | 0.078 | 0.136 |
| 149        | 12.42 | 0.87 | 0.213 | (0.144)  | 0.078 | 0.136 |
| 150        | 12.50 | 0.87 | 0.213 | ( 0.143) | 0.078 | 0.136 |
| 151        | 12.58 | 0.93 | 0.230 | ( 0.143) | 0.084 | 0.130 |
|            |       |      |       | • •      |       |       |
| 152        | 12.67 | 0.93 | 0.230 | (0.142)  | 0.084 | 0.146 |
| 153        | 12.75 | 0.93 | 0.230 | ( 0.141) | 0.084 | 0.146 |
| 154        | 12.83 | 0.97 | 0.238 | ( 0.140) | 0.087 | 0.151 |
| 155        | 12.92 | 0.97 | 0.238 | ( 0.139) | 0.087 | 0.151 |
| 156        | 13.00 | 0.97 | 0.238 | ( 0.139) | 0.087 | 0.151 |
| 157        | 13.08 | 1.13 | 0.279 | ( 0.138) | 0.101 | 0.177 |
| 158        | 13.17 | 1.13 | 0.279 | ( 0.137) | 0.101 | 0.177 |
| 159        | 13.25 | 1.13 | 0.279 | ( 0.137) | 0.101 | 0.177 |
| 160        | 13.33 | 1.13 | 0.279 | ( 0.136) | 0.101 | 0.177 |
| 161        | 13.42 | 1.13 | 0.279 | ( 0.135) | 0.101 | 0.177 |
| 162        | 13.50 | 1.13 | 0.279 | ( 0.135) | 0.101 | 0.177 |
| 163        | 13.58 | 0.77 | 0.189 | ( 0.134) | 0.069 | 0.120 |
| 164        | 13.67 | 0.77 | 0.189 | ( 0.133) | 0.069 | 0.120 |
| 165        | 13.75 | 0.77 | 0.189 | ( 0.133) | 0.069 | 0.120 |
| 166        | 13.83 | 0.77 | 0.189 | ( 0.132) | 0.069 | 0.120 |
| 167        | 13.92 | 0.77 | 0.189 | ( 0.131) | 0.069 | 0.120 |
| 168        | 14.00 | 0.77 | 0.189 | ( 0.131) | 0.069 | 0.120 |
| 169        | 14.08 | 0.90 | 0.221 | ( 0.130) | 0.081 | 0.141 |
| 170        | 14.17 | 0.90 | 0.221 | ( 0.129) | 0.081 | 0.141 |
| 171        | 14.25 | 0.90 | 0.221 | ( 0.129) | 0.081 | 0.141 |
| 172        | 14.33 | 0.87 | 0.213 | ( 0.128) | 0.078 | 0.136 |
| 173        | 14.42 | 0.87 | 0.213 | ( 0.127) | 0.078 | 0.136 |
| 174        | 14.50 | 0.87 | 0.213 | ( 0.127) | 0.078 | 0.136 |
|            | 14.58 | 0.87 | 0.213 | ( 0.126) | 0.078 | 0.136 |
| 176        | 14.67 | 0.87 | 0.213 | ( 0.125) | 0.078 | 0.136 |
| 177        | 14.75 | 0.87 | 0.213 | ( 0.125) | 0.078 | 0.136 |
| 178        | 14.83 | 0.83 | 0.205 | ( 0.124) | 0.075 | 0.130 |
| 179        | 14.92 | 0.83 | 0.205 | ( 0.123) | 0.075 | 0.130 |
| 180        | 15.00 | 0.83 | 0.205 | ( 0.123) | 0.075 | 0.130 |
| 181        | 15.08 | 0.80 | 0.197 | ( 0.122) | 0.072 | 0.125 |
| 182        | 15.17 | 0.80 | 0.197 | ( 0.122) | 0.072 | 0.125 |
| 182        | 15.25 | 0.80 | 0.197 | ( 0.121) | 0.072 | 0.125 |
| 184        |       |      |       |          |       |       |
| 185        | 15.33 | 0.77 | 0.189 | ( 0.120) | 0.069 | 0.120 |
|            | 15.42 | 0.77 | 0.189 | ( 0.120) | 0.069 | 0.120 |
| 186<br>197 | 15.50 | 0.77 | 0.189 | (0.119)  | 0.069 | 0.120 |
| 187<br>100 | 15.58 | 0.63 | 0.156 | (0.118)  | 0.057 | 0.099 |
| 188        | 15.67 | 0.63 | 0.156 | (0.118)  | 0.057 | 0.099 |
| 189        | 15.75 | 0.63 | 0.156 | (0.117)  | 0.057 | 0.099 |
| 190        | 15.83 | 0.63 | 0.156 | (0.117)  | 0.057 | 0.099 |
| 191        | 15.92 | 0.63 | 0.156 | ( 0.116) | 0.057 | 0.099 |
| 192        | 16.00 | 0.63 | 0.156 | ( 0.115) | 0.057 | 0.099 |
| 193        | 16.08 | 0.13 | 0.033 | ( 0.115) | 0.012 | 0.021 |
|            |       |      |       |          |       |       |

| 194 | 16.17 | 0.13 | 0.033 | ( 0. | 114)  | 0.012 | 0.021 |
|-----|-------|------|-------|------|-------|-------|-------|
| 195 | 16.25 | 0.13 | 0.033 | •    | 114)  | 0.012 | 0.021 |
| 196 | 16.33 | 0.13 | 0.033 | •    | 113)́ | 0.012 | 0.021 |
| 197 | 16.42 | 0.13 | 0.033 | •    | 112)  | 0.012 | 0.021 |
| 198 | 16.50 | 0.13 | 0.033 | •    | 112)  | 0.012 | 0.021 |
| 199 | 16.58 | 0.10 | 0.025 | •    | 111)  | 0.009 | 0.016 |
| 200 | 16.67 | 0.10 | 0.025 | •    | 111)  | 0.009 | 0.016 |
| 200 | 16.75 | 0.10 | 0.025 | •    | 110)  | 0.009 | 0.016 |
| 201 | 16.83 | 0.10 | 0.025 | •    | 110)  | 0.009 | 0.010 |
| 202 | 16.92 | 0.10 | 0.025 | •    | 109)  | 0.009 | 0.010 |
| 205 | 17.00 | 0.10 | 0.025 | •    | 109)  | 0.009 | 0.010 |
| 204 | 17.08 | 0.10 | 0.025 | •    | 103)  | 0.015 | 0.010 |
| 205 | 17.17 | 0.17 | 0.041 |      | 107)  | 0.015 | 0.020 |
| 200 | 17.25 | 0.17 | 0.041 | •    | 107)  | 0.015 | 0.020 |
| 207 | 17.33 | 0.17 | 0.041 |      | 106)  | 0.015 | 0.020 |
| 208 | 17.42 | 0.17 | 0.041 | •    | 106)  | 0.015 | 0.020 |
|     |       | 0.17 |       | •    | •     |       |       |
| 210 | 17.50 |      | 0.041 | •    | 105)  | 0.015 | 0.026 |
| 211 | 17.58 | 0.17 | 0.041 | •    | 105)  | 0.015 | 0.026 |
| 212 | 17.67 | 0.17 | 0.041 | •    | 104)  | 0.015 | 0.026 |
| 213 | 17.75 | 0.17 | 0.041 | •    | 104)  | 0.015 | 0.026 |
| 214 | 17.83 | 0.13 | 0.033 | •    | 103)  | 0.012 | 0.021 |
| 215 | 17.92 | 0.13 | 0.033 | •    | 103)  | 0.012 | 0.021 |
| 216 | 18.00 | 0.13 | 0.033 | •    | 102)  | 0.012 | 0.021 |
| 217 | 18.08 | 0.13 | 0.033 | •    | 102)  | 0.012 | 0.021 |
| 218 | 18.17 | 0.13 | 0.033 | •    | 101)  | 0.012 | 0.021 |
| 219 | 18.25 | 0.13 | 0.033 | •    | 101)  | 0.012 | 0.021 |
| 220 | 18.33 | 0.13 | 0.033 | •    | 100)  | 0.012 | 0.021 |
| 221 | 18.42 | 0.13 | 0.033 | •    | 100)  | 0.012 | 0.021 |
| 222 | 18.50 | 0.13 | 0.033 | •    | 099)  | 0.012 | 0.021 |
| 223 | 18.58 | 0.10 | 0.025 | •    | 099)  | 0.009 | 0.016 |
| 224 | 18.67 | 0.10 | 0.025 | •    | 098)  | 0.009 | 0.016 |
| 225 | 18.75 | 0.10 | 0.025 | •    | 098)  | 0.009 | 0.016 |
| 226 | 18.83 | 0.07 | 0.016 |      | 097)  | 0.006 | 0.010 |
| 227 | 18.92 | 0.07 | 0.016 |      | 097)  | 0.006 | 0.010 |
| 228 |       | 0.07 | 0.016 |      | 096)  | 0.006 | 0.010 |
| 229 | 19.08 | 0.10 | 0.025 | •    | 096)  | 0.009 | 0.016 |
| 230 | 19.17 | 0.10 | 0.025 | •    | 096)  | 0.009 | 0.016 |
| 231 | 19.25 | 0.10 | 0.025 | •    | 095)  | 0.009 | 0.016 |
| 232 | 19.33 | 0.13 | 0.033 | •    | 095)  | 0.012 | 0.021 |
| 233 | 19.42 | 0.13 | 0.033 | •    | 094)  | 0.012 | 0.021 |
| 234 | 19.50 | 0.13 | 0.033 |      | 094)  | 0.012 | 0.021 |
| 235 | 19.58 | 0.10 | 0.025 | •    | 093)  | 0.009 | 0.016 |
| 236 | 19.67 | 0.10 | 0.025 | ( 0. | 093)  | 0.009 | 0.016 |
| 237 | 19.75 | 0.10 | 0.025 | ( 0. | 092)  | 0.009 | 0.016 |
| 238 | 19.83 | 0.07 | 0.016 | ( 0. | 092)  | 0.006 | 0.010 |
| 239 | 19.92 | 0.07 | 0.016 | ( 0. | 092)  | 0.006 | 0.010 |
| 240 | 20.00 | 0.07 | 0.016 | •    | 091)  | 0.006 | 0.010 |
| 241 | 20.08 | 0.10 | 0.025 | ( 0. | 091)  | 0.009 | 0.016 |
| 242 | 20.17 | 0.10 | 0.025 | ( 0. | 090)  | 0.009 | 0.016 |
| 243 | 20.25 | 0.10 | 0.025 | ( 0. | 090)  | 0.009 | 0.016 |
| 244 | 20.33 | 0.10 | 0.025 | ( 0. | 090)  | 0.009 | 0.016 |
| 245 | 20.42 | 0.10 | 0.025 | ( 0. | 089)  | 0.009 | 0.016 |
| 246 | 20.50 | 0.10 | 0.025 | ( 0. | 089)  | 0.009 | 0.016 |
|     |       |      |       |      |       |       |       |

| 247 | 20.58                                                          | 0.10      | 0.025        | (           | 0.089)     | 0.009      | 0.016 |  |  |
|-----|----------------------------------------------------------------|-----------|--------------|-------------|------------|------------|-------|--|--|
| 248 | 20.67                                                          | 0.10      | 0.025        | (           | 0.088)     | 0.009      | 0.016 |  |  |
| 249 | 20.75                                                          | 0.10      | 0.025        | (           | 0.088)     | 0.009      | 0.016 |  |  |
| 250 | 20.83                                                          | 0.07      | 0.016        | Ì           | 0.087)     | 0.006      | 0.010 |  |  |
| 251 | 20.92                                                          | 0.07      | 0.016        | ì           | 0.087)     | 0.006      | 0.010 |  |  |
| 252 | 21.00                                                          | 0.07      | 0.016        | ì           | 0.087)     | 0.006      | 0.010 |  |  |
| 253 | 21.08                                                          | 0.10      | 0.025        | $\tilde{c}$ | 0.086)     | 0.009      | 0.016 |  |  |
| 254 | 21.00                                                          | 0.10      | 0.025        | $\tilde{c}$ | 0.086)     | 0.009      | 0.016 |  |  |
| 255 | 21.25                                                          | 0.10      | 0.025        |             | 0.086)     | 0.009      | 0.016 |  |  |
| 256 | 21.23                                                          | 0.07      | 0.016        |             | 0.085)     | 0.005      | 0.010 |  |  |
| 250 | 21.33                                                          | 0.07      | 0.016        |             | •          | 0.006      |       |  |  |
|     |                                                                |           |              | (           | 0.085)     |            | 0.010 |  |  |
| 258 | 21.50                                                          | 0.07      | 0.016        | (           | 0.085)     | 0.006      | 0.010 |  |  |
| 259 | 21.58                                                          | 0.10      | 0.025        | (           | 0.084)     | 0.009      | 0.016 |  |  |
| 260 | 21.67                                                          | 0.10      | 0.025        | (           | 0.084)     | 0.009      | 0.016 |  |  |
| 261 | 21.75                                                          | 0.10      | 0.025        | (           | 0.084)     | 0.009      | 0.016 |  |  |
| 262 | 21.83                                                          | 0.07      | 0.016        | (           | 0.084)     | 0.006      | 0.010 |  |  |
| 263 | 21.92                                                          | 0.07      | 0.016        | (           | 0.083)     | 0.006      | 0.010 |  |  |
| 264 | 22.00                                                          | 0.07      | 0.016        | (           | 0.083)     | 0.006      | 0.010 |  |  |
| 265 | 22.08                                                          | 0.10      | 0.025        | (           | 0.083)     | 0.009      | 0.016 |  |  |
| 266 | 22.17                                                          | 0.10      | 0.025        | (           | 0.082)     | 0.009      | 0.016 |  |  |
| 267 | 22.25                                                          | 0.10      | 0.025        | (           | 0.082)     | 0.009      | 0.016 |  |  |
| 268 | 22.33                                                          | 0.07      | 0.016        | (           | 0.082)     | 0.006      | 0.010 |  |  |
| 269 | 22.42                                                          | 0.07      | 0.016        | Ì           | 0.082)     | 0.006      | 0.010 |  |  |
| 270 | 22.50                                                          | 0.07      | 0.016        | ì           | 0.081)     | 0.006      | 0.010 |  |  |
| 271 | 22.58                                                          | 0.07      | 0.016        | ì           | 0.081)     | 0.006      | 0.010 |  |  |
| 272 | 22.67                                                          | 0.07      | 0.016        | ì           | 0.081)     | 0.006      | 0.010 |  |  |
| 273 | 22.75                                                          | 0.07      | 0.016        | $\tilde{c}$ | 0.081)     | 0.006      | 0.010 |  |  |
| 274 | 22.83                                                          | 0.07      | 0.016        | $\tilde{c}$ | 0.081)     | 0.006      | 0.010 |  |  |
| 275 | 22.92                                                          | 0.07      | 0.016        |             | 0.081)     | 0.006      | 0.010 |  |  |
|     | 22.92                                                          | 0.07      |              |             | 0.080)     |            |       |  |  |
| 276 |                                                                |           | 0.016        |             |            | 0.006      | 0.010 |  |  |
| 277 | 23.08                                                          | 0.07      | 0.016        | (           | 0.080)     | 0.006      | 0.010 |  |  |
| 278 | 23.17                                                          | 0.07      | 0.016        | (           | 0.080)     | 0.006      | 0.010 |  |  |
| 279 | 23.25                                                          | 0.07      | 0.016        | (           | 0.080)     | 0.006      | 0.010 |  |  |
| 280 | 23.33                                                          | 0.07      | 0.016        | (           | 0.079)     | 0.006      | 0.010 |  |  |
|     | 23.42                                                          | 0.07      | 0.016        |             | 0.079)     | 0.006      | 0.010 |  |  |
|     | 23.50                                                          |           | 0.016        |             | 0.079)     |            | 0.010 |  |  |
|     |                                                                | 0.07      |              |             | 0.079)     |            | 0.010 |  |  |
| 284 | 23.67                                                          | 0.07      | 0.016        | (           | 0.079)     | 0.006      | 0.010 |  |  |
| 285 | 23.75                                                          | 0.07      | 0.016        |             |            |            | 0.010 |  |  |
| 286 | 23.83                                                          | 0.07      | 0.016        | (           | 0.079)     | 0.006      | 0.010 |  |  |
| 287 | 23.92                                                          | 0.07      | 0.016        | (           | 0.079)     | 0.006      | 0.010 |  |  |
| 288 | 24.00                                                          | 0.07      | 0.016        |             |            | 0.006      | 0.010 |  |  |
|     |                                                                | (Loss     | Rate Not Use |             | ·          |            |       |  |  |
|     | Sum =                                                          | •         |              | ,           |            | Sum =      | 15.6  |  |  |
|     |                                                                |           | Effective ra | infal       | 1 1.3      |            |       |  |  |
|     |                                                                |           |              |             |            | 1.5(Ac.F   | t)    |  |  |
|     |                                                                |           | = 0.75       | - · ·       |            |            | ,     |  |  |
|     |                                                                |           | = 0.869      | • •         | t)         |            |       |  |  |
|     |                                                                |           |              |             | - /        |            |       |  |  |
|     | Total rainfall = 2.05(In)<br>Flood volume = 66115.3 Cubic Feet |           |              |             |            |            |       |  |  |
|     | Tn+=1                                                          | soil loss | = 378        | 39 K        | Luhic Feet | F          |       |  |  |
|     |                                                                |           |              |             |            | <b>.</b>   |       |  |  |
|     |                                                                |           | of this hyd  |             |            | 2 374((FS) |       |  |  |
|     | reak                                                           |           | or chirs hyu | n ogi a     | P11 -      | 2.3/7(0.3) |       |  |  |
|     |                                                                |           |              |             |            |            |       |  |  |

| +++-      | +++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++++++++++++++++++++++++ |            |            | +++++++++ | +++++ |
|-----------|-----------------------------------------|----------------------------------------|------------|------------|-----------|-------|
|           | R                                       | unoff                                  |            |            |           |       |
|           |                                         |                                        |            |            |           |       |
|           | Hydr                                    | ograph in 5                            | Minute int | ervals ((C | =S))      |       |
|           |                                         |                                        |            |            |           |       |
| Time(h+m) | Volume Ac.Ft                            | Q(CFS) 0                               | 2.5        | 5.0        | 7.5       | 10.0  |
| 0+ 5      | 0.0000                                  | 0.01 0                                 |            |            |           |       |
|           | 0.0002                                  |                                        | i          | i          | i         | i     |
| 0+15      | 0.0006                                  | 0.06 Q                                 | i          | i          | i         | i     |
| 0+20      | 0.0012                                  | 0.09 Q                                 | i          | i          | i         | i     |
| 0+25      | 0.0020                                  |                                        | i          | i          | i         | i     |
|           | 0.0030                                  |                                        | i          | i          | i         | i     |
|           | 0.0041                                  |                                        | İ          | i          | i         | i     |
|           | 0.0053                                  | 0.17 Q                                 | ĺ          | İ          | i         | i     |
|           | 0.0066                                  | 0.18 Q                                 | ĺ          | İ          | i         | i     |
| 0+50      | 0.0079                                  | 0.19 Q                                 | İ          | i          | i         | i     |
| 0+55      | 0.0093                                  | 0.21 Q                                 | l          | Ì          | Ì         | İ     |
|           | 0.0109                                  | 0.23 Q                                 | i          | i          | i         | İ     |
|           | 0.0126                                  |                                        | i          | i          | i         | İ     |
|           | 0.0143                                  | -                                      |            | i          | i         | İ     |
|           | 0.0159                                  | •                                      | i          | i          | i         | i     |
| 1+20      | 0.0174                                  | 0.23 Q                                 |            | i          | i         | i     |
| 1+25      | 0.0190                                  | 0.22 Q                                 | i          | i          | i         | i     |
| 1+30      | 0.0205                                  | 0.22 Q                                 | i          | i          | i         | i     |
| 1+35      | 0.0220                                  | 0.22 Q                                 | i          | i          | i         | i     |
|           | 0.0236                                  | 0.22 Q                                 |            | i          | i         | i     |
|           | 0.0251                                  | 0.22 Q                                 | i          | i          | i         | i     |
|           | 0.0266                                  | 0.22 Q                                 | i          | i          | i         | i     |
|           | 0.0282                                  | 0.23 Q                                 | i          | i          | i         | i     |
| 2+ 0      | 0.0300                                  | 0.25 VQ                                | i          | i          | i         | i     |
| 2+ 5      | 0.0318                                  | 0.27 VQ                                |            | i          | i         | İ     |
| 2+10      | 0.0337                                  | 0.27 VQ                                | i          | i          | i         | i     |
| 2+15      | 0.0356                                  | 0.28 VQ                                | İ          | i          | i         | İ     |
| 2+20      | 0.0375                                  | 0.28 VQ                                |            | i          | i         |       |
| 2+25      | 0.0395                                  | 0.28  Q                                |            | i          | i         | İ     |
| 2+30      | 0.0414                                  | 0.29  Q                                | İ          | i          | i         | İ     |
| 2+35      | 0.0434                                  | 0.29  Q                                | İ          | i          | i         | i     |
| 2+40      | 0.0455                                  | 0.30  Q                                | İ          | i          | i         | i     |
| 2+45      | 0.0477                                  | 0.32  Q                                | Ì          | i          | i         | ĺ     |
| 2+50      | 0.0500                                  | 0.33  Q                                |            | i          | i         | ĺ     |
| 2+55      | 0.0523                                  | 0.34  Q                                |            | i          | i         | İ     |
| 3+ 0      | 0.0547                                  | 0.35  Q                                | İ          | i          | i         | i     |
| 3+ 5      | 0.0571                                  | 0.35  Q                                |            | i          | i         | İ     |
| 3+10      | 0.0596                                  | 0.35  Q                                |            | i          | i         | İ     |
| 3+15      | 0.0620                                  | 0.36  Q                                |            | i          | i         | ĺ     |
| 3+20      | 0.0645                                  | 0.36  Q                                |            | i          | i         | i     |
| 3+25      | 0.0670                                  | 0.36  Q                                |            | i          | i         | l     |
| 3+30      | 0.0694                                  | 0.36  Q                                |            | i          | i         | İ     |
| 3+35      | 0.0719                                  | 0.36  Q                                | i.         | ļ.         | ļ.        | !     |

| 3+40 | 0.0744 | 0.36 | Q     | 1 |   |   |   |
|------|--------|------|-------|---|---|---|---|
| 3+45 | 0.0769 | 0.36 | QV    |   |   |   |   |
| 3+50 | 0.0795 | 0.37 | QV    |   |   |   |   |
| 3+55 | 0.0821 | 0.38 | QV    |   |   |   |   |
| 4+ 0 | 0.0848 | 0.39 | QV    |   |   |   |   |
| 4+ 5 | 0.0876 | 0.41 | QV    |   |   |   |   |
| 4+10 | 0.0905 | 0.42 | QV    |   |   | Ì | Ì |
| 4+15 | 0.0934 | 0.42 | QV    | Ì | Ì | Ì | Ì |
| 4+20 | 0.0964 | 0.43 | QV    | İ | İ | İ | İ |
| 4+25 | 0.0994 | 0.44 | QV    | İ | Ì | İ | İ |
| 4+30 | 0.1026 | 0.46 | QV    | İ | Ì | İ | İ |
| 4+35 | 0.1058 | 0.48 | QV    | İ | Ì | İ | Ì |
| 4+40 | 0.1092 | 0.49 | QV    | İ | İ | İ | İ |
| 4+45 | 0.1126 | 0.49 | QV    | İ | İ | İ | İ |
| 4+50 | 0.1160 | 0.50 | Q V   | İ | Ì | İ | İ |
| 4+55 | 0.1195 | 0.51 | QV    | İ | Ì | İ | İ |
| 5+ 0 | 0.1232 | 0.53 | QV    | i | i | İ | İ |
| 5+ 5 | 0.1269 | 0.54 | QV    | i | i | İ | İ |
| 5+10 | 0.1306 | 0.53 | QV    | i | i | i | İ |
| 5+15 | 0.1340 | 0.50 | QV    | i | i | İ | İ |
| 5+20 | 0.1374 | 0.48 | Įv    | Ì | İ | i | İ |
| 5+25 | 0.1407 | 0.48 | Q V   | i | i | i | i |
| 5+30 | 0.1441 | 0.49 | lõ v  | i | i | i | i |
| 5+35 | 0.1475 | 0.50 | QV    | i | i | i | İ |
| 5+40 | 0.1511 | 0.52 | QV    | Ì | İ | i | İ |
| 5+45 | 0.1548 | 0.54 | Į Į V |   | 1 | i | İ |
| 5+50 | 0.1586 | 0.55 | Įųv   |   |   |   | i |
| 5+55 | 0.1625 | 0.56 | Įųv   |   |   |   | i |
| 6+ 0 | 0.1664 | 0.57 | Įųv   | Ì | Ì | i | İ |
| 6+ 5 | 0.1704 | 0.57 | Įųv   |   |   | i | i |
| 6+10 | 0.1744 | 0.59 | Įųv   | i | i | i | i |
| 6+15 | 0.1786 | 0.61 | Į ų v | i | i | i | i |
| 6+20 | 0.1829 | 0.62 | l Q V | Ì | i | i | İ |
| 6+25 | 0.1872 | 0.63 | Įųv   |   |   |   | i |
| 6+30 | 0.1916 | 0.64 |       | i | i | i | i |
| 6+35 | 0.1960 | 0.64 | Q V   | i | i | i | İ |
| 6+40 | 0.2006 | 0.66 | Q V   | i | i | İ | i |
| 6+45 | 0.2052 | 0.68 | Į ų v | i | i | İ | İ |
| 6+50 | 0.2100 | 0.69 | Į ų v | i | i | İ | İ |
| 6+55 | 0.2149 | 0.70 | Į ų V | İ | İ | İ | İ |
| 7+ 0 | 0.2197 | 0.71 | Q V   | İ | Ì | İ | İ |
| 7+ 5 | 0.2247 | 0.71 | Q V   | i | i | İ | İ |
| 7+10 | 0.2296 | 0.72 | Q V   | İ | İ | İ | İ |
| 7+15 | 0.2346 | 0.72 | Q V   | İ | İ | İ | İ |
| 7+20 | 0.2396 | 0.73 | Q V   | İ | İ | İ | İ |
| 7+25 | 0.2447 | 0.74 | Q V   | İ | Ì | İ | Ì |
| 7+30 | 0.2499 | 0.76 | Į Į V | 1 | 1 | Ì | İ |
| 7+35 | 0.2552 | 0.77 | Į Q V | Ì |   | Ì | Ì |
| 7+40 | 0.2607 | 0.79 | Į Q V | 1 |   |   |   |
| 7+45 | 0.2663 | 0.82 | Q V   | 1 | 1 | 1 | 1 |
| 7+50 | 0.2720 | 0.84 | Q V   | 1 | 1 | Ì | İ |
| 7+55 | 0.2780 | 0.86 | Į Q V | 1 |   |   |   |
| 8+ 0 | 0.2840 | 0.88 | Į Q V |   |   |   |   |
|      |        |      |       |   |   |   |   |


| 8+ 5  | 0.2903 | 0.91 | Q V   |   |
|-------|--------|------|-------|---|
| 8+10  | 0.2967 | 0.94 | Q V   |   |
| 8+15  | 0.3035 | 0.98 | Q V   |   |
| 8+20  | 0.3105 | 1.01 | Q V   |   |
| 8+25  | 0.3176 | 1.04 | Q V   |   |
| 8+30  | 0.3248 | 1.05 | Q V   |   |
| 8+35  | 0.3321 | 1.06 | Q V   |   |
| 8+40  | 0.3395 | 1.08 | Q V   |   |
| 8+45  | 0.3471 | 1.10 | Q V   |   |
| 8+50  | 0.3549 | 1.12 | Q V   |   |
| 8+55  | 0.3627 | 1.15 | Q V   |   |
| 9+ 0  | 0.3708 | 1.17 | Q V   |   |
| 9+ 5  | 0.3790 | 1.20 | Q V   |   |
| 9+10  | 0.3875 | 1.23 | Q V   |   |
| 9+15  | 0.3963 | 1.27 | Q V   |   |
| 9+20  | 0.4053 | 1.31 | Q V   |   |
| 9+25  | 0.4145 | 1.34 | Q V   |   |
| 9+30  | 0.4239 | 1.37 | Q V   | İ |
| 9+35  | 0.4336 | 1.40 | Q  V  | ĺ |
| 9+40  | 0.4434 | 1.42 | Q  V  |   |
| 9+45  | 0.4534 | 1.45 | Q  V  |   |
| 9+50  | 0.4635 | 1.48 | Q V   |   |
| 9+55  | 0.4739 | 1.50 | Q V I |   |
| 10+ 0 | 0.4844 | 1.53 | Q V I |   |
| 10+ 5 | 0.4950 | 1.53 | Q   V |   |
| 10+10 | 0.5051 | 1.48 | Q   V |   |
| 10+15 | 0.5146 | 1.37 | Q   V |   |
| 10+20 | 0.5234 | 1.28 | Q   V |   |
| 10+25 | 0.5318 | 1.23 | Q   V |   |
| 10+30 | 0.5401 | 1.20 | Q   V |   |
| 10+35 | 0.5483 | 1.20 | Q   V |   |
| 10+40 | 0.5568 | 1.23 | Q   V | ĺ |
| 10+45 | 0.5658 | 1.30 | Q V I | ĺ |
| 10+50 | 0.5752 | 1.37 | Q   V |   |
| 10+55 | 0.5848 | 1.40 | Q   V |   |
| 11+ 0 | 0.5946 | 1.42 | Q   V |   |
| 11+ 5 | 0.6044 | 1.42 | Q   V |   |
| 11+10 | 0.6142 | 1.42 | Q   V |   |
| 11+15 | 0.6239 | 1.41 | Q   V |   |
| 11+20 | 0.6336 | 1.40 | Q   V |   |
| 11+25 | 0.6432 | 1.40 | Q   V |   |
| 11+30 | 0.6528 | 1.40 | Q   V |   |
| 11+35 | 0.6624 | 1.39 | Q   V |   |
| 11+40 | 0.6718 | 1.37 | Q   V |   |
| 11+45 | 0.6810 | 1.34 | Q   V |   |
| 11+50 | 0.6900 | 1.31 | Q   V |   |
| 11+55 | 0.6990 | 1.30 | Q V V |   |
| 12+ 0 | 0.7080 | 1.31 | Q   V |   |
| 12+ 5 | 0.7172 | 1.34 | Q   V |   |
| 12+10 | 0.7270 | 1.41 | Q   V |   |
| 12+15 | 0.7375 | 1.53 | Q   V |   |
| 12+20 | 0.7487 | 1.63 | Q   V |   |
| 12+25 | 0.7604 | 1.70 | Q   V |   |
|       |        |      |       |   |

| 12+30          | 0.7724 | 1.75 | Q   | V           |
|----------------|--------|------|-----|-------------|
| 12+35          | 0.7847 | 1.79 | Q   | V           |
| 12+40          | 0.7974 | 1.83 | Q   | V           |
| 12+45          | 0.8103 | 1.88 | Q   | V           |
| 12+50          | 0.8236 | 1.93 | Q   | V           |
| 12+55          | 0.8372 | 1.97 | Q   | i v i       |
| 13+ 0          | 0.8510 | 2.00 | Q Q | i v i       |
| 13+ 5          | 0.8650 | 2.04 | Q Q | i v i       |
| 13+10          | 0.8796 | 2.11 | Q Q | i v i       |
| 13+15          | 0.8948 | 2.21 | į į | i v i       |
| 13+20          | 0.9106 | 2.29 |     | V           |
| 13+25          | 0.9268 | 2.34 |     |             |
| 13+30          | 0.9431 | 2.37 |     | i v i       |
| 13+35          | 0.9594 | 2.37 |     | i v i       |
| 13+40          | 0.9751 | 2.28 |     | i v i       |
| 13+45          | 0.9897 | 2.11 | Q   |             |
| 13+50          | 1.0032 | 1.96 | Q   |             |
| 13+55          | 1.0162 | 1.89 | Q   |             |
| 14+ 0          | 1.0289 | 1.85 | Q   |             |
| 14+ 5          | 1.0415 | 1.83 | Q   |             |
| 14+10          | 1.0542 | 1.84 | Q   |             |
| 14+15          | 1.0672 | 1.89 | Q   |             |
| 14+15          | 1.0805 | 1.94 | Q   |             |
| 14+25          | 1.0939 | 1.94 |     |             |
| 14+23          | 1.1073 |      | Q   |             |
| 14+30<br>14+35 |        | 1.94 | Q   | · · · · · · |
| 14+35<br>14+40 | 1.1206 | 1.93 | Q   |             |
|                | 1.1338 | 1.92 | Q   |             |
| 14+45          | 1.1470 | 1.92 | Q   |             |
| 14+50          | 1.1602 | 1.92 | Q   |             |
| 14+55          | 1.1733 | 1.90 | Q   |             |
| 15+ 0          | 1.1863 | 1.89 | Q   |             |
| 15+ 5          | 1.1992 | 1.87 | Q   |             |
| 15+10          | 1.2119 | 1.85 | Q   |             |
| 15+15          | 1.2245 | 1.83 | Q   |             |
| 15+20          | 1.2369 | 1.80 | Q   |             |
| 15+25          | 1.2492 | 1.78 | Q   |             |
| 15+30          | 1.2613 | 1.76 | Q Q |             |
| 15+35          | 1.2732 | 1.73 | Q   |             |
| 15+40          | 1.2848 | 1.68 | Q   |             |
| 15+45          | 1.2958 | 1.61 | Q   |             |
| 15+50          | 1.3064 | 1.54 | Q   |             |
| 15+55          | 1.3168 | 1.51 | Q   |             |
| 16+ 0          | 1.3270 | 1.48 | Q   | l V         |
| 16+ 5          | 1.3369 | 1.43 | Q   |             |
| 16+10          | 1.3456 | 1.27 | Q   | l V         |
| 16+15          | 1.3526 | 1.01 | Q   |             |
| 16+20          | 1.3580 | 0.78 | Q   |             |
| 16+25          | 1.3625 | 0.66 | Q   |             |
| 16+30          | 1.3665 | 0.58 | Q   |             |
| 16+35          | 1.3702 | 0.53 | Q   |             |
| 16+40          | 1.3735 | 0.48 | Q   | l l v       |
| 16+45          | 1.3764 | 0.43 | Q   | l l v       |
| 16+50          | 1.3790 | 0.38 | Q   | V           |
|                |        |      |     |             |

| 16+55 | 1.3815 | 0.35 | Q  |       |   | V   |  |
|-------|--------|------|----|-------|---|-----|--|
| 17+ 0 | 1.3837 | 0.33 | Q  |       |   | V   |  |
| 17+ 5 | 1.3859 | 0.32 | Q  |       |   | V   |  |
| 17+10 | 1.3881 | 0.32 | Q  |       |   | V   |  |
| 17+15 | 1.3905 | 0.34 | Q  | Í     |   | V   |  |
| 17+20 | 1.3929 | 0.36 | ĮQ | Í     | ĺ | V   |  |
| 17+25 | 1.3954 | 0.36 | ĮQ | i     | İ | V   |  |
| 17+30 | 1.3979 | 0.36 | ĮQ | i     | İ | V   |  |
| 17+35 | 1.4004 | 0.36 | ĮQ | i     | İ | v   |  |
| 17+40 | 1.4029 | 0.36 | ĮQ | i     | İ | v   |  |
| 17+45 | 1.4054 | 0.36 | Į  | İ     | İ | vi  |  |
| 17+50 | 1.4079 | 0.36 | ĮQ | İ     | İ | vi  |  |
| 17+55 | 1.4103 | 0.35 | Į  | l     |   | vi  |  |
| 18+ 0 | 1.4125 | 0.33 | Į  | l     |   | vi  |  |
| 18+ 5 | 1.4147 | 0.32 | Į  | l     |   | vi  |  |
| 18+10 | 1.4168 | 0.31 | Į  | l l   | ĺ | v   |  |
| 18+15 | 1.4189 | 0.31 | Į  | l l   | l | v   |  |
| 18+20 | 1.4210 | 0.30 | Į  | l l   |   | v   |  |
| 18+25 | 1.4231 | 0.30 | Į  |       |   | v   |  |
| 18+30 | 1.4252 | 0.30 | Į  |       |   | v   |  |
| 18+35 | 1.4272 | 0.30 | Į  | 1     | 1 | v I |  |
| 18+40 | 1.4292 | 0.29 | ĮQ |       |   | v I |  |
| 18+45 | 1.4310 | 0.27 | ĮQ | 1     | 1 | v I |  |
| 18+50 | 1.4328 | 0.25 | Q  |       |   | v I |  |
| 18+55 | 1.4344 | 0.23 | Q  |       | 1 | V I |  |
| 19+ 0 | 1.4358 | 0.23 | Q  | 1     | 1 | V   |  |
| 19+ 5 | 1.4372 | 0.20 | Q  | 1     | 1 | V   |  |
| 19+10 | 1.4385 | 0.20 | Q  | I<br> | 1 | V I |  |
| 19+15 | 1.4399 | 0.20 | Q  |       | 1 | V I |  |
| 19+15 | 1.4414 | 0.20 | Q  | 1     | 1 | V   |  |
| 19+25 | 1.4430 | 0.22 | Q  | 1     | 1 | V I |  |
| 19+25 | 1.4447 | 0.25 | Q  | 1     | 1 | V I |  |
| 19+35 | 1.4465 | 0.25 | ĮQ | 1     | 1 | V I |  |
| 19+40 | 1.4483 | 0.20 |    | 1     | 1 | V I |  |
| 19+45 | 1.4500 | 0.25 |    | 1     | 1 | V I |  |
| 19+50 | 1.4516 | 0.23 | Q  | 1     | 1 | V I |  |
| 19+55 | 1.4531 | 0.23 |    | 1     | 1 | V I |  |
| 20+ 0 | 1.4545 | 0.22 | Q  | 1     | 1 | V I |  |
| 20+ 0 | 1.4557 | 0.18 | Q  | 1     | 1 | V I |  |
| 20+ 3 | 1.4570 | 0.18 | Q  | 1     | 1 | V I |  |
| 20+10 | 1.4584 | 0.19 | Q  | 1     | 1 | V I |  |
| 20+13 |        |      | Q  | 1     | 1 | V I |  |
|       | 1.4598 | 0.21 | Q  | l     | 1 | V I |  |
| 20+25 | 1.4612 | 0.21 | Q  | l     | 1 | V I |  |
| 20+30 | 1.4627 | 0.21 | Q  | l     | 1 |     |  |
| 20+35 | 1.4642 | 0.22 | Q  |       |   | V   |  |
| 20+40 | 1.4657 | 0.22 | Q  |       |   | V   |  |
| 20+45 | 1.4672 | 0.22 | Q  |       | 1 | V   |  |
| 20+50 | 1.4687 | 0.22 | Q  |       | 1 | V   |  |
| 20+55 | 1.4701 | 0.21 | Q  |       |   | V   |  |
| 21+ 0 | 1.4714 | 0.19 | Q  |       |   | V   |  |
| 21+ 5 | 1.4726 | 0.18 | Q  |       | 1 | V   |  |
| 21+10 | 1.4739 | 0.18 | Q  |       | 1 | V   |  |
| 21+15 | 1.4752 | 0.19 | Q  | I     | I | V   |  |
|       |        |      |    |       |   |     |  |

| 21+20          | 1.4766 | 0.20 | Q      | ļ   |     | V   | ļ  |
|----------------|--------|------|--------|-----|-----|-----|----|
| 21+25          | 1.4779 | 0.20 | Q      |     |     | V   |    |
| 21+30          | 1.4792 | 0.18 | Q      |     |     | V   |    |
| 21+35          | 1.4804 | 0.17 | Q      |     |     | \   | /  |
| 21+40          | 1.4816 | 0.18 | Q      |     |     | \   | /  |
| 21+45          | 1.4829 | 0.19 | Q      |     |     | \   | /  |
| 21+50          | 1.4843 | 0.20 | Q      |     |     | \   | /  |
| 21+55          | 1.4856 | 0.19 | Q      |     |     | \   | /  |
| 22+ 0          | 1.4868 | 0.18 | Q      | ĺ   | Í   | ۱ I | /  |
| 22+ 5          | 1.4880 | 0.17 | Q      | ĺ   | İ   | j N | /  |
| 22+10          | 1.4892 | 0.17 | Q      | ĺ   | İ   | j N | /  |
| 22+15          | 1.4905 | 0.19 | Q      | ĺ   | İ   | i N | /İ |
| 22+20          | 1.4919 | 0.20 | Q      | İ   | İ   | i v | /İ |
| 22+25          | 1.4932 | 0.19 | Q      | İ   | i   |     | /İ |
| 22+30          | 1.4945 | 0.18 | Q      | İ   | i   |     | /İ |
| 22+35          | 1.4956 | 0.17 | Q      | İ   | i   |     | /İ |
| 22+40          | 1.4967 | 0.16 | Q      | İ   | i   | i v |    |
| 22+45          | 1.4978 | 0.16 | Q      | İ   | i   | i v |    |
| 22+50          | 1.4989 | 0.16 | Q      | İ   | i   |     |    |
| 22+55          | 1.5000 | 0.15 | Q      | İ   | i   |     |    |
| 23+ 0          | 1.5010 | 0.15 | Q      | i   | i   |     |    |
| 23+ 5          | 1.5021 | 0.15 | Q      | i   | i   |     |    |
| 23+10          | 1.5031 | 0.15 | Q      | i   | i   |     |    |
| 23+15          | 1.5041 | 0.15 | Q      | ł   | ł   |     |    |
| 23+20          | 1.5052 | 0.15 | Q      | l l | ł   |     |    |
| 23+25          | 1.5062 | 0.15 | Q      |     |     |     |    |
| 23+30          | 1.5072 | 0.15 | Q      |     |     |     |    |
| 23+35          | 1.5082 | 0.15 | Q      |     | ł   |     |    |
| 23+40          | 1.5093 | 0.15 | Q      |     | l l |     |    |
| 23+40          | 1.5103 | 0.15 | Q      |     | ł   | -   |    |
| 23+50          | 1.5113 | 0.15 | Q      |     |     |     |    |
| 23+50          | 1.5123 | 0.15 | Q      |     | ł   |     |    |
| 24+ 0          | 1.5133 | 0.15 | Q      |     |     |     |    |
| 24+ 5          | 1.5143 | 0.13 | Q      |     | ł   |     |    |
| 24+10          | 1.5152 | 0.14 |        |     |     | •   | /  |
| 24+15          | 1.5158 | 0.09 | Q      |     | ł   |     |    |
| 24+15          | 1.5162 | 0.05 |        |     |     | !   | /  |
| 24+20          | 1.5165 | 0.00 | Q<br>Q |     |     |     | /  |
| 24+25          | 1.5167 | 0.04 | Q      |     |     |     |    |
| 24+35          | 1.5169 | 0.03 | Q      |     |     |     |    |
| 24+33          | 1.5171 | 0.03 |        |     |     |     | /  |
| 24+40          | 1.5172 | 0.02 | Q      |     |     |     | /  |
| 24+45<br>24+50 | 1.5172 | 0.02 | Q      |     |     |     |    |
|                |        |      | Q      |     |     |     |    |
| 24+55          | 1.5174 | 0.01 | Q      |     |     |     |    |
| 25+ 0<br>25+ 5 | 1.5175 | 0.01 | Q      |     |     |     | /  |
| 25+ 5          | 1.5176 | 0.01 | Q      |     |     |     | /  |
| 25+10<br>25+15 | 1.5176 | 0.01 | Q      |     |     |     | /  |
| 25+15          | 1.5177 | 0.01 | Q      | l   | ļ   |     | /  |
| 25+20          | 1.5177 | 0.01 | Q      |     | ļ   |     | /  |
| 25+25          | 1.5177 | 0.00 | Q      |     |     |     |    |
| 25+30          | 1.5177 | 0.00 | Q      |     | ļ   |     |    |
| 25+35          | 1.5178 | 0.00 | Q      |     |     |     | /  |
| 25+40          | 1.5178 | 0.00 | Q      | I   | I   | \   | /  |

| 25+45 | 1.5178 | 0.00 | Q |      |  | V |
|-------|--------|------|---|------|--|---|
| 25+50 | 1.5178 | 0.00 | Q |      |  | V |
| 25+55 | 1.5178 | 0.00 | Q |      |  | V |
|       |        |      |   | <br> |  |   |



| Prelim Basin Volum<br>Project:<br>Basin Description: | Pilot Perris |       |             |            |             |            |
|------------------------------------------------------|--------------|-------|-------------|------------|-------------|------------|
| Contour                                              | Contour      | Depth | Incremental | Cumulative | Incremental | Cumulative |
| Elevation                                            | Area         | (ft)  | Volume      | Volume     | Volume      | Volume     |
|                                                      | (sq. ft)     |       | Avg. End    | Avg. End   | Conic       | Conic      |
|                                                      |              |       | (cu. ft)    | (cu. ft)   | (cu. ft)    | (cu. ft)   |
| 1,416.300                                            | 36,306.67    | N/A   | N/A         | 0.00       | N/A         | 0.00       |
| 1,416.500                                            | 37,040.35    | 0.200 | 7334.70     | 7334.70    | 7334.58     | 7334.58    |
| 1,417.000                                            | 40,050.26    | 0.500 | 19272.65    | 26607.35   | 19267.75    | 26602.33   |
| 1,417.500                                            | 44,986.52    | 0.500 | 21259.19    | 47866.55   | 21247.24    | 47849.58   |
| 1,418.000                                            | 50,208.87    | 0.500 | 23798.85    | 71665.39   | 23786.90    | 71636.48   |
| 1,418.500                                            | 55,728.50    | 0.500 | 26484.34    | 98149.73   | 26472.35    | 98108.83   |
| 1,419.000                                            | 61,542.39    | 0.500 | 29317.72    | 127467.45  | 29305.70    | 127414.53  |
| 1,419.500                                            | 67,647.94    | 0.500 | 32297.58    | 159765.04  | 32285.55    | 159700.08  |
| 1,420.000                                            | 74,043.99    | 0.500 | 35422.98    | 195188.02  | 35410.95    | 195111.03  |
| 1,420.400                                            | 79,369.27    | 0.400 | 30682.65    | 225870.67  | 30676.49    | 225787.52  |
|                                                      |              |       |             |            |             |            |

# Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

#### How to use this worksheet (also see instructions in Section G of the WQMP Template):

- 1. Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site. Check each box that applies.
- 2. Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit.
- 3. Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP. Use the format shown in Table G.1on page 23 of this WQMP Template. Describe your specific BMPs in an accompanying narrative, and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here.

|                                                | E SOURCES WILL BE<br>PROJECT SITE                                    | THEN YOUR WOMP SHO                               | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE |                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1<br>Potential Sources of<br>Runoff Pollutants |                                                                      | 2<br>Permanent Controls—Show on<br>WQMP Drawings |                                                                        | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                                                                                                              |   | 4<br>Derational BMPs—Include in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                | A. On-site storm drain<br>inlets                                     | Locations of inlets.                             | <b>a</b>                                                               | Mark all inlets with the words<br>"Only Rain Down the Storm<br>Drain" or similar. Catch Basin<br>Markers may be available from the<br>Riverside County Flood Control<br>and Water Conservation District,<br>call 951.955.1200 to verify. |   | Maintain and periodically repaint or<br>replace inlet markings.<br>Provide stormwater pollution<br>prevention information to new site<br>owners, lessees, or operators.<br>See applicable operational BMPs in<br>Fact Sheet SC-44, "Drainage System<br>Maintenance," in the CASQA<br>Stormwater Quality Handbooks at<br>www.cabmphandbooks.com<br>Include the following in lease<br>agreements: "Tenant shall not allow<br>anyone to discharge anything to storm<br>drains or to store or deposit materials<br>so as to create a potential discharge to<br>storm drains." |  |  |  |  |
| ď                                              | <b>B</b> . Interior floor drains<br>and elevator shaft sump<br>pumps |                                                  | <b>\$</b>                                                              | State that interior floor drains and<br>elevator shaft sump pumps will be<br>plumbed to sanitary sewer.                                                                                                                                  | 1 | Inspect and maintain drains to prevent blockages and overflow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| ×                                              | C. Interior parking garages                                          |                                                  | ×                                                                      | State that parking garage floor<br>drains will be plumbed to the<br>sanitary sewer.                                                                                                                                                      | × | Inspect and maintain drains to prevent blockages and overflow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

|                                                | E SOURCES WILL BE<br>PROJECT SITE                          | THEN YOUR WOMP SH                                                                                                                                                                                                                                                                                                               | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                                                                                                                                                                                                                                                                                        |  |
|------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>Potential Sources of<br>Runoff Pollutants |                                                            | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative |                                                                                                                                                                                                                                                                                                        |  |
| <b>1</b>                                       | D1. Need for future<br>indoor & structural pest<br>control |                                                                                                                                                                                                                                                                                                                                 |                                                                        | Note building design features that discourage entry of pests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | Provide Integrated Pest Management<br>information to owners, lessees, and<br>operators.                                                                                                                                                                                                                |  |
|                                                | D2. Landscape/<br>Outdoor Pesticide Use                    | <ul> <li>Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained.</li> <li>Show self-retaining landscape areas, if any.</li> <li>Show stormwater treatment and hydrograph modification management BMPs. (See instructions in Chapter 3, Step 5 and guidance in Chapter 5.)</li> </ul> | ×<br>1<br>1<br>1<br>1<br>1<br>1                                        | State that final landscape plans will<br>accomplish all of the following.<br>Preserve existing native trees,<br>shrubs, and ground cover to the<br>maximum extent possible.<br>Design landscaping to minimize<br>irrigation and runoff, to promote<br>surface infiltration where<br>appropriate, and to minimize the<br>use of fertilizers and pesticides that<br>can contribute to stormwater<br>pollution.<br>Where landscaped areas are used to<br>retain or detain stormwater, specify<br>plants that are tolerant of saturated<br>soil conditions.<br>Consider using pest-resistant<br>plants, especially adjacent to<br>hardscape.<br>To insure successful establishment,<br>select plants appropriate to site<br>soils, slopes, climate, sun, wind,<br>rain, land use, air movement,<br>ecological consistency, and plant<br>interactions. | 1<br>1<br>1<br>1                                             | Maintain landscaping using minimum<br>or no pesticides.<br>See applicable operational BMPs in<br>"What you should know<br>forLandscape and Gardening" at<br>http://rcflood.org/stormwater/Error!<br>Hyperlink reference not valid.<br>Provide IPM information to new<br>owners, lessees and operators. |  |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE<br>1<br>Potential Sources of<br>Runoff Pollutants |                                                                                 |                                                  | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                                                                                                                                                                                                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                   |                                                                                 | 2<br>Permanent Controls—Show on<br>WQMP Drawings |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative | 4<br>Operational BMPs—Include in WQMI<br>Table and Narrative                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ×                                                                                                 | E. Pools, spas, ponds,<br>decorative fountains,<br>and other water<br>features. | ×                                                | Show location of water feature and<br>a sanitary sewer cleanout in an<br>accessible area within 10 feet.<br>(Exception: Public pools must be<br>plumbed according to County<br>Department of Environmental<br>Health Guidelines.)                                                                                                                                                                                                                                                                                                                             |                                                             | If the Co-Permittee requires pools<br>to be plumbed to the sanitary<br>sewer, place a note on the plans<br>and state in the narrative that this<br>connection will be made according<br>to local requirements.                          | × | See applicable operational BMPs in<br>"Guidelines for Maintaining Your<br>Swimming Pool, Jacuzzi and Garden<br>Fountain" at<br>http://rcflood.org/stormwater/                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                   | F. Food service                                                                 | 1                                                | For restaurants, grocery stores, and<br>other food service operations, show<br>location (indoors or in a covered<br>area outdoors) of a floor sink or<br>other area for cleaning floor mats,<br>containers, and equipment.<br>On the drawing, show a note that<br>this drain will be connected to a<br>grease interceptor before<br>discharging to the sanitary sewer.                                                                                                                                                                                        | 1                                                           | Describe the location and features<br>of the designated cleaning area.<br>Describe the items to be cleaned in<br>this facility and how it has been<br>sized to insure that the largest<br>items can be accommodated.                    |   | See the brochure, "The Food Service<br>Industry Best Management Practices for<br>Restaurants, Grocery Stores,<br>Delicatessens and Bakeries" at<br>http://rcflood.org/stormwater/<br>Provide this brochure to new site<br>owners, lessees, and operators.                                                                                                                                                                                                                                                                                                            |
|                                                                                                   | G. Refuse areas                                                                 | б<br>б                                           | Show where site refuse and<br>recycled materials will be handled<br>and stored for pickup. See local<br>municipal requirements for sizes<br>and other details of refuse areas.<br>If dumpsters or other receptacles<br>are outdoors, show how the<br>designated area will be covered,<br>graded, and paved to prevent run-<br>on and show locations of berms to<br>prevent runoff from the area.<br>Any drains from dumpsters,<br>compactors, and tallow bin areas<br>shall be connected to a grease<br>removal device before discharge to<br>sanitary sewer. | 1                                                           | State how site refuse will be<br>handled and provide supporting<br>detail to what is shown on plans.<br>State that signs will be posted on or<br>near dumpsters with the words "Do<br>not dump hazardous materials<br>here" or similar. |   | State how the following will be<br>implemented:<br>Provide adequate number of<br>receptacles. Inspect receptacles<br>regularly; repair or replace leaky<br>receptacles. Keep receptacles covered<br>Prohibit/prevent dumping of liquid of<br>hazardous wastes. Post "no hazardou<br>materials" signs. Inspect and pick up<br>litter daily and clean up spills<br>immediately. Keep spill control<br>materials available on-site. See Fact<br>Sheet SC-34, "Waste Handling and<br>Disposal" in the CASQA Stormwater<br>Quality Handbooks at<br>www.cabmphandbooks.com |

|                                                | SE SOURCES WILL BE<br>E PROJECT SITE | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE |                                                                                                                                                                                     |                                                                                                                                                                      |  |
|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>Potential Sources of<br>Runoff Pollutants |                                      | 2<br>Permanent Controls—Show on<br>WQMP Drawings                       | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                                                         | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                                         |  |
| ×                                              | H. Industrial processes.             | Show process area.                                                     | If industrial processes are to be<br>located on site, state: "All process<br>activities to be performed indoors.<br>No processes to drain to exterior or<br>to storm drain system." | See Fact Sheet SC-10, "Non-<br>Stormwater Discharges" in the<br>CASQA Stormwater Quality<br>Handbooks at<br>www.cabmphandbooks.com                                   |  |
|                                                |                                      |                                                                        |                                                                                                                                                                                     | See the brochure "Industrial &<br>Commercial Facilities Best Management<br>Practices for: Industrial, Commercial<br>Facilities" at<br>http://rcflood.org/stormwater/ |  |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE                                                                                                               | THEN YOUR WOMP SHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OULD INCLUDE THESE SOURCE CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROL BMPs, AS APPLICABLE                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>Potential Sources of<br>Runoff Pollutants                                                                                                                | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>Operational BMPs—Include in WQMF<br>Table and Narrative                                                                                                                                  |
| I. Outdoor storage of<br>equipment or materials.<br>(See rows J and K for<br>source control<br>measures for vehicle<br>cleaning, repair, and<br>maintenance.) | <ul> <li>Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent runon or run-off from area.</li> <li>Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults.</li> <li>Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site.</li> </ul> | <ul> <li>Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains.</li> <li>Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for:         <ul> <li>Hazardous Waste Generation</li> <li>Hazardous Materials Release Response and Inventory</li> <li>California Accidental Release (CalARP)</li> <li>Aboveground Storage Tank</li> <li>Uniform Fire Code Article 80 Section 103(b) &amp; (c) 1991</li> <li>Underground Storage Tank</li> </ul> </li> </ul> | See the Fact Sheets SC-31, "Outdoor<br>Liquid Container Storage" and SC-33<br>"Outdoor Storage of Raw Materials"<br>in the CASQA Stormwater Quality<br>Handbooks at<br>www.cabmphandbooks.com |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>Potential Sources of<br>Runoff Pollutants  | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                 | 4<br>Operational BMPs—Include in WQMF<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Y J. Vehicle and<br>Equipment Cleaning          | <ul> <li>Show on drawings as appropriate:         <ul> <li>(1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses.</li> <li>(2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shutoff to discourage such use).</li> <li>(3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer.</li> <li>(4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed.</li> </ul> </li></ul> | ✗ If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced. | <ul> <li>Describe operational measures to implement the following (if applicable):</li> <li>Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/</li> <li>Car dealerships and similar may rinse cars with water only.</li> </ul> |  |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE   | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1<br>Potential Sources of<br>Runoff Pollutants    | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| K. Vehicle/Equipment<br>Repair and<br>Maintenance | <ul> <li>Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater.</li> <li>Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas.</li> <li>Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained.</li> </ul> | <ul> <li>State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area.</li> <li>State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements.</li> <li>State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements.</li> </ul> | <ul> <li>In the Stormwater Control Plan, note that all of the following restrictions apply to use the site:</li> <li>No person shall dispose of, nor permitthe disposal, directly or indirectly of vehicle fluids, hazardous materials, or insewater from parts cleaning intostorm drains.</li> <li>No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except ir such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately</li> <li>No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment.</li> <li>Refer to "Automotive Maintenance &amp; Ca Care Best Management Practices for Aut Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater.</li> <li>Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/</li> </ul> |  |  |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE | THEN YOUR WOMP SHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OULD INCLUDE THESE SOURCE CONT                              | ROL BMPs, AS APPLICABLE                                                                                                                                                                                   |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>Potential Sources of<br>Runoff Pollutants  | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                                                                              |
| L. Fuel Dispensing<br>Areas                     | <ul> <li>Fueling areas<sup>6</sup> shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable.</li> <li>Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area<sup>1</sup>.] The canopy [or cover] shall not drain onto the fueling area.</li> </ul> |                                                             | <ul> <li>The property owner shall dry sweep the fueling area routinely.</li> <li>See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com</li> </ul> |

<sup>&</sup>lt;sup>6</sup> The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICAB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>Potential Sources of<br>Runoff Pollutants                                                                       | 2<br>Permanent Controls—Show on<br>WQMP Drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                                                                                                            |  |
| M. Loading Docks                                                                                                     | <ul> <li>Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer.</li> <li>Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation.</li> <li>Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer.</li> </ul> |                                                             | <ul> <li>Move loaded and unloaded items<br/>indoors as soon as possible.</li> <li>See Fact Sheet SC-30, "Outdoor<br/>Loading and Unloading," in the<br/>CASQA Stormwater Quality<br/>Handbooks at<br/>www.cabmphandbooks.com</li> </ul> |  |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE                                                                                                                                                                                                      | THEN YOUR WOMP SH                                | OULD INCLUDE THESE SOURCE CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROL BMPs, AS APPLICABLE                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>Potential Sources of<br>Runoff Pollutants                                                                                                                                                                                                       | 2<br>Permanent Controls—Show on<br>WQMP Drawings | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                          |
| M. Fire Sprinkler Test<br>Water                                                                                                                                                                                                                      |                                                  | Provide a means to drain fire<br>sprinkler test water to the sanitary<br>sewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See the note in Fact Sheet SC-41,<br>"Building and Grounds Maintenance,"<br>in the CASQA Stormwater Quality<br>Handbooks at<br>www.cabmphandbooks.com |
| <ul> <li>O. Miscellaneous Drain or Wash Water or Other Sources</li> <li>Boiler drain lines</li> <li>Condensate drain lines</li> <li>Rooftop equipment</li> <li>Drainage sumps</li> <li>Roofing, gutters, and trim.</li> <li>Other sources</li> </ul> |                                                  | <ul> <li>Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system.</li> <li>Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system.</li> <li>Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment.</li> <li>Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water.</li> <li>Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. Include controls for other sources as specified by local reviewer.</li> </ul> |                                                                                                                                                       |

| IF THESE SOURCES WILL BE<br>ON THE PROJECT SITE | THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE |                                                             |                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>Potential Sources of<br>Runoff Pollutants  | 2<br>Permanent Controls—Show on<br>WQMP Drawings                       | 3<br>Permanent Controls—List in WQMP<br>Table and Narrative | 4<br>Operational BMPs—Include in WQMP<br>Table and Narrative                                                                                                                                                                                                                                                                     |  |
| P. Plazas, sidewalks,<br>and parking lots.      |                                                                        |                                                             | Sweep plazas, sidewalks, and parking<br>lots regularly to prevent accumulation<br>of litter and debris. Collect debris from<br>pressure washing to prevent entry into<br>the storm drain system. Collect<br>washwater containing any cleaning<br>agent or degreaser and discharge to<br>the sanitary sewer not to a storm drain. |  |

## Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

### TO BE PROVIDED IN FINAL

## Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information

TO BE PROVIDED IN FINAL