Appendix G

Residential Site Preliminary Geotechnical Investigation

April 26, 2023 J.N.: 3138.00

Mr. Michael Johnson Overton Moore Properties 19700 South Vermont Avenue Suite 101 Torrance, CA 90502

Subject: Preliminary Geotechnical Investigation, Proposed Residential Development, North of Sierra Madre Avenue and Vernon Avenue (Azusa Greens Country Club), Azusa, California

Dear Mr. Johnson,

Pursuant to your request, *Albus & Associates, Inc.* is pleased to present to you our preliminary geotechnical investigation report for the proposed development at the subject site. This report presents the results of our aerial photo and literature review, subsurface exploration, laboratory testing, and engineering analyses. Conclusions relevant to the feasibility of the proposed site development and recommendations for design are also presented herein based on the findings of our work.

We appreciate this opportunity to be of service to you. If you have any questions regarding the contents of this report, please do not hesitate to call.

Sincerely,

ALBUS & ASSOCIATES, INC.

Principal Engineer

TABLE OF CONTENTS

1.0	INTI	RODUCTION	. 1
2.1	0 INTRODUCTION		
2.2	SIT	TE LOCATION AND DESCRIPTION	. 1
2.3	PR	OPOSED DEVELOPMENT	. 2
2.0	INV	ESTIGATION	. 3
2.1	RE	SEARCH	. 3
2.2	PR	EVIOUS GEOTECHNICAL REPORTS	. 3
2.3	SU	BSURFACE EXPLORATION	. 3
2.4	LA	BORATORY TESTING	. 4
3.0	SUB	SURFACE CONDITIONS	. 5
3.1	SO	IL CONDITIONS	. 5
3.2	GR	COUNDWATER	. 5
3.3	FA	ULTING	. 7
4.0	ANA	LYSES	. 8
4.1	SE	ISMICITY	. 8
4.2	LIC	QUEFACTION	. 9
4.3	SL	OPE STABILITY	10
5.0	CON	ICLUSIONS	10
5.1	FE.	ASIBILITY OF PROPOSED DEVELOPMENT	10
5.2	GE	COLOGIC HAZARDS	10
5.	.2.1	Ground Rupture	10
5.	.2.2	Ground Shaking	11
5.	.2.3	Landsliding	11
5.	.2.4	Liquefaction	11
5.3	ST.	ATIC SETTLEMENT	11
5.4	EX	CAVATION AND MATERIAL CHARACTERISTICS	11
5.5	SO	IL EXPANSION	12
6.0	REC	OMMENDATIONS1	12
6.1	EA	RTHWORK.	12
6.	.1.1	General Earthwork and Grading Specifications	12
6.	.1.2	Pre-Grade Meeting and Geotechnical Observation	12
6.	.1.3	Site Clearing	13
6.	.1.4	Ground Preparation	13
6.	.1.5	Fill Placement	14
6.	.1.6	Over-sized Materials	14
6.	.1.7	Temporary Excavations	15
6.	.1.8	Import Materials.	15
6.2	SE.	ISMIC DESIGN PARAMETERS	15
6.	.2.1	Mapped Seismic Design Parameters	13
6.	.2.2	Site-Specific Seismic Design Parameters	10
0.3	2 1	ONVENTIONAL FOUNDATION DESIGN	10
6.	.3.1		10
6.	.3.2	Soli Expansion	l / 17
6.	.3.3 2 1	Static and Seismic Settlement.	l / 17
6.	.3.4	Allowable Bearing value	1/

6.3.5	Lateral Resistance	17
6.3.6	Footing Dimensions and Reinforcement	17
6.3.7	Foundation Observations	18
6.4 R	ETAINING AND SCREENING WALLS	18
6.4.1	General	18
6.4.2	Allowable Bearing Value and Lateral Resistance	19
6.4.3	Active Earth Pressures	19
6.4.4	Drainage and Moisture-Proofing	20
6.4.5	Footing Reinforcement and Wall Jointing	20
6.4.6	Foundation Observations	20
6.5 EX	XTERIOR FLATWORK	20
6.6 C	ONCRETE MIX DESIGN	21
6.7 C	ORROSION	21
6.8 PI	RELIMINARY PAVEMENT DESIGN	21
6.8.1	Preliminary Pavement Structural Sections	21
6.8.2	Subgrade Preparation	21
6.8.3	Aggregate Base	22
6.8.4	Asphaltic Concrete	22
6.8.5	Concrete Paver	22
6.8.6	Portland Cement Concrete	22
6.9 PC	OST GRADING CONSIDERATIONS	23
6.9.1	Site Drainage and Irrigation	23
6.9.2	Utility Trenches	23
6.10	PLAN REVIEW AND CONSTRUCTION SERVICES	24
7.0 LIN	IITATIONS	24
8.0 REI	FERENCES	26

FIGURES AND PLATES

Figure 1 - Site Location Map

- Figure 2 Microtremor Refraction Survey Location Map
- Figure 3 Groundwater Well Location Map
- Figure 4 Groundwater Data
- Plate 1 Geotechnical Map

APPENDICES

APPENDIX A - EXPLORATION LOGS

APPENDIX B - LABORATORY TESTS RESULTS

APPENDIX C – INVESTIGATION BY GEOTECHNICAL PROFESSIONALS, INC. (2008)

APPENDIX D- STABILITY ANALYSES

APPENDIX E – STANDARD GRADING DETAILS

ALBUS & ASSOCIATES, INC.

1.0 INTRODUCTION

2.1 PURPOSE AND SCOPE

The purposes of our preliminary geotechnical investigation were to evaluate geotechnical conditions within the project area and to provide conclusions and recommendations relevant to the design and construction of the proposed development at the subject site. The scope of this investigation included the following:

- Review of the historical aerial photographs,
- Review of previous geotechnical reports for the area as well as published geologic and seismic data for the surrounding area,
- Exploratory drilling and soil sampling,
- Laboratory testing of selected soil samples,
- Engineering analyses of data obtained from our review, exploration, and laboratory testing,
- Evaluation of site seismicity, liquefaction potential, and settlement potential,
- Preparation of this report.

2.2 SITE LOCATION AND DESCRIPTION

The site is located at 919 Sierra Madre Avenue within the city of Azusa, California. The property is bordered by Sierra Madre Avenue to the South, residential units to the south, west, and east, as well as a water basin to the North. The location of the site and its relationship to the surrounding areas is shown on Figure 1, Site Location Map.

The site consists of an irregularly-shaped property occupying approximately 21 acres of land. The site is relatively flat with elevations ranging from 650 to 665 feet above mean sea level (based on Google Earth). The topography generally descends to the south. A water basin is located directly north of the property. The slope of the basin descends about 40 feet in height based on topographic data we obtained for the site. The gradient of the slope is about 2.75:1 (H:V) but includes some terrace benches that result in an overall gradient of about 3.75:1 (H:V). Water in the basin appears to pond to typical depths of about 10 to 15 feet.

The site is currently a portion of a golf course and appears to not have been used for some time. The perimeters of the site are primarily bounded by chain-link fencing. Some block walls are present along portions of the site adjacent residential units.

Vegetation within the site consists of large trees dividing the different fairways. The vast majority of the site is covered by grass with additional limited vegetation. A few structures are present onsite with a club house and associated parking lot located at the south end of the site.

Overton Moore Properties

© 2023 Google

FIGURE 1-SITE LOCATION MAP

Proposed Residential Development 919 Sierra Madre Avenue Azusa, California

NOT TO SCALE

2.3 PROPOSED DEVELOPMENT

Ν

Based on our understanding and review of the site plan by Architecture Design Relationships, site development is anticipated to consist of (38) one-story, single-family residences and (2) three-story multi-family residences. Associated interior driveways, decorative hardscape, parking areas, common areas and underground utilities are also anticipated.

We anticipate demolition of existing site improvements and some minor cut and filling of the site will be required to achieve future surface configuration and we expect future foundation loads will be light. All structures are anticipated to be at grade.

2.0 INVESTIGATION

2.1 RESEARCH

We have reviewed the referenced geologic publications and maps (see references). Data from these sources were utilized to develop some of the findings and conclusions presented herein.

We have also reviewed available historical aerial photographs. The aerial photos indicate that grading for the golf course began around 1964 and continued into 1965. By 1972 the golf course has already been completed and the residential properties surrounding the golf course are under construction. Sometime between 1972-1977, the water basin to the north was constructed. The site and surrounding areas appear to have remained relatively unchanged since the 1970s.

2.2 PREVIOUS GEOTECHNICAL REPORTS

A geotechnical investigation was conducted by Geotechnical Professionals, Inc (GPI, 2008) for the existing Target store at the southwest corner of north Azusa Avenue and East 9th street nearly 1 mile southeast of the subject site. The investigation by Geotechnical Professionals Inc. included exploration with four hollow-stem auger borings and six CPT soundings. Refusal was met at a depth of 9 feet or shallower in all 10 exploration points. GPI also performed a microtremor refraction survey. During the microtremor refraction survey, an array of geophones was placed across the site and connected to a seismograph to measure propagating Rayleigh waves from both active and passive sources. The survey indicated a shear wave velocity of 700 ft/sec and increasing with depth to a peak value of 2,200 ft/sec occurring at a depth of 20 to 30 feet. Thereafter, the velocity diminished to a value of 1,650 ft/sec. indicating the occurrence of groundwater below a depth of 30 feet. The results of the microtremor refraction survey from Geotechnical Professionals, Inc. can be found in Appendix C.

Another nearby investigation was performed by Diaz Yorman (DYA 2014) for a site located at northeast corner of E. Foothill Blvd and N. Alameda Ave. also located about 1 mile southeast of the subject site. Their investigation consisted of 7 hollow-stem auger borings and one Becker hammer boring. The hollow-stem auger borings were advanced to a maximum depth of 20 feet and resulted in blow counts exceeding 50 blows at depths of 10 to 20 feet. The Becker hammer boring was advanced to a depth of 50 feet and demonstrated Becker blow counts of 20 to over 100 for the depths of 10 to 50 feet. The equivalent SPT blows range from 36 to over 180. The log of the Becker hammer boring is provided in Appendix C.

The locations of these prior investigations relative to the subject site are depicted on Figure 2.

2.3 SUBSURFACE EXPLORATION

Subsurface exploration for this investigation was conducted on February 28 and March 9, 2023, and consisted of drilling six (6) soil borings and excavating ten (10) test pits to depths ranging from approximately 5 to 8 feet below the existing ground surface (bgs). The borings were drilled using a truck-mounted, high-torque, continuous flight, hollow-stem-auger drill rig and the test pits were excavated utilizing a backhoe with a 4-foot-wide bucket attachment. A representative of Albus & Associates, Inc. logged the exploratory excavations.

↑N

FIGURE 2- PREVIOUS EXPLORATION LOCATION MAP

Visual and tactile identifications were made of the materials encountered and their descriptions are presented in the Exploration Logs in Appendix A. The approximate locations of the exploratory excavations completed by this firm are shown on the enclosed Geotechnical Map, Plate 1.

Bulk samples were obtained at selected depths within the exploratory borings and test pits for subsequent laboratory testing. Samples were placed in plastic bags and transported to our laboratory for analyses. As part of our sampling, two test pits were selected for large-scale gradation testing (TP-3 and TP-8). A tarp was placed on the ground adjacent to each of these test pits and a large sample of material was removed and placed on the tarps. The total weights of these samples were 1,848 lbs. and 4,317 lbs. for TP-3 and TP-8, respectively. The testing of each sample is discussed further in Section 2.4. The exploratory excavations were backfilled with cuttings upon completion of sampling.

Upon completion of drilling, well materials were installed within each boring for subsequent percolation testing. Details and results of percolation tests are reported under a separate cover.

2.4 LABORATORY TESTING

Selected samples obtained from our subsurface exploration were tested in our soil laboratory. Tests consisted of in-situ moisture content and dry density, and grain-size distribution analysis. A description of laboratory test criteria and test results are presented in Appendix B.

As discussed in Section 2.3, two large samples of materials were obtained from TP-3 and TP-8. These samples were tested for gradation using a combination of field measurements and laboratory testing. Particles that were larger than 3 inches in the median dimension were individually weighed and measured for dimension in three principal axes. This information was recorded for further processing. The remaining portions of these samples were bagged and returned to our laboratory.

3.0 SUBSURFACE CONDITIONS

3.1 SOIL CONDITIONS

Descriptions of the earth materials encountered during our investigation are summarized below and are presented in detail on the Exploration Logs presented in Appendix A.

Review of the Dibblee Map for the Mt. Wilson and Azusa Quadrangles (Dibble 1998) indicates the site is south of the San Gabriel Mountains and is underlain by quaternary alluvial fan deposits (Qg). The materials are described by Dibble as consisting of gravel and sand of stream channels and alluvial fan outwash from major canyons. The site is located just easterly of the San Gabriel River where it flows out of the San Gabriel Mountains and falls within the overbank areas of the river.

Based on our site-specific investigation, a thin mantle of top soil is present throughout the golf course, but was observed to be generally only 0.5 feet in thickness. The topsoil generally consists of silty sand (SM) that is fine to medium grained and often contains roots and rootlets.

Underlying the topsoil or exposed at the surface in some areas are quaternary alluvial deposits (Qg). The alluvial soils were encountered to the maximum depth explored, i.e., 8 feet, but extend to more than 50 feet in depth. The materials were generally consistent with the description above by Dibblee (1998) although the site deposits tend to also contain abundant cobbles and some boulders up to about 3.5 feet in median diameter. The larger cobbles and boulders are typically oblong in shape with the maximum dimension reaching about 4 to 5 feet across. Gradationally the materials tend to become coarser grained with depth but boulders were encountered within 1.5 to 2 feet of the ground surface in some areas.

A more detailed description of the interpreted soil profile at each of the exploration locations, based upon the soil cuttings and soil samples, are presented in Appendix A. The stratigraphic descriptions in the logs represent the predominant materials encountered during investigation. Relatively thin, often discontinuous layers of different material may occur within the major divisions.

3.2 GROUNDWATER

Groundwater was not encountered during this firm's subsurface exploration to a depth of 8 feet. The CDMG Special Report 021 suggests that historic high groundwater for the subject site is about 10-30 feet below the ground surface. Review of the California Department of Water Resources groundwater well data for well 4275A indicates groundwater has fluctuated between 20-60 feet below ground surface between 2011-2022.

Review of the Los Angeles County Public Works groundwater level data for the nearby wells 4285B and 4285H indicate that groundwater for the area has generally been below 30 feet from 1944 to 2009 with a few short-lived spikes to a depth of 10 feet. The locations of these three wells are depicted on Figure 2. The recorded depths to groundwater from these wells are plotted on Figure 3.

Depths as measured between Well 4285H and Well 4285B indicate the depth to ground water drops off sharply to the south indicating the influence of the infiltration ponds located north of the subject site.

FIGURE 3 - Groundwater Well Location Map

© 2023 Google

Ν

FIGURE 4 - Ground Water Data

3.3 FAULTING

Based on our review of the referenced publications and seismic data, no active faults are known to project through or immediately adjacent to the subject site and the site do not lie within an "Earthquake Fault Zone" as defined by the State of California in Earthquake Fault Zoning Act. Table 3.1 presents a summary of known seismically active faults within 10 miles of the sites based on the 2008 USGS National Seismic Hazard Maps for the 10 closest faults.

TABL	E 3.1
Summary	of Faults

Name	Dist. (miles)	Slip Rate (mm/yr.)	Preferred Dip (degrees)	Slip Sense	Rupture Top (km)	Fault Length (km)
Sierra Madre Connected	0.39	2	51	reverse	0	76
Sierra Madre	0.39	2	53	reverse	0	57
Raymond	4.34	1.5	79	strike slip	0	22
Clamshell-Sawpit	4.57	0.5	50	reverse	0	16
San Jose	7.28	0.5	74	strike slip	0	20

4.0 ANALYSES

4.1 SEISMICITY

2022 CBC requires seismic parameters in accordance with ASCE 7-16 and supplement 1, 2, and 3. Unless noted otherwise, all section numbers cited in the following refer to the sections in ASCE 7-16.

Per Section 20.3 the project site was designated as Site Class D. We used the OSHPD seismic hazard tool to obtain the basic mapped acceleration parameters, including short periods (S_S) and 1-second period (S_1) MCE_R Spectral Response Accelerations.

Section 11.4.8 and supplement 3 require site-specific ground hazard analysis for structures on Site Class D with S₁ greater than or equal to 0.2. Based on the mapped values of Ss and S₁ the project site falls within this category, requiring site-specific hazard analysis in accordance with Section 21.2. However, "A ground motion hazard analysis is not required for structures where the value of the parameter S_{M1} determined by Eq. (11.4-2) is increase by 50% for all applications of S_{M1} in the Standard. The resulting value of the parameter S_{D1} determined by Eq. (11.4-4) shall be used for all applications of S_{D1} in this Standard." Assuming this exception is met for this project, a ground motion hazard analysis is required to determine the Design response spectra for the proposed structures at this site. Both mapped and site-specific seismic design parameters are provided in this report, as presented in Section 6.2. Details of a ground motion hazard analysis are explained below.

According to Section 21.2.3 (Supplement 1), the site-specific Risk Targeted Maximum Considered Earthquake (MCE_R) spectral response acceleration at any period is the lesser of the probabilistic and the deterministic response accelerations, subject to the exception specified in the same section. The probabilistic response spectrum was developed using the computer program OpenSHA (Field et al., 2013), which implements Method 1 as described in Section 21.2.1.1. Fault Models 3.1 and 3.2 from the Third Uniform California Earthquake Rupture Forecast (UCERF3) were used as the earthquake rupture forecast models for the PSHA. In addition to known fault sources, background seismicity was also included in the PSHA. The ground motion Prediction Equations (GMPEs) selected for use in this analysis are those developed for the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation (NGA) West 2 project. Four GMPEs - Abrahamson et al. (2014), Boore et al. (2014), Campbell and Bozorgnia (2014), and Chiou and Youngs (2014) were used to perform the analysis.

In accordance with Section 21.2.2 (Supplement 1), the deterministic spectral response acceleration at each period was calculated as the 84th percentile, 5% damped response acceleration, using NGA-West2 GMPE Worksheet. For this, the information from at least three causative faults with the greatest contribution per deaggregation analysis were used and the larger acceleration spectrum among these was selected as the deterministic response spectrum. The deterministic spectrum was adjusted per requirements in Section 21.2.2 (Supplement 1) where applicable. Both probabilistic and deterministic spectra were subjected to the maximum direction scale factors specified in Section 21.2 to produce the maximum acceleration spectra.

Design response spectrum was developed by subjecting the site-specific MCE_R response spectrum to the provisions outlined in Section 21.3. This process included comparison with 80% code-based

design spectrum determined in accordance with Section 11.4.6. The short period and long period site coefficients (Fa and Fv, respectively) were determined per Section 21.3 in conjunction with Table 11.4-1. Site-specific design acceleration parameters (S_{MS}, S_{M1}, S_{DS}, and S_{D1}) were calculated according to Section 21.4.

Per Section 11.2 (definitions on Page 79 of ASCE7-16) for evaluation of liquefaction, lateral spreading, seismic settlements, and other soil-related issues, Maximum Considered Earthquake Geometric Mean (MCE_G) peak ground acceleration PGA_M shall be used. The site-specific PGA_M is calculated per Section 21.5.3, as the lesser of the probabilistic PGA_M (Section 21.5.1) and deterministic PGA_M (Section 21.5.2), but no less than 80% site modified peak ground acceleration, PGA_M, obtained from OSHPD seismic hazard tool. From our analyses, we obtain a PGA_M of 0.787g.

4.2 LIQUEFACTION

Engineering research of soil liquefaction potential (Youd et al., 2001) indicates that generally three basic factors must exist concurrently in order for liquefaction to occur. These factors include:

- A source of ground shaking, such as an earthquake, capable of generating soil mass distortions.
- A relatively loose silty and/or sandy soil.
- A relative shallow groundwater table (within approximately 50 feet below ground surface) or completely saturated soil conditions that will allow positive pore pressure generation.

The site is located within a State-designated zone of potentially liquefiable soils. The liquefaction susceptibility of the onsite soils was evaluated by analyzing the potential concurrent occurrence of the above-mentioned three basic factors. The liquefaction evaluation for the site was completed under the guidance of Special Publication 117A: Guidelines for Evaluating and Mitigating Seismic Hazards in California (CDMG, 2008).

The site is located in an area subject to strong ground shaking and groundwater is commonly present at depths that are shallower than 50 feet. As discussed in Section 3.2, groundwater is generally below a depth of 20 to 30 feet within the site boundaries. For relatively short periods, groundwater can rise to within about 10 feet of the surface. The potential for the concurrent occurrence of strong ground shaking and groundwater shallower than 20 feet is very low.

The geologic conditions of the subject site are similar to those at the two sites investigated by GPI (2008) and DAY (2014). As such, data regarding the density of the underlying alluvial fan deposits can be used to assess the subject site. The shear wave measurements provided in the GPI report indicate a velocity of 1,200 ft/sec starting at a depth of only 6 feet. A velocity of 1,200 ft/sec suggests the material has a SPT blow count of about 50. Based on our observations in our borings and test pits at the subject site, similar velocities would be expected by a depth of 6 feet. According to the GPI data, the shear wave velocity continues to increase to 2,200 ft/sec until a depth of 30 feet when ground water is encountered. Because of the groundwater, velocity measurements below a depth of 30 feet do not reflect the properties of the soil deposit but can be reasonably assumed to remain near or above 2,200 ft/sec to a depth of 50 feet. Based on this data, soils at the subject site conservatively exhibit an SPT blow count greater than 50 at a depth of 10 feet and greater.

The Becker hammer data obtained by DYA indicates a Becker blow count of about 25 (45 blows equivalent SPT) or greater for nearly all materials located below a depth of 2 feet. The lowest recorded Becker blow count recorded was 15 (27 blows equivalent SPT) at a depth of 47 feet. Based on this data, soils at the subject site conservatively exhibit an SPT blow count greater than 50 at a depth of 10 feet and greater.

Based on Youd et al. (2001), soils with an SPT blow count of 30 and greater are very unlikely to be prone to liquefaction. Since this condition is in present below a depth of 10 feet and because historical groundwater has remained below 10 feet, the site is considered not prone to liquefaction.

4.3 SLOPE STABILITY

Engineering analyses were performed to evaluate the stability of the water basin slope that supports the northern side of the site. A typical profile of the slope was prepared using Google Earth. Groundwater was assumed to create a level phreatic surface at a depth of about 25 feet below the upper grade. The shear strength of the alluvial fan deposits was estimated from blow counts obtained from the nearby Becker hammer boring performed by DYA (2014). The equivalent SPT N₆₀ was estimated by applying a factor of 1.8 times the Becker hammer blow counts. From this, the alluvial fan deposits exhibited a SPT blow count generally greater than 50 which indicates the friction angle of the soils can conservatively be estimated as 45 degrees. For the pseudo-static analysis, the seismic coefficient, k_{eq} of 0.23g was calculated based on the recommendations presented in the CGS Special Publication 117A (2008) and FHWA-NHI-11-032. Details of the derivation of K_{eq} is provided in Appendix D. From our analyses, the estimated factors of safety for static and pseudostatic conditions are 2.55 and 1.45, respectively. Printouts of the analyses are provided in Appendix D.

5.0 CONCLUSIONS

5.1 FEASIBILITY OF PROPOSED DEVELOPMENT

From a geotechnical point of view, the proposed site development is considered feasible provided the recommendations presented in this report are incorporated into the design and construction of the project. Furthermore, it is also our opinion that the proposed development will not adversely impact the stability of adjoining properties. Key geotechnical issues that could have significant impacts on the proposed site development are discussed in the following sections of this report.

5.2 GEOLOGIC HAZARDS

5.2.1 Ground Rupture

No known active faults are known to project through the subject sites nor does the sites lie within the boundaries of an "Earthquake Fault Zone" as defined by the State of California in the Alquist-Priolo Earthquake Fault Zoning Act. The closest known active fault is the Sierra Madre fault located approximately 0.39 miles away. Therefore, potential for ground rupture due to an earthquake beneath the sites is considered low.

5.2.2 Ground Shaking

The site is situated in a seismically active area that has historically been affected by generally moderate to occasionally high levels of ground motion. The site lies in relatively close proximity to several seismically active faults; therefore, during the life of the proposed improvements, the property will probably experience similar moderate to occasionally high ground shaking from these fault zones, as well as some background shaking from other seismically active areas of the Southern California region. Design and construction in accordance with the current California Building Code (CBC) requirements is anticipated to address the issues related to potential ground shaking.

5.2.3 Landsliding

There are no known historical geologic hazards associated with landsliding at or in proximity to the site. The site is directly adjacent to a descending cut slope along the northern boundary. Based on the results of our analyses discussed in Section 4.3, the factors of safety against failure under static and pseudostatic conditions exceed 1.5 and 1.1, respectively and is therefore considered adequately stable without mitigation.

5.2.4 Liquefaction

As discussed in Section 4.2, the site is located within a State-designated zone of potentially liquefiable soils. However, as further detailed in Section 4.2, the soils underlying the site are very dense and as such, the potential for liquefaction at the subject site is very low. No mitigating measures are deemed necessary with regard to the effects of liquefaction.

5.3 STATIC SETTLEMENT

Provided site grading is performed in accordance with the recommendations provided herein and based on the anticipated relatively light foundation loads, total and differential static settlement is not anticipated to exceed 1 inch and ½-inch over 30 feet, respectively, for the proposed commercial structure. The estimated magnitudes of static settlements are considered within tolerable limits for the proposed structure.

5.4 EXCAVATION AND MATERIAL CHARACTERISTICS

Based on anticipated grading to be completed at the site, oversized materials (>8 inches in median dimension) are expected to be generated. Our exploration indicates that material with particles having a maximum dimension of about 4 to 5 feet are present. We estimate that particles greater than 8 inches in median dimension range from about 8% to 25% by weight of site materials within the upper 10 feet depending on location within the site. We estimate the upper 10 feet across the site on average will contain about 14% by weight greater than 8 inches in median dimension. Each cubic yard of soil excavated from the upper 10 feet is estimated to require on average about 0.22 cubic yards of space to dispose of the over-sized particles contained in that cubic yard of excavation. As an example, 10,000 cubic yards of excavation will need about 2,200 cubic yards of space to bury the oversized material created by that excavation. The burial would include the over-sized material as well as finer material to fill in the voids. An estimated breakdown of typical site materials is summarized in Table 5.1.

Median Dimension	Typical Portion of Material (by weight)	Description			
No. 200 to 3 in.	55% to 75%	Sands and Gravels			
3 in. to 12 in.	20% to 30%	Cobbles			
12 in. to 24 in.	3% to 7%	Fine Boulders			
24 in to 36 in.	2% to 6%	Medium Boulders			
Greater than 36 in.	0% to 2%	Large Boulders			

TABLE 5.1Typical Gradation of Site Materials

Rocks larger than 8 inches in median dimension will require disposal offsite or special handling for onsite disposal. Specific recommendations regarding placement of over-sized rock are provided in Section 6.1.6. We also anticipate that particles over 8 inches in median dimension will result in difficulty and increased costs for trenching of foundations and utilities. Consideration can be given to selectively removing materials over about 8 inches in size from areas of the site that will require trenching.

Depending on the time of year, most of site materials are likely to be below optimum moisture content and will require the addition of water to achieve proper compaction.

Off-site improvements exist near the property lines. Excavations greater than about 2 feet will be subject to caving and raveling. Therefore, excavations of greater depth will require special considerations. Specific recommendations regarding temporary excavations are provided in Section 6.1.7.

5.5 SOIL EXPANSION

Based on the USCS visual manual classification, the near-surface soils are generally anticipated to possess a **Very Low** expansion potential. Additional testing for soil expansion will be required prior to the construction of foundations and other concrete work to confirm these conditions.

6.0 **RECOMMENDATIONS**

6.1 EARTHWORK

6.1.1 General Earthwork and Grading Specifications

All earthwork and grading should be performed in accordance with applicable requirements of Cal/OSHA, applicable specifications of the Grading Codes of the City of Azusa, California in addition to the recommendations presented herein.

6.1.2 Pre-Grade Meeting and Geotechnical Observation

Prior to commencement of grading, we recommend a meeting be held between the developer, City Inspector, grading contractor, civil engineer, and geotechnical consultant to discuss the proposed grading and construction logistics. We also recommend a geotechnical consultant be retained to provide soil engineering and engineering geologic services during site grading and foundation construction. This is to observe compliance with the design specifications and recommendations and to allow for design changes in the event that subsurface conditions differ from those anticipated. If conditions are encountered that appear to be different than those indicated in this report, the project geotechnical consultant should be notified immediately. Design and construction revisions may be required.

6.1.3 Site Clearing

Areas to be graded should be cleared of vegetation, existing asphalt, underground improvements to be abandoned and deleterious materials. Asphaltic concrete and Portland Cement concrete can be incorporated into the fill as recommended in Sections 6.1.5 and 6.1.6.

Existing underground utility lines within the project area that will be protected in place and that fall within a 1 to 1 (H:V) plane projected down from the edges of footings may be subject to surcharge loads if they are within about 3 feet horizontally of footings. Under such conditions, this office should be made aware of these conditions for evaluation of potential surcharging. Supplemental recommendations may be required to protect such improvements in place.

The project geotechnical consultant should be notified at the appropriate times to provide observation services during clearing operations to verify compliance with the above recommendations. Voids created by clearing and excavation should be left open for observation by the geotechnical consultant. Should any unusual soil conditions or subsurface structures be encountered during site clearing or grading that are not described or anticipated herein, these conditions should be brought to the immediate attention of the project geotechnical consultant for corrective recommendations as needed.

Temporary construction equipment (office trailers, power poles, etc.) should be positioned to allow adequate room for clearing and recommended ground preparation to be performed for proposed structures, pavements, and hardscapes.

6.1.4 Ground Preparation

In general, any existing artificial fill and topsoil is considered unsuitable for support of the proposed development. Artificial fill and topsoil is estimated to be typically 1 feet thick but was encountered up to 2.5 feet in depth. These materials likely are locally deeper particularly where berms are present. These materials should be removed from within the limits of the proposed building, pavement, screening/retaining walls, and any other "structural" areas. Where removals are limited due to property line constraints, special techniques, such as shoring may be required to prevent sloughing of the alluvial materials.

The removals should extend a minimum horizontal distance of 5 feet beyond the limits of the foundations of the new building or a 1:1 (H:V) projection laterally down and away from the bottom of the footings, whichever is greater. The actual depth of removal should be determined by the geotechnical consultant during grading. All removal excavations should be evaluated by the geotechnical consultant during grading to confirm the exposed conditions are as anticipated and to provide supplemental recommendations if required.

The presence of over-sized materials will likely make excavation during utility work and foundation trenching difficult and likely result in localized refusal for backhoes. To mitigate this potential issue, consideration should be given to over-excavating building pads and roadways to a depth that extends below the proposed utilities. The fill then placed in the over-excavated areas can be limited to contain only material with a median dimension of 8 inches or less. The over-sized material screened out of the cut materials can then be place in accordance with Section 6.1.6.

The grading contractor should take appropriate measures when excavating adjacent any existing improvements to remain in-place to avoid disturbing or compromising support of existing structures.

Following removals, the exposed grade should first be brought to at least 110 percent of the optimum moisture content, and then compacted to at least 90 percent of the laboratory standard (ASTM D 1557). Preparation of bottoms may require the selective removal of over-sized rock if the surface varies in elevation by more than about 8 inches over a horizontal distance of about 5 feet. Where this condition occurs, individual oversized particles should be removed from the surface and handled as over-sized material as further recommended in Section 6.1.6.

6.1.5 Fill Placement

Materials excavated from the site may be reused as fill provided they are free of deleterious materials and particles greater than 8 inches in maximum dimension (oversized materials). The fills *should contain sufficient finer granular materials* to eliminate nesting of rock fragments as recommended by the geotechnical consultant during grading. Asphaltic and concrete debris generated during site demolition or encountered within the existing fill can be incorporated within new fill soils during earthwork operations provided they are reduced to no more than 8 inches in maximum dimension. Such materials should be mixed thoroughly with fill soils to prevent nesting. All fill should be placed in lifts no greater than 8 inches in loose thickness, moisture conditioned to at least the optimum moisture content, then compacted in place to at least 90 percent of the laboratory standard. The laboratory standard for maximum dry density and optimum moisture content for each change in soil type should be determined in accordance with ASTM D 1557. Each lift should be treated in a similar manner. Subsequent lifts should not be placed until the project geotechnical consultant has approved the preceding lift.

Material having particles that are greater than 8 inches in diameter should be handled as discussed in Section 6.1.6.

6.1.6 Over-sized Materials

Particles greater than 8 inches in median dimension but less than 3 feet in median dimension may be placed within engineered fills as rock blankets at least 10 feet below proposed grades as well as at least 18 inches below deepest utilities within streets, as presented in Appendix E. Such placement will require the use of material less than 8 inches in median dimension to be blended into the over-sized materials to limit nesting. The process will primarily require the placement of oversized particles in a blanket or windrow followed by placing a lift of finer fill over the top of the rock blanket or windrow. The area should then be flooded to wash the finer material in and around the oversized rocks followed by track walking with a dozer. Afterwards, a new lift of finer material should be placed, washed, and track walked. The process should be repeated until the over-sized rock blanket or windrow will not

accept any additional finer material and the area can be finished to a relatively smooth grade. Thereafter, the process may be repeated by placement of a new rock blanket or windrow.

Particles greater than 3 feet in median dimension should be reduced in size to less than 3 feet in diameter or be removed from the site.

Due to the significant amount of over-sized particles (estimated to be about 14% by weight of all materials in the upper 10 feet), the grading contactor should be prepared to use "skeleton" buckets on loaders to shift out over-sized particles from cut and fill areas and rock trucks for hauling over-sized materials across the site for special burial. We recommend that specific areas of the site be selected in advance for use in disposal of over-sized particles. This will likey require mining below finish grades to form "disposal pits" that can be primarily filled with over-sized particles. The space required for disposal can be estimated using the information discuss in Section 5.4.

6.1.7 Temporary Excavations

Temporary excavations may be cut vertical up to a height of 3 feet. Temporary cuts that are greater than 3 feet in height should be laid back at a maximum gradient of 1.5:1 (H:V) with no portions that are vertical. Excavations should not be left open for prolonged periods of time. Where insufficient room is present for an open temporary cut, shoring should be used.

The project geotechnical consultant should observe all temporary cuts to confirm anticipated conditions and to provide alternate recommendations if conditions dictate. All excavations should conform to the requirements of CAL OSHA.

6.1.8 Import Materials

If import materials are required to achieve the proposed finish grades, the proposed import soils should have an Expansion Index (EI, ASTM D 4829) less than 21, possess negligible soluble sulfate concentrations, and not contain deleterious materials. Import sources should be indicated to the geotechnical consultant prior to hauling the materials to the site so that appropriate testing and evaluation of the fill materials can be performed in advance.

6.2 SEISMIC DESIGN PARAMETERS

6.2.1 Mapped Seismic Design Parameters

For the design of the project in accordance with Chapter 16 of the 2022 CBC, the mapped seismic parameters may be taken as presented in the Table 6.1 below.

According to Section 11.4.8 in ASCE 7-16 and supplement 3, "a ground motion hazard analysis shall be performed in accordance with Section 21.2 for the following structures on Site Class D site with S_1 greater than or equal to 0.2." However, "A ground motion hazard analysis is not required for structures where the value of the parameter S_{M1} determined by Eq. (11.4-2) is increase by 50% for all applications of S_{M1} in the Standard. The resulting value of the parameter S_{D1} determined by Eq. (11.4-4) shall be used for all applications of S_{D1} in this Standard." Should this exception not be met, the site-specific seismic design parameters provided in the next section should be used.

Parameter	Value
Site Class	D
Mapped MCE _R Spectral Response Acceleration, short periods, Ss	1.714
Mapped MCE _R Spectral Response Acceleration, at 1-second period, S ₁	0.653
Site Coefficient, F _a	1.0
Site Coefficient, Fv	1.7
Adjusted MCE _R Spectral Response Acceleration, short periods, S _{MS}	1.714
Adjusted MCE _R Spectral Response Acceleration, at 1-second period, S _{M1}	1.665
Design Spectral Response Acceleration, short periods, S _{DS}	1.143
Design Spectral Response Acceleration, at 1-second period, SD1	1.110
Long-Period Transition Period, TL (sec.)	8
Seismic Design Category for Risk Categories I-IV	II

TABLE 6.12022 CBC Mapped Seismic Design Parameters

MCE_R = Risk-Targeted Maximum Considered Earthquake

6.2.2 Site-Specific Seismic Design Parameters

In addition to the Code Spectra parameters presented in Table 6.1, we have performed a site-specific ground motion hazard analysis in accordance with Chapter 21 of ASCE 7-16 to obtain site-specific seismic design acceleration parameters, the risk-targeted maximum considered earthquake response spectrum, and the design earthquake response spectrum. The site-specific seismic design parameters are presented below.

TABLE 6.22022 CBC Site Specific Seismic Design Parameters

Parameter	Value
Site Class	D
Site Coefficient, F _a	1.0
Site Coefficient, F _v	2.5
Adjusted MCE Spectral Response Acceleration, short periods, S _{MS}	1.371
Adjusted MCE Spectral Response Acceleration, at 1-second period, S _{M1}	1.306
Design Spectral Response Acceleration, short periods, SDS	0.914
Design Spectral Response Acceleration, at 1-second period, S _{D1}	0.871

MCE = Maximum Considered Earthquake

6.3 CONVENTIONAL FOUNDATION DESIGN

6.3.1 General

The following design parameters are provided to assist the project structural engineer to design foundations for structures at the site. These design parameters are based on typical site materials encountered during subsurface exploration and are provided for preliminary design and estimating purposes. The project geotechnical consultant should provide final design parameters following observation and testing of site materials during grading. Depending on actual materials encountered during site grading, the design parameters presented herein may require modification.

6.3.2 Soil Expansion

The recommendations presented herein are based on soils with a **Very Low** expansion potential. Following site grading, additional testing of site soils should be performed by the project geotechnical consultant to confirm the basis of these recommendations. If site soils with higher expansion potentials are encountered or imported to the site, the recommendations contained herein may require modification.

6.3.3 Static and Seismic Settlement

Based on anticipated foundation loads and provided that the recommendations for ground preparation in this report are followed, total and differential static settlements are anticipated to be less than 1 inch and $\frac{1}{2}$ inch over 30 feet, respectively. These values are considered within tolerable limits of the proposed structure and site improvements. Design of the structure should consider these maximum anticipated settlements.

6.3.4 Allowable Bearing Value

Foundations may utilize a bearing value of 2,500 pounds per square foot (psf) for continuous and pad footings with a minimum width of 12 inches and founded at a minimum depth of 12 inches below the lowest adjacent grade. This value may be increased by 500 psf and 1500 psf for each additional foot in width and depth, respectively, up to a maximum value of 4,000 psf. Recommended allowable bearing values include both dead and live loads and may be increased by one-third for wind and seismic forces.

6.3.5 Lateral Resistance

A passive earth pressure of 240 pounds per square foot per foot of depth (psf/ft) up to a maximum value of 1,500 pounds per square foot (psf) may be used to determine lateral bearing for footings. This value may be increased by one-third when designing for wind and seismic forces. A coefficient of friction of 0.45 times the dead load forces may also be used between concrete and the supporting soils to determine lateral sliding resistance. No increase in the coefficient of friction should be used when designing for wind and seismic forces.

The above values are based on footings placed directly against compacted fill or competent native soils. In the case where footing sides are formed, all backfill against the footings should be compacted to at least 90 percent of the laboratory standard.

6.3.6 Footing Dimensions and Reinforcement

Exterior and interior building footings should be founded at a minimum depth of 12 inches and 12 inches, respectively, below the lowest adjacent grade. All continuous footings should be reinforced with a minimum of two No. 4 bars, one top and one bottom. The structural engineer may require different reinforcement and should dictate if greater than the recommendations provided herein.

Interior isolated pad footings should be a minimum of 24 inches square and founded at minimum depths of 12 inches below the lowest adjacent final grade. Exterior isolated pad footings intended for support of patio covers or similar construction should be a minimum of 24 inches square and founded at a minimum depth of 12 inches below the lowest adjacent final grade.

Interior concrete slabs constructed on grade should be a minimum 4 inches thick and should be reinforced with No. 3 bars spaced 30 inches on center, each way. Care should be taken to ensure the placement of reinforcement at mid-slab height. The structural engineer may recommend a greater slab thickness and reinforcement based on proposed use and loading conditions and such recommendations should govern if greater than the recommendations presented herein.

Concrete floor slabs in areas to receive carpet, tile, or other moisture sensitive coverings should be underlain with a minimum of 15-mil moisture vapor retarder conforming to ASTM E 1745-11, Class A. The membrane should be properly lapped, sealed, and underlain with at least 2 inches of sand having a SE no less than 30. One additional inch of sand may be placed over the membrane to aid in the curing of the concrete. This vapor retarder system is anticipated to be suitable for most flooring finishes that can accommodate some vapor emissions. However, this system may emit more than 4 pounds of water per 1000 sq. ft. and therefore, may not be suitable for all flooring finishes. Additional steps should be taken if such vapor emission levels are too high for anticipated flooring finishes.

Special consideration should be given to slabs in areas to receive ceramic tile or other rigid, cracksensitive floor coverings. Design and construction of such areas should mitigate hairline cracking as recommended by the structural engineer.

Block-outs should be provided around interior columns to permit relative movement and mitigate distress to the floor slabs due to differential settlement that will occur between column footings and adjacent floor subgrade soils as loads are applied.

6.3.7 Foundation Observations

Foundation excavation should be observed by the project geotechnical consultant to verify that they have been excavated into competent bearing soils and to the minimum embedment recommended above. These observations should be performed prior to placement of forms or reinforcement. The excavations should be trimmed neat, level and square. Loose, sloughed or moisture-softened materials and debris should be removed prior to placing concrete.

6.4 RETAINING AND SCREENING WALLS

6.4.1 General

The following preliminary design and construction recommendations are provided for general retaining and screen walls supported by engineered compacted fill or competent native soils. Final wall designs specific to the site development should be provided for review once completed. The structural engineer and architect should provide appropriate recommendations for sealing of all joints and applying moisture-proofing material on the back of the walls.

6.4.2 Allowable Bearing Value and Lateral Resistance

Design of retaining and screen walls may utilize the bearing and lateral resistance values provided in Section 6.3.4 and 6.3.5.

6.4.3 Active Earth Pressures

Static and seismic earth pressures for level and 2:1 (H:V) backfill conditions are provided in Table 6.3. Seismic earth pressures provided herein are based on the method provided by Seed & Whitman (1970) using a peak ground acceleration (PGA) of 0.427 g for 10% probability of exceedance in 50 years. As indicated in Section 1803.5.12 of the 2022 CBC, retaining walls supporting 6 feet of backfill or less are not required to be designed for seismic earth pressures. The values provided in Table 6.3 do not consider hydrostatic pressure. Retaining walls should also be designed to support adjacent surcharge loads imposed by other nearby footings or traffic loads in addition to the earth pressure.

TABLE 6.3

Pressure Values

Valuo	Backfill Condition						
v aluc	Level	2H:1V Slope					
Α	30H	44H					
В	13H	13H					
С	21.5H	28.5H					

Note:

H is in feet and resulting pressure is in psf. Design may utilize either the sum of the static component and the seismic component force diagrams or the total force diagram above. SEAOSC has suggested using a load factor of 1.7 for the static component and 1.0 for the seismic component. The actual load factors should be determined by the structural engineer.

6.4.4 Drainage and Moisture-Proofing

Retaining walls should be constructed with a perforated pipe and gravel subdrain to prevent entrapment of water in the backfill. The perforated pipe should consist of 4-inch-diameter, ABS SDR-35 or PVC Schedule 40 with the perforations laid down. The pipe should be embedded in ³/₄- to 1¹/₂-inch open-graded gravel wrapped in filter fabric. The gravel should be at least one foot wide and extend at least one foot up the wall above the footing and drainage outlet. Drainage gravel and piping should not be placed below outlets and weepholes. Filter fabric should consist of Mirafi 140N, or equal. Outlet pipes should be directed to positive drainage devices.

The use of weepholes may be considered in locations where aesthetic issues from potential nuisance water are not a concern. Weepholes should be 2 inches in diameter and provided at least every 6 feet on center. Where weepholes are used, perforated pipe may be omitted from the gravel subdrain.

Retaining walls supporting backfill should also be coated with a moisture-proofing compound or covered with such material to inhibit infiltration of moisture through the walls. Moisture-proofing material should cover any portion of the back of wall that will be in contact with soil and should lap over and onto the top of footing. The project structural engineer should provide specific recommendations for moisture-proofing, water stops, and joint details.

6.4.5 Footing Reinforcement and Wall Jointing

All continuous footings should be reinforced with a minimum of two No. 4 bars, one top and one bottom. Walls should be provided with cold joints spaced no more than 40 feet apart. Wall finishes and capping materials should not extend across the cold joint. The structural engineer may require different reinforcement or jointing and should dictate if greater than the recommendations provided herein. Where recommended removals are limited due to space restrictions, greater reinforcement and closer jointing may be recommended. Specific recommendations should be provided by the geotechnical consultant during grading based on as-built conditions exposed in the field.

6.4.6 Foundation Observations

Footing excavations should be observed by the project geotechnical consultant to verify that they have been excavated into competent bearing soils and to the minimum embedment recommended herein. These observations should be performed prior to placement of forms or reinforcement. The excavations should be trimmed neat, level and square. Loose, sloughed or moisture-softened materials and debris should be removed prior to placing concrete.

6.5 EXTERIOR FLATWORK

Exterior flatwork should be a nominal 4 inches thick. Cold joints or saw cuts should be provided at least every 15 feet in each direction. Special jointing detail should be provided in areas of block-outs, notches, or other irregularities to avoid cracking at points of high stress. Subgrade soils below flatwork should be thoroughly moistened to at least 110 percent of the optimum moisture content to a depth of 12 inches. Moistening should be accomplished by lightly spraying the area over a period of a few days just prior to pouring concrete. The geotechnical consultant should observe and verify the density and moisture content of subgrade soils prior to pouring concrete to ensure that the required compaction and pre-moistening recommendations have been met.

Drainage from flatwork areas should be directed to local area drains and/or other appropriate collection devices designed to carry runoff water to the street or other approved drainage structures. The concrete flatwork should also be sloped at a minimum gradient of 0.5 percent away from building foundations and retaining walls.

6.6 CONCRETE MIX DESIGN

We recommend following the procedures provided in ACI 318, Section 19.3, Table 19.3.1.1 for **S0** sulfate exposure. Upon completion of rough grading, an evaluation of as-graded conditions and further laboratory testing should be completed for the site to confirm or modify the recommendations provided in this section.

6.7 CORROSION

The site is considered Non-Corrosive to metals that are in contact or close proximity to onsite soils. As such, no special considerations will be required if construction will include metals that will be near or in direct contact with site soils.

6.8 PRELIMINARY PAVEMENT DESIGN

6.8.1 Preliminary Pavement Structural Sections

Based on the soil conditions present at the site and an estimated traffic index, preliminary pavement sections are provided in Table 6.4. An estimated "R-value" of 50 was used for the near-surface soil in this preliminary pavement design based on laboratory results. The sections provided below are for planning purposes only and should be re-evaluated subsequent to site grading. Final pavement sections should be based on actual R-value testing of in-place soils and analysis of anticipated traffic.

Location	Traffic Index	AC (inches)	Concrete Pavers (mm)	PCC (inches)	AB (inches)
		3.0			6.0
Entry Way and Main Drives	6.5			5.0	
Dirves			80.0		6.0
		3.0			4.0
Cottage Driveways and Parking Stalls	4.5			4.0	
i arking Stans			80.0		4.0

TABLE 6.4PRELIMINARY PAVEMENT STRUCTURAL SECTIONS

6.8.2 Subgrade Preparation

Prior to placement of paving elements, subgrade soils should be scarified 6 inches, moistureconditioned to above the optimum moisture content then compacted to at least 90 percent of the maximum dry density determined in accordance with ASTM D1557. Areas observed to pump or yield under vehicle traffic should be removed and replaced with firm and unyielding engineered compacted soil or aggregate base materials.

6.8.3 Aggregate Base

Aggregate base materials should be Crushed Aggregate Base or Crushed Miscellaneous Base conforming to Section 200-2 of the Standard Specification for Public Works Construction (Greenbook) or Class 2 Aggregate Base conforming to the Caltrans' Standard Specifications. The materials should be moisture conditioned to slightly over the optimum moisture content then compacted to at least 95 percent of ASTM D 1557.

6.8.4 Asphaltic Concrete

Paving asphalt should be PG 64-10 conforming to the requirements of Section 203-1 of the Greenbook. Asphalt concrete materials should conform to Section 203-6 and construction should conform to Section 302 of the Greenbook.

6.8.5 Concrete Paver

Concrete pavers should conform to the requirements of ASTM C 936. Construction of the pavers, including bedding sand, should follow manufacturer's specifications. Typical thickness of bedding sand is about 1 inch. The gradation of bedding sand should meet the requirement in Table 6.5.

Oradation for Sand Dedding							
Sieve Size	Percent Passing						
3/8"	100						
No. 4	95 - 100						
No. 8	80 - 100						
No. 16	50 - 85						
No. 30	25 - 60						
No. 50	5 - 30						
No. 100	0 - 10						
No. 200	0 - 1						

TABLE 6.5Gradation for Sand Bedding

6.8.6 Portland Cement Concrete

Portland cement concrete used to construct concrete paving should conform to Section 201 of the Greenbook and should have a minimum compressive strength of 3,250 pounds per square inch (psi) at 28 days. Reinforcement and jointing of concrete pavement sections should be designed according to the minimum recommendations provided by the Portland Cement Association (PCA). For rigid pavement, transverse and longitudinal contraction joints should be provided at spacing no greater than 15 feet. Score joints may be constructed by saw cutting to a depth of ¹/₄ of the slab thickness. Expansion/cold joints may be used in lieu of score joints. Such joints should be properly sealed. Where traffic will traverse over cold joints without keyways or dowels or edges of concrete paving, the edges should be thickneed by 20% of the design thickness toward the edge over a horizontal distance of 5 feet.

6.9 POST GRADING CONSIDERATIONS

6.9.1 Site Drainage and Irrigation

The ground immediately adjacent to foundations should be provided with positive drainage away from the structures in accordance with 2022 CBC, Section 1804.4. However, the ground slope may be limited to 2% for soils and climatic reasons. No rain or excess water should be allowed to pond against structures such as walls, foundations, flatwork, etc.

Excessive irrigation water can be detrimental to the performance of the proposed site development. Water applied in excess of the needs of vegetation will tend to percolate into the ground. Such percolation can lead to nuisance seepage and shallow perched groundwater. Seepage can form on slope faces, on the faces of retaining walls, in streets, or other low-lying areas. These conditions could lead to adverse effects such as the formation of stagnant water that breeds insects, distress or damage of trees, surface erosion, slope instability, discoloration and salt buildup on wall faces, and premature failure of pavement. Excessive watering can also lead to elevated vapor emissions within buildings that can damage flooring finishes or lead to mold growth inside the home.

Key factors that can help mitigate the potential for adverse effects of overwatering include the judicious use of water for irrigation, use of irrigation systems that are appropriate for the type of vegetation and geometric configuration of the planted area, the use of soil amendments to enhance moisture retention, use of low-water demand vegetation, regular use of appropriate fertilizers, and seasonal adjustments of irrigation systems to match the water requirements of vegetation. Specific recommendations should be provided by a landscape architect or other knowledgeable professional.

6.9.2 Utility Trenches

Trench excavations should be constructed in accordance with the recommendations contained in Section 6.1.7 of this report. Trench excavations must also conform to the requirements of Cal/OSHA.

Trench backfill materials and compaction criteria should conform to the requirements of the local municipalities. As a minimum, utility trench backfill should be compacted to at least 90 percent of the laboratory standard. Materials placed within the pipe zone (6 inches below and 12 inches above the pipe) should consist of particles no greater than ³/₄ inches and have a SE of at least 30. The materials within the pipe zone should be moisture-conditioned and compacted by hand-operated compaction equipment. Above the pipe zone (>1 foot above pipe), the backfill may consist of general fill materials with no particles greater than 8 inches in median dimension. Trench backfill should be moisture-conditioned to slightly over the optimum moisture content, placed in lifts no greater than 12 inches in thickness, and then mechanically compacted with appropriate equipment to at least 90 percent of the laboratory standard. For trenches with sloped walls, backfill material should be placed in lifts no greater than 8 inches in loose thickness, and then compacted by rolling with a sheepsfoot roller or similar equipment. The project geotechnical consultant should perform density testing along with probing to verify that adequate compaction has been achieved.

Within shallow trenches (less than 18 inches deep) where pipes may be damaged by heavy compaction equipment, imported clean sand having a SE of 30 or greater may be utilized. The sand should be placed in the trench, thoroughly watered, and then compacted with a vibratory compactor. For utility trenches located below a 1:1 (H:V) plane projecting downward from the outside edge of the adjacent footing base or crossing footing trenches, concrete or slurry should be used as trench backfill.

6.10 PLAN REVIEW AND CONSTRUCTION SERVICES

We recommend *Albus & Associates, Inc.* be engaged to review any future development plans, including civil plans (grading plans), foundation plans, and proposed structural loads, prior to construction. This is to verify that the assumptions of this report are valid and that the preliminary conclusions and recommendations contained in this report have been properly interpreted and are incorporated into the project plans and specifications. If we are not provided the opportunity to review these documents, we take no responsibility for misinterpretation of our preliminary conclusions and recommendations.

We recommend that a geotechnical consultant be retained to provide soil engineering services during construction of the project. These services are to observe compliance with the design, specifications or recommendations, and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

If the project plans change significantly from the assumed development described herein, the project geotechnical consultant should review our preliminary design recommendations and their applicability to the revised construction. If conditions are encountered during construction that appears to be different than those indicated in this report or subsequent design reports, the project geotechnical consultant should be notified immediately. Design and construction revisions may be required.

7.0 LIMITATIONS

This report is based on the proposed development and geotechnical data as described herein. The materials encountered on the project site and utilized in our laboratory testing for this investigation are believed representative of the total project area, and the conclusions and recommendations contained in this report are presented on that basis. However, soil and bedrock materials can vary in characteristics between points of exploration, both laterally and vertically, and those variations could affect the conclusions and recommendations contained herein. As such, observation and testing by a geotechnical consultant during the grading and construction phases of the project are essential to confirming the basis of this report.

This report has been prepared consistent with that level of care being provided by other professionals providing similar services at the same locale and time period. The contents of this report are professional opinions and as such, are not to be considered a guaranty or warranty.

This report should be reviewed and updated after a period of one year or if the site ownership or project concept changes from that described herein.

This report has been prepared for the exclusive use of **Overton Moore Properties** and its project consultants in the planning and design of the proposed development. This report has not been prepared for use by parties or projects other than those named or described herein. This report may not contain sufficient information for other parties or other purposes.

This report is subject to review by the controlling governmental agency.

April 26, 2023 J.N.: 3138.00 Page 25

Respectfully submitted,

ALBUS & ASSOCIATES, INC.

Daniel D. Albus

Project Engineer

David E. Albus Principal Engineer GE 2455

8.0 **REFERENCES**

Publications

- Abrahamson, N.A., Silva, W.J., and Kamai, R., 2014, "Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set," Earthquake Spectra 30 (3): 1179-1197.
- American Society of Civil Engineers, 2017, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE 7-16.
- Boore, D.M., Stewart, J.P., Seyhan, E., and Atkinson, G.M. 2014, "NGA-West2 Equations for Predicting PGA, PGV, and 5% damped PSA for Shallow Crustal Earthquakes," Earthquake Spectra 30 (3): 1057-1085.
- Californian Department of Water Resources Water Data Library (accessed 2023): <u>http://wdl.water.ca.gov/waterdatalibrary/</u>
- Campbell, K.W., and Bozorgnia, Y., 2014, "NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5%-damped Linear Acceleration Response Spectra," Earthquake Spectra 30 (3): 1087-1115.
- Chiou, B.S.-J., and Youngs, R.R., 2014, "Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra," Earthquake Spectra, 30 (3): 1117-1153.
- Dibblee, T.W., Jr., 1998, Geologic map of the Mt. Wilson and Azusa quadrangles, Los Angeles County, California: Dibblee Geological Foundation, Map DF-67, scale 1:24,000.
- Field, E.H., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., Jordan, T.H., Madden, C., Michael, A.J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, B.E., Thatcher, W.R., Weldon, R.J., II, and Zeng, Y., 2013, Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model: U.S. Geological Survey Open-File Report 2013–1165, 97 p., California Geological Survey Special Report 228, and Southern California Earthquake Center Publication 1792, <u>http://pubs.usgs.gov/of/2013/1165/</u>.
- Los Angeles County Department of Public Works Well Data (accessed 2023): https://dpw.lacounty.gov/general/wells/

NETRonline: https://www.historicaerials.com/

Seed, H.B. and Whitman, R.V., 1970, "Design of Earth Retaining Structures for Dynamic Loads," ASCE Specialty Conference, Lateral Stresses in the Ground and Design of Earth Retaining Structures, Cornell Univ., Ithaca, New York, 103-147.

<u>Reports</u>

- Diaz•Yourman & Associates, 2014, *Geotechnical Services, Azusa Park and Ride Parking Facility, Azusa, California*, dated February 12, 2014 (J.N. 2013-033)
- Geotechnical Professionals, Inc., 2008, *Geotechnical Investigation for Proposed Target Store, SWC* N. Azusa Avenue and E. 9th Street, Azusa, California, dated September 18, 2008 (J.N. 2228.1)

<u>Plans</u>

Site Plan, Greens Golf Course, Azusa, California, by AO, Job No. 0022-641, dated 1/16/2023

APPENDIX A

EXPLORATION LOGS

Field Identification Sheet

Albus & Associates, Inc.

EXPLORATION LOG

Project	Project:						Location:					
Addres	ss:							Elevation:				
Job Nu	mber:		Client:				Date:					
Drill Method:			Driving Weight:]	Log	gged By:				
					Sam	ples	5	La	boratory Te	sts		
Depth (feet)	Lith- ology	Mate	Water	Blows Per Foot	Core	Bulk	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests			
		EXPLANATION										
		Solid lines separate geolo	gic units and/or material types.	-								
_ 5 _		Dashed lines indicate unk material type change.	nown depth of geologic unit change or									
		Solid black rectangle in Split Spoon sampler (2.5i	Core column represents California n ID, 3in OD).									
		Double triangle in core c	column represents SPT sampler.			X						
10	-	Vertical Lines in core co	lumn represents Shelby sampler.									
		Solid black rectangle in sample.	Bulk column respresents large bag									
15 20		Other Laboratory Tests Max = Maximum Dry De EI = Expansion Index SO4 = Soluble Sulfate Co DSR = Direct Shear, Rem DS = Direct Shear, Undis SA = Sieve Analysis (1" of Hydro = Particle Size Am 200 = Percent Passing #2 Consol = Consolidation SE = Sand Equivalent Rval = R-Value ATT = Atterberg Limits	<u>:</u> nsity/Optimum Moisture Content ontent holded turbed through #200 sieve) alysis (SA with Hydrometer) 00 Sieve									
Albus	& As	sociates, Inc.							P	late A-1		

		EXP	LORAT	ION LOG P-1							
JOB NO. 3138.00	CLIENT/PROJE Overton Mo	CT Ore Properties			DAY TuesdayDATE 2023-02-						2-28
LOCATION 919 Sierra N	Madre Avenu	e, Azusa		LATITUDE 34.14300	LC -1	DNG 17.	іті .91	^{JDE} 952	ELI 64	evation 9.5	
LOGGED BY ddalbus		DRILLER 2R Drilling		DRILL METHOD Hollow-Stem A	uge	er		drivi 140 l	ng wei bs / 30	GHT I in	
DEPTH LITHO	DESCRIPTION				H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB
ddalbus $DEPTH$ LITHO - 1 - 2 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 19 - 20 - 21	DESCRIPTION Topsoil Silty Sand grained Alluvium Sandy Gra damp to m Total Dept No Ground	(SM): brown, mc (Qg) vel with Cobbles oist, fine to coars h 5 feet lwater	oist, fine to and Bould e grained	medium /			BAG	BLOW COUNT	bs / 30 мс (%)	DD (pcf)	LAB
- 22 -											
- 23 -											
— 24 —											

1011 North Armando Street, Anaheim CA 92806 (714) 630-1626

]	EXPLORAT	TION LOG P-2							
јов no. 3138.0)0	CLIENT/PROJEC Overton Mo	ore Prope	rties				D T	AY uesday	7	DATE 2023-0	2-28
locati 919 Si	ion erra M	ladre Avenu	e, Azusa		LATITUDE 34.14491	L(-]	onc 117	ытц 7.91	1995	ELE 65.	vation 3.1	
LOGGEI ddalb	D BY US		DRILLER 2R Drillin	ıg	DRILL METHOD Hollow-Stem A	uge	er		drivi 140 I	ng weic bs / 30	нт in	
DEPTH	LITHO	DESCRIPTION				H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB
- 1 - 2 - 3 - 4 - 5		Topsoil Silty Sand (Medium gra Alluvium (Sandy Grav damp to mo	(SM): brow ained Og) vel with Co bist, fine to	n, damp to mo bbles and Boul coarse grained	ist, fine to	-						
- 6 -		No Ground	water						-			
- 7 -									-			
- 8 -									-			
- 9 -							-		-			
- 10 -							-		-			
- 11 -									-			
- 12 -							-		-			
- 13 -									-			
- 14 -												
- 15 -												
— 16 —									-			
— 17 —									-			
— 18 —									-			
- 19 -									-			
— 20 —												
- 21 -												
- 22 -												
- 23 -												
- 24 -												

			E	CXPLORAT	TION LOG P-4							
јов no. 3138.0(0	CLIENT/PROJECT Overton Moo	re Proper	ties				D T	AY uesday	y	DATE 2023-0	2-28
LOCATIC 919 Sie	on erra M	ladre Avenue	, Azusa		LATITUDE 34.14647	L(_]	onc 117	ыті 1.92	^{JDE} 2143	ELI 66	evation 5.4	
LOGGED ddalbu) BY IS	ļ	ORILLER 2R Drilling	g	DRILL METHOD Hollow-Stem A	uge	er		DRIVI 140 l	ng weic bs / 30	GHT in	
DEPTH I	LITHO	DESCRIPTION				H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB
ddaibu $DEPTH$ $ -$		DESCRIPTION Topsoil Silty Sand (S Medium grain Alluvium (C Sandy Grave damp to moin Total Depth No Groundv	SM): brown ined 2g) el with Cot ist, fine to o 5 feet vater	n, damp to mo	Honow-Stem A			BAG		BS 7 30 MC (%)	IN DD (pcf)	LAB
- 22												
- 23 -												
- 24 -									1			

		EXPLORA	TION LOG P-5							
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore P	roperties				P T	AY uesday	7	DATE 2023-0	2-28
LOCATION 919 Sierra I	Madre Avenue, Az	usa	LATITUDE 34.14696	LC -1	DNG 17.	іті 92	119	ELE 665	vation 5.2	
LOGGED BY ddalbus	2 DRILL 2 ZR I	Ler Drilling	DRILL METHOD Hollow-Stem A	uge	er		DRIVI 140 I	ng weic bs / 30	нт in	
DEPTH LITHO	DESCRIPTION			H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB
ddalbus DEPTH LITHO -1 $ 2$ $ 3$ $ 3$ $ -3$ $ -4$ $ -5$ $ -6$ $ -7$ $ -8$ $ -9$ $ -10$ $ -11$ $ -12$ $ -13$ $ -14$ $ -15$ $ -16$ $ -17$ $ -18$ $ -19$ $ -20$ $ -21$ $-$	2 2RI DESCRIPTION Topsoil Silty Sand (SM) medium grained Alluvium (Qg) Sandy Gravel wi damp to moist, f	brilling brown, damp to me th Cobbles and Bou ine to coarse grained	Hollow-Stem A			BAG		bs / 30 MC (%)	in DD (pcf)	LAB
27										
- 23 -							1			
- 24										

EXPLORATION LOG P-6												
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore Pro	perties				D T	AY uesday	y	DATE 2023-0	2-28		
LOCATION 919 Sierra I	ladre Avenue, Azusa	l	LATITUDE 34.14709	L(-]	one 117	ыті 92	10E 2304	EL 66	evation 2.8			
LOGGED BY ddalbus	DRILLER 2R Dri	lling	DRILL METHOD Hollow-Stem A	uge	er		DRIVI 140 l	ng wei bs / 30	GHT) in			
DEPTH LITHO	DESCRIPTION			H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB		
DEPTH LITHO -1 -1 -1 -1 -1 -1 -1 -1	DESCRIPTION Topsoil Silty Sand (SM): br medium grained Alluvium (Qg) Sandy Gravel with damp to moist, fine Total Depth 5 feet No Groundwater	own, damp to moi	st, fine to			BAG			DD (pcf)	LAB		
- 24 -							1					

EXPLORATION LOG TP-1												
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore Properties				P	AY hursda	ay	DATE 2023-	03-09			
LOCATION 919 Sierra N	Madre Avenue, Azusa	LATITUDE 34.14362	Lg -	ong 117.	іті .91	ude 1975	E E	LEVATIO 50.7	N			
LOGGED BY dloya	DRILLER other	DRILL METHOD Backhoe				DRIVI othe	NG WE	EIGHT				
DEPTH LITHO	DESCRIPTION	·	H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB			
$ \begin{array}{c} -1 \\ -2 \\ -3 \\ -3 \\ -4 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6$	Topsoil Silty Sand (SM): dark brown, dam medium-grained, abundant rootlet: 3/4-inch thick Alluvium (Og) Sandy Gravel with Cobbles and Be brown, damp to moist, fine to coar abundant cobbles and boulders up diameter, clasts are subrounded Total depth 7 feet No groundwater Minor sidewall caving Backfilled with spoils on 3/9/2023	oulders (GP): grey rse-grained sand, to 2 feet in										

EXPLORATION LOG TP-2												
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore Properties		DAY Thursday 2023-03-0)3-09			
LOCATION 919 Sierra N	ladre Avenue, Azusa	LATITUDE 34.14428	Lj -	ong 117	нті .92	UDE 2037	EL 65	EVATION 2	N			
LOGGED BY dloya	DRILLER other	DRILL METHOD Backhoe				DRIVI other	NG WEI r	GHT				
DEPTH LITHO	DESCRIPTION		H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB			
	Topsoil Silty Sand (SM): dark brown, mo	pist, fine to	,			-						
- 2 -	Alluvium (Qg) Sand with Gravel (SP): grey brow fine to coarse-grained, gravel up	vn, damp to moist, to 3 inches				-						
- 3	Gravelly Sand with Cobbles (SP) fine to coarse-grained, cobbles up	e grey brown, damp, o to 8 inches	-			-						
- 4						-						
- 6 - ····	• Gravelly Sand with Cobbles and brown, damp, fine to coarse-grain 18 inches in diameter	Boulders (SP): grey ned , boulders up to				-	3.1					
- 7 -	Total depth 7 feet		-			-						
- 8 -	Minor sidewall caving Backfilled with spoils on 3/9/202	3				_						
_ 9 _						-						
- 12 -						-						
- 13 -						-						
- 14						-						

EXPLORATION LOG TP-3												
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore Properties				P	AY hursda	ay	DATE 2023-0)3-09			
LOCATION 919 Sierra N	ladre Avenue, Azusa	LATITUDE 34.14516	L -	ong 117	іті .92	UDE 2034	EI 65	LEVATION	1			
LOGGED BY dloya	DRILLER other	DRILL METHOD Backhoe				DRIVI other	NG WE	IGHT				
DEPTH LITHO	DESCRIPTION		H20	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB			
$ \begin{array}{c} -1 \\ -2 \\ -3 \\ -3 \\ -4 \\ -6 \\ -6 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14$	Topsoil Silty Sand (SM): dark brown, mo medium-grained, rootlets, some r thick, some gravel Alluvium (Og) Gravelly Sand with Silt and Cobb damp to moist, fine to coarse-grain 10 inches in diameter @ 1.5 ft, grey-brown, damp, som feet in diameter @ 1.5 ft, grey-brown, damp, som feet in diameter Minor sidewall caving Backfilled with spoils on 3/9/202	oist, fine to oots up to 1/2-inch oles (SP): brown, ined, cobbles up to e boulders up to 2							sa			

EXPLORATION LOG TP-4												
JOB NO. 3138.00	CLIENT/PROJECOVERTON MC	CT CT Properties	s				D T	AY hursda	ay	DATE 2023-0	3-09	
LOCATION 919 Sierra N	Aadre Avenu	ie, Azusa		latitude 34.14555	L(_]	one 117	аті 1.92	^{JDE} 2105	ELI 65	EVATION 4.7		
LOGGED BY dloya		DRILLER other		DRILL METHOD Backhoe				DRIVI other	NG WEI	GHT		
DEPTH LITHO	DESCRIPTION				H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB	
LOGGED BY dloya DEPTH LITHO -1	DESCRIPTION Topsoil Silty Sand medium-gr Alluvium (Gravelly Sigrey-brown some bould large as 2 ft the ground) Total depth No ground: Backfilled	(SM): dark bro rained, rootlets, (Qg) and with Cobbl n, damp to mois ders up to 4 feet feet in diameter surface	wn , moist, f trace gravel les and Bould st, fine to coa t in diameter encountered	DRILL METHOD Backhoe ine to ders (SP): arse-grained, boulders as l very close to	H20		BAG	DRIVI other	мс (%) 2.9	SHT DD (pcf)	LAB	
- 14 -												

EXPLORATION LOG TP-5												
JOB NO. 3138.00	client/project Overton Moore Properties		DAY Thursday 2023-03-0						03-09			
LOCATION 919 Sierra N	ladre Avenue, Azusa	LATITUDE 34.14616	L =	one 117	.92	JDE 2040	EI 6	LEVATION 63	Ň			
LOGGED BY dloya	DRILLER other	DRILL METHOD Backhoe				DRIVI othe	NG WE r	IGHT				
DEPTH LITHO	DESCRIPTION		H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB			
	Topsoil Silty Sand (SM): dark brown, moi	st, fine to										
	with roots up to 1.5 inches thick		,			-						
- 2 -	Alluvium (Qg) Gravelly Sand with Cobbles and E grav brown damp to moist fing to	Boulders (SP):				-						
- 3 - ····	boulders up to 2.5 feet in diameter	encountered very				-						
• • • • • • • • • • • • • • • • • • •												
- 4 - ¹ · · · · · · · · · · · · · · · · · · ·												
- 5 - •						-						
- 6 - · · · · ·	- - - -											
	Total depth 6 feet No groundwater											
- 7 -	Backfilled with spoils on 3/9/2023	3										
- 8 -						-						
_ 9 _						-						
10												
- 10												
- 11 -						-						
- 12						-						
- 13 -												
15												
- 14						_						

EXPLORATION LOG TP-6												
JOB NO. 3138.00	CLIENT/PROJECT Overton Moore Proper				D T	AY Thursda	ay	DATE 2023-0)3-09			
LOCATION 919 Sierra N	Iadre Avenue, Azusa	LATITU 34.14	DE 686	L.	one 117	ыті 1.91	ude 1964	EI 60	EVATION 55	1		
LOGGED BY dloya	DRILLER other	DRILL Back	METHOD 10e				DRIVI othe	NG WEI r	IGHT			
DEPTH LITHO	DESCRIPTION			H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB		
DEPTH LITHO -1 - 1	Topsoil Silty Sand (SM): dark 'roots up to 1-inch thick Alluvium (Og) Gravelly Sand with Cogrey-brown, moist, find 1.5 to 2 feet in diamete ground surface Total depth 7 feet No groundwater Minor sidewall caving Backfilled with spoils of	brown , moist, fine-gra bbles and Boulders (S e to coarse-grained, bo r encountered very clo on 3/9/2023	nined, P): ulders ose to			BAG		MC (%)	DD (pcf)	LAB		

EXPLORATION LOG TP-7												
јов no. 3138.00	CLIENT/PROJEC Overton Mo				P	AY hursd	ay	DATE 2023-0	3-09			
LOCATION 919 Sierra N	ladre Avenue	e, Azusa		latitude 34.14698	L(-]	ong 117	аті .92	^{.DE} 2131	EI 6	EVATION	I	
LOGGED BY dloya		driller other	-	drill method Backhoe				DRIVI othe	NG WE r	IGHT		
DEPTH LITHO	DESCRIPTION				H20	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB	
$ \begin{array}{c} -1 - \\ -2 - \\ -2 - \\ -3 - \\ -3 - \\ -4 - $	Topsoil Silty Sand ('rootlets Alluvium (Gravelly Sa grey-brown some bould very close to Total depth No groundy Minor sidev Backfilled v	SM): dark brown Qg) Ind with Cobbles , damp to moist, ers up to 2.5 feet o ground surface 7 feet vater vall caving with spoils on 3/9	n, moist, fir and Bould fine to coa in diamete	ne-grained, ers (SP): rse-grained, r encountered								

JOB NO. 3138.00 CLIENT/PROJECT Overton Moore Properties LOCATION 919 Sierra Madre Avenue, Azusa 34.14649 JOGGED BY dloya DRILLER other DRILL METHOD Backhoe DEPTH LITHO DESCRIPTION Image: Solution of the state in the	DAY Thursday DATE 2023-03-09 GITUDE 7.92224 ELEVATION 662.8 DRIVING WEIGHT other ∑ BLOW COUNT ∑ BLOW COUNT (%) DD (pcf) Sa
LOCATION 919 Sierra Madre Avenue, Azusa LATITUDE 34.14649 LON -11 LOGGED BY dloya DRILLER other DRILL METHOD Backhoe DEPTH LITHO DESCRIPTION E - 1 - - Filty Sand (SM): brown, moist, fine to medium-grained, mulch and vegetation debris at 'surface, rootlets, roots up to 1/2-inch thick - - 2 - - - - - 3 - - - - - 4 - - - -	GITUDE 7.92224 ELEVATION 662.8 DRIVING WEIGHT Other BLOW MC DD LAB COUNT (%) (pcf) Sa
LOGGED BY dloya DRILLER other DRILL METHOD Backhoe DEPTH LITHO DESCRIPTION E 02 - 1 • Silty Sand (SM): brown, moist, fine to medium-grained, mulch and vegetation debris at 'surface, rootlets, roots up to 1/2-inch thick • • - 2 • • Gravelly Sand with Cobbles trace Boulders (SP): grey-brown, damp, fine to coarse-grained, less cobbles within the upper 2 feet • • - 3 • @ 2 ft, boulders up to 2 foot in diameter • •	BLOW other BLOW COUNT MC DD (pef) Count (%) Count (%)
DEPTH LITHO DESCRIPTION E O - 1 • • Silty Sand (SM): brown, moist, fine to medium-grained, mulch and vegetation debris at 'surface, rootlets, roots up to 1/2-inch thick • - 2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	BLOW MC DD LAB COUNT (%) (pcf) sa
 Topsoil Silty Sand (SM): brown, moist, fine to medium-grained, mulch and vegetation debris at 'surface, rootlets, roots up to 1/2-inch thick Alluvium (Qg) Gravelly Sand with Cobbles trace Boulders (SP): grey-brown, damp, fine to coarse-grained, less cobbles within the upper 2 feet 3 - (a) 2 ft, boulders up to 2 foot in diameter 	sa
$ \begin{array}{c} \mathbf{-5} \\ \mathbf{-6} \\ \mathbf{-7} \\ \mathbf{-6} \\ \mathbf{-7} $	

3938.00 Observe of More Properties Thursday 2023-03-09 000000000000000000000000000000000000	EXPLORATION LOG TP-9										
Spectra Madre Avenue, Azusa 34.1132/6 LOCCUP avenue, Azusa Constraints OCCED BY DBULER DBULER DRIVEN WEIGHT DEFTH LTHO DESCRIPTION ED (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	JOB NO. 3138.00		DAY Thursday DATE 2023-				DATE 2023-0)3-09			
Alluvium (Q2) Alluvium (Q2) Alluvium (Q2) Alluvium (Q2) - 1 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - - - - 8 - - - - 10 - - - - 11 - - -	LOCATION 919 Sierra N	Aadre Avenue, Azusa	LATITUDE 34.14676	LONGITUDE -117.92348 ELEVATION 660.8				N			
DEPTH LITBO DESCRIPTION E	LOGGED BY dloya	DRILLER other	DRILL METHOD Backhoe			D O	orivin other	IG WEI	IGHT		
Image: state of the state	DEPTH LITHO	DESCRIPTION		H20	COR	BL CC	LOW DUNT	MC (%)	DD (pcf)	LAB	
	$ \begin{array}{c} -1 \\ -2 \\ -3 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -13 \\ -11 \\ -12 \\ -13 \\ -11 \\ -11 \\ -12 \\ -13 \\ -11 \\ -1$	Alluvium (Qa) Silty Sand (SM): grey-brown, m medium-grained, rootlets, roots trace mica Alluvium (Qg) Gravelly Sand with Cobbles and grey-brown, damp to moist, fine boulders up to 2 feet in diameter Total depth 8 feet No groundwater Minor sidewall caving Backfilled with spoils on 3/9/201	23				DUNT	(%)	(pcf)		

EXPLORATION LOG TP-10											
JOB NO. 3138.00 CLIENT/PROJECT Overton Moore Properties								DAY Thursday DATE 2023-(
LOCATION 919 Sierra I	Madre Avenu	e, Azusa		LATITUDE 34.14723	L(one 117	.92	лре 2 39 4	- EL 66	EVATION 1.2	I
LOGGED BY dloya		driller other		DRILL METHOD Backhoe				DRIVI other	NG WEI	GHT	
DEPTH LITHO	DESCRIPTION	•			H2O	COR	BAG	BLOW COUNT	MC (%)	DD (pcf)	LAB
$ \begin{array}{c} -1 \\ -2 \\ -3 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -11 \\ -14 \\ -14 \\ -11 \\ -14 \\ -11 \\ -14 \\ -11 \\ -1$	Topsoil Silty Sand medium-gr 'rootlets, roo Alluvium Gravelly S grey-brown boulders up boulders and Total depth No ground Minor side Backfilled	(SM): brown, m rained, vegetatio ots up to 3/4-inc (Qg) and with Cobble n, damp to mois p to 2.5 feet in d re within 2 feet f n 6.5 feet water wall caving with spoils on 3	anoist, fine to on debris at s ch thick es and Bould t, fine to coa- liameter, son from the gro	ders (SP): arse-grained, me large bund surface					2.5		

APPENDIX B

LABORATORY TEST RESULTS

LABORATORY TESTING PROGRAM

Soil Classification

Soils encountered within the exploratory borings were initially classified in the field in general accordance with the visual-manual procedures of the Unified Soil Classification System (ASTM D 2488). The samples were re-examined in the laboratory and classifications reviewed and then revised where appropriate. The assigned group symbols are presented on the Exploration Logs provided in Appendix A.

In-Situ Moisture Content and Dry Density

Moisture content and dry density of in-place soil materials were determined in representative strata. Test data are summarized on the Exploration Logs, Appendix A.

Particle Size Analyses

Particle size analyses were performed on representative samples of site materials in accordance with ASTM D 422. The results are presented graphically on the attached Plates B-1 through B-2.

GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

APPENDIX C

MICROTREMOR REFRACTION SURVEY BY GEOTECHNICAL PROFESSIONALS, INC. (2008)

SHEAR-WAVE SURVEY LINE S-1

Shear-Wave Velocity, ft/s

08/13/14 ISSUED FOR BIDDING

BORING LOCATION: See Figure 2		ELEVATION AND DATUM (feet): MSL				
LATITUDE:		LONGITUDE:				
DRILLING EQUIPMENT: Beck	ker Hammer	DRILLING METHOD: Open end				
BORING DIAMETER (inches):	6	BORING DEPTH (feet): 50.5				
DATE STARTED: 5/19/	/11	DATE COMPLETED: 5/19/11				
DRILLING COMPANY: Layn	e Christensen	SPT/DRIVE HAMMER DROP: 30 inches	/T: 14	40 lbs		
LOGGED BY: KMV	ENTERED BY: SS	DRIVE SAMPLER DIAMETER (inches) ID: 2.4	O	0:3		
Elevation (feet) Depth (feet) Sampler Symbol Blows per 6 Inches SPT N Blows per Foot	(isd) eunsseud DESCF	DESCRIPTION		Becker Harnmer Blows per foot	Penetration (Minutes/foot)	
	ASPHALT CONCRETE (AC): SILTY SAND (SM): brown, mo SILTY SAND (SM): brown, mo POORLY GRADED SAND with to coarse-grained sand, fine POORLY GRADED SAND with to coarse-grained sand, fine POORLY GRADED GRAVEL few cobbles and possibly bo cobbles stuck in the shoe that 24 feet cobbles cleared out from the s 18 19 10 10 10 10 10 10 10 10 10 10	-10 inches bist, very dense, fine-grained sand, FILL h GRAVEL (SP): olive gray, moist, very dense, fine- to coarse gravel, angular gravel (GP): gray, moist, very dense, fine to coarse gravel, ulders? may have caused high blow counts from 20 feet to hoe		18 44 40 24 34 45 27 17 17 17 40 24 34 45 27 17 17 40 62 54 70 145 80 32 121 175 285 525 775 400 25 17 35 51		
	20		-	51 56		

LOG OF BORING DYB11-1

Page 1 of 2 Foothill Transit Azuza Park & Ride Project No. 2011-019

Template: DYLG1-2006 BECKER; Prj ID: 2011-019⁴GPJ

.

Elevation (feet)	Depth (feet)	Sampler	Symbol	Blows per 6 Inches	SPT N Blows per Foot	Pressure (psi)	DESCRIPTION	Depth (feet)	Becker Hammer Blows per foot	Penetration (Minutes/foot)
		×		38 50/3" 50/6"	100	20 22 25 18 20 18 20 22 21 21 18 20 15 18 19 15 18 18	wet POORLY GRADED SAND with SILT and GRAVEL (SP-SM): dark yellowish brown, wet, very dense, medium- to coarse-grained sand, fine to coarse gravel, few cobbles CLAYEY SAND with GRAVEL (SC): strong brown, wet, very dense, fine- to coarse-grained sand, fine to coarse gravel, slightly micaceous Bottom of penetration at 50.5 feet. Groundwater measured at 38 teet at the end of penetration. Hole backflued with benchate chips. Surface patched with rapid set concrete.		112 144 431 70 115 27 31 110 73 49 27 79 30 21 50 15 22 17	

LOG OF BORING DYB11-1

Page 2 of 2 Foothill Transit Azuza Park & Ride Project No. 2011-019

Template: DYLG1-2006 BECKEH; Prj ID: 2011-019.GPJ

DATE:05/04/1

-

APPENDIX D

STABILITY ANALYSES

Computer Program

Stability analyses were performed using the computer program Slide by Rocscience. The program analyzes slope stability problems by a two-dimensional limit equilibrium methods including Bishop's, Janbu, Morgenstern & Price, and general limit equilibrium (GLE). The particular method used for each analysis is indicated on the output plots.

Soil strength can be modeled in a variety of ways including standard Mohr-Coulomb, bilinear Mohr-Coulomb, and general shear strength relationships. Where materials strengths have anisotropic properties, the program allows the strength to be modeled by introducing a strength function depending upon the angle of inclination of the slice base. With this function, anisotropic conditions typically found in bedrock materials can be modeled.

Potential failure surfaces are determined by a variety of search methods including circular surfaces, block-specified surfaces, fully-specified surfaces, and random-generated search algorithms. The program calculates the factor of safety for all possible combinations of surfaces defined by search method. The program can also model other factors such as groundwater, earthquake loads, and external loads.

Shear Strengths

The shear strengths used in our analyses were based on correlations with blow counts and previous experience. The strength values used are summarized In Table D-1 below:

Material	Unit Weight	Cohesion	Friction Angle
	(pcf)	(psf)	(degrees)
Quaternary alluvial deposits (Qg)	125	0	45

TABLE D-1Summary of Shear Strengths

Summary of Results

Results of the analyses are summarized in Table D-2 below. Plots and output of the results are attached.

TABLE D-2Summary of Stability Analyses

Section	Search Type	Analysis Method	Minimum Static Factor of Safety	Minimum Seismic Factor of Safety
A-A'	Circular	Bishop's simplified	2.55	1.45

Slide Analysis Information 3138.00 Cross Section A (Static)

Project Summary

File Name:	3138.00 Cross Section A-Static with water
Slide Modeler Version:	7.017
Project Title:	3138.00 Cross Section A (Static)
Analysis:	Bishop

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Left to Right
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Qg
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	0
Friction Angle [deg]	45
Water Surface	Water Table
Hu Value	1

Global Minimums

Method: bishop simplified

FS	2.551780
Center:	420.531, 831.106
Radius:	205.408
Left Slip Surface Endpoint:	341.884, 641.351
Right Slip Surface Endpoint:	349.878, 638.232
Left Slope Intercept:	341.884 641.351
Right Slope Intercept:	349.878 638.500
Resisting Moment:	14616.9 lb-ft
Driving Moment:	5728.1 lb-ft
Total Slice Area:	0.704107 ft2
Surface Horizontal Width:	7.99351 ft
Surface Average Height:	0.0880848 ft

Method: janbu simplified

FS	2.551130
Center:	382.936, 735.077
Radius:	102.334
Left Slip Surface Endpoint:	341.732, 641.405
Right Slip Surface Endpoint:	349.907, 638.221
Left Slope Intercept:	341.732 641.405
Right Slope Intercept:	349.907 638.500
Resisting Horizontal Force:	100.116 lb
Driving Horizontal Force:	39.244 lb
Total Slice Area:	1.02865 ft2
Surface Horizontal Width:	8.1744 ft
Surface Average Height:	0.125838 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 6918 Number of Invalid Surfaces: 3653

Error Codes:

Error Code -102 reported for 9 surfaces Error Code -103 reported for 2772 surfaces Error Code -106 reported for 91 surfaces Error Code -1000 reported for 781 surfaces

Method: janbu simplified

Number of Valid Surfaces: 6833 Number of Invalid Surfaces: 3738

Error Codes:

Error Code -102 reported for 9 surfaces Error Code -103 reported for 2772 surfaces Error Code -106 reported for 91 surfaces Error Code -108 reported for 85 surfaces Error Code -1000 reported for 781 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	0.161491	0.0947005	-22.488	Qg	0	45	0.197729	0.504562	0.504562	0	0.504562
2	0.161491	0.282478	-22.4393	Qg	0	45	0.589996	1.50554	1.50554	0	1.50554
3	0.161491	0.467009	-22.3905	Qg	0	45	0.975746	2.48989	2.48989	0	2.48989
4	0.161491	0.648298	-22.3418	Qg	0	45	1.35498	3.4576	3.4576	0	3.4576
5	0.161491	0.826349	-22.2931	Qg	0	45	1.72769	4.40868	4.40868	0	4.40868
6	0.161491	1.00116	-22.2444	Qg	0	45	2.09388	5.34313	5.34313	0	5.34313
7	0.161491	1.17275	-22.1958	Qg	0	45	2.45356	6.26095	6.26097	0	6.26097
8	0.161491	1.3411	-22.1471	Qg	0	45	2.80672	7.16213	7.16211	0	7.16211
9	0.161491	1.50623	-22.0985	Qg	0	45	3.15336	8.04669	8.0467	0	8.0467
10	0.161491	1.66813	-22.0499	Qg	0	45	3.49349	8.91461	8.91463	0	8.91463
11	0.161491	1.82682	-22.0013	Qg	0	45	3.8271	9.76591	9.76591	0	9.76591
12	0.161491	1.98229	-21.9527	Qg	0	45	4.1542	10.6006	10.6005	0	10.6005
13	0.161491	2.13455	-21.9042	Qg	0	45	4.47476	11.4186	11.4186	0	11.4186
14	0.161491	2.2836	-21.8556	Qg	0	45	4.78881	12.22	12.22	0	12.22
15	0.161491	2.42945	-21.8071	Qg	0	45	5.09636	13.0048	13.0047	0	13.0047
16	0.161491	2.57209	-21.7586	Qg	0	45	5.39737	13.7729	13.7729	0	13.7729
17	0.161491	2.66361	-21.7101	Qg	0	45	5.59131	14.2678	14.2678	0	14.2678
18	0.161491	2.63816	-21.6616	Qg	0	45	5.5397	14.1361	14.1361	0	14.1361
19	0.161491	2.60465	-21.6132	Qg	0	45	5.47116	13.9612	13.9612	0	13.9612
20	0.161491	2.56795	-21.5647	Qg	0	45	5.39584	13.769	13.769	0	13.769
21	0.161491	2.52807	-21.5163	Qg	0	45	5.31382	13.5597	13.5597	0	13.5597
22	0.161491	2.485	-21.4679	Qg	0	45	5.22502	13.3331	13.3331	0	13.3331
23	0.161491	2.43876	-21.4195	Qg	0	45	5.12948	13.0893	13.0893	0	13.0893
24	0.161491	2.38933	-21.3711	Qg	0	45	5.0272	12.8283	12.8283	0	12.8283
25	0.161491	2.33674	-21.3228	Qg	0	45	4.91817	12.5501	12.5501	0	12.5501
26	0.161491	2.28097	-21.2744	Qg	0	45	4.80237	12.2546	12.2546	0	12.2546
27	0.161491	2.22203	-21.2261	Qg	0	45	4.67983	11.9419	11.9419	0	11.9419
28	0.161491	2.15994	-21.1778	Qg	0	45	4.55055	11.612	11.612	0	11.612
29	0.161491	2.09468	-21.1295	Qg	0	45	4.41453	11.2649	11.2649	0	11.2649
30	0.161491	2.02626	-21.0812	Qg	0	45	4.27172	10.9005	10.9005	0	10.9005
31	0.161491	1.95469	-21.0329	Qg	0	45	4.12222	10.519	10.5189	0	10.5189
32	0.161491	1.87996	-20.9847	Qg	0	45	3.96594	10.1202	10.1202	0	10.1202
33	0.161491	1.80209	-20.9364	Qg	0	45	3.80289	9.70415	9.70414	0	9.70414
34	0.161491	1.72107	-20.8882	Qg	0	45	3.63311	9.27091	9.27093	0	9.27093
35	0.161491	1.63691	-20.84	Qg	0	45	3.45659	8.82045	8.82048	0	8.82048
36	0.161491	1.5496	-20.7918	Qg	0	45	3.27331	8.35277	8.35276	0	8.35276
37	0.161491	1.45917	-20.7436	Qg	0	45	3.08328	7.86786	7.86784	0	7.86784
38	0.161491	1.36559	-20.6955	Qg	0	45	2.88651	7.36574	7.36573	0	7.36573
39	0.161491	1.26889	-20.6473	Qg	0	45	2.68298	6.84638	6.84639	0	6.84639
40	0.161491	1.16906	-20.5992	Qg	0	45	2.47271	6.30981	6.30983	0	6.30983
41	0.161491	1.06611	-20.5511	Qg	0	45	2.25568	5.75601	5.75601	0	5.75601
42	0.161491	0.960028	-20.503	Qg	0	45	2.03191	5.18498	5.18498	0	5.18498
43	0.161491	0.850832	-20.4549	Qg	0	45	1.80138	4.59673	4.59673	0	4.59673
44	0.161491	0.73852	-20.4068	Qg	0	45	1.5641	3.99125	3.99125	0	3.99125
45	0.161491	0.623094	-20.3588	Qg	0	45	1.32008	3.36855	3.36855	0	3.36855
46	0.145284	0.533822	-20.3131	Qg	0	45	0.683249	1.7435	3.42143	1.67793	1.7435
47	0.145284	0.911657	-20.2699	Qg	0	45	0.426244	1.08768	6.1176	5.02991	1.08769
48	0.145284	1.34721	-20.2267	Qg	0	45	0.307786	0.785403	9.15955	8.37413	0.785417
49	0.145284	1.7805	-20.1835	Qg	0	45	0.186591	0.47614	12.1867	11.7106	0.476123
50	0.145284	2.21153	-20.1404	Qg	0	45	0.0626594	0.159893	15.1992	15.0393	0.159852

Global Minimum Query (janbu simplified) - Safety Factor: 2.55113

Slice	Width	Weight	Angle of Slice	Base	Base	Base Friction	Shear	Shear	Base Normal	Pore	Effective Normal
Number	[ft]	[lbs]	Base	Material	Cohesion [psf]	Angle	Stress [psf]	Strength [psf]	Stress	Pressure [psf]	Stress
1	0 162696	0 120022	22 6025	04	0	[uegrees]	0 202002	0 724246	[psi]	0	[psi]
1	0.103000	0.130955	-23.0955	Ug Og	0	45	0.205092	2 15607	2 15607	0	0.724247
2	0.103080	0.413314	-23.3353	Qg Qg	0	45	1 20202	2.13007	2.13007	0	2.13007
5	0.103000	0.060754	-25.4955	Ug Or	0	45	1.59295	3.33333	3.55555	0	3.55555
4	0.103080	0.941209	-23.3930	Ug Or	0	45	1.92720	4.91009	4.91669	0	4.91669
5	0.163686	1.19475	-23.2938	Ug Or	0	45	2.44813	0.24549	6.24551	0	5.24551
6	0.163686	1.44139	-23.194	Qg	0	45	2.95553	7.53995	7.53995	0	7.53995
/	0.163686	1.68112	-23.0944	Qg	0	45	3.44949	8.80009	8.80009	0	8.80009
8	0.163686	1.91397	-22.9948	Qg	0	45	3.92998	10.0259	10.0259	0	10.0259
9	0.163686	2.13996	-22.8953	Qg	0	45	4.39703	11.21/4	11.21/4	0	11.2174
10	0.163686	2.35909	-22.7958	Qg	0	45	4.8506	12.3745	12.3745	0	12.3745
11	0.163686	2.5/138	-22.6964	Qg	0	45	5.29075	13.4974	13.4974	0	13.4974
12	0.163686	2.77685	-22.59/1	Qg	0	45	5./1/43	14.5859	14.5859	0	14.5859
13	0.163686	2.97552	-22.49/9	Qg	0	45	6.13066	15.6401	15.6401	0	15.6401
14	0.163686	3.16739	-22.3987	Qg	0	45	6.53044	16.66	16.66	0	16.66
15	0.163686	3.35248	-22.2996	Qg	0	45	6.916/8	17.6456	17.6456	0	17.6456
16	0.163686	3.53081	-22.2006	Qg	0	45	7.28967	18.5969	18.5969	0	18.5969
17	0.163686	3.70218	-22.1017	Qg	0	45	7.64869	19.5128	19.5128	0	19.5128
18	0.163686	3.77329	-22.0028	Qg	0	45	7.8009	19.9011	19.9011	0	19.9011
19	0.163686	3.76029	-21.904	Qg	0	45	/.//93	19.846	19.846	0	19.846
20	0.163686	3.74058	-21.8052	Qg	0	45	7.74378	19.7554	19.7554	0	19.7554
21	0.163686	3.71418	-21.7066	Qg	0	45	7.69432	19.6292	19.6292	0	19.6292
22	0.163686	3.6811	-21.608	Qg	0	45	7.63093	19.4675	19.4675	0	19.4675
23	0.163686	3.64135	-21.5094	Qg	0	45	7.55363	19.2703	19.2703	0	19.2703
24	0.163686	3.59496	-21.4109	Qg	0	45	7.46242	19.0376	19.0376	0	19.0376
25	0.163686	3.54192	-21.3125	Qg	0	45	7.35725	18.7693	18.7693	0	18.7693
26	0.163686	3.48225	-21.2142	Qg	0	45	7.2382	18.4656	18.4656	0	18.4656
27	0.163686	3.41598	-21.1159	Qg	0	45	7.1052	18.1263	18.1263	0	18.1263
28	0.163686	3.3431	-21.0177	Qg	0	45	6.95829	17.7515	17.7515	0	17.7515
29	0.163686	3.26364	-20.9196	Qg	0	45	6.79746	17.3412	17.3411	0	17.3411
30	0.163686	3.17761	-20.8215	Qg	0	45	6.62267	16.8953	16.8953	0	16.8953
31	0.163686	3.08501	-20.7235	Qg	0	45	6.43397	16.4139	16.4139	0	16.4139
32	0.163686	2.98587	-20.6255	Qg	0	45	6.23136	15.897	15.897	0	15.897
33	0.163686	2.88019	-20.5276	Qg	0	45	6.01482	15.3446	15.3446	0	15.3446
34	0.163686	2.76799	-20.4298	Qg	0	45	5.78438	14.7567	14.7567	0	14.7567
35	0.163686	2.64928	-20.332	Qg	0	45	5.53998	14.1332	14.1332	0	14.1332
36	0.163686	2.52408	-20.2343	Qg	0	45	5.28166	13.4742	13.4742	0	13.4742
37	0.163686	2.39239	-20.1367	Qg	0	45	5.00939	12.7796	12.7797	0	12.7797
38	0.163686	2.25422	-20.0391	Qg	0	45	4.72324	12.0496	12.0495	0	12.0495
39	0.163686	2.1096	-19.9416	Qg	0	45	4.4231	11.2839	11.284	0	11.284
40	0.163686	1.95852	-19.8441	Qg	0	45	4.10908	10.4828	10.4828	0	10.4828
41	0.163686	1.80101	-19.7467	Qg	0	45	3.7811	9.64608	9.64607	0	9.64607
42	0.163686	1.63707	-19.6494	Qg	0	45	3.43919	8.77382	8.77384	0	8.77384
43	0.163686	1.46672	-19.5521	Qg	0	45	3.08334	7.866	7.86598	0	7.86598
44	0.163686	1.28997	-19.4548	Qg	0	45	2.71355	6.92263	6.92265	0	6.92265
45	0.163686	1.10682	-19.3577	Qg	0	45	2.32983	5.94369	5.9437	0	5.9437
46	0.161703	0.927642	-19.2612	Qg	0	45	1.37007	3.49523	5.25817	1.76294	3.49523
47	0.161703	1.21239	-19.1653	Qg	0	45	0./65316	1.95242	7.23175	5.27935	1.9524
48	0.161703	1.67918	-19.0695	Qg	0	45	0.554942	1.41573	10.1926	8.77685	1.41575
49	0.161703	2.13984	-18.9737	Qg	0	45	0.337754	0.861655	13.1171	12.2555	0.861624
50	0.161703	2.5944	-18.878	Qg	0	45	0.113746	0.290181	16.0054	15.7152	0.290207

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 2.55178

Slice Number	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	341.884	641.351	0	0	0
2	342.046	641.285	0.00180043	0	0
3	342.207	641.218	0.00693046	0	0
4	342.369	641.151	0.0150144	0	0
5	342.53	641.085	0.0256852	0	0
6	342.692	641.019	0.0385842	0	0
7	342.853	640.953	0.0533612	0	0
8	343.015	640.887	0.0696746	0	0
9	343.176	640.821	0.08/1911	0	0
10	343.338	640.755	0.105586	0	0
11	343.499	640.69	0.124542	0	0
12	343.661	640.625	0.143753	0	0
13	343.822	640.56	0.162917	0	0
14	343.984	640.495	0.181745	0	0
15	344.145	640.43	0.199952	0	0
16	344.307	640.365	0.217264	0	0
17	344.468	640.301	0.233415	0	0
18	344.629	640.237	0.247887	0	0
19	344.791	640.173	0.259987	0	0
20	344.952	640.109	0.269731	0	0
21	345.114	640.045	0.277167	0	0
22	345.275	639.981	0.28235	0	0
23	345.437	639.918	0.285346	0	0
24	345.598	639.854	0.286225	0	0
25	345.76	639.791	0.285069	0	0
26	345.921	639.728	0.281967	0	0
27	346.083	639.665	0.277013	0	0
28	346.244	639.602	0.270313	0	0
29	346.406	639.54	0.261979	0	0
30	346.567	639.477	0.252131	0	0
31	346.729	639.415	0.240897	0	0
32	346.89	639.353	0.228412	0	0
33	347.052	639.291	0.214822	0	0
34	347.213	639.229	0.200278	0	0
35	347.375	639.168	0.184938	0	0
36	347.536	639.106	0.168972	0	0
37	347.698	639.045	0.152553	0	0
38	347.859	638.984	0.135866	0	0
39	348.021	638.923	0.119101	0	0
40	348.182	638.862	0.102456	0	0
41	348.344	638.801	0.0861393	0	0
42	348.505	638.741	0.0703637	0	0
43	348.667	638.68	0.0553516	0	0
44	348.828	638.62	0.0205440	0	0
45	348.99	638.56	0.0285448	0	0
46	349.151	038.5	0.01/2326	0	U
4/	349.297	638.446	0.0716904	0	U
48	349.442	638.393	0.113995	0	0
49	349.58/	038.339	0.0200100	0	0
50	349./32	038.280	0.0809109	0	0
51	349.878	638.232	2.23515	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 2.55113

Slice	X	Y	Interslice	Interslice	Interslice
Number	coordinate [ft]	coordinate - Bottom [ft]	Normal Force [lbs]	Shear Force [lbs]	Force Angle [degrees]
1	341.732	641.405	0	0	0
2	341.896	641.334	0.00557442	0	0
3	342.06	641.262	0.0214351	0	0
4	342.223	641.191	0.0463684	0	0
5	342.387	641.12	0.0791992	0	0
6	342.551	641.05	0.11879	0	0
7	342.714	640.98	0.164042	0	0
8	342.878	640.91	0.213893	0	0
9	343.042	640.84	0.26732	0	0
10	343.206	640.771	0.323334	0	0
11	343.369	640.702	0.380987	0	0
12	343.533	640.634	0.439367	0	0
13	343.697	640.566	0.497596	0	0
14	343.86	640.498	0.554835	0	0
15	344 024	640.43	0 610282	0	0
16	344 188	640 363	0.663169	0	0
10	344.100	640.297	0.003105	0	0
10	244.551	640.237	0.712700	0	0
10	244.515	640.25	0.758570	0	0
19	244.079	640.104	0.796549	0	0
20	344.042	640.098	0.851099	0	0
21	345.000	640.033	0.858427	0	0
22	345.17	639.967	0.87857	0	0
23	345.333	639.903	0.892197	0	0
24	345.497	639.838	0.899415	0	0
25	345.661	639.774	0.900363	0	0
26	345.825	639./1	0.895213	0	0
27	345.988	639.647	0.884173	0	0
28	346.152	639.583	0.867484	0	0
29	346.316	639.52	0.84542	0	0
30	346.479	639.458	0.818289	0	0
31	346.643	639.396	0.786434	0	0
32	346.807	639.334	0.750229	0	0
33	346.97	639.272	0.710082	0	0
34	347.134	639.211	0.666434	0	0
35	347.298	639.15	0.619759	0	0
36	347.461	639.089	0.570563	0	0
37	347.625	639.029	0.519387	0	0
38	347.789	638.969	0.466801	0	0
39	347.952	638.909	0.413412	0	0
40	348.116	638.85	0.359855	0	0
41	348.28	638.791	0.306799	0	0
42	348.443	638.732	0.254946	0	0
43	348.607	638.673	0.20503	0	0
44	348.771	638.615	0.157815	0	0
45	348.935	638.558	0.114098	0	0
46	349.098	638.5	0.0747087	0	0
47	349.26	638.443	0.142117	0	0
48	349.422	638.387	0.222945	0	0
49	349.583	638.331	0.230863	0	0
50	349.745	638.276	0.163168	0	0
51	349.907	638.221	2.43724	0	0

List Of Coordinates

Water Table

Х	Y
0	638.5
485	638.5

External Boundary

-

Х	Y		
5.276	663.553		
0	663.458		
0	600.14		
485	600.14		
485	630.057		
432.69	631.984		
385.343	634.21		
373.357	635.401		
361	636.906		
352.592	637.709		
350.08	638.15		
344.507	640.418		
331.786	644.945		
325.53	646.745		
321.064	647.155		
316.753	647.155		
312.656	647.923		
304.204	650.441		
294.344	653.813		
284.271	657.697		
277.265	660.503		
273.1	662.054		
269.65	662.054		
261.321	662.054		
258.156	662.626		
254.122	664.206		
250.778	664.83		
248.922	664.585		
238.949	664.585		
235.547	665.129		
233.052	665.832		
230.08	667.125		
225.974	669.008		
223.242	670.028		
221.322	670.549		
220.266	670.549		
218.143	670.149		
215.482	669.532		
211.337	668.496		
205.933	667.376		
198.51	665.98		
194.639	665.622		
189.336	665.28		

665.12
664.935
664.735
664.735
664.535
664.281
664.182
664.337
664.049
664.217
664.217
664.081
663.725
663.725
663.571
663.387
663.387
663.553
663.553

Worksheet to Determine Seismic Coefficient

REFERENCE: Guidelines for Evaluating and Mitigating Seismic Hazards in Calfiornia SP 117A (CGS, 2008)

Recommended Procedures for Implementation of DMG Special Publication 117 (2002)

*grey cells = required input

Project Number =	3138.00
Project Name =	Residential Development at Azusa
Date =	4/26/2023
By =	EJJ

Step 1) Determine modal magnitude (M) and distance (r) pair based on de-aggregation of peak ground acceleration with 475-year return period, using USGS website: <u>https://earthquake.usgs.gov/hazards/interactive/</u>

Step 2) Input values below:

Mode Magnitude = 7.71Mode Distance = 9.14 km unweighted PGA = 0.4273 g (475-year return period PGA) Slope Height H = 40 ft $F_v = 0.8$ Site Class B $S_1 = 0.653$

- Step 3) Calculate MHA (kav) based on FHWA-NHI-11-032 & NCHRP 611
 - β = 1.223 α = 0.845 MHA = 0.361
- Step 3) Calculate the median value of the duration of strong shaking, $D_{5-95,med}$ based on equations 10.1a and 10.1b:

D_{5-95,med} = 26.38 seconds

Step 4) Calculate the Non-Linear Response Factor, *NRF* based on equation 11.3:

NRF = 1.031 (for 0.1<PGA/g<0.8)

Step 5) Calculate the f_{eq} factor based on equation 11.2 using a typical displacement of either 5 cm (maximum probable event) or 15 cm (maximum credible event):

u = <u>5</u> cm (either 5 or 15 cm) $f_{eq} = 0.641$

Step 6) Calculate the seismic coefficient for analysis, k_{eq} based on equation 11.1:

650 700 750 800 850	Safety Facto 0.000 0.250 0.750 0.750 1.000 1.250 1.500 1.250 2.250 2.250 2.250 2.500 3.000 3.250 3.500 3.750 4.000 4.250 4.500 5.500 5.750 6.000	r +	- • • •				W			1.445
600		Material Name	Color	Unit Weight	Strength Type	Cohesion	Phi	Water Surface	Hu Type	Hu
-	-	09		(lbs/ft3)	Mohr-Coulomb	(psf)	(deg)	Water Surface	Custom	1
550		<u>مە</u>	· · · · · ·							
	0	50	10	00 Project	150 2	200	25	3138 00 Cr	U NSS Sarti	<u>350 400 450 500 550</u>
		-		Analysis Descripti	on			5150.00 Cl	Bick	
		3115		Drawn By				Scale 1:69	5	Company Albus & Associates, Inc.
SLID	PASS EINTERPRET 7.017	OCIATES		Date				I		File Name 3138.00 Cross Section A-Pseudostatic with water.slim

Slide Analysis Information 3138.00 Cross Section A (Pseudostatic)

Project Summary

File Name:	3138.00 Cross Section A-Pseudostatic with water
Slide Modeler Version:	7.017
Project Title:	3138.00 Cross Section A (Pseudostatic)
Analysis:	Bishop

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Left to Right
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.23

Material Properties

Property	Qg
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	0
Friction Angle [deg]	45
Water Surface	Water Table
Hu Value	1

Global Minimums

Method: bishop simplified

FS	1.444520
Center:	428.459, 846.614
Radius:	222.687
Left Slip Surface Endpoint:	343.400, 640.812
Right Slip Surface Endpoint:	349.152, 638.528
Resisting Moment:	5168.62 lb-ft
Driving Moment:	3578.09 lb-ft
Total Slice Area:	0.220021 ft2
Surface Horizontal Width:	5.7516 ft
Surface Average Height:	0.0382538 ft

Method: janbu simplified

FS	1.443990
Center:	428.459, 846.614
Radius:	222.687
Left Slip Surface Endpoint:	343.400, 640.812
Right Slip Surface Endpoint:	349.152, 638.528
Resisting Horizontal Force:	21.5547 lb
Driving Horizontal Force:	14.9272 lb
Total Slice Area:	0.220021 ft2
Surface Horizontal Width:	5.7516 ft
Surface Average Height:	0.0382538 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 2780 Number of Invalid Surfaces: 2071

Error Codes:

Error Code -102 reported for 12 surfaces Error Code -103 reported for 1031 surfaces Error Code -106 reported for 62 surfaces Error Code -112 reported for 1 surface Error Code -114 reported for 8 surfaces Error Code -1000 reported for 957 surfaces

Method: janbu simplified

Number of Valid Surfaces: 2768 Number of Invalid Surfaces: 2083

Error Codes:

Error Code -102 reported for 12 surfaces Error Code -103 reported for 1031 surfaces Error Code -106 reported for 62 surfaces Error Code -112 reported for 13 surfaces Error Code -114 reported for 8 surfaces Error Code -1000 reported for 957 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.44452

Slice Number	Width [ft]	Weight [Ibs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	0.115032	0.0472309	-22.4395	Qg	0	45	0.221121	0.319414	0.319414	0	0.319414
2	0.115032	0.141152	-22.4075	Qg	0	45	0.661064	0.95492	0.954924	0	0.954924
3	0.115032	0.233991	-22.3755	Qg	0	45	1.09625	1.58356	1.58355	0	1.58355
4	0.115032	0.32575	-22.3435	Qg	0	45	1.52668	2.20532	2.20532	0	2.20532
5	0.115032	0.41643	-22.3115	Qg	0	45	1.95234	2.8202	2.8202	0	2.8202
6	0.115032	0.50603	-22.2795	Qg	0	45	2.37325	3.42821	3.42821	0	3.42821
7	0.115032	0.594552	-22.2475	Qg	0	45	2.78939	4.02933	4.02933	0	4.02933
8	0.115032	0.681996	-22.2156	Qg	0	45	3.20077	4.62357	4.62357	0	4.62357
9	0.115032	0.768363	-22.1836	Qg	0	45	3.60737	5.21092	5.21092	0	5.21092
10	0.115032	0.847682	-22.1516	Qg	0	45	3.98116	5.75087	5.75087	0	5.75087
11	0.115032	0.863841	-22.1197	Qg	0	45	4.05848	5.86255	5.86256	0	5.86256
12	0.115032	0.862471	-22.0877	Qg	0	45	4.05346	5.85531	5.85531	0	5.85531
13	0.115032	0.860026	-22.0558	Qg	0	45	4.04339	5.84076	5.84076	0	5.84076
14	0.115032	0.856509	-22.0239	Qg	0	45	4.02826	5.8189	5.81891	0	5.81891
15	0.115032	0.851918	-21.992	Qg	0	45	4.00808	5.78975	5.78975	0	5.78975
16	0.115032	0.846256	-21.96	Qg	0	45	3.98283	5.75328	5.75328	0	5.75328
17	0.115032	0.839523	-21.9281	Qg	0	45	3.95252	5.7095	5.7095	0	5.7095
18	0.115032	0.83172	-21.8962	Qg	0	45	3.91716	5.65841	5.65842	0	5.65842
19	0.115032	0.822847	-21.8643	Qg	0	45	3.87673	5.60001	5.60001	0	5.60001
20	0.115032	0.812905	-21.8324	Qg	0	45	3.83122	5.53428	5.53428	0	5.53428
21	0.115032	0.801895	-21.8006	Qg	0	45	3.78065	5.46123	5.46123	0	5.46123
22	0.115032	0.789818	-21.7687	Qg	0	45	3.72502	5.38086	5.38086	0	5.38086
23	0.115032	0.776674	-21.7368	Qg	0	45	3.6643	5.29316	5.29316	0	5.29316
24	0.115032	0.762464	-21.705	Qg	0	45	3.59852	5.19813	5.19813	0	5.19813
25	0.115032	0.747188	-21.6731	Qg	0	45	3.52766	5.09577	5.09577	0	5.09577
26	0.115032	0.730848	-21.6413	Qg	0	45	3.45171	4.98607	4.98607	0	4.98607
27	0.115032	0.713444	-21.6094	Qg	0	45	3.37069	4.86903	4.86903	0	4.86903
28	0.115032	0.694977	-21.5776	Qg	0	45	3.28459	4.74465	4.74465	0	4.74465
29	0.115032	0.675447	-21.5458	Qg	0	45	3.1934	4.61293	4.61293	0	4.61293
30	0.115032	0.654855	-21.514	Qg	0	45	3.09713	4.47386	4.47386	0	4.47386
31	0.115032	0.633202	-21.4822	Qg	0	45	2.99576	4.32744	4.32743	0	4.32743
32	0.115032	0.610489	-21.4504	Qg	0	45	2.88931	4.17367	4.17366	0	4.17366
33	0.115032	0.586716	-21.4186	Qg	0	45	2.77777	4.01254	4.01254	0	4.01254
34	0.115032	0.561884	-21.3868	Qg	0	45	2.66113	3.84405	3.84405	0	3.84405
35	0.115032	0.535994	-21.355	Qg	0	45	2.53939	3.6682	3.6682	0	3.6682
36	0.115032	0.509046	-21.3232	Qg	0	45	2.41256	3.48499	3.48499	0	3.48499
37	0.115032	0.481041	-21.2914	Qg	0	45	2.28063	3.29441	3.29441	0	3.29441
38	0.115032	0.45198	-21.2597	Qg	0	45	2.14359	3.09646	3.09646	0	3.09646
39	0.115032	0.421864	-21.2279	Qg	0	45	2.00145	2.89114	2.89114	0	2.89114
40	0.115032	0.390692	-21.1962	Qg	0	45	1.85421	2.67844	2.67844	0	2.67844
41	0.115032	0.358466	-21.1644	Qg	0	45	1.70186	2.45837	2.45836	0	2.45836
42	0.115032	0.325187	-21.1327	Qg	0	45	1.5444	2.23091	2.23091	0	2.23091
43	0.115032	0.290854	-21.101	Qg	0	45	1.38182	1.99607	1.99607	0	1.99607
44	0.115032	0.25547	-21.0693	Qg	0	45	1.21413	1.75384	1.75384	0	1.75384
45	0.115032	0.219034	-21.0375	Qg	0	45	1.04133	1.50422	1.50422	0	1.50422
46	0.115032	0.181547	-21.0058	Qg	0	45	0.863408	1.24721	1.24722	0	1.24722
47	0.115032	0.14301	-20.9741	Qg	0	45	0.680369	0.982807	0.982811	0	0.982811
48	0.115032	0.103423	-20.9424	Qg	0	45	0.492206	0.711002	0.711002	0	0.711002
49	0.115032	0.0627875	-20.9107	Qg	0	45	0.298919	0.431795	0.431794	0	0.431794
50	0.115032	0.0211038	-20.8791	Qg	0	45	0.100506	0.145183	0.145183	0	0.145183

Global Minimum Query (janbu simplified) - Safety Factor: 1.44399

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	0.115032	0.0472309	-22.4395	Qg	0	45	0.221182	0.319384	0.319383	0	0.319383
2	0.115032	0.141152	-22.4075	Qg	0	45	0.661243	0.954829	0.954827	0	0.954827
3	0.115032	0.233991	-22.3755	Qg	0	45	1.09654	1.5834	1.58341	0	1.58341
4	0.115032	0.32575	-22.3435	Qg	0	45	1.5271	2.20511	2.20511	0	2.20511
5	0.115032	0.41643	-22.3115	Qg	0	45	1.95287	2.81993	2.81993	0	2.81993
6	0.115032	0.50603	-22.2795	Qg	0	45	2.37389	3.42788	3.42788	0	3.42788
7	0.115032	0.594552	-22.2475	Qg	0	45	2.79015	4.02895	4.02895	0	4.02895
8	0.115032	0.681996	-22.2156	Qg	0	45	3.20164	4.62313	4.62313	0	4.62313
9	0.115032	0.768363	-22.1836	Qg	0	45	3.60836	5.21043	5.21043	0	5.21043
10	0.115032	0.847682	-22.1516	Qg	0	45	3.98225	5.75033	5.75032	0	5.75032
11	0.115032	0.863841	-22.1197	Qg	0	45	4.05958	5.862	5.862	0	5.862
12	0.115032	0.862471	-22.0877	Qg	0	45	4.05456	5.85475	5.85476	0	5.85476
13	0.115032	0.860026	-22.0558	Qg	0	45	4.04449	5.84021	5.84021	0	5.84021
14	0.115032	0.856509	-22.0239	Qg	0	45	4.02936	5.81836	5.81836	0	5.81836
15	0.115032	0.851918	-21.992	Qg	0	45	4.00917	5.7892	5.78921	0	5.78921
16	0.115032	0.846256	-21.96	Qg	0	45	3.98392	5.75274	5.75274	0	5.75274
17	0.115032	0.839523	-21.9281	Qg	0	45	3.95361	5.70897	5.70897	0	5.70897
18	0.115032	0.83172	-21.8962	Qg	0	45	3.91823	5.65789	5.65788	0	5.65788
19	0.115032	0.822847	-21.8643	Qg	0	45	3.87779	5.59949	5.59949	0	5.59949
20	0.115032	0.812905	-21.8324	Qg	0	45	3.83228	5.53377	5.53377	0	5.53377
21	0.115032	0.801895	-21.8006	Qg	0	45	3.7817	5.46073	5.46072	0	5.46072
22	0.115032	0.789818	-21.7687	Qg	0	45	3.72604	5.38036	5.38036	0	5.38036
23	0.115032	0.776674	-21.7368	Qg	0	45	3.66531	5.29267	5.29267	0	5.29267
24	0.115032	0.762464	-21.705	Qg	0	45	3.59951	5.19765	5.19765	0	5.19765
25	0.115032	0.747188	-21.6731	Qg	0	45	3.52863	5.0953	5.0953	0	5.0953
26	0.115032	0.730848	-21.6413	Qg	0	45	3.45266	4.98561	4.98561	0	4.98561
27	0.115032	0.713444	-21.6094	Qg	0	45	3.37162	4.86858	4.86859	0	4.86859
28	0.115032	0.694977	-21.5776	Qg	0	45	3.28549	4.74421	4.74422	0	4.74422
29	0.115032	0.675447	-21.5458	Qg	0	45	3.19427	4.6125	4.61251	0	4.61251
30	0.115032	0.654855	-21.514	Qg	0	45	3.09798	4.47345	4.47345	0	4.47345
31	0.115032	0.633202	-21.4822	Qg	0	45	2.99659	4.32704	4.32704	0	4.32704
32	0.115032	0.610489	-21.4504	Qg	0	45	2.8901	4.17328	4.17328	0	4.17328
33	0.115032	0.586716	-21.4186	Qg	0	45	2.77853	4.01217	4.01217	0	4.01217
34	0.115032	0.561884	-21.3868	Qg	0	45	2.66186	3.8437	3.8437	0	3.8437
35	0.115032	0.535994	-21.355	Qg	0	45	2.54009	3.66787	3.66787	0	3.66787
36	0.115032	0.509046	-21.3232	Qg	0	45	2.41322	3.48467	3.48467	0	3.48467
37	0.115032	0.481041	-21.2914	Qg	0	45	2.28126	3.29411	3.29411	0	3.29411
38	0.115032	0.45198	-21.2597	Qg	0	45	2.14418	3.09618	3.09618	0	3.09618
39	0.115032	0.421864	-21.2279	Qg	0	45	2.00201	2.89088	2.89088	0	2.89088
40	0.115032	0.390692	-21.1962	Qg	0	45	1.85472	2.6782	2.6782	0	2.6782
41	0.115032	0.358466	-21.1644	Qg	0	45	1.70233	2.45815	2.45815	0	2.45815
42	0.115032	0.325187	-21.1327	Qg	0	45	1.54482	2.23071	2.23071	0	2.23071
43	0.115032	0.290854	-21.101	Qg	0	45	1.3822	1.99589	1.99589	0	1.99589
44	0.115032	0.25547	-21.0693	Qg	0	45	1.21447	1.75368	1.75368	0	1.75368
45	0.115032	0.219034	-21.0375	Qg	0	45	1.04162	1.50409	1.50409	0	1.50409
46	0.115032	0.181547	-21.0058	Qg	0	45	0.863649	1.2471	1.2471	0	1.2471
47	0.115032	0.14301	-20.9741	Qg	0	45	0.680558	0.982719	0.982722	0	0.982722
48	0.115032	0.103423	-20.9424	Qg	0	45	0.492343	0.710938	0.710937	0	0.710937
49	0.115032	0.0627875	-20.9107	Qg	0	45	0.299002	0.431756	0.431756	0	0.431756
50	0.115032	0.0211038	-20.8791	Qg	0	45	0.100534	0.14517	0.14517	0	0.14517

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.44452

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	343.4	640.812	0	0	0
2	343.515	640.764	0.000640905	0	0
3	343.63	640.717	0.0024737	0	0
4	343.745	640.67	0.00537507	0	0
5	343.86	640.622	0.00922362	0	0
6	343.975	640.575	0.0138998	0	0
7	344.09	640.528	0.0192861	0	0
8	344.205	640.481	0.0252668	0	0
9	344.32	640.434	0.031728	0	0
10	344.435	640.387	0.0385579	0	0
11	344.55	640.34	0.0455969	0	0
12	344.665	640.294	0.0522645	0	0
13	344.78	640.247	0.0584169	0	0
14	344.895	640.2	0.0640486	0	0
15	345.01	640.154	0.069156	0	0
16	345.125	640.107	0.0737375	0	0
17	345.24	640.061	0.0777933	0	0
18	345.355	640.015	0.0813256	0	0
19	345.471	639.968	0.0843382	0	0
20	345.586	639.922	0.0868371	0	0
21	345.701	639.876	0.0888301	0	0
22	345.816	639.83	0.0903267	0	0
23	345.931	639.784	0.0913385	0	0
24	346.046	639.738	0.0918788	0	0
25	346.161	639.692	0.0919629	0	0
26	346.276	639.647	0.091608	0	0
27	346.391	639.601	0.090833	0	0
28	346.506	639.556	0.0896587	0	0
29	346.621	639.51	0.088108	0	0
30	346.736	639.465	0.0862055	0	0
31	346.851	639.419	0.0839775	0	0
32	346.966	639.374	0.0814524	0	0
33	347.081	639.329	0.0786605	0	0
34	347.196	639.284	0.0756337	0	0
35	347.311	639.239	0.072406	0	0
36	347.426	639.194	0.0690131	0	0
37	347.541	639.149	0.0654927	0	0
38	347.656	639.104	0.0618843	0	0
39	347.771	639.059	0.0582291	0	0
40	347.886	639.015	0.0545704	0	0
41	348.001	638.97	0.0509532	0	0
42	348.116	638.925	0.0474244	0	0
43	348.231	638.881	0.0440326	0	0
44	348.346	638.837	0.0408286	0	0
45	348.461	638.792	0.0378647	0	0
40	348.576	638.748	0.0351952	0	U
4/	348.691	638.704	0.0328762	0	U
48	348.800 210 021	038.00 630.616	0.030905/	0	0
49 E0	240.921 210 026	620.010 620 570	0.0295234	0	0
51	349,152	638.528	0.020011	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.44399

٦

Ī

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	343.4	640.812	0	0	0
2	343.515	640.764	0.000630975	0	0
3	343.63	640.717	0.00243408	0	0
4	343,745	640.67	0.00528624	0	0
5	343.86	640.622	0.00906625	0	0
6	343.975	640.575	0.0136548	0	0
7	344.09	640.528	0.0189346	0	0
8	344.205	640.481	0.0247901	0	0
9	344.32	640.434	0.0311077	0	0
10	344.435	640.387	0.0377757	0	0
11	344.55	640.34	0.044636	0	0
12	344.665	640,294	0.0511216	0	0
13	344.78	640.247	0.0570922	0	0
14	344.895	640.2	0.0625425	0	0
15	345.01	640.154	0.0674693	0	0
16	345.125	640.107	0.0718711	0	0
17	345.24	640.061	0.0757483	0	0
18	345.355	640.015	0.0791033	0	0
19	345.471	639.968	0.0819404	0	0
20	345.586	639.922	0.0842655	0	0
21	345.701	639.876	0.0860867	0	0
22	345.816	639.83	0.0874139	0	0
23	345.931	639.784	0.0882588	0	0
24	346.046	639.738	0.0886349	0	0
25	346.161	639.692	0.0885578	0	0
26	346.276	639.647	0.0880448	0	0
27	346.391	639.601	0.0871152	0	0
28	346.506	639.556	0.08579	0	0
29	346.621	639.51	0.0840922	0	0
30	346.736	639.465	0.0820466	0	0
31	346.851	639.419	0.0796799	0	0
32	346.966	639.374	0.0770207	0	0
33	347.081	639.329	0.0740994	0	0
34	347.196	639.284	0.0709483	0	0
35	347.311	639.239	0.0676015	0	0
36	347.426	639.194	0.064095	0	0
37	347.541	639.149	0.0604666	0	0
38	347.656	639.104	0.0567561	0	0
39	347.771	639.059	0.053005	0	0
40	347.886	639.015	0.0492567	0	0
41	348.001	638.97	0.0455565	0	0
42	348.116	638.925	0.0419516	0	0
43	348.231	638.881	0.0384908	0	0
44	348.346	638.837	0.0352249	0	0
45	348.461	638.792	0.0322067	0	0
46	348.576	638.748	0.0294906	0	0
47	348.691	638.704	0.027133	0	0
48	348.806	638.66	0.0251921	0	0
49	348.921	638.616	0.0237278	0	0
50	349.036	638.572	0.022802	0	0
51	349.152	638.528	0	0	0

List Of Coordinates

Water Table

х	Y
0	638.5
485	638.5

External Boundary

Х	Y
5.276	663.553
0	663.458
0	600.14
485	600.14
485	630.057
432.69	631.984
385.343	634.21
373.357	635.401
361	636.906
352.592	637.709
350.08	638.15
344.507	640.418
331.786	644.945
325.53	646.745
321.064	647.155
316.753	647.155
312.656	647.923
304.204	650.441
294.344	653.813
284.271	657.697
277.265	660.503
273.1	662.054
269.65	662.054
261.321	662.054
258.156	662.626
254.122	664.206
250.778	664.83
248.922	664.585
238.949	664.585
235.547	665.129
233.052	665.832
230.08	667.125
225.974	669.008
223.242	670.028
221.322	670.549
220.266	670.549
218.143	670.149
215.482	669.532
211.337	668.496
205.933	667.376
198.51	665.98
194.639	665.622

180.898	665.12
174.544	664.935
163.816	664.735
151.141	664.735
146.681	664.535
140.446	664.281
125.012	664.182
121.783	664.337
112.772	664.049
99.454	664.217
94.114	664.217
85.265	664.081
70.446	663.725
43.663	663.725
41.273	663.571
37.475	663.387
27.223	663.387
20.749	663.553
9.632	663.553

APPENDIX E

STANDARD GRADING DETAILS

ALBUS & ASSOCIATES, INC.

- B. Rock Blankets should be constructed by creating 4-foot-deep "basins" within General Fill materials that are then filled with oversized rock. General Fill consists of general site material having a maximum particl size of 8 inches and approved by the Soil Engineer. The basins can be created by constructing false fills away from the basin area and then trimming the false fill face back to a compacted core. Once the basin is created, the area may be filled with a blanket of Oversized Rock.
- C. The maximum thickness of an Oversized Rock blanket should not exceed 4 feet.
- D. After placement of the Oversized Rock, the material should be track walked with a dozer, or other equipment and proceedure approved by the Soils Engineer.

E. A 12-inch thick layer of select material, having a maximum particle size of 3 inches and having an SE of 30 or greater, should be placed over the track walked rock and flooded to wash the material between the voids between rocks. The area should then be track walked with a dozer. Additional layers of select material should be placed, flooded, and track walked in a similar manner until no additional select material can be washed into the Oversized Rock. A final track walk with a dozer should be performed before fill placement continues.

F. A minimum of 12 inches of General Fill should be placed over a blanket of Oversized Rockprior to placing more over-sized material.

Not To Scale See attached soils report for specific recommendations

