

Phase I and II Environmental Site Assessments

April 4, 2024

Lina Lee Vice President, Development **CIM GROUP** 4700 Wilshire Boulevard Los Angeles, California 90038

Re: CITADEL Project No. 0765.1347.0 Limited Phase II Site Assessment Report **Commercial Property** 1020 North La Brea Avenue West Hollywood, California 90038

Dear Ms. Lee:

Citadel EHS is pleased to provide CIM Group with this Limited Phase II Site Assessment Report for the above-referenced location.

The Limited Phase II Site Assessment was conducted in accordance with Citadel's Proposal 0765.1347.P, dated February 18, 2022, and a mutually agreed upon scope of work.

If, after your review, you have any questions or require additional information, please do not hesitate to contact me at (818) 246-2707.

Sincerely,

CITADEL EHS

Mark Drollinger Drollinger

Digitally signed by Mark

Date: 2024.04.04 14:10:23 -07'00'

Mark Drollinger, M. Eng., CSP Principal, Engineering and Environmental Sciences

Enclosure

CIM Group 4700 Wilshire Boulevard Los Angeles, California 90010

Limited Phase II Site Assessment Report

March 18, 2022 Revised April 4, 2024

Citadel Project Number 0765.1347.0

Commercial Property 1020 North La Brea Avenue West Hollywood, California 90038

www.CitadelEHS.com

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	GEOLOGY/HYDROGEOLOGY	2
4.0	PRE-FIELD ACTIVITIES	
5.0	SOIL AND SOIL VAPOR SAMPLING	2
6.0	ENVIRONMENTAL SCREENING LEVELS	4
7.0	LABORATORY ANALYTICAL RESULTS	4
8.0	FINDINGS AND RECOMMENDATIONS	4
9.0	DISCLAIMER	5
10.0	REFERENCES	6
11.0	SIGNATURES	7

FIGURES

Figure 1 Site Location Map

Figure 2 Site Map with Boring Locations

TABLES

Table 1 Volatile Organic Compounds in Soil Vapor

Table 2 Total Petroleum Hydrocarbons and Volatile Organic Compounds in Soil

Table 3 Title 22 Metals in Soil

APPENDICES

Appendix A	Health and Safety Plan
Appendix B	USA Dig Alert Ticket
Appendix C	Citadel Field Notes
Appendix D	Photographic Log
Appendix E	Boring Logs

Appendix E Boring Logs
Appendix F Laboratory Analytical Reports

1.0 INTRODUCTION

Citadel EHS (Citadel) has prepared this Limited Phase II Site Assessment Report for the property located at 1020 North La Brea Avenue in the City of West Hollywood, California (Site). The Site consists of a slab-on-grade single-story commercial building on 0.166 acres of land. To make way for Site re-development, the existing building will be demolished. Citadel understands from the Client that the Site will be improved by new construction of a 34-story mixed use commercial and residential building, five above grade parking levels, and two levels of subterranean parking. The excavation depth of the Site would reach roughly 32 feet below current ground surface. Please refer to Figure 1 for a Site Location Map.

2.0 BACKGROUND

A review of historical sources showed that the Site was undeveloped as of 1894 until the Site was occupied as a used car lot and liquor store by 1942. The current commercial/warehouse structure was developed in 1947. Historic occupancies of the current Site building include an electronic store warehouse; woodworking store; cabinet shop; salon; adult entertainment store; offices; scenic background shop; production studios; print shop; and antique and furniture stores. Historic occupancies including a used car lot, cabinet making, studio production and backdrop shop, and a print shop indicate the historic storage and use of chemicals and/or petroleum hydrocarbons.

Citadel prepared a Phase I Environmental Site Assessment (Phase I) on February 18, 2022, and identified the following recognized environmental conditions (RECs) for the Site:

- Historic occupancies including a used car lot, cabinet making, studio production and backdrop shop, and a print shop indicate the historic storage and use of chemicals and/or petroleum hydrocarbons represent a REC.
- The adjoining property north of the Site was identified on the South Coast Air Quality Management District's Facility Information Detail database with a spray paint booth using solvents. This property has also been occupied as an auto service shop since at least 1975. Properties further north included a service station, auto repair shop, and a photo chemical laboratory. The proximity to the Site represents RECs.
- > The adjoining properties east of the Site have historically been occupied by machine shops and plastic manufacturers. An area of oil storage was depicted in the 1950 Sanborn Map northeast of the Site. A nearby property east of Sycamore Avenue was listed as a photo lab and a generator of photochemicals/photo processing waste between 1992 and 1998. The proximity to the Site represents RECs.
- ➤ The adjoining property south of the Site, CEMEX, was identified on the historical UST databases. The long-term storage of hazardous materials including one UST and the proximity to the Site represents a REC.
- Properties west of the Site (and North La Brea Avenue) were historically occupied by various manufacturers, machine shops, a car wash, and a large gasoline storage tank and pump house. While the properties west of the Site have been redeveloped with a large shopping center, a total of seven open case Cleanup Program Sites are identified with the historical addresses of the adjacent properties. The open cases and the proximity to the Site represent a REC.
- A nearby property, located approximately 321 feet northeast of the Site, was occupied as a cleaners and dyers in 1929, clothes pressers and cleaners from 1933 to 1937, and a dry cleaning plant from 1950 to 1975. Due to the potential solvent usage and proximity to the Site, a vapor encroachment condition (VEC) cannot be ruled out and represents a REC.

Based on the findings of the Phase I, Citadel recommended conducting a Limited Phase II Site Assessment to evaluate subsurface soil and soil vapor impacts to the Site from historic on-site and adjacent industrial operations.

3.0 GEOLOGY/HYDROGEOLOGY

The Site is relatively flat and sits at an elevation of approximately 284 feet above mean sea level (AMSL). The Site is identified on the geologic map of the Hollywood and Burbank south half quadrangles, California (Dibblee and Ehrenspeck, 1991) as being Pleistocene aged older surficial sediments (Qae). The older surficial sediments are described as unconsolidated to weakly consolidated alluvial fan sediments and eroded where elevated. The United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) National Cooperative Soil Survey identifies the Site soils as Urban land-Grommet-Ballona complex. The Grommet soils are described as well drained loam with low runoff; the Ballona soils are described as well drained loam to clay with medium runoff; and the Urban Land soils are described as soils with very high runoff.

The Site is located within the Hollywood Groundwater Subbasin within the Coastal Plain of the Los Angeles Groundwater Basin. The subbasin is bounded on the north by the Santa Monica Mountains and the Hollywood fault, on the east by the Elysian Hills, on the west by the Inglewood fault zone, and on the south by the La Brea High. Groundwater in the Subbasin is mainly produced from Pleistocene age alluvial sands and gravels.

According to a Phase II Environmental Site Assessment (Phase II) prepared by Advantage Environmental Consultants (AEC) on August 23, 2019, for the CEMEX property adjacent and south of the Site, groundwater was encountered at the property at depths between approximately 15.5 to 16 feet bgs. Groundwater was not encountered during this investigation.

4.0 PRE-FIELD ACTIVITIES

A site-specific health and safety plan (HASP) was prepared prior to on-site activities. This HASP identified existing and potential hazards for workers at the Site during boring and sample collection activities. A copy of the HASP is included in Appendix A.

To screen the boring locations for potential utilities, Citadel marked the proposed boring location and contacted Underground Service Alert (USA) for marking utilities exterior of the building. A copy of the USA Dig Alert Ticket is included in Appendix B.

5.0 SOIL AND SOIL VAPOR SAMPLING

On March 11, 2022, Choice Drilling (Choice) under the supervision of Citadel advanced four borings, identified as B1 through B4, within the structure using a limited access hydraulic push drill rig to an attempted target depth of approximately 15 feet below ground surface (bgs). The boring locations were directed to evaluate the subsurface for the presence of contaminants in soil and soil vapor and determine the potential of occupant exposure risks from subsurface contaminants. Due to drilling refusal, B1, B2, and B4 were advanced to depths of 12, 12, and 8 feet bgs,

respectively. Please refer to Figure 2 for a Site Map showing the approximate boring and sampling locations, Appendix C for copies of Citadel's field notes and Appendix D for a photographic log.

Soil

Soil samples were collected from each boring in acetate sleeves at approximate five-foot intervals beginning at five feet bgs. Each sample was labeled according to the boring number and the sample depth. For example, B1-5 is the five-foot sample from boring B1. Spilt samples were field screened with a photoionization detector (PID) to monitor the vapor space for the presence of volatile organic compounds (VOCs). VOCs were detected in split samples B3-5, B3-10, B3-15, and B2-7 at concentrations between 0.7 and 1.5 parts per million by volume (ppm_v). VOCs were not detected in any of the other samples when measured with the PID. The split samples were logged under the supervision of a California Professional Geologist. Soils encountered consisted of silty clay and clay. No stained or odorous soils were identified. Refer to Appendix E for the boring logs.

Twenty-two soil samples were collected and placed in a chilled cooler for transportation to Enthalpy Analytical (Enthalpy), under standard chain of custody (COC) procedures. Enthalpy is an Environmental Laboratory Accreditation Program (ELAP) certified laboratory.

Soil Vapor

Soil vapor sampling probes were installed at approximately five-feet bgs and at the base of each boring. The soil vapor sampling probes were installed in accordance with the California Environmental Protection Agency's (Cal EPA) Department of Toxic Substance Control (DTSC) Active Soil Gas Investigations Advisory (DTSC, 2015a) and Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, 2011). Soil vapor probe tips were placed within a sand pack at the sampling depths. Approximately six inches of dry bentonite chips were placed over the sand pack, followed by placement of hydrated bentonite. Gas tight fittings were placed at the end of the probes at the surface.

Each vapor probe was measured for the presence of VOCs using a PID. VOCs were detected in concentrations between 2.1 and 9.7 ppm $_{\rm v}$ from vapor probes B1-5, B1-12, B2-5, B2-12 and B4-8, and 81.3 ppm $_{\rm v}$ in B4-5.

Following installation of the sampling probes the subsurface was allowed to equilibrate to representative conditions for a minimum of two hours before collecting soil vapor samples. Prior to the collection of samples, the fittings and tubing were tested for leaks by conducting a shut-in test. No leaks were detected in any of the probes or tubing. The tubing and probe at each sampling location was purged three soil pore volumes (volumes of tubing, sand pack and annular bentonite) prior to the collection of samples.

Soil vapor samples are identified by appending a "V" designation to the boring identification. For example, B1-5V is the five-foot soil vapor sample from boring B1. Eight soil vapor samples were collected in Tedlar bags at a sampling rate of between 100 and 200 millimeters per minute (mL/min) and placed into a non-chilled travel container to insulate the samples from sun light and kept at room temperature to prevent condensation and transported to Enthalpy under standard COC procedures.

Following the collection of soil vapor samples, the soil vapor probes were removed, and the boring locations backfilled with hydrated bentonite and patched to match the surrounding surface.

6.0 ENVIRONMENTAL SCREENING LEVELS

Results reported were compared to the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) environmental screening levels (ESLs). The soil vapor ESLs for evaluating soil vapor intrusion are based on indoor air concentrations over an attenuation factor (AF) of 0.03. This represents a very conservative approach to establishing future risk. The AF refers to the decrease in VOC concentration that occurs through the process of vapor migration into a building, coupled by dilution of the vapor in the building when it mixes with air. An AF of 0.03 assumes that 3% of VOC concentrations in subslab vapor will accumulate in the building interior through migration and dilution, and thus defines a theoretical threshold concentration limit of subsurface soil vapor that may pose an indoor air health risk.

7.0 LABORATORY ANALYTICAL RESULTS

This section presents a summary and comparison of the results to the appropriate screening levels for soil vapor. The results are presented in Table 1. Refer to Appendix E for a copy of the laboratory reports.

Eight soil vapor samples were analyzed for VOCs.

- Firither (TCE) was reported in all four samples from borings B2 and B4, at concentrations between 3,800 and 39,000 micrograms per cubic meter (μg/m³), above the commercial ESL of 100 μg/m³, and above the US Environmental Protection Agency (USEPA) Short-term Action Level (STAL) of 270 μg/m³.
- > Tetrachloroethene (PCE) was reported in seven samples representing all borings, at concentrations between 99 and 1,000 μg/m³, above the commercial ESL of 67 μg/m³ in five samples.
- \triangleright Benzene was reported in seven samples representing all borings, at concentrations between 20 and 110 μ g/m³, above the commercial ESL of 14 μ g/m³.
- \triangleright Cis-1,2-dichloroethene was reported in three samples from borings B2 and B4, at concentrations between 24 and 3,100 µg/m³, above the commercial ESL of 1,200 µg/m³ in B4-5V.
- > Twenty-one VOCs were reported in samples at concentrations that are below their respective commercial ESLs.

Soil samples B1-5 and B4-5 were analyzed for VOCs, TPH full range and Title 22 Metals. B4-5 was chosen for analysis based on field PID readings from the vapor probes. B1-5 was chosen to obtain a representative soil analysis from the western portion of the Site.

- > TCE was reported in B4-5, at a concentration of 0.019 mg/kg, below the commercial ESL of 6 mg/kg.
- > TPH as diesel (TPHd) was reported in B4-5 at a concentration of 28 mg/kg, below the commercial ESL of 1,200 mg/kg.
- Arsenic was reported in both samples, at concentrations below the DTSC background arsenic level of 12 mg/kg.

8.0 FINDINGS AND RECOMMENDATIONS

The Site consists of a slab-on-grade single-story commercial building on 0.166 acres of land. To make way for Site re-development, the existing building will be demolished. Citadel understands from the Client that the Site will be improved by new construction of a 34-story mixed use commercial and residential building, five above grade parking levels, and two levels of subterranean parking. The excavation of the Site would reach roughly 32 feet below current ground surface.

Based on a review of nearby properties, at least seven environmental release sites were identified that have impacted groundwater, suggesting a potential for regional groundwater impacts that may contribute to on-Site contaminants in soil vapor.

The current investigation was intended to determine the potential presence of VOCs, TPH and heavy metals, and provide assessment of soil vapor risks. Citadel advanced four borings across the Site and collected soil and soil vapor samples. Benzene, PCE, TCE and cis-1,2-Dichloroethene were reported in soil vapor at concentrations that are above their respective ESLs. TCE was reported in soil vapor at concentrations that exceed the STAL. TCE and TPHd were reported in one soil sample, at concentrations that are below their respective ESLs.

Based on this investigation, the Site is impacted by VOCs. The presence of VOCs in soil vapor may pose a health risk to construction workers and future building occupants.

Citadel recommends an environmental monitoring specialist be present during any new construction activity that could potentially disturb soil including concrete slab removal, utility trenching or new development, to continuously monitor the soil and the breathing zone for the emission of VOCs that may pose a health risk to construction workers or exceed emission limits set forth by SFBRWQCB and/or the South Coast Air Quality Management District Rule 1166.

Due to the presence of contaminant vapors in the subsurface, and the potential for these vapors to enter into occupied spaces should the Site be developed from its current condition, long-term protective measures may include upgrades to indoor air ventilation systems and a vapor barrier that may include a venting system.

In accordance with regulatory guidance, Citadel recommends indoor air quality sampling be conducted for any future occupiable building approximately one to three months following final construction. Subsequent air sampling should be conducted approximately six months after the first indoor air sampling events. Results from the indoor air sampling would then be evaluated as part of a Human Health Risk Assessment (HHRA) to evaluate the effectiveness of the vapor barrier, to show that the interior space does not present an adverse health risk and determine if supplemental mitigation measures, through engineering controls, may be warranted.

Finally, Citadel recommends that a demolition-level survey of asbestos-containing materials, lead-based paint and other environmentally regulated materials be completed prior to demolition of the existing building.

9.0 DISCLAIMER

The services performed by Citadel Environmental Services, Inc. ("Citadel"), d.b.a. Citadel EHS, in connection with this Report were performed in accordance with generally and currently accepted engineering practices and principles; provided, however, Citadel completed such services as directed by the Client and the recommendations described in this Report are therefore

limited in purpose and scope. The procedures and methodologies used by Citadel in its performance of services, and the recommendations contained herein, are not intended to meet the requirements under any specific laws or regulatory guidelines unless expressly set forth in the Proposal.

The recommendations and conclusions set forth in this Report are based on information and data available to Citadel during the course of its performance of the services. Citadel relied on the information and data provided by or on behalf of Client, including, if applicable, historical and present operations, conditions and test data, and Citadel assumed all such information and data was correct and complete. Citadel shall not be liable for any damages or losses resulting from inaccuracies of, or omissions from, information or data provided by or on behalf of the Client, any interested third-parties, or any federal, state, county, or local governmental authority, or otherwise available in the public domain.

The findings and recommendations presented in this Report are based upon observations of present conditions and may not necessarily indicate future conditions. No conclusions should be construed or inferred other than those expressly stated in this Report. EXCEPT FOR ANY WARRANTIES EXPRESSLY SET FORTH IN THE PROPOSAL OR OTHER WRITTEN AGREEMENT BETWEEN CITADEL AND CLIENT, CITADEL MAKES NO WARRANTIES HEREUNDER WITH RESPECT TO ANY INFORMATION CONTAINED IN THIS REPORT, EXPRESS OR IMPLIED, AND CITADEL HEREBY DISCLAIMS ALL OTHER WARRANTIES.

All testing and remediation methods have reliability limitations and no method nor number of sampling locations can guarantee that a hazard will be discovered if contamination or other evidence of the hazard is not encountered within the performance of the services as authorized. Reliability of testing or remediation varies according to the sampling frequency and other service variables that were selected by Client. Citadel shall not be at fault or liable for any such limitations.

The information and opinions rendered in this report are exclusively for use and reliance by the Client. The information contained herein may not be used, disclosed, or copied without written permission of the Client and may not be relied upon without the written permission of Citadel.

10.0 REFERENCES

- Citadel EHS, 2022, Phase I Environmental Site Assessment Report, 1020 North La Brea Avenue West Hollywood, California 90038, February 22.
- Department of Toxic Substances Control (DTSC), 2011. Vapor Intrusion Mitigation Advisory. California Environmental Protection Agency, Department of Toxic Substances Control. Revision 1, October.
- Department of Toxic Substances Control (DTSC), 2015a. Advisory Active Soil Gas investigations. July.
- Department of Toxic Substances Control (DTSC), 2015b, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, Department of Toxic Substance Control, California Environmental Protection Agency, October.

Department of Water Resources (CDWR), 2004. California's Groundwater Bulletin 118, South Coast Hydrologic Region, Coastal Plain of Los Angeles Groundwater Basin, Central Sub-Basin. February 27.

Dibblee, T.W., and Ehrenspeck, H.E., ed., 1991, Geologic map of the Hollywood and Burbank (south 1/2) quadrangles, Los Angeles, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-30, scale 1:24,000.

Los Angeles County Assessor's Office, on-line parcel information (www.assessor.lacounty.gov).

San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, 2019.

United States Department of Agriculture, National Resources Conservation Service, Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx).

United States Geological Survey (USGS), 2018. Hollywood, California 7.5 minute topographic quadrangle, United States Geological Survey.

11.0 SIGNATURES

Report Prepared by:

Scott Digitally signed by Scott Grasse

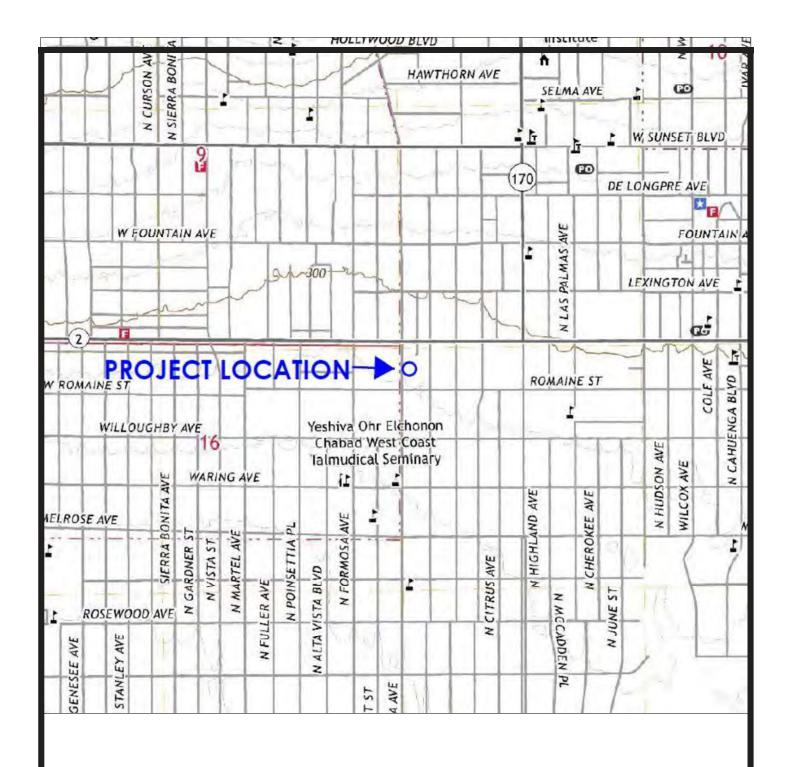
Grasse Date: 2024.04.04

14:11:04 -07'00' Scott Grasse, PG, MSc

Project Manager, Engineering and Environmental Sciences

Reviewed by:

Mark Drollinger

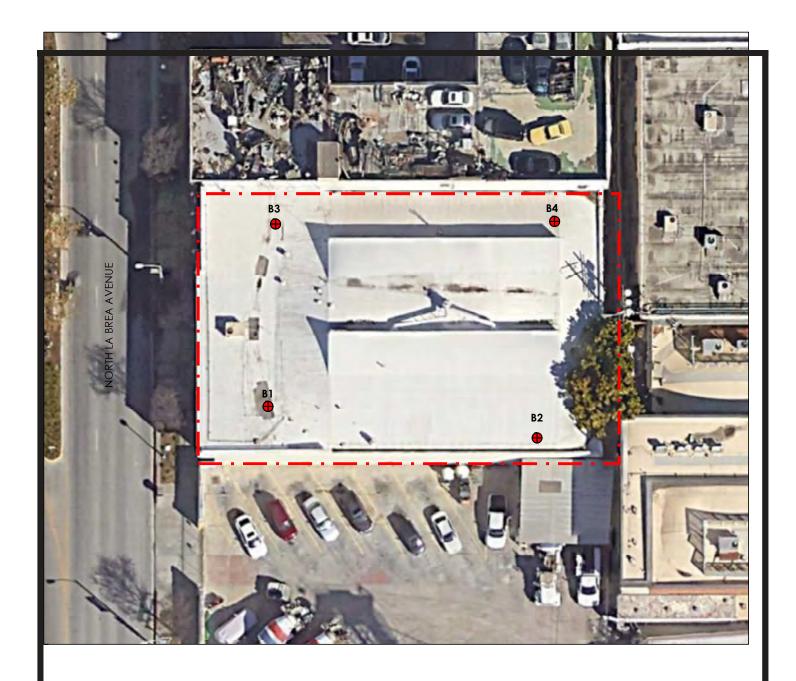

Drollinger Date: 2024.04.04
14:11:27 -07'00'

Mark Drollinger, M. Eng., CSP, CHMM

Principal, Engineering and Environmental Sciences

Figures

Source: USGS Hollywood Quadrangle, 2018, 7.5 Minute Series


CIM GROUP

1020 North La Brea Avenue West Hollywood, California Figure 1

PROJECT NO.: 0765.1347.0

DATE: MARCH 2022

Topographic Map

SOIL BORINGS

Source: Google Earth

CIM GROUP

1020 North La Brea Avenue West Hollywood, California Figure 2

PROJECT NO.: 0765.1347.0

DATE: MARCH 2022

Approximate Sample Locations

Tables

Table 1. Volatile Organic Compounds (VOCs) in Soil Vapor 1020 North La Brea Avenue, Los Angeles, California 90038

Boring ID	Sample Depth (feet)	Date Sampled	Acetone	Benzene	Carbon Disulfide	Chloro-methane	Ethylbenzene	Styrene	Tetrachloro- ethene (PCE)	Toluene	Trichloro- ethene (TCE)	Xylenes (total)	cis-1,2-Dichloro- ethene	m,p-Xylene	o-Xylene
			micrograms per c	ubic meter (ug/m	³)										
B1 - 5V	5	03/11/2022	120	20	<5.6	<0.74	11	3.2	270	66	<1.9	62	<1.4	46	16
B1-12V	12	03/11/2022	110	86	<5.3	2.1	20	4.8	52	140	<1.8	100	<1.3	76	27
B2 - 5V	5	03/11/2022	<1300	67	<85	<11	<24	<23	1,000	<100	3,800	<24	24	<47	<24
B2-12V	12	03/11/2022	<810	88	<53	<7.0	<15	<14	790	110	2,200	64	<13	47	16
B3 - 5∨	5	03/11/2022	270	100	11	3.5	27	6.1	8.3	170	<1.8	140	<1.3	100	37
B3-15V	15	03/11/2022	<340	110	31	4.9	25	<6.1	<9.8	180	<7.7	130	<5.7	95	33
B4-5V	5	03/11/2022	<11000	<140	<700	<93	<200	<190	810	<850	39,000	<200	3,100	<390	<200
B4-8V	8	03/11/2022	<2000	51	<130	<18	<37	<36	99	<160	6,000	<37	670	<74	<37
ESL - Commercial Su	ıbslab/Soil Gas Canc	er Risk		14			160	-	67	_	1001	-	-	-	-
ESL - Commercial Su	ubslab/Soil Gas non-C	ancer Hazard	4,500,000	440		13,000	150,000	130,000	5,800	44,000	290	15,000	1,200	15,000	15,000

¹The Commercial Short-term Action Level for TCE is 270 ug/m³

Notes:

Bold = Analyte detected above the Reporting Limit.

J = Analyte detected above the laboratory Method Detection Limit but below the Reporting Limit.

<= Analyte not detected at or above given Method Detection Limit.

- Not analyzed.

ESL = Environmental Screening Levels (SFBRWQCB, 2019).

Exceeds Commercial Screening Levels.

Exceeds the Commercial Short-Term Action Level for TCE of 270 ug/m³

Table 1 (cont). Volatile Organic Compounds (VOCs) in Soil Vapor 1020 North La Brea Avenue, Los Angeles, California 90038

Boring ID	Sample Depth (feet)	Date Sampled	1,2,4-Trimethyl- benzene	1,2-Dichloro- propane	1,3,5-Trimethyl- benzene	1,4-Dichloro- benzene	2-Butanone	2-Hexanone (MBK)	4-Ethyl-toluene	4-Methyl-2- pentanone (MIBK)	Freon 12	n-Hexane	Isopropanol	trans-1,2- Dich l oroethene
								micrograms per	cubic meter (ug/m	3)				
B1 - 5V	5	03/11/2022	18	3.8	6.4	3.9	40	2.9	5.3	2.8	2.5	7.8	32	<1.4
B1-12V	12	03/11/2022	32	3.6	9.6	9.3	32	6.2	8.1	11	2.7	41	34	<1.3
B2 - 5∨	5	03/11/2022	<67	<25	<27	<33	<80	<22	<27	<22	<27	<48	<330	<22
B2-12V	12	03/11/2022	<42	<16	<17	<20	<50	<14	<17	<14	<17	31	<210	<13
B3 - 5∨	5	03/11/2022	33	4.8	12	4.9	83	6.4	9.9	7.9	2.6	42	36	<1.3
B3-15∨	15	03/11/2022	26	6.8	9.5	<8.7	58	9.7	8.6	10	<7.1	90	<88	<5.7
B4 - 5V	5	03/11/2022	<550	<210	<220	<270	<660	<180	<220	<180	<220	<400	<2800	530
B4 - 8V	8	03/11/2022	<100	<39	<42	<51	<130	<35	<42	<35	<42	<75	<520	160
ESL - Commercial Su	ubs ab/Soi Gas Canc	er Risk	-	41	-	37	-	_	-	-	-	-	-	-
ESL - Commercial Su	ubslab/Soil Gas non-C	Cancer Hazard	-	580	_	120,000	730,000	_	_	-	-	-	-	12,000

¹The Commercial Short-term Action Level for TCE is 270 ug/m³

Notes:

Bold = Analyte detected above the Reporting Limit.

J = Analyte detected above the laboratory Method Detection Limit but below the Reporting Limit.

<= Analyte not detected at or above given Method Detection Limit.

- Not analyzed.

ESL = Environmental Screening Levels (SFBRWQCB, 2019).

Table 2. Total Petroleum Hydrocarbons (TPH) and Volatile Organic Compounds (VOC) in Soil 1020 North La Brea Avenue, Los Angeles, California 90038 **Total Petroleum Hydrocarbons** VOCs Sample TPH-TPH-TPH-Date Trichloroethene Boring ID Depth gasoline diesel oil Sampled (TCE) (feet) (C8-C10) (C10-C28) (C28-C44) milligrams per kilogram (mg/kg) B1-5 5 3/11/2022 <1.3 2.1 J 2.4 J <0.0008 B4-5 3/11/2022 4.8 J 28 3.8 J 0.019 ESL - Construction Worker Exposure 1,800 1,100 54,000 6 130 ESL - Commercial/Industrial Soil 2,000 1,200 180,000 TTLC limit 2040

Notes:

Bold = Analyte detected above the Reporting Limit.

- J = Analyte detected above the laboratory Method Detection Limit but below the Reporting Limit.
- <= Analyte not detected at or above given Method Detection Limit
- -= Not analyzed.
- -- = Criterion is less stringent than other SLs or no regulatory criterion.
- ESL = Environmental Screening Levels (SFBRWQCB, 2019).

Table 3. Title 22 Metals in Soil

1020 North La Brea Avenue, Los Angeles, California 90038

	Sample Depth	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Coball	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Boring ID	(feet)	Sampled								milligrams	per kilogram	(mg/kg)							
B1-5	5	3/11/2022	2.1 J	2.2	98	0.27 J	0.32 J	53	21	27	6.4	< 0.044	<0.58	44	< 0.39	<0.16	1.4 J	60	60
B4-5	5	3/11/2022	2.3 J	2.4	110	< 0.12	0.31 J	56	20	25	6.6	<0.040	<0.65	44	< 0.44	<0.18	1.5 J	66	53
ESL - Construction	n Worker Exp	oosure	50²	2.0 ³	3,000²	1801	1101	-	491	14,000²	2,700	442	1,700²	1,8001	1,700²	1,800²	3.5 ²	470²	110,000²
ESL - Commercia	I/Industrial S	ioil	160²	0.31 ³	220,000²	6,9001	4,0001	-	1,9001	47,000²	380 ⁴	190²	5,800²	64,000¹	5,800°	5,800²	12²	5,800²	350,000²
ΠLC			500	500	10,000	75	100	2,500	8,000	2,500	1000	20	3,500	2,000	100	500	700	2400	5,000
Run STLC if total e	exceeds:		150	50	1,000	7.5	10	50	800	250	50	2	3,500	200	10	50	70	240	2,500
Run TCLP if total	exceeds:		-	100	2,000	-	20	100	-	-	100	4	-	-	20	100	-	1	-

Footnotes:

Carcinogenic Target Risk = 1E-06; * Noncancer Child Hazard Index = 1; * Assenic background level is 12 mg/kg (DTSC, 2008); * Carcinogenic Target Risk = 1E-06. DTSC SL for residential noncarcinogenic endpoint is 80 mg/kg (DTSC, 2020)

Notes:

Bold = Analyte detected above the Reporting Limit.

J = Analyte detected above the laboratory Method Detection Limit but below the Reporting Limit.

<= Analyte not detected at or above given Method Detection Limit.

-- = Criterion is less stringent than other SLs or no regulatory criterion.

ESL = Environmental Screening Levels (SFBRWQCB, 2019).

STLC = Soluable Threshold Concentration Limit

TCLP = Toxicity Characteristic Leachign Procedure

TTLC = Total Threshold Limit Concentration

Appendix A Health and Safety Plan

CIM GROUP

4700 Wilshire Boulevard Los Angeles, California 90010

Health and Safety Plan

March 10, 2022

Citadel Project Number 0765.1347.0

Commercial Property 1020 North La Brea Avenue West Hollywood, California 90038

www.CitadelEHS.com

Table of Contents

1.0 SITE DESCRIPTION	1
2.0 BACKGROUND	1
3.0 SAFETY POLICY	2
4.0 WORK DESCRIPTION	2
5.0 KEY PROJECT PERSONNEL AND RESPONSIBILITIES	3
PROJECT MANAGER	3
SITE SAFETY OFFICER/PROJECT MONITOR	3
SUBCONTRACTOR PERSONNEL	4
6.0 SITE CONTROL MEASURES	4
7.0 STANDARD OPERATING PROCEDURES	4
GENERAL SAFETY	4
COMMUNICATION PROCEDURES	4
FIELD VEHICLES	5
MANUAL LIFTING	5
HEAT EXPOSURE	5
COVID-19 FIELD WORK PREVENTION GUIDELINES	6
8.0 EXPOSURE MONITORING	7
ACTION LEVELS AND EXPOSURE LIMITS	7
9.0 PERSONAL PROTECTIVE EQUIPMENT	
10.0 DECONTAMINATION PROCEDURES	8
11.0 EMERGENCY PROCEDURES	g
12.0 SIGNATURES	12
SIGNATURE PAGE	13

1.0 SITE DESCRIPTION

Citadel EHS (Citadel) has prepared this Health and Safety Plan (HASP) for use during soil boring and soil vapor sampling activities to be conducted at the property located at 1020 North La Brea Avenue, in the City of West Hollywood, California (Site). Activities conducted under Citadel's direction at the Site will be in compliance with applicable Occupational Safety and Health Administration (OSHA) regulations, particularly those in Title 8 California Code of Regulations (CCR) 5192, and other applicable federal, state, and local laws, regulations, and statutes. A copy of this HASP will be kept onsite during scheduled field activities.

2.0 BACKGROUND

The Site consists of a slab-on-grade single-story commercial building on 0.166 acres of land. Citadel understands from the Client that the Site will be redeveloped which will include the demolition of the existing structure.

A review of historical sources showed that the Site was undeveloped as of 1894 until the Site was occupied as a used car lot and liquor store by 1942. The current commercial/warehouse structure was developed in 1947. Historic occupancies of the current Site building include electronic store warehouse; woodworking store; cabinet shop; salon; adult entertainment store; offices; scenic background shop; production studios; print shop; and antique and furniture stores. Historic occupancies including a used car lot, cabinet making, studio production and backdrop shop, and a print shop indicate the historic storage and use of chemicals and/or petroleum hydrocarbons.

Citadel completed a Phase I Environmental Site Assessment (Phase I) in February 2022 and identified the following recognized environmental conditions (RECs):

- ➤ Historic occupancies including a used car lot, cabinet making, studio production and backdrop shop, and a print shop indicate the historic storage and use of chemicals and/or petroleum hydrocarbons represent a REC.
- > The adjoining property north of the Site was identified on the South Coast Air Quality Management District's Facility Information Detail database with a spray paint booth using solvents. This property has also been occupied as an auto service shop since at least 1975. Properties further north included a service station, auto repair shop, and a photo chemical laboratory. The proximity to the Site represents RECs.
- > The adjoining properties east of the Site have historically been occupied by machine shops and plastic manufacturers. An area of oil storage was depicted in the 1950 Sanborn Map northeast of the Site. A nearby property east of Sycamore Avenue was listed as a photo lab and a generator of photochemicals/photoprocessing waste between 1992 and 1998. The proximity to the Site represents RECs.
- > The adjoining property south of the Site, CEMEX, was identified on the historical UST databases. The long-term storage of hazardous materials including two USTs and the proximity to the Site represents a REC.
- Properties west of the Site (and North La Brea Avenue) were historically occupied by various manufacturers, machine shops, a car wash, and a large gasoline storage tank and pump house. While the properties west of the Site have been redeveloped with a large shopping center, a total of seven open case Cleanup Program Sites are identified with the historical addresses of the adjacent properties. The open cases and the proximity to the Site represent a REC.

A nearby property, located approximately 321 feet northeast of the Site, was occupied as a cleaners and dyers in 1929, clothes pressers and cleaners from 1933 to 1937, and a dry cleaning plant from 1950 to 1975. Due to the potential solvent usage and proximity to the Site, a vapor encroachment condition (VEC) cannot be ruled out and represents a REC.

The contractors conducting the work will be responsible for preparing their own HASPs and for operating in accordance with the most current Occupational Safety and Health Administration (OSHA) regulations, including 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response and 29 CFR 1926, Construction Industry Standards as well as other applicable Federal, State and local laws and regulations.

3.0 SAFETY POLICY

Safety will be given primary importance in the planning and operation of this project. The safety policy shall strictly adhere to current EPA and OSHA standards, and local government agency requirements having authority over the project as regards to Client employees, as well as to public safety. Some of the applicable health and safety standards are listed below:

- 40 Code of Federal Regulations Part 261, Identification and Listing of Hazardous Waste;
- Health and Safety Code, Division 20, Chapter 6.5, California Hazardous Waste Control Act;
- Title 8, California Code of Regulations, Section 1510, Safety Instruction for Employees;
- Title 8, California Code of Regulations, Section 3380, Personal Protective Equipment;
- Title 8, California Code of Regulations, Section 5144, Respiratory Protection;
- Title 8, California Code of Regulations, Section 5194, Hazard Communication; and
- Title 22, California Code of Regulations, Division 4.5, Environmental Health Standards for the Management of Hazardous Waste.

Each subcontracting firm will assume primary responsibility for the safety of their own work in regard to their employees and other persons. Subcontractors will assume the duty to comply with OSHA, and all other federal, state and local regulations.

The subcontractors work will be monitored by Client project managers for implementation of this HASP, while adhering to their own safety program. The Client will retain the authority and power to enforce this HASP during the progress of the work. Any deficiencies in safe work practices will be brought to the attention of the subcontractor firm's supervisor for immediate corrective action. If the subcontractor fails or refuses to take corrective action promptly, a stop work order shall be issued and the subcontractor or the subcontractor employee may be removed from the Site.

4.0 WORK DESCRIPTION

Citadel will advance four borings within the current structure using a limited access hydraulic push drill rig to a depth of approximately 15 feet below ground surface (bgs), or one foot above the shallow groundwater table. The boring locations will be directed to evaluate the subsurface air space for the presence of volatile organic compounds (VOCs) and determine the potential risk of occupant exposure from these potential subsurface vapors.

Soil vapor probes will be installed at approximately five and 15 feet bgs in each of the borings. All soil vapor sampling probes will be installed in accordance with the California Environmental Protection Agency's (Cal EPA) Department of Toxic Substance Control (DTSC) – Active Soil Gas

Investigation ¹ and Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air². Soil vapor probe tips will be placed within a sand pack at the proposed sampling depths. Approximately six inches of dry bentonite chips will be placed over the sand pack, followed by placement of hydrated bentonite. Gas tight fittings will be placed at the end of the probes at the surface.

Following installation of the probes, the subsurface will be allowed to equilibrate back to representative conditions for a minimum of two hours before collecting soil vapor samples. Soil vapor samples will be collected from each vapor probe by a qualified laboratory technician following the procedure of DTSC's Active Soil Gas Advisory. Prior to the collection of samples, the probes, fittings and tubing will be tested for leaks and purged at least three soil pore volumes (volumes of tubing, sand pack and annular bentonite). Samples will be collected at a sampling rate of between 100 and 200 milliliters per minute (mL/min). At the completion of sample collection, the vapor probes and tubing will be removed, the borings will be backfilled with a bentonite slurry, and the concrete surface repaired to match the existing surface.

5.0 KEY PROJECT PERSONNEL AND RESPONSIBILITIES

Project Manager Scott Grasse (Citadel)
Site Safety Officer (SSO)/Project Monitor Tim Lambert (Citadel)
Subcontractor Choice Drilling

PROJECT MANAGER

The Project Manager has the ultimate responsibility for the health and safety of personnel at the Site. The Project Manager is responsible for:

- Ensuring that project personnel review and understand the requirements of this HASP;
- Keeping on-site personnel informed of the expected hazards and appropriate protective measures at the Site; and
- Providing resources necessary for maintaining a safe and health work environment.

SITE SAFETY OFFICER/PROJECT MONITOR

The SSO is responsible for enforcing the requirements of this HASP once site work begins. The SSO has the authority to immediately correct situations where noncompliance with this HASP is noted and to immediately stop work in cases where an immediate danger to site workers or the environment is perceived. Responsibilities of the SSO also include:

- Obtaining and distributing PPE and air monitoring equipment necessary for this project;
- Limiting access at the Site to authorized personnel;
- Communicating unusual or unforeseen conditions at the Site to the Project Manager;
- Supervising and monitoring the safety performance of site personnel to evaluate the effectiveness of health and safety procedures and correct deficiencies;
- Conducting daily tailgate safety meetings before each day's activities begin; and

0765.1347.0_HASP

-

¹ Advisory Active Soil Gas Investigations, California Environmental Protection Agency, Department of Toxic Substance Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, July 2015.

² Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, Department of Toxic Substance Control, California Environmental Protection Agency, October 2011.

 Conducting a site safety inspection prior to the commencement of each day's field activities.

SUBCONTRACTOR PERSONNEL

Subcontractor personnel are expected to comply with the minimum requirements specified in this HASP. Failure to do so may result in the dismissal of the subcontractor or any of the subcontractor's workers from the job site. Subcontractors may employ health and safety procedures that afford them a greater measure of personal protection than those specified in this plan as long as they do not pose additional hazards to themselves, the environment, or others working in the area.

6.0 SITE CONTROL MEASURES

The SSO or Project Manager has been designated to coordinate access and security on site. The Client is responsible for general Site safety and each on-Site contractor must comply with their site-specific safety plan.

7.0 STANDARD OPERATING PROCEDURES

GENERAL SAFETY

- Maintain good housekeeping at all times in all project work areas.
- Check the work area to determine what problems or hazards may exist.
- Designate specific areas for the proper storage of materials.
- Store tools, equipment, materials, and supplies in an orderly manner.
- Provide containers for collecting trash and other debris.
- Clean up all spills quickly.
- Report unsafe conditions or unsafe acts to your supervisor immediately.
- Report all occupational illnesses, injuries, and vehicle accidents.
- Do not wear loose clothing, wristwatches, and other loose accessories when within arm's reach of moving machinery.
- Emergency exits and evacuation areas should be clearly marked during work activities.
- Personnel fall protection is required when climbing to perform maintenance six feet or higher above ground.
- Inspect hand tools and use proper PPE.
- Ensure proper grounding and guarding of equipment.
- Keep hands and fingers out of pinch points.
- Use good ergonomic posturing when working with heavy items.

COMMUNICATION PROCEDURES

Due to the close proximity of all field crew members, the necessity for radio communication is not necessary.

The following standard hand signals will be used:

Hand drawn across throat	Cease operation immediately
Hand gripping throat	Out of air, cannot breathe
Grip partner's wrist or both hands around waist	
Hands on top of head	Need assistance
Thumbs up	

FIELD VEHICLES

- Equip vehicles with emergency supplies and equipment.
- Maintain both a first aid kit and fire extinguisher in the field vehicle at all times.
- Utilize a rotary beacon on vehicle if working adjacent to active roadway.
- Always wear seatbelt while operating vehicle.
- Tie down loose items.

MANUAL LIFTING

- Personnel shall seek assistance when performing manual lifting tasks that appear beyond their physical capabilities.
- Assess the situation before lifting, ensure good lifting and body positioning practices, and ensure good carrying and setting down practices.

HEAT EXPOSURE

- Limit exposure to the sun or take extra precautions when the UV index rating is high.
- Take lunch and breaks in shaded areas.
- Create shade by using umbrellas, tents, and canopies.
- Wear proper clothing: long sleeved shirts with collars, long pants, and UV-protective sunglasses or safety glasses.
- Apply sunscreen generously to all exposed skin surfaces at least 20 minutes before exposure. Re-apply sunscreen at least every 2 hours, and more frequently when sweating or performing activities where sunscreen may be wiped off.
- Communicate any concerns regarding heat stress to a supervisor.
- Keep hydrated throughout the day (about 4 cups per hour).
- OHSA's Heat Index:

Heat Index	Risk Level	Protective Measures					
Less than 91°F	Lower (Caution)	Basic heat safety and planning					
91°F to 103°F	Moderate	Implement precautions and heighten awareness					
103°F to 115°F	High	Additional precautions to protect workers					
Greater than 115°F		Triggers even more aggressive protective measures					

<u>Utilities (Under Ground and Above Ground):</u> Low Hazard. All boring locations will be hand drilled and stop work will be enforced if any utilities are encountered.

<u>Biological Hazards:</u> Low to Medium Hazard. Beware of spiders, insects and other possible animals.

<u>Site Instability:</u> Low to Medium Hazard. The Site will be inspected prior to equipment placement and closely monitored. Any settling of the equipment will cause the work to stop immediately.

Equipment Refueling: Low Hazard. Equipment shall not be refueled with the engine running. Cigarettes, open flames, or other ignition sources are not allowed within 50 feet of the fueling location.

Personnel Injury: Upon notification of an injury, the Project Field Leader should evaluate the nature of

the injury, and the affected person should be decontaminated to the extent possible prior to movement. The Project Field Leader shall initiate the appropriate first aid, and contact should be made for an ambulance and with the designated medical facility (if required).

<u>Fire/Explosion</u>: The fire department shall be alerted, and all personnel moved to a safe distance from the involved area.

<u>Other Equipment Failure</u>: If any other equipment on site fails to operate properly, the Project Team Leader shall be notified and then determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of the Work Plan tasks, work will cease until the situation is evaluated and appropriate actions taken.

COVID-19 FIELD WORK PREVENTION GUIDELINES

The following guidelines were prepared to prevent COVID-19 transmission while performing essential field work activities at the Site:

- 1. Stay at least 6 feet from others whenever possible. Avoid, or at least minimize close contact with others. Close contact means being within 6 feet of someone else for more than 15 minutes. By CDC guidelines, it doesn't matter if you are wearing face covering or not to be consider as being in close contact. Even with face covering, being close for extended periods of time, can greatly increase your risk of exposure. Keep your distance even when wearing face covering or PPE.
- 2. Wear face covering in public and anytime you will interface with others, regardless of time. Distance and face covering are likely the two best methods available to minimize exposures.
- 3. Wash your hands frequently and avoid touching your face, nose and mouth with unwashed hands. Also, don't be fooled into a false sense of security, believing gloves will fully protect you from COVID-19. Even when you wear gloves for protection against chemicals, you still need to wash your hands to minimize exposure.
 - Be careful when putting on and taking off PPE to be sure we do not contaminate our hands in the process and then touch our face, nose or mouth with unwashed hands. In doing so, we defeat the purpose of wearing PPE. Also, don't overdo the hand sanitizer choose to use soap and water as much as possible.
- 4. Clean and disinfect surfaces you come into contact and minimize touching commonly used surfaces whenever possible. Cleaning and disinfecting surfaces would not be as important if everyone were wearing face covering and washing their hands more regularly. But because individual behaviors vary quite a bit, we need to do what we can to protect ourselves and others by routinely cleaning and disinfecting the things we touch. How often will depend on how often you touch a surface or object and whether others are likely to come into contact with it as well. Cleaning and disinfecting helps reduce exposure, but don't rely on it as a replacement for distancing, face covering and hand washing.
- 5. **Monitor your own health** for COVID-19 symptoms and **stay at home**, away from others, if symptoms develop. The sooner you self-isolate, the more you lessen the chance of spreading it to others, regardless of whether it is COVID-19, the flu or some other contagion.

8.0 EXPOSURE MONITORING

The following substances are known or suspected to be on site. The primary hazards of each are identified as follow:

<u>Substances</u> <u>Concentration</u> <u>Primary Hazards</u>
Volatile Organic Compounds Various Ingestion, inhalation, skin

<u>VOCs:</u> VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Health effects include eye, nose, and throat irritation, headaches, loss of coordination, nausea, and damage to liver, kidney, and central nervous system. Some organics are known to cause cancer in humans.

The SSO will monitor on-site worker exposure to airborne contaminants during intrusive site activities. Measurements should be taken within the breathing zones of workers. A PID will be used to monitor changes in exposure to VOCs. The PID shall be calibrated daily in the field and undergo annual maintenance including calibration by a certified provider.

ACTION LEVELS AND EXPOSURE LIMITS

VOCs:

The OHSA Short Term Exposure Limit (STEL)³ for compounds commonly present in impacted soil is listed below; these concentrations must not be exceeded when working in areas where these hazardous compounds may be present:

VOCs: 100 ppm_v

If these concentrations are exceeded and cannot be controlled by local methods, an evacuation of the immediate area and possibly the Site will be ordered in accordance with the evacuation route in Section 11.0.

9.0 PERSONAL PROTECTIVE EQUIPMENT

The purpose of PPE is to protect employees from hazards and potential hazards they are likely to encounter during site activities. The amount and type of PPE used will be based on the nature of the hazard encountered or anticipated. Respiratory protection will be utilized when an airborne hazard has been identified using real-time air monitoring devices, or as a precautionary measure in areas designated by the SSO, elevating to level C. If this occurs, contractor personnel shall be respirator-approved.

Dermal protection, primarily in the form of chemical-resistant gloves and coveralls, will be worn whenever contact with chemically affected materials (e.g. soils, groundwater, sludge) is anticipated, without regard to the level of respiratory protection required.

Based on evaluation of potential hazards, the following levels of personal protection have been designated for the applicable work areas or tasks:

³ Defined as a 15-minute time-weighted average exposure which is not to be exceeded at any time during a workday even if the 8-hour time-weighted average is below the PEL.

Location Job Function Level of Protection

Controlled Area All Workers A B C (D) Other

Specific protective equipment for each level of protection is as follows:

Level A Level C

Fully-encapsulating suit Splash gear

SCBA Half-face canister respirator with H₂S/VOC cartridge

Disposable coveralls Mouth/nose canister respirator

Efficiency 100 (HEPA)

Level B Level D

Splash gear Hard hat SCBA Ear plugs

Neoprene or leather gloves - nitrile gloves

Safety vests and Glasses

Hard toe boots

NO CHANGES TO THE SPECIFIED LEVELS OF PROTECTION SHALL BE MADE WITHOUT THE APPROVAL OF THE SSO OR PROJECT MANAGER.

10.0 DECONTAMINATION PROCEDURES

Despite protective procedures, personnel may come in contact with potentially hazardous compounds while performing work tasks. If so, decontamination needs to take place using an Alconox or tri-sodium phosphate (TSP), followed by a rinse with clean water. Standard decontamination procedure for levels C and D are as follows:

- Equipment drop
- Boot cover and outer glove wash and rinse
- Boot cover and out glove removal
- Suit wash and rinse
- Suit removal
- Safety boot wash and rinse
- Inner glove wash and rinse
- Respirator removal
- Inner glove removal
- Field wash of hands and face

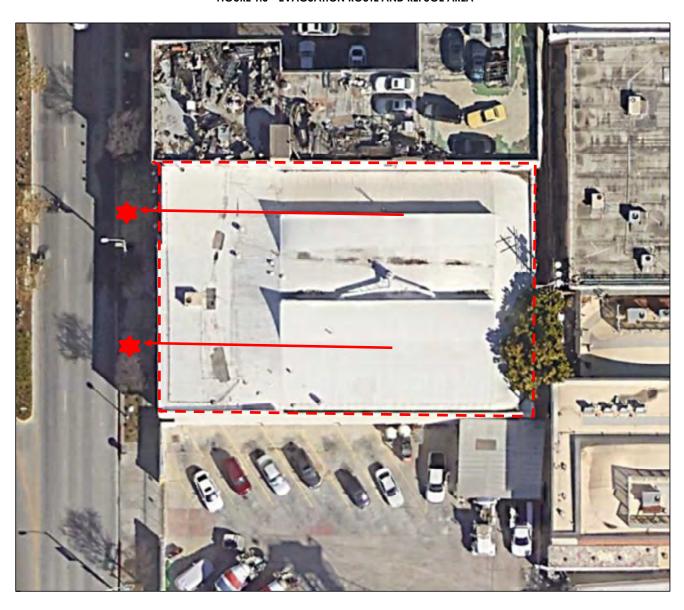
Workers should employ only applicable steps in accordance with level of PPE worn and extent of contamination present. The SSO shall maintain adequate quantities of clean water to be used for personal decontamination (i.e., field wash of hands and face) whenever a suitable washing facility is not located in the immediate vicinity of the work area. Disposable items will be disposed of in an appropriate container. Wash and rinse water generated from decontamination activities will be handled and disposed of properly. Non-disposable items may need to be sanitized before reuse. Each site worker is responsible for the maintenance, decontamination, and sanitizing of his/her own PPE.

Used equipment may be decontaminated as follows:

An Alconox or TSP and water solution will be used to wash the equipment.

The equipment will then be rinsed with clean water.

Each person must follow these procedures to reduce the potential for transferring chemically affected materials offsite.


11.0 EMERGENCY PROCEDURES

In the event of an emergency, site personnel will signal distress with three blasts of a horn (a vehicle horn will be sufficient), or other predetermined signal. Communication signals, such as hand signals, must be established where communication equipment is not feasible or in areas of loud noise.

The SSO will designate evacuation routes and refuge areas to be used in the event of an emergency. Site personnel will stay upwind from vapors or smoke and upgradient from spills. Workers should exit through the established decontamination areas wherever possible. If evacuation cannot be done through an established decontamination area, site personnel will go to the nearest safe location and remove contaminated clothing there. Personnel will assemble at the predetermined refuge following evacuation and decontamination. The SSO will count and identify site personnel to verify that all personnel have been evacuated safely. Please refer to Figure 1.0 for the evacuation route and refuge location.

FIGURE 1.0 - EVACUATION ROUTE AND REFUGE AREA

= Approximate Site Boundaries

= Refuge Area

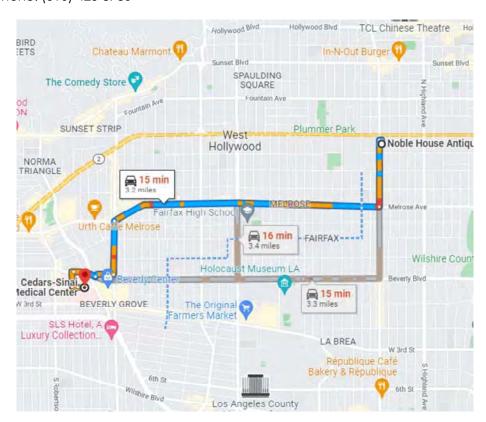

= Excavation Route

FIGURE 2.0 - DESIGNATED MEDICAL FACILITY

The designated medical facility is:

Cedars-Sinai Medical Center 8700 Beverly Boulevard #2900A Los Angeles, CA 90048 Telephone: (310) 423-8780

Directions:

Continue to N La Brea Ave Take Melrose Ave to N George Burns Rd Follow N George Burns Rd to Gracie Allen Dr 23s (154 ft) 11 min (3.0 mi) 2 min (0.2 mi)

Local ambulance service is available from:

Name: Local Paramedics

Phone: 911

First-aid equipment is available in the SSO's vehicle.

List of emergency phone numbers:

Agency/Facility	<u>Phone</u>
Police/Fire	911
Hospital	(310) 423-8780

12.0 SIGNATURES

This HASP has been prepared by:

Scott Grasse, PG, MSc
Project Geologist, Engineering and Environmental Sciences

This HASP has been reviewed by:

T. Michael Pendergrass, PG Senior Project Geologist, Engineering and Environmental Sciences

SIGNATURE PAGE

The following signatures indicate that this Health and Safety Plan (HASP) has been read and accepted by all site personnel.

NAME	COMPANY	SIGNATURE	DATE
Tim Lambert	Citadel EH	5 Tinfali	T 3-11-22
Som MILLER	Choice Dri	Vre Dan m	all 3-11-2
Sergio Guilla	Choice Dril	ling Jane Many	19/1-2 3-11-2
001910 001110	0 0 0		
	7		
8			
2 2			
	m - 2		
	-		

Appendix B USA Dig Alert Ticket From: <u>noreply@digalert.org</u>

Sent: Thursday, March 3, 2022 4:05 PM

To: Scott Grasse

Subject: DigAlert Confirmation for Ticket B220620912-00B

EMLCFM 03674B USAS 03/03/22 16:04:39 B220620912-00B NEW NORM POLY LREQ

Thank you for contacting Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert.

For your safety please excavate carefully around the marked utility lines.

For more information regarding DigAlert's web portals, mobile apps and text messaging, please visit www.digalert.org or text Services to DIGALT (344258).

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY TO THIS EMAIL.

This is not a certified copy of the ticket.

Ticket: B220620912 Rev: 00B Created: 03/03/22 16:04 User: SGRASSE Chan: WEB

Work Start: 03/07/22 17:01 Legal Start: 03/07/22 17:01 Expires: 03/31/22 23:59 Response required: Y Priority: 2

Excavator Information
Company: CHOICE DRILLING
Co Addr: 11029 SUTTER AVENUE

City: PACOIMA State: CA Zip: 91331
Created By: SCOTT GRASSE Language: ENGLISH
Office Phone: 562-547-3061
SMS/Cell: 562-547-3061

Office Email: SGRASSE@CITADELEHS.COM

Site Contact: SCOTT GRASSE

Site Phone: 562-547-3061 Site SMS/Cell: 562-547-3061

Site Email: sgrasse@citadelehs.com

Excavation Area

State: CA County: LOS ANGELES Place: HOLLYWOOD

Zip: 90038,90046

Location: Address/Street: 1020 N LA BREA AVE

: X/ST1: ROMAINE ST

:

: BORINGS ARE INSIDE BUILDING >15 FEET FROM SIDEWALK

: ** DO NOT CONTACT STORE OWNER **

Delineated Method: CHALK,OTHER

Work Type: FOUR VERTICAL BORINGS INSIDE THE BUILDING

Work For : CITADEL

Permit: Job/Work order: 0765.1347.0 1 Year: N Boring: Y Street/Sidewalk: N Vacuum: N Explosives: N

Lat/Long

Center Generated (NAD83): 34.090211/-118.344391 34.090214/-118.342935 : 34.089139/-118.344389 34.089142/-118.342933

Excavator Provided:

Map link:

https://newtin.digalert.org/newtinweb/map_tkt.nap?TRG=1DgKfLkBmAeEbHh-5

Members:

ATTDSOUTH AT&T DISTRIBUTION - PHONE ATT DAMAGE PREVENTION HO 510-645-2929 CITYLASTLI C/OF LA- ST LITE FRONT OFFICE STAFF 323-913-4744 EXTENET EXTENET SYSTEMS - TEL, FIB OPT

EXTENET NETWORK OPERATIO 866-892-5327

LACOTS LA CO PW RD DEPT - TRAF, ST LI	Т	
	PEDRO CRUZ	626-458-1704
LAWP3 LADWP - WATER	LOCATING OFFICE	213-367-6428
MCISOCAL MCI (VERIZON BUSINESS) FIBE	R	
	FIBER SECURITY DEPT	800-624-9675
METFIBNET ZAYO FNA ABOVENET - FIBER	STAKE CENTER LOCATING	801-364-1063
SCE1013 SCE TRANSMISSION	CHRIS FETHKE	310-961-0353
SCG32J SOCALGAS DISTRIBUTION HOLLYWO	0	
	LEAD DISPATCHER	800-427-8894
UCHTRW_N1 UTIL/SPECTRUM ARIZ CIR - C	ATV	
	SPECTRUM DAMAGE ONLY	844-780-6054
UCHTRW_N6 UTIL/SPECTRUM VAN NUYS -	CATV	
	SPECTRUM DAMAGE ONLY	844-780-6054
USCEMW UTILIQUEST 4 SCE - METRO WEST	SC EDISON PERSONNEL	800-611-1911
(c) Copyright 2017 Underground		California.
All rig	hts reserved.	

Appendix C Citadel Field Notes

CITADEL EHS PROJECT DOCUMENTATION

LIENT	CIM Group	PAGE	1 OF 2			
PROJECT NUMBER	0765.1347.0	CITADEL REPRESENTATIVE	Tim Lambert			
PROJECT NAME	Limited Phase II Site Assessment	CONTRACTOR	Kehoe Tosting & Engineering Inc. Cha			
PROJECT WORK AREA	Warehouse					
PROJECT LOCATION	1020 N La Brea Avenue	SUPERVISOR	Scott Grasse			
TIME		FIELD NOTES				
0750	Citadel arrives on :	site Meet with	1 owner, survey interior.			

TIME	FIELD NOTES	
0750	Citadel arrives on site Meet with	owner survey interior.
0800	Choice arrives. Discuss SOW, surve	
	expresses concerns with the do	
	get through the concrete slab. The	ria does not have
	a star bit or rotating feature (hoice reccomends
	using a core drill to get thro	ough the slab and
	has requested one from their	r company. Corer on row
0830	Begin setup at B3. Boring la	ocation was moved
	to the NW loading dock. Area	is concrete but seem
	weaker than the building slab.	
0855	Orilling begins at 83,	
0930	Rig is having a very difficult	time getting through
	the concrete.	0 0
0945	Roto-hammer is delivered to help bre	rak through concrete.
0959	Crew breaks through concrete at B	
1010	Concrete coring crew arrives on	
	are marked. Begin setup for coriv	19.
1055	B3 is complete. Probes set at	5 + 15 . Choice waits
	for coring to finish at Bl. 11-15'	
1110	Coring at B! complete. Choice he	gins setup at Bl.
1142	Drilling begins at B1.	
1158	Crew hits refusal at 12. Attempt	to push solid rod to
1115	gain depth.	1 .0 0
1213	1 1 7 7	yourd 12. Begin setting
1225	probes at 5+12	
TADEL REPRESENT	Crew begins setup at BZB4.	I 1
TOPE REI RESERVI	Tim Lambert	DAY: Friday
GNATURE:		DATE: 3-11-22
ised November 2019	1 m feetend	2 11

CITADEL EHS PROJECT DOCUMENTATION

Revised November 2019

LIENT	CIM Group	PAGE	2 OF 2
PROJECT NUMBER	0765.1347.0	CITADEL REPRESENTATIVE	Tim Lambert
PROJECT NAME	Limited Phase II Site Assessment	CONTRACTOR	Kehoe Testing & Engineering Inc. Cu
PROJECT WORK AREA PROJECT	Warehouse	SUPERVISOR	Scott Grasse
LOCATION	1020 N La Brea Avenue		A. W. N. S. V.
TIME		FIELD NOTES	
1300	Drilling begins at E	34.	
1335	T . H .	l at 8' after :	making an attempt
	with solid probe to		
1340	One B4 probe is s	et at 8'. Pro	ceed to setup at 82
1345	Begin drilling BZ. A		
1405		pt push with	
1415	Crew reaches 11' with	solid rod as u	vork stopped due to
	equipment failure.		
1430	Resume pushing wit	h solid probe	
1440	Ultimate refusal is	met at 12.	
1445	B2 probes set at 5	+ 12'. Begin c	lean up. Begin sampling B
1515	Choice leaves site.		, , ,
1530	Begin sampling B1	probes.	
1605	Begin sampling B4	probes.	
140		probes	
1720	Sampling and pate	hing complet	te. Citadel off site.
	, 0		
ITADEL REPRESENTA	Tim Lambert		DAY: 3-11-22
ICNATURE:	(100)		DATE: Friday
SIGNATURE:	I in failet		triday

Appendix D Photographic Log

PHOTO LOG

PHOTO 1: Cement coring at boring location B1 (3/11/22).

PHOTO 2: Boring location B2 (3/11/22).

CIM GROUP

1020 North La Brea Avenue West Hollywood, California, 90038

Citadel Project No. 1134.1347.0

PHOTO LOG

PHOTO 3: Drilling operations at boring location B3 (3/11/22).

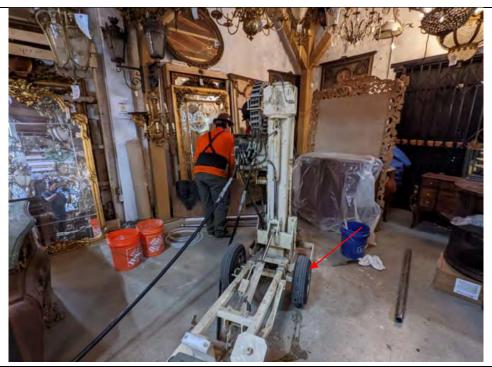


PHOTO 4: Drilling operations at boring location B4 (3/11/22).

CIM GROUP

1020 North La Brea Avenue West Hollywood, California , 90038

Citadel Project No. 1134.1347.0

PHOTO LOG

PHOTO 5: Split samples from Boring B1 (3/11/22).

NO PHOTO

CIM GROUP

1020 North La Brea Avenue West Hollywood, California , 90038

Citadel Project No. 1134.1347.0

Appendix E Boring Logs

Boring I.D.		Project No.		Project					
B1		0765.1347	.0	Limited Phas	se II Site				
Location						Logged By:		CITADE	FHS
	th La Brea					TL		assess - resolve - strength	ion
Drilling Meth		Driller				Checked B	y:		
Direct Pu		Choice Dri	lling	I		SG #2 Const	.1		
Drilling Date		Start Time		Completion Tim	ne	Backfilling #3 Sands	Total Depth (feet)	Depth to Groundwater (fee	et)
3/11/2022	<u>Z</u> Sample	1142 Sample	PID	1215 Munsell	1	#8 Bentonite	12	N/A	Graphic
Depth	-			1	11000		Cail Danasistias		-
(feet)	ID	Time	(ppm)	Color	USCS		Soil Description		Log
						3" Brick			
1						6" Concrete			
2									
3									
l ~									
4									
'									
5	B1 - 5	1147	0.0	10YR 2/1	CL	Clay Slightly Moist	, Friable, Slightly Plas	etic Black	
٥	D1-0	1147	0.0	1011 2/1	CL	Clay, Slightly Moist,	, i riable, Siightiy i las	silo, Diack	
6									
7									
8									
9									
10	B1-10	1152	0.0	10YR 4/4	CL	Silty Clay, Dry, Very	y Friable, Dark Ye <mark>l</mark> ow	ish Brown	
11									
12	B1-12	1158	0.0	10YR 4/3	CL	Clay, Dry, Very Har	d Brown		
12	D1-12	1130	0.0	10111 4/3		Exploration at 12'	u, Diowii		
						Probes set at 5', 12'	hao		
l				5	on vapor	riobes set at 5, 12	ugs		

Boring I.D.		Project No.		Project					
B2		0765.1347	.0	Limited Phas	se II Site /	Assessment			
Location						Logged By:		CITADE	FHS
1020 Nor	th La Brea					TL		assess - resolve - strengt	
Drilling Metl		Driller				Checked By	:		
Direct Pu	-	Choice Dri	lling	1		SG	ı		
Drilling Date		Start Time		Completion Tim	ne	Backfilling #3 Sands		Depth to Groundwater (fe	et)
3/11/2022		1345	PID	1440		#8 Bentonite	12'	N/A	Craphia
Depth	Sample	Sample		Munsell			0.110		Graphic
(feet)	ID	Time	(ppm)	Color	USCS		Soil Description		Log
1						6" Concrete			
3									
4									
5	B2 - 5	1350	0.0	10YR 4/2	ML	Clayey Silt, Dry, Fria	able, Dark Grayish B	rown	_
6									
7	B2 - 7	1402	1.0	10YR 2/1	CL	Silty Clay, Dry, Very	Hard, Black Solid Rod		
8						i usii witi			
9							 		
10							l I		
11									
12						,	i ▼		
						Exploration at 12'			
				S	oil Vapor	Probes set at 5', 12'	bgs		

Boring I.D.		Project No.		Project					
B3		0765.1347	.0	Limited Pha	se II Site				
Location						Logged By:		A CITAD	EL EHS
1020 Nor	th La Brea	Avenue				TL		assess - resolve - str	engthen
Drilling Meth		Driller				Checked B	y:		
Direct Pu		Choice Dri	lling	I		SG	T .		
Drilling Date		Start Time		Completion Tim	ne	Backfilling #3 Sands		Depth to Groundwater	(feet)
3/11/2022	Z Sample	0855 Sample	PID	1043 Munsell	1	#8 Bentonite	15'	N/A	Graphic
Depth (feet)				Color	USCS		Cail Dagarintis		
(feet)	ID	Time	(ppm)	Color	0363	011 0	Soil Description)N	Log
						6" Concrete			
1									
2									
3									
4									
						Silty Clay, Slightly N	Moist. Friable.		
5	B3-5	1003	1.3	10YR 3/2	CL	Slightly Plastic, Not		Gravish Brown	
		1000	110	101111072	- 02	1			
6									
ျ									
7									
'									
8									
9									
						Silty Clay,			
10	B3-10	1023	1.5	10YR 3/3	CL	Slightly Moist, Hard	, Not Plastic, Not S	ticky, Dark Brown	
11									
12									
4.0									
13									
14									
15	B3-15	1043	0.7	10YR 4/3	CL	Clay, Dry, Hard, Bro	own		
						Exploration at 15'			
				S	oil Vapor	Probes set at 5', 15'	bgs		

Boring I.D.		Project No.		Project						
B4		0765.1347	.0	Limited Phas	se II Site	Assessmen	nt			
Location							Logged By:		CITADE	FHS
	th La Brea						TL		assess - resolve - strongth	en CII
Drilling Meth	nod	Driller					Checked By	<i>r</i> :		
Direct Pus	sh	Choice Dri	lling							
Drilling Date	•	Start Time		Completion Tim	ne	Backfilling	#3 Sands	Total Depth (feet)	Depth to Groundwater (fee	et)
3/11/2022	2	1300		1335		#8 Bentor	nite	8'	N/A	
Depth	Sample	Sample	PID	Munsell					•	Graphic
(feet)	ID	Time	(ppm)	Color	USCS			Soil Description		Log
						6" Concret	te			
1										
1 1										
1										
2										
1										
3										
1										
4										
1						Clay, Sligh	ntly Moist.			
5	B4-5	1306	0.0	10YR 3/2	CL			c, Very Dark Grayish	Brown	
							,	, ., = ================================	**	
l "										
1	5.4.7	4004		40)(5.0/0	0.	Clay, Sligh	-			
7	B4 - 7	1324	0.0	10YR 3/2	CL	Very Hard	, Slightly I	Plastic, Very Dark Gr	ayish Brown	
8										
					Enc	d Exploratio	n at 8'			
				5	Soil Vapor	r Probes se	t at 5', 8' k	ogs		

Appendix F
Laboratory Reports and Chain of Custody
Documentation

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 459658

Report Level: II

Report Date: 03/16/2022

Analytical Report *prepared for:*

Scott Grasse Citadel EHS 2 Peters Canyon Road Irvine, CA 92606

Project: SV MONITORING - CES - 0765.1347.0 - 1020 N La Brea Ave., Los Angeles, CA

Authorized for release by:

Jim Lin, Service Center Manager

Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Scott Grasse Lab Job #: 459658

Citadel EHS Project No: SV MONITORING - CES

2 Peters Canyon Road 0765.1347.0 - 1020 N La Brea Ave., Location: Irvine, CA 92606

Los Angeles, CA

Date Received: 03/14/22

Sample ID	Lab I D	Collected	Matrix
B3-5	459658-001	03/11/22 10:03	Soil
B3-10	459658-002	03/11/22 10:23	Soil
B3-15	459658-003	03/11/22 10:43	Soil
B1-5	459658-004	03/11/22 11:47	Soil
B1-10	459658-005	03/11/22 11:52	Soil
B1-15	459658-006	03/11/22 11:58	Soil
B4-5	459658-007	03/11/22 13:06	Soil
B4-7	459658-008	03/11/22 13:24	Soil
B2-5	459658-009	03/11/22 13:50	Soil
B2-7	459658-010	03/11/22 14:02	Soil
B3-5V	459658-011	03/11/22 14:47	Air
B3-15V	459658-012	03/11/22 15:10	Air
B1-5V	459658-013	03/11/22 15:43	Air
B1-12V	459658-014	03/11/22 15:57	Air
B4-8V	459658-015	03/11/22 16:18	Air
B4-5V	459658-016	03/11/22 16:30	Air
B2-5V	459658-017	03/11/22 16:53	Air
B2-12V	459658-018	03/11/22 17:12	Air

Case Narrative

Citadel EHS 2 Peters Canyon Road Irvine, CA 92606 Scott Grasse Lab Job Number: 459658

Date Received: 03/14/22

This data package contains sample and QC results for eight air samples and two soil samples, requested for the above referenced project on 03/14/22. The samples were received intact.

TPH-Extractables by GC (EPA 8015M):

- High recovery was observed for diesel C10-C28 in the MSD for batch 285547; the parent sample was not a project sample, the LCS was within limits, the associated RPD was within limits, and the high recovery was not associated with any reported results.
- No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Volatile Organics in Air by MS (EPA TO-15):

- B3-15V (lab # 459658-012) was diluted due to high non-target analytes.
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for antimony in the MS/MSD of B1-5 (lab # 459658-004); the associated RPD was within limits.
- No other analytical problems were encountered.

Fig. 10 Fig.					the same	Chain ~ Custody Record	tody kec		Z ULU	rouna III	I UTIL ALOUND TIME (rush by advanced prace only)	Cen in the only
Furthalpy Analytical - Orange Page:							5965		Standard:		5 Day:	3 Day:
Enthalpy Analytical - Orange		ANAI	LYI				of		2 Day:	×	1 Day:	Custom TAT
Phone 744774-6900 SW = Swab		Enthalpy Analytics 931 W. Barkley Avenue, O	al - Orange range, CA 928	899	M	Matrix: / = Water DW = I PP = Pure Pro	A = Air S = Drinking W	= Soil/Solid ate SD = Se = Sea Wate	ediment 'r	Preservative $1 = Na_2S_2O_3 2 = HCI$ $4 = H_2SO_4 5 = NaOH$	Preservatives: 2O ₃ 2 = HCl 3 = HNO ₃ 4 5 = NaOH 6 = Other	Sample Receipt Temp:
Scott Grasse		Phone 714-771	-6900		S	- 1			= Other			(lab use only)
Scort Grasse	CO	STOMER INFORMATION	7	PR	OJECT INF	ORMATION			Analysis Requ	rest	Test Instru	Test Instructions / Comments
Sample ID Number: O765.1347.0 O765.1347.0 O7	Company:	Citadel EHS		Name:	Limited Ph	ase II					Report MORS	ks
Sample ID P.O. #: O765.1347.0	Report To:	Scott Grasse		Number:	0765.1347	0.			_			
Sample Date Sampling Sampling Sample Date Sample Date Date Time Date	Email:	sgrasse@citadelehs.co		P.O.#:	0765.1347	0:		AJT			_	
Sample ID Sampling Sampling Sampling Sample By: Tim Lambert Sample By: Tim Lambert Sampling No./Size Pres. CS CS CS CS CS CS CS CS CS CS CS CS CS CS CS	Address:	1725 Victory Blvd.		Address:	1020 N La	Brea Ave		. 7				
Sampled By: Tim Lambert Sampling Sam		Glendale, Ca. 91201										
Sample ID Sampled By: Tim Lambert Sample ID Date Time Matrix Container Pres. CG # 100	Phone:	818-246-2707		Global ID:				8 9£		-		
Sample ID Sampling Sampling Matrix Container Pres. CG H 10 10 10 10 10 10 10	Fax:			Sampled By:	Tim Lambe	ñ		Kang				
10 10 2 1 5 1 5 6 6 6 7 1 1 1 1 1 1 1 1 1		Sample ID	Sampling					IIn4 Ho			PIOH	
10 10 110 110 110 110 110 110 110 110 1		1	2-11-2	-	-	1,61	\top	IT .				
10 10 10 11 10 11 11 12 13 13 13 13 13 13 13 14 14 19 14 19 19 19 19 19 19 19 19 19 19		2 5		2 5	_	3/8/8/6	٨).				V >	
10 10 10 1153 1306 1306 1306 1330 1330 1330 1350 1403 1403 1403 1403 1403 1403 1403 1404		_) =	+	1087	+						۷ ;	
10 10 1154 15 15 15 158 1384 1384 1384 1403	25	~I '	-	104	+			1			×	
10 15 15 15 15 15 15 15 158 158 158 158 15		5		1147	+			×				
15 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		01									*	
1306		-15		1158							X	
1984 1984		75-		1306				×	ŕ			
-5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		-7		1324							X	
1402		-5		135(X	
By: Signature Print Name By: Arthur Cin SA By: Arthur Cin SA By: Stand SA Sand SA Sand SA Sand SA By: Stand SA Sand SA Sand SA		1-7	~	140%	<u> </u>	1	<u> </u>				Х	
By: In fault Tim Lambert C. S. S. S. S. Jim Lin S. S. S. S. Jim Lin S.			Signature		Р	rint Name		ŭ	ompany /	litle	De	Date / Time
By: Last Jim Lin St. By: Land G. B. Sand G. B.	¹ Relinquishe	IBy:	m hat	\	7	mbert		Cita	2/a/b	115	3-14-82	10959
By: Les Tim Lin & Si By: Lessy C E.	¹ Received By	the	N	1	Lin	י נוש		24	WH1		3/14/2	0259
By: Grand Gold By:	² Relinquishe	d By:			Jim 1	1.1M		77	· NH		3/14/25	
By: Land Genold E	² Received By	:: 	Ly.		lenn	5		RA			13/14/22	ShII
×	³ Relinquishe	IBy:	A PS		Jen	rg		CR	,		3/4/22	1283
From	³ Received By:	<u>ي</u>	X		True	^ئى،		ED.	1		3/14/15	1255

			֡								
				Lab No:		45961	75	Standard:		5 Day:	3 Day:
	ANA	LYT	ICA		%	of	B	2 Day:	×	1 Day:	Custom TAT
i	Enthalpy Analytical - Orange	al - Orange			Matrix:	A = Air	Matrix: A = Air S = Soil/Solid	-	Pr		Sample Receipt Temp:
	931 W. Barkley Avenue, Orange, CA 92868	Jrange, CA 928	98	<u> </u>	W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	Drinking oduct SI	ig Wate SD = Sed SEA = Sea Water	Sediment ter	$1 = Na_2 S_2 O_3 2 = HCI$ $4 = H, SO_4 5 = NaOH$	$_3$ 2 = HCl 3 = HNO ₃ 5 = NaOH 6 = Other	
	Phone 714-771-6900	1-6900		S	SW = Swab T = Tissue		WP = Wipe (0 = Other			(lab use only)
CO	CUSTOMER INFORMATION	N	PR(JECT INF	PROJECT INFORMATION			Analysis Request	luest	Test Instr	Test Instructions / Comments
Company:	Citadel EHS		Name:	Limited Phase II	ase II					Renort MDL >	4D7.
Report To:	Scott Grasse		Number:	0765.1347.0	0.				_		
Email:	sgrasse@citadelehs.com		P.O.#:	0765.1347.0	0.						
Address:	1725 Victory Blvd.		Address:	1020 N La Brea Ave	Brea Ave		8				
	Glendale, Ca. 91201			,			ISTO				
Phone:	818-246-2707		Global ID:				8 əş				
Fax:			Sampled By:	Tim Lambert	Ti.						
	Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	Pres.	VOCs 82			PID Reading	o x
1 3	B3-5V	3-11-22	1447	¥	1x12 Tedlar	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×			0	9
2	B3-15V		1510				×			o	
3	BSB1-5V		1543				×			2.	
4	B1-12V		1557				х			5.1	
5	B4-8V		# 16 18	8			×			4.7	
9	B4-5V		1630				×			81.3	
7	B2-5V		1653				X			3.7	
8	B2-12V	~	17/2		/	<u> </u>	\ \			95	
6											
10				-							
		Signature			Print Name			Company /	Title	ă	Date / Time
Relinquished By:	By:	Jach	1,	1 im	im Lamber	4	Ü	Citadel E	EHS	3/11/22	10959
¹ Received By:	A A	7		J.m	n Lin		S.A.	4 · WL/		3/14/22	8560
² Relinquished By:	By:			The	(10)		W	A · NH		12/41/E	
² Received By:	K	They		Hen	16		P. J.			2/H/8	5411
³ Relinquished By:	By:	198		n	√./G		V3			21/M/E	
³ Received By:		<i>y</i>			FOOM &		~	لمح		\2/ <i>\tallell \1</i>	7 7 7

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Citadel EHS	Project: Limited Phase II -	1020 N La	Brea A	ve
Date Received: 03/14/22	Sampler's Name Present:	✓Yes	No	
Section 2				
Sample(s) received in a cooler?	No (skip section 2)		e Temp (°C) (No Cooler)	:
Sample Temp (°C), One from each cooler: #1: 3.4			(NO COOLEI)	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan			for sample	s collected
the same day as sample receipt to have a higher temperatur				
Shipping Information:				
Section 3				-
Was the cooler packed with: lce lce Packs Paper None	Bubble Wrap Styro	foam		
Cooler Temp (°C): #1: <u>2.5</u> #2:	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?		V	110	11/74
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		V		
Are the tests required clearly indicated on the COC?		V		
Are custody seals present?			~	
If custody seals are present, were they intact?				~
Are all samples sealed in plastic bags? (Recommended for	Microbiology samples)		-	V
Did all samples arrive intact? If no, indicate in Section 4 be	low.	~		
Did all bottle labels agree with COC? (ID, dates and times)		~		
Were the samples collected in the correct containers for the	he required tests?	V		
Are the containers labeled with the correct preserva				~
Is there headspace in the VOA vials greater than 5-6 mm in				~
Was a sufficient amount of sample submitted for the requ	ested tests?	V		
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified?	Verbal PM Initials:	Date/Time		
The second secon	Email (email sent to/			
Project Manager's response:	(circui serie co)		<i>,</i>	
\cap				
1/	· ·			
Completed By:	Date: 3/14/2 -	_		
(Enthalpy Analytical, a subsidiary of Mo	ontrose Environmental Group ,Inc.			

931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal

Sample Acceptance Checklist - Rev 4, 8/8/2017

Scott Grasse Citadel EHS 2 Peters Canyon Road Irvine, CA 92606 Lab Job #: 459658 Project No: SV MONITORING - CES Location: 0765.1347.0 - 1020 N La Brea Ave.,

Los Angeles, CA

Date Received: 03/14/22

Sample ID: B1-5 Lab ID: 459658-004 Collected: 03/11/22 11:47

Matrix: Soil

459658-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	2.1	J	mg/Kg	2.9	1.6	0.98	285572	03/15/22	03/16/22	KLN
Arsenic	2.2		mg/Kg	0.98	0.66	0.98	285572	03/15/22	03/16/22	KLN
Barium	98		mg/Kg	0.98	0.098	0.98	285572	03/15/22	03/16/22	KLN
Beryllium	0.27	J	mg/Kg	0.49	0.11	0.98	285572	03/15/22	03/16/22	KLN
Cadmium	0.32	J	mg/Kg	0.49	0.074	0.98	285572	03/15/22	03/16/22	KLN
Chromium	53		mg/Kg	0.98	0.21	0.98	285572	03/15/22	03/16/22	KLN
Cobalt	21		mg/Kg	0.49	0.067	0.98	285572	03/15/22	03/16/22	KLN
Copper	27		mg/Kg	0.98	0.59	0.98	285572	03/15/22	03/16/22	KLN
Lead	6.4		mg/Kg	0.98	0.82	0.98	285572	03/15/22	03/16/22	KLN
Molybdenum	ND		mg/Kg	0.98	0.58	0.98	285572	03/15/22	03/16/22	KLN
Nickel	44		mg/Kg	0.98	0.25	0.98	285572	03/15/22	03/16/22	KLN
Selenium	ND		mg/Kg	2.9	0.39	0.98	285572	03/15/22	03/16/22	KLN
Silver	ND		mg/Kg	0.49	0.16	0.98	285572	03/15/22	03/16/22	KLN
Thallium	1.4	J	mg/Kg	2.9	0.57	0.98	285572	03/15/22	03/16/22	KLN
Vanadium	60		mg/Kg	0.98	0.42	0.98	285572	03/15/22	03/16/22	KLN
Zinc	60		mg/Kg	4.9	0.74	0.98	285572	03/15/22	03/16/22	KLN
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.16	0.044	1.1	285602	03/15/22	03/16/22	SBW
Method: EPA 8015M Prep Method: EPA 3580										
GRO C8-C10	ND		mg/Kg	10	1.3	1	285547	03/14/22	03/15/22	MES
DRO C10-C28	2.1	J	mg/Kg	10	1.3	1	285547	03/14/22	03/15/22	MES
ORO C28-C44	2.4	J	mg/Kg	20	1.3	1	285547	03/14/22	03/15/22	MES
Surrogates				Limits						
n-Triacontane	96%		%REC	70-130		1	285547	03/14/22	03/15/22	MES
Method: EPA 8260B Prep Method: EPA 5030B										
3-Chloropropene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Freon 12	ND		ug/Kg	5.0	1.8	1	285548	03/15/22	03/15/22	TCN
Chloromethane	ND		ug/Kg	5.0	1.6	1	285548	03/15/22	03/15/22	TCN
Vinyl Chloride	ND		ug/Kg	5.0	1.6	1	285548	03/15/22	03/15/22	TCN
Bromomethane	ND		ug/Kg	5.0	1.4	1	285548	03/15/22	03/15/22	TCN
Diditionicularie	—									

	H	llialy	SIS NE	SuitS	101 4	790:	00			
459658-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Trichlorofluoromethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Acetone	ND		ug/Kg	100	25	1	285548	03/15/22	03/15/22	TCN
Freon 113	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloroethene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
Methylene Chloride	ND		ug/Kg	5.0	0.7	1	285548	03/15/22	03/15/22	TCN
MTBE	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloroethane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
2-Butanone	ND		ug/Kg	100	3.0	1	285548	03/15/22	03/15/22	TCN
cis-1,2-Dichloroethene	ND	-	ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
2,2-Dichloropropane	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
Chloroform	ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
Bromochloromethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,1,1-Trichloroethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloropropene	ND		ug/Kg	5.0	1.2	<u>·</u> 1	285548	03/15/22	03/15/22	TCN
Carbon Tetrachloride	ND	:	ug/Kg	5.0	0.6	<u>·</u>	285548	03/15/22	03/15/22	TCN
1,2-Dichloroethane	ND		ug/Kg	5.0	1.1	<u>·</u> 1	285548	03/15/22	03/15/22	TCN
Benzene	ND		ug/Kg ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Trichloroethene	ND		ug/Kg ug/Kg	5.0	0.8	<u>·</u> 1	285548	03/15/22	03/15/22	TCN
1,2-Dichloropropane	ND		ug/Kg ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
Bromodichloromethane	ND		ug/Kg ug/Kg	5.0	0.8	<u>·</u> 1	285548	03/15/22	03/15/22	TCN
Dibromomethane	ND		ug/Kg ug/Kg	5.0	0.8	<u>'</u>	285548	03/15/22	03/15/22	TCN
4-Methyl-2-Pentanone	ND		ug/Kg ug/Kg	5.0	3.1	<u>'</u>	285548	03/15/22	03/15/22	TCN
cis-1,3-Dichloropropene	ND	:	ug/Kg ug/Kg	5.0	1.0	<u>'</u>	285548	03/15/22	03/15/22	TCN
Toluene	ND		ug/Kg ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
trans-1,3-Dichloropropene	ND		ug/Kg ug/Kg	5.0	0.8	<u>'</u>	285548	03/15/22	03/15/22	TCN
1,1,2-Trichloroethane	ND ND		ug/Kg ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
	ND				1.1	1		03/15/22	03/15/22	TCN
1,3-Dichloropropane Tetrachloroethene	ND		ug/Kg	5.0			285548			
		-	ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN TCN
Dibromochloromethane	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	
1,2-Dibromoethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Chlorobenzene	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Ethylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
m,p-Xylenes	ND		ug/Kg	10	1.9	1	285548	03/15/22	03/15/22	TCN
o-Xylene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
Styrene	ND		ug/Kg	5.0	1.4	1	285548	03/15/22	03/15/22	TCN
Bromoform	ND	:	ug/Kg	5.0	0.5	1	285548	03/15/22	03/15/22	TCN
Isopropylbenzene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Propylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Bromobenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
2-Chlorotoluene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
4-Chlorotoluene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN

			0.0	0000						
459658-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
tert-Butylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
sec-Butylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
n-Butylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,2-Dichlorobenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	0.7	1	285548	03/15/22	03/15/22	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
Hexachlorobutadiene	ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
Naphthalene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
cis-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	8.0	1	285548	03/15/22	03/15/22	TCN
trans-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
Xylene (total)	ND		ug/Kg	5.0		1	285548	03/15/22	03/15/22	TCN
Surrogates				Limits						
Dibromofluoromethane	99%		%REC	70-145		1	285548	03/15/22	03/15/22	TCN
1,2-Dichloroethane-d4	95%		%REC	70-145		1	285548	03/15/22	03/15/22	TCN
Toluene-d8	106%		%REC	70-145		1	285548	03/15/22	03/15/22	TCN
Bromofluorobenzene	94%		%REC	70-145		1	285548	03/15/22	03/15/22	TCN
				-						

Sample ID: B4-5 Lab ID: 459658-007 Collected: 03/11/22 13:06

Matrix: Soil

459658-007 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	2.3	J	mg/Kg	3.3	1.8	1.1	285572	03/15/22	03/16/22	KLN
Arsenic	2.4		mg/Kg	1.1	0.74	1.1	285572	03/15/22	03/16/22	KLN
Barium	110		mg/Kg	1.1	0.11	1.1	285572	03/15/22	03/16/22	KLN
Beryllium	ND		mg/Kg	0.55	0.12	1.1	285572	03/15/22	03/16/22	KLN
Cadmium	0.31	J	mg/Kg	0.55	0.082	1.1	285572	03/15/22	03/16/22	KLN
Chromium	56		mg/Kg	1.1	0.23	1.1	285572	03/15/22	03/16/22	KLN
Cobalt	20		mg/Kg	0.55	0.075	1.1	285572	03/15/22	03/16/22	KLN
Copper	25		mg/Kg	1.1	0.66	1.1	285572	03/15/22	03/16/22	KLN
Lead	6.6		mg/Kg	1.1	0.92	1.1	285572	03/15/22	03/16/22	KLN
Molybdenum	ND		mg/Kg	1.1	0.65	1.1	285572	03/15/22	03/16/22	KLN
Nickel	44		mg/Kg	1.1	0.29	1.1	285572	03/15/22	03/16/22	KLN
Selenium	ND		mg/Kg	3.3	0.44	1.1	285572	03/15/22	03/16/22	KLN
Silver	ND		mg/Kg	0.55	0.18	1.1	285572	03/15/22	03/16/22	KLN
Thallium	1.5	J	mg/Kg	3.3	0.64	1.1	285572	03/15/22	03/16/22	KLN
Vanadium	66		mg/Kg	1.1	0.47	1.1	285572	03/15/22	03/16/22	KLN
Zinc	53		mg/Kg	5.5	0.82	1.1	285572	03/15/22	03/16/22	KLN
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.14	0.040	1	285602	03/15/22	03/16/22	SBW
Method: EPA 8015M Prep Method: EPA 3580										
GRO C8-C10	4.8	J	mg/Kg	10	1.3	1	285547	03/14/22	03/15/22	MES
DRO C10-C28	28		mg/Kg	10	1.3	1	285547	03/14/22	03/15/22	MES
ORO C28-C44	3.8	J	mg/Kg	20	1.3	1	285547	03/14/22	03/15/22	MES
Surrogates				Limits						
n-Triacontane	78%		%REC	70-130		1	285547	03/14/22	03/15/22	MES
Method: EPA 8260B Prep Method: EPA 5030B										
3-Chloropropene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Freon 12	ND		ug/Kg	5.0	1.8	1	285548	03/15/22	03/15/22	TCN
Chloromethane	ND		ug/Kg	5.0	1.6	1	285548	03/15/22	03/15/22	TCN
Vinyl Chloride	ND		ug/Kg	5.0	1.6	1	285548	03/15/22	03/15/22	TCN
Bromomethane	ND		ug/Kg	5.0	1.4	1	285548	03/15/22	03/15/22	TCN
Chloroethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Trichlorofluoromethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Acetone	ND		ug/Kg	100	25	1	285548	03/15/22	03/15/22	TCN
Freon 113	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloroethene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
Methylene Chloride	ND		ug/Kg	5.0	0.7	1	285548	03/15/22	03/15/22	TCN
•	ND		ug/Kg	5.0	1.0		285548	03/15/22	03/15/22	TCN

		_	sis Res	suits i	01 45	90	00			
459658-007 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1,1	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloroethane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
2-Butanone	ND		ug/Kg	100	3.0	1	285548	03/15/22	03/15/22	TCN
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
2,2-Dichloropropane	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
Chloroform	ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
Bromochloromethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,1,1-Trichloroethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,1-Dichloropropene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
Carbon Tetrachloride	ND		ug/Kg	5.0	0.6	1	285548	03/15/22	03/15/22	TCN
1,2-Dichloroethane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Benzene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Trichloroethene	19		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,2-Dichloropropane	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
Bromodichloromethane	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
Dibromomethane	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	3.1	1	285548	03/15/22	03/15/22	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
Toluene	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,3-Dichloropropane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Tetrachloroethene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Dibromochloromethane	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,2-Dibromoethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Chlorobenzene	ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
Ethylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
m,p-Xylenes	ND		ug/Kg	10	1.9	1	285548	03/15/22	03/15/22	TCN
o-Xylene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
Styrene	ND		ug/Kg	5.0	1.4	1	285548	03/15/22	03/15/22	TCN
Bromoform	ND		ug/Kg	5.0	0.5	1	285548	03/15/22	03/15/22	TCN
Isopropylbenzene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Propylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
Bromobenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
2-Chlorotoluene	ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
4-Chlorotoluene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
tert-Butylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
sec-Butylbenzene	ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.0	1.0	1	285548	03/15/22	03/15/22	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.0	0.9	1	285548	03/15/22	03/15/22	TCN
			<u>-</u>							

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.1	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	0.7	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.2	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	0.8	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0	1.3	1	285548	03/15/22	03/15/22	TCN
ND		ug/Kg	5.0		1	285548	03/15/22	03/15/22	TCN
			Limits						
102%	(%REC	70-145		1	285548	03/15/22	03/15/22	TCN
102%	(%REC	70-145		1	285548	03/15/22	03/15/22	TCN
103%	(%REC	70-145		1	285548	03/15/22	03/15/22	TCN
96%	(%REC	70-145		1	285548	03/15/22	03/15/22	TCN
	ND ND ND ND ND ND ND ND 102% 102%	ND N	ND ug/Kg ND wg/Kg ND ug/Kg ND wg/Kg ND wg/Kg <td>ND ug/Kg 5.0 ND ug/Kg 5.0 Limits 102% %REC 70-145 103% %REC 70-145</td> <td>ND ug/Kg 5.0 1.1 ND ug/Kg 5.0 0.7 ND ug/Kg 5.0 1.3 ND ug/Kg 5.0 1.2 ND ug/Kg 5.0 1.2 ND ug/Kg 5.0 0.8 ND ug/Kg 5.0 1.3 ND ug/Kg 7.0 1.4 102% %REC 70-145 70-145 103% %REC 70-145</td> <td>ND ug/Kg 5.0 1.1 1 ND ug/Kg 5.0 0.7 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1.2 1 ND ug/Kg 5.0 1.2 1 ND ug/Kg 5.0 0.8 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1 1 Limits 102% %REC 70-145 1 103% %REC 70-145 1</td> <td>ND ug/Kg 5.0 1.1 1 285548 ND ug/Kg 5.0 0.7 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.2 1 285548 ND ug/Kg 5.0 1.2 1 285548 ND ug/Kg 5.0 0.8 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1 285548 <tr< td=""><td>ND ug/Kg 5.0 1.1 1 285548 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND vg/Kg 5.0 1 285548 03/15/22 102%</td><td>ND ug/Kg 5.0 1.1 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 03/15/22 102% %REC 70-145</td></tr<></td>	ND ug/Kg 5.0 Limits 102% %REC 70-145 103% %REC 70-145	ND ug/Kg 5.0 1.1 ND ug/Kg 5.0 0.7 ND ug/Kg 5.0 1.3 ND ug/Kg 5.0 1.2 ND ug/Kg 5.0 1.2 ND ug/Kg 5.0 0.8 ND ug/Kg 5.0 1.3 ND ug/Kg 7.0 1.4 102% %REC 70-145 70-145 103% %REC 70-145	ND ug/Kg 5.0 1.1 1 ND ug/Kg 5.0 0.7 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1.2 1 ND ug/Kg 5.0 1.2 1 ND ug/Kg 5.0 0.8 1 ND ug/Kg 5.0 1.3 1 ND ug/Kg 5.0 1 1 Limits 102% %REC 70-145 1 103% %REC 70-145 1	ND ug/Kg 5.0 1.1 1 285548 ND ug/Kg 5.0 0.7 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.2 1 285548 ND ug/Kg 5.0 1.2 1 285548 ND ug/Kg 5.0 0.8 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1.3 1 285548 ND ug/Kg 5.0 1 285548 <tr< td=""><td>ND ug/Kg 5.0 1.1 1 285548 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND vg/Kg 5.0 1 285548 03/15/22 102%</td><td>ND ug/Kg 5.0 1.1 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 03/15/22 102% %REC 70-145</td></tr<>	ND ug/Kg 5.0 1.1 1 285548 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 ND vg/Kg 5.0 1 285548 03/15/22 102%	ND ug/Kg 5.0 1.1 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.7 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.2 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 0.8 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1.3 1 285548 03/15/22 03/15/22 ND ug/Kg 5.0 1 285548 03/15/22 03/15/22 102% %REC 70-145

Sample ID: B3-5V Lab ID: 459658-011 Collected: 03/11/22 14:47

Matrix: Air

459658-011 Analyte	Result	Qual Un	ts RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/	n3 2.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,1-Trichloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,1-Trichloroethane	ND	ug/	n3 1.9		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,2,2-Tetrachloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/	n3 2.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,2-Trichloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1,2-Trichloroethane	ND	ug/	n3 1.9		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1-Dichloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1-Dichloroethane	ND	ug/	n3 1.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1-Dichloroethene	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,1-Dichloroethene	ND	ug/	n3 1.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2,4-Trichlorobenzene	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2,4-Trichlorobenzene	ND	ug/	n3 2.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2,4-Trimethylbenzene	6.7	рр	ov 0.85		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2,4-Trimethylbenzene	33	ug/	n3 4.2		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dibromoethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dibromoethane	ND	ug/	n3 2.6		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichlorobenzene	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichlorobenzene	ND	ug/	n3 2.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichloroethane	ND	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichloroethane	ND	ug/	m3 1.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichloropropane	1.0	рр	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,2-Dichloropropane	4.8	ug/	m3 1.6		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,3,5-Trimethylbenzene	2.4	pp	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,3,5-Trimethylbenzene	12	ug/	n3 1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,3-Dichlorobenzene	ND	pp	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,3-Dichlorobenzene	ND	ug/	m3 2.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,4-Dichlorobenzene	0.82	pp	ov 0.34	,	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
1,4-Dichlorobenzene	4.9	ug/	n3 2.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
2-Butanone	28	pp	ov 1.7	,	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
2-Butanone	83	ug/	n3 5.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
2-Hexanone	1.6	pp	ov 0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
2-Hexanone	6.4	ug/	n3 1.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
4-Ethyltoluene	2.0	pp			1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
4-Ethyltoluene	9.9	ug/i			1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
4-Methyl-2-Pentanone	1.9	pp		-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
4-Methyl-2-Pentanone	7.9	ug/i		-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Acetone	110	pp			4.3	285488	03/15/22 02:02	03/15/22 02:02	ZNZ
Acetone	270	ug/i	-		4.3	285488	03/15/22 02:02	03/15/22 02:02	ZNZ
		~ 9 /							

		Allalys	is nesu	1115	IUI	40300	,0		
459658-011 Analyte	Result	Qual Units	RL I	MDL	DF	Batch	Prepared	Analyzed	Chemist
Benzene	32	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Benzene	100	ug/m3	1.1		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Benzyl chloride	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Benzyl chloride	ND	ug/m3	1.8		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Bromodichloromethane	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Bromodichloromethane	ND	ug/m3	2.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Bromoform	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Bromoform	ND	ug/m3	3.5	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	 ZNZ
Bromomethane	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Bromomethane	ND	ug/m3	1.3	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Carbon Disulfide	3.7	ppbv	1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Carbon Disulfide	11	ug/m3	5.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Carbon Tetrachloride	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Carbon Tetrachloride	ND	ug/m3	2.1	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chlorobenzene	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chlorobenzene	ND	ug/m3	1.6		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloroethane	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloroethane	ND	ug/m3	0.90	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloroform	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloroform	ND	ug/m3	1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloromethane	1.7		0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Chloromethane	3.5	ppbv ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	0.70		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
cis-1,2-Dichloroethene	ND	ppbv ug/m²	1.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
cis-1,3-Dichloropropene	ND	ppbv ppbv	1.5		1.7	285488		03/14/22 19:02	ZNZ
Dibromochloromethane	ND	ug/m3	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Dibromochloromethane	ND	ppbv						03/14/22 19:02	
		ug/m3	2.9		1.7	285488	03/14/22 19:02		ZNZ
Ethylbenzene	6.3	ppbv	0.34	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Ethylbenzene	27	ug/m3	1.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 113	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 113	ND	ug/m3	2.6		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 114	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 114	ND	ug/m3	2.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 12	0.54	ppbv	0.34	-	1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Freon 12	2.6	ug/m3	1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Hexachlorobutadiene	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Hexachlorobutadiene	ND	ug/m3	3.6		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Isopropanol (IPA)	15	ppbv	8.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Isopropanol (IPA)	36	ug/m3	21		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
m,p-Xylenes	24	ppbv	0.68		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
m,p-Xylenes	100	ug/m3	3.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
o-Xylene	8.5	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
o-Xylene	37	ug/m3	1.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Methylene Chloride	ND	ppbv	8.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Methylene Chloride	ND	ug/m3	30		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ

							_		
459658-011 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
MTBE	ND	ug/m3	1.2		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
n-Hexane	12	ppbv	0.85		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
n-Hexane	42	ug/m3	3.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Styrene	1.4	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Styrene	6.1	ug/m3	1.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Tetrachloroethene	1.2	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Tetrachloroethene	8.3	ug/m3	2.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Toluene	46	ppbv	1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Toluene	170	ug/m3	6.4		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	1.3		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	1.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Trichloroethene	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Trichloroethene	ND	ug/m3	1.8		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Trichlorofluoromethane	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Trichlorofluoromethane	ND	ug/m3	1.9		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Vinyl Acetate	ND	ppbv	1.7		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Vinyl Acetate	ND	ug/m3	6.0		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Vinyl Chloride	ND	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Vinyl Chloride	ND	ug/m3	0.87		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Xylene (total)	32	ppbv	0.34		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Xylene (total)	140	ug/m3	1.5		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ
Surrogates			Limits						
Bromofluorobenzene	118%	%REC	60-140		1.7	285488	03/14/22 19:02	03/14/22 19:02	ZNZ

Sample ID: B3-15V Lab ID: 459658-012 Collected: 03/11/22 15:10

Matrix: Air

459658-012 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	9.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,1-Trichloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	7.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	9.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,2-Trichloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	7.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1-Dichloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1-Dichloroethane	ND	ug/m3	5.8		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1-Dichloroethene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,1-Dichloroethene	ND	ug/m3	5.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	11		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2,4-Trimethylbenzene	5.3	ppbv	3.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2,4-Trimethylbenzene	26	ug/m3	18		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dibromoethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dibromoethane	ND	ug/m3	11		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichlorobenzene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	8.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichloroethane	ND	ug/m3	5.8		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichloropropane	1.5	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,2-Dichloropropane	6.8	ug/m3	6.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,3,5-Trimethylbenzene	1.9	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,3,5-Trimethylbenzene	9.5	ug/m3	7.1		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,3-Dichlorobenzene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	8.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,4-Dichlorobenzene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	8.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
2-Butanone	20	ppbv	7.2		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
2-Butanone	58	ug/m3	21		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
2-Hexanone	2.4	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
2-Hexanone	9.7	ug/m3	5.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
4-Ethyltoluene	1.7	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
4-Ethyltoluene	8.6	ug/m3	7.1	-	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
4-Methyl-2-Pentanone	2.5	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
4-Methyl-2-Pentanone	10	ug/m3	5.9		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Acetone	ND	ppbv	140		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Acetone	ND	ug/m3	340			285488	03/14/22 19:48	03/14/22 19:48	ZNZ
		- 30							

		Allalys	is nesi	นแอ	101	40300	,0		
459658-012 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Benzene	36	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Benzene	110	ug/m3	4.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Benzyl chloride	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Benzyl chloride	ND	ug/m3	7.5		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromodichloromethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromodichloromethane	ND	ug/m3	9.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromoform	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromoform	ND	ug/m3	15		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromomethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Bromomethane	ND	ug/m3	5.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Carbon Disulfide	9.9	ppbv	7.2		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Carbon Disulfide	31	ug/m3	22		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Carbon Tetrachloride	ND	ppbv	1.4		7.2		03/14/22 19:48	03/14/22 19:48	ZNZ
Carbon Tetrachloride	ND	ug/m3	9.1	-	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chlorobenzene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chlorobenzene	ND	ug/m3	6.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloroethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloroethane	ND	ug/m3	3.8		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloroform	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloroform	ND	ug/m3	7.0		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloromethane	2.4	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Chloromethane	4.9		3.0		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
cis-1,2-Dichloroethene	ND	ppbv	5.7		7.2	285488			ZNZ
· · · · · · · · · · · · · · · · · · ·	ND	ug/m3	1.4				03/14/22 19:48	03/14/22 19:48	ZNZ
cis-1,3-Dichloropropene		ppbv			7.2	285488	03/14/22 19:48		
cis-1,3-Dichloropropene	ND	ug/m3	6.5		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Dibromochloromethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Dibromochloromethane	ND	ug/m3	12		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Ethylbenzene	5.8	ppbv	1.4		7.2	-	03/14/22 19:48	03/14/22 19:48	ZNZ
Ethylbenzene	25	ug/m3	6.3			285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 113	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 113	ND	ug/m3	11		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 114	ND	ppbv	1.4	-	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 114	ND	ug/m3	10		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 12	ND	ppbv	1.4	-	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Freon 12	ND	ug/m3	7.1		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Hexachlorobutadiene	ND	ppbv	1.4		7.2		03/14/22 19:48	03/14/22 19:48	ZNZ
Hexachlorobutadiene	ND	ug/m3	15	_	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Isopropanol (IPA)	ND	ppbv	36		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Isopropanol (IPA)	ND	ug/m3	88		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
m,p-Xylenes	22	ppbv	2.9		7.2		03/14/22 19:48	03/14/22 19:48	ZNZ
m,p-Xylenes	95	ug/m3	13		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
o-Xylene	7.6	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
o-Xylene	33	ug/m3	6.3		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Methylene Chloride	ND	ppbv	36		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Methylene Chloride	ND	ug/m3	130	-	7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ

		J -					_		
459658-012 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
MTBE	ND	ug/m3	5.2		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
n-Hexane	26	ppbv	3.6		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
n-Hexane	90	ug/m3	13		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Styrene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Styrene	ND	ug/m3	6.1		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Tetrachloroethene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Tetrachloroethene	ND	ug/m3	9.8		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Toluene	48	ppbv	7.2		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Toluene	180	ug/m3	27		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	5.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	6.5		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Trichloroethene	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Trichloroethene	ND	ug/m3	7.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Trichlorofluoromethane	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Trichlorofluoromethane	ND	ug/m3	8.1		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Vinyl Acetate	ND	ppbv	7.2		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Vinyl Acetate	ND	ug/m3	25		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Vinyl Chloride	ND	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Vinyl Chloride	ND	ug/m3	3.7		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Xylene (total)	29	ppbv	1.4		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Xylene (total)	130	ug/m3	6.3		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ
Surrogates			Limits						
Bromofluorobenzene	118%	%REC	60-140		7.2	285488	03/14/22 19:48	03/14/22 19:48	ZNZ

Sample ID: B1-5V Lab ID: 459658-013 Collected: 03/11/22 15:43

Matrix: Air

459658-013 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	2.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,1-Trichloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	2.0		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,2-Trichloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	2.0		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1-Dichloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1-Dichloroethane	ND	ug/m3	1.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1-Dichloroethene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,1-Dichloroethene	ND	ug/m3	1.4		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	2.7		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2,4-Trimethylbenzene	3.7	ppbv	0.90		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2,4-Trimethylbenzene	18	ug/m3	4.4		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dibromoethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dibromoethane	ND	ug/m3	2.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichlorobenzene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	2.2		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichloroethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichloroethane	ND	ug/m3	1.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichloropropane	0.83	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,2-Dichloropropane	3.8	ug/m3	1.7		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,3,5-Trimethylbenzene	1.3	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,3,5-Trimethylbenzene	6.4	ug/m3	1.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,3-Dichlorobenzene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	2.2		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,4-Dichlorobenzene	0.64	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
1,4-Dichlorobenzene	3.9	ug/m3	2.2		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
2-Butanone	14	ppbv	1.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
2-Butanone	40	ug/m3	5.3		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
2-Hexanone	0.70	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
2-Hexanone	2.9	ug/m3	1.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
4-Ethyltoluene	1.1	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
4-Ethyltoluene	5.3	ug/m3	1.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
4-Methyl-2-Pentanone	0.68	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
4-Methyl-2-Pentanone	2.8	ug/m3	1.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Acetone	49	ppbv	36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Acetone	120	ug/m3	86		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
7,0010110									

		Allalys	is riesuris	101	7000	,0		
59658-013 Analyte	Result	Qual Units	RL MDL	DF	Batch	Prepared	Analyzed	Chemist
Benzene	6.3	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Benzene	20	ug/m3	1.2	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Benzyl chloride	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Benzyl chloride	ND	ug/m3	1.9	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromodichloromethane	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromodichloromethane	ND	ug/m3	2.4	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromoform	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromoform	ND	ug/m3	3.7	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromomethane	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Bromomethane	ND	ug/m3	1.4	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Carbon Disulfide	ND	ppbv	1.8	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Carbon Disulfide	ND	ug/m3	5.6	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Carbon Tetrachloride	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Carbon Tetrachloride	ND	ug/m3	2.3	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chlorobenzene	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chlorobenzene	ND	ug/m3	1.7	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chloroethane	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chloroethane	ND		0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chloroform	ND	ug/m3				-		ZNZ
	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chloroform		ug/m3	1.8	1.8	285488	03/15/22 02:54	03/15/22 02:54	
Chloromethane	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Chloromethane	ND	ug/m3	0.74	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
cis-1,2-Dichloroethene	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	1.4	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
cis-1,3-Dichloropropene	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	1.6	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Dibromochloromethane	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Dibromochloromethane	ND	ug/m3	3.1	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Ethylbenzene	2.6	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Ethylbenzene	11	ug/m3	1.6	1.8		03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 113	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 113	ND	ug/m3	2.8	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 114	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 114	ND	ug/m3	2.5	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 12	0.50	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Freon 12	2.5	ug/m3	1.8	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Hexachlorobutadiene	ND	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Hexachlorobutadiene	ND	ug/m3	3.8	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Isopropanol (IPA)	13	ppbv	9.0	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Isopropanol (IPA)	32	ug/m3	22	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
m,p-Xylenes	11	ppbv	0.72	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
m,p-Xylenes	46	ug/m3	3.1	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
o-Xylene	3.7	ppbv	0.36	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
o-Xylene	16	ug/m3	1.6	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Methylene Chloride	ND	ppbv	9.0	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Methylene Chloride	ND	ug/m3	31	1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ

							_		
459658-013 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
MTBE	ND	ug/m3	1.3		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
n-Hexane	2.2	ppbv	0.90		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
n-Hexane	7.8	ug/m3	3.2		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Styrene	0.76	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Styrene	3.2	ug/m3	1.5		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Tetrachloroethene	40	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Tetrachloroethene	270	ug/m3	2.4		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Toluene	18	ppbv	1.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Toluene	66	ug/m3	6.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	1.4		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	1.6		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Trichloroethene	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Trichloroethene	ND	ug/m3	1.9		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Trichlorofluoromethane	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Trichlorofluoromethane	ND	ug/m3	2.0		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Vinyl Acetate	ND	ppbv	1.8		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Vinyl Acetate	ND	ug/m3	6.3		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Vinyl Chloride	ND	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Vinyl Chloride	ND	ug/m3	0.92		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Xylene (total)	14	ppbv	0.36		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Xylene (total)	62	ug/m3	1.6		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ
Surrogates			Limits			_			
Bromofluorobenzene	119%	%REC	60-140		1.8	285488	03/15/22 02:54	03/15/22 02:54	ZNZ

Sample ID: B1-12V Lab ID: 459658-014 Collected: 03/11/22 15:57

Matrix: Air

459658-014 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	2.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,1-Trichloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	1.9		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,2-Trichloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	1.9		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1-Dichloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1-Dichloroethane	ND	ug/m3	1.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1-Dichloroethene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,1-Dichloroethene	ND	ug/m3	1.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	2.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2,4-Trimethylbenzene	6.6	ppbv	0.85		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2,4-Trimethylbenzene	32	ug/m3	4.2		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dibromoethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dibromoethane	ND	ug/m3	2.6		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichlorobenzene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	2.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichloroethane	ND	ug/m3	1.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichloropropane	0.79	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,2-Dichloropropane	3.6	ug/m3	1.6		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,3,5-Trimethylbenzene	2.0	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,3,5-Trimethylbenzene	9.6	ug/m3	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,3-Dichlorobenzene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	2.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,4-Dichlorobenzene	1.6	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
1,4-Dichlorobenzene	9.3	ug/m3	2.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
2-Butanone	11	ppbv	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
2-Butanone	32	ug/m3	5.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
2-Hexanone	1.5	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
2-Hexanone	6.2	ug/m3	1.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
4-Ethyltoluene	1.6	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
4-Ethyltoluene	8.1	ug/m3	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
4-Methyl-2-Pentanone	2.7	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
4-Methyl-2-Pentanone	11	ug/m3	1.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Acetone	48	ppbv	34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Acetone	110	ug/m3	81	-	1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ

		Allalys	is nesu	IIIO I	UI	40300	,0		
459658-014 Analyte	Result	Qual Units	RL N	MDL	DF	Batch	Prepared	Analyzed	Chemist
Benzene	27	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Benzene	86	ug/m3	1.1		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Benzyl chloride	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Benzyl chloride	ND	ug/m3	1.8		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromodichloromethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromodichloromethane	ND	ug/m3	2.3	-	1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromoform	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromoform	ND	ug/m3	3.5	-	1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromomethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Bromomethane	ND	ug/m3	1.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Carbon Disulfide	ND	ppbv	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Carbon Disulfide	ND	ug/m3	5.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Carbon Tetrachloride	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Carbon Tetrachloride	ND	ug/m3	2.1		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chlorobenzene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chlorobenzene	ND	ug/m3	1.6		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloroethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloroethane	ND	ug/m3	0.90		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloroform	ND		0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloroform	ND	ppbv	1.7						
		ug/m3			1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloromethane	1.0	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Chloromethane	2.1	ug/m3	0.70		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
cis-1,2-Dichloroethene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	1.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
cis-1,3-Dichloropropene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	1.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Dibromochloromethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Dibromochloromethane	ND	ug/m3	2.9		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Ethylbenzene	4.5	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Ethylbenzene	20	ug/m3	1.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 113	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 113	ND	ug/m3	2.6		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 114	ND	ppbv	0.34	-	1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 114	ND	ug/m3	2.4	-	1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 12	0.54	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Freon 12	2.7	ug/m3	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Hexachlorobutadiene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Hexachlorobutadiene	ND	ug/m3	3.6		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Isopropanol (IPA)	14	ppbv	8.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Isopropanol (IPA)	34	ug/m3	21		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
m,p-Xylenes	18	ppbv	0.68		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
m,p-Xylenes	76	ug/m3	3.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
o-Xylene	6.3	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
o-Xylene	27	ug/m3	1.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Methylene Chloride	ND	ppbv	8.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Methylene Chloride	ND	ug/m3	30		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
									-

							_		
459658-014 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
MTBE	ND	ug/m3	1.2		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
n-Hexane	12	ppbv	0.85		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
n-Hexane	41	ug/m3	3.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Styrene	1.1	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Styrene	4.8	ug/m3	1.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Tetrachloroethene	7.6	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Tetrachloroethene	52	ug/m3	2.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Toluene	37	ppbv	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Toluene	140	ug/m3	6.4		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	1.3		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	1.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Trichloroethene	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Trichloroethene	ND	ug/m3	1.8		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Trichlorofluoromethane	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Trichlorofluoromethane	ND	ug/m3	1.9		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Vinyl Acetate	ND	ppbv	1.7		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Vinyl Acetate	ND	ug/m3	6.0		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Vinyl Chloride	ND	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Vinyl Chloride	ND	ug/m3	0.87		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Xylene (total)	24	ppbv	0.34		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Xylene (total)	100	ug/m3	1.5		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ
Surrogates			Limits						
Bromofluorobenzene	118%	%REC	60-140		1.7	285488	03/15/22 03:47	03/15/22 03:47	ZNZ

Sample ID: B4-8V Lab ID: 459658-015 Collected: 03/11/22 16:18

Matrix: Air

459658-015 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m	3 58		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,1-Trichloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,1-Trichloroethane	ND	ug/m	3 46		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m	3 58		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,2-Trichloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1,2-Trichloroethane	ND	ug/m	3 46		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1-Dichloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1-Dichloroethane	ND	ug/m	3 34		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1-Dichloroethene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,1-Dichloroethene	ND	ug/m	3 34		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m:	3 63		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2,4-Trimethylbenzene	ND	ppbv	21		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2,4-Trimethylbenzene	ND	ug/m:	3 100		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dibromoethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dibromoethane	ND	ug/m:	3 65		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichlorobenzene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichlorobenzene	ND	ug/m	3 51		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichloroethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichloroethane	ND	ug/m:	3 34		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichloropropane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,2-Dichloropropane	ND	ug/m	3 39		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,3,5-Trimethylbenzene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,3,5-Trimethylbenzene	ND	ug/m:	3 42		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,3-Dichlorobenzene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,3-Dichlorobenzene	ND	ug/m:	3 51	-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,4-Dichlorobenzene	ND	ppbv	8.5	•	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
1,4-Dichlorobenzene	ND	ug/m	3 51		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
2-Butanone	ND	ppbv	-	-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
2-Butanone	ND	ug/m			43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
2-Hexanone	ND	ppbv	-		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
2-Hexanone	ND	ug/m			43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
4-Ethyltoluene	ND	ppbv	-	-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
4-Ethyltoluene	ND	ug/m	-	-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
4-Methyl-2-Pentanone	ND	ppbv		-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
4-Methyl-2-Pentanone	ND	ug/m			43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Acetone	ND	ppbv		-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Acetone	ND	ug/m		-	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ

		Allalys	is riesuits	, 101	TJJU	,,		
459658-015 Analyte	Result	Qual Units	RL MDL	. DF	Batch	Prepared	Analyzed	Chemist
Benzene	16	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Benzene	51	ug/m3	27	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Benzyl chloride	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Benzyl chloride	ND	ug/m3	44	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromodichloromethane	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromodichloromethane	ND	ug/m3	57	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromoform	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromoform	ND	ug/m3	88	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromomethane	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Bromomethane	ND	ug/m3	33	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Carbon Disulfide	ND	ppbv	43	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Carbon Disulfide	ND	ug/m3	130	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Carbon Tetrachloride	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Carbon Tetrachloride	ND	ug/m3	53	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chlorobenzene	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chlorobenzene	ND	ug/m3	39	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloroethane	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloroethane	ND		22	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloroform	ND	ug/m3		43	-			
		ppbv	8.5		285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloroform	ND	ug/m3	42	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloromethane	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Chloromethane	ND	ug/m3	18	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
cis-1,2-Dichloroethene	170	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
cis-1,2-Dichloroethene	670	ug/m3	34	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
cis-1,3-Dichloropropene	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	39	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Dibromochloromethane	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Dibromochloromethane	ND	ug/m3	72	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Ethylbenzene	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Ethylbenzene	ND	ug/m3	37	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 113	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 113	ND	ug/m3	65	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 114	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 114	ND	ug/m3	59	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 12	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Freon 12	ND	ug/m3	42	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Hexachlorobutadiene	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Hexachlorobutadiene	ND	ug/m3	91	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Isopropanol (IPA)	ND	ppbv	210	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Isopropanol (IPA)	ND	ug/m3	520	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
m,p-Xylenes	ND	ppbv	17	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
m,p-Xylenes	ND	ug/m3	74	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
o-Xylene	ND	ppbv	8.5	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
o-Xylene	ND	ug/m3	37	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Methylene Chloride	ND	ppbv	210	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Methylene Chloride	ND	ug/m3	740	43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ

		J -							
459658-015 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
MTBE	ND	ug/m3	31		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
n-Hexane	ND	ppbv	21		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
n-Hexane	ND	ug/m3	75		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Styrene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Styrene	ND	ug/m3	36		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Tetrachloroethene	15	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Tetrachloroethene	99	ug/m3	58		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Toluene	ND	ppbv	43		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Toluene	ND	ug/m3	160		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
trans-1,2-Dichloroethene	39	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
trans-1,2-Dichloroethene	160	ug/m3	34		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	39		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Trichloroethene	1,100	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Trichloroethene	6,000	ug/m3	46		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Trichlorofluoromethane	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Trichlorofluoromethane	ND	ug/m3	48		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Vinyl Acetate	ND	ppbv	43		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Vinyl Acetate	ND	ug/m3	150		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Vinyl Chloride	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Vinyl Chloride	ND	ug/m3	22		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Xylene (total)	ND	ppbv	8.5		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Xylene (total)	ND	ug/m3	37		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ
Surrogates			Limits						
Bromofluorobenzene	117%	%REC	60-140		43	285488	03/14/22 22:05	03/14/22 22:05	ZNZ

Sample ID: B4-5V Lab ID: 459658-016 Collected: 03/11/22 16:30

Matrix: Air

459658-016 Analyte	Result	Qual Ur	its RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/	m3 310		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,1-Trichloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,1-Trichloroethane	ND	ug/	m3 250		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,2,2-Tetrachloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/	m3 310		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,2-Trichloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1,2-Trichloroethane	ND	ug/	m3 250		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1-Dichloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1-Dichloroethane	ND	ug/	m3 180		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1-Dichloroethene	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,1-Dichloroethene	ND	ug/	m3 180		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2,4-Trichlorobenzene	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2,4-Trichlorobenzene	ND	ug/	m3 330		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2,4-Trimethylbenzene	ND	pp	bv 110		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2,4-Trimethylbenzene	ND	ug/	m3 550		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dibromoethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dibromoethane	ND	ug/	m3 350		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichlorobenzene	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichlorobenzene	ND	ug/	m3 270		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichloroethane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichloroethane	ND	ug/	m3 180		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichloropropane	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,2-Dichloropropane	ND	ug/	m3 210		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,3,5-Trimethylbenzene	ND	pp	bv 45	•	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,3,5-Trimethylbenzene	ND	ug/	m3 220		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,3-Dichlorobenzene	ND	pp	bv 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,3-Dichlorobenzene	ND	ug/	m3 270	•	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,4-Dichlorobenzene	ND	pp	bv 45	•	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
1,4-Dichlorobenzene	ND	ug/	m3 270		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
2-Butanone	ND	pp	bv 230		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
2-Butanone	ND	ug/	m3 660	•	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
2-Hexanone	ND	pp	bv 45	•	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
2-Hexanone	ND	ug/			230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
4-Ethyltoluene	ND	pp			230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
4-Ethyltoluene	ND	ug/		-	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
4-Methyl-2-Pentanone	ND	pp	-		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
4-Methyl-2-Pentanone	ND	ug/			230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Acetone	ND	pp	-		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Acetone	ND	ug/			230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
7,000010	- 110	ag/	71,000				30, 10,22 00.21	33,13,22 33.21	

		Allalys	is nesui	13 101	43903			
459658-016 Analyte	Result	Qual Units	RL M	DL DF	Batch	Prepared	Analyzed	Chemist
Benzene	ND	ppbv	45	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Benzene	ND	ug/m3	140	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Benzyl chloride	ND	ppbv	45	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Benzyl chloride	ND	ug/m3	230	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Bromodichloromethane	ND	ppbv	45	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Bromodichloromethane	ND	ug/m3	300	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Bromoform	ND	ppbv	45	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Bromoform	ND	ug/m3	470	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Bromomethane	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Bromomethane	ND	ug/m3	170	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Carbon Disulfide	ND	ppbv	230	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Carbon Disulfide	ND	ug/m3	700	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Carbon Tetrachloride	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Carbon Tetrachloride	ND	ug/m3	280	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chlorobenzene	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chlorobenzene	ND	ug/m3	210	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Chloroethane	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chloroethane	ND	ug/m3	120	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chloroform	ND	ppbv	45	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Chloroform	ND	ug/m3	220	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chloromethane	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Chloromethane	ND		93	230		03/15/22 00:21	03/15/22 00:21	ZNZ
	790	ug/m3	45					ZNZ
cis-1,2-Dichloroethene	3,100	ppbv		230	-	03/15/22 00:21	03/15/22 00:21	ZNZ ZNZ
<u> </u>	ND	ug/m3	180 45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
cis-1,3-Dichloropropene		ppbv		230		03/15/22 00:21	03/15/22 00:21	
cis-1,3-Dichloropropene	ND	ug/m3	200	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Dibromochloromethane	ND	ppbv	45	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Dibromochloromethane	ND	ug/m3	380	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Ethylbenzene	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Ethylbenzene	ND	ug/m3	200	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 113	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 113	ND	ug/m3	340	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 114	ND	ppbv	45	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 114	ND	ug/m3	310	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 12	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Freon 12	ND	ug/m3	220	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Hexachlorobutadiene	ND	ppbv	45	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Hexachlorobutadiene	ND	ug/m3	480	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Isopropanol (IPA)	ND	ppbv	1,100	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
Isopropanol (IPA)	ND	ug/m3	2,800	230		03/15/22 00:21	03/15/22 00:21	ZNZ
m,p-Xylenes	ND	ppbv	90	230		03/15/22 00:21	03/15/22 00:21	ZNZ
m,p-Xylenes	ND	ug/m3	390	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
o-Xylene	ND	ppbv	45	230	-	03/15/22 00:21	03/15/22 00:21	ZNZ
o-Xylene	ND	ug/m3	200	230		03/15/22 00:21	03/15/22 00:21	ZNZ
Methylene Chloride	ND	ppbv	1,100	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Methylene Chloride	ND	ug/m3	3,900	230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ

			,						
459658-016 Analyte	Result	Qual Un	its RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
MTBE	ND	ug/	m3 160		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
n-Hexane	ND	pp	ov 110		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
n-Hexane	ND	ug/	m3 400		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Styrene	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Styrene	ND	ug/	m3 190		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Tetrachloroethene	120	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Tetrachloroethene	810	ug/	m3 310		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Toluene	ND	рр	ov 230		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Toluene	ND	ug/	m3 850		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
trans-1,2-Dichloroethene	130	pp	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
trans-1,2-Dichloroethene	530	ug/	m3 180		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
trans-1,3-Dichloropropene	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
trans-1,3-Dichloropropene	ND	ug/	m3 200		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Trichloroethene	7,300	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Trichloroethene	39,000	ug/	m3 240		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Trichlorofluoromethane	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Trichlorofluoromethane	ND	ug/	m3 250		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Vinyl Acetate	ND	рр	ov 230		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Vinyl Acetate	ND	ug/	m3 790		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Vinyl Chloride	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Vinyl Chloride	ND	ug/	m3 120		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Xylene (total)	ND	рр	ov 45		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Xylene (total)	ND	ug/	m3 200		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ
Surrogates			Limits						
Bromofluorobenzene	119%	%R	EC 60-140		230	285488	03/15/22 00:21	03/15/22 00:21	ZNZ

Sample ID: B2-5V Lab ID: 459658-017 Collected: 03/11/22 16:53

Matrix: Air

459658-017 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	37		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,1-Trichloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	30		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	37		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,2-Trichloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	30		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1-Dichloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1-Dichloroethane	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1-Dichloroethene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,1-Dichloroethene	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	40		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2,4-Trimethylbenzene	ND	ppbv	14		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2,4-Trimethylbenzene	ND	ug/m3	67		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dibromoethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dibromoethane	ND	ug/m3	42		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichlorobenzene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	33		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichloroethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichloroethane	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichloropropane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,2-Dichloropropane	ND	ug/m3	25		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,3,5-Trimethylbenzene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,3,5-Trimethylbenzene	ND	ug/m3	27		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,3-Dichlorobenzene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	33		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,4-Dichlorobenzene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	33		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
2-Butanone	ND	ppbv	27		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
2-Butanone	ND	ug/m3	80		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
2-Hexanone	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
2-Hexanone	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
4-Ethyltoluene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
4-Ethyltoluene	ND	ug/m3	27		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
4-Methyl-2-Pentanone	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
4-Methyl-2-Pentanone	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Acetone	ND	ppbv	540	-	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Acetone	ND		-		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Acetone	ND	ug/m3	1,300		27	285488	03/15/22 08:07	03/15/22 08:07	ZN

		Allalys	is riesuits	101	TJ300	,0		
459658-017 Analyte	Result	Qual Units	RL MDL	. DF	Batch	Prepared	Analyzed	Chemist
Benzene	21	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Benzene	67	ug/m3	17	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Benzyl chloride	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Benzyl chloride	ND	ug/m3	28	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromodichloromethane	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromodichloromethane	ND	ug/m3	36	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromoform	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromoform	ND	ug/m3	56	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromomethane	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Bromomethane	ND	ug/m3	21	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Carbon Disulfide	ND	ppbv	27	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Carbon Disulfide	ND	ug/m3	85	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Carbon Tetrachloride	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Carbon Tetrachloride	ND	ug/m3	3.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Chlorobenzene	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Chlorobenzene	ND	ug/m3	25	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Chloroethane	ND		5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
	ND	ppbv	14			-	-	ZNZ
Chloroethane Chloroform	ND	ug/m3		27 27	285488	03/15/22 08:07	03/15/22 08:07	
		ppbv	5.4 27		285488	03/15/22 08:07	03/15/22 08:07	ZNZ ZNZ
Chloroform	ND	ug/m3		27	285488	03/15/22 08:07	03/15/22 08:07	
Chloromethane	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Chloromethane	ND	ug/m3	11	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
cis-1,2-Dichloroethene	6.0	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
cis-1,2-Dichloroethene	24	ug/m3	22	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
cis-1,3-Dichloropropene	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	25	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Dibromochloromethane	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Dibromochloromethane	ND	ug/m3	46	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Ethylbenzene	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Ethylbenzene	ND	ug/m3	24	27		03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 113	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 113	ND	ug/m3	42	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 114	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 114	ND	ug/m3	38	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 12	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Freon 12	ND	ug/m3	27	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Hexachlorobutadiene	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Hexachlorobutadiene	ND	ug/m3	58	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Isopropanol (IPA)	ND	ppbv	140	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Isopropanol (IPA)	ND	ug/m3	330	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
m,p-Xylenes	ND	ppbv	11	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
m,p-Xylenes	ND	ug/m3	47	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
o-Xylene	ND	ppbv	5.4	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
o-Xylene	ND	ug/m3	24	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Methylene Chloride	ND	ppbv	140	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Methylene Chloride	ND	ug/m3	470	27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ

		,					_		
459658-017 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
MTBE	ND	ug/m3	20		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
n-Hexane	ND	ppbv	14		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
n-Hexane	ND	ug/m3	48		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Styrene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Styrene	ND	ug/m3	23		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Tetrachloroethene	150	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Tetrachloroethene	1,000	ug/m3	37		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Toluene	ND	ppbv	27		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Toluene	ND	ug/m3	100		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	22		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	25		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Trichloroethene	710	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Trichloroethene	3,800	ug/m3	29		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Trichlorofluoromethane	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Trichlorofluoromethane	ND	ug/m3	31		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Vinyl Acetate	ND	ppbv	27		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Vinyl Acetate	ND	ug/m3	96		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Vinyl Chloride	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Vinyl Chloride	ND	ug/m3	14		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Xylene (total)	ND	ppbv	5.4		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Xylene (total)	ND	ug/m3	24		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ
Surrogates			Limits						
Bromofluorobenzene	119%	%REC	60-140		27	285488	03/15/22 08:07	03/15/22 08:07	ZNZ

Sample ID: B2-12V Lab ID: 459658-018 Collected: 03/11/22 17:12

Matrix: Air

459658-018 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
1,1,1,2-Tetrachloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	23		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,1-Trichloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	19		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,2,2-Tetrachloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	23		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,2-Trichloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	19		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1-Dichloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1-Dichloroethane	ND	ug/m3	14		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1-Dichloroethene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,1-Dichloroethene	ND	ug/m3	13		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2,4-Trichlorobenzene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	25		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2,4-Trimethylbenzene	ND	ppbv	8.5		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2,4-Trimethylbenzene	ND	ug/m3	42		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dibromoethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dibromoethane	ND	ug/m3	26		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichlorobenzene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	20		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichloroethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichloroethane	ND	ug/m3	14		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichloropropane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,2-Dichloropropane	ND	ug/m3	16		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,3,5-Trimethylbenzene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,3,5-Trimethylbenzene	ND	ug/m3	17		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,3-Dichlorobenzene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	20		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,4-Dichlorobenzene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	20		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
2-Butanone	ND	ppbv	17		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
2-Butanone	ND	ug/m3	50		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
2-Hexanone	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
2-Hexanone	ND	ug/m3	14		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
4-Ethyltoluene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
4-Ethyltoluene	ND	ug/m3	17		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
4-Methyl-2-Pentanone	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
4-Methyl-2-Pentanone	ND	ug/m3	14		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Acetone	ND	ppbv	340		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Acetone	ND	ug/m3	810		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
7,0000110	- 110	49/110	- 0.0		.,		30, 10, LL 00.0L	33, 13, 12 00.02	

		Allalys	is nesui	13 101	4030.	00		
459658-018 Analyte	Result	Qual Units	RL M	DL DF	Batch	Prepared	Analyzed	Chemist
Benzene	28	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Benzene	88	ug/m3	11	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Benzyl chloride	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Benzyl chloride	ND	ug/m3	18	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromodichloromethane	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromodichloromethane	ND	ug/m3	23	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromoform	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromoform	ND	ug/m3	35	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromomethane	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Bromomethane	ND	ug/m3	13	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Carbon Disulfide	ND	ppbv	17	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Carbon Disulfide	ND	ug/m3	53	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Carbon Tetrachloride	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Carbon Tetrachloride	ND	ug/m3	21	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chlorobenzene	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chlorobenzene	ND	ug/m3	16	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloroethane	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloroethane	ND	ug/m3	9.0		285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloroform	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloroform	ND	ug/m3	17	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloromethane	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Chloromethane	ND	ug/m3	7.0	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
cis-1,2-Dichloroethene	ND	ppbv	3.4		285488	03/15/22 08:52	03/15/22 08:52	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	13	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
cis-1,3-Dichloropropene	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
cis-1,3-Dichloropropene	ND		 15	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Dibromochloromethane	ND	ug/m3	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Dibromochloromethane	ND	ppbv	29	17			03/15/22 08:52	
		ug/m3		17	285488	03/15/22 08:52		ZNZ
Ethylbenzene	ND	ppbv	3.4	-	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Ethylbenzene	ND	ug/m3	15	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 113	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 113	ND	ug/m3	26	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 114	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 114	ND	ug/m3	24	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 12	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Freon 12	ND	ug/m3	17	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Hexachlorobutadiene	ND	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Hexachlorobutadiene	ND	ug/m3	36	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Isopropanol (IPA)	ND	ppbv	85	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Isopropanol (IPA)	ND	ug/m3	210	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
m,p-Xylenes	11	ppbv	6.8	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
m,p-Xylenes	47	ug/m3	30	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
o-Xylene	3.7	ppbv	3.4	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
o-Xylene	16	ug/m3	15	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Methylene Chloride	ND	ppbv	85	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Methylene Chloride	ND	ug/m3	300	17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ

459658-018 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
MTBE	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
MTBE	ND	ug/m3	12		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
n-Hexane	8.7	ppbv	8.5		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
n-Hexane	31	ug/m3	30		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Styrene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Styrene	ND	ug/m3	14		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Tetrachloroethene	120	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Tetrachloroethene	790	ug/m3	23		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Toluene	30	ppbv	17		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Toluene	110	ug/m3	64		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
trans-1,2-Dichloroethene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	13		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
trans-1,3-Dichloropropene	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	15		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Trichloroethene	410	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Trichloroethene	2,200	ug/m3	18		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Trichlorofluoromethane	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Trichlorofluoromethane	ND	ug/m3	19		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Vinyl Acetate	ND	ppbv	17		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Vinyl Acetate	ND	ug/m3	60		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Vinyl Chloride	ND	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Vinyl Chloride	ND	ug/m3	8.7		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Xylene (total)	15	ppbv	3.4		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Xylene (total)	64	ug/m3	15		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ
Surrogates			Limits						
Bromofluorobenzene	118%	%REC	60-140		17	285488	03/15/22 08:52	03/15/22 08:52	ZNZ

J Estimated value

ND Not Detected

Type: Blank Lab ID: QC977561 Batch: 285572 Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC977561 Analyte	Result	Qual Units	RL	MDL	Prepared	Analyzed
Antimony	ND	mg/Kg	3.0	1.6	03/15/22	03/16/22
Arsenic	ND	mg/Kg	1.0	0.67	03/15/22	03/16/22
Barium	ND	mg/Kg	1.0	0.10	03/15/22	03/16/22
Beryllium	ND	mg/Kg	0.50	0.11	03/15/22	03/16/22
Cadmium	ND	mg/Kg	0.50	0.075	03/15/22	03/16/22
Chromium	ND	mg/Kg	1.0	0.21	03/15/22	03/16/22
Cobalt	ND	mg/Kg	0.50	0.068	03/15/22	03/16/22
Copper	ND	mg/Kg	1.0	0.60	03/15/22	03/16/22
Lead	ND	mg/Kg	1.0	0.84	03/15/22	03/16/22
Molybdenum	ND	mg/Kg	1.0	0.59	03/15/22	03/16/22
Nickel	ND	mg/Kg	1.0	0.26	03/15/22	03/16/22
Selenium	ND	mg/Kg	3.0	0.40	03/15/22	03/16/22
Silver	ND	mg/Kg	0.50	0.16	03/15/22	03/16/22
Thallium	ND	mg/Kg	3.0	0.58	03/15/22	03/16/22
Vanadium	ND	mg/Kg	1.0	0.43	03/15/22	03/16/22
Zinc	ND	mg/Kg	5.0	0.75	03/15/22	03/16/22

Type: Lab Control Sample Lab ID: QC977562 Batch: 285572

Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC977562 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	99.37	100.0	mg/Kg	99%	80-120
Arsenic	104.9	100.0	mg/Kg	105%	80-120
Barium	107.5	100.0	mg/Kg	108%	80-120
Beryllium	112.0	100.0	mg/Kg	112%	80-120
Cadmium	105.0	100.0	mg/Kg	105%	80-120
Chromium	104.4	100.0	mg/Kg	104%	80-120
Cobalt	111.9	100.0	mg/Kg	112%	80-120
Copper	102.8	100.0	mg/Kg	103%	80-120
Lead	110.7	100.0	mg/Kg	111%	80-120
Molybdenum	108.3	100.0	mg/Kg	108%	80-120
Nickel	110.2	100.0	mg/Kg	110%	80-120
Selenium	92.34	100.0	mg/Kg	92%	80-120
Silver	52.77	50.00	mg/Kg	106%	80-120
Thallium	110.8	100.0	mg/Kg	111%	80-120
Vanadium	104.0	100.0	mg/Kg	104%	80-120
Zinc	112.0	100.0	mg/Kg	112%	80-120

Type: Matrix Spike Lab ID: QC977563 Batch: 285572

Matrix (Source ID): Soil (459658-004) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC977563 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	38.52	2.080	95.24	mg/Kg	38%	*	75-125	0.95
Arsenic	99.11	2.194	95.24	mg/Kg	102%		75-125	0.95
Barium	196.2	97.62	95.24	mg/Kg	103%		75 - 125	0.95
Beryllium	105.9	0.2666	95.24	mg/Kg	111%		75-125	0.95
Cadmium	98.38	0.3232	95.24	mg/Kg	103%		75-125	0.95
Chromium	147.2	52.99	95.24	mg/Kg	99%		75-125	0.95
Cobalt	115.0	21.10	95.24	mg/Kg	99%		75 - 125	0.95
Copper	124.2	26.54	95.24	mg/Kg	103%		75-125	0.95
Lead	103.3	6.394	95.24	mg/Kg	102%		75-125	0.95
Molybdenum	89.85	ND	95.24	mg/Kg	94%		75-125	0.95
Nickel	133.9	44.45	95.24	mg/Kg	94%		75 - 125	0.95
Selenium	83.22	ND	95.24	mg/Kg	87%		75-125	0.95
Silver	49.52	ND	47.62	mg/Kg	104%		75-125	0.95
Thallium	97.50	1.378	95.24	mg/Kg	101%		75-125	0.95
Vanadium	162.6	59.75	95.24	mg/Kg	108%		75-125	0.95
Zinc	159.2	60.14	95.24	mg/Kg	104%		75-125	0.95

Type: Matrix Spike Duplicate Lab ID: QC977564 Batch: 285572

Matrix (Source ID): Soil (459658-004) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC977564 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	42.33	2.080	104.2	mg/Kg	39%	*	75-125	1	41	1
Arsenic	106.1	2.194	104.2	mg/Kg	100%		75-125	2	35	1
Barium	200.5	97.62	104.2	mg/Kg	99%		75-125	2	20	1
Beryllium	113.5	0.2666	104.2	mg/Kg	109%		75-125	2	20	1
Cadmium	105.8	0.3232	104.2	mg/Kg	101%		75-125	2	20	1
Chromium	157.7	52.99	104.2	mg/Kg	100%		75-125	1	20	1
Cobalt	125.5	21.10	104.2	mg/Kg	100%		75-125	1	20	1
Copper	131.1	26.54	104.2	mg/Kg	100%		75-125	2	20	1
Lead	110.4	6.394	104.2	mg/Kg	100%		75-125	2	20	1
Molybdenum	96.99	ND	104.2	mg/Kg	93%		75-125	1	20	1
Nickel	145.5	44.45	104.2	mg/Kg	97%		75-125	2	20	1
Selenium	89.06	ND	104.2	mg/Kg	85%		75-125	2	20	1
Silver	52.39	ND	52.08	mg/Kg	101%		75-125	3	20	1
Thallium	104.7	1.378	104.2	mg/Kg	99%		75-125	2	20	1
Vanadium	171.4	59.75	104.2	mg/Kg	107%		75-125	0	20	1
Zinc	167.6	60.14	104.2	mg/Kg	103%		75-125	0	20	1

Type: Blank Lab ID: QC977664 Batch: 285602

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC977664 Analyte
 Result
 Qual
 Units
 RL
 MDL
 Prepared
 Analyzed

 Mercury
 ND
 mg/Kg
 0.14
 0.039
 03/15/22
 03/16/22

Type: Lab Control Sample Lab ID: QC977665 Batch: 285602

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC977665 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Mercury
 0.8502
 0.8333
 mg/Kg
 102%
 80-120

Type: Matrix Spike Lab ID: QC977666 Batch: 285602

Matrix (Source ID): Soil (459658-004) Method: EPA 7471A Prep Method: METHOD

Source

Sample Recovery QC977666 Analyte Result Result **Spiked** Units Qual Limits DF 75-125 Mercury 0.8565 ND 0.8475 101% mg/Kg

Type: Matrix Spike Duplicate Lab ID: QC977667 Batch: 285602

Matrix (Source ID): Soil (459658-004) Method: EPA 7471A Prep Method: METHOD

Source

RPD Sample QC977667 Analyte Result Result Spiked Units Qual Limits **RPD** Lim DF Recovery 0.8882 0.8475 105% 75-125 20 Mercury ND mg/Kg 4

Type: Blank Lab ID: QC977486 Batch: 285547

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580

Units MDL QC977486 Analyte Result Qual RL **Prepared Analyzed** GRO C8-C10 ND 10 03/14/22 03/15/22 mg/Kg 1.3 DRO C10-C28 ND mg/Kg 10 1.3 03/14/22 03/15/22 ORO C28-C44 ND 20 1.3 03/14/22 mg/Kg 03/15/22 Surrogates Limits n-Triacontane 91% %REC 70-130 03/14/22 03/15/22

Type: Lab Control Sample Lab ID: QC977487 Batch: 285547

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580

 QC977487 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Diesel C10-C28
 249.2
 250.0
 mg/Kg
 100%
 76-122

 Surrogates

 n-Triacontane
 8.441
 10.00
 mg/Kg
 84%
 70-130

Type: Matrix Spike Lab ID: QC977488 Batch: 285547

Matrix (Source ID): Soil (459646-001) Method: EPA 8015M Prep Method: EPA 3580

Source

		Sample						
QC977488 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	260.3	22.54	250.0	mg/Kg	95%		62-126	1
Surrogates								
n-Triacontane	7.579		10.00	mg/Kg	76%		70-130	1

Type: Matrix Spike Duplicate Lab ID: QC977489 Batch: 285547

Matrix (Source ID): Soil (459646-001) Method: EPA 8015M Prep Method: EPA 3580

Source

		Sample							RPD	
QC977489 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	359.2	22.54	250.0	mg/Kg	135%	*	62-126	32	35	1
Surrogates								,		
n-Triacontane	9.106		10.00	mg/Kg	91%		70-130			1

Type: Blank Lab ID: QC977490 Batch: 285548
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC977490 Analyte	Result	Qual Un	ts RL	MDL	Prepared	Analyzed
3-Chloropropene	ND	ug/	√g 5.0	1.1	03/15/22	03/15/22
Freon 12	ND	ug/	√g 5.0	1.8	03/15/22	03/15/22
Chloromethane	ND	ug/	√g 5.0	1.6	03/15/22	03/15/22
Vinyl Chloride	ND	ug/	⟨g 5.0	1.6	03/15/22	03/15/22
Bromomethane	ND	ug/	〈g 5.0	1.4	03/15/22	03/15/22
Chloroethane	ND	ug/	√g 5.0	0.9	03/15/22	03/15/22
Trichlorofluoromethane	ND	ug/	⟨g 5.0	0.9	03/15/22	03/15/22
Acetone	ND	ug/	〈g 100	25	03/15/22	03/15/22
Freon 113	ND	ug/	〈g 5.0	1.1	03/15/22	03/15/22
1,1-Dichloroethene	ND	ug/	〈g 5.0	1.0	03/15/22	03/15/22
Methylene Chloride	ND	ug/	〈g 5.0	0.7	03/15/22	03/15/22
MTBE	ND	ug/	〈g 5.0	1.0	03/15/22	03/15/22
trans-1,2-Dichloroethene	ND	ug/	〈g 5.0	1.1	03/15/22	03/15/22
1,1-Dichloroethane	ND	ug/	〈g 5.0	1.1	03/15/22	03/15/22
2-Butanone	ND	ug/	(g 100	3.0	03/15/22	03/15/22
cis-1,2-Dichloroethene	ND	ug/	〈g 5.0	1.1	03/15/22	03/15/22
2,2-Dichloropropane	ND	ug/	〈g 5.0	1.2	03/15/22	03/15/22
Chloroform	ND	ug/	(g 5.0	1.3	03/15/22	03/15/22
Bromochloromethane	ND	ug/	(g 5.0	0.9	03/15/22	03/15/22
1,1,1-Trichloroethane	ND	ug/	(g 5.0	0.9	03/15/22	03/15/22
1,1-Dichloropropene	ND	ug/	〈g 5.0	1.2	03/15/22	03/15/22
Carbon Tetrachloride	ND	ug/	〈g 5.0	0.6	03/15/22	03/15/22
1,2-Dichloroethane	ND	ug/	(g 5.0	1.1	03/15/22	03/15/22
Benzene	ND	ug/	(g 5.0	0.9	03/15/22	03/15/22
Trichloroethene	ND	ug/		8.0	03/15/22	03/15/22
1,2-Dichloropropane	ND	ug/		1.2	03/15/22	03/15/22
Bromodichloromethane	ND	ug/	-	0.8	03/15/22	03/15/22
Dibromomethane	ND	ug/		8.0	03/15/22	03/15/22
4-Methyl-2-Pentanone	ND	ug/		3.1	03/15/22	03/15/22
cis-1,3-Dichloropropene	ND	ug/		1.0	03/15/22	03/15/22
Toluene	ND	ug/	(g 5.0	0.8	03/15/22	03/15/22
trans-1,3-Dichloropropene	ND	ug/		0.8	03/15/22	03/15/22
1,1,2-Trichloroethane	ND	ug/		8.0	03/15/22	03/15/22
1,3-Dichloropropane	ND	<u>ug</u> /	<u> </u>	1.1	03/15/22	03/15/22
Tetrachloroethene	ND	ug/		0.9	03/15/22	03/15/22
Dibromochloromethane	ND	ug/		0.8	03/15/22	03/15/22
1,2-Dibromoethane	ND	<u>ug</u> /		0.9	03/15/22	03/15/22
Chlorobenzene	ND	<u>ug</u> /		0.8	03/15/22	03/15/22
1,1,1,2-Tetrachloroethane	ND	<u>g</u> ug/		0.9	03/15/22	03/15/22
Ethylbenzene	ND	ug/		1.1	03/15/22	03/15/22
m,p-Xylenes	ND	ug/		1.9	03/15/22	03/15/22
4 1	ND				03/15/22	

QC977490 Analyte	Result	Qual Units	RL	MDL	Prepared	Analyzed
Styrene	ND	ug/Kg	5.0	1.4	03/15/22	03/15/22
Bromoform	ND	ug/Kg	5.0	0.5	03/15/22	03/15/22
Isopropylbenzene	ND	ug/Kg	5.0	1.2	03/15/22	03/15/22
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1.2	03/15/22	03/15/22
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
Propylbenzene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
Bromobenzene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1.0	03/15/22	03/15/22
2-Chlorotoluene	ND	ug/Kg	5.0	1.2	03/15/22	03/15/22
4-Chlorotoluene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
tert-Butylbenzene	ND	ug/Kg	5.0	1.0	03/15/22	03/15/22
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1.0	03/15/22	03/15/22
sec-Butylbenzene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
para-Isopropyl Toluene	ND	ug/Kg	5.0	1.0	03/15/22	03/15/22
1,3-Dichlorobenzene	ND	ug/Kg	5.0	0.9	03/15/22	03/15/22
1,4-Dichlorobenzene	ND	ug/Kg	5.0	0.9	03/15/22	03/15/22
n-Butylbenzene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1.1	03/15/22	03/15/22
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	0.7	03/15/22	03/15/22
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1.3	03/15/22	03/15/22
Hexachlorobutadiene	ND	ug/Kg	5.0	1.3	03/15/22	03/15/22
Naphthalene	ND	ug/Kg	5.0	1.2	03/15/22	03/15/22
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1.2	03/15/22	03/15/22
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	8.0	03/15/22	03/15/22
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1.3	03/15/22	03/15/22
Xylene (total)	ND	ug/Kg	5.0		03/15/22	03/15/22
Surrogates	-		Limits			
Dibromofluoromethane	102%	%REC	70-130		03/15/22	03/15/22
1,2-Dichloroethane-d4	96%	%REC	70-145		03/15/22	03/15/22
Toluene-d8	104%	%REC	70-145		03/15/22	03/15/22
Bromofluorobenzene	95%	%REC	70-145		03/15/22	03/15/22

Type: Lab Control Sample Lab ID: QC977491 Batch: 285548

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC977491 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	42.07	50.00	ug/Kg	84%	70-131
MTBE	36.13	50.00	ug/Kg	72%	69-130
Benzene	41.30	50.00	ug/Kg	83%	70-130
Trichloroethene	45.18	50.00	ug/Kg	90%	70-130
Toluene	45.49	50.00	ug/Kg	91%	70-130
Chlorobenzene	45.54	50.00	ug/Kg	91%	70-130
Surrogates					
Dibromofluoromethane	49.17	50.00	ug/Kg	98%	70-130
1,2-Dichloroethane-d4	46.21	50.00	ug/Kg	92%	70-145
Toluene-d8	55.38	50.00	ug/Kg	111%	70-145
Bromofluorobenzene	50.77	50.00	ug/Kg	102%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC977492 Batch: 285548

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

								RPD
QC977492 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
1,1-Dichloroethene	44.31	50.00	ug/Kg	89%		70-131	5	33
MTBE	37.44	50.00	ug/Kg	75%		69-130	4	30
Benzene	42.05	50.00	ug/Kg	84%		70-130	2	30
Trichloroethene	47.46	50.00	ug/Kg	95%		70-130	5	30
Toluene	46.12	50.00	ug/Kg	92%		70-130	1	30
Chlorobenzene	47.13	50.00	ug/Kg	94%		70-130	3	30
Surrogates							_	
Dibromofluoromethane	49.15	50.00	ug/Kg	98%		70-130		
1,2-Dichloroethane-d4	44.56	50.00	ug/Kg	89%		70-145	_	
Toluene-d8	53.74	50.00	ug/Kg	107%	,	70-145	_	
Bromofluorobenzene	49.22	50.00	ug/Kg	98%		70-145	-	

Type: Lab Control Sample Lab ID: QC977317 Batch: 285488

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC977317 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1,1,2-Tetrachloroethane	9.374	10.00	ppbv	94%	70-130
1,1,1-Trichloroethane	9.906	10.00	ppbv	99%	70-130
1,1,2,2-Tetrachloroethane	8.624	10.00	ppbv	86%	70-130
1,1,2-Trichloroethane	9.532	10.00	ppbv	95%	70-130
1,1-Dichloroethane	9.260	10.00	ppbv	93%	70-130
1,1-Dichloroethene	9.521	10.00	ppbv	95%	70-130
1,2,4-Trichlorobenzene	9.989	10.00	ppbv	100%	70-130
1,2,4-Trimethylbenzene	8.973	10.00	ppbv	90%	70-130
1,2-Dibromoethane	9.898	10.00	ppbv	99%	70-130
1,2-Dichlorobenzene	9.059	10.00	ppbv	91%	70-130
1,2-Dichloroethane	9.843	10.00	ppbv	98%	70-130
1,2-Dichloropropane	8.642	10.00	ppbv	86%	70-130
1,3,5-Trimethylbenzene	8.975	10.00	ppbv	90%	70-130
1,3-Dichlorobenzene	9.038	10.00	ppbv	90%	70-130
1,4-Dichlorobenzene	9.130	10.00	ppbv	91%	70-130
2-Butanone	9.461	10.00	ppbv	95%	70-130
2-Hexanone	10.01	10.00	ppbv	100%	70-130
4-Ethyltoluene	9.086	10.00	ppbv	91%	70-130
4-Methyl-2-Pentanone	9.753	10.00	ppbv	98%	70-130
Acetone	8.746	10.00	ppbv	87%	70-130
Benzene	8.844	10.00	ppbv	88%	70-130
Benzyl chloride	10.01	10.00	ppbv	100%	70-130
Bromodich l oromethane	10.23	10.00	ppbv	102%	70-130
Bromoform	10.20	10.00	ppbv	102%	70-130
Bromomethane	9.653	10.00	ppbv	97%	70-130
Carbon Disulfide	9.126	10.00	ppbv	91%	70-130
Carbon Tetrachloride	10.23	10.00	ppbv	102%	70-130
Chlorobenzene	8.679	10.00	ppbv	87%	70-130
Chloroethane	9.190	10.00	ppbv	92%	70-130
Chloroform	9.508	10.00	ppbv	95%	70-130
Chloromethane	9.372	10.00	ppbv	94%	70-130
cis-1,2-Dichloroethene	9.370	10.00	ppbv	94%	70-130
cis-1,3-Dichloropropene	9.824	10.00	ppbv	98%	70-130
Dibromochloromethane	10.63	10.00	ppbv	106%	70-130
Ethylbenzene	8.807	10.00	ppbv	88%	70-130
Freon 113	9.352	10.00	ppbv	94%	70-130
Freon 114	10.12	10.00	ppbv	101%	70-130
Freon 12	9.882	10.00	ppbv	99%	70-130
Hexachlorobutadiene	9.045	10.00	ppbv	90%	70-130
Isopropanol (IPA)	9.582	10.00	ppbv	96%	70-130
m,p-Xylenes	17.64	20.00	ppbv	88%	70-130
o-Xylene	8.789	10.00	ppbv	88%	70-130

QC977317 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Methylene Chloride	8.324	10.00	ppbv	83%	70-130
MTBE	9.333	10.00	ppbv	93%	70-130
n-Hexane	9.249	10.00	ppbv	92%	70-130
Styrene	8.895	10.00	ppbv	89%	70-130
Tetrachloroethene	9.815	10.00	ppbv	98%	70-130
Toluene	9.438	10.00	ppbv	94%	70-130
trans-1,2-Dichloroethene	9.323	10.00	ppbv	93%	70-130
trans-1,3-Dichloropropene	9.760	10.00	ppbv	98%	70-130
Trichloroethene	9.003	10.00	ppbv	90%	70-130
Trichlorofluoromethane	10.02	10.00	ppbv	100%	70-130
Vinyl Acetate	9.191	10.00	ppbv	92%	70-130
Vinyl Chloride	9.192	10.00	ppbv	92%	70-130
Surrogates					
Bromofluorobenzene	11.38	10.00	ppbv	114%	60-140

Type: Lab Control Sample Duplicate Lab ID: QC977318 Batch: 285488

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

							RPD
QC977318 Analyte	Result	Spiked	Units	Recovery Qual	Limits	RPD	Lim
1,1,1,2-Tetrachloroethane	9.376	10.00	ppbv	94%	70-130	0	25
1,1,1-Trichloroethane	9.848	10.00	ppbv	98%	70-130	1	25
1,1,2,2-Tetrachloroethane	8.574	10.00	ppbv	86%	70-130	1	25
1,1,2-Trichloroethane	9.365	10.00	ppbv	94%	70-130	2	25
1,1-Dichloroethane	9.220	10.00	ppbv	92%	70-130	0	25
1,1-Dichloroethene	9.492	10.00	ppbv	95%	70-130	0	25
1,2,4-Trichlorobenzene	9.913	10.00	ppbv	99%	70-130	1	25
1,2,4-Trimethylbenzene	8.965	10.00	ppbv	90%	70-130	0	25
1,2-Dibromoethane	9.770	10.00	ppbv	98%	70-130	1	25
1,2-Dichlorobenzene	9.051	10.00	ppbv	91%	70-130	0	25
1,2-Dichloroethane	9.820	10.00	ppbv	98%	70-130	0	25
1,2-Dichloropropane	8.536	10.00	ppbv	85%	70-130	1	25
1,3,5-Trimethylbenzene	8.997	10.00	ppbv	90%	70-130	0	25
1,3-Dichlorobenzene	9.000	10.00	ppbv	90%	70-130	0	25
1,4-Dichlorobenzene	9.135	10.00	ppbv	91%	70-130	0	25
2-Butanone	9.393	10.00	ppbv	94%	70-130	1	25
2-Hexanone	9.863	10.00	ppbv	99%	70-130	1	25
4-Ethyltoluene	9.028	10.00	ppbv	90%	70-130	1	25
4-Methyl-2-Pentanone	9.648	10.00	ppbv	96%	70-130	1	25
Acetone	8.603	10.00	ppbv	86%	70-130	2	25
Benzene	8.807	10.00	ppbv	88%	70-130	0	25
Benzyl chloride	10.01	10.00	ppbv	100%	70-130	0	25
Bromodichloromethane	10.10	10.00	ppbv	101%	70-130	1	25
Bromoform	10.21	10.00	ppbv	102%	70-130	0	25
Bromomethane	9.555	10.00	ppbv	96%	70-130	1	25
Carbon Disulfide	9.060	10.00	ppbv	91%	70-130	1	25
Carbon Tetrachloride	10.16	10.00	ppbv	102%	70-130	1	25
Chlorobenzene	8.649	10.00	ppbv	86%	70-130	0	25
Chloroethane	9.234	10.00	ppbv	92%	70-130	0	25
Chloroform	9.463	10.00	ppbv	95%	70-130	0	25
Chloromethane	9.117	10.00	ppbv	91%	70-130	3	25
cis-1,2-Dichloroethene	9.290	10.00	ppbv	93%	70-130	1	25
cis-1,3-Dichloropropene	9.660	10.00	ppbv	97%	70-130	2	25
Dibromochloromethane	10.48	10.00	ppbv	105%	70-130	1	25
Ethylbenzene	8.816	10.00	ppbv	88%	70-130	0	25
Freon 113	9.262	10.00	ppbv	93%	70-130	1	25
Freon 114	10.06	10.00	ppbv	101%	70-130	1	25
Freon 12	9.740	10.00	ppbv	97%	70-130	1	25
Hexachlorobutadiene	8.951	10.00	ppbv	90%	70-130	1	25
Isopropanol (IPA)	9.513	10.00	ppbv	95%	70-130	1	25
m,p-Xylenes	17.56	20.00	ppbv	88%	70-130	0	25
• •		· .	- ' '				

							RPD
QC977318 Analyte	Result	Spiked	Units	Recovery Qual	Limits	RPD	Lim
o-Xylene	8.812	10.00	ppbv	88%	70-130	0	25
Methylene Chloride	8.263	10.00	ppbv	83%	70-130	1	25
MTBE	9.294	10.00	ppbv	93%	70-130	0	25
n-Hexane	9.138	10.00	ppbv	91%	70-130	1	25
Styrene	8.897	10.00	ppbv	89%	70-130	0	25
Tetrachloroethene	9.652	10.00	ppbv	97%	70-130	2	25
Toluene	9.281	10.00	ppbv	93%	70-130	2	25
trans-1,2-Dichloroethene	9.286	10.00	ppbv	93%	70-130	0	25
trans-1,3-Dichloropropene	9.729	10.00	ppbv	97%	70-130	0	25
Trichloroethene	8.929	10.00	ppbv	89%	70-130	1	25
Trichlorofluoromethane	9.967	10.00	ppbv	100%	70-130	1	25
Vinyl Acetate	9.187	10.00	ppbv	92%	70-130	0	25
Vinyl Chloride	9.178	10.00	ppbv	92%	70-130	0	25
Surrogates							
Bromofluorobenzene	11.38	10.00	ppbv	114%	60-140		

Type: Blank Lab ID: QC977319 Batch: 285488

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC977319 Analyte	Result	Qual Units	RL	MDL Prepared	Analyzed
1,1,1,2-Tetrachloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,1,1-Trichloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,1,2,2-Tetrachloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,1,2-Trichloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,1-Dichloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,1-Dichloroethene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,2,4-Trichlorobenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,2,4-Trimethylbenzene	ND	ppbv	0.50	03/14/22 18:03	03/14/22 18:03
1,2-Dibromoethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,2-Dichlorobenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,2-Dichloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,2-Dichloropropane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,3,5-Trimethylbenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,3-Dichlorobenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
1,4-Dichlorobenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
2-Butanone	ND	ppbv	1.0	03/14/22 18:03	03/14/22 18:03
2-Hexanone	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
4-Ethyltoluene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
4-Methyl-2-Pentanone	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Acetone	ND	ppbv	20	03/14/22 18:03	03/14/22 18:03
Benzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Benzyl chloride	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Bromodichloromethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Bromoform	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Bromomethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Carbon Disulfide	ND	ppbv	1.0	03/14/22 18:03	03/14/22 18:03
Carbon Tetrachloride	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Chlorobenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Chloroethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Chloroform	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Chloromethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
cis-1,2-Dichloroethene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
cis-1,3-Dichloropropene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Dibromochloromethane	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Ethylbenzene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Freon 113	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Freon 114	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Freon 12	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Hexachlorobutadiene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03
Isopropanol (IPA)	ND	ppbv	5.0	03/14/22 18:03	03/14/22 18:03
m,p-Xylenes	ND	ppbv	0.40	03/14/22 18:03	03/14/22 18:03
o-Xylene	ND	ppbv	0.20	03/14/22 18:03	03/14/22 18:03

QC977319 Analyte	Result	Qual U	nits	RL	MDL	Prepared	Analyzed
Methylene Chloride	ND	p	bv	5.0		03/14/22 18:03	03/14/22 18:03
MTBE	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
n-Hexane	ND	p	bv	0.50		03/14/22 18:03	03/14/22 18:03
Styrene	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Tetrachloroethene	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Toluene	ND	p	bv	1.0		03/14/22 18:03	03/14/22 18:03
trans-1,2-Dichloroethene	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
trans-1,3-Dichloropropene	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Trichloroethene	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Trichlorofluoromethane	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Vinyl Acetate	ND	p	bv	1.0		03/14/22 18:03	03/14/22 18:03
Vinyl Chloride	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Xylene (total)	ND	p	bv	0.20		03/14/22 18:03	03/14/22 18:03
Surrogates				Limits			
Bromofluorobenzene	115%	%F	REC 6	0-140		03/14/22 18:03	03/14/22 18:03

Value is outside QC limits

ND Not Detected