
DANZA DEL SOL WINERY AIR QUALITY, GREENHOUSE GAS, AND ENERGY IMPACT STUDY County of Riverside, CA

DANZA DEL SOL WINERY AIR QUALITY, GREENHOUSE GAS, AND ENERGY IMPACT STUDY County of Riverside, California

Prepared for:

Mr. Ken Smith SMITH FAMILY TRUST 35879 Belle Chain Loop Temecula, CA 92592

Prepared by:

RK ENGINEERING GROUP, INC. 1401 Dove Street, Suite 540 Newport Beach, CA 92660

> Bryan Estrada, AICP Becca Morrison

February 28, 2023

Table of Contents

<u>Sect</u>	ion		<u>Page</u>
1.0	Intr	oduction	1-1
	1.1	Site Location	1-1
	1.2	Project Description	1-1
	1.3	Sensitive Receptors	1-2
	1.4	Summary of Air Quality and Greenhouse Gas Impacts	1-3
	1.5	Recommended Project Design Features	1-4
2.0	Air	Quality Setting	2-1
		Description of Air Pollutants	2-1
	2.2	Federal and State Ambient Air Quality Standards	2-4
	2.3	Attainment Status	2-6
	2.4	South Coast Air Quality Management District (SCAQMD)	2-7
		2.4.1 SCAQMD Rules and Regulations	2-8
		Local Climate and Meteorology	2-9
	2.6	Local Air Quality	2-10
3.0	Glo	bal Climate Change Setting	3-1
	3.1	Greenhouse Gases	3-2
		GHG Regulatory Setting – State of California	3-4
	3.3	GHG Emissions Inventory	3-5
4.0		deling Parameters and Assumptions	4-1
		Construction Assumptions	4-1
	4.2	Localized Construction Analysis Modeling Parameters	4-2
	4.3	Operational Assumptions	4-3
		4.3.1 Mobile Source Emissions	4-3
		4.3.2 Energy Source Emissions	4-4
		4.3.3 Area Source Emissions	4-5
		4.3.4 Other Sources of Operational Emissions	4-6
5.0		nificance Thresholds	5-1
		Air Quality Regional Significance Thresholds	5-1
	5.2	¬)	5-2
	5.3	GHG Significance Thresholds – County of Riverside CAP	5-3

Table of Contents (continued)

<u>Sect</u>	ion			Page
6.0	Air	Ouality	Impact Analysis	6-1
0.0	6.1		erm Air Quality Impacts - Construction	6-1
		6.1.1	Daily Emissions - Construction	6-1
		6.1.2	Localized Emissions - Construction	6-2
		6.1.3	Fugitive Dust - Construction	6-2
			Odors - Construction	6-3
		6.1.5	Asbestos - Construction	6-4
		6.1.6	Diesel Particulate Matter - Construction	6-4
	6.2	Long Te	erms Air Quality Impacts - Operation	6-6
		6.2.1	Daily Emissions - Operation	6-6
		6.2.2	Localized Emissions - Operation	6-7
		6.2.3	Odors – Operation	6-7
		6.2.4	Toxic Air Contaminants – Operation	6-8
	6.3	Project	Consistency with Local Regulations	6-8
		6.3.1	South Coast Air Quality Management Plan Consistency	6-8
		6.3.2	General Plan Consistency	6-8
7.0	Gre	enhouse	e Gas Impact Analysis	7-1
	7.1	Greenh	ouse Gas Emissions - Construction	7-1
	7.2	Greenh	ouse Gas Emissions - Operation	7-2
	7.3	Project	Consistency with Riverside County CAP	7-2
8.0	Ene	rgy lmp	act Analysis	8-1
	8.1	Study C	Dbjectives	8-1
	8.2	Energy	Impacts	8-1
			Energy Impact – A	8-1
		8.2.2	Energy Impact – B	8-2

List of Attachments

Exhibits

Location Map	Æ
<u>Tables</u>	
Land Use Summary	1
CEQA Air Quality Impact Criteria	2
CEQA GHG Impact Criteria	3
Federal and State Ambient Air Quality Standards (AAQS)	2
South Coast Air Basin Attainment Status	5
Meteorological Summary	6
Local Air Quality	7
Global Warming Potential of Greenhouse Gases	8
GHG Emissions Inventory	g
Construction Equipment Assumptions	10
Operational Vehicle Miles Traveled	11
Operational Vehicle Mix	12
Electricity and Natural Gas Usage	13
Operational Water Usage and Waste Generation	14
SCAQMD Air Quality Regional Significance Thresholds	15
SCAQMD Localized Significance Thresholds	16
Daily Construction Emissions	17
Localized Construction Emissions	18
Daily Operational Emissions	19
Localized Operational Emissions	20
Construction Greenhouse Gas Emissions	21
Operational Greenhouse Gas Emissions	22
Appendices	
CalEEMod Emission Calculations Outputs	A

1.0 Introduction

This report contains the analyses of air quality and greenhouse gas (GHG) emissions for the proposed Danza Del Sol Winery (hereinafter referred to as "project"). The analyses contained within this report were conducted within the context of the California Environmental Quality Act (CEQA, California Public Resources Code Sections 21000, et seq.).

The purpose of this air quality and GHG impact study is to determine whether the estimated criteria air pollutants and greenhouse gas emissions generated from the construction and operation of the proposed project would cause significant impacts to air resources. The assessment and methodology follow the California Air Resources Board (CARB), the South Coast Air Quality Management District (SCAQMD), and County of Riverside recommendations for quantification of emissions and evaluation of potential impacts.

1.1 Site Location

The proposed project is located at 39050 De Portola Road, in the Temecula Valley Wine Country Community Plan area of the unincorporated County of Riverside. The project site is approximately 34 gross acres and currently consists of the existing Danza Del Sol Winery, which includes a tasting room facility, wine club, wine production, and barrel storage building.

The project site is located within the South Coast Air Basin (SCAB), the SCAQMD Temecula/Anza General Forecast Area, and the Temecula Valley Air Monitoring Area-26.

The project location map is provided in Exhibit A.

1.2 **Project Description**

The proposed project consists of a lot merger and re-entitlements for the existing Danza Del Sol Winery. The project includes remodeling the existing tasting room, a conversion of the wine club room to be a second public tasting room with a new limited food service kitchen, and continuing to operate the existing wine production, storage, and office facilities. Additionally, the existing wine storage building (i.e., Barrel Room) will be remodeled into a special occasions facility, where the project proposes to host special events, such as weddings and group events.

The existing 3,800 square-foot (SF) public tasting room is planned to be remodeled, but the operations will remain unchanged (i.e., 3,248 SF tasing room, 552 SF Storage). The existing 3,925 SF members only wine club building will be converted into a second public tasting room. The building will be reconfigured to provide a 2,616 SF tasting room, 713 SF kitchen/storage area, and 596 SF office/bathroom area. Lastly, a new wine club patio area and a new 840 SF office will also be added. No new parking lot area will be added.

The site plan used for this analysis, provided by KENTINA LLC, is illustrated in Exhibit B. Table 1 summarizes the proposed project land uses.

Table 1 Land Use Summary

Project Land Use	CalEEMod Land Use Category	Quantity ¹	Metric
Wine Tasting Room & Patios	High Turnover (Sit-Down Restaurant)	3,925	Square Feet
General Office Building	General Office Building	840	Square Feet

The project is not expected to require any import or export of earthwork material during construction. The project is expected to be operational in the year 2024.

Construction of the project is estimated to begin in the year 2023 and last approximately 5 months. Construction activities are expected to consist of site preparation, grading, building construction, paving, and architectural coating.

1.3 <u>Sensitive Receptors</u>

Sensitive receptors are considered land uses or other types of population groups that are more sensitive to air pollution exposure. Sensitive population groups include children, the elderly, the acutely and chronically ill, and those with cardio-respiratory diseases. For CEQA purposes, the SCAQMD considers a sensitive receptor to be a location where a sensitive individual could remain for 24-hours or longer, such as residences, hospitals, and schools (etc), as described in the Localized Significance Threshold Methodology (SCAQMD 2008a, page 3-2).

The nearest sensitive land uses to the project site include the following:

• Existing residential homes located approximately 80 feet (~24 meters) east of the project site's eastern boundary, approximately 56 feet east of the centerline of De Portola Road.

- Existing Vina De Lestonnac Retreat located approximately 450 feet (~137 meters) northwest of the project's northwestern boundary, approximately 446 feet west of the centerline of De Portola Road.
- Existing residential homes located approximately 600 feet (~182 meters) northeast of the project's northern boundary, approximately 60 feet east of the centerline of De Portola Road.
- Existing residential homes located approximately 255 feet (~77 meters) south of the project site's southern boundary, approximately 55 feet northwest of the centerline of De Portola Road.

For conservative localized analysis purposes, the analysis considers sensitive receptors to be located less than 25 meters (82 feet) from the project site.

1.4 <u>Summary of Air Quality and Greenhouse Gas Impacts</u>

Table 2 provides a summary of the CEQA air quality impact analysis results.

Table 2
CEQA Air Quality Impact Criteria

	Air Quality Impact Criteria	Potentially Significant	Potentially Significant Unless Mitigated	Less Than Significant Impact	No Impact
Wo	ould the project:				
a)	Conflict with, or obstruct implementation of, the applicable air quality plan?			х	
c)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable Federal or State ambient air quality standard?			х	
d)	Expose sensitive receptors to substantial pollutant concentrations?			х	
e)	Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?			х	

Table 3 provides a summary of the CEQA GHG impact criteria analysis results.

Table 3 CEQA GHG Impact Criteria

GHG Impact Criteria		Potentially Significant	Potentially Significant Unless Mitigated	Less Than Significant Impact	No Impact
Wo	uld the project:				
a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			х	
b)	Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing emissions of greenhouse gases?			х	

1.5 Recommended Project Design Features

The following recommended project design features include standard dust control measures, construction best practices and building code requirements that are intended to reduce air quality and GHG emissions. Project design features are typically included as part of the conditions of approval for the project but are not considered mitigation under CEQA.

Construction Design Features:

- **DF-1** Follow the standard SCAQMD rules and requirements with regards to fugitive dust control, which includes, but are not limited to the following:
 - 1. Speed on unpaved roads shall be reduced to less than 15 mph.
 - 2. Any visible dirt deposition on any public roadway shall be swept or washed at the site access points within 30 minutes.
 - 3. Any on-site stockpiles of debris, dirt or other dusty material shall be covered or watered twice daily.
 - 4. All operations on any unpaved surface shall be suspended if winds exceed 15 mph.
 - 5. Access points shall be washed or swept daily.
 - 6. Construction sites shall be sandbagged for erosion control.
 - 7. Cover all trucks hauling dirt, sand, soil, or other loose materials, and maintain at least 2 feet of freeboard space in accordance with the requirements of California Vehicle Code (CVC) section 23114.
 - 8. Pave or gravel access points and use track-out grates.
 - 9. Replace the ground cover of disturbed areas as quickly possible.

- **DF-2** All construction vehicles shall be prohibited from excessive idling. Excessive idling is defined as five (5) minutes or longer.
- **DF-3** Minimize the simultaneous operation of multiple construction equipment units.
- **DF-4** Establish an electricity supply to the construction site and use electric powered equipment instead of diesel-powered equipment or generators, where feasible.
- **DF-5** Establish staging areas for the construction equipment that are as distant as possible from adjacent sensitive receptors.
- **DF-6** Utilize zero VOC and low VOC paints and solvents, where feasible.

Operational Design Features

- **DF-7** To prevent dirt track-out onto De Portola Road at the southerly unpaved access point, the project should do either one of the following measures:
 - a. Install a pad consisting of washed gravel (minimum-size: one inch) maintained in a clean condition to a depth of at least six inches and extending as wide as the driveway apron and at least 50 feet long down the driveway throat, or;
 - b. Install pavement extending as wide as the driveway apron and at least 100 feet long down the driveway throat.
- DF-8 Comply with the mandatory requirements of the California Building Standards Code, Title 24, Part 6 (Energy Code) and Part 11 (CALGreen), including, but not limited to:
 - Install low flow fixtures and toilets, water efficient irrigation systems, drought tolerant/native landscaping, and reduce the amount of turf.
 - Provide the necessary infrastructure to support electric vehicle charging.
- **DF-9** The project will include rooftop solar panels as a source of on-site renewable energy.

2.0 Air Quality Setting

The Federal Clean Air Act (§ 7602) defines air pollution as any agent or combination of such agents, including any physical, chemical, biological, or radioactive substance which is emitted into or otherwise enters the ambient air. Household combustion devices, motor vehicles, industrial facilities and forest fires are common sources of air pollution. Air pollution can cause disease, allergies and even death. It affects soil, water, crops, vegetation, manmade materials, animals, wildlife, weather, visibility, and climate. It can also cause damage to and deterioration of property, present hazards to transportation, and negatively impact the economy.

This section provides background information on criteria air pollutants, the applicable federal, state and local regulations concerning air pollution, and the existing physical setting of the project within the context of local air quality.

2.1 <u>Description of Air Pollutants</u>¹.

The following section describes the air pollutants of concern related to the project. Criteria air pollutants are defined as those pollutants for which the federal and state governments have established air quality standards for outdoor or ambient concentrations to protect public health. The following descriptions of criteria air pollutants have been provided by the SCAQMD.

• Carbon Monoxide (CO) is a colorless, odorless, toxic gas produced by incomplete combustion of carbon-containing fuels (e.g., gasoline, diesel fuel, and biomass). Sources include motor vehicle exhaust, industrial processes (metals processing and chemical manufacturing), residential wood burning, and natural sources. CO is somewhat soluble in water; therefore, rainfall and fog can suppress CO conditions. CO enters the body through the lungs, dissolves in the blood, and competes with oxygen, often replacing it in the blood, thus reducing the blood's ability to transport oxygen to vital organs in the body. The ambient air quality standard for carbon monoxide is intended to protect persons whose medical condition already compromises their circulatory system's ability to deliver oxygen. These medical conditions include certain heart ailments, chronic lung diseases, and anemia. Persons with these conditions have reduced exercise capacity even when exposed to relatively low levels of CO. Fetuses are at risk because their blood has an even greater affinity to bind with CO. Smokers are also at risk from ambient CO levels because smoking

¹ SCAQMD. Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning (May 6, 2005)

2-1

increases the background level of CO in their blood. The South Coast basin has recently achieved attainment status for carbon monoxide by both USEPA and CARB.

- Nitrogen Dioxide (NO₂) is a byproduct of fuel combustion. The principal form of nitrogen oxide produced by combustion is nitric oxide (NO), but NO reacts quickly to form NO₂, creating the mixture of NO and NO₂ commonly called NO_x. NO₂ acts as an acute irritant and, in equal concentrations, is more injurious than NO. At atmospheric concentrations, however, NO₂ is only potentially irritating. There is some indication of a relationship between NO₂ and chronic pulmonary fibrosis. Some increase in bronchitis in young children has also been observed at concentrations below 0.3 parts per million (ppm). NO₂ absorbs blue light which results in a brownish red cast to the atmosphere and reduced visibility. Although NO₂ concentrations have not exceeded national standards since 1991 and the state hourly standard since 1993, NO_x emissions remain of concern because of their contribution to the formation of O₃ and particulate matter.
- Ozone (O₃) is one of several substances called photochemical oxidants that are formed when volatile organic compounds (VOC) and NO_x react in the presence of ultraviolet sunlight. O₃ concentrations in the South Coast basin are typically among the highest in the nation, and the damaging effects of photochemical smog, which is a popular name for a number of oxidants in combination, are generally related to the concentrations of O₃. Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the subgroups most susceptible to O₃ effects. Short-term exposures (lasting for a few hours) to O₃ at levels typically observed in southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. In recent years, a correlation between elevated ambient O₃ levels and increases in daily hospital admission rates, as well as mortality, has also been reported. The South Coast Air Basin is designated by the USEPA as an extreme nonattainment area for ozone. Although O₃ concentrations have declined substantially since the early 1990s, the South Coast basin continues to have peak O₃ levels that exceed both state and federal standards.
- Fine Particulate Matter (PM₁₀) consists of extremely small, suspended particles or droplets 10 microns or smaller in diameter that can lodge in the lungs, contributing to respiratory problems. PM₁₀ arises from such sources as re-entrained road dust, diesel soot, combustion products, tire and brake abrasion, construction operations, and fires. It is also formed in the atmosphere from NO_x and SO₂ reactions with ammonia. PM₁₀ scatters light and significantly reduces visibility. Inhalable particulates

pose a serious health hazard, alone or in combination with other pollutants. More than half of the smallest particles inhaled will be deposited in the lungs and can cause permanent lung damage. Inhalable particulates can also have a damaging effect on health by interfering with the body's mechanism for clearing the respiratory tract or by acting as a carrier of an absorbed toxic substance. The South Coast basin has recently achieved federal attainment status for PM₁₀, but is non-attainment based on state requirements.

- **Ultra-Fine Particulate Matter (PM_{2.5})** is defined as particulate matter with a diameter less than 2.5 microns and is a subset of PM₁₀. PM_{2.5} consists mostly of products from the reaction of NO_x and SO₂ with ammonia, secondary organics, finer dust particles, and the combustion of fuels, including diesel soot. PM_{2.5} can cause exacerbation of symptoms in sensitive patients with respiratory or cardiovascular disease, declines in pulmonary function growth in children, and increased risk of premature death from heart or lung diseases in the elderly. Daily fluctuations in PM_{2.5} levels have been related to hospital admissions for acute respiratory conditions, school absences, and increased medication use in children and adults with asthma. The South Coast basin is designated as non-attainment for PM_{2.5} by both federal and state standards.
- **Sulfur Dioxide (SO₂)** is a colorless, pungent gas formed primarily by the combustion of sulfur-containing fossil fuels. Health effects include acute respiratory symptoms and difficulty in breathing for children. Individuals with asthma may experience constriction of airways with exposure to SO₂. Though SO₂ concentrations have been reduced to levels well below state and federal standards, further reductions in SO₂ emissions are needed because SO₂ is a precursor to sulfate and PM₁₀. The South Coast basin is considered a SO₂ attainment area by USEPA and CARB.
- Lead (Pb) is a toxic heavy metal that can be emitted into the air through some industrial processes, burning of leaded gasoline and past use of lead-based consumer products. Lead is a neurotoxin that accumulates in soft tissues and bones, damages the nervous system, and causes blood disorders. It is particularly problematic in children, in that permanent brain damage may result, even if blood levels are promptly normalized with treatment. Concentrations of lead once exceeded the state and federal air quality standards by a wide margin, but as a result of the removal of lead from motor vehicle gasoline, ambient air quality standards for lead have not been exceeded since 1982. Though special monitoring sites immediately downwind of lead sources recorded localized violations of the state standard in 1994, no violations have been recorded since. Consequently, the South Coast basin is designated as an attainment area for lead by both the USEPA and CARB. This report

does not analyze lead emissions from the project, as it is not expected to emit lead in any significant measurable quantity.

- Volatile Organic Compounds (VOC), although not actually a criteria air pollutant, VOCs are regulated by the SCAQMD because they cause chemical reactions which contribute to the formation of ozone. VOCs are also transformed into organic aerosols in the atmosphere, contributing to higher PM₁₀ and lower visibility levels. Sources of VOCs include combustion engines, and evaporative emissions associated with fuel, paints and solvents, asphalt paving, and the use of household consumer products such as aerosols. Although health-based standards have not been established for VOCs, health effects can occur from exposures to high concentrations of VOC. Some hydrocarbon components classified as VOC emissions are hazardous air pollutants. Benzene, for example, is a hydrocarbon component of VOC emissions that are known to be a human carcinogen. The term reactive organic gases (ROG) are often used interchangeably with VOC.
- Toxic Air Contaminants (TACs) are defined as air pollutants which may cause or contribute to an increase in mortality or serious illness, or which may pose a hazard to human health, and for which there is no concentration that does not present some risk. This contrasts with the criteria pollutants, in that there is no threshold level for TAC exposure below which adverse health impacts are not expected to occur. The majority of the estimated health risk from TACs can be attributed to a relatively few compounds, the most common being diesel particulate matter (DPM) from diesel engine exhaust. In addition to DPM, benzene and 1,3-butadiene are also significant contributors to overall ambient public health risk in California.

2.2 <u>Federal and State Ambient Air Quality Standards</u>

The Federal Clean Air Act, which was last amended in 1990, requires the EPA to set National Ambient Air Quality Standards (NAAQS) for criteria pollutants considered harmful to public health and the environment. The State of California has also established additional and more stringent California Ambient Air Quality Standards (CAAQS) in addition to the seven criteria pollutants designated by the federal government.

AAQS are designed to protect the health and welfare of the populace with a reasonable margin of safety. The standards are divided into two categories, primary standards, and secondary standards. Primary standards are implemented to provide protection for the "sensitive" populations such as those with asthma, or the children and elderly. Secondary standards are to provide protection against visible pollution as well as damage to the surrounding environment, including animals, crops, and buildings.

Table 4
Federal and State Ambient Air Quality Standards (AAQS)¹

		unbiencial quality sta	
Air Pollutant	Averaging Time ²	Federal Standard (NAAQS) ²	California Standard (CAAQS) ²
	1 Hour		0.09 ppm
Ozone	8 Hour	0.070 ppm	0.070 ppm
Carbon Monoxide	1 Hour	35 ppm	20 ppm
(CO)	8 Hour	9 ppm	9 ppm
Nitrogen Dioxide	1 Hour	0.100 ppm	0.18 ppm
(NO_2)	Annual	0.053 ppm	0.030 ppm
	1 Hour	0.075 ppm	0.25 ppm
Sulfur Dioxide (SO ₂)	3 Hour	0.5 ppm³	
. 27	24 Hour		0.04 ppm
Particulate Matter	24 Hour	150 μg/m³	50 μg/m³
(PM ₁₀)	Mean		20 μg/m³
Particulate Matter	24 Hour	35 μg/m³	
(PM2.5)	Annual	12 μg/m³	12 μg/m³
	30-day		1.5 μg/m
Lead	Quarter	1.5 μg/m	
	3-month average	0.15 μg/m	
Visibility reducing particles	8 Hour		0.23/km extinction coefficient. (10-mile visibility standard)
Sulfates	24 Hour		25 μg/m
Vinyl chloride	24 Hour		0.01 ppm
Hydrogen sulfide	24 Hour		0.03 ppm

¹ Source: USEPA: https://www.epa.gov/criteria-air-pollutants/naaqs-table and CARB: https://ww2.arb.ca.gov/resources/california-ambient-air-quality-standards

³ Secondary standards

 $^{^2}$ ppm = parts per million of air, by volume; μ g/m3 = micrograms per cubic meter; Annual = Annual Arithmetic Mean; 30-day = 30-day average; Quarter = Calendar quarter.

Several pollutants listed in Table 4 are not addressed in this analysis. Lead is not included because the project is not anticipated to emit lead. Visibility-reducing particles are not explicitly addressed in this analysis because particulate matter is addressed. The project is not expected to generate or be exposed to vinyl chloride because proposed project uses do not utilize the chemical processes that create this pollutant. The proposed project is not expected to cause exposure to hydrogen sulfide because it would not generate hydrogen sulfide in any substantial quantity.

2.3 <u>Attainment Status</u>

The Clean Air Act requires states to prepare a State Implementation Plan (SIP) to ensure air quality meets the NAAQS. The California Air Resources Board (CARB) provides designations of attainment for air basins where AAQS are either met or exceeded. If the AAQS are met, the area is designated as being in "attainment", if the air pollutant concentrations exceed the AAQS, than the area is designated as being "nonattainment". If there is inadequate or inconclusive data to make a definitive attainment designation, the area is considered "unclassified."

National nonattainment areas are further designated as marginal, moderate, serious, severe, or extreme as a function of deviation from standards. Each standard has a different definition, or 'form' of what constitutes attainment, based on specific air quality statistics. For example, the Federal 8-hour CO standard is not to be exceeded more than once per year; therefore, an area is in attainment of the CO standard if no more than one 8-hour ambient air monitoring values exceeds the threshold per year. In contrast, the federal annual PM_{2.5} standard is met if the three-year average of the annual average PM_{2.5} concentration is less than or equal to the standard.

When a state submits a request to the EPA to re-designate a nonattainment area to attainment, the Clean Air Act (CAA) section 175A(a) requires that the state (or states, if the area is a multi-state area) submit a maintenance plan ensuring the area can maintain the air quality standard for which the area is to be re-designated for at least 10 years following the effective date of re-designation.

Table 5 lists the attainment status for the criteria pollutants in the South Coast Air Basin (SCAB).

Table 5
South Coast Air Basin Attainment Status¹

Pollutant	State Status	National Status
Ozone	Nonattainment	Nonattainment (Extreme) ²
Carbon monoxide	Attainment	Attainment (Maintenance)
Nitrogen dioxide	Attainment	Attainment (Maintenance)
PM10	Nonattainment	Attainment (Maintenance)
PM2.5	Nonattainment	Nonattainment
Lead	Attainment	Nonattainment (Partial) ³
Sulfur Dioxide	Attainment	Unclassified/Attainment

¹ Source: California Air Resources Board. http://www.arb.ca.gov/desig/adm/adm.htm

2.4 <u>South Coast Air Quality Management District (SCAQMD)</u>

The agency responsible for air pollution control for the South Coast Air Basin (SCAB) is the South Coast Air Quality Management District (SCAQMD). SCAQMD is responsible for controlling emissions primarily from stationary sources. SCAQMD maintains air quality monitoring stations throughout the SCAB. SCAQMD, in coordination with the Southern California Association of Governments, is also responsible for developing, updating, and implementing the Air Quality Management Plan (AQMP) for the SCAB. An AQMP is a plan prepared and implemented by an air pollution district for a county or region designated as nonattainment of the federal and/or California ambient air quality standards. The term nonattainment area is used to refer to an air basin where one or more ambient air quality standards are exceeded.

The latest version is the 2022 AQMP, adopted in December 2022. The 2022 AQMP is a regional blueprint for achieving the federal air quality standards and healthful air. While air quality has dramatically improved over the years, the SCAB still exceeds federal public health standards for both ozone and particulate matter (PM) and experiences some of the worst air pollution in the nation. The 2022 AQMP includes both stationary and mobile source strategies to ensure that rapidly approaching attainment deadlines are met, that public health is protected to the maximum extent feasible, and that the region is not faced with burdensome sanctions if the Plan is not approved or if the NAAQS are not met on time.

² 8-Hour Ozone.

³ Partial Nonattainment designation – Los Angeles County portion of Basin only.

According to the 2022 AQMP, the most significant air quality challenge in the SCAB is to reduce nitrogen oxide (NOx) emissions sufficiently to meet the upcoming ozone standard deadlines. Based on the inventory and modeling results, the 2022 AQMP projects that 184 tons per day (tpd) of NOx will be emitted in the year 2037 as a result of continued implementation of already adopted regulatory actions ("baseline emissions"). The analysis suggests that in order to meet the ozone standard of 60 tpd, NOx emissions need to be reduced about 67 percent beyond the projected 2037 baseline emissions and about 83 percent below current levels².

2.4.1 SCAQMD Rules and Regulations

The SCAQMD establishes a program of rules and regulations to obtain attainment of the state and federal standards in conjunction with the AQMP. Several of the rules and regulations that may be applicable to this project include, but are not limited to, the following:

- **SCAQMD Rule 402** prohibits a person from discharging from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property.
- SCAQMD Rule 403 governs emissions of fugitive dust during construction and operation activities. Compliance with this rule is achieved through application of standard Best Management Practices, such as application of water or chemical stabilizers to disturbed soils, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 miles per hour, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph, and establishing a permanent ground cover on finished sites.
- SCAQMD Rule 445 restricts wood burning devices from being installed into any new development and is intended to reduce the emissions of particulate matter for wood burning devices.
- **SCAQMD Rule 1113** governs the sale, use, and manufacturing of architectural coating and limits the VOC content in paints and paint solvents. This rule regulates the VOC content of paints available during construction. Therefore, all paints and

engineering group, inc.

2-8

² Source: *2022 Air Quality Management Plan*, South Coast Air Quality Management District, Adopted December 2, 2022.

solvents used during construction and operation of project must comply with Rule 1113.

- **SCAQMD Rule 1143** governs the manufacture, sale, and use of paint thinners and solvents used in thinning of coating materials, cleaning of coating application equipment, and other solvent cleaning operations by limiting their VOC content. This rule regulates the VOC content of solvents used during construction. Solvents used during the construction phase must comply with this rule.
- **SCAQMD Rule 1186** limits the presence of fugitive dust on paved and unpaved roads and sets certification protocols and requirements for street sweepers that are under contract to provide sweeping services to any federal, state, county, agency or special district such as water, air, sanitation, transit, or school district.

2.5 <u>Local Climate and Meteorology</u>

The project is located in the South Coast Air Basin (SCAB). Climatological data from the years 1893 to 2016 at the Sun City, California Monitoring Station (048655) is summarized in Table 6. The Sun City station is located approximately 15 miles from the project site and is the nearest monitoring location.

Table 6 Meteorological Summary¹

Temperature (°F) Mean Precipitation					
Month		Mean Precipitation			
MOITH	Max.	Min.	Mean	(inches)	
January	66.1	36.3	51.1	2.66	
February	68.4	38.7	53.5	3.25	
March	69.6	41.1	55.4	1.96	
April	76.7	44.4	60.5	0.66	
May	82.1	49.6	65.9	0.31	
June	91.9	54.0	72.9	0.05	
July	97.4	58.9	78.1	0.03	
August	98.0	59.4	78.7	0.24	
September	92.6	57.5	75.0	0.15	
October	84.2	49.2	66.8	0.25	
November	73.8	39.8	56.8	0.66	
December	67.6	34.5	51.0	1.02	
Annual	80.7	46.9	63.8	11.22	

¹ Source: Western Regional Climate Center 2016-2022. Averages derived from measurements recorded between 1893 and 2016 at Sun City, (048655).

2.6 Local Air Quality

The air quality at any site is dependent on the regional air quality and local pollutant sources. Regional air quality is determined by the release of pollutants throughout the air basin.

The SCAQMD has divided the SCAB into fourteen general forecasting areas and thirty eight Source Receptor Areas (SRA) for monitoring and reporting local air quality. The SCAQMD provides daily reports of the current air quality conditions in each general forecast area and SRA. The monitoring areas provide a general representation of the local meteorological, terrain, and air quality conditions within the SCAB.

The project is located within the Temecula/Anza Area general forecasting area and Temecula Valley air monitoring area (SRA-26). For air quality data do not present within Temecula Valley air monitoring station, air quality data is derived from the nearest adjacent stations such as Lake Elsinore (SRA-25) and Metropolitan Riverside Station 1 (SRA-23).

Table 7 summarizes the published air quality monitoring for the most recent 3-year period available. These pollutant levels were used to comprise a "background" for the project location and existing local air quality.

Table 7 Local Air Quality

Air Pollutant Location	Averaging Time	ltem	2019	2020	2021
		Max 1-Hour (ppm)	1.6	0.9	0.9
	1 Hour	Exceeded State Standard (20 ppm)	No	No	No
Carbon Monoxide		Exceeded National Standard (35 ppm)	No	No	No
		Max 8 Hour (ppm)	0.7	0.7	0.8
Lake Elsinore	8 Hour	Days > State Standard (9 ppm)	No	No	No
		Days >National Standard (9 ppm)	No	No	No
	4.11	Max 1-Hour (ppm)	0.091	0.108	0.095
Ozone	1 Hour	Days > State Standard (0.09 ppm)	0.0	5.0	1.0
		Max 8 Hour (ppm)	0.079	0.091	0.083
Temecula Valley	8 Hour	Days > State Standard (0.070 ppm)	6	37	11
		Days >National Standard (0.070 ppm)	6	37	10
	4.11	Max 1-Hour (ppm)	0.038	0.044	0.044
Nitrogen Dioxide	1 Hour	Exceeded State Standard (0.18 ppm)	No	No	No
		Annual Average (ppm)	0.007	0.007	0.007
Lake Elsinore	Annual	Exceeded State Standard (0.030 ppm)	No	No	No
		Exceeded National Standard (0.053 ppm)	No	No	No
Sulfur Dioxide		Max 1 Hour (ppm)	0.0018	0.0022	0.0021
 Metropolitan	1 Hour	Exceeded State Standard (0.25 ppm)	No	No	No
Riverside County 1		Exceeded National Standard (0.075 ppm)	No	No	No
		Max 24-Hour (μg/m³)	93	84	89
Suspended	24 Hour	Days $>$ State Standard (50 μ g/m³)	5	7	4
Particles (PM10)		Days >National Standard (150 μg/m³)	0	0	0
Lake Elsinore	Annual	Annual Average (μg/m³)	18.70	22.00	21.40
	Allitual	Exceeded State Standard (20 μ g/m³)	No	Yes	Yes
F. 5 1 .	24 Hour	Max 24-Hour (μg/m³)	46.70	41.00	82.10
Fine Particulates (PM2.5)	∠ 4 110u1	Days $>$ National Standard (35 μ g/m³)	4	4	10
		Annual Average (µg/m³)	11.13	12.63	12.58
Metropolitan Riverside County 1	Annual	Exceeded State Standard (12 μ g/m ³)	No	Yes	Yes
verside Courty 1		Exceeded National Standard (15 μ g/m³)	No	No	0.9 No No 0.8 No 0.095 1.0 0.083 11 10 0.044 No 0.007 No No 0.0021 No No 89 4 0 21.40 Yes 82.10 10 12.58

Source: https://www.aqmd.gov/home/air-quality/historical-air-quality-data/historical-data-by-year

 $\mu g/m^3 = micrograms$ per cubic meter ARB = California Air Resource Board EPA= Environmental Protection Agency

ppm = part per million (- -) = Data not provided

3.0 Global Climate Change Setting

Global climate change is the change in the average weather of the earth that is measured by such things as alterations in temperature, wind patterns, storms, and precipitation. Current data shows that the recent period of warming is occurring more rapidly than past geological events. The average global surface temperature has increased by approximately 1.4° Fahrenheit since the early 20th Century. 1.4° Fahrenheit may seem like a small change, but it's an unusual event in Earth's recent history, and as we are seeing, even small changes in temperature can cause enormous changes in the environment.

The planet's climate record, preserved in tree rings, ice cores, and coral reefs, shows that the global average temperature has been stable over long periods of time. For example, at the end of the last ice age, when the Northeast United States was covered by more than 3,000 feet of ice, average global temperatures were only 5° to 9° Fahrenheit cooler than today. The Intergovernmental Panel on Climate Change (IPCC), which includes more than 1,300 scientists from the United States and other countries, forecasts a temperature rise of 2.5° to 10° Fahrenheit over the next century. Therefore, significant changes to the environment are expected in the near future.

The consequences of global climate change include more frequent and severe weather, worsening air pollution by increasing ground level ozone, higher rates of plant and animal extinction, more acidic and oxygen depleted oceans, strain on food and water resources, and threats to densely populated coastal and low lying areas from sea level rise.

The impacts of climate change are already visible in the Southwest United States. In California, the consequences of climate change include;

- A rise in sea levels resulting in the displacement of coastal businesses and residencies
- A reduction in the quality and supply of water from the Sierra snowpack
- Increased risk of large wildfires
- Exacerbation of air quality problems
- Reductions in the quality and quantity of agricultural products
- An increased temperature and extreme weather events
- A decrease in the health and productivity of California's forests

3.1 Greenhouse Gases

GHGs comprise less than 0.1 percent of the total atmospheric composition, yet they play an essential role in influencing climate. Greenhouse gases include naturally occurring compounds such as carbon dioxide (CO₂), methane (CH₄), water vapor (H₂O), and nitrous oxide (N₂O), while others are synthetic. Man-made GHGs include the chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs) and Perfluorocarbons (PFCs), as well as sulfur hexafluoride (SF₆). Different GHGs have different effects on the Earth's warming. GHGs differ from each other in their ability to absorb energy (their "radiative efficiency") and how long they stay in the atmosphere, also known as the "lifetime".

The Global Warming Potential (GWP) was developed to allow comparisons of the global warming impacts of different gases. Specifically, it is a measure of how much energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the emissions of 1 ton of CO₂. The larger the GWP, the more that a given gas warms the Earth compared to CO₂ over that time period. The time period usually used for GWPs is 100 years. GWPs provide a common unit of measure, which allows analysts to add up emissions estimates of different gases and allows policymakers to compare emissions reduction opportunities across sectors and gases.

Table 8 lists the 100-year GWP of GHGs from the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) and IPCC sixth (6th) assessment report (AR6).

Table 8
Global Warming Potential of Greenhouse Gases^{1, 2}

Gas Name	Formula	Lifetime (years)	GWP
Carbon Dioxide	CO ₂		1
Mathana	CH4 (Fossil Origin)	12	29.8
Methane	CH ₄ (Non-Fossil Origin)	12	27.2
Nitrous Oxide	N₂O	114	273
Sulphur Hexafluoride	SF ₆	3200	23,500
Nitrogen Trifluoride	NF₃	740	16,100
Chlorofluorocarbon (CFC-11)	CFC-11	52	8,321
Hexafluoroethane (PFC-116)	C ₂ F ₆	10,000	11,100
Octafluoropropane (PFC-218)	C₃F ₈	2,600	8,900
Octafluorocyclobutane (PFC-318)	C₄F ₈	3,200	9,540
Tetrafluoromethane (PFC-14)	CF ₄	50,000	5,301
Hydrofluorocarbon 125	HFC-125	29	3,170
Hydrofluorocarbon 134a	HFC-134a	14	1,526
Hydrofluorocarbon 143a	HFC-143a	52	4,800
Hydrofluorocarbon 152a	HFC-152a	1	138
Hydrofluorocarbon 227ea	HFC-227ea	34	3,350
Hydrofluorocarbon 23	HFC-23	270	12,400
Hydrofluorocarbon 236fa	HFC-236fa	240	8,060
Hydrofluorocarbon 245fa	HFC-245fa	8	858
Hydrofluorocarbon 32	HFC-32	5	771
Hydrofluorocarbon 365mfc	HFC-365mfc	9	804
Hydrofluorocarbon 43-10mee	HFC-43-10mee	16	1,650

¹ Source: IPCC Sixth Assessment Report (AR6),

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf & https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

² GWPs are used to convert GHG emission values to "carbon dioxide equivalent" (CO₂e) units

3.2 GHG Regulatory Setting – State of California

The State of California has been a leader in climate change legislation and has passed numerous bills to reduce greenhouse gas emissions across all sectors of the economy. Some of the key climate legislation and regulation in the State include the following:

- Assembly Bill (AB) 32, California Global Warming Solutions Act of 2006. AB 32 set the stage for the State's transition to a sustainable, low-carbon future. AB 32 was the first program in the country to take a comprehensive, long-term approach to addressing climate change.³
- Senate Bill (SB) 375, Sustainable Communities & Climate Protection Act of 2008. SB 375 requires the Air Resources Board to develop regional greenhouse gas emission reduction targets for passenger vehicles GHG reduction targets for 2020 and 2035 for each region covered by the State's 18 metropolitan planning organizations.⁴
- Senate Bill (SB) 100, California Renewables Portfolio Standard Program. SB 100 established a landmark policy requiring renewable energy and zero-carbon resources supply 100 percent of electric retail sales to end-use customers by 2045.⁵
- California Building Standards Code Title 24. The California Building Standards Code Title 24 Part 6 (Energy Code) and Title 24 Part 11 (CALGreen) requires multiple building provisions to reduce energy usage and GHG emissions and is updated on a triennial basis.

⁵ California Energy Commission. SB 100 Joint Agency Report. https://www.energy.ca.gov/sb100

3-4

³ California Air Resources Board. AB 32 Global Warming Solutions Act of 2006. https://ww2.arb.ca.gov/resources/fact-sheets/ab-32-global-warming-solutions-act-2006

⁴ California Air Resources Board. Sustainable Communities and Climate Protection Program. https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-climate-protection-program/about

3.3 **GHG Emissions Inventory**

Table 9 shows the latest GHG emission inventories at the national, state, regional and local levels.

Table 9
GHG Emissions Inventory¹

United States (2019) ²	State of California	SCAG	County of Riverside
	(2019) ³	(2020) ⁴	(2030) ⁵
6,558 MMTCO₂e	418 MMTCO₂e	216.4 MMTCO₂e	6.37 MMTCO₂e

¹ MMTCO₂e = Million Metric Tons of Carbon Dioxide Equivalent

² https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

³ https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000_2019/ghg_inventory_trends_00-19.pdf

⁴ http://www.scag.ca.gov/programs/Pages/GreenhouseGases.aspx. Projected Emission from SACG - Regional GHG Inventory and Reference Case Projections, 1990-2035, dated May 30, 2012.

⁵ <u>https://planning.rctlma.org/Portals/14/CAP/2019/2019_CAP_Update_Full.pdf</u>. Estimated 2030 BAU Emissions.

4.0 Modeling Parameters and Assumptions

The California Emissions Estimator Model Version 2022.1.1 (CalEEMod) was used to calculate criteria air pollutants and GHG emissions from the construction and operation of the project. CalEEMod is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify criteria air pollutant and GHG emissions.

The model quantifies direct emissions from construction and operation activities (including vehicle use), as well as indirect emissions, such as GHG emissions from off-site energy generation, solid waste disposal, vegetation planting and/or removal, and water use. The model also identifies design features to reduce criteria pollutant and GHG emissions. The model was developed for the California Air Pollution Control Officers Association (CAPCOA) in collaboration with the California air districts.

4.1 **Construction Assumptions**

Construction of the project is estimated to begin in the year 2023 and last approximately 5 months. Construction activities are expected to consist of site preparation, grading, building construction, paving, and architectural coating. The project is expected to be operational in the year 2024. For purposes of this analysis, construction phases are not expected to overlap.

The project will not require any demolition, import, or export during construction.

The CalEEMod default construction equipment list is based on survey data and the size of the site. The parameters used to estimate construction emissions, such as the worker and vendor trips and trip lengths, utilize the CalEEMod defaults. The construction equipment list is shown in Table 10.

The project will be required to comply with several standard fugitive dust control measures, per SCAQMD Rule 403. The following key inputs are utilized in CalEEMod and are based upon data provided from SCAQMD⁶:

- Water exposed area 61% PM₁₀ and PM_{2.5} reduction.
- Water unpaved roads twice daily 55% PM₁₀ and PM_{2.5} reduction.

⁶ SCAQMD. Fugitive Dust Mitigation Measures. http://www.agmd.gov/home/rules-compliance/cega/airquality-analysis-handbook/mitigation-measures-and-control-efficiencies/fugitive-dust

4-1

- Limit vehicle speeds on unpaved roads to 25 mph 44% PM₁₀ and PM_{2.5} reduction.
- Sweep paved roads once per month 9% PM₁₀ and PM_{2.5} reduction.

Table 10
Construction Equipment Assumptions¹

Phase	Equipment	Number	Hours Per Day	Soil Disturbance Rate (Acres/ 8hr-Day) ²	Off-Road Equipment Daily Disturbance Footprint (Acres)	Total Daily Disturbance Footprint (Acres)	
Site	Graders	1	8	0.5	0.50	1.0	
Preparation	Tractors/Loaders/Backhoes	1	8	0.5	0.50	1.0	
Grading	Graders	1	6	0.5	0.38	1.2	
	Rubber Tired Dozers	1	6	0.5	0.38		
	Tractors/Loaders/Backhoes	1	7	0.5	0.44		
	Cranes	1	4	0.0	0.00		
Building Construction	Forklifts	2	6	0.0	0.00	1.0	
	Tractors/Loaders/Backhoes	2	8	0.5	1.00		
Paving	Pavers	1	7	0.0	0.00	0.4	
	Tractors/Loaders/Backhoes	1	7	0.5	0.44		
	Cement and Mortar Mixers	4	6	0.0	0.00		
	Rollers	1	7	0.0	0.00		
Architectural Coating	Air Compressors	1	6	0.0	0.00	0.0	

¹ CalEEMod Defaults

4.2 <u>Localized Construction Analysis Modeling Parameters</u>

CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily disturbance activity possible for each piece of equipment. This report identifies the following parameters in the project design or applicable mitigation measures in order to compare CalEEMod reported emissions against the localized significance threshold lookup tables:

- 1) The off-road equipment list (including type of equipment, horsepower, and hours of operation) assumed for the day of construction activity with maximum emissions.
- 2) The maximum number of acres disturbed on the peak day.
- 3) Any emission control devices added onto off-road equipment.

4) Specific dust suppression techniques used on the day of construction activity with maximum emissions.

4.3 **Operational Assumptions**

Operational emissions occur over the life of the project and are considered "long-term" sources of emissions. Operational emissions include both direct and indirect sources. This section briefly describes the operational sources of emissions analyzed for the project.

4.3.1 Mobile Source Emissions

Mobile source emissions are the largest source of long-term air pollutants from the operation of the project. Mobile sources are direct sources of project emissions that are primarily attributed to tailpipe exhaust and road dust (tire, brake, clutch, and road surface wear) from motor vehicles traveling to and from the site.

Estimates of mobile source emissions require information on four parameters: trip generation, trip length, vehicle/fleet mix, and emission factors (quantity of emission for each mile traveled or time spent idling by each vehicle).

The trip generation rates, trip length and trip percentages for this project are based on the CalEEMod defaults.

The Emission Factors (EMFAC2021) 2021 model and off-model adjustments factors to account for the SAFE Vehicle Rule is used to estimate the mobile source emissions are embedded in the CalEEMod emissions model. No adjustments have been made to default emission factors.

The project's total vehicle miles traveled estimated by CalEEMod is shown in the Table 11.

Table 11
Operational Vehicle Miles Traveled

1

Land Use	Annual Vehicle Miles Traveled (VMT)	
High Turnover (Sit Down Restaurant)	2,216,086	
General Office Building	56,860	
Total	2,272,946	

¹ CalEEMod defaults.

To be conservative, this analysis has assumed that 2% of the total trips associated with the wine tasting and general office land uses will be heavy trucks with a gross vehicle weight rating (GVWR) of 10,000 pound or greater. This includes LHD2, MHD, HHD, OBUS, UBUS, and SBUS vehicles. The adjusted vehicle mix is proportioned according to the default CalEEMod vehicle mix.

Table 12 summarizes adjusted vehicle mix used for wine tasting room and restaurant part of the project.

Table 12 Operational Vehicle Mix¹

Operational vehicle with			
YUY	Vehicle Mix (%)		
Light Duty Automobile (LDA)	51.12%		
Light Duty Truck (LDTI)	4.14%		
Light Duty Truck (LDT2)	20.33%		
Medium Duty Truck (MDV)	16.60%		
Light Heavy Truck (LHD1)	3.36%		
Light Heavy Truck (LHD2)	0.39%		
Medium Heavy Truck (MHD)	0.59%		
Heavy Heavy Truck (HHD)	0.64%		
Other Bus (OBUS)	0.03%		
Urban Bus (UBUS)	0.02%		
Motorcycle (MCY)	2.44%		
School Bus (SBUS)	0.06%		
Motor Home (MH)	0.28%		
Total	100%		

¹ Adjusted fleet mix to include 2% total trucks over 10,000 lbs. GVWR. (LHD2, MHD, HHD, OBUS, UBUS, SBUS, MH).

4.3.2 Energy Source Emissions

Energy usage includes both direct and indirect sources of emissions. Direct sources of emissions include on-site natural gas usage (non-hearth) for heating, while indirect emissions include electricity generated by offsite power plants. Natural gas use is measured in units of a thousand British Thermal Units (kBTU) per size metric for each land use subtype and electricity use is measured in kilowatt hours (kWh) per size metric for each land use subtype.

CalEEMod divides building electricity and natural gas use into uses that are subject to Title 24 standards and those that are not. Lighting electricity usage is also calculated as a separate category in CalEEMod. For electricity, Title 24 uses include the major building envelope systems covered by Part 6 (California Energy Code) of Title 24, such as space heating, space cooling, water heating, and ventilation. Non-Title 24 uses include all other end uses, such as appliances, electronics, and other miscellaneous plug-in uses. Because some lighting is not considered as part of the building envelope energy budget, and since a separate mitigation measure is applicable to this end use, CalEEMod makes lighting a separate category.

For natural gas, uses are likewise categorized as Title 24 or Non-Title 24. Title 24 uses include building heating and hot water end uses. Non-Title 24 natural gas uses include cooking and appliances (including pool/spa heaters).

The baseline values are based on the California Energy Commission (CEC) sponsored California Commercial End Use Survey (CEUS) and Residential Appliance Saturation Survey (RASS) studies.

Table 13 Electricity and Natural Gas Usage

Land Use	Electricity Usage ¹ (KWhr/yr) ²	Natural Gas Usage ¹ (KBTU/yr) ²
High Turnover (Sit Down Restaurant)	137,826	447,681
General Office Building	14,652	23,173
Total	152,478	470,854

¹ CalEEMod default estimates.

4.3.3 Area Source Emissions

Area source emissions are direct sources of emissions that fall under four categories; hearths, consumer products, architectural coatings, and landscaping equipment. Per SCAQMD rule 445, no wood burning devices are allowed in new developments; therefore, no wood hearths are included in this project.

² KWhr/yr = Kilowatt Hours per Year

KBTU/yr = Thousand British Thermal Units per Year

Consumer products are various solvents used in non-industrial applications which emit ROGs during their product use. These typically include cleaning supplies, kitchen aerosols, cosmetics and toiletries.

4.3.4 Other Sources of Operational Emissions

Water. Greenhouse gas emissions are generated from the upstream energy required to supply and treat the water used on the project site. Indirect emissions from water usage are counted as part of the project's overall impact. The estimated water usage for the project is reported in Table 14 and recommendations to reduce water usage are discussed in Section 6.0.

Waste. CalEEMod calculates the indirect GHG emissions associated with waste that is disposed of at a landfill. The program uses annual waste disposal rates from the California Department of Resources Recycling and Recovery (CalRecycle) data for individual land uses. The program quantifies the GHG emissions associated with the decomposition of the waste which generates methane based on the total amount of degradable organic carbon.

The estimated waste generation by the project is reported in Table 14 and recommendations to reduce waste generation in landfills are discussed in Section 6.0

Table 14
Operational Water Usage and Waste Generation¹

Operational water osage and waste deficiation					
Land Use		Waste Generation (tons/year) ¹			
	Indoor	Outdoor	Total	(10/15/3 041/	
High Turnover (Sit Down Restaurant	1,191,370.00	-	1,191,370.00	46.70	
General Office Building	149,296.00		149,296.00	0.78	
Total	1,340,666.00	-	1,340,666.00	47.48	

¹ CalEEMod default unmitigated estimates.

5.0 Significance Thresholds

5.1 <u>Air Quality Regional Significance Thresholds</u>

The SCAQMD has established air quality emissions thresholds for criteria air pollutants for the purposes of determining whether a project may have a significant effect on the environment per Section 15002(g) of the Guidelines for implementing CEQA, which states that a significant effect on air quality would occur if a project:

- a) Conflicts with, or obstructs implementation of, the applicable air quality plan;
- b) Results in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable Federal or State ambient air quality standard;
- c) Exposes sensitive receptors to substantial pollutant concentrations; or
- d) Results in other emissions (such as those leading to odors, adversely affecting a substantial number of people.

By complying with the thresholds of significance, the project would be in compliance with the SCAQMD Air Quality Management Plan (AQMP) and the federal and state air quality standards.

Table 15 lists the air quality significance thresholds for the six air pollutants analyzed in this report. Lead is not included as part of this analysis as the project is not expected to emit lead in any significant measurable quantity.

Table 15
SCAQMD Air Quality Regional Significance Thresholds

Pollutant	Construction (lbs/day)	Operation (lbs/day)	
NO _x	100	55	
voc	75	55	
PM ₁₀	150	150	
PM _{2.5}	55	55	
SO _X	150	150	
со	550	550	

¹ Source: http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf

5.2 <u>Air Quality Localized Significance Thresholds</u>

Air quality emissions were analyzed using the SCAQMD's Mass Rate Localized Significant Threshold (LST) Look-up Tables.

Table 16 lists the Localized Significance Thresholds (LST) used to determine whether a project may generate significant adverse localized air quality impacts. LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard. LSTs are developed based on the ambient concentrations of four applicable air pollutants for source receptor area (SRA) 26 – Temecula Valley.

The nearest existing sensitive receptors are located along the property line to the east of the project site, less than 25 meters from potential areas of on-site construction and operational activity. Although receptors are located closer than 25 meters to the site, SCAQMD LST methodology states that projects with boundaries located closer than 25 meters to the nearest receptor should use the LSTs for receptors located at 25 meters.

The daily disturbance area is calculated to be 1.2 acres, however LST thresholds are only based on 1, 2 and 5-acre sites. To be conservative, the threshold for 1-acre site is used to establish the LST thresholds.

Table 16 SCAQMD Localized Significance Thresholds¹ (LST)

Pollutant	Construction (lbs/day)	Operation (lbs/day)	
NO _x	162.0	162.0	
со	750.0	750.0	
PM ₁₀	4.0	1.0	
PM _{2.5}	3.0	1.0	

¹ Source: SCAQMD Mass Rate Localized Significance Thresholds for 1-acre site in SRA-26 at 25 meters

5.3 GHG Significance Thresholds – County of Riverside CAP

Riverside County is the lead agency under CEQA for the proposed project, and therefore, GHG thresholds of significance are based on the adopted Riverside County Climate Action Plan (CAP). Riverside County adopted the updated CAP in November 2019 in an effort to reduce community wide GHG emissions. The purpose of the CAP is to adopt a plan that is consistent with and complementary to the GHG emissions reduction efforts being conducted by the State of California through the Global Warming Solutions Act (AB 32).

The implementation mechanisms for the CAP are the Screening Tables for New Development. The Screening Tables allow new development projects a streamlined option for complying with CEQA requirements for addressing GHG emissions, which state that a significant effect would occur if a project:

- a) Generates greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; or
- b) Conflicts with an applicable plan, policy, or regulation adopted for the purpose of reducing emissions of greenhouse gases.

Additionally, Riverside County's Climate Action Plan details policies to reduce emissions from municipal and community-wide sources, including emissions from existing buildings and new development. Projects have the option of preparing a project-specific technical analysis to quantify and mitigate GHG emissions.

• A threshold level above 3,000 MTCO2e per year will be used to identify projects that require the use of Screening Tables or a project-specific technical analysis to quantify and mitigate project emissions.

The screening tables are setup similar to a checklist, with points allocated to certain elements that reduce greenhouse gas emissions. If a project garners 100 points (by including enough GHG reducing elements), then the project is consistent with Riverside County's plan for reducing emissions.

Furthermore, the project will also be required to comply with several efficiency measures including compliance with Title 24 Part 11 of the California Building Standards Code (CALGreen) and Title 24 Part 6 (Energy Code) to further reduce energy usage and GHG emissions through building design and operation. The project will also be required to comply with several water and waste efficiency measures consistent with building code requirements and the County's landscaping standards and waste management agreements.

6.0 Air Quality Impact Analysis

6.1 Short Term Air Quality Impacts - Construction

6.1.1 Daily Emissions - Construction

Daily air quality emissions include both on-site and off-site emissions associated with construction of the project. Table 17 shows the regional daily emissions of criteria pollutants and compares the results to the SCAQMD thresholds of significance.

CalEEMod unmitigated emissions outputs are provided in Appendix A.

Table 17
Daily Construction Emissions

	•	.onstructio													
	Maximu	m Daily Emi	ssions (lbs/d	ay)¹											
Activity	Activity VOC NO _x CO SO ₂ PM ₁₀ PM _{2.5}														
Site Preparation	0.57	5.05	6.02	0.01	0.55	0.29									
Grading	1.32	12.64	12.08	0.02	2.77	1.57									
Building Construction	0.60	5.97	7.18	0.02	0.32	0.28									
Paving	0.61	4.62	6.42	0.01	0.44	0.24									
Architectural Coating	8.99	0.92	1.17	0.00	0.04	0.04									
Maximum ¹	8.99	12.64	12.08	0.02	2.77	1.57									
SCAQMD Threshold	75	100	550	150	150	55									
Exceeds Threshold (?)	No	No	No	No	No	No									

¹ Maximum daily emission during summer or winter; includes both on-site and off-site project emissions.

The project must follow mandatory SCAQMD rules and requirements with regards to fugitive dust control, as described in Section 6.1.3. Compliance with the standard dust control measures is considered to be part of the conditions of approval for the project and built into the design features.

Table 17 shows that, the project's daily construction emissions will be below the applicable SCAQMD air quality standards and thresholds of significance. As a result, the project would not contribute substantially to an existing or projected air quality violation.

Furthermore, by complying with the SCAQMD standards, the project would not contribute to a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

The project's short-term construction impact on regional air resources is less than significant.

6.1.2 Localized Emissions - Construction

Table 18 illustrates the construction related localized emissions and compares the results to SCAQMD LST thresholds. As shown in Table 19, the emissions will be below the SCAQMD thresholds of significance for localized construction emissions. The project must follow all standard SCAQMD rules and requirements with regards to fugitive dust control, as described in Section 6.1.3. Compliance with the dust control is considered a standard requirement and included as part of the project's design features, not mitigation.

Table 18
Localized Construction Emissions

Maxi	mum Daily En	nissions (lbs/d	ay)¹										
Activity NOx CO PM ₁₀ PM _{2.5}													
On-site Emissions	12.60	11.40	2.67	1.55									
SCAQMD Construction Threshold ²	162.0	750.0	4.0	3.0									
Exceeds Threshold (?)	No	No	No	No									

¹ Maximum unmitigated daily emission during summer or winter; includes on-site project emissions only.

The project's short-term construction impact to localized air resources is less than significant.

6.1.3 Fugitive Dust - Construction

The Project is required to comply with standard SCAQMD rules that assist in reducing short-term air pollutant emissions associated with suspended particulate matter, also known as fugitive dust. Fugitive dust emissions are commonly associated with land clearing activities, cut-and-fill grading operations, and exposure of soils to the air and wind. SCAQMD Rule 403 requires that fugitive dust is controlled with best-available control measures so that the presence of such dust does not remain visible in the atmosphere

² Reference 2006-2008 SCAQMD Mass Rate Localized Significant Thresholds for construction and operation. SRA-26, Temecula Valley, 1-acre site, receptor distance 25 meters.

beyond the property line of the emission source. In addition, SCAQMD Rules 402 and 403 require implementation of dust suppression techniques to prevent fugitive dust from creating a nuisance off site.

To ensure full compliance with the applicable dust control standards, the following project design are recommended for the project:

Construction

- **DF-1** Follow the standard SCAQMD rules and requirements with regards to fugitive dust control, which includes, but are not limited to the following:
 - 1. All active unpaved construction areas shall be watered two (2) times daily.
 - 2. Speed on unpaved roads shall be reduced to less than 15 mph.
 - 3. Any visible dirt deposition on any public roadway shall be swept or washed at the site access points within 30 minutes.
 - 4. Any on-site stockpiles of debris, dirt or other dusty material shall be covered or watered twice daily.
 - 5. All operations on any unpaved surface shall be suspended if winds exceed 15 mph.
 - 6. Access points shall be washed or swept daily.
 - 7. Construction sites shall be sandbagged for erosion control.
 - 8. Cover all trucks hauling dirt, sand, soil, or other loose materials, and maintain at least 2 feet of freeboard space in accordance with the requirements of California Vehicle Code (CVC) section 23114.
 - 9. Pave or gravel access points and use track-out grates.
 - 10. Replace the ground cover of disturbed areas as quickly possible.

6.1.4 Odors - Construction

Heavy-duty equipment in the project area during construction will emit odors; however, the construction activity would cease to occur after individual construction is completed. The project is required to comply with Rule 402 during construction, which states that a person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural

tendency to cause, injury or damage to business or property. No other sources of objectionable odors have been identified for the proposed Project.

The project impact from odor emissions is less than significant.

6.1.5 Asbestos - Construction

Asbestos is a carcinogen and is categorized as a hazardous air pollutant by the Environmental Protection Agency (EPA). Asbestos fibers imbedded within construction materials become a health hazard once they are disturbed and rendered airborne, such as through physical contact like building renovation and demolition activities. Asbestos is regulated through the National Emissions Standards for Hazardous Air Pollutants (NESHAP) and SCAQMD is the local enforcement authority for asbestos.

The project is not expected to require the demolition of existing building or structures. Therefore, the potential risk from exposure to asbestos during construction is small.

Asbestos also occurs naturally in serpentine and ultramafic rock. Based on the California Division of Mines and Geology General Location Guide for Ultramafic Rocks in California - Areas More Likely to Contain Naturally Occurring Asbestos, naturally occurring asbestos has not been shown to occur within in the vicinity of the project site. Therefore, the potential risk for naturally occurring asbestos (NOA) during project construction is small.

In the event asbestos is found on the site, the project will be required to comply with SCAQMD and NESHAP standards and protocols. SCAQMD Rule 1403 establishes the survey requirements, notification, and work practice requirements to prevent asbestos emissions during construction activities. By following the required asbestos abatement protocols, the project impact from asbestos would be less than significant.

6.1.6 Diesel Particulate Matter - Construction

The project will generate diesel particulate matter (DPM) during construction from off-road diesel equipment and trucks. The California Office of Environmental Health Hazard Assessment (OEHHA) adopted the Guidance Manual for Preparation of Health Risk Assessments (HRA Guidelines) to provide procedures for use in the Air Toxics Hot Spots Program or for the permitting of existing, new, or modified stationary sources.⁷

RK engineering group, inc.

6-4

⁷ OEHHA. Air Toxics Hot Spots Program. Risk Assessment Guidelines. Guidance for Preparation of Health Risk Assessments. February 2015.

The HRA Guidelines provide risk factors based on exposure to toxic substances over a 30-year lifetime span. The proposed project's construction activity is not expected to be a long-term (i.e., 30 years) source of toxic air contaminant emissions and short-term risk factors have not been developed. Due the significantly reduced risk from short-term exposure, SCAQMD does not typically require the evaluation of long-term cancer risk or chronic health impacts for construction operations from a project such as the one being proposed.

Given the minimal amount of earthwork and heavy construction equipment expected to be needed for this project, the potential DPM exposure to adjacent sensitive receptors is considered less than significant.

The following design features will help reduce diesel exhaust emissions and are recommended to be included as part of the conditions of approval.

- **DF-2** All construction vehicles shall be prohibited from excessive idling. Excessive idling is defined as five (5) minutes or longer.
- **DF-3** Minimize the simultaneous operation of multiple construction equipment units.
- **DF-4** Establish an electricity supply to the construction site and use electric powered equipment instead of diesel-powered equipment or generators, where feasible.
- **DF-5** Establish staging areas for the construction equipment that are as distant as possible from adjacent sensitive receptors.
- **DF-6** Utilize zero VOC and low VOC paints and solvents, where feasible.

6.2 Long Term Air Quality Impacts - Operation

6.2.1 Daily Emissions - Operation

Long-term operational air pollutant impacts from the project are shown in Table 19. The project is not expected to exceed any of the allowable daily emissions thresholds for criteria pollutants at the regional level. CalEEMod emissions outputs are provided in Appendix A.

The project's daily operational emissions will be below the applicable SCAQMD air quality thresholds of significance and the project would not contribute substantially to an existing or projected air quality violation. Furthermore, by complying with the SCAQMD standards,

the project would not contribute to a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

The project related long-term air quality impacts are less than significant.

Table 19
Daily Operational Emissions

	Maximur	n Daily Emis	ssions (lbs/da	ay) ^{1,2}		
Activity	voc	NO _x	СО	SO ₂	PM ₁₀	PM _{2.5}
Mobile Sources	4.22	5.61	61.20	0.14	4.99	0.94
Energy Sources	0.15	0.01	0.21	0.01	0.01	0.01
Area Sources	0.01	0.13	0.11	0.01	0.01	0.01
Total	4.38	5.75	61.52	0.16	5.01	0.96
SCAQMD Threshold	55	55	550	150	150	55
Exceeds Threshold (?)	No	No	No	No	No	No

¹ Maximum daily emission during summer or winter; includes both on-site and off-site project emissions.

6.2.2 Localized Operational Emissions - Operation

Table 20 shows the localized operational emissions and compares the results to SCAQMD LST thresholds of significance. As shown in Table 20, the emissions will be below the SCAQMD thresholds of significance for localized operational emissions. **The project will result in less than significant localized operational emissions impacts.**

² CalEEMod emissions reports are provided in Appendix A.

Table 20 Localized Operational Emissions

Maximu	m Daily Emissi	ons (lbs/day) ¹		
LCT Dallutanta	NOx	СО	PM ₁₀	PM _{2.5}
LST Pollutants	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)
On-site Emissions ²	0.42	3.38	0.3	0.1
SCAQMD Operation Threshold ³	162.0	750.0	1.0	1.0
Exceeds Threshold (?)	No	No	No	No

¹ Maximum daily emission in summer or winter.

6.2.3 Odors - Operation

Land uses that commonly receive odor complaints include agricultural uses (i.e. livestock), chemical plants, composting operations, dairies, fiberglass molding facilities, food processing plants, landfills, refineries, rail yards, and wastewater treatment plants. The proposed project does not contain land uses that would typically be associated with significant odor emissions.

The project will be required to comply with standard building code requirements related to exhaust ventilation, as well as comply with SCAQMD Rule 402. Rule 402 requires that a person may not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. Project related odors are not expected to meet the criteria of being a nuisance. **The project's operation would result in less than significant odor impacts**.

² Mobile source emissions include on-site vehicle emissions only. It is estimated that approximately 5% of mobile emissions will occur on the project site.

³ Reference: 2006-2008 SCAQMD Mass Rate Localized Significant Thresholds for construction and operation Table C-1 through C-6; SRA 26, Temecula Valley disturbance area of 1-acre and receptor distance of 25 meters.

6.2.4 Toxic Air Contaminants - Operations

The project would consist of a wine tasting room and office building. This type of project does not include major sources of toxic air contaminants (TAC) emissions that would result in significant exposure of sensitive receptors to substantial pollutant concentrations, such as a large high-cube warehouse or other industrial type uses that would require an air permit to operate.

The project impact is considered less than significant.

6.3 <u>Project Consistency with Local Regulations</u>

6.3.1 South Coast Air Quality Management Plan Consistency

The project is consistent with the current zoning designations for the site (Citrus/Vineyard (C/V), Wine Country – Winery (WC-W), and Wine Country – Winery Existing (WC-WE))⁸. As a result, the project is expected to be consistent with the growth projections in the AQMP. Additionally, air quality emissions from the project have been shown to be less than the established thresholds by SCAQMD. Therefore, the project is consistent with the AQMP.

6.3.2 General Plan Consistency

The County of Riverside General Plan Air Quality Element, Policy AQ 1.4 states that the County will coordinate with the SCAQMD and MDAQMD to ensure that all elements of air quality plans regarding reduction of air pollutant emission are being enforced. The project is located within the SCAB and therefore is required to comply with all SCAQMD rules and regulations. The applicable SCAQMD rules and regulations will be enforced as part of the conditions of approval of the project. As a result, the project is expected to be consistent with the County's General Plan requirements.

The project will not conflict with an applicable plan, policy or regulation for the purpose of reducing the emissions of criteria pollutants, and the impact is considered less than significant.

engineering group, inc.

6-8

⁸ Source: Riverside County Map My County Tool, https://gis1.countyofriverside.us/Html5Viewer/?viewer=MMC_Public

7.0 Greenhouse Gas Impact Analysis

7.1 <u>Greenhouse Gas Emissions - Construction</u>

Greenhouse gas emissions are estimated for on-site and off-site construction activity using CalEEMod. Table 21 shows the construction greenhouse gas emissions, including equipment and worker vehicle emissions for all phases of construction. Construction emissions are averaged over 30 years and added to the long-term operational emissions, pursuant to SCAQMD recommendations.

CalEEMod annual GHG output calculations are provided in Appendix A.

Table 21
Construction Greenhouse Gas Emissions

A additional to a		Emissions (MTC0 ₂ e) ¹	
Activity	On-site	Off-site	Total
Site Preparation	0.78	0.06	0.84
Grading	1.56	0.09	1.65
Building Construction	59.42	2.37	61.79
Paving	1.87	0.54	2.41
Architectural Coating	0.30	0.01	0.31
Total	63.93	3.07	67.00
Amortized over 30 years ²	2.13	0.10	2.23

¹ MTCO₂e = metric tons of carbon dioxide equivalents (includes carbon dioxide, methane, nitrous oxide, and/or hydrofluorocarbon).

Because impacts from construction activities occur over a relatively short-term period of time, they contribute a relatively small portion of the overall lifetime project GHG emissions. By itself, the construction activities from this project are less than significant when compared to the thresholds recommended by SCAQMD. However, SCAQMD recommends that construction emissions be amortized over a 30-year project lifetime and added to the overall project operational emissions. In doing so, construction GHG emissions are included in the overall contribution of the project, as further discussed in the following section.

² The emissions are amortized over 30 years and added to the operational emissions, pursuant to SCAQMD recommendations.

7.2 <u>Greenhouse Gas Emissions - Operation</u>

Greenhouse gas emissions are estimated for on-site and off-site operational activity using CalEEMod. Greenhouse gas emissions from mobile sources, area sources and energy sources are shown in Table 22. CalEEMod annual GHG output calculations are provided in Appendix A.

Table 22
Operational Greenhouse Gas Emissions

Emission Source	GHG Emissions (MTCO₂e)¹
Mobile Source	796.0
Area Source	0.1
Energy Source	62.0
Water	4.0
Waste	14.8
Refrigerant	1.0
Construction (30-year amortization)	2.2
Total Annual Emissions	880.1
Riverside County CAP Threshold	3,000
Exceed Riverside County CAP Threshold?	No

 $^{^{1}}$ MTCO₂e = metric tons of carbon dioxide equivalents.

As shown in Table 22, the project GHG emissions are not expected to exceed the County's GHG emissions threshold of 3,000 MTCO₂e.

7.3 <u>Project Consistency with Riverside County CAP</u>

The Riverside County Climate Action Plan (CAP) establishes a threshold of significance of 3,000 MTCO2e for land use development projects. Projects that exceed the CAP threshold may result in a potentially significant GHG impact and would require the use of Screening Tables to mitigate the project emissions.

Based on the results of the quantified GHG emissions analysis, the proposed project is not expected to exceed the CAP threshold of significance and it does not conflict with an

applicable plan, policy, or regulation adopted for the purpose of reducing emissions of greenhouse gases. Hence, it would not be required to implement the CAP screening tables as a mitigation measure.

By complying with the goals and policies of the CAP, the project will also be in compliant with the broader statewide goals for combating climate change, such as those required in the CARB Scoping Plan and SB 32. The purpose of the County's CAP is to ensure compliance with the state's climate initiatives for reducing GHG emissions.

Furthermore, the project will comply with the mandatory requirements of Title 24 part 11 of the California Building Standards Code (CALGreen) and Title 24 Part 6 Building Efficiency Standards to further reduce energy usage and GHG emissions. CALGreen and building code compliance are considered part of the project's design features.

The project will also include solar panels as part of the project design, thus further promoting the County's and State's goals for increased renewable energy.

The project will not conflict with an applicable plan, policy or regulation for the purpose of reducing the emissions of greenhouse gases and the impact is considered less than significant.

8.0 Energy Impacts Analysis

8.1 Study Objectives

The purpose of this energy conservation analysis is to review the energy implications of the proposed Danza Del Sol Winery (project) and provide recommendations to reduce wasteful, inefficient, and unnecessary consumption of energy during construction and operation. This analysis has been prepared within the context of the California Environmental Quality Act (CEQA, California Public Resources Code Sections 21000, et seq.).

8.2 **Energy Impacts**

This analysis has been prepared within the context of the CEQA Guidelines, Appendix F, Energy Conservation, and Appendix G, Environmental Checklist Form. According to CEQA, the goal of conserving energy implies the wise and efficient use of energy through decreasing overall per capita energy consumption, decreasing reliance on fossil fuels (such as coal, natural gas, and oil), and increasing reliance on renewable energy sources.

A significant environmental impact would result if the project would;

- a) Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation, or;
- b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency.

8.2.1 Energy Impact - A

Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

The project will implement the mandatory requirements of California's Building Efficiency Standards (Title 24, Part 6) to reduce energy consumption. California's building standards are some of the strictest in the nation and the project's compliance with the Building Code will ensure that wasteful, inefficient or unnecessary consumption of energy is minimized.

The California Building Code is designed to reduce the amount of energy needed to heat or cool a building, reduce energy usage for lighting and appliances and promote usage of energy from renewable sources.

In particular, the project is expected to comply with Section 110.10 of the building code regarding mandatory requirements for solar readiness and provide a rooftop solar zone.

Furthermore, the project proposes to include rooftop solar panels as part of its design. Recent court rulings indicate that when determining if a project would have a potentially significant impact to energy conservation, the analysis should consider whether any renewable energy features could be incorporated into the project⁹. By including rooftop solar panels as part of the project's design, the proposed project is compatible with recent court rulings and ensures that wasteful, inefficient, or unnecessary consumption of energy is minimized.

Therefore, the project impact is considered less than significant.

8.2.2 Energy Impact - B

Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

The project is not expected to conflict with or obstruct a state or local plan for renewable energy or energy efficiency. The project will purchase electricity through Southern California Edison which is subject to the requirements of California Senate Bill 100 (SB 100). SB 100 is the most stringent and current energy legislation in California; requiring that renewable energy resources and zero-carbon resources supply 100% of retail sales of electricity to California end-use customers and 100% of electricity procured to serve all state agencies by December 31, 2045.¹⁰

The project will also comply with the mandatory requirements of California's Green Building and Building Energy Efficiency standards that promote renewable energy and energy efficiency.

Hence, the impact is considered less than significant.

http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180SB100

engineering group, inc.

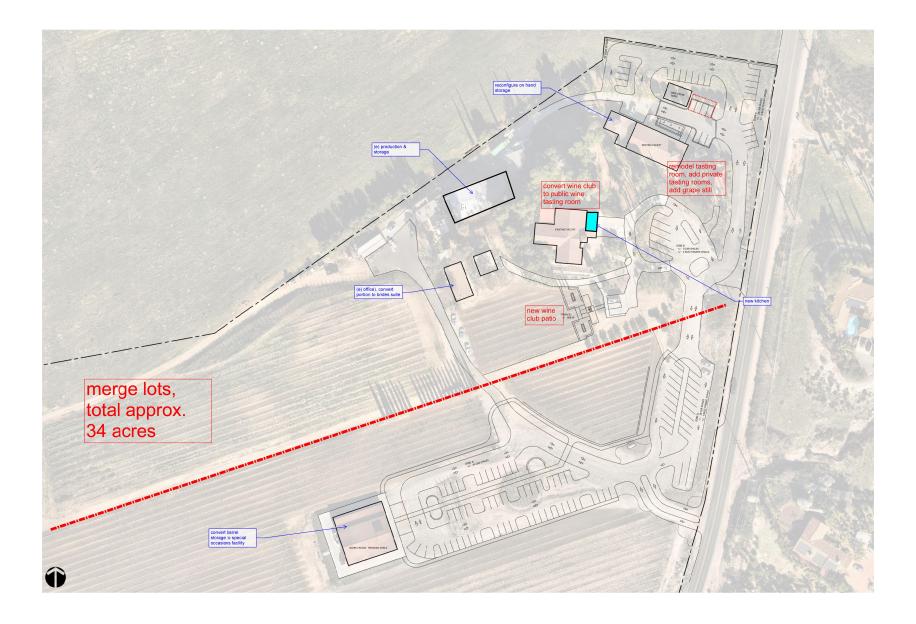
8-2

⁹ League to Save Lake Tahoe Mountain Area Preservation Foundation, et al. v. County of Placer, et al.

¹⁰ SB-100 California Renewables Portfolio Standard Program.

Exhibits

Exhibit A **Location Map**


Legend:

=== = Project Site Boundary

= Project Site

Exhibit B **Site Plan**

Appendices	

Appendix A

Unmitigated Emissions Calculations Output (CalEEMod)

Danza Del Sol Winery Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2023) Unmitigated
 - 3.3. Grading (2023) Unmitigated
 - 3.5. Building Construction (2023) Unmitigated
 - 3.7. Building Construction (2024) Unmitigated

- 3.9. Paving (2024) Unmitigated
- 3.11. Architectural Coating (2024) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.2. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.7. Offroad Emissions By Equipment Type

- 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies

- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated

- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Danza Del Sol Winery
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	1.80
Precipitation (days)	14.0
Location	39050 De Portola Rd, Temecula, CA 92592, USA
County	Riverside-South Coast
City	Unincorporated
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5528
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
High Turnover (Sit Down Restaurant)	3.92	1000sqft	0.09	3,925	0.00	0.00	_	_
General Office Building	0.84	1000sqft	0.02	840	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	_	_	_	_	-	-	_	_	_	-	-	_	_	-
Unmit.	1.57	1.32	12.6	12.1	0.02	0.60	2.17	2.77	0.55	1.02	1.58	_	1,823	1,823	0.07	0.02	0.47	1,831
Daily, Winter (Max)	_	_	_	_		_	_	_	_	_	_	_	_	_	_		_	_
Unmit.	0.72	8.98	5.97	7.14	0.01	0.28	0.23	0.44	0.26	0.05	0.27	_	1,355	1,355	0.05	0.02	0.03	1,361
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.19	0.16	1.63	1.93	< 0.005	0.08	0.02	0.10	0.07	0.01	0.08	_	362	362	0.01	< 0.005	0.02	364
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.04	0.03	0.30	0.35	< 0.005	0.01	< 0.005	0.02	0.01	< 0.005	0.01	_	60.0	60.0	< 0.005	< 0.005	< 0.005	60.3
Exceeds (Daily Max)	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Threshol d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	_	Yes	Yes	Yes	Yes	Yes	-	Yes	_	_	Yes	_	_	_	_	-	_	_
Exceeds (Average Daily)	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Thresho	ı —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	_	Yes	Yes	Yes	Yes	Yes	_	Yes	_	_	Yes	_	_	_	_	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	1.57	1.32	12.6	12.1	0.02	0.60	2.17	2.77	0.55	1.02	1.58	_	1,823	1,823	0.07	0.02	0.47	1,831
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.71	0.59	5.97	7.14	0.01	0.28	0.03	0.32	0.26	0.01	0.27	_	1,355	1,355	0.05	0.02	< 0.005	1,361
2024	0.72	8.98	5.64	7.11	0.01	0.26	0.23	0.44	0.24	0.05	0.25	_	1,354	1,354	0.05	0.02	0.03	1,360
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.19	0.16	1.63	1.93	< 0.005	0.08	0.02	0.10	0.07	0.01	0.08	_	362	362	0.01	< 0.005	0.02	364
2024	0.02	0.14	0.18	0.23	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	_	40.2	40.2	< 0.005	< 0.005	0.01	40.4
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.04	0.03	0.30	0.35	< 0.005	0.01	< 0.005	0.02	0.01	< 0.005	0.01	_	60.0	60.0	< 0.005	< 0.005	< 0.005	60.3
2024	< 0.005	0.03	0.03	0.04	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.66	6.66	< 0.005	< 0.005	< 0.005	6.70

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)																		

Unmit.	4.82	4.38	5.31	61.5	0.14	0.10	4.90	5.00	0.09	0.86	0.95	28.2	14,801	14,829	3.30	0.47	66.6	15,119
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.57	4.13	5.74	49.6	0.13	0.10	4.90	5.00	0.09	0.86	0.95	28.2	13,819	13,847	3.31	0.49	7.71	14,085
Average Daily (Max)	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.87	1.77	2.19	18.8	0.05	0.04	1.71	1.75	0.04	0.30	0.34	28.2	5,128	5,156	3.03	0.19	15.2	5,302
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.34	0.32	0.40	3.43	0.01	0.01	0.31	0.32	0.01	0.05	0.06	4.66	849	854	0.50	0.03	2.52	878
Exceeds (Daily Max)	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_
Threshol d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	_	Yes	Yes	Yes	Yes	_	_	Yes	_	_	Yes	_	_	_	_	_	_	_
Exceeds (Average Daily)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Threshol d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	_	Yes	Yes	Yes	Yes	_	_	Yes	_	_	Yes	_	_	_	_	_	_	_

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	4.77	4.22	5.18	61.2	0.14	0.09	4.90	4.99	0.08	0.86	0.94	_	14,414	14,414	0.46	0.46	60.5	14,624

Area	0.04	0.15	< 0.005	0.21	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.85	0.85	< 0.005	< 0.005	_	0.86
Energy	0.01	0.01	0.13	0.11	< 0.005	0.01	_	0.01	0.01	_	0.01	_	373	373	0.03	< 0.005	_	374
Water	_	_	_	_	_	_	_	_	_	_	_	2.57	13.3	15.9	0.26	0.01	_	24.4
Waste	_	_	_	_	_	_	_	_	_	_	_	25.6	0.00	25.6	2.56	0.00	_	89.5
Refrig.	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	6.14	6.14
Total	4.82	4.38	5.31	61.5	0.14	0.10	4.90	5.00	0.09	0.86	0.95	28.2	14,801	14,829	3.30	0.47	66.6	15,119
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	4.55	4.01	5.61	49.5	0.13	0.09	4.90	4.99	0.08	0.86	0.94	_	13,432	13,432	0.46	0.49	1.57	13,591
Area	_	0.11	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.01	0.01	0.13	0.11	< 0.005	0.01	_	0.01	0.01	_	0.01	_	373	373	0.03	< 0.005	_	374
Water	_	_	_	_	_	_	_	_	_	_	_	2.57	13.3	15.9	0.26	0.01	_	24.4
Waste	_	_	_	_	_	_	_	_	_	_	_	25.6	0.00	25.6	2.56	0.00	_	89.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.14	6.14
Total	4.57	4.13	5.74	49.6	0.13	0.10	4.90	5.00	0.09	0.86	0.95	28.2	13,819	13,847	3.31	0.49	7.71	14,085
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.83	1.63	2.07	18.5	0.05	0.03	1.71	1.74	0.03	0.30	0.33	_	4,740	4,740	0.18	0.18	9.09	4,807
Area	0.03	0.14	< 0.005	0.14	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.58	0.58	< 0.005	< 0.005	_	0.59
Energy	0.01	0.01	0.13	0.11	< 0.005	0.01	_	0.01	0.01	_	0.01	_	373	373	0.03	< 0.005	_	374
Water	_	_	_	_	_	_	_	_	_	_	_	2.57	13.3	15.9	0.26	0.01	_	24.4
Waste	_	_	_	_	_	_	_	_	_	_	_	25.6	0.00	25.6	2.56	0.00	_	89.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.14	6.14
Total	1.87	1.77	2.19	18.8	0.05	0.04	1.71	1.75	0.04	0.30	0.34	28.2	5,128	5,156	3.03	0.19	15.2	5,302
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.33	0.30	0.38	3.38	0.01	0.01	0.31	0.32	0.01	0.05	0.06	_	785	785	0.03	0.03	1.50	796
Area	< 0.005	0.03	< 0.005	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.10	0.10	< 0.005	< 0.005	_	0.10
Energy	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	61.8	61.8	< 0.005	< 0.005	_	62.0

Water	_	_	_	_	_	_	_	_	_	_		0.43	2.20	2.63	0.04	< 0.005	_	4.04
Waste	_	_	_	_	_	_	_	_	_	_	_	4.24	0.00	4.24	0.42	0.00	<u> </u>	14.8
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.02	1.02
Total	0.34	0.32	0.40	3.43	0.01	0.01	0.31	0.32	0.01	0.05	0.06	4.66	849	854	0.50	0.03	2.52	878

3. Construction Emissions Details

3.1. Site Preparation (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.54	5.02	5.57	0.01	0.27	_	0.27	0.25	_	0.25	_	858	858	0.03	0.01	_	861
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.21	0.21	_	0.02	0.02	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Off-Road Equipmen		< 0.005	0.03	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.70	4.70	< 0.005	< 0.005	_	4.72

Dust From Material Movemen	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.78	0.78	< 0.005	< 0.005	_	0.78
Dust From Material Movemen	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	-	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.03	0.03	0.45	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	73.5	73.5	< 0.005	< 0.005	0.31	74.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.37	0.37	< 0.005	< 0.005	< 0.005	0.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.06	0.06	< 0.005	< 0.005	< 0.005	0.06
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Haulir	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
i iauiii	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.28	12.6	11.4	0.02	0.60	_	0.60	0.55	_	0.55	_	1,713	1,713	0.07	0.01	_	1,719
Dust From Material Movemen	_	-	_	_	_	_	2.07	2.07	_	1.00	1.00	_	-	_	_	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.07	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	9.39	9.39	< 0.005	< 0.005	_	9.42
Dust From Material Movemen		_	_	_	_	_	0.01	0.01	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.55	1.55	< 0.005	< 0.005	_	1.56

Dust From Material Movemen	<u>—</u>				_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_		_			_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.04	0.68	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	110	110	< 0.005	< 0.005	0.47	112
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.56	0.56	< 0.005	< 0.005	< 0.005	0.57
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.09	0.09	< 0.005	< 0.005	< 0.005	0.09
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Building Construction (2023) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
(Max)																		
Off-Road Equipmen		0.58	5.93	7.00	0.01	0.28	_	0.28	0.26	_	0.26	_	1,305	1,305	0.05	0.01	_	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.58	5.93	7.00	0.01	0.28	_	0.28	0.26	_	0.26	_	1,305	1,305	0.05	0.01	_	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Off-Road Equipmen		0.15	1.52	1.79	< 0.005	0.07	_	0.07	0.07	_	0.07	-	334	334	0.01	< 0.005	_	336
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.28	0.33	< 0.005	0.01	_	0.01	0.01	_	0.01	-	55.4	55.4	< 0.005	< 0.005	_	55.6
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-
Worker	0.01	0.01	0.01	0.17	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	28.2	28.2	< 0.005	< 0.005	0.12	28.6
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	24.5	24.5	< 0.005	< 0.005	0.07	25.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.13	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	25.9	25.9	< 0.005	< 0.005	< 0.005	26.2
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	24.5	24.5	< 0.005	< 0.005	< 0.005	25.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	6.72	6.72	< 0.005	< 0.005	0.01	6.81
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.29	6.29	< 0.005	< 0.005	0.01	6.58
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.11	1.11	< 0.005	< 0.005	< 0.005	1.13
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.04	1.04	< 0.005	< 0.005	< 0.005	1.09
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.56	5.60	6.98	0.01	0.26	_	0.26	0.23	_	0.23	_	1,305	1,305	0.05	0.01	_	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.10	0.12	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	23.0	23.0	< 0.005	< 0.005	_	23.1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	3.80	3.80	< 0.005	< 0.005	_	3.82
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.01	0.01	0.01	0.12	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	25.4	25.4	< 0.005	< 0.005	< 0.005	25.7
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	24.3	24.3	< 0.005	< 0.005	< 0.005	25.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.45	0.45	< 0.005	< 0.005	< 0.005	0.46
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.43	0.43	< 0.005	< 0.005	< 0.005	0.45
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.07	0.07	< 0.005	< 0.005	< 0.005	0.08
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.07	0.07	< 0.005	< 0.005	< 0.005	0.07
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	r for ann	PM10E	PM10D	PM10T			PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.53	4.52	5.32	0.01	0.21	_	0.21	0.19	_	0.19	_	823	823	0.03	0.01	_	826
Paving	_	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.06	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.3	11.3	< 0.005	< 0.005	_	11.3
Paving	_	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.87	1.87	< 0.005	< 0.005	_	1.87
Paving	_	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.10	1.10	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	231	231	0.01	0.01	0.03	234
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.21	3.21	< 0.005	< 0.005	0.01	3.26
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.53	0.53	< 0.005	< 0.005	< 0.005	0.54
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2024) - Unmitigated

	TOG	ROG	NOx	co	SO2			PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.14	0.91	1.15	< 0.005	0.03	_	0.03	0.03	_	0.03	_	134	134	0.01	< 0.005	_	134
Architect ural Coatings	_	8.84	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		< 0.005	0.01	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.83	1.83	< 0.005	< 0.005	_	1.84
Architect ural Coatings	_	0.12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	0.30	0.30	< 0.005	< 0.005	_	0.30
Architect ural Coatings	_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.07	5.07	< 0.005	< 0.005	< 0.005	5.14
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	_	_	_	_	-	_	_	_	-	_	-	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.07	0.07	< 0.005	< 0.005	< 0.005	0.07
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.01	0.01	< 0.005	< 0.005	< 0.005	0.01
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		4.17	5.12	60.5	0.14	0.09	4.85	4.94	0.08	0.85	0.93	_	14,251	14,251	0.45	0.46	59.8	14,459
General Office Building	0.05	0.05	0.06	0.69	< 0.005	< 0.005	0.06	0.06	< 0.005	0.01	0.01	_	162	162	0.01	0.01	0.68	165
Total	4.77	4.22	5.18	61.2	0.14	0.09	4.90	4.99	0.08	0.86	0.94	_	14,414	14,414	0.46	0.46	60.5	14,624
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		3.96	5.55	48.9	0.13	0.09	4.85	4.94	0.08	0.85	0.93	_	13,281	13,281	0.46	0.48	1.55	13,438

General Office Building	0.05	0.05	0.06	0.56	< 0.005	< 0.005	0.06	0.06	< 0.005	0.01	0.01	_	151	151	0.01	0.01	0.02	153
Total	4.55	4.01	5.61	49.5	0.13	0.09	4.90	4.99	0.08	0.86	0.94	_	13,432	13,432	0.46	0.49	1.57	13,591
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar	0.33 t)	0.29	0.37	3.30	0.01	0.01	0.30	0.31	0.01	0.05	0.06	_	765	765	0.03	0.03	1.47	776
General Office Building	0.01	0.01	0.01	0.08	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	19.6	19.6	< 0.005	< 0.005	0.04	19.8
Total	0.33	0.30	0.38	3.38	0.01	0.01	0.31	0.32	0.01	0.05	0.06	_	785	785	0.03	0.03	1.50	796

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	_	201	201	0.01	< 0.005	_	202
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	21.4	21.4	< 0.005	< 0.005	_	21.4
Total	_	_	_	_	_	_	_	_	_	_	_	_	222	222	0.01	< 0.005	_	223
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

High Turnover (Sit Down Restaurar	t)	_	_	_	_	_	_	_	_	_	_	_	201	201	0.01	< 0.005	_	202
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	21.4	21.4	< 0.005	< 0.005	_	21.4
Total	_	_	_	_	_	_	_	_	_	_	_	_	222	222	0.01	< 0.005	_	223
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar	t)	_	_	_	_	_	_	_	_	_	_	_	33.3	33.3	< 0.005	< 0.005	_	33.4
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54	< 0.005	< 0.005	_	3.55
Total	_	_	_	_	_	_	_	_	_	_	_	_	36.8	36.8	< 0.005	< 0.005	_	36.9

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		0.01	0.12	0.10	< 0.005	0.01	_	0.01	0.01	_	0.01	_	143	143	0.01	< 0.005	_	144
General Office Building	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	7.43	7.43	< 0.005	< 0.005	_	7.45
Total	0.01	0.01	0.13	0.11	< 0.005	0.01	_	0.01	0.01	_	0.01	_	151	151	0.01	< 0.005	_	151

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		0.01	0.12	0.10	< 0.005	0.01	_	0.01	0.01	_	0.01	_	143	143	0.01	< 0.005	_	144
General Office Building	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	7.43	7.43	< 0.005	< 0.005	_	7.45
Total	0.01	0.01	0.13	0.11	< 0.005	0.01	_	0.01	0.01	_	0.01	_	151	151	0.01	< 0.005	_	151
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	23.8	23.8	< 0.005	< 0.005	_	23.8
General Office Building	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.23	1.23	< 0.005	< 0.005	_	1.23
Total	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	25.0	25.0	< 0.005	< 0.005	_	25.1

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.04	0.03	< 0.005	0.21	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.85	0.85	< 0.005	< 0.005	_	0.86
0.04	0.15	< 0.005	0.21	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.85	0.85	< 0.005	< 0.005	_	0.86
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	0.10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	0.11	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
< 0.005	< 0.005	< 0.005	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.10	0.10	< 0.005	< 0.005	_	0.10
< 0.005	0.03	< 0.005	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.10	0.10	< 0.005	< 0.005	_	0.10
	0.04 0.04 - - - - < 0.005	0.04	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	0.04 0.03 < 0.005	No. No.	No. No.	No. No.

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	-	_	_	-	-	-	-	-	_	_	_	_	_	_	-
High Turnover (Sit Down Restaurar		_	_	-	-	-	_	-	-	-	_	2.28	11.8	14.1	0.23	0.01	_	21.7
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.29	1.48	1.77	0.03	< 0.005	_	2.71
Total	_	_	_	_	_	_	_	_	_	_	_	2.57	13.3	15.9	0.26	0.01	_	24.4
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	2.28	11.8	14.1	0.23	0.01	_	21.7
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.29	1.48	1.77	0.03	< 0.005	_	2.71
Total	_	_	_	_	_	_	_	_	_	_	_	2.57	13.3	15.9	0.26	0.01	_	24.4
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	0.38	1.96	2.33	0.04	< 0.005	_	3.59
General Office Building	_	_	_	-	_	_	_	_	_	_	_	0.05	0.25	0.29	< 0.005	< 0.005	_	0.45
Total	_	_	_	_	_	_	_	_	_	_	_	0.43	2.20	2.63	0.04	< 0.005	_	4.04

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

		nts (lb/da				1												
∟and Jse	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	25.2	0.00	25.2	2.52	0.00		88.1
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.42	0.00	0.42	0.04	0.00	_	1.47
Total	_	_	_	_	_	_	_	_	_	_	_	25.6	0.00	25.6	2.56	0.00	_	89.5
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	25.2	0.00	25.2	2.52	0.00	_	88.1
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.42	0.00	0.42	0.04	0.00	_	1.47
Total	_	_	_	_	_	_	_	_	_	_	_	25.6	0.00	25.6	2.56	0.00	_	89.5
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	4.17	0.00	4.17	0.42	0.00	_	14.6

General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.07	0.00	0.07	0.01	0.00	_	0.24
Total			_	_	_	_	_	_	_	_	_	4.24	0.00	4.24	0.42	0.00	_	14.8

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.14	6.14
General Office Building	_	_	-	_	_	_	_	_	-	-	-	-	_	-	-	_	< 0.005	< 0.005
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.14	6.14
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.14	6.14
General Office Building	_	_	-	_	_	_	_	_	-	-	-	-	_	-	-	_	< 0.005	< 0.005
Total	_	_	_	<u> </u>	<u> </u>	_	_	-	_	_	_	_	_	_	-	_	6.14	6.14
Annual	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_

High Turnover (Sit Down Restaurar		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.02	1.02
General Office Building	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	< 0.005	< 0.005
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.02	1.02

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type						PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Ontona				i i	1									000-	0111	Na O		000
Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total			_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	CO	SO2			b/day for PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequest	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Site Preparation	Site Preparation	8/17/2023	8/18/2023	5.00	2.00	_
Grading	Grading	8/19/2023	8/22/2023	5.00	2.00	_
Building Construction	Building Construction	8/23/2023	1/9/2024	5.00	100	_
Paving	Paving	1/10/2024	1/16/2024	5.00	5.00	_
Architectural Coating	Architectural Coating	1/17/2024	1/23/2024	5.00	5.00	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Graders	Diesel	Average	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	1.00	8.00	84.0	0.37
Grading	Graders	Diesel	Average	1.00	6.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	6.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37

Building Construction	Cranes	Diesel	Average	1.00	4.00	367	0.29
Building Construction	Forklifts	Diesel	Average	2.00	6.00	82.0	0.20
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Average	4.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	7.00	81.0	0.42
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38
Paving	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	5.00	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	7.50	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	1.92	18.5	LDA,LDT1,LDT2

Building Construction	Vendor	0.78	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	17.5	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	0.38	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Water unpaved roads twice daily	55%	55%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%
Sweep paved roads once per month	9%	9%

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	7,148	2,383	_

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	1.00	0.00	_
Grading	0.00	0.00	1.50	0.00	_
Paving	0.00	0.00	0.00	0.00	0.00

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
High Turnover (Sit Down Restaurant)	0.00	0%
General Office Building	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2023	0.00	532	0.03	< 0.005
2024	0.00	532	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
High Turnover (Sit Down Restaurant)	180	799	799	130,320	1,425	17,687	17,687	2,216,086
General Office Building	9.11	1.86	1.86	2,568	202	41.1	41.1	56,860

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	7,148	2,383	_

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
High Turnover (Sit Down Restaurant)	137,826	532	0.0330	0.0040	447,681

General Office Building	14 652	532	0.0330	0.0040	23 173
Ochicial Office Ballating	14,002	302	0.0000	0.00+0	20,170

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
High Turnover (Sit Down Restaurant)	1,191,370	0.00
General Office Building	149,296	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
High Turnover (Sit Down Restaurant)	46.7	0.00
General Office Building	0.78	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
High Turnover (Sit Down Restaurant)	Household refrigerators and/or freezers	R-134a	1,430	0.00	0.60	0.00	1.00
High Turnover (Sit Down Restaurant)	Other commercial A/C and heat pumps	R-410A	2,088	1.80	4.00	4.00	18.0
High Turnover (Sit Down Restaurant)	Walk-in refrigerators and freezers	R-404A	3,922	< 0.005	7.50	7.50	20.0
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00

General Office Building	Other commercial A/C	R-410A	2,088	< 0.005	4.00	4.00	18.0
	and heat pumps						

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
l		g				

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Final Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
noo iyoo	1 tarribor	Electricity Savea (KVVIII)	reaction Cas Cavea (StaryCar)

8. User Changes to Default Data

Screen	Justification	
Characteristics: Project Details	Project site is located in Unincorporated Riverside County with a rural locational context.	
Construction: Construction Phases	The project will not require any demolition during construction.	
Operations: Vehicle Data	Trip rates are based on the ITE Trip Generation Manual 11th Edition (2021).	
Operations: Fleet Mix	Fleet mix is adjusted to include 2% total trucks over 10,000 lbs. GVWR. (LHD2, MHD, HHD, OBUS, UBUS, SBUS, MH).	