

# Mead Valley Commerce Center (PPT220050) NOISE AND VIBRATION ANALYSIS COUNTY OF RIVERSIDE

PREPARED BY:

Bill Lawson, PE, INCE blawson@urbanxroads.com (949) 584-3148

FEBRUARY 15, 2024

15091-07 NA

15091-07 NA



# **TABLE OF CONTENTS**

| AF  | PEND              | F CONTENTS<br>ICES<br>EXHIBITS                                                      | . IV |
|-----|-------------------|-------------------------------------------------------------------------------------|------|
| LIS | ST OF 1           | ABBREVIATED TERMS                                                                   | v    |
| EX  | ECUTI             | VE SUMMARY                                                                          | 1    |
| 1   | 1.1               | FRODUCTION                                                                          |      |
|     | 1.2               | Project Description                                                                 | -    |
| 2   | FU                | NDAMENTALS                                                                          | 7    |
|     | 2.1<br>2.2<br>2.3 | Range of Noise<br>Noise Descriptors<br>Sound Propagation                            | 8    |
|     | 2.5<br>2.4<br>2.5 | Noise Barrier Attenuation                                                           | 9    |
|     | 2.6               | Land Use Compatibility With Noise                                                   | 10   |
|     | 2.7<br>2.8        | Community Response to Noise<br>Vibration                                            |      |
| 3   | RE                | GULATORY SETTING                                                                    | .13  |
|     | 3.1               | State of California Noise Requirements                                              |      |
|     | 3.2               | County of Riverside General Plan Noise Element                                      |      |
|     | 3.3               | Construction Noise Standards                                                        |      |
|     | 3.4<br>3.5        | Construction Vibration Standards                                                    |      |
|     | 3.6               | March Air Reserve Base/Inland Port Airport Land Use Compatibility                   |      |
| 4   | SIG               |                                                                                     | .23  |
|     | 4.1               | Noise Level Increases (Threshold A)                                                 |      |
|     | 4.2               | Vibration (Threshold B)                                                             |      |
|     | 4.3<br>4.4        | CEQA Guidelines Not Further Analyzed (Threshold C)<br>Significance Criteria Summary |      |
| 5   |                   | ISTING NOISE LEVEL MEASUREMENTS                                                     |      |
| -   | 5.1               | Measurement Procedure and Criteria                                                  |      |
|     | 5.2               | Noise Measurement Locations                                                         |      |
|     | 5.3               | Noise Measurement Results                                                           | . 28 |
| 6   | TR                | AFFIC NOISE METHODS AND PROCEDURES                                                  | .31  |
|     | 6.1               | FHWA Traffic Noise Prediction Model                                                 | 31   |
| 7   | OF                | F-SITE TRAFFIC NOISE ANALYSIS                                                       | .37  |
|     | 7.1               | Traffic Noise Contours                                                              | .37  |
|     | 7.2               | Existing Project Traffic Noise Level Increases                                      | 40   |
|     | 7.3               | EAC 2026 Traffic Noise Level Increases                                              |      |
|     | 7.4               | Horizon Year 2045 Traffic Noise Level Increases                                     |      |
| 8   | SEI               | NSITIVE RECEIVER LOCATIONS                                                          | .45  |



| 9  | OP   | ERATIONAL NOISE IMPACTS                                               | 49 |
|----|------|-----------------------------------------------------------------------|----|
|    | 9.1  | Operational Noise Sources                                             | 49 |
|    | 9.2  | Reference Noise Levels                                                | 49 |
|    | 9.3  | CadnaA Noise Prediction Model                                         | 54 |
|    | 9.4  | Unmitigated Project Operational Noise Levels                          | 54 |
|    | 9.5  | Unmitigated Project Operational Noise Level Compliance                |    |
|    | 9.6  | Mitigated Project Operational Noise Levels                            | 57 |
|    | 9.7  | Mitigated Project Operational Noise Level Compliance                  |    |
|    | 9.8  | Project Operational Noise Level Increases                             | 62 |
| 10 | CO   | NSTRUCTION IMPACTS                                                    | 65 |
|    | 10.1 | Construction Noise Levels                                             | 65 |
|    | 10.2 | Construction Reference Noise Levels                                   | 65 |
|    | 10.3 | Construction Noise Analysis                                           | 67 |
|    | 10.4 | Project Site Construction Noise Level Compliance                      | 68 |
|    | 10.5 | Off-Site Roadway and Utility Improvements Construction Noise Analysis | 69 |
|    | 10.6 | Nighttime Concrete Pour Noise Analysis                                | 70 |
|    | 10.7 | Construction Vibration Analysis                                       | 72 |
|    | 10.8 | Blasting Noise Analysis                                               | 73 |
|    | 10.9 | Blasting Vibration Impacts                                            | 76 |
| 11 | REF  | ERENCES                                                               | 81 |
| 12 | CEF  | RTIFICATION                                                           | 83 |

## **APPENDICES**

| APPENDIX 3.1: COUN  | ITY OF RIVERSIDE MUNICIPAL CODE         |
|---------------------|-----------------------------------------|
| APPENDIX 5.1: STUD  | Y AREA PHOTOS                           |
| APPENDIX 5.2: NOIS  | E LEVEL MEASUREMENT WORKSHEETS          |
| APPENDIX 7.1: OFF-S | ITE TRAFFIC NOISE LEVEL CALCULATIONS    |
| APPENDIX 9.1: UNM   | ITIGATED OPERATIONAL NOISE CALCULATIONS |
| APPENDIX 9.2: MITIC | GATED OPERATIONAL NOISE CALCULATIONS    |
| APPENDIX 10.1: PRO  | JECT CONSTRUCTION NOISE CALCULATIONS    |
| APPENDIX 10.2: NIG  | HTTIME CONCRETE POUR NOISE CALCULATIONS |
| APPENDIX 10.3: BLAS | STING NOISE CALCULATIONS                |

# LIST OF EXHIBITS

| <b>EXHIBIT 1-A:</b> | LOCATION MAP                                        | 4  |
|---------------------|-----------------------------------------------------|----|
| EXHIBIT 1-B:        | SITE PLAN                                           | 5  |
| EXHIBIT 2-A:        | TYPICAL NOISE LEVELS                                | 7  |
| EXHIBIT 2-B:        | NOISE LEVEL INCREASE PERCEPTION                     | 10 |
| EXHIBIT 2-C:        | TYPICAL LEVELS OF GROUND-BORNE VIBRATION            | 12 |
| <b>EXHIBIT 3-A:</b> | LAND USE COMPATIBILITY FOR COMMUNITY NOISE EXPOSURE | 16 |
| EXHIBIT 3-B:        | RC ALUCP SUPPORTING COMPATIBILITY CRITERIA: NOISE   | 20 |
| EXHIBIT 3-C:        | MARB/IPA FUTURE AIRPORT NOISE CONTOURS              | 21 |



| EXHIBIT 5-A: NOISE MEASUREMENT LOCATIONS                                  | 29 |
|---------------------------------------------------------------------------|----|
| EXHIBIT 8-A: RECEIVER LOCATIONS                                           | 46 |
| EXHIBIT 9-A: UNMITIGATED OPERATIONAL NOISE SOURCE LOCATIONS               | 50 |
| EXHIBIT 9-B: OPERATIONAL NOISE MITIGATION MEASURES                        | 58 |
| EXHIBIT 10-A: CONSTRUCTION NOISE SOURCE LOCATIONS                         | 66 |
| EXHIBIT 10-B: NIGHTTIME CONCRETE POUR NOISE SOURCE AND RECEIVER LOCATIONS | 71 |
| EXHIBIT 10-C: CONSTRUCTION BLASTING LOCATIONS                             | 74 |
|                                                                           |    |

# LIST OF TABLES

| TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS                             |
|-------------------------------------------------------------------------------|
| TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY                                      |
| TABLE 5-1: AMBIENT NOISE LEVEL MEASUREMENTS         28                        |
| TABLE 6-1: OFF-SITE ROADWAY PARAMETERS         32                             |
| TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES       32                             |
| TABLE 6-3: TIME OF DAY VEHICLE SPLITS                                         |
| TABLE 6-4: WITHOUT PROJECT VEHICLE MIX                                        |
| TABLE 6-5: EXISTING WITH PROJECT VEHICLE MIX                                  |
| TABLE 6-6: EAC 2026 WITH PROJECT VEHICLE MIX                                  |
| TABLE 6-7: HY 2045 WITH PROJECT VEHICLE MIX                                   |
| TABLE 7-1: EXISTING WITHOUT PROJECT CONTOURS         37                       |
| TABLE 7-2: EXISTING WITH PROJECT CONTOURS       38                            |
| TABLE 7-3: EAC 2026 WITHOUT PROJECT CONTOURS    38                            |
| TABLE 7-4: EAC 2026 WITH PROJECT CONTOURS    39                               |
| TABLE 7-5: HY 2045 WITHOUT PROJECT CONTOURS         39                        |
| TABLE 7-6: HY 2045 WITH PROJECT CONTOURS40                                    |
| TABLE 7-7: EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES                |
| TABLE 7-8: EAC 2026 WITH PROJECT TRAFFIC NOISE LEVEL INCREASES                |
| TABLE 7-9: HY 2045 WITH PROJECT TRAFFIC NOISE LEVEL INCREASES                 |
| TABLE 9-1: REFERENCE NOISE LEVEL MEASUREMENTS                                 |
| TABLE 9-2: UNMITIGATED DAYTIME PROJECT OPERATIONAL NOISE LEVELS       55      |
| TABLE 9-3: UNMITIGATED NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS         56  |
| TABLE 9-4:         UNMITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE             |
| TABLE 9-5: MITIGATED DAYTIME PROJECT OPERATIONAL NOISE LEVELS                 |
| TABLE 9-6: MITIGATED NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS         60    |
| TABLE 9-7: MITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE         61            |
| TABLE 9-8: DAYTIME PROJECT OPERATIONAL NOISE LEVEL INCREASES         62       |
| TABLE 9-9: NIGHTTIME OPERATIONAL NOISE LEVEL INCREASES         63             |
| TABLE 10-1: CONSTRUCTION REFERENCE NOISE LEVELS                               |
| TABLE 10-2: CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY         68             |
| TABLE 10-3: PROJECT SITE CONSTRUCTION NOISE LEVEL COMPLIANCE         68       |
| TABLE 10-4:       NIGHTTIME CONCRETE POUR NOISE LEVEL COMPLIANCE       72     |
| TABLE 10-5:       VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT       72 |
| TABLE 10-6:         PROJECT CONSTRUCTION VIBRATION LEVELS         73          |
| TABLE 10-7: BLASTING CONSTRUCTION NOISE LEVELS                                |



# LIST OF ABBREVIATED TERMS

| (1)              | Reference                                              |
|------------------|--------------------------------------------------------|
| ANSI             | American National Standards Institute                  |
| Calveno          | California Vehicle Noise                               |
| CEQA             | California Environmental Quality Act                   |
| CNEL             | Community Noise Equivalent Level                       |
| dBA              | A-weighted decibels                                    |
| EPA              | Environmental Protection Agency                        |
| FHWA             | Federal Highway Administration                         |
| FTA              | Federal Transit Administration                         |
| INCE             | Institute of Noise Control Engineering                 |
| L <sub>eq</sub>  | Equivalent continuous (average) sound level            |
| L <sub>max</sub> | Maximum level measured over the time interval          |
| MARB/IPA         | March Air Reserve Base/Inland Port Airport             |
| mph              | Miles per hour                                         |
| PPV              | Peak Particle Velocity                                 |
| Project          | Mead Valley Commerce Center                            |
| REMEL            | Reference Energy Mean Emission Level                   |
| RC ALUCP         | Riverside County Airport Land Use Compatibility Policy |
| RMS              | Root-mean-square                                       |
| VdB              | Vibration Decibels                                     |

## **EXECUTIVE SUMMARY**

Urban Crossroads, Inc. has prepared this noise study to determine the noise exposure and the necessary noise mitigation measures for the proposed Mead Valley Commerce Center development ("Project"). The Project site is located south of Cajalco Road between Decker Road and Seaton Avenue in the County of Riverside. The Project is proposed to consist of the development of a 1,003,510 square foot warehouse building and an active park of up to 14.94 acres. This noise study has been prepared to satisfy applicable County of Riverside noise standards and significance criteria based on Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1)

The results of this Noise and Vibration Analysis are summarized below based on the significance criteria in Section 4 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1) Table ES-1 shows the findings of significance for each potential noise and/or vibration impact under CEQA before and after any required mitigation measures.

| Analusia                   | Report  | Significance Findings   |                       |  |  |  |
|----------------------------|---------|-------------------------|-----------------------|--|--|--|
| Analysis                   | Section | Unmitigated             | Mitigated             |  |  |  |
| Off-Site Traffic Noise     | 7       | Less Than Significant   | -                     |  |  |  |
| Operational Noise          | 9       | Potentially Significant | Less Than Significant |  |  |  |
| Project Construction Noise |         | Less Than Significant   | -                     |  |  |  |
| Nighttime Concrete Pour    | 10      | Less Than Significant   | -                     |  |  |  |
| Construction Vibration     | 10      | Less Than Significant   | -                     |  |  |  |
| Blasting                   |         | Less Than Significant   | -                     |  |  |  |

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Although not required to address a *potentially significant* impact, the following measures would further reduce construction noise impacts:

**MM-NOI-1** Hours of Construction. All construction activities shall comply with Riverside County Ordinance No. 847 Regulating Noise Section 2i (Code Section 9.52.020[I]), limiting construction activities to the hours of 6:00 a.m. and 6:00 p.m., during the months of June through September, and 7:00 a.m. and 6:00 p.m., during the months of October through May

**MM-NOI-2 Construction Noise Abatement.** Prior to the issuance of each grading permit and building permit, the applicant shall provide evidence that the subject plans contain the following requirements and restrictions:

- All construction equipment, fixed or mobile, shall be equipped with properly operating and maintained mufflers, consistent with manufacturers' standards).
- All stationary construction equipment shall be placed in such a manner so that the emitted noise is directed away from any sensitive receivers.





- Construction equipment staging areas shall be located at the greatest feasible distance between the staging area and the nearest sensitive receivers.
- The construction contractor shall limit equipment and material deliveries to the same hours specified for construction equipment for **MM-NOI-1**.
- Electrically powered air compressors and similar power tools shall be used, when feasible, in place of diesel equipment.
- No music or electronically reinforced speech from construction workers shall be allowed within 500 feet of the property line of a residential use or sensitive receptor.

**MM-NOI-3 Blasting Activities**. Prior to approval of any grading permits that require blasting activities and a blasting permit, the Project Applicant shall prepare and submit for County of Riverside review and approval of a Blasting Noise and Vibration Monitoring and Abatement Plan. All blasting activities shall be designed to meet the regulatory construction noise and vibration thresholds in compliance with applicable regulations of the Riverside County Sheriff's Department, the U.S. Bureau of Mines, the California Division of Occupational Safety and Health (Cal-OHSA), the Department of Homeland Security, and the Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF).



# 1 INTRODUCTION

This noise analysis has been completed to determine the noise impacts associated with the development of the proposed Mead Valley Commerce Center ("Project"). This noise study briefly describes the proposed Project, provides information regarding noise fundamentals, sets out the local regulatory setting, presents the study methods and procedures for transportation related CNEL traffic noise analysis, and evaluates the future exterior noise environment. In addition, this study includes an analysis of the potential Project-related long-term stationary-source operational noise and short-term construction noise, vibration and blasting impacts.

## 1.1 SITE LOCATION

The proposed Project is located south of Cajalco Road between Decker Road and Seaton Avenue in the County of Riverside, as shown on Exhibit 1-A.

#### **1.2 PROJECT DESCRIPTION**

The Project Applicant proposes the development of a 1,003,510 square foot warehouse building and an active park of up to 14.94 acres. The total Project site is 57.6 acres on APNs 317-080-003 through -008, -013 through -014, -019 through -023, -027 through -029 and 317-090-002 through -008. For purposes of analysis, the warehouse building has been evaluated assuming 852,984 square feet (or 85% of the overall building square footage) of high-cube fulfillment warehouse use and 150,526 square feet of high-cube cold storage warehouse use (remaining 15% of the overall building square footage). A preliminary site plan for the proposed Project is shown on Exhibit 1-B.

Construction is expected to commence in September 2024 and would last through December 2025 and will include demolition, site preparation, grading, crushing/blasting, building construction, paving, and architectural coating. To support the Project development, there will be grading, trenching, and paving for off-site improvements associated with roadway construction and utility installation for the Project. It is expected that these off-site improvements will be constructed within the existing public right-of-way (ROW) on Decker Road, Seaton Avenue, Cajalco Road and Rider Street. The General Plan and MVAP designate the Project site for "Commercial Retail (CR)" land uses with Rural Community – Very Low-Density Residential (VLDR) uses. The General Plan states that the Commercial Retail land use designation is intended for local and regional serving retail and service uses at an allowable Floor Area Ratio (FAR) of 0.20-0.35 (4). The Rural Community – Very Low-Density Residential (VLDR) land use designation is intended for single-family detached residences on large parcels of 1 to 2 acres with limited agriculture and animal keeping. Implementation of the Project will require an amendment to the General Plan Land Use designation and Zoning designation of the Project Site.





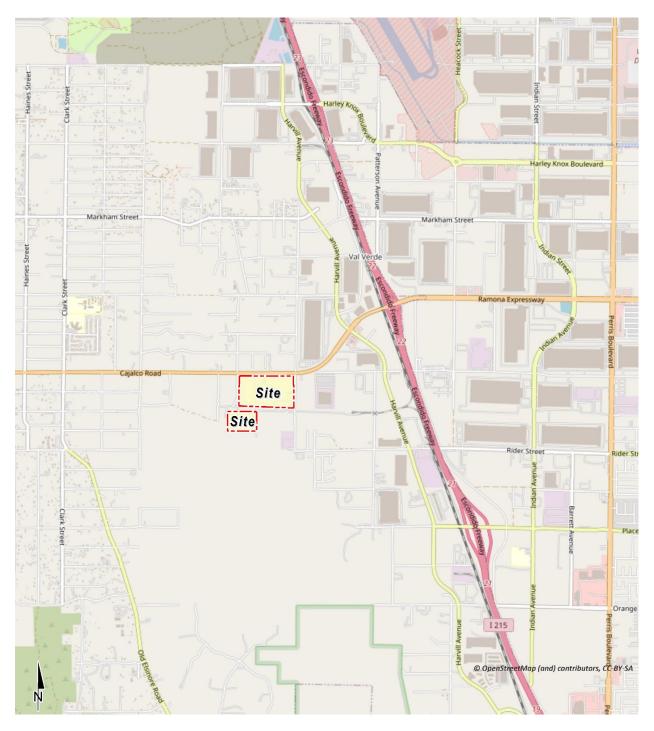
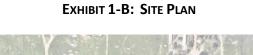
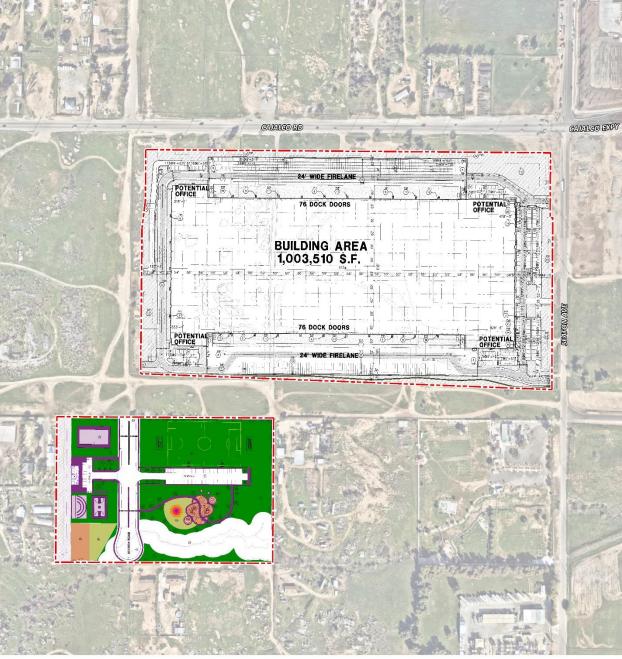





EXHIBIT 1-A: LOCATION MAP







LEGEND:



This page intentionally left blank



# 2 FUNDAMENTALS

Noise is simply defined as "unwanted sound." Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm or when it has adverse effects on health. Noise is measured on a logarithmic scale of sound pressure level known as a decibel (dB). A-weighted decibels (dBA) approximate the subjective response of the human ear to broad frequency noise source by discriminating against very low and very high frequencies of the audible spectrum. They are adjusted to reflect only those frequencies which are audible to the human ear. Exhibit 2-A presents a summary of the typical noise levels and their subjective loudness and effects that are described in more detail below.

| COMMON OUTDOOR<br>ACTIVITIES                         | COMMON INDOOR<br>ACTIVITIES                    | A - WEIGHTED<br>SOUND LEVEL dBA | SUBJECTIVE<br>LOUDNESS | EFFECTS OF<br>NOISE    |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------|------------------------|------------------------|--|
| THRESHOLD OF PAIN                                    |                                                | 140                             | $\mathbf{X}$           |                        |  |
| NEAR JET ENGINE                                      |                                                | 130                             | INTOLERABLE OR         |                        |  |
|                                                      |                                                | 120                             | DEAFENING              | HEARING LOSS           |  |
| JET FLY-OVER AT 300m (1000 ft)                       | ROCK BAND                                      | 110                             |                        |                        |  |
| LOUD AUTO HORN                                       |                                                | 100                             |                        |                        |  |
| GAS LAWN MOWER AT 1m (3 ft)                          |                                                | 90                              |                        |                        |  |
| DIESEL TRUCK AT 15m (50 ft),<br>at 80 km/hr (50 mph) | FOOD BLENDER AT 1m (3 ft)                      | 80                              |                        |                        |  |
| NOISY URBAN AREA, DAYTIME                            | VACUUM CLEANER AT 3m (10 ft)                   | 70                              | LOUD                   | SPEECH<br>INTERFERENCE |  |
| HEAVY TRAFFIC AT 90m (300 ft)                        | NORMAL SPEECH AT 1m (3 ft)                     | 60                              |                        |                        |  |
| QUIET URBAN DAYTIME                                  | LARGE BUSINESS OFFICE                          | 50                              | MODERATE               | SLEEP                  |  |
| QUIET URBAN NIGHTTIME                                | THEATER, LARGE CONFERENCE<br>ROOM (BACKGROUND) | 40                              |                        | DISTURBANCE            |  |
| QUIET SUBURBAN NIGHTTIME                             | LIBRARY                                        | 30                              |                        |                        |  |
| QUIET RURAL NIGHTTIME                                | BEDROOM AT NIGHT, CONCERT<br>HALL (BACKGROUND) | 20                              | FAINT                  |                        |  |
|                                                      | BROADCAST/RECORDING<br>STUDIO                  | 10                              | VERY FAINT             | NO EFFECT              |  |
| LOWEST THRESHOLD OF HUMAN<br>HEARING                 | LOWEST THRESHOLD OF HUMAN<br>HEARING           | 0                               |                        |                        |  |

#### EXHIBIT 2-A: TYPICAL NOISE LEVELS

Source: Environmental Protection Agency Office of Noise Abatement and Control, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety (EPA/ONAC 550/9-74-004) March 1974.

## 2.1 RANGE OF NOISE

Since the range of intensities that the human ear can detect is so large, the scale frequently used to measure intensity is a scale based on multiples of 10, the logarithmic scale. The scale for measuring intensity is the decibel scale. Each interval of 10 decibels indicates a sound energy ten times greater than before, which is perceived by the human ear as being roughly twice as loud. (2) The most common sounds vary between 40 dBA (very quiet) to 100 dBA (very loud). Normal conversation at three feet is roughly at 60 dBA, while loud jet engine noises equate to 110 dBA

at approximately 1,000 feet, which can cause serious discomfort. (3) Another important aspect of noise is the duration of the sound and the way it is described and distributed in time.

## 2.2 NOISE DESCRIPTORS

Environmental noise descriptors are generally based on averages, rather than instantaneous, noise levels. The most used metric is the equivalent level ( $L_{eq}$ ). Equivalent sound levels are not measured directly but are calculated from sound pressure levels typically measured in A-weighted decibels (dBA). The equivalent sound level ( $L_{eq}$ ) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period and is commonly used to describe the "average" noise levels within the environment.

Peak hour or average noise levels, while useful, do not completely describe a given noise environment. Noise levels lower than peak hour may be disturbing if they occur during times when quiet is most desirable, namely evening and nighttime (sleeping) hours. To account for this, the Community Noise Equivalent Level (CNEL), representing a composite 24-hour noise level is utilized. The CNEL is the weighted average of the intensity of a sound, with corrections for time of day, and averaged over 24 hours. The time-of-day corrections require the addition of 5 decibels to dBA L<sub>eq</sub> sound levels in the evening from 7:00 p.m. to 10:00 p.m., and the addition of 10 decibels to dBA L<sub>eq</sub> sound levels at night between 10:00 p.m. and 7:00 a.m. These additions are made to account for the noise sensitive time periods during the evening and night hours when noise can become more intrusive. CNEL does not represent the actual sound level heard at any time, but rather represents the total sound exposure. The County of Riverside relies on the 24-hour CNEL level to assess land use compatibility with transportation related noise sources.

## 2.3 SOUND PROPAGATION

When sound propagates over a distance, it changes in level and frequency content. The way noise reduces with distance depends on the following factors.

### 2.3.1 GEOMETRIC SPREADING

Sound from a localized source (i.e., a stationary point source) propagates uniformly outward in a spherical pattern. The sound level attenuates (or decreases) at a rate of 6 dB for each doubling of distance from a point source. Highways consist of several localized noise sources on a defined path and hence can be treated as a line source, which approximates the effect of several point sources. Noise from a line source propagates outward in a cylindrical pattern, often referred to as cylindrical spreading. Sound levels attenuate at a rate of 3 dB for each doubling of distance from a line source. (2)

### 2.3.2 GROUND ABSORPTION

The propagation path of noise from a highway to a receiver is usually very close to the ground. Noise attenuation from ground absorption and reflective wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is usually



sufficiently accurate for distances of less than 200 ft. For acoustically hard sites (i.e., sites with a reflective surface between the source and the receiver, such as a parking lot or body of water), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (i.e., those sites with an absorptive ground surface between the source and the receiver such as soft dirt, grass, or scattered bushes and trees), an excess ground attenuation value of 1.5 dB per doubling of distance is normally assumed. When added to the cylindrical spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dB per doubling of distance from a line source. (4)

#### 2.3.3 ATMOSPHERIC EFFECTS

Receivers located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Sound levels can be increased at large distances (e.g., more than 500 feet) due to atmospheric temperature inversion (i.e., increasing temperature with elevation). Other factors such as air temperature, humidity, and turbulence can also have significant effects. (2)

#### 2.3.4 Shielding

A large object or barrier in the path between a noise source and a receiver can substantially attenuate noise levels at the receiver. The amount of attenuation provided by shielding depends on the size of the object and the frequency content of the noise source. Shielding by trees and other such vegetation typically only has an "out of sight, out of mind" effect. That is, the perception of noise impact tends to decrease when vegetation blocks the line-of-sight to nearby residents. However, for vegetation to provide a substantial, or even noticeable, noise reduction, the vegetation area must be at least 15 feet in height, 100 feet wide and dense enough to completely obstruct the line-of-sight between the source and the receiver. This size of vegetation may provide up to 5 dBA of noise reduction. The Federal Highway Administration (FHWA) does not consider the planting of vegetation to be a noise abatement measure. (5)

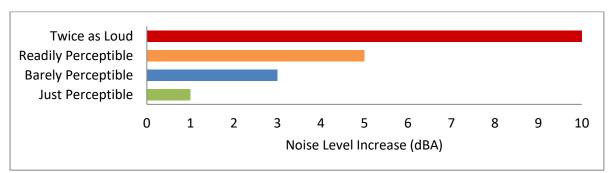
## 2.4 NOISE CONTROL

Noise control is the process of obtaining an acceptable noise environment for an observation point or receiver by controlling the noise source, transmission path, receiver, or all three. This concept is known as the source-path-receiver concept. In general, noise control measures can be applied to these three elements.

### **2.5** Noise Barrier Attenuation

Effective noise barriers can reduce noise levels by 10 to 15 dBA, cutting the loudness of traffic noise in half. A noise barrier is most effective when placed close to the noise source or receiver. Noise barriers, however, do have limitations. For a noise barrier to work, it must block the line-of-sight path of sound from the noise source.




## 2.6 LAND USE COMPATIBILITY WITH NOISE

Some land uses are more tolerant of noise than others. For example, schools, hospitals, churches, and residences are more sensitive to noise intrusion than are commercial or industrial developments and related activities. As ambient noise levels affect the perceived amenity or livability of a development, so too can the mismanagement of noise impacts impair the economic health and growth potential of a community by reducing the area's desirability as a place to live, shop and work. For this reason, land use compatibility with the noise environment is an important consideration in the planning and design process. The FHWA encourages State and Local government to regulate land development in such a way that noise-sensitive land uses are either prohibited from being located adjacent to a highway, or that the developments are planned, designed, and constructed in such a way that noise impacts are minimized. (6)

### 2.7 COMMUNITY RESPONSE TO NOISE

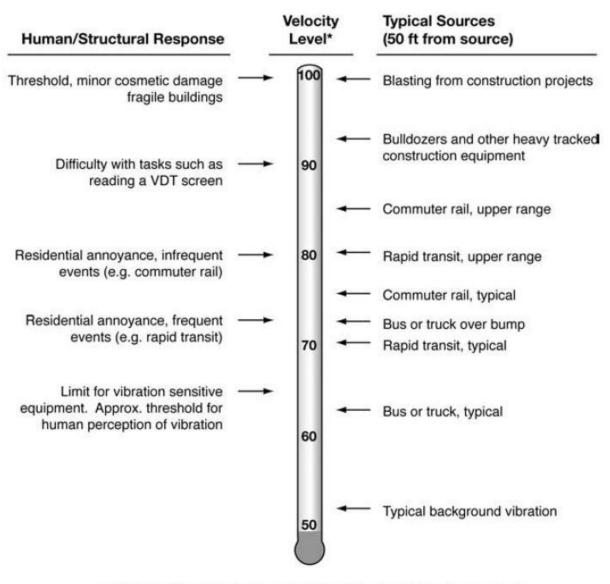
Approximately sixteen percent of the population has a very low tolerance for noise and will object to any noise not of their making. Consequently, even in the quietest environment, some complaints may occur. Twenty to thirty percent of the population will not complain even in very severe noise environments. (7 pp. 8-6) Thus, a variety of reactions can be expected from people exposed to any given noise environment.

Surveys have shown that community response to noise varies from no reaction to vigorous action for newly introduced noises averaging from 10 dB below existing to 25 dB above existing. (8) According to research originally published in the Noise Effects Handbook (7), the percentage of high annoyance ranges from approximately 0 percent at 45 dB or less, 10 percent are highly annoyed around 60 dB, and increases rapidly to approximately 70 percent being highly annoyed at approximately 85 dB or greater. Despite this variability in behavior on an individual level, the population can be expected to exhibit the following responses to changes in noise levels as shown on Exhibit 2-B. A change of 3 dBA is considered barely perceptible, and changes of 5 dBA are considered readily perceptible. (4)








#### 2.8 VIBRATION

Per the Federal Transit Administration (FTA) *Transit Noise Impact and Vibration Impact Assessment Manual* (8), vibration is the periodic oscillation of a medium or object. The rumbling sound caused by the vibration of room surfaces is called structure-borne noise. Sources of ground-borne vibrations include natural phenomena (e.g., earthquakes, volcanic eruptions, sea waves, landslides) or human-made causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous, such as factory machinery, or transient, such as explosions. As is the case with airborne sound, ground-borne vibrations may be described by amplitude and frequency.

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings but is not always suitable for evaluating human response (annoyance) because it takes some time for the human body to respond to vibration signals. Instead, the human body responds to average vibration amplitude often described as the root mean square (RMS). The RMS amplitude is defined as the average of the squared amplitude of the signal and is most frequently used to describe the effect of vibration on the human body. Decibel notation (VdB) is commonly used to measure RMS. Decibel notation (VdB) serves to reduce the range of numbers used to describe human response to vibration. Typically, ground-borne vibration generated by man-made activities attenuates rapidly with distance from the source of the vibration. Sensitive receivers for vibration include structures (especially older masonry structures), people (especially residents, the elderly, and sick), and vibration-sensitive equipment and/or activities.

The background vibration-velocity level in residential areas is generally 50 VdB. Ground-borne vibration is normally perceptible to humans at approximately 65 VdB. For most people, a vibration-velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If a roadway is smooth, the ground-borne vibration is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration-velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings. Exhibit 2-C illustrates common vibration sources and the human and structural response to ground-borne vibration.





#### EXHIBIT 2-C: TYPICAL LEVELS OF GROUND-BORNE VIBRATION

\* RMS Vibration Velocity Level in VdB relative to 10<sup>-6</sup> inches/second

Source: Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment Manual.



# **3 REGULATORY SETTING**

To limit population exposure to physically and/or psychologically damaging as well as intrusive noise levels, the federal government, the State of California, various county governments, and most municipalities in the state have established standards and ordinances to control noise. In most areas, automobile and truck traffic is the major source of environmental noise. Traffic activity generally produces an average sound level that remains constant with time. Air and rail traffic, and commercial and industrial activities are also major sources of noise in some areas. Federal, state, and local agencies regulate different aspects of environmental noise. Federal and state agencies generally set noise standards for mobile sources such as aircraft and motor vehicles, while regulation of stationary sources is left to local agencies.

### 3.1 STATE OF CALIFORNIA NOISE REQUIREMENTS

The State of California regulates freeway noise, sets standards for sound transmission, provides occupational noise control criteria, identifies noise standards, and provides guidance for local land use compatibility. State law requires that each county and city adopt a General Plan that includes a Noise Element which is to be prepared per guidelines adopted by the Governor's Office of Planning and Research (OPR). (9) The purpose of the Noise Element is to *limit the exposure of the community to excessive noise levels*. In addition, the California Environmental Quality Act (CEQA) requires that all known environmental effects of a project be analyzed, including environmental noise impacts.

### 3.2 COUNTY OF RIVERSIDE GENERAL PLAN NOISE ELEMENT

The County of Riverside has adopted a Noise Element of the General Plan to control and abate environmental noise, and to protect the citizens of the County of Riverside from excessive exposure to noise. (10) The Noise Element specifies the maximum allowable exterior noise levels for new developments impacted by transportation noise sources such as arterial roads, freeways, airports, and railroads. In addition, the Noise Element identifies several polices to minimize the impacts of excessive noise levels throughout the community and establishes noise level requirements for all land uses. To protect County of Riverside residents from excessive noise, the Noise Element contains the following policies related to the Project:

- N 1.1 Protect noise-sensitive land uses from high levels of noise by restricting noise-producing land uses from these areas. If the noise-producing land use cannot be relocated, then noise buffers such as setbacks, landscaping, or block walls shall be used.
- N 1.3 Consider the following uses noise-sensitive and discourage these uses in areas in excess of 65 CNEL:
  - Schools
  - Hospitals
  - Rest Homes
  - Long Term Care Facilities
  - Mental Care Facilities
  - Residential Uses
  - Libraries



- Passive Recreation Uses
- Places of Worship
- N 1.5 Prevent and mitigate the adverse impacts of excessive noise exposure on the residents, employees, visitors, and noise-sensitive uses of Riverside County.
- *N* 4.1 *Prohibit facility-related noise, received by any sensitive use, from exceeding the following worst-case noise levels:* 
  - a. 45 dBA 9-minute  $L_{eq}$  between 10:00 p.m. and 7:00 a.m.;
  - b. 65 dBA 9-minute L<sub>eq</sub> between 7:00 a.m. and 10:00 p.m.
- N 13.1 Minimize the impacts of construction noise on adjacent uses within acceptable standards.
- N 13.2 Ensure that construction activities are regulated to establish hours of operation in order to prevent and/or mitigate the generation of excessive or adverse impacts on surrounding areas.
- N 13.3 Condition subdivision approval adjacent to developed/occupied noise-sensitive land uses (see policy N 1.3) by requiring the developer to submit a construction-related noise mitigation plan to the [County] for review and approval prior to issuance of a grading permit. The plan must depict the location of construction equipment and how the noise from this equipment will be mitigated during construction of this project, through the use of such methods as:
  - *i.* Temporary noise attenuation fences;
  - *ii.* Preferential location and equipment; and
  - *iii.* Use of current noise suppression technology and equipment.
- N 14.1 Enforce the California Building Standards that sets standards for building construction to mitigate interior noise levels to the tolerable 45 CNEL limit. These standards are utilized in conjunction with the Uniform Building Code by the County's Building Department to ensure that noise protection is provided to the public. Some design features may include extra-dense insulation, double-paned windows, and dense construction materials.
- N 16.3 Prohibit exposure of residential dwellings to perceptible ground vibration from passing trains as perceived at the ground or second floor. Perceptible motion shall be presumed to be a motion velocity of 0.01 inches/second over a range of 1 to 100 Hz.

To ensure noise-sensitive land uses are protected from high levels of noise (N 1.1), Table N-1 of the Noise Element identifies guidelines to evaluate proposed developments based on exterior and interior noise level limits for land uses and requires a noise analysis to determine needed mitigation measures if necessary. The Noise Element identifies residential use as a noise-sensitive land use (N 1.3) and discourages new development in areas with transportation related levels of 65 dBA CNEL or greater existing ambient noise levels. To prevent and mitigate noise impacts for its residents (N 1.5), County of Riverside requires exterior noise attenuation measures for sensitive land use exposed to transportation related noise levels higher than 65 dBA CNEL. In addition, the County of Riverside had adopted an interior noise level limit of 45 dBA CNEL (N 14.1).

Policy N 4.1 of the Noise Element sets a stationary-source exterior noise limit to not to be exceeded for a cumulative period of more than ten minutes in any hour of 65 dBA  $L_{eq}$  for daytime hours of 7:00 a.m. to 10:00 p.m., and 45 dBA  $L_{eq}$  during the noise-sensitive nighttime hours of 10:00 p.m. to 7:00 a.m. To prevent high levels of construction noise from impacting noise-



sensitive land uses, policies N 13.1 through 13.3 identify construction noise mitigation requirements for new development located near existing noise-sensitive land uses. (10)

#### **3.2.1** LAND USE COMPATIBILITY GUIDELINES

The noise criteria identified in the County of Riverside Noise Element (Table N-1) are guidelines to evaluate the land use compatibility of transportation related noise. The compatibility criteria, shown on Exhibit 3-A, provides the County with a planning tool to gauge the compatibility of land uses relative to existing and future exterior noise levels.

The Land Use Compatibility for Community Noise Exposure matrix describes categories of compatibility and not specific noise standards. Non-noise sensitive warehouse/industrial use of the Project is considered normally acceptable with unmitigated exterior noise levels of less than 75 dBA CNEL based on the Industrial, Manufacturing, Utilities, Agriculture land use compatibility criteria shown on Exhibit 3-A. The proposed Park is considered normally acceptable with unmitigated exterior noise levels of less than 70 dBA CNEL. Noise sensitive residential designated land uses in the Project study area are considered normally acceptable with exterior noise levels below 60 dBA CNEL, and conditionally acceptable with exterior noise levels of up to 70 dBA CNEL. For conditionally acceptable exterior noise levels, of up to 80 dBA CNEL for Project warehouse/industrial use land uses, new construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and the needed noise insulation features are included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice. (10)

### **3.3.2** COUNTY OF RIVERSIDE STATIONARY NOISE STANDARDS

The County of Riverside has set stationary-source hourly average  $L_{eq}$  exterior noise limits to control loading dock activity, parking lot vehicle activities, roof-top air conditioning units, trash enclosure activity, truck movements, sports field activities, basketball court activity, dog park activity, and outdoor play area associated with the development of the proposed Mead Valley Commerce Center. The County considers noise generated using motor vehicles to be a stationary noise source when operated on private property such as at a loading dock. These facility-related noises, as projected to any portion of any surrounding property containing a *habitable dwelling*, *hospital*, *school*, *library or nursing home*, must not exceed the following worst-case noise levels.

Policy N 4.1 of the County of Riverside General Plan Noise Element sets a stationary-source average  $L_{eq}$  exterior noise limit not to be exceeded for a cumulative period of more than ten minutes in any hour of 65 dBA  $L_{eq}$  for daytime hours of 7:00 a.m. to 10:00 p.m., and 45 dBA  $L_{eq}$  during the noise-sensitive nighttime hours of 10:00 p.m. to 7:00 a.m. (10)

The County of Riverside County Code Section 9.52.040 *General sound level standards* (included in Appendix 3.1) summarizing Ordinance No. 847 *Regulating Noise* identify lower, more restrictive exterior noise level standards, which for the purpose of this report, are used to evaluate potential Project-related operational noise level limits instead of the higher General Plan exterior noise level standards previously identified. The County of Riverside County Code identifies residential exterior noise level limits of 55 dBA L<sub>eq</sub> during the daytime hours of 7:00 a.m. to 10:00 p.m., and 45 dBA L<sub>eq</sub> during the noise-sensitive nighttime hours of 10:00 p.m. to



7:00 a.m., commercial exterior noise level limits of 65 dBA Leq during the daytime hours, and 55 dBA Leq during the noise-sensitive nighttime hours, and public facility exterior noise level limits of 65 dBA L<sub>eq</sub> during the daytime hours, and 45 dBA L<sub>eq</sub> during the noise-sensitive nighttime hours. (11).

| LAND USE CATEGORY                                                                                                                               | COMMUNITY                                                                                                                                  | ( NOI | ISE EX            | POSURI                                                              | E LEVEI    | Ldn or       | CNEL, dBA                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|---------------------------------------------------------------------|------------|--------------|-----------------------------------------------------------------------------------------|
|                                                                                                                                                 | 5                                                                                                                                          | 55    | 60                | 65                                                                  | 70         | 75           | 80                                                                                      |
| Desta des                                 |                                                                                                                                            | I     | -1                | 1                                                                   | 1          | 1            | 1                                                                                       |
| Residential-Low Density<br>Single Family, Duplex, Mobile                                                                                        | Homos                                                                                                                                      | r     |                   |                                                                     |            |              |                                                                                         |
| Single Family, Duplex, Mobile                                                                                                                   | nomes                                                                                                                                      | -     | T                 |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| <b>Residential-Multiple Family</b>                                                                                                              |                                                                                                                                            | -     | -                 |                                                                     |            |              |                                                                                         |
| 1                                                                                                                                               | 1                                                                                                                                          |       |                   | - C.                                                                |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              | -                                                                                       |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Transient Lodging-Motels, Ho                                                                                                                    | otels                                                                                                                                      | r –   | -                 |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       | -                 | 1                                                                   |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Schools, Libraries, Churches,                                                                                                                   | Usenitals                                                                                                                                  | I     |                   |                                                                     |            |              |                                                                                         |
| Nursing Homes                                                                                                                                   | nospitais,                                                                                                                                 | I I   | 1                 |                                                                     |            |              |                                                                                         |
| turing nomes                                                                                                                                    |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Auditoriums, Concert Halls, A                                                                                                                   | Amphitheaters                                                                                                                              |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 | -                                                                                                                                          |       |                   |                                                                     | T          | -            |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| 2                                                                                                                                               |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Sports Arena, Outdoor Specta                                                                                                                    | itor Sports                                                                                                                                |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            | 1            | 1                                                                                       |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Playgrounds, Neighborhood P                                                                                                                     | arks                                                                                                                                       | I     |                   |                                                                     | -          |              |                                                                                         |
| i mygrounds, i teignoor nood i                                                                                                                  |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Golf Courses, Riding Stables,                                                                                                                   | Water Recreation,                                                                                                                          | r     | -                 |                                                                     | -          |              | _                                                                                       |
| Cemeteries                                                                                                                                      |                                                                                                                                            |       |                   |                                                                     |            | T            |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Office Buildings, Businesses, G                                                                                                                 | Commorcial                                                                                                                                 | I     | _                 |                                                                     |            |              |                                                                                         |
| and Professional                                                                                                                                | commercial,                                                                                                                                | 1     | T                 | 1                                                                   |            | -            |                                                                                         |
| and Trofessionar                                                                                                                                |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Industrial, Manufacturing, Ut                                                                                                                   | tilities,                                                                                                                                  |       |                   |                                                                     |            |              |                                                                                         |
| Agriculture                                                                                                                                     |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     | -          |              |                                                                                         |
|                                                                                                                                                 |                                                                                                                                            |       |                   |                                                                     |            |              |                                                                                         |
| Legend:                                                                                                                                         |                                                                                                                                            |       | 1                 | 1                                                                   | 1          | 1            |                                                                                         |
| Normally Acceptable:                                                                                                                            | Conditionally Acceptable:                                                                                                                  |       | rmally Unac       |                                                                     | amanally   | Clearly U    | nacceptable:                                                                            |
| Specified land use is satisfactory based upon<br>the assumption that any buildings involved are<br>of normal conventional construction, without | New construction or development should be<br>undertaken only after a detailed analysis of<br>the and the set                               | be di | scouraged. If no  | development should<br>w construction or d<br>led analysis of the n  | evelopment | generally no | ction or development should<br>t be undertaken. Construction                            |
| of normal conventional construction, without<br>any special noise insulation requirements.                                                      | the noise reduction requirements is made and<br>needed noise insulation features included in<br>the design. Conventional construction, but | redu  | ction requirement | ted analysis of the r<br>its must be made wi<br>res included in the | th needed  | acceptable w | e the indoor environment<br>ould be prohibitive and the<br>ronment would not be usable. |
| Source: California Office of Noise Control                                                                                                      | with closed windows and fresh air supply<br>systems or air conditioning will normally<br>suffice. Outdoor environment will seem noisy      | Outd  | loor areas must b | e shielded.                                                         | en en      | oundoor chvi | romment would not be usable.                                                            |

#### EXHIBIT 3-A: LAND USE COMPATIBILITY FOR COMMUNITY NOISE EXPOSURE

Source: County of Riverside General Plan Noise Element, Table N-1.



Based on several discussions with the County of Riverside Department of Environmental Health (DEH), Office of Industrial Hygiene (OIH), it is important to recognize that the County of Riverside County Code noise level standards, incorrectly identify maximum noise level (L<sub>max</sub>) standards that should instead reflect the average L<sub>eq</sub> noise levels. Moreover, the County of Riverside DEH OIH's April 15<sup>th</sup>, 2015, *Requirements for determining and mitigating, non-transportation noise source impacts to residential properties* also identifies operational (stationary-source) noise level limits using the L<sub>eq</sub> metric, consistent with the direction of the County of Riverside General Plan guidelines and standards provided in the Noise Element. Therefore, this report has been prepared consistent with direction of the County of Riverside DEH OIH guidelines and standards using the average L<sub>eq</sub> noise level metric for stationary-source (operational) noise level evaluation.

## **3.3 CONSTRUCTION NOISE STANDARDS**

The County of Riverside does not establish quantitative construction noise standards, instead the County has established limits to the hours of construction activities. Riverside County Ordinance No. 847 Regulating Noise Section 2i (Code Section 9.52.020[I]) indicates that noise associated with any private construction activity located within one-quarter of a mile from an inhabited dwelling is considered exempt between the hours of 6:00 a.m. and 6:00 p.m., during the months of June through September, and 7:00 a.m. and 6:00 p.m., during the months of October through May. (11) Neither the County's General Plan nor the County Code establish numeric maximum acceptable construction source noise levels at potentially affected receivers for CEQA analysis purposes.

Previously approved County of Riverside noise impact analysis reports prepared by Urban Crossroads, Inc. relied on a less restrictive 85 dBA L<sub>eq</sub> construction noise level threshold adopted from the *Criteria for Recommended Standard: Occupational Noise Exposure* prepared by the National Institute for Occupational Safety and Health (NIOSH). (12) A division of the U.S. Department of Health and Human Services, NIOSH identifies a noise level threshold based on the duration of exposure to the source. The NIOSH construction-related noise level threshold starts at 85 dBA for more than eight hours per day, and for every 3 dBA increase, the exposure time is cut in half. This results in noise level thresholds of 88 dBA for more than four hours per day, 92 dBA for more than one hour per day, 96 dBA for more than 30 minutes per day, and up to 100 dBA for more than 15 minutes per day. (12)

To prevent long periods of exposure to high noise levels, the Occupational Safety and Health Administration (OSHA) requires hearing protection be provided by employers in workplaces where the noise levels may, endanger the hearing of their employees, such as construction equipment operators. Standard 29 CFR, Part 1910 indicates the noise levels under which a hearing conservation program is required to be provided to workers exposed to high noise levels. (13) The noise analysis prepared by Urban Crossroads, Inc. does not evaluate the noise exposure of construction workers within the Project site based on CEQA requirements, and instead, evaluates the Project-related construction noise levels at the nearby sensitive receiver locations in the Project study area. Further, periodic exposure to high noise levels in short duration, such as Project construction, is typically considered an annoyance and not impactful to human health. It would take several years of exposure to high noise levels to result in hearing impairment. (14)



Therefore, Urban Crossroads, Inc. continues to evaluate other agencies construction noise level limits to find a more appropriate threshold for assessing environmental impacts.

Initially, we reviewed Caltrans guidance as a state agency often cited as reference in CEQA documents, according to Caltrans guidance, construction noise impacts shall not exceed 86 dBA L<sub>max</sub> at 50 feet from the job site activities between the hours of 9:00 p.m. to 6:00 a.m. (15) Equipment and operations are usually at or less than that level, except for blasting, pile drivers (impact or vibratory), hoe rams, pavement breakers for crack-and-seat operations, and other impact equipment. (2) The Caltrans guidance also suggests that detailed discussions of typical construction equipment noise levels are probably not necessary unless the project involves unusually sensitive receptors or nighttime work or if the project is controversial. (2) Since this limitation is only associated with nighttime activities and does not address the noise level at the point of concern, e.g., a residence, the Caltrans construction criteria was similarly not considered as the appropriate threshold for environmental review.

Further research indicated U.S. Department of Transportation guidance for construction published by the Federal Transit Administration (FTA) is appropriate and based on well documented studies of the effects of construction noise. According to the FTA Transit Noise and Vibration Impact Assessment Manual, local noise ordinances are typically not very useful in evaluating construction noise impacts. They usually relate to nuisance and hours of allowed activity, and sometimes specify limits in terms of maximum levels, but are generally not practical for assessing the impact of a construction project. Project construction noise criteria should account for the existing noise environment, the absolute noise levels during construction activities, the duration of the construction, and the adjacent land use. (8 p. 172) Due to the lack of standardized construction noise thresholds, the FTA provides guidelines that can be considered reasonable criteria for construction noise assessments. The FTA identifies two types of construction noise assessment criteria, general and detailed. For general construction noise assessments, the analysis is limited to the two noisiest pieces of equipment with an hourly daytime exterior noise level threshold for residential land use of 90 dBA L<sub>eq(1hr)</sub>. (8 p. 179) However, for long-term construction projects that would expose sensitive receivers to noise for extended periods of time, the FTA considers a daytime 8-hour average exterior construction noise level of 80 dBA Leg(8hr)

Therefore, to evaluate whether the Project will generate potentially significant short-term noise levels at nearby noise sensitive residential receiver locations, a daytime exterior construction noise level of 80 dBA L<sub>eq</sub> is used as a reasonable threshold to assess construction noise level impacts based on the FTA detailed analysis construction noise criteria with a nighttime exterior construction noise level of 70 dBA L<sub>eq</sub>. (8 p. 179)

## **3.4** CONSTRUCTION VIBRATION STANDARDS

Construction activity can result in varying degrees of ground-borne vibration, depending on the equipment and methods used, distance to the affected structures and soil type. Construction vibration is generally associated with pile driving and rock blasting. Other construction equipment such as air compressors, light trucks, hydraulic loaders, etc., generates little or no ground vibration (8). To analyze vibration impacts originating from the operation and



construction of the Mead Valley Commerce Center, vibration-generating activities are appropriately evaluated against standards established under the Municipal Code if such standards exist. However, the County of Riverside does not identify specific construction vibration level limits. Therefore, for analysis purposes, the Caltrans *Transportation and Construction Vibration Guidance Manual*, (16 p. 38) Table 19, vibration damage are used in this noise study to assess potential temporary construction-related impacts at adjacent building locations. The nearest noise sensitive buildings adjacent to the Project site can best be described as "older residential structures" with a maximum acceptable continuous vibration threshold of 0.3 PPV (in/sec).

### **3.5** CONSTRUCTION BLASTING STANDARDS

The construction of the proposed Project will include blasting of hard rock areas, which is a major source of potential noise and vibration impacts to nearby residential receivers. Since the County of Riverside General Plan and County Code of Ordinances do not identify specific construction noise level limits for blasting activities, the Office of Surface Mining Reclamation and Enforcement (OSMRE) and the Code of Federal Regulations (CFR) Airblast Limits (30 CFR 816.67[b]) are used. Section 816.2 of Title 30 of the CFR indicates that the blasting regulations are intended to ensure that all surface mining activities are conducted in a manner which preserves and enhances environmental and other values in accordance with the Act. (2)

While the OSMRE regulates mining activities, the blasting activities at the Project site represent surface mining activities which, to satisfy California Environmental Quality Act (CEQA) guidelines, must demonstrate that they do not adversely affect the existing environment. Therefore, the OSMRE blasting regulations are applied to the blasting activities anticipated at the Project site. For mining operations, which require larger blasts than that of the Project, the lowest noise level threshold identified in the CFR is a maximum noise level 129 dBA  $L_{max}$  for blasting activity measured at the location of any dwelling, public building, school, church, or community or institutional building outside the permit area. (17) The  $L_{max}$  threshold used in the noise analysis is suitable for single-event noise levels, such as blasting activities, since other noise regulations in  $L_{eq}$  (energy average), for example, average out a reference noise level over a given time period which reduces the single-event noise level over a longer period of time. The  $L_{max}$ , therefore, allows for the shorter-duration single-event noise levels to be evaluated against an appropriate threshold.

## 3.6 MARCH AIR RESERVE BASE/INLAND PORT AIRPORT LAND USE COMPATIBILITY

The March Air Reserve Base/Inland Port Airport (MARB/IPA) runway is located approximately 1.7 miles northeast of the Project site. The *Riverside County Airport Land Use Compatibility Plan Policy Document* (RC ALUCP) includes the policies for determining the land use compatibility of the Project. Policy 4.1.5 *Noise Exposure for Other Land Uses* of the RC ALUCP requires that land uses demonstrate compatibility with the acceptable noise levels on Table 2B. The Table 2B *Supporting Compatibility Criteria: Noise* matrix is shown on Exhibit 3-B and indicates that the Project's industrial land uses experience *clearly acceptable* exterior noise levels below 60 dBA CNEL. *Normally acceptable* noise levels for industrial land use range from 60 to 65 dBA CNEL.



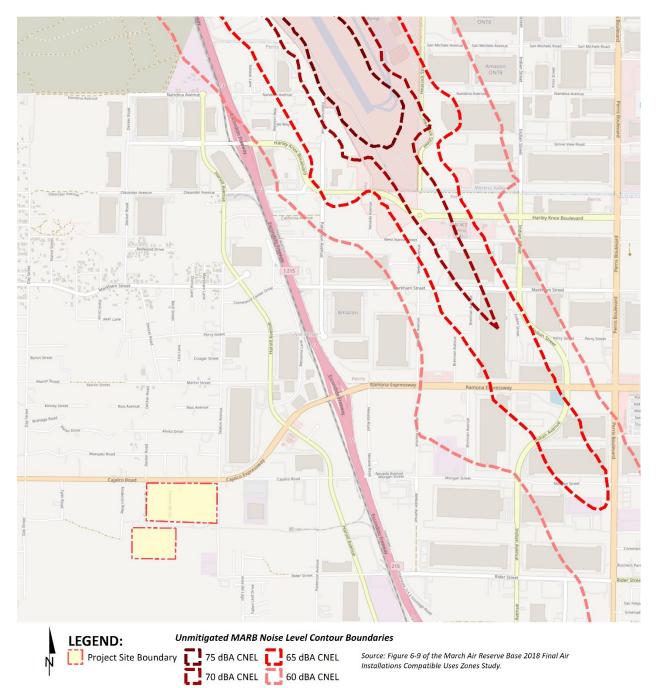
*Marginally acceptable* noise levels at industrial land uses range from 65 to 70 dBA CNEL. (13) The Project Park uses are considered *clearly acceptable* with exterior noise levels of up to 55 dBA CNEL, *conditionally acceptable* with exterior noise levels between 55-65 dBA CNEL and *marginally acceptable* with exterior noise levels above 65 dBA CNEL.

|                                                                       | CNEL (dB) |       |       |       |       |  |
|-----------------------------------------------------------------------|-----------|-------|-------|-------|-------|--|
| Land Use Category                                                     | 50–55     | 55–60 | 60–65 | 65–70 | 70–75 |  |
| Residential *                                                         |           |       |       |       |       |  |
| single-family, nursing homes, mobile homes                            | ++        | 0     | _     |       |       |  |
| multi-family, apartments, condominiums                                | ++        | +     | 0     |       |       |  |
| Public                                                                |           |       |       |       |       |  |
| schools, libraries, hospitals                                         | +         | ο     | _     |       |       |  |
| churches, auditoriums, concert halls                                  | +         | 0     | о     | _     |       |  |
| transportation, parking, cemeteries                                   | ++        | ++    | ++    | +     | 0     |  |
| Commercial and Industrial                                             |           |       |       |       |       |  |
| offices, retail trade                                                 | ++        | +     | ο     | 0     | _     |  |
| service commercial, wholesale trade,<br>warehousing, light industrial | ++        | ++    | +     | 0     | 0     |  |
| general manufacturing, utilities,<br>extractive industry              | ++        | ++    | ++    | +     | +     |  |
| Agricultural and Recreational                                         |           |       |       |       |       |  |
| cropland                                                              | ++        | ++    | ++    | ++    | +     |  |
| livestock breeding                                                    | ++        | +     | 0     | 0     | _     |  |
| parks, playgrounds, zoos                                              | ++        | +     | +     | 0     | _     |  |
| golf courses, riding stables, water recreation                        | ++        | ++    | +     | 0     | 0     |  |
| outdoor spectator sports                                              | ++        | +     | +     | 0     | _     |  |
| amphitheaters                                                         | +         | 0     | -     |       |       |  |

#### EXHIBIT 3-B: RC ALUCP SUPPORTING COMPATIBILITY CRITERIA: NOISE

#### Land Use Acceptability

#### Interpretation/Comments


| essentially no                                                     |
|--------------------------------------------------------------------|
|                                                                    |
| ivities may<br>ons upon                                            |
| activities and<br>n the<br>h provide<br>that windows<br>scouraged. |
| ties. Noise<br>nsulation<br>and/or involve<br>oided.               |
| structural<br>nd use should<br>ed if outdoor                       |
| ns<br>n t<br>tha<br>scc<br>ties<br>nsu<br>and<br>stru<br>nd        |

\* Subtract 5 dB for low-activity outlying airports (Chiriaco Summit and Desert Center)

Source: Riverside County Airport Land Use Compatibility Plan, Table 2B.



The 70, 65 and 60 dBA CNEL noise contour boundaries used to determine the potential aircraftrelated noise impacts at the Project site are found on Figure 6-9 of the *March Air Reserve Base 2018 Final Air Installations Compatible Uses Zones Study* and are presented on Exhibit 3-C of this report. (19) Based on the 2018 noise level contours for the MARB/IPA, the Project development area is located outside the 60 dBA CNEL noise level contour boundaries and the Project's industrial and park land uses are considered *clearly acceptable*.



#### EXHIBIT 3-C: MARB/IPA FUTURE AIRPORT NOISE CONTOURS



This page intentionally left blank



# 4 SIGNIFICANCE CRITERIA

The following significance criteria are based on currently adopted guidance provided by Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1) For the purposes of this report, impacts would be potentially significant if the Project results in or causes:

- A. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- B. Generation of excessive ground-borne vibration or ground-borne noise levels?
- C. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

## 4.1 Noise Level Increases (Threshold A)

Noise level increases resulting from the Project are evaluated based on the Appendix G CEQA Guidelines described above at the closest sensitive receiver locations. Under CEQA, consideration must be given to the magnitude of the increase, the existing baseline ambient noise levels, and the location of noise-sensitive receivers to determine if a noise increase represents a significant adverse environmental impact. This approach recognizes *that there is no single noise increase that renders a noise impact significant*. (18) This is primarily because of the wide variation in individual thresholds of annoyance and differing individual experiences with noise. Thus, an important way of determining a person's subjective reaction to a new noise is the comparison of it to the existing environment to which one has adapted—the so-called *ambient* noise level, the less acceptable the new noise level will typically be judged.

#### 4.1.1 NOISE-SENSITIVE RECEIVERS

The Federal Interagency Committee on Noise (FICON) (19) developed guidance to be used for the assessment of project-generated increases in noise levels that consider the ambient noise level. The FICON recommendations are based on studies that relate aircraft noise levels to the percentage of persons highly annoyed by aircraft noise. Although the FICON recommendations were specifically developed to assess aircraft noise impacts, these recommendations are often used in environmental noise impact assessments involving the use of cumulative noise exposure metrics, such as the average-daily noise level (CNEL) and equivalent continuous noise level (L<sub>eq</sub>).

As previously stated, the approach used in this noise study recognizes *that there is no single noise increase that renders a noise impact significant*, based on a 2008 California Court of Appeal ruling on Gray v. County of Madera. (18) For example, if the ambient noise environment is quiet (<60 dBA) and the new noise source greatly increases the noise levels, an impact may occur if the noise criteria may be exceeded. Therefore, for this analysis, a *readily perceptible* 5 dBA or greater project-related noise level increase is considered a significant impact when the without project noise levels are below 60 dBA. Per the FICON, in areas where the without project noise levels

range from 60 to 65 dBA, a 3 dBA *barely perceptible* noise level increase appears to be appropriate for most people. When the without project noise levels already exceed 65 dBA, any increase in community noise louder than 1.5 dBA or greater is considered a significant impact if the noise criteria for a given land use is exceeded, since it likely contributes to an existing noise exposure exceedance. The FICON guidance provides an established source of criteria to assess the impacts of substantial temporary or permanent increase in baseline ambient noise levels. Based on the FICON criteria, the amount to which a given noise level increase is considered acceptable is reduced when the without Project (baseline) noise levels are already shown to exceed certain land-use specific exterior noise level criteria. The specific levels are based on typical responses to noise level increases of 5 dBA or *readily perceptible*, 3 dBA or *barely perceptible*, and 1.5 dBA depending on the underlying without Project noise levels for noise sensitive uses. These levels of increases and their perceived acceptance at noise sensitive receiver locations are consistent with guidance provided by both the Federal Highway Administration (4 p. 9) and Caltrans (20 p. 2\_48).

#### 4.1.2 NON-NOISE-SENSITIVE RECEIVERS

The County of Riverside General Plan Noise Element, Table N-1, *Land Use Compatibility for Community Noise Exposure* was used to establish the satisfactory noise levels of significance for non-noise-sensitive land uses in the Project study area. As previously shown on Exhibit 3-A, the *normally acceptable* exterior noise level for non-noise-sensitive warehouse/industrial land uses are 75 dBA CNEL. Noise levels greater than 75 dBA CNEL are considered *conditionally acceptable* per the *Land Use Compatibility for Community Noise Exposure*. (10)

To determine if Project-related traffic noise level increases are significant at off-site non-noisesensitive land uses, a *barely perceptible* 3 dBA criteria is used. When the without Project noise levels are greater than the *normally acceptable* 75 dBA CNEL land use compatibility criteria, a *barely perceptible* 3 dBA or greater noise level increase is considered a significant impact since the noise level criteria is already exceeded. The noise level increases used to determine significant impacts for non-noise-sensitive land uses is generally consistent with the FICON noise level increase thresholds for noise-sensitive land uses but instead rely on the County of Riverside General Plan Noise Element, Table N-1, *Land Use Compatibility for Community Noise Exposure normally acceptable* 75 dBA CNEL exterior noise level criteria.

### 4.2 VIBRATION (THRESHOLD B)

As described in Section 3.4, the vibration impacts originating from the construction of Mead Valley Commerce Center, vibration-generating activities are appropriately evaluated using the Caltrans vibration damage thresholds to assess potential temporary construction-related impacts at adjacent building locations. The nearest noise sensitive buildings adjacent to the Project site can best be described as "older residential structures" with a maximum acceptable continuous vibration threshold of 0.3 PPV (in/sec).



## 4.3 CEQA GUIDELINES NOT FURTHER ANALYZED (THRESHOLD C)

The closest airport which would require additional noise analysis under CEQA Appendix G Guideline C is the MARB/IPA. As previously indicated in Section 3.6, the noise contour boundaries of MARB/IPA presented on Exhibit 3-C of this report show that the Project's industrial and park land uses are considered *normally acceptable* since the development area is located outside the 60 dBA CNEL contour. Therefore, the Project impacts are considered *less than significant,* and no further noise analysis is provided under CEQA Significance Criteria C.

#### 4.4 SIGNIFICANCE CRITERIA SUMMARY

Noise impacts shall be considered significant if any of the following occur as a direct result of the proposed development. Table 4-1 shows the significance criteria summary matrix that includes the allowable criteria used to identify potentially significant incremental noise level increases.

| Analysis            | Receiving<br>Land Use                |                                                   | Significance Criteria                         |                        |  |
|---------------------|--------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------|--|
|                     |                                      | Condition(s)                                      | Daytime                                       | Nighttime              |  |
| Off-Site<br>Traffic | Noise-<br>Sensitive <sup>1</sup>     | If ambient is < 60 dBA CNEL                       | ≥ 5 dBA CNEL Project increase                 |                        |  |
|                     |                                      | If ambient is 60 - 65 dBA CNEL                    | ≥ 3 dBA CNEL Project increase                 |                        |  |
|                     |                                      | If ambient is > 65 dBA CNEL                       | ≥ 1.5 dBA CNEL Project increase               |                        |  |
|                     | Non-Noise-<br>Sensitive <sup>2</sup> | If ambient is > 75 dBA CNEL                       | ≥ 3 dBA CNEL Project increase                 |                        |  |
| Operational         | Noise-<br>Sensitive                  | Residential Exterior Noise Level <sup>3</sup>     | 55 dBA L <sub>eq</sub>                        | 45 dBA L <sub>eq</sub> |  |
|                     |                                      | Public Facility Exterior Noise Level <sup>3</sup> | 65 dBA L <sub>eq</sub>                        | 45 dBA L <sub>eq</sub> |  |
|                     |                                      | If ambient is < 60 dBA Leq <sup>1</sup>           | $\geq$ 5 dBA L <sub>eq</sub> Project increase |                        |  |
|                     |                                      | If ambient is 60 - 65 dBA Leq <sup>1</sup>        | $\geq$ 3 dBA L <sub>eq</sub> Project increase |                        |  |
|                     |                                      | If ambient is > 65 dBA Leq <sup>1</sup>           | ≥ 1.5 dBA L <sub>eq</sub> Project increase    |                        |  |
| Construction        | Noise-<br>Sensitive                  | Noise Level Threshold <sup>4</sup>                | 80 dBA L <sub>eq</sub>                        | 70 dBA L <sub>eq</sub> |  |
|                     |                                      | Airblast Threshold <sup>5</sup>                   | 129 dBA L <sub>max</sub>                      | n/a                    |  |
|                     |                                      | Vibration Level Threshold <sup>6</sup>            | 0.3 PPV (in/sec)                              |                        |  |

#### TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY

<sup>1</sup> FICON, 1992.



<sup>&</sup>lt;sup>2</sup> County of Riverside General Plan Noise Element, Table N-1.

<sup>&</sup>lt;sup>3</sup> County of Riverside General Plan Municipal Code, Section 9.52.040.

<sup>&</sup>lt;sup>4</sup> Federal Transit Administration, Transit Noise and Vibration Impact Assessment Manual.

<sup>&</sup>lt;sup>5</sup> OSMRE and CFR lowest maximum Airblast Limit (30 CFR 816.67[b])

<sup>&</sup>lt;sup>6</sup> Caltrans Transportation and Construction Vibration Manual, April 2020 Table 19

<sup>&</sup>quot;Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

This page intentionally left blank



# 5 EXISTING NOISE LEVEL MEASUREMENTS

To assess the existing noise level environment, 24-hour noise level measurements were taken at seven locations in the Project study area. The receiver locations were selected to describe and document the existing noise environment within the Project study area. Exhibit 5-A provides the boundaries of the Project study area and the noise level measurement locations. To fully describe the existing noise conditions, noise level measurements were collected by Urban Crossroads, Inc. on Friday, April 21, 2023 and Wednesday, September 6, 2023. Appendix 5.1 includes study area photos.

### 5.1 MEASUREMENT PROCEDURE AND CRITERIA

To describe the existing noise environment, the hourly noise levels were measured during typical weekday conditions over a 24-hour period. By collecting individual hourly noise level measurements, it is possible to describe the equivalent daytime and nighttime hourly noise levels and calculate the 24-hour CNEL. The long-term noise readings were recorded using Piccolo Type 2 integrating sound level meter and dataloggers. The Piccolo sound level meters were calibrated using a Larson-Davis calibrator, Model CAL 150. All noise meters were programmed in "slow" mode to record noise levels in "A" weighted form. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (21)

### 5.2 NOISE MEASUREMENT LOCATIONS

The long-term noise level measurements were positioned as close to the nearest sensitive receiver locations as possible to assess the existing ambient hourly noise levels surrounding the Project site. Both Caltrans and the FTA recognize that it is not reasonable to collect noise level measurements that can fully represent every part of a private yard, patio, deck, or balcony normally used for human activity when estimating impacts for new development projects. This is demonstrated in the Caltrans general site location guidelines which indicate that *sites must be free of noise contamination by sources other than sources of interest. Avoid sites located near sources such as barking dogs, lawnmowers, pool pumps, and air conditioners unless it is the express intent of the analyst to measure these sources. (2) Further, FTA guidance states, that it is not necessary nor recommended that existing noise exposure be determined by measuring at every noise-sensitive location in the project area. Rather, the recommended approach is to characterize the noise environment for clusters of sites based on measurements or estimates at representative locations in the community. (8)* 

Based on recommendations of Caltrans and the FTA, it is not necessary to collect measurements at each individual building or residence, because each receiver measurement represents a group of buildings that share acoustical equivalence. (8) In other words, the area represented by the receiver shares similar shielding, terrain, and geometric relationship to the reference noise source. Receivers represent a location of noise sensitive areas and are used to estimate the future noise level impacts. Collecting reference ambient noise level measurements at the nearby

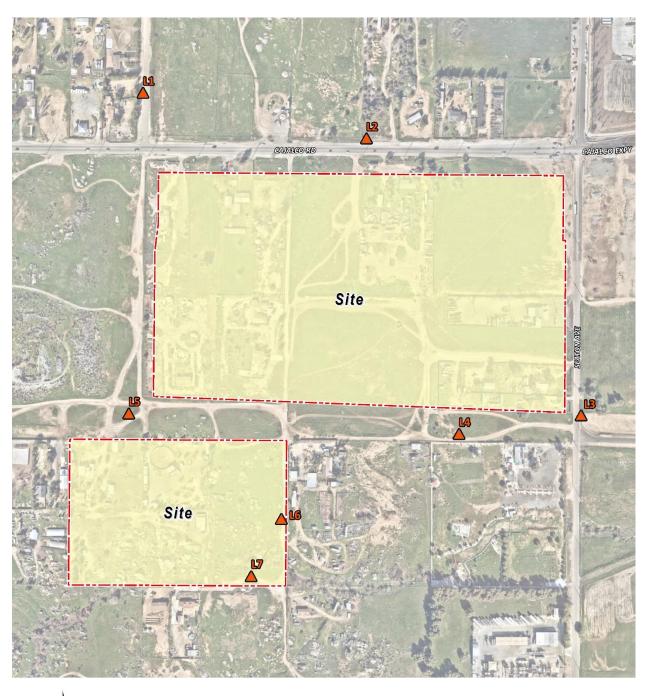
sensitive receiver locations allows for a comparison of the before and after Project noise levels and is necessary to assess potential noise impacts due to the Project's contribution to the ambient noise levels.

#### 5.3 NOISE MEASUREMENT RESULTS

The noise measurements presented below focus on the equivalent or the energy average hourly sound levels ( $L_{eq}$ ). The equivalent sound level ( $L_{eq}$ ) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period. Table 5-1 identifies the hourly daytime (7:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 7:00 a.m.) noise levels at each noise level measurement location.

| Location <sup>1</sup> | Description                                                                             | Energy Average<br>Noise Level<br>(dBA L <sub>eq</sub> ) <sup>2</sup> |           | CNEL |
|-----------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|------|
|                       |                                                                                         | Daytime                                                              | Nighttime |      |
| L1                    | Located north of the site near the La Palapa Ranch building at 19451 Decker Rd.         | 65.1                                                                 | 61.5      | 69.3 |
| L2                    | Located north of the site near the residence at 22840 Cajalco Rd.                       | 75.2                                                                 | 75.2      | 81.9 |
| L3                    | Located south of the site near the residence at 19701 Seaton Ave.                       | 65.7                                                                 | 61.8      | 69.5 |
| L4                    | Located south of the site near the Huong Sen<br>Buddhist Temple at 19865 Seaton Avenue. | 62.6                                                                 | 53.2      | 64.3 |
| L5                    | Located southwest of the site near the residence at 22655 Cajalco Rd.                   | 63.5                                                                 | 53.3      | 64.2 |
| L6                    | Located west of the residence at 22761 Cajalco Rd.                                      | 65.1                                                                 | 56.9      | 66.1 |
| L7                    | Located northeast the residence at 22683 Cajalco Rd.                                    | 62.2                                                                 | 59.9      | 67.1 |

#### TABLE 5-1: AMBIENT NOISE LEVEL MEASUREMENTS


<sup>1</sup> See Exhibit 5-A for the noise level measurement locations.

<sup>2</sup> Energy (logarithmic) average levels. The long-term 24-hour measurement worksheets are included in Appendix 5.2.

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

Table 5-1 provides the equivalent noise levels used to describe the daytime and nighttime ambient conditions. These daytime and nighttime energy average noise levels represent the average of all hourly noise levels observed during these time periods expressed as a single number. Appendix 5.2 provides summary worksheets of the noise levels for each hour as well as the minimum, maximum, L<sub>1</sub>, L<sub>2</sub>, L<sub>5</sub>, L<sub>8</sub>, L<sub>25</sub>, L<sub>50</sub>, L<sub>90</sub>, L<sub>95</sub>, and L<sub>99</sub> percentile noise levels observed during the daytime and nighttime periods.





#### **EXHIBIT 5-A: NOISE MEASUREMENT LOCATIONS**

N LEGEND:



This page intentionally left blank



# 6 TRAFFIC NOISE METHODS AND PROCEDURES

The following section outlines the methods and procedures used to estimate and analyze the future traffic noise environment. Consistent with County of Riverside Noise Guidelines for Land Use Planning (see Exhibit 3-A), all transportation related noise levels are presented in terms of the 24-hour CNEL's.

## 6.1 FHWA TRAFFIC NOISE PREDICTION MODEL

The expected roadway noise level increases from vehicular traffic were calculated by Urban Crossroads, Inc. using a computer program that replicates the Federal Highway Administration (FHWA) Traffic Noise Prediction Model- FHWA-RD-77-108. (22) The FHWA Model arrives at a predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). In California the national REMELs are substituted with the California Vehicle Noise (Calveno) Emission Levels. (23) Adjustments are then made to the REMEL to account for: the roadway classification (e.g., collector, secondary, major or arterial), the roadway active width (i.e., the distance between the center of the outermost travel lanes on each side of the roadway), the total average daily traffic (ADT), the travel speed, the percentages of automobiles, medium trucks, and heavy trucks in the traffic volume, the roadway grade, the angle of view (e.g., whether the roadway view is blocked), the site conditions ("hard" or "soft" relates to the absorption of the ground, pavement, or landscaping), and the percentage of total ADT which flows each hour throughout a 24-hour period. Research conducted by Caltrans has shown that the use of soft site conditions is appropriate for the application of the FHWA traffic noise prediction model used in this analysis. (24)

#### 6.1.1 OFF-SITE TRAFFIC NOISE PREDICTION MODEL INPUTS

Table 6-1 presents the roadway parameters used to assess the Project's off-site transportation noise impacts. Table 6-1 identifies the 13 off-site study area roadway segments, the distance from the centerline to adjacent land use based on the functional roadway classifications per the County of Riverside General Plan Circulation Element, and the vehicle speeds. The ADT volumes used in this study area presented on Table 6-2 are based on the *Mead Valley Commerce Center Traffic Analysis*, prepared by Urban Crossroads, Inc. for the following traffic scenarios (25).

- Existing (E)
- Existing plus Project (E+P)
- Existing plus Ambient Growth plus Cumulative (EAC) (2026) without Project Conditions
- Existing plus Ambient Growth plus Cumulative (EAPC) (2026) with Project Conditions
- Horizon Year (2045) without Project Conditions
- Horizon Year (2045) with Project Conditions

The ADT volumes vary for each roadway segment based on the existing traffic volumes and the combination of project traffic distributions. This analysis relies on a comparative evaluation of the off-site traffic noise impacts at the boundary of the right-of-way of the receiving adjacent land use, without and with project ADT traffic volumes from the Project traffic analysis. The



Project is anticipated to generate a net total of 2,448 two-way trips per day (actual vehicles) that includes 438 truck trips.

| ID | Roadway     | Segment         | Classification <sup>1</sup> | Receiving<br>Land Use <sup>2</sup> | Distance from<br>Centerline to<br>Receiving Land<br>Use (Feet) <sup>3</sup> | Vehicle<br>Speed<br>(mph) |
|----|-------------|-----------------|-----------------------------|------------------------------------|-----------------------------------------------------------------------------|---------------------------|
| 1  | Clark St.   | n/o Cajalco Rd. | Secondary                   | Sensitive                          | 50'                                                                         | 45                        |
| 2  | Clark St.   | s/o Cajalco Rd. | Collector                   | Sensitive                          | 37'                                                                         | 40                        |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Secondary                   | Sensitive                          | 50'                                                                         | 45                        |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Secondary                   | Non-Sensitive                      | 50'                                                                         | 45                        |
| 5  | Seaton Av.  | n/o Rider St.   | Secondary                   | Sensitive                          | 50'                                                                         | 45                        |
| 6  | Harvill Av. | n/o Cajalco Rd. | Major                       | Non-Sensitive                      | 59'                                                                         | 50                        |
| 7  | Harvill Av. | s/o Cajalco Rd. | Major                       | Non-Sensitive                      | 59'                                                                         | 50                        |
| 8  | Cajalco Rd. | w/o Clark St.   | Expressway                  | Sensitive                          | 110'                                                                        | 55                        |
| 9  | Cajalco Rd. | w/o Day St.     | Expressway                  | Sensitive                          | 110'                                                                        | 55                        |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Expressway                  | Sensitive                          | 110'                                                                        | 55                        |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Expressway                  | Sensitive                          | 110'                                                                        | 55                        |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Expressway                  | Non-Sensitive                      | 110'                                                                        | 55                        |
| 13 | Cajalco Rd. | e/o Harvill Av. | Expressway                  | Non-Sensitive                      | 110'                                                                        | 55                        |

TABLE 6-1: OFF-SITE ROADWAY PARAMETERS

<sup>1</sup> Mead Valley Commerce Center, Urban Crossroads, Inc.

<sup>2</sup> Based on a review of existing aerial imagery.

<sup>3</sup> Distance to receiving land use is based upon the right-of-way distances.

|    |             |                 | Average Daily Traffic Volur |                 |                    |                 | nes1               |                 |
|----|-------------|-----------------|-----------------------------|-----------------|--------------------|-----------------|--------------------|-----------------|
| ID | Roadway     | Segment         | Existing                    | (2023)          | EAC (2026)         |                 | HY (2              | .045)           |
|    | ,           |                 | Without<br>Project          | With<br>Project | Without<br>Project | With<br>Project | Without<br>Project | With<br>Project |
| 1  | Clark St.   | n/o Cajalco Rd. | 5,404                       | 5,453           | 7,225              | 7,273           | 8,220              | 8,269           |
| 2  | Clark St.   | s/o Cajalco Rd. | 8,366                       | 8,432           | 10,368             | 10,434          | 11,404             | 11,470          |
| 3  | Seaton Av.  | n/o Cajalco Rd. | 656                         | 727             | 696                | 767             | 766                | 837             |
| 4  | Seaton Av.  | s/o Cajalco Rd. | 1,398                       | 2,869           | 1,484              | 2,955           | 1,632              | 3,103           |
| 5  | Seaton Av.  | n/o Rider St.   | 1,398                       | 1,885           | 1,484              | 1,971           | 1,632              | 2,119           |
| 6  | Harvill Av. | n/o Cajalco Rd. | 9,765                       | 9,991           | 26,387             | 26,613          | 29,026             | 29,252          |
| 7  | Harvill Av. | s/o Cajalco Rd. | 11,175                      | 11,298          | 26,260             | 26,382          | 28,886             | 29,008          |
| 8  | Cajalco Rd. | w/o Clark St.   | 18,885                      | 19,315          | 26,993             | 27,423          | 29,693             | 30,122          |
| 9  | Cajalco Rd. | w/o Day St.     | 21,942                      | 22,486          | 33,217             | 33,761          | 36,538             | 37,083          |
| 10 | Cajalco Rd. | w/o Decker Rd.  | 24,256                      | 24,825          | 35,672             | 36,241          | 39,240             | 39,809          |
| 11 | Cajalco Rd. | e/o Decker Rd.  | 27,611                      | 28,704          | 39,233             | 40,325          | 43,156             | 44,248          |
| 12 | Cajalco Rd. | e/o Seaton Av.  | 23,167                      | 24,926          | 34,517             | 36,276          | 37,968             | 39,727          |
| 13 | Cajalco Rd. | e/o Harvill Av. | 23,947                      | 25,357          | 50,399             | 51,810          | 55,439             | 56,850          |

#### TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES

<sup>1</sup> Mead Valley Commerce Center Traffic Analysis, Urban Crossroads, Inc.



To quantify the off-site noise levels, the Project related truck trips were added to the heavy truck category in the FHWA noise prediction model. The addition of the Project related truck trips increases the percentage of heavy trucks in the vehicle mix. This approach recognizes that the FHWA noise prediction model is significantly influenced by the number of heavy trucks in the vehicle mix. Table 6-3 provides the time of day (daytime, evening, and nighttime) vehicle splits. The daily Project truck trip-ends were assigned to the individual off-site study area roadway segments based on the Project truck trip distribution percentages documented in the *Mead Valley Commerce Center Traffic Analysis*. Using the Project truck trips in combination with the Project trip distribution, Urban Crossroads, Inc. calculated the number of additional Project truck trips and vehicle mix percentages for each of the study area roadway segments. Table 6-4 shows the traffic flow by vehicle type (vehicle mix) used for all without Project traffic scenarios, and Tables 6-5 to 6-7 show the vehicle mixes used for the with Project traffic scenarios.

|               |         | Time of Day Splits <sup>1</sup> |           | Total of Time of |
|---------------|---------|---------------------------------|-----------|------------------|
| Vehicle Type  | Daytime | Evening                         | Nighttime | Day Splits       |
| Autos         | 76.64%  | 8.87%                           | 14.49%    | 100.00%          |
| Medium Trucks | 83.26%  | 4.62%                           | 12.12%    | 100.00%          |
| Heavy Trucks  | 76.90%  | 5.17%                           | 17.93%    | 100.00%          |

#### TABLE 6-3: TIME OF DAY VEHICLE SPLITS

<sup>1</sup> Based on the February 15, 2023, 24-hour directional vehicle classification count collected on Harvill Avenue north of Cajalco Road (Mead Valley Commerce Center Traffic Analysis, Urban Crossroads, Inc.)

"Daytime" = 7:00 a.m. to 7:00 p.m.; "Evening" = 7:00 p.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

#### TABLE 6-4: WITHOUT PROJECT VEHICLE MIX

| Classification |        | Total % Traffic Flow <sup>1</sup> |              | Total   |
|----------------|--------|-----------------------------------|--------------|---------|
| Classification | Autos  | Medium Trucks                     | Heavy Trucks | Total   |
| All Segments   | 86.56% | 7.10%                             | 6.34%        | 100.00% |

<sup>1</sup>Based on the February 15, 2023, 24-hour directional vehicle classification count collected on Harvill Avenue north of Cajalco Road (Mead Valley Commerce Center Traffic Analysis, Urban Crossroads, Inc.)

Due to the added Project truck trips, the increase in Project traffic volumes and the distributions of trucks on the study area road segments, the percentage of autos, medium trucks and heavy trucks will vary for each of the traffic scenarios. This explains why the existing and future traffic volumes and vehicle mixes vary between seemingly identical study area roadway segments.



|    |             |                 |        | With P           | roject <sup>1</sup> |                    |
|----|-------------|-----------------|--------|------------------|---------------------|--------------------|
| ID | Roadway     | Segment         | Autos  | Medium<br>Trucks | Heavy<br>Trucks     | Total <sup>2</sup> |
| 1  | Clark St.   | n/o Cajalco Rd. | 86.68% | 7.03%            | 6.28%               | 100.00%            |
| 2  | Clark St.   | s/o Cajalco Rd. | 86.67% | 7.04%            | 6.29%               | 100.00%            |
| 3  | Seaton Av.  | n/o Cajalco Rd. | 87.88% | 6.40%            | 5.72%               | 100.00%            |
| 4  | Seaton Av.  | s/o Cajalco Rd. | 82.00% | 4.49%            | 13.51%              | 100.00%            |
| 5  | Seaton Av.  | n/o Rider St.   | 84.23% | 5.79%            | 9.99%               | 100.00%            |
| 6  | Harvill Av. | n/o Cajalco Rd. | 86.65% | 6.96%            | 6.40%               | 100.00%            |
| 7  | Harvill Av. | s/o Cajalco Rd. | 86.71% | 7.02%            | 6.27%               | 100.00%            |
| 8  | Cajalco Rd. | w/o Clark St.   | 86.52% | 6.97%            | 6.51%               | 100.00%            |
| 9  | Cajalco Rd. | w/o Day St.     | 86.60% | 6.95%            | 6.45%               | 100.00%            |
| 10 | Cajalco Rd. | w/o Decker Rd.  | 86.61% | 6.96%            | 6.43%               | 100.00%            |
| 11 | Cajalco Rd. | e/o Decker Rd.  | 86.85% | 6.85%            | 6.31%               | 100.00%            |
| 12 | Cajalco Rd. | e/o Seaton Av.  | 86.46% | 6.69%            | 6.85%               | 100.00%            |
| 13 | Cajalco Rd. | e/o Harvill Av. | 86.36% | 6.79%            | 6.85%               | 100.00%            |

TABLE 6-5: EXISTING WITH PROJECT VEHICLE MIX

 $^{\rm 1}$  Total of vehicle mix percentage values rounded to the nearest one-hundredth.

#### TABLE 6-6: EAC 2026 WITH PROJECT VEHICLE MIX

|    |             |                 |        | With P           | roject <sup>1</sup> |                    |
|----|-------------|-----------------|--------|------------------|---------------------|--------------------|
| ID | Roadway     | Segment         | Autos  | Medium<br>Trucks | Heavy<br>Trucks     | Total <sup>2</sup> |
| 1  | Clark St.   | n/o Cajalco Rd. | 86.65% | 7.05%            | 6.30%               | 100.00%            |
| 2  | Clark St.   | s/o Cajalco Rd. | 86.65% | 7.05%            | 6.30%               | 100.00%            |
| 3  | Seaton Av.  | n/o Cajalco Rd. | 87.81% | 6.44%            | 5.75%               | 100.00%            |
| 4  | Seaton Av.  | s/o Cajalco Rd. | 82.14% | 4.56%            | 13.30%              | 100.00%            |
| 5  | Seaton Av.  | n/o Rider St.   | 84.33% | 5.84%            | 9.83%               | 100.00%            |
| 6  | Harvill Av. | n/o Cajalco Rd. | 86.60% | 7.04%            | 6.36%               | 100.00%            |
| 7  | Harvill Av. | s/o Cajalco Rd. | 86.63% | 7.06%            | 6.31%               | 100.00%            |
| 8  | Cajalco Rd. | w/o Clark St.   | 86.53% | 7.01%            | 6.46%               | 100.00%            |
| 9  | Cajalco Rd. | w/o Day St.     | 86.59% | 7.00%            | 6.41%               | 100.00%            |
| 10 | Cajalco Rd. | w/o Decker Rd.  | 86.59% | 7.00%            | 6.40%               | 100.00%            |
| 11 | Cajalco Rd. | e/o Decker Rd.  | 86.77% | 6.92%            | 6.32%               | 100.00%            |
| 12 | Cajalco Rd. | e/o Seaton Av.  | 86.49% | 6.82%            | 6.69%               | 100.00%            |
| 13 | Cajalco Rd. | e/o Harvill Av. | 86.46% | 6.95%            | 6.59%               | 100.00%            |

 $^{\rm 1}$  Total of vehicle mix percentage values rounded to the nearest one-hundredth.

|    |             |                 |        | With P           | roject <sup>1</sup> |                                                                                                                                        |
|----|-------------|-----------------|--------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ID | Roadway     | Segment         | Autos  | Medium<br>Trucks | Heavy<br>Trucks     | Total <sup>2</sup> 100.00%           100.00%           100.00%           100.00%           100.00%           100.00%           100.00% |
| 1  | Clark St.   | n/o Cajalco Rd. | 86.64% | 7.05%            | 6.30%               | 100.00%                                                                                                                                |
| 2  | Clark St.   | s/o Cajalco Rd. | 86.64% | 7.06%            | 6.30%               | 100.00%                                                                                                                                |
| 3  | Seaton Av.  | n/o Cajalco Rd. | 87.71% | 6.49%            | 5.80%               | 100.00%                                                                                                                                |
| 4  | Seaton Av.  | s/o Cajalco Rd. | 82.35% | 4.69%            | 12.97%              | 100.00%                                                                                                                                |
| 5  | Seaton Av.  | n/o Rider St.   | 84.48% | 5.93%            | 9.58%               | 100.00%                                                                                                                                |
| 6  | Harvill Av. | n/o Cajalco Rd. | 86.59% | 7.05%            | 6.36%               | 100.00%                                                                                                                                |
| 7  | Harvill Av. | s/o Cajalco Rd. | 86.62% | 7.07%            | 6.31%               | 100.00%                                                                                                                                |
| 8  | Cajalco Rd. | w/o Clark St.   | 86.54% | 7.02%            | 6.45%               | 100.00%                                                                                                                                |
| 9  | Cajalco Rd. | w/o Day St.     | 86.58% | 7.01%            | 6.41%               | 100.00%                                                                                                                                |
| 10 | Cajalco Rd. | w/o Decker Rd.  | 86.59% | 7.01%            | 6.40%               | 100.00%                                                                                                                                |
| 11 | Cajalco Rd. | e/o Decker Rd.  | 86.75% | 6.94%            | 6.32%               | 100.00%                                                                                                                                |
| 12 | Cajalco Rd. | e/o Seaton Av.  | 86.50% | 6.84%            | 6.66%               | 100.00%                                                                                                                                |
| 13 | Cajalco Rd. | e/o Harvill Av. | 86.47% | 6.96%            | 6.57%               | 100.00%                                                                                                                                |

#### TABLE 6-7: HY 2045 WITH PROJECT VEHICLE MIX

<sup>1</sup> Total of vehicle mix percentage values rounded to the nearest one-hundredth.



This page intentionally left blank



# 7 OFF-SITE TRAFFIC NOISE ANALYSIS

To assess the off-site transportation CNEL noise level impacts associated with development of the proposed Project, noise contours were developed based on *the Mead Valley Commerce Center Traffic Analysis* prepared by Urban Crossroads, Inc. (25) Noise contour boundaries represent the equal levels of noise exposure and are measured in CNEL from the center of the roadway.

## 7.1 TRAFFIC NOISE CONTOURS

Noise contours were used to assess the Project's incremental traffic-related noise impacts at land uses adjacent to roadways conveying Project traffic. The noise contours represent the distance to noise levels of a constant value and are measured from the center of the roadway for the 70, 65, and 60 dBA noise levels. The noise contours do not consider the effect of any existing noise barriers or topography that may attenuate ambient noise levels. In addition, because the noise contours reflect modeling of vehicular noise on area roadways, they appropriately do not reflect noise contributions from the surrounding stationary noise sources within the Project study area. Tables 7-1 to 7-6 present a summary of the exterior traffic noise levels for each traffic condition.

| ID | Baad        | Comment         | Receiving             | CNEL at<br>Receiving           |                | Distance to Contour<br>Centerline (Feet |                |
|----|-------------|-----------------|-----------------------|--------------------------------|----------------|-----------------------------------------|----------------|
|    | Road        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL | 65 dBA<br>CNEL                          | 60 dBA<br>CNEL |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 69.6                           | 56             | 122                                     | 262            |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 72.1                           | RW             | 111                                     | 240            |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.4                           | RW             | 75                                      | 161            |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 63.7                           | 75             | 162                                     | 350            |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 63.7                           | 75             | 161                                     | 347            |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 72.1                           | 170            | 367                                     | 790            |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 72.7                           | 166            | 358                                     | 770            |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 71.9                           | 166            | 358                                     | 771            |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 72.5                           | 314            | 677                                     | 1459           |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 73.0                           | 269            | 579                                     | 1248           |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 73.5                           | 269            | 579                                     | 1248           |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 72.8                           | 269            | 579                                     | 1248           |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 72.9                           | 269            | 579                                     | 1248           |

#### TABLE 7-1: EXISTING WITHOUT PROJECT CONTOURS

<sup>1</sup> Based on a review of existing aerial imagery.

 $^{\rm 2}$  The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.



| ID | Road        | Forment         | Receiving             | CNEL at<br>Receiving           | Distance to Contour from<br>Centerline (Feet) |                |                |  |
|----|-------------|-----------------|-----------------------|--------------------------------|-----------------------------------------------|----------------|----------------|--|
| טו | Noau        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL                                | 65 dBA<br>CNEL | 60 dBA<br>CNEL |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 69.6                           | RW                                            | 101            | 217            |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 72.1                           | 51                                            | 110            | 237            |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.5                           | RW                                            | RW             | 54             |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 68.9                           | RW                                            | 91             | 196            |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 66.2                           | RW                                            | 60             | 129            |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 72.2                           | 82                                            | 178            | 383            |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 72.7                           | 89                                            | 192            | 413            |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 72.0                           | 151                                           | 324            | 699            |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 72.7                           | 166                                           | 358            | 770            |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 73.1                           | 177                                           | 382            | 822            |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 73.7                           | 193                                           | 417            | 898            |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 73.2                           | 181                                           | 390            | 840            |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 73.3                           | 183                                           | 395            | 851            |  |

TABLE 7-2: EXISTING WITH PROJECT CONTOURS

<sup>1</sup> Based on a review of existing aerial imagery.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

| <b>TABLE 7-3:</b> | EAC 2026 WITHOUT PROJECT CONTOURS |
|-------------------|-----------------------------------|
|-------------------|-----------------------------------|

| ID | Road        | Forment         | Receiving             | CNEL at<br>Receiving           |                | e to Contou<br>nterline (Fe |                |
|----|-------------|-----------------|-----------------------|--------------------------------|----------------|-----------------------------|----------------|
|    | NOAU        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL | 65 dBA<br>CNEL              | 60 dBA<br>CNEL |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 70.8                           | 57             | 122                         | 263            |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.0                           | 59             | 127                         | 273            |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.7                           | RW             | RW                          | 55             |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 63.9                           | RW             | RW                          | 92             |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 63.9                           | RW             | RW                          | 92             |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.4                           | 157            | 339                         | 730            |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.4                           | 157            | 338                         | 728            |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 73.4                           | 187            | 402                         | 867            |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.3                           | 214            | 462                         | 995            |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 74.7                           | 225            | 485                         | 1044           |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.1                           | 240            | 516                         | 1112           |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 74.5                           | 220            | 474                         | 1021           |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.2                           | 283            | 610                         | 1314           |

<sup>1</sup> Based on a review of existing aerial imagery.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.



| ID | Road        | Forment         | Receiving             | CNEL at<br>Receiving           |                | ce to Contou<br>nterline (Fe |                |
|----|-------------|-----------------|-----------------------|--------------------------------|----------------|------------------------------|----------------|
|    | KOAQ        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL | 65 dBA<br>CNEL               | 60 dBA<br>CNEL |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 70.8                           | 57             | 122                          | 264            |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.0                           | 59             | 127                          | 273            |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.8                           | RW             | RW                           | 56             |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 69.0                           | RW             | 92                           | 198            |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 66.3                           | RW             | 61                           | 132            |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.4                           | 158            | 341                          | 735            |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.4                           | 157            | 338                          | 728            |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 73.6                           | 190            | 409                          | 881            |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.4                           | 217            | 468                          | 1009           |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 74.7                           | 228            | 491                          | 1057           |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.2                           | 243            | 523                          | 1128           |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 74.8                           | 231            | 497                          | 1072           |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.4                           | 292            | 629                          | 1354           |

TABLE 7-4: EAC 2026 WITH PROJECT CONTOURS

<sup>1</sup> Based on a review of existing aerial imagery.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

| <b>TABLE 7-5:</b> | HY 2045 | WITHOUT | PROJECT | CONTOURS |
|-------------------|---------|---------|---------|----------|
|-------------------|---------|---------|---------|----------|

| ID | Road        | Sogment         | Receiving             | CNEL at<br>Receiving           | Distance to Contour from<br>Centerline (Feet) |                |                |  |  |
|----|-------------|-----------------|-----------------------|--------------------------------|-----------------------------------------------|----------------|----------------|--|--|
| U  | KUdu        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL                                | 65 dBA<br>CNEL | 60 dBA<br>CNEL |  |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 71.4                           | 62                                            | 133            | 287            |  |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.4                           | 63                                            | 135            | 291            |  |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 61.1                           | RW                                            | RW             | 59             |  |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 64.4                           | RW                                            | RW             | 98             |  |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 64.4                           | RW                                            | RW             | 98             |  |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.8                           | 168                                           | 361            | 778            |  |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.8                           | 167                                           | 360            | 776            |  |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 73.9                           | 199                                           | 429            | 924            |  |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.8                           | 229                                           | 492            | 1061           |  |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 75.1                           | 240                                           | 516            | 1112           |  |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.5                           | 255                                           | 550            | 1185           |  |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 74.9                           | 234                                           | 505            | 1088           |  |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.6                           | 302                                           | 650            | 1401           |  |  |

<sup>1</sup> Based on a review of existing aerial imagery.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.



| ID | Road        | Cormont         | Receiving             | CNEL at<br>Receiving           | Distance to Contour from<br>Centerline (Feet) |                |                |  |  |
|----|-------------|-----------------|-----------------------|--------------------------------|-----------------------------------------------|----------------|----------------|--|--|
| טו | Noau        | Segment         | Land Use <sup>1</sup> | Land Use<br>(dBA) <sup>2</sup> | 70 dBA<br>CNEL                                | 65 dBA<br>CNEL | 60 dBA<br>CNEL |  |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 71.4                           | 62                                            | 133            | 287            |  |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.4                           | 63                                            | 135            | 291            |  |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 61.2                           | RW                                            | RW             | 60             |  |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 69.1                           | RW                                            | 94             | 203            |  |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 66.6                           | RW                                            | 64             | 137            |  |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.8                           | 169                                           | 363            | 782            |  |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.8                           | 167                                           | 360            | 776            |  |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 74.0                           | 202                                           | 435            | 937            |  |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.8                           | 231                                           | 498            | 1074           |  |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 75.1                           | 242                                           | 522            | 1125           |  |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.6                           | 259                                           | 557            | 1200           |  |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 75.2                           | 245                                           | 528            | 1137           |  |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.8                           | 310                                           | 668            | 1439           |  |  |

TABLE 7-6: HY 2045 WITH PROJECT CONTOURS

<sup>1</sup> Based on a review of existing aerial imagery.

 $^{\rm 2}$  The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

#### 7.2 EXISTING PROJECT TRAFFIC NOISE LEVEL INCREASES

An analysis of existing traffic noise levels plus traffic noise generated by the proposed Project has been included in this report for informational purposes and to fully analyze all the existing traffic scenarios identified in the Traffic Analysis prepared by Urban Crossroads, Inc. However, the analysis of existing off-site traffic noise levels plus traffic noise generated by the proposed Project scenario will not actually occur since the Project would not be fully constructed and operational until Year 2026 conditions. Table 7-1 shows the Existing without Project conditions CNEL noise levels. The Existing without Project exterior noise levels range from 60.4 to 73.5 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-2 shows the Existing with Project conditions ranging from 60.5 to 73.7 dBA CNEL. Table 7-7 shows that the Project off-site traffic noise level increases range from 0.0 to 5.2 dBA CNEL on the study area roadway segments.

## 7.3 EAC 2026 TRAFFIC NOISE LEVEL INCREASES

Table 7-3 presents the Existing plus Ambient Growth Plus Cumulative (EAC) without Project conditions CNEL noise levels. The EAC without Project exterior noise levels range from 60.7 to 76.4 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-4 shows that the EAC with Project conditions will range from 60.8 to 76.4 dBA CNEL. Table 7-8 shows that the Project off-site traffic noise level increases range from 0.0 to 5.1 dBA CNEL.



#### 7.4 HORIZON YEAR 2045 TRAFFIC NOISE LEVEL INCREASES

Table 7-5 presents the HY 2045 without Project conditions CNEL noise levels. The HY 2045 without Project exterior noise levels range from 61.1 to 76.8 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-6 shows that the HY 2045 with Project conditions will range from 61.2 to 76.8 dBA CNEL. Table 7-9 shows that the Project off-site traffic noise level increases range from 0.0 to 4.7 dBA CNEL.



| 10 | Deed        | Comment         | Receiving             |               | EL at Receiv<br>nd Use (dB/ | -                   | Incremental Noise Level<br>Increase Threshold <sup>2</sup> |           |  |
|----|-------------|-----------------|-----------------------|---------------|-----------------------------|---------------------|------------------------------------------------------------|-----------|--|
| ID | Road        | Segment         | Land Use <sup>1</sup> | No<br>Project | With<br>Project             | Project<br>Addition | Limit                                                      | Exceeded? |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 69.6          | 69.6                        | 0.0                 | 1.5                                                        | No        |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 72.1          | 72.1                        | 0.0                 | 1.5                                                        | No        |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.4          | 60.5                        | 0.1                 | 3.0                                                        | No        |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 63.7          | 68.9                        | 5.2                 | n/a                                                        | No        |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 63.7          | 66.2                        | 2.5                 | 3.0                                                        | No        |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 72.1          | 72.2                        | 0.1                 | n/a                                                        | No        |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 72.7          | 72.7                        | 0.0                 | n/a                                                        | No        |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 71.9          | 72.0                        | 0.1                 | 1.5                                                        | No        |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 72.5          | 72.7                        | 0.2                 | 1.5                                                        | No        |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 73.0          | 73.1                        | 0.1                 | 1.5                                                        | No        |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 73.5          | 73.7                        | 0.2                 | 1.5                                                        | No        |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 72.8          | 73.2                        | 0.4                 | n/a                                                        | No        |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 72.9          | 73.3                        | 0.4                 | n/a                                                        | No        |  |

#### TABLE 7-7: EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES

<sup>1</sup> Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the receiving land use.

<sup>3</sup> Does the Project create an incremental noise level increase exceeding the significance criteria (Table 4-1)?

"n/a" Per the County of Riverside General Plan Noise Element Table N-1, unmitigated normally acceptable exterior noise levels of less than 75 dBA CNEL are considered less than significant and a barely perceptible 3 dBA or greater noise level increase is considered a significant impact when the non-noise sensitive noise level is greater than the normally acceptable 75 dBA CNEL land use compatibility criteria.



|    | Deed        | 6 - mart        | Receiving             |               | EL at Receiv<br>nd Use (dB/ | -                   | Incremental Noise Level<br>Increase Threshold <sup>2</sup> |           |  |
|----|-------------|-----------------|-----------------------|---------------|-----------------------------|---------------------|------------------------------------------------------------|-----------|--|
| ID | Road        | Segment         | Land Use <sup>1</sup> | No<br>Project | With<br>Project             | Project<br>Addition | Limit                                                      | Exceeded? |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 70.8          | 70.8                        | 0.0                 | 1.5                                                        | No        |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.0          | 73.0                        | 0.0                 | 1.5                                                        | No        |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 60.7          | 60.8                        | 0.1                 | 3.0                                                        | No        |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 63.9          | 69.0                        | 5.1                 | n/a                                                        | No        |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 63.9          | 66.3                        | 2.4                 | 3.0                                                        | No        |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.4          | 76.4                        | 0.0                 | 3.0                                                        | No        |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.4          | 76.4                        | 0.0                 | 3.0                                                        | No        |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 73.4          | 73.6                        | 0.2                 | 1.5                                                        | No        |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.3          | 74.4                        | 0.1                 | 1.5                                                        | No        |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 74.7          | 74.7                        | 0.0                 | 1.5                                                        | No        |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.1          | 75.2                        | 0.1                 | 1.5                                                        | No        |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 74.5          | 74.8                        | 0.3                 | n/a                                                        | No        |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.2          | 76.4                        | 0.2                 | 3.0                                                        | No        |  |

 TABLE 7-8: EAC 2026 WITH PROJECT TRAFFIC NOISE LEVEL INCREASES

<sup>1</sup> Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the receiving land use.

<sup>3</sup> Does the Project create an incremental noise level increase exceeding the significance criteria (Table 4-1)?

"n/a" Per the County of Riverside General Plan Noise Element Table N-1, unmitigated normally acceptable exterior noise levels of less than 75 dBA CNEL are considered less than significant and a barely perceptible 3 dBA or greater noise level increase is considered a significant impact when the non-noise sensitive noise level is greater than the normally acceptable 75 dBA CNEL land use compatibility criteria.



|    | Deed        | 6 - mart        | Receiving             |               | EL at Receiv<br>nd Use (dB/ | -                   | Incremental Noise Level<br>Increase Threshold <sup>2</sup> |           |  |
|----|-------------|-----------------|-----------------------|---------------|-----------------------------|---------------------|------------------------------------------------------------|-----------|--|
| ID | Road        | Segment         | Land Use <sup>1</sup> | No<br>Project | With<br>Project             | Project<br>Addition | Limit                                                      | Exceeded? |  |
| 1  | Clark St.   | n/o Cajalco Rd. | Sensitive             | 71.4          | 71.4                        | 0.0                 | 1.5                                                        | No        |  |
| 2  | Clark St.   | s/o Cajalco Rd. | Sensitive             | 73.4          | 73.4                        | 0.0                 | 1.5                                                        | No        |  |
| 3  | Seaton Av.  | n/o Cajalco Rd. | Sensitive             | 61.1          | 61.2                        | 0.1                 | 3.0                                                        | No        |  |
| 4  | Seaton Av.  | s/o Cajalco Rd. | Non-Sensitive         | 64.4          | 69.1                        | 4.7                 | n/a                                                        | No        |  |
| 5  | Seaton Av.  | n/o Rider St.   | Sensitive             | 64.4          | 66.6                        | 2.2                 | 3.0                                                        | No        |  |
| 6  | Harvill Av. | n/o Cajalco Rd. | Non-Sensitive         | 76.8          | 76.8                        | 0.0                 | 3.0                                                        | No        |  |
| 7  | Harvill Av. | s/o Cajalco Rd. | Non-Sensitive         | 76.8          | 76.8                        | 0.0                 | 3.0                                                        | No        |  |
| 8  | Cajalco Rd. | w/o Clark St.   | Sensitive             | 73.9          | 74.0                        | 0.1                 | 1.5                                                        | No        |  |
| 9  | Cajalco Rd. | w/o Day St.     | Sensitive             | 74.8          | 74.8                        | 0.0                 | 1.5                                                        | No        |  |
| 10 | Cajalco Rd. | w/o Decker Rd.  | Sensitive             | 75.1          | 75.1                        | 0.0                 | 1.5                                                        | No        |  |
| 11 | Cajalco Rd. | e/o Decker Rd.  | Sensitive             | 75.5          | 75.6                        | 0.1                 | 1.5                                                        | No        |  |
| 12 | Cajalco Rd. | e/o Seaton Av.  | Non-Sensitive         | 74.9          | 75.2                        | 0.3                 | n/a                                                        | No        |  |
| 13 | Cajalco Rd. | e/o Harvill Av. | Non-Sensitive         | 76.6          | 76.8                        | 0.2                 | 3.0                                                        | No        |  |

 TABLE 7-9: HY 2045 WITH PROJECT TRAFFIC NOISE LEVEL INCREASES

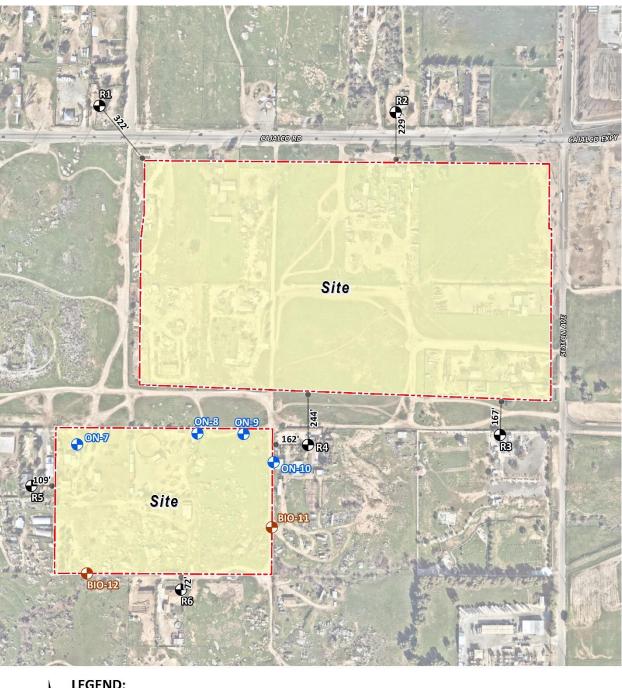
<sup>1</sup> Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

<sup>2</sup> The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the receiving land use.

<sup>3</sup> Does the Project create an incremental noise level increase exceeding the significance criteria (Table 4-1)?

"n/a" Per the County of Riverside General Plan Noise Element Table N-1, unmitigated normally acceptable exterior noise levels of less than 75 dBA CNEL are considered less than significant and a barely perceptible 3 dBA or greater noise level increase is considered a significant impact when the non-noise sensitive noise level is greater than the normally acceptable 75 dBA CNEL land use compatibility criteria.




# 8 SENSITIVE RECEIVER LOCATIONS

To assess the potential for long-term operational and short-term construction noise impacts, the following sensitive receiver locations, as shown on Exhibit 8-A, were identified as representative locations for analysis. Sensitive receivers are generally defined as locations where people reside or where the presence of unwanted sound could otherwise adversely affect the use of the land. Noise-sensitive land uses are generally considered to include schools, hospitals, single-family dwellings, mobile home parks, churches, libraries, and recreation areas. Moderately noise-sensitive land uses typically include multi-family dwellings, hotels, motels, dormitories, outpatient clinics, cemeteries, golf courses, country clubs, athletic/tennis clubs, and equestrian clubs. Land uses that are considered relatively insensitive to noise include business, commercial, and professional developments. Land uses that are typically not affected by noise include: industrial, manufacturing, utilities, agriculture, undeveloped land, parking lots, warehousing, liquid and solid waste facilities, salvage yards, and transit terminals.

To describe the potential Project noise levels, 12 receiver locations were identified. This includes the nearest off-site existing noise sensitive receiver locations R1 to R6, ON7 to ON10 representing future on-site Project receivers within Seaton Park, and BIO11 to BIO12 describing the adjacent habitat area. To the extent this analysis considers impacts in relation to future receivers within Seaton Park and potential biological receivers within the adjacent habitat areas, it does so for informational purposes to show compliance with County regulations. Impacts of the environment on a project are excluded from CEQA unless the project itself "exacerbates" such impacts. (26) As such, any impact on the receivers within the Project is not an impact under CEQA. Other sensitive land uses in the Project study area that are located at greater distances than those identified in this noise study will experience lower noise levels than those presented in this report due to the additional attenuation from distance and the shielding of intervening structures. Distance is measured in a straight line from the project boundary to each receiver location.

- R1: Location R1 represents the existing noise sensitive La Palapa Ranch building at 19451 Decker Road, approximately 322 feet northwest of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R1 is placed at the building façade. A 24-hour noise measurement was taken near this location, L1, to describe the existing ambient noise environment.
- R2: Location R2 represents the existing noise sensitive residence at 22840 Cajalco Road, approximately 229 feet north of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R2 is placed at the building façade. A 24-hour noise measurement was taken near this location, L2, to describe the existing ambient noise environment.
- R3: Location R3 represents the existing noise sensitive residence at 19701 Seaton Avenue approximately 167 feet south of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R3 is placed at the building façade. A 24-hour noise measurement was taken near this location, L4, to describe the existing ambient noise environment.





#### **EXHIBIT 8-A: RECEIVER LOCATIONS**

#### LEGEND:

Site Boundary On-Site Receiver Location ─● Distance from receiver to Project site boundary (in feet) Receiver Locations

N



- R4: Location R4 represents the existing noise sensitive residence at 22761 Cajalco Road, approximately 162 feet east and 244 feet south of the Project site. Receiver R4 is placed in the private outdoor living areas (backyard) facing the Project site. A 24-hour noise measurement was taken near this location, L6, to describe the existing ambient noise environment.
- R5: Location R5 represents the existing noise sensitive residence west of 19754 Anderson Road, approximately 109 feet west of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R5 is placed at the building façade. A 24-hour noise measurement was taken near this location, L5, to describe the existing ambient noise environment.
- R6: Location R6 represents the existing noise sensitive residence west of 22683 Cajalco Road, approximately 72 feet south of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R6 is placed at the building façade. A 24-hour noise measurement was taken near this location, L7, to describe the existing ambient noise environment.
- ON7: Location ON7 represents the future receiver at the Seaton Park sports field.
- ON8: Location ON8 represents the future receiver at the Seaton Park soccer field sideline.
- ON9: Location ON9 represents the future receiver at the Seaton Park soccer field sideline.
- ON10: Location ON10 represents the future receiver within Seaton Park.
- BIO11: Location BIO11 represents the limits of construction near the adjacent habitat area east of the Project site.
- BIO12: Location BIO12 represents the limits of construction near the adjacent habitat area south of the Project site.



This page intentionally left blank



# 9 OPERATIONAL NOISE IMPACTS

This section analyzes the potential stationary-source operational noise impacts at the nearest receiver locations, identified in Section 8, resulting from the operation of the proposed Mead Valley Commerce Center Project. Exhibit 9-A of the Noise Study includes over 73 individual noise sources to conservatively describe the potential worst-case noise environment.

## 9.1 OPERATIONAL NOISE SOURCES

This operational noise analysis is intended to describe noise level impacts associated with the expected typical of daytime and nighttime activities at the Project site. Consistent with similar warehouse uses, the Project business operations would primarily be conducted within the enclosed building, except for traffic movement, parking, as well as loading and unloading of trucks at designated loading bays. The on-site Project-related noise sources are expected to include: loading dock activity, parking lot vehicle activities, roof-top air conditioning units, trash enclosure activity, truck movements, sports field activities, basketball court activity, dog park activity, and outdoor play area.

## 9.2 REFERENCE NOISE LEVELS

To estimate the Project operational noise impacts, reference noise level measurements were collected from similar types of activities to represent the noise levels expected with the development of the proposed Project. This section provides a detailed description of the reference noise level measurements shown on Table 9-1 used to estimate the Project operational noise impacts. It is important to note that the following projected noise levels assume the worst-case noise environment with the loading dock activity, parking lot vehicle activities, roof-top air conditioning units, trash enclosure activity, truck movements, sports field activities, basketball court activity, dog park activity, and outdoor play area all operating at the same time. These sources of noise activity will likely vary throughout the day.

#### 9.2.1 MEASUREMENT PROCEDURES

The reference noise level measurements presented in this section were collected using a Larson Davis LxT Type 1 precision sound level meter (serial number 01146). The LxT sound level meter was calibrated using a Larson-Davis calibrator, Model CAL 200, was programmed in "slow" mode to record noise levels in "A" weighted form and was located at approximately five feet above the ground elevation for each measurement. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (21)



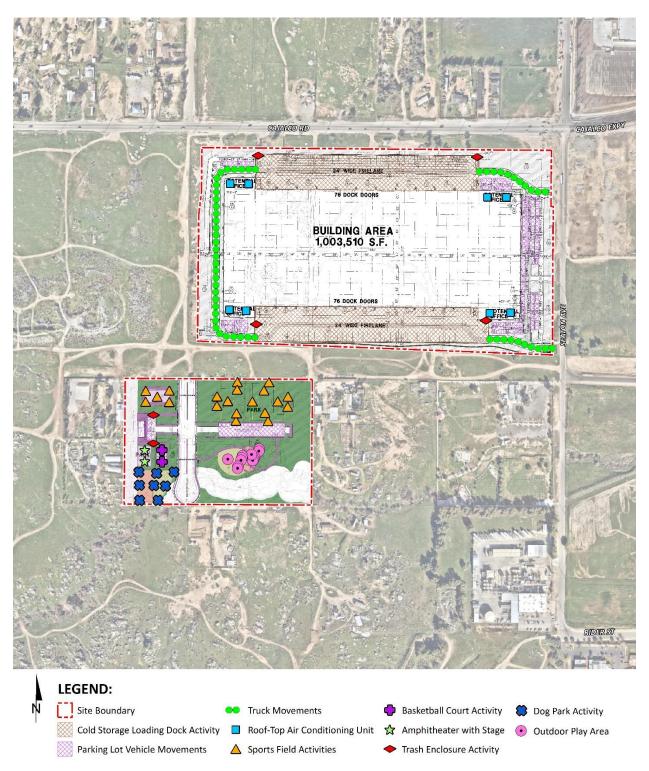



EXHIBIT 9-A: UNMITIGATED OPERATIONAL NOISE SOURCE LOCATIONS



| Reference                          | Noise<br>Source  |     | n./<br>ur <sup>1</sup> | Reference<br>Noise Level            | Sound<br>Power  |
|------------------------------------|------------------|-----|------------------------|-------------------------------------|-----------------|
| Noise Source                       | Height<br>(Feet) | Day | Night                  | (dBA L <sub>eq</sub> )<br>@ 50 Feet | Level<br>(dBA)² |
| Cold Storage Loading Dock Activity | 8'               | 60  | 60                     | 65.7                                | 111.5           |
| Dry Goods Loading Dock Activity    | 8'               | 60  | 60                     | 62.8                                | 103.4           |
| Parking Lot Vehicle Movements      | 5'               | 60  | 60                     | 52.6                                | 81.1            |
| Roof-Top Air Conditioning Units    | 5'               | 39  | 28                     | 57.2                                | 88.9            |
| Trash Enclosure Activity           | 5'               | 60  | 30                     | 57.3                                | 89.0            |
| Truck Movements                    | 8'               | 60  | 60                     | 59.8                                | 93.2            |
| Sports Field Activities            | 5'               | 60  | 0                      | 61.4                                | 94.0            |
| Basketball Court Activity          | 5'               | 60  | 0                      | 52.0                                | 83.7            |
| Dog Park Activity                  | 3'               | 60  | 0                      | 42.8                                | 74.4            |
| Amphitheater with Stage            | 8'               | 60  | 0                      | 66.8                                | 98.4            |
| Outdoor Play Area                  | 5'               | 60  | 0                      | 49.4                                | 81.1            |

 TABLE 9-1:
 REFERENCE NOISE LEVEL MEASUREMENTS

<sup>1</sup>Anticipated duration (minutes within the hour) of noise activity during typical hourly conditions expected at the Project site. "Daytime" = 7:00 a.m. - 10:00 p.m.; "Nighttime" = 10:00 p.m. - 7:00 a.m.

<sup>2</sup> Sound power level represents the total amount of acoustical energy (noise level) produced by a sound source independent of distance or surroundings. Sound power levels calculated using the CadnaA noise model at the reference distance to the noise source. Numbers may vary due to size differences between point and area noise sources.

#### 9.2.2 COLD STORAGE LOADING DOCK ACTIVITY

The reference cold storage loading dock activities are intended to describe the typical outdoor operational noise activities associated with the Project. This includes truck idling, reefer activity (refrigerator truck/cold storage), deliveries, backup alarms, trailer docking including a combination of tractor trailer semi-trucks, two-axle delivery trucks, and background operation activities. Since the noise levels generated by cold storage loading dock activity can be slightly higher due to the use of refrigerated trucks or reefers, this reference noise level conservatively assumes that all loading dock activity is associated with cold storage facilities, even though only 15 percent cold storage is anticipated. (25) The reference noise level measurement was taken in the center of the loading dock activity area and represents multiple concurrent noise sources resulting in a combined noise level of 65.7 dBA L<sub>ea</sub> at a uniform distance of 50 feet. Specifically, the reference noise level measurement represents one truck located approximately 30 feet from the noise level meter with another truck passing by to park roughly 20 feet away, both with their engines idling. Throughout the reference noise level measurement, a separate docked and running reefer truck was located approximately 50 feet east of the measurement location. Additional background noise sources included truck pass-by noise, truck drivers talking to each other next to docked trucks, and air brake release noise when trucks parked.

#### 9.2.3 DRY GOODS LOADING DOCK ACTIVITY

The reference dry goods loading dock activities are intended to describe the typical operational noise source levels associated with the Project. This includes truck idling, deliveries, backup



alarms, unloading/loading, docking including a combination of tractor trailer semi-trucks, twoaxle delivery trucks, and background forklift operations. At a uniform reference distance of 50 feet, Urban Crossroads collected a reference noise level of 62.8 dBA L<sub>eq</sub>. The loading dock activity noise level measurement was taken over a fifteen-minute period and represents multiple noise sources taken from the center of activity. The reference noise level measurement includes employees unloading a docked truck container included the squeaking of the truck's shocks when weight was removed from the truck, employees playing music over a radio, as well as a forklift horn and backup alarm. In addition, during the noise level measurement a truck entered the loading dock area and proceeded to reverse and dock in a nearby loading bay, adding truck engine, idling, air brakes noise, in addition to on-going idling of an already docked truck. Loading dock activity is estimated during all the daytime, evening, and nighttime hours.

### 9.2.4 PARKING LOT VEHICLE MOVEMENTS

To describe the on-site parking lot activity, a long-term 29-hour reference noise level measurement was collected in the center of activity within the staff parking lot of a warehouse distribution center. At 50 feet from the center of activity, the parking lot produced a reference noise level of 52.6 dBA L<sub>eq</sub>. Parking activities are expected to take place during the full hour (60 minutes) throughout the daytime and evening hours. The parking lot noise levels are mainly due to cars pulling in and out of parking spaces in combination with car doors opening and closing.

### 9.2.5 ROOF-TOP AIR CONDITIONING UNITS

The noise level measurements describe a single mechanical roof-top air conditioning unit. The reference noise level represents a Lennox SCA120 series 10-ton model packaged air conditioning unit. At the uniform reference distance of 50 feet, the reference noise level is 57.2 dBA L<sub>eq</sub>. Based on the typical operating conditions observed over a four-day measurement period, the roof-top air conditioning units are estimated to operate for and average 39 minutes per hour during the daytime hours, and 28 minutes per hour during the nighttime hours. These operating conditions reflect peak summer cooling requirements with measured temperatures approaching 96 degrees Fahrenheit (°F) with average daytime temperatures of 82°F. For this noise analysis, the air conditioning units are expected to be located on the roof of the Project buildings.

## 9.2.6 TRASH ENCLOSURE ACTIVITY

To describe the noise levels associated with a trash enclosure activity, Urban Crossroads collected a reference noise level measurement at an existing trash enclosure containing two dumpster bins. The trash enclosure noise levels describe metal gates opening and closing, metal scraping against concrete floor sounds, dumpster movement on metal wheels, and trash dropping into the metal dumpster. The reference noise levels describe trash enclosure noise activities when trash is dropped into an empty metal dumpster, as would occur at the Project Site. The measured reference noise level at the uniform 50-foot reference distance is 57.3 dBA  $L_{eq}$  for the trash enclosure activity. The reference noise level describes the expected noise source activities associated with the trash enclosures for the Project's proposed building.





## 9.2.7 TRUCK MOVEMENTS

The truck movements reference noise level measurement was collected over a period of 1 hour and 28 minutes and represent multiple heavy trucks entering and exiting the outdoor loading dock area producing a reference noise level of 59.8 dBA L<sub>eq</sub> at 50 feet. The noise sources included at this measurement location account for trucks entering and existing the Project driveways and maneuvering in and out of the outdoor loading dock activity area.

### 9.2.8 SPORTS FIELD ACTIVITIES

To represent the potential noise level impacts associated with the Project's Park activities, a reference noise level measurement was collected at a girls' youth U10 soccer game with coaches shouting instructions, and parents speaking on cell phones and background noise levels from kids playing on swing sets and people cheering and clapping. At the uniform reference distance of 50 feet, the reference sports field activity noise level is 61.4 dBA Leq. The playground activities are estimated to occur for 60 minutes during the peak hour conditions.

### 9.2.9 BASKETBALL COURT ACTIVITY

To describe the potential noise levels associated with the Project's basketball courts, a reference noise level measurement was collected by Urban Crossroads, Inc. The reference noise level measurement includes children playing on one half of a full basketball court, and adults playing basketball on the other half. Using a uniform reference distance of 50 feet, the reference basketball court activity noise level is 52.0 dBA L<sub>eq</sub>. Noise associated with basketball court activity is expected to last for 60 minutes per hour during all daytime hours from 7:00 a.m. to 10:00 p.m.

## 9.2.10 DOG PARK ACTIVITIES

To describe the potential noise level impacts associated with the Project's dog park, Urban Crossroads, Inc. collected a reference noise level measurement representing both large and small dogs with people talking, dogs running, playing fetch, chasing each other, growling, barking, and owners talking on cell phones. At a uniform distance of 50 feet from the noise source, a reference noise level of 42.8 dBA L<sub>eq</sub> is used. The noise associated with dog park activity is expected to last for 60 minutes per hour during all daytime hours from 7:00 a.m. to 10:00 p.m.

#### 9.2.11 AMPHITHEATER WITH STAGE

Urban Crossroads, Inc. collected sample (reference) noise level measurements of at an outdoor Revelation Classic Jazz Band. The noise level measurements collected a uniform distance of 50 feet from the noise source, a live band performance produced a reference noise level of 66.8 dBA  $L_{eq}$ .

#### 9.2.12 OUTDOOR PLAY AREA

To represent the potential noise level impacts associated with the Project's Outdoor Play Areas, a reference noise level measurement is expected to reflect the noise level activities within the water fountain and playground equipment area. Using the uniform reference distance of 50 feet,



the reference outdoor play area activity noise level is 49.4 dBA  $L_{eq}$ . The playground activities are estimated to occur for 60 minutes during the peak hour conditions.

# 9.3 CADNAA NOISE PREDICTION MODEL

To fully describe the exterior operational noise levels from the Project, Urban Crossroads, Inc. developed a noise prediction model using the CadnaA (Computer Aided Noise Abatement) computer program. CadnaA can analyze multiple types of noise sources using the spatially accurate Project site plan, georeferenced Nearmap aerial imagery, topography, buildings, and barriers in its calculations to predict outdoor noise levels. Using the ISO 9613-2 protocol, CadnaA will calculate the distance from each noise source to the noise receiver locations, using the ground absorption, distance, and barrier/building attenuation inputs to provide a summary of noise level at each receiver and the partial noise level contributions by noise source. Consistent with the ISO 9613-2 protocol, the CadnaA noise prediction model relies on the reference sound power level (L<sub>w</sub>) to describe individual noise sources.

While sound pressure levels (e.g., L<sub>eq</sub>) quantify in decibels the intensity of given sound sources at a reference distance, sound power levels (L<sub>w</sub>) are connected to the sound source and are independent of distance. Sound pressure levels vary substantially with distance from the source and diminish because of intervening obstacles and barriers, air absorption, wind, and other factors. Sound power is the acoustical energy emitted by the sound source and is an absolute value that is not affected by the environment. The operational noise level calculations provided in this noise study account for the distance attenuation provided due to geometric spreading, when sound from a localized stationary source (i.e., a point source) propagates uniformly outward in a spherical pattern. A default ground attenuation factor of 0.5 was used in the CadnaA noise analysis to account for mixed ground representing a combination of hard and soft surfaces. Appendix 9.1 includes the detailed noise model inputs including the planned screenwall used to estimate the Project operational noise levels presented in this section.

# 9.4 UNMITIGATED PROJECT OPERATIONAL NOISE LEVELS

Using the reference noise levels to represent the proposed Project operations that include loading dock activity, parking lot vehicle activities, roof-top air conditioning units, trash enclosure activity, truck movements, sports field activities, basketball court activity, dog park activity, and outdoor play area, Urban Crossroads, Inc. calculated the unmitigated operational source noise levels that are expected to be generated at the Project site and the Project-related noise level increases that would be experienced at each of the sensitive receiver locations. Table 9-2 shows the unmitigated Project operational noise levels during the daytime hours of 7:00 a.m. to 10:00 p.m. The daytime hourly noise levels at the off-site receiver locations are expected to range from 50.2 to 57.6 dBA L<sub>eq</sub>. Table 9-3 shows the unmitigated Project operational noise levels during the nighttime hours of 10:00 p.m. to 7:00 a.m. The nighttime hourly noise levels during the nighttime hourly noise levels are expected to range from 47.0 to 56.5 dBA L<sub>eq</sub>. The Seaton Park noise source activities will be limited to the daytime hours with no nighttime use. The differences between the daytime and nighttime noise levels are largely related to the estimated duration of noise activity as outlined in Table 9-1 and Appendix 9.1.



| Noise Coursel                      | Operational Noise Levels by Receiver Location (dBA Leq) |      |      |      |      |      |      |      |      |      |       |       |
|------------------------------------|---------------------------------------------------------|------|------|------|------|------|------|------|------|------|-------|-------|
| Noise Source <sup>1</sup>          | R1                                                      | R2   | R3   | R4   | R5   | R6   | ON7  | ON8  | ON9  | ON10 | BIO11 | BIO12 |
| Cold Storage Loading Dock Activity | 49.5                                                    | 56.4 | 53.8 | 56.4 | 46.7 | 47.9 | 48.7 | 54.8 | 56.6 | 54.8 | 51.4  | 46.6  |
| Dry Goods Loading Dock Activity    | 0.0                                                     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   |
| Parking Lot Vehicle Movements      | 24.5                                                    | 23.9 | 31.5 | 27.6 | 32.1 | 27.6 | 34.8 | 33.1 | 31.4 | 30.6 | 29.4  | 28.6  |
| Roof-Top Air Conditioning Units    | 30.7                                                    | 31.5 | 33.9 | 30.8 | 28.1 | 28.3 | 30.2 | 33.7 | 32.6 | 30.9 | 29.5  | 27.8  |
| Trash Enclosure Activity           | 32.5                                                    | 35.2 | 36.0 | 34.5 | 41.3 | 34.6 | 46.7 | 38.9 | 37.5 | 35.1 | 33.5  | 38.4  |
| Truck Movements                    | 34.5                                                    | 35.9 | 44.0 | 33.7 | 31.6 | 30.8 | 34.3 | 37.5 | 35.0 | 33.3 | 31.7  | 30.4  |
| Sports Field Activities            | 38.3                                                    | 26.3 | 41.3 | 50.8 | 50.3 | 48.3 | _2   | _2   | _2   | _2   | 50.8  | 47.8  |
| Basketball Court Activity          | 18.4                                                    | 8.0  | 18.4 | 24.1 | 33.7 | 30.3 | _2   | _2   | _2   | _2   | 26.2  | 36.5  |
| Dog Park Activity                  | 18.8                                                    | 9.2  | 19.2 | 24.4 | 34.2 | 32.5 | _2   | _2   | _2   | _2   | 26.9  | 51.9  |
| Amphitheater with Stage            | 33.1                                                    | 22.6 | 32.7 | 38.1 | 51.0 | 43.8 | _2   | _2   | _2   | _2   | 40.0  | 51.3  |
| Outdoor Play Area                  | 23.3                                                    | 12.5 | 26.1 | 33.8 | 31.7 | 39.4 | _2   | _2   | _2   | _2   | 38.9  | 34.7  |
| Total (All Noise Sources)          | 50.2                                                    | 56.5 | 54.6 | 57.6 | 54.8 | 52.3 | 51.1 | 55.0 | 56.7 | 54.9 | 54.5  | 56.2  |

#### TABLE 9-2: UNMITIGATED DAYTIME PROJECT OPERATIONAL NOISE LEVELS

<sup>1</sup> See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

<sup>2</sup> On-site receiver locations are included to describe the noise levels from the warehouse building to Seaton Park. Noise source activities from Seaton Park are not included in the overall operational noise level totals.



| Nation Courses1                    |      |      | C    | peration | al Noise | Levels by | Receiver | Location | (dBA Leo | q)   |       |       |
|------------------------------------|------|------|------|----------|----------|-----------|----------|----------|----------|------|-------|-------|
| Noise Source <sup>1</sup>          | R1   | R2   | R3   | R4       | R5       | R6        | ON7      | ON8      | ON9      | ON10 | BIO11 | BIO12 |
| Cold Storage Loading Dock Activity | 49.5 | 56.4 | 53.8 | 56.4     | 46.7     | 47.9      | _2       | _2       | _2       | _2   | 51.4  | 46.6  |
| Dry Goods Loading Dock Activity    | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Parking Lot Vehicle Movements      | 23.9 | 23.8 | 31.3 | 23.5     | 19.9     | 19.2      | _2       | _2       | _2       | _2   | 21.4  | 18.7  |
| Roof-Top Air Conditioning Units    | 28.3 | 29.1 | 31.5 | 28.4     | 25.7     | 25.9      | _2       | _2       | _2       | _2   | 27.1  | 25.4  |
| Trash Enclosure Activity           | 28.5 | 31.2 | 32.0 | 30.5     | 37.3     | 30.6      | _2       | _2       | _2       | _2   | 29.5  | 34.4  |
| Truck Movements                    | 34.5 | 35.9 | 44.0 | 33.7     | 31.6     | 30.8      | _2       | _2       | _2       | _2   | 31.7  | 30.4  |
| Sports Field Activities            | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Basketball Court Activity          | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Dog Park Activity                  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Amphitheater with Stage            | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Outdoor Play Area                  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2       | _2   | 0.0   | 0.0   |
| Total (All Noise Sources)          | 49.7 | 56.5 | 54.3 | 56.4     | 47.3     | 48.1      | _2       | _2       | _2       | _2   | 51.5  | 47.0  |

#### TABLE 9-3: UNMITIGATED NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS

<sup>1</sup> See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

<sup>2</sup> On-site receiver locations are included to describe the noise levels from the warehouse building to Seaton Park. Noise source activities from Seaton Park are not included in the overall operational noise level totals. Seaton Park does not include nighttime receivers with park activities limited to the daytime hours.



### 9.5 UNMITIGATED PROJECT OPERATIONAL NOISE LEVEL COMPLIANCE

To demonstrate compliance with local noise regulations, the unmitigated Project-only operational noise levels are evaluated against exterior noise level thresholds based on the County of Riverside exterior noise level standards at nearby noise-sensitive receiver locations. Table 9-4 shows the unmitigated operational noise levels associated with Mead Valley Commerce Center will exceed the County of Riverside daytime and nighttime exterior noise level standards. Therefore, the unmitigated operational noise impacts are considered *potentially significant* and operational noise mitigation measures are required to satisfy the County of Riverside exterior noise level standards.

| Receiver | Project Op<br>Noise Levels | perational<br>s (dBA Leq) <sup>2</sup> |         | l Standards<br>Leq) <sup>3</sup> | Noise Level Standards<br>Exceeded? <sup>4</sup> |           |  |
|----------|----------------------------|----------------------------------------|---------|----------------------------------|-------------------------------------------------|-----------|--|
| Location | Daytime                    | Nighttime                              | Daytime | Nighttime                        | Daytime                                         | Nighttime |  |
| R1       | 50.2                       | 49.7                                   | 55      | 45                               | No                                              | Yes       |  |
| R2       | 56.5                       | 56.5                                   | 55      | 45                               | Yes                                             | Yes       |  |
| R3       | 54.6                       | 54.3                                   | 55      | 45                               | No                                              | Yes       |  |
| R4       | 57.6                       | 56.4                                   | 55      | 45                               | Yes                                             | Yes       |  |
| R5       | 54.8                       | 47.3                                   | 55      | 45                               | No                                              | Yes       |  |
| R6       | 52.3                       | 48.1                                   | 55      | 45                               | No                                              | Yes       |  |
| ON7      | 51.1                       | _5                                     | 65      | _5                               | No                                              | No        |  |
| ON8      | 55.0                       | _5                                     | 65      | _5                               | No                                              | No        |  |
| ON9      | 56.7                       | _5                                     | 65      | _5                               | No                                              | No        |  |
| ON10     | 54.9                       | _5                                     | 65      | _5                               | No                                              | No        |  |
| BIO11    | 54.5                       | 51.5                                   | _6      | _6                               | _6                                              | _6        |  |
| BIO12    | 56.2                       | 47.0                                   | _6      | _6                               | _6                                              | _6        |  |

TABLE 9-4: UNMITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE

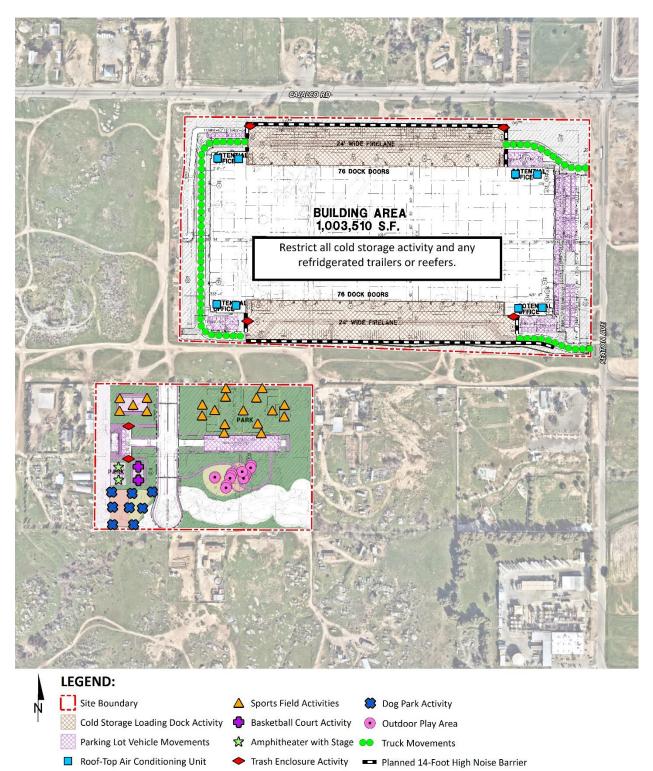
<sup>1</sup> See Exhibit 8-A for the receiver locations.

<sup>2</sup> Proposed Project unmitigated operational noise levels as shown on Tables 9-2 and 9-3.

<sup>3</sup> Exterior noise level standards, as shown on Table 4-1.

<sup>4</sup> Do the estimated Project operational noise source activities exceed the noise level standards?

<sup>5</sup> Seaton Park does not include nighttime receivers with park activities limited to the daytime hours.


<sup>6</sup> Project operational noise levels provided for informational purposes.

"Daytime" = 7:00 a.m. - 10:00 p.m.; "Nighttime" = 10:00 p.m. - 7:00 a.m.

#### 9.6 MITIGATED PROJECT OPERATIONAL NOISE LEVELS

To satisfy the County of Riverside exterior noise level standards, no cold storage activity is permitted in the loading area and a minimum 14-foot-high noise barrier is required for the loading dock areas as shown on Exhibit 9-B. Tables 9-5 and 9-6 present mitigated Project operational noise levels.





**EXHIBIT 9-B: OPERATIONAL NOISE MITIGATION MEASURES** 



| Notes Coursel                      |      |      | C    | peration | al Noise | Levels by | Receiver | Location | dBA Le | q)   |       |       |
|------------------------------------|------|------|------|----------|----------|-----------|----------|----------|--------|------|-------|-------|
| Noise Source <sup>1</sup>          | R1   | R2   | R3   | R4       | R5       | R6        | ON7      | ON8      | ON9    | ON10 | BIO11 | BIO12 |
| Cold Storage Loading Dock Activity | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.0    | 0.0  | 0.0   | 0.0   |
| Dry Goods Loading Dock Activity    | 37.1 | 41.6 | 39.6 | 41.6     | 34.6     | 34.6      | 36.9     | 40.8     | 41.6   | 40.4 | 37.5  | 33.9  |
| Parking Lot Vehicle Movements      | 24.3 | 17.9 | 27.5 | 26.4     | 32.1     | 27.4      | 34.7     | 33.0     | 31.1   | 30.3 | 29.2  | 28.5  |
| Roof-Top Air Conditioning Units    | 30.7 | 31.5 | 33.9 | 30.8     | 28.1     | 28.3      | 30.2     | 33.7     | 32.6   | 30.9 | 29.5  | 27.8  |
| Trash Enclosure Activity           | 25.7 | 22.3 | 26.6 | 31.4     | 41.2     | 34.4      | 46.7     | 38.8     | 33.7   | 32.3 | 31.7  | 38.2  |
| Truck Movements                    | 34.1 | 34.1 | 41.1 | 31.5     | 31.3     | 30.0      | 34.1     | 37.3     | 34.1   | 31.9 | 30.1  | 29.8  |
| Sports Field Activities            | 38.3 | 26.3 | 41.3 | 50.8     | 50.3     | 48.3      | _2       | _2       | _2     | _2   | 50.8  | 47.8  |
| Basketball Court Activity          | 18.4 | 8.0  | 18.4 | 24.1     | 33.7     | 30.3      | _2       | _2       | _2     | _2   | 26.2  | 36.5  |
| Dog Park Activity                  | 18.8 | 9.2  | 19.2 | 24.4     | 34.2     | 32.5      | _2       | _2       | _2     | _2   | 26.9  | 51.9  |
| Amphitheater with Stage            | 33.1 | 22.6 | 32.7 | 38.1     | 51.0     | 43.8      | _2       | _2       | _2     | _2   | 40.0  | 51.3  |
| Outdoor Play Area                  | 23.3 | 12.5 | 26.1 | 33.8     | 31.7     | 39.4      | _2       | _2       | _2     | _2   | 38.9  | 34.7  |
| Total (All Noise Sources)          | 42.7 | 42.9 | 46.2 | 51.7     | 54.1     | 50.5      | 47.7     | 44.7     | 43.5   | 42.2 | 51.7  | 55.7  |

#### TABLE 9-5: MITIGATED DAYTIME PROJECT OPERATIONAL NOISE LEVELS

<sup>1</sup> See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

<sup>2</sup> On-site receiver locations are included to describe the noise levels from the warehouse building to Seaton Park. Noise source activities from Seaton Park are not included in the overall operational noise level totals.

| Nation Courses1                    |      |      | C    | peration | al Noise | Levels by | Receiver | Location | (dBA Le | q)   |       |       |
|------------------------------------|------|------|------|----------|----------|-----------|----------|----------|---------|------|-------|-------|
| Noise Source <sup>1</sup>          | R1   | R2   | R3   | R4       | R5       | R6        | ON7      | ON8      | ON9     | ON10 | BIO11 | BIO12 |
| Cold Storage Loading Dock Activity | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Dry Goods Loading Dock Activity    | 37.1 | 41.6 | 39.6 | 41.6     | 34.6     | 34.6      | _2       | _2       | _2      | _2   | 37.5  | 33.9  |
| Parking Lot Vehicle Movements      | 23.7 | 17.7 | 27.0 | 19.0     | 19.4     | 18.1      | _2       | _2       | _2      | _2   | 19.9  | 17.9  |
| Roof-Top Air Conditioning Units    | 28.3 | 29.1 | 31.5 | 28.4     | 25.7     | 25.9      | _2       | _2       | _2      | _2   | 27.1  | 25.4  |
| Trash Enclosure Activity           | 21.7 | 18.3 | 22.6 | 27.4     | 37.2     | 30.4      | _2       | -2       | _2      | _2   | 27.7  | 34.2  |
| Truck Movements                    | 34.1 | 34.1 | 41.1 | 31.5     | 31.3     | 30.0      | _2       | _2       | _2      | _2   | 30.1  | 29.8  |
| Sports Field Activities            | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Basketball Court Activity          | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Dog Park Activity                  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Amphitheater with Stage            | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Outdoor Play Area                  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0       | _2       | _2       | _2      | _2   | 0.0   | 0.0   |
| Total (All Noise Sources)          | 39.4 | 42.5 | 43.8 | 42.4     | 40.0     | 37.4      | _2       | _2       | _2      | _3   | 38.9  | 38.1  |

#### TABLE 9-6: MITIGATED NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS

<sup>1</sup> See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

<sup>2</sup> On-site receiver locations are included to describe the noise levels from the warehouse building to Seaton Park. Noise source activities from Seaton Park are not included in the overall operational noise level totals. Seaton Park does not include nighttime receivers with park activities limited to the daytime hours.



Using the reference noise levels to represent the mitigated Project operations Urban Crossroads, Inc. calculated the operational source noise levels that are expected to be generated at the Project site. The mitigated operational noise level calculations are included in Appendix 9.2. Table 9-5 shows the mitigated Project operational noise levels during the daytime hours of 7:00 a.m. to 10:00 p.m. The daytime hourly noise levels at the off-site receiver locations are expected to range from 42.2 to 55.7 dBA L<sub>eq</sub>. Table 9-6 shows the mitigated Project operational noise levels during the nighttime hours of 10:00 p.m. to 7:00 a.m. The nighttime hourly noise levels at the off-site receiver locations are expected to range from 37.4 to 43.8 dBA L<sub>eq</sub>. The Seaton Park noise source activities will be limited to the daytime hours with no nighttime use.

#### 9.7 MITIGATED PROJECT OPERATIONAL NOISE LEVEL COMPLIANCE

To demonstrate compliance with local noise regulations, the mitigated Project-only operational noise levels are evaluated against exterior noise level thresholds based on the County of Riverside exterior noise level standards at the existing nearby noise-sensitive receiver locations. Table 9-7 shows that the mitigated operational noise levels associated with Project will not exceed the County of Riverside daytime and nighttime exterior noise level standards at the existing nearby noise-sensitive receiver locations. Therefore, the mitigated operational noise impacts are considered *less than significant* at the nearby noise-sensitive receiver locations.

| Receiver<br>Location <sup>1</sup> | Project Operational<br>Noise Levels (dBA Leq) <sup>2</sup> |           | Noise Level Standards<br>(dBA Leq) <sup>3</sup> |           | Noise Level Standards<br>Exceeded? <sup>4</sup> |           |  |
|-----------------------------------|------------------------------------------------------------|-----------|-------------------------------------------------|-----------|-------------------------------------------------|-----------|--|
|                                   | Daytime                                                    | Nighttime | Daytime                                         | Nighttime | Daytime                                         | Nighttime |  |
| R1                                | 42.7                                                       | 39.4      | 55                                              | 45        | No                                              | No        |  |
| R2                                | 42.9                                                       | 42.5      | 55                                              | 45        | No                                              | No        |  |
| R3                                | 46.2                                                       | 43.8      | 55                                              | 45        | No                                              | No        |  |
| R4                                | 51.7                                                       | 42.4      | 55                                              | 45        | No                                              | No        |  |
| R5                                | 54.1                                                       | 40.0      | 55                                              | 45        | No                                              | No        |  |
| R6                                | 50.5                                                       | 37.4      | 55                                              | 45        | No                                              | No        |  |
| ON7                               | 47.7                                                       | _5        | 65                                              | _5        | No                                              | No        |  |
| ON8                               | 44.7                                                       | _5        | 65                                              | _5        | No                                              | No        |  |
| ON9                               | 43.5                                                       | _5        | 65                                              | _5        | No                                              | No        |  |
| ON10                              | 42.2                                                       | _5        | 65                                              | _5        | No                                              | No        |  |
| BIO11                             | 51.7                                                       | 38.9      | _6                                              | _6        | _6                                              | _6        |  |
| BIO12                             | 55.7                                                       | 38.1      | _6                                              | _6        | _6                                              | _6        |  |

#### TABLE 9-7: MITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE

<sup>1</sup> See Exhibit 8-A for the receiver locations.

<sup>2</sup> Proposed Project unmitigated operational noise levels as shown on Tables 9-2 and 9-3.

<sup>3</sup> Exterior noise level standards, as shown on Table 4-1.

<sup>4</sup> Do the estimated Project operational noise source activities exceed the noise level standards?

<sup>5</sup> Seaton Park does not include nighttime receivers with park activities limited to the daytime hours.

<sup>6</sup> Project operational noise levels provided for informational purposes.

"Daytime" = 7:00 a.m. - 10:00 p.m.; "Nighttime" = 10:00 p.m. - 7:00 a.m.

### 9.8 PROJECT OPERATIONAL NOISE LEVEL INCREASES

To describe the Project operational noise level increases, the Project operational noise levels are combined with the existing ambient noise levels measurements for the nearby receiver locations potentially impacted by Project operational noise sources. Since the units used to measure noise, decibels (dB), are logarithmic units, the Project-operational and existing ambient noise levels cannot be combined using standard arithmetic equations. (2) Instead, they must be logarithmically added using the following base equation:

 $SPL_{Total} = 10log_{10}[10^{SPL1/10} + 10^{SPL2/10} + \dots 10^{SPLn/10}]$ 

Where "SPL1," "SPL2," etc. are equal to the sound pressure levels being combined, or in this case, the Project-operational and existing ambient noise levels. The difference between the combined Project and ambient noise levels describes the Project noise level increases to the existing ambient noise environment. Noise levels that would be experienced at receiver locations when Project-source noise is added to the daytime and nighttime ambient conditions are presented on Tables 9-8 and 9-9, respectively. As indicated on Table 9-8, the Project will generate a daytime operational noise level increase ranging from 0.0 to 0.3 dBA L<sub>eq</sub> at the nearest receiver locations. Table 9-9 shows that the Project will generate a nighttime operational noise level increase ranging from 0.0 to 0.5 dBA L<sub>eq</sub> at the nearest receiver locations. Project-related operational noise level increases will not exceed the operational noise level increase significance criteria presented in Table 4-1, and, therefore, the increases at the sensitive receiver locations will be *less than significant*.

| Receiver<br>Location <sup>1</sup> | Total Project<br>Operational<br>Noise Level <sup>2</sup> | Measurement<br>Location <sup>3</sup> | Reference<br>Ambient<br>Noise Levels <sup>4</sup> | Combined<br>Project<br>and<br>Ambient <sup>5</sup> | Project<br>Increase <sup>6</sup> | Increase<br>Criteria <sup>7</sup> | Increase<br>Criteria<br>Exceeded? |
|-----------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| R1                                | 42.7                                                     | L1                                   | 65.1                                              | 65.1                                               | 0.0                              | 1.5                               | No                                |
| R2                                | 42.9                                                     | L2                                   | 75.2                                              | 75.2                                               | 0.0                              | 1.5                               | No                                |
| R3                                | 46.2                                                     | L4                                   | 62.6                                              | 62.7                                               | 0.1                              | 5.0                               | No                                |
| R4                                | 51.7                                                     | L6                                   | 65.1                                              | 65.3                                               | 0.2                              | 1.5                               | No                                |
| R5                                | 54.1                                                     | L5                                   | 63.5                                              | 64.0                                               | 0.5                              | 5.0                               | No                                |
| R6                                | 50.5                                                     | L7                                   | 62.2                                              | 62.5                                               | 0.3                              | 5.0                               | No                                |

TABLE 9-8: DAYTIME PROJECT OPERATIONAL NOISE LEVEL INCREASES

 $^{\rm 1}$  See Exhibit 8-A for the receiver locations.

<sup>2</sup> Total Project mitigated daytime operational noise levels as shown on Table 9-5.

<sup>3</sup> Reference noise level measurement locations as shown on Exhibit 5-A.

<sup>4</sup> Observed daytime ambient noise levels as shown on Table 5-1.

<sup>5</sup> Represents the combined ambient conditions plus the Project activities.

 $^{\rm 6}$  The noise level increase expected with the addition of the proposed Project activities.

<sup>7</sup> Significance increase criteria as shown on Table 4-1.



| Receiver<br>Location <sup>1</sup> | Total Project<br>Operational<br>Noise Level <sup>2</sup> | Measurement<br>Location <sup>3</sup> | Reference<br>Ambient<br>Noise Levels <sup>4</sup> | Combined<br>Project<br>and<br>Ambient <sup>5</sup> | Project<br>Increase <sup>6</sup> | Increase<br>Criteria <sup>7</sup> | Increase<br>Criteria<br>Exceeded? |
|-----------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| R1                                | 39.4                                                     | L1                                   | 61.5                                              | 61.5                                               | 0.0                              | 5.0                               | No                                |
| R2                                | 42.5                                                     | L2                                   | 75.2                                              | 75.2                                               | 0.0                              | 1.5                               | No                                |
| R3                                | 43.8                                                     | L4                                   | 53.2                                              | 53.7                                               | 0.5                              | 5.0                               | No                                |
| R4                                | 42.4                                                     | L6                                   | 56.9                                              | 57.0                                               | 0.1                              | 5.0                               | No                                |
| R5                                | 40.0                                                     | L5                                   | 53.3                                              | 53.5                                               | 0.2                              | 5.0                               | No                                |
| R6                                | 37.4                                                     | L7                                   | 59.9                                              | 59.9                                               | 0.0                              | 5.0                               | No                                |

TABLE 9-9: NIGHTTIME OPERATIONAL NOISE LEVEL INCREASES

<sup>1</sup> See Exhibit 8-A for the receiver locations.

<sup>2</sup> Total Project nighttime mitigated operational noise levels as shown on Table 9-6.

<sup>3</sup> Reference noise level measurement locations as shown on Exhibit 5-A.

<sup>4</sup> Observed nighttime ambient noise levels as shown on Table 5-1.

<sup>5</sup> Represents the combined ambient conditions plus the Project activities.

<sup>6</sup> The noise level increase expected with the addition of the proposed Project activities.

<sup>7</sup> Significance increase criteria as shown on Table 4-1.





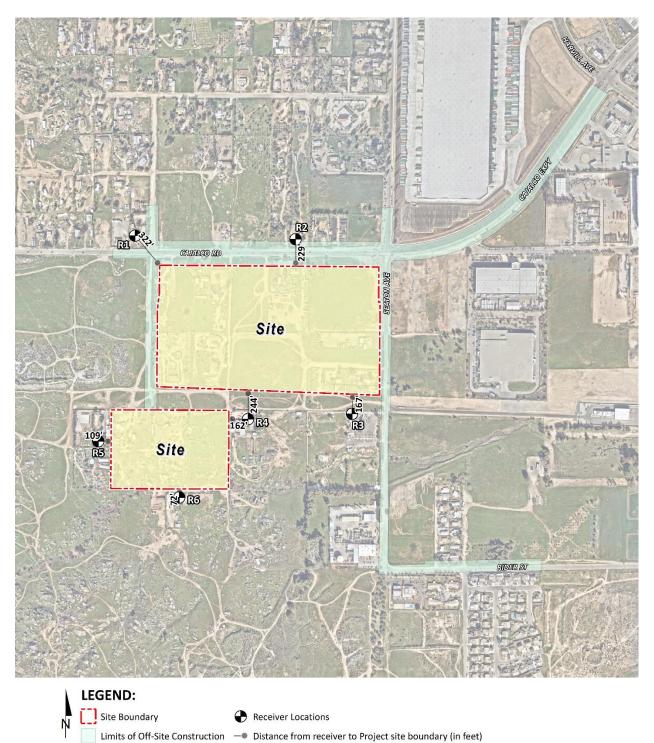
This page intentionally left blank



# **10 CONSTRUCTION IMPACTS**

This section analyzes potential impacts resulting from the short-term construction activities associated with the development of the Project. Exhibit 10-A shows the on-site construction noise source activity including the off-site roadway and utility improvements in relation to the nearest sensitive receiver locations previously described in Section 8. According to Riverside County Ordinance No. 847 Regulating Noise Section 2i (Code Section 9.52.020[I]), noise associated with any private construction activity located within one-quarter of a mile from an inhabited dwelling is considered exempt between the hours of 6:00 a.m. and 6:00 p.m., during the months of June through September, and 7:00 a.m. and 6:00 p.m., during the months of October through May. (11)

## **10.1** CONSTRUCTION NOISE LEVELS


The FTA *Transit Noise and Vibration Impact Assessment Manual* recognizes that construction projects are accomplished in several different stages and outlines the procedures for assessing noise impacts during construction. Each stage has a specific equipment mix, depending on the work to be completed during that stage. As a result of the equipment mix, each stage has its own noise characteristics; some stages have higher continuous noise levels than others, and some have higher impact noise levels than others. The Project construction activities are expected to occur in the following stages:

- Demolition
- Site Preparation
- Grading
- Rock Crushing
- Building Construction
- Paving
- Architectural Coating

## **10.2** CONSTRUCTION REFERENCE NOISE LEVELS

To describe construction noise activities, this construction noise analysis was prepared using reference construction equipment noise levels from the Federal Highway Administration (FHWA) published the Roadway Construction Noise Model (RCNM), which includes a national database of construction equipment reference noise emission levels. (27) The RCNM equipment database, provides a comprehensive list of the noise generating characteristics for specific types of construction equipment. In addition, the database provides an acoustical usage factor to estimate the fraction of time each piece of construction equipment is operating at full power (i.e., its loudest condition) during a construction operation.





**EXHIBIT 10-A: CONSTRUCTION NOISE SOURCE LOCATIONS** 



# **10.3** CONSTRUCTION NOISE ANALYSIS

Using the reference construction equipment noise levels and the CadnaA noise prediction model, calculations of the Project construction noise level impacts at the nearby sensitive receiver locations were completed. Consistent with FTA guidance for general construction noise assessment, Table 10-1 presents the combined noise levels for the loudest construction equipment, assuming they operate at the same time. As shown on Table 10-2, the construction noise levels are expected to range from 46.2 to 66.0 dBA  $L_{eq}$  at the nearby receiver locations. Appendix 10.1 includes the detailed CadnaA construction noise model calculations.

| Construction<br>Stage    | Reference<br>Construction Equipmnet <sup>1</sup> | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) | Composite<br>Reference Noise<br>Level<br>(dBA L <sub>eq</sub> ) <sup>2</sup> | Reference<br>Power Level<br>(dBA L <sub>w</sub> ) <sup>3</sup> |  |
|--------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|--|
|                          | Concrete Saw                                     | 83                                                           |                                                                              |                                                                |  |
| Demolition               | Grapple (on backhoe)                             | 83                                                           | 86.8                                                                         | 118.4                                                          |  |
|                          | Gradall                                          | 79                                                           |                                                                              |                                                                |  |
| <u></u>                  | Tractor                                          | 80                                                           |                                                                              |                                                                |  |
| Site<br>Preparation      | Backhoe                                          | 74                                                           | 84.0                                                                         | 115.6                                                          |  |
| reputation               | Grader                                           | 81                                                           |                                                                              |                                                                |  |
|                          | Scraper                                          | 80                                                           |                                                                              |                                                                |  |
| Grading                  | Excavator                                        | 77                                                           | 83.3                                                                         | 114.9                                                          |  |
|                          | Dozer                                            | 78                                                           |                                                                              |                                                                |  |
| _                        | Impact Hammer (hoe ram)                          | 83                                                           |                                                                              |                                                                |  |
| Rock<br>Crushing         | Front End Loader                                 | 75                                                           | 83.9                                                                         | 115.6                                                          |  |
| Crushing                 | Dump Truck                                       | 72                                                           |                                                                              |                                                                |  |
|                          | Crane                                            | 73                                                           |                                                                              |                                                                |  |
| Building<br>Construction | Generator                                        | 78                                                           | 80.6                                                                         | 112.2                                                          |  |
| construction             | Front End Loader                                 | 75                                                           |                                                                              |                                                                |  |
|                          | Paver                                            | 74                                                           |                                                                              |                                                                |  |
| Paving                   | Dump Truck                                       | 72                                                           | 77.8                                                                         | 109.5                                                          |  |
|                          | Roller                                           | 73                                                           |                                                                              |                                                                |  |
|                          | Man Lift                                         | 68                                                           |                                                                              |                                                                |  |
| Architectural<br>Coating | Compressor (air)                                 | 74                                                           | 76.2                                                                         | 107.8                                                          |  |
| Coating                  | Generator (<25kVA)                               | 70                                                           |                                                                              |                                                                |  |

### TABLE 10-1: CONSTRUCTION REFERENCE NOISE LEVELS

<sup>1</sup> FHWA Road Construction Noise Model.

<sup>2</sup> Represents the combined noise level for all equipment assuming they operate at the same time consistent with FTA Transit Noise and Vibration Impact Assessment guidance.

<sup>3</sup> Sound power level represents the total amount of acoustical energy (noise level) produced by a sound source independent of distance or surroundings.



|                                   | Construction Noise Levels (dBA Leq) |                                       |      |        |                          |                                |      |      |  |
|-----------------------------------|-------------------------------------|---------------------------------------|------|--------|--------------------------|--------------------------------|------|------|--|
| Receiver<br>Location <sup>1</sup> | Demolition                          | tion Site Grading Rock Building Pavin |      | Paving | Architectural<br>Coating | Highest<br>Levels <sup>2</sup> |      |      |  |
| R1                                | 56.8                                | 54.0                                  | 53.3 | 53.9   | 50.6                     | 47.8                           | 46.2 | 56.8 |  |
| R2                                | 59.6                                | 56.8                                  | 56.1 | 56.7   | 53.4                     | 50.6                           | 49.0 | 59.6 |  |
| R3                                | 60.1                                | 57.3                                  | 56.6 | 57.2   | 53.9                     | 51.1                           | 49.5 | 60.1 |  |
| R4                                | 63.6                                | 60.8                                  | 60.1 | 60.7   | 57.4                     | 54.6                           | 53.0 | 63.6 |  |
| R5                                | 64.4                                | 61.6                                  | 60.9 | 61.5   | 58.2                     | 55.4                           | 53.8 | 64.4 |  |
| R6                                | 66.0                                | 63.2                                  | 62.5 | 63.1   | 59.8                     | 57.0                           | 55.4 | 66.0 |  |

#### TABLE 10-2: CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY

<sup>1</sup>Construction noise source and receiver locations are shown on Exhibit 10-A.

<sup>2</sup> Construction noise level calculations based on distance from the construction activity, which is measured from the Project site boundary to the nearest receiver locations. CadnaA construction noise model inputs are included in Appendix 10.1.

### **10.4** PROJECT SITE CONSTRUCTION NOISE LEVEL COMPLIANCE

To evaluate whether the Project will generate potentially significant short-term noise levels at nearest receiver locations, a construction-related daytime noise level threshold of 80 dBA  $L_{eq}$  is used as a reasonable threshold to assess the daytime construction noise level impacts. The construction noise analysis shows that the nearest receiver locations will satisfy the reasonable daytime 80 dBA  $L_{eq}$  significance threshold during Project construction activities as shown on Table 10-3. Therefore, the noise impacts due to Project construction noise are considered *less than significant* at all receiver locations.

| <b>TABLE 10-3:</b> | <b>PROJECT SITE</b> | CONSTRUCTION | <b>NOISE LEVEL</b> | COMPLIANCE |
|--------------------|---------------------|--------------|--------------------|------------|
|--------------------|---------------------|--------------|--------------------|------------|

| Dession                           | Construction Noise Levels (dBA L <sub>eq</sub> )  |                        |                                     |  |  |  |  |
|-----------------------------------|---------------------------------------------------|------------------------|-------------------------------------|--|--|--|--|
| Receiver<br>Location <sup>1</sup> | Highest Construction<br>Noise Levels <sup>2</sup> | Threshold <sup>3</sup> | Threshold<br>Exceeded? <sup>4</sup> |  |  |  |  |
| R1                                | 56.8                                              | 80                     | No                                  |  |  |  |  |
| R2                                | 59.6                                              | 80                     | No                                  |  |  |  |  |
| R3                                | 60.1                                              | 80                     | No                                  |  |  |  |  |
| R4                                | 63.6                                              | 80                     | No                                  |  |  |  |  |
| R5                                | 64.4                                              | 80                     | No                                  |  |  |  |  |
| R6                                | 66.0                                              | 80                     | No                                  |  |  |  |  |

<sup>1</sup>Construction noise source and receiver locations are shown on Exhibit 10-A.

<sup>2</sup> Highest construction noise level calculations based on distance from the construction noise source activity to the nearest receiver locations as shown on Table 10-2.

<sup>3</sup> Construction noise level thresholds as shown on Table 4-1.

<sup>4</sup> Do the estimated Project construction noise levels exceed the construction noise level threshold?



# 10.5 OFF-SITE ROADWAY AND UTILITY IMPROVEMENTS CONSTRUCTION NOISE ANALYSIS

To support the Project development, there will be grading, trenching, and paving for off-site improvements associated with roadway construction and utility installation for the Project. It is expected that these off-site improvements will be constructed within the existing public right-of-way (ROW) on Decker Road, Seaton Avenue, Cajalco Road and Rider Street. The loudest phase of construction associated with off-site roadway and utility improvements would likely be grading/excavation activities, which would generate similar noise levels compared to the grading/excavation phase of the proposed project's on-site construction activities previously outlined on Table 10-1.

It is expected that the off-site construction activities would not take place at any one location for more than four days due to the nature of the linear construction activity. Construction noise from this off-site work would, therefore, be relatively short-term and the noise levels would be reduced as construction work moves linearly along the selected alignment and farther from sensitive uses. Although not required to address a *potentially significant* impact, the following noise abatement measures would further reduce construction noise impacts from the Project construction and the off-site roadway and utility Improvements.

- All construction activities shall comply with Riverside County Ordinance No. 847 Regulating Noise Section 2i (Code Section 9.52.020[I]), limiting construction activities to the hours of 6:00 a.m. and 6:00 p.m., during the months of June through September, and 7:00 a.m. and 6:00 p.m., during the months of October through May. (11)
- 2. Construction contractors shall equip all construction equipment, fixed or mobile, with properly operating and maintained mufflers, consistent with manufacturers' standards).
- 3. All stationary construction equipment shall be placed in such a manner so that emitted noise is directed away from any sensitive receivers.
- 4. Construction equipment staging areas shall be located at the greatest feasible distance between the staging area and the nearest sensitive receivers.
- 5. The construction contractor shall limit equipment and material deliveries to the same hours specified for construction equipment (between the hours of 6:00am to 6:00pm during the months of June through September and 7:00am to 6:00pm during the months of October through May).
- 6. Electrically powered air compressors and similar power tools shall be used, when feasible, in place of diesel equipment.
- 7. No music or electronically reinforced speech from construction workers shall be allowed.

With the implementation of these construction noise abatement measures, the potential impacts from the Project and construction and off-site roadway and utility Improvements would be reduced. Therefore, the off-site roadway and utility improvement construction activities will be *less than significant.* 



# **10.6** NIGHTTIME CONCRETE POUR NOISE ANALYSIS

It is our understanding that nighttime concrete pouring activities will occur as a part of Project building construction activities. Nighttime concrete pouring activities are often used to support reduced concrete mixer truck transit times and lower air temperatures than during the daytime hours and are generally limited to the actual building pad area as shown on Exhibit 10-B. Since the nighttime concrete pours will take place outside the hours permitted by Riverside County Ordinance No. 847 Regulating Noise Section 2i (Code Section 9.52.020[I]), the Project Applicant will be required to obtain authorization for nighttime work from the County of Riverside. Any nighttime construction noise activities are evaluated against the FTA nighttime exterior construction noise level threshold of 70 dBA Leq for noise sensitive residential land use (8 p. 179).

# **10.6.1** NIGHTTIME CONCRETE POUR REFERENCE NOISE LEVEL MEASUREMENTS

To estimate the noise levels due to nighttime concrete pouring activities, sample reference noise level measurements were taken during a nighttime concrete pouring at a construction site. Urban Crossroads, Inc. collected short-term nighttime concrete pour reference noise level measurements during the noise-sensitive nighttime hours between 1:00 a.m. to 2:00 a.m. The reference noise levels describe the expected concrete pour noise sources that may include concrete mixer truck movements and pouring activities, concrete paving equipment, rear mounted concrete mixer truck backup alarms, engine idling, air brakes, generators, and workers communicating/whistling.

To describe the nighttime concrete pour noise levels associated with the construction of the Mead Valley Commerce Center, this analysis relies on reference sound pressure level of 67.7 dBA  $L_{eq}$  at 50 feet representing a sound power level of 100.3 dBA  $L_w$ . While the Project noise levels will depend on the actual duration of activities and specific equipment fleet in use at the time of construction, the reference sound power level of 100.3 dBA  $L_w$  is used to describe the expected Project nighttime concrete pour noise activities.

# 10.6.2 NIGHTTIME CONCRETE POUR NOISE LEVEL COMPLIANCE

As shown on Table 10-4, the noise levels associated with the nighttime concrete pour activities are estimated to range from 34.4 to 40.5 dBA  $L_{eq.}$  The analysis shows that the unmitigated nighttime concrete pour activities will satisfy the FTA 70 dBA  $L_{eq}$  nighttime residential noise level threshold at all the nearest noise sensitive receiver locations. Therefore, the noise impacts due to Project construction nighttime concrete pour noise activity are considered *less than significant* at all receiver locations with prior authorization for nighttime work from the County of Riverside. Appendix 10.2 includes the CadnaA nighttime concrete pour noise calculations.



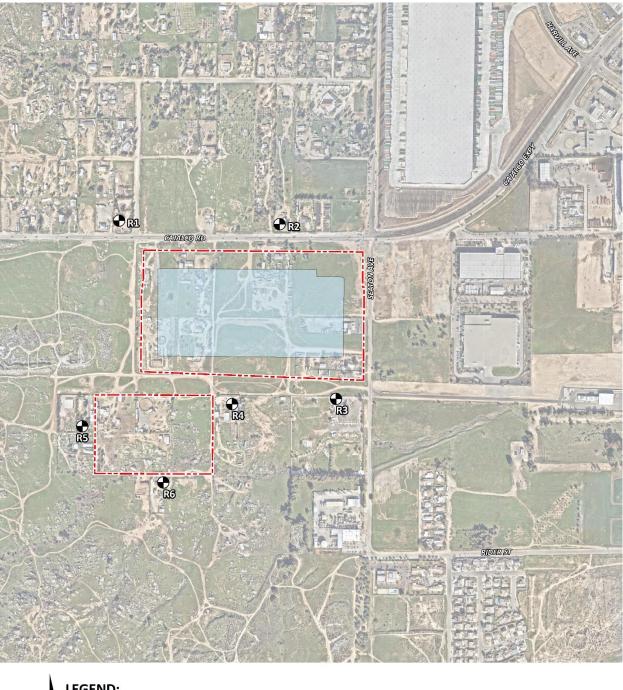



EXHIBIT 10-B: NIGHTTIME CONCRETE POUR NOISE SOURCE AND RECEIVER LOCATIONS





| Receiver<br>Location <sup>1</sup> | Concrete Pour Construction Noise Levels (dBA L <sub>eq</sub> ) |                        |                                     |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------|------------------------|-------------------------------------|--|--|--|--|
|                                   | Exterior<br>Noise Levels <sup>2</sup>                          | Threshold <sup>3</sup> | Threshold<br>Exceeded? <sup>4</sup> |  |  |  |  |
| R1                                | 36.9                                                           | 70                     | No                                  |  |  |  |  |
| R2                                | 40.5                                                           | 70                     | No                                  |  |  |  |  |
| R3                                | 39.5                                                           | 70                     | No                                  |  |  |  |  |
| R4                                | 40.4                                                           | 70                     | No                                  |  |  |  |  |
| R5                                | 34.4                                                           | 70                     | No                                  |  |  |  |  |
| R6                                | 34.5                                                           | 70                     | No                                  |  |  |  |  |

### TABLE 10-4: NIGHTTIME CONCRETE POUR NOISE LEVEL COMPLIANCE

<sup>1</sup>Construction noise source and receiver locations are shown on Exhibit 10-A.

<sup>2</sup> Nighttime Concrete Pour noise model inputs are included in Appendix 10.2.

<sup>3</sup> Construction noise level thresholds as shown on Table 4-1.

 $^{\rm 4}$  Do the estimated Project construction noise levels exceed the construction noise level threshold?

## **10.7** CONSTRUCTION VIBRATION ANALYSIS

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods employed. The operation of construction equipment causes ground vibrations that spread through the ground and diminish in strength with distance. Ground vibration levels associated with various types of construction equipment are summarized on Table 10-5. Based on the representative vibration levels presented for various construction equipment types, it is possible to estimate the potential for human response (annoyance) and building damage using the following vibration assessment methods defined by the FTA. To describe the vibration impacts the FTA provides the following equation:  $PPV_{equip} = PPV_{ref} \times (25/D)^{1.5}$ 

| Equipment        | PPV (in/sec)<br>at 25 feet |
|------------------|----------------------------|
| Small bulldozer  | 0.003                      |
| Jackhammer       | 0.035                      |
| Loaded Trucks    | 0.076                      |
| Large bulldozer  | 0.089                      |
| Vibratory Roller | 0.210                      |

TABLE 10-5: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT

Federal Transit Administration, Transit Noise and Vibration Impact Assessment Manual

Table 10-6 presents the expected Project related vibration levels at the nearby receiver locations. At distances ranging from 72 to 322 feet from Project construction activities, construction vibration velocity levels are estimated to range from 0.005 to 0.043 in/sec PPV. Based on maximum acceptable continuous vibration threshold of 0.3 PPV (in/sec), the typical Project construction vibration levels will fall below the building damage thresholds at all the noise



sensitive receiver locations. Therefore, the Project-related vibration impacts are considered *less than significant* during typical construction activities at the Project site.

|                       | Distance<br>to Const.           |                    | Typical         |                  | on Vibratior<br>n/sec) <sup>3</sup> | 1 Levels            |                               | Thresholds       | Thresholds             |
|-----------------------|---------------------------------|--------------------|-----------------|------------------|-------------------------------------|---------------------|-------------------------------|------------------|------------------------|
| Location <sup>1</sup> | Activity<br>(Feet) <sup>2</sup> | Small<br>bulldozer | Jack-<br>hammer | Loaded<br>Trucks | Large<br>bulldozer                  | Vibratory<br>Roller | Highest<br>Vibration<br>Level | PPV<br>(in/sec)⁴ | Exceeded? <sup>5</sup> |
| R1                    | 322'                            | 0.000              | 0.001           | 0.002            | 0.002                               | 0.005               | 0.005                         | 0.3              | No                     |
| R2                    | 229'                            | 0.000              | 0.001           | 0.003            | 0.003                               | 0.008               | 0.008                         | 0.3              | No                     |
| R3                    | 167'                            | 0.000              | 0.002           | 0.004            | 0.005                               | 0.012               | 0.012                         | 0.3              | No                     |
| R4                    | 162'                            | 0.000              | 0.002           | 0.005            | 0.005                               | 0.013               | 0.013                         | 0.3              | No                     |
| R5                    | 109'                            | 0.000              | 0.004           | 0.008            | 0.010                               | 0.023               | 0.023                         | 0.3              | No                     |
| R6                    | 72'                             | 0.001              | 0.007           | 0.016            | 0.018                               | 0.043               | 0.043                         | 0.3              | No                     |

TABLE 10-6: PROJECT CONSTRUCTION VIBRATION LEVELS

<sup>1</sup>Construction noise source and receiver locations are shown on Exhibit 10-A.

<sup>2</sup> Distance from receiver building facade to Project construction boundary (Project site boundary).

<sup>3</sup> Based on the Vibration Source Levels of Construction Equipment (Table 10-5).

<sup>4</sup> Caltrans Transportation and Construction Vibration Guidance Manual, April 2020, Table 19, p. 38.

<sup>5</sup> Does the peak vibration exceed the acceptable vibration thresholds?

"PPV" = Peak Particle Velocity

### **10.8 BLASTING NOISE ANALYSIS**

Project construction blasting will be limited to the four areas shown on Exhibit 10-C. A blasting contractor would be required to complete all blasting-related activities in compliance with applicable regulations of the Riverside County Sheriff's Department, the U.S. Bureau of Mines, the California Division of Occupational Safety and Health (Cal-OHSA), the Department of Homeland Security, and the Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF). As required by law a licensed blasting contractor would be responsible for performing and supervising all blasting activities, including the following:

- Drill pattern design;
- Pre-blast inspection;
- Loading of explosives;
- Pre-blast notifications and warning signaling;
- Blasting safety procedures;
- Blasting site security;
- Post-blast inspections and re-entry procedures; and
- Blast log and history.



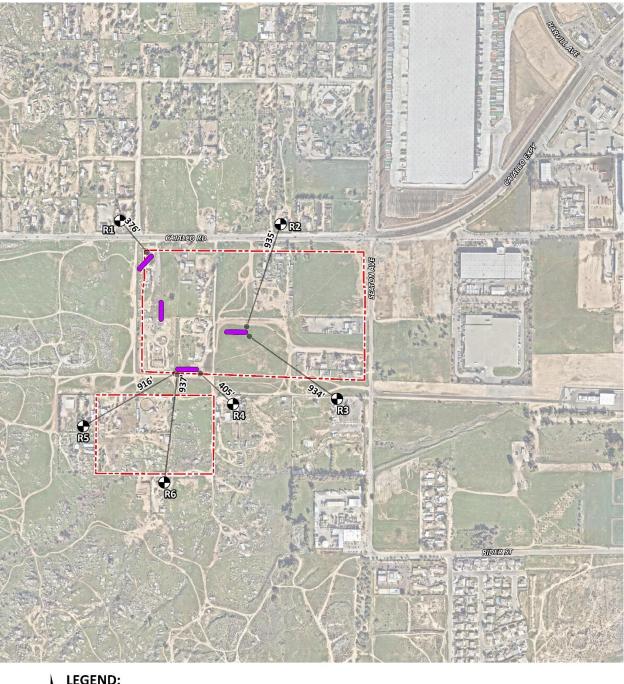



EXHIBIT 10-C: CONSTRUCTION BLASTING LOCATIONS





Pattern blasting involves drilling holes in a pre-designed pattern. The depth and spacing of holes are controlled to provide the maximum fracture with the minimum amount of ground shaking. Blasting patterns typically consist of drill holes between two and five inches in diameter. The depth of the drill holes would be determined by the blasting contractor and is specific to each application. Blasting patterns on construction sites typically range from three feet by three feet to 12 feet by 12 feet. The Blasting Engineer would control blasting-induced vibration and noise. General control measures include:

- Stemming shall be of uniform size in order to ensure consistency between individual shots;
- The weight of explosives used per delay shall be determined by adherence to the Scaled Distance Equation;
- Independent delays shall be used for each blast hole to control vibration; and
- Blasting shall not take place when wind velocity equals or exceeds 15 miles per hour. A licensed blasting contractor will determine wind speed using a recording anemometer located a minimum of ten feet above ground level.

In addition, ground vibrations and air overpressure shall be monitored during each blast for compliance with the limits by the U.S. Bureau of Mines. Following each blast, seismographs shall be checked to ensure that the blasting has not exceeded relevant standards. The relevant standards are as follows:

- Pursuant to 30 CFR Ch. VII, §816.67(b)(1)(i) of U.S. Bureau of Mines publication RI8485, airblasts shall not exceed 133 dB at the location of any dwelling, public building, school, church, or community or institutional building outside the permit area.
- Pursuant to 30 CFR Ch. VII, §816.67(d)(2)(i) of U.S. Bureau of Mines publication RI8508, the maximum ground vibration shall not exceed the limits in said section at the location of any dwelling, public building, school, church, or community or institutional building outside the permit area.

To evaluate the potential noise levels from blasting activities during Project construction, the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM) reference noise level of 94.1 dBA L<sub>max</sub> is used at a reference distance of 50 feet. (27) Each blast represents a point-source of noise which attenuates at a rate of 6 dB for each doubling of distance from the source. The closest residential homes to the Project construction area are represented by receiver location R1 located approximately 376 feet northwest of the nearest blasting area. With the distance attenuation from the closest blasting activities, the unmitigated noise levels at nearby receiver locations are expected to range from 70.5 to 78.5 dBA L<sub>max</sub> based on the RCNM reference noise levels shown on Table 10-7. However, since the type of blasting techniques planned within the Project site were unknown at the time of this analysis, the noise levels presented at the nearby sensitive receiver locations represent the worst-case conditions based on the RCNM reference noise level. Appendix 10.4 includes the detailed CadnaA blasting noise calculations.



The County of Riverside General Plan and County Code of Ordinances do not identify specific construction noise level limits for blasting activities. Therefore, the OSMRE and CFR lowest maximum Airblast Limit (30 CFR 816.67[b]) of 129 dBA L<sub>max</sub> at nearby sensitive uses is used in this analysis as discussed in Section 3.5. (17) Based on the reference blasting noise level, the closest residential receiver will experience noise levels of 78.5 dBA L<sub>max</sub> over the course of the blast, which will likely occur for only a few seconds. While some blasting noise may be noticeable by nearby residents, the single-event, temporary noise levels generated by the blast will not exceed the OSMRE and the CFR standards for airblasts. Therefore, the noise levels due to blasting activities will result in a *less than significant* noise impact.

| Receiver<br>Location <sup>1</sup> | Distance to Blasting<br>Activity (Feet) | Blasting Construction<br>Noise Level<br>(dBA Lmax) <sup>2</sup> |
|-----------------------------------|-----------------------------------------|-----------------------------------------------------------------|
| R1                                | 376                                     | 78.5                                                            |
| R2                                | 935                                     | 74.3                                                            |
| R3                                | 934                                     | 70.5                                                            |
| R4                                | 405                                     | 76.7                                                            |
| R5                                | 916                                     | 73.3                                                            |
| R6                                | 937                                     | 72.1                                                            |

### TABLE 10-7: BLASTING CONSTRUCTION NOISE LEVELS

<sup>1</sup>Blasting construction noise source and receiver locations are shown on Exhibit 10-C. <sup>2</sup>Based on FHWA Roadway Construction Noise Model reference noise level of 94 dBA Lmax. CadnaA noise model calculations are included in Appendix 10.4.

# **10.9 BLASTING VIBRATION IMPACTS**

Blasting operations can have unacceptable noise and vibration impacts if not conducted correctly. Excessive levels of structural vibration due to ground vibration from blasting can cause substantial damage to structures. A blasting contractor would be required to complete all blasting-related activities in compliance with applicable regulations of the Riverside County Sheriff's Department, the U.S. Bureau of Mines, the California Division of Occupational Safety and Health (Cal-OHSA), the Department of Homeland Security, and the Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF), which have many requirements for the safe handling, use, and storage of explosives and recommend various measures and controls, including, but not limited to monitoring and reporting of each blast to verify no damage has occurred at nearby structures, notifications to surrounding neighbors, limitations on the amounts and times blast may occur. Detonating as little as 25 pounds of explosives may be perceived up to 500 feet from a charge. Therefore, without vibration controls and measures, blasting could exceed thresholds at the areas near existing residential homes surrounding the Project site, shown on Exhibit 10-C. Noise-1 would mitigate potential vibration impacts. With the implementation of the identified vibration controls blasting activities at sensitive receivers would be *less than significant*.



## **10.9.1** BLASTING VIBRATION MITIGATION MEASURES

The following practices would reduce any vibration level impacts produced by the proposed blasting activities at the nearby noise-sensitive residential land uses. Prior to approval of any grading permits that require blasting activities and a blasting permit, the Project Applicant shall prepare and submit for County of Riverside review and approval of a Blasting Noise and Vibration Monitoring and Abatement Plan ("Noise and Vibration Abatement Plan"). The required Noise and Vibration Abatement Plan shall include the following requirements:

- Blast Plan and Conceptual Blast Designs:
  - Blasting should only be performed during hours as specified by the County of Riverside
  - Outline controlled blasting techniques and procedures to control and monitor flyrock, airblast, and ground vibration.
  - Flyrock mitigation measures may include soil cover, leaving alluvial materials in place over materials to be blasted, and/or blast mats. Crushed rock (i.e., 3/8") should be used for stemming materials; drill cuttings are not acceptable. The stemming materials should be tamped in-place.
  - Design should be based on "scaled distance" criteria (i.e., defined as the distance in feet between a blast drill hole and the structure of concern, divided by the square root of the explosives loading per delay period in pounds-units are in feet per pound1/2). The scaled distance chosen for the initial design should be supported by statistical analysis indicating the resulting ground vibration will be less than the criteria set for the project. The scaled distance used for production blasts may be modified based on the results of the test blast(s) but should be conservative enough to produce vibration and airblast levels within the project specifications.
  - One or more test blasts should be performed in an area outside of critical distance of residential structures or other improvements of concern (i.e., at least 500 feet away).
  - The project blasting plan should include procedures regarding submittal of blast reports and record keeping.
  - It should be noted that the blast designs are general and will need to be modified during the project based on actual conditions encountered in the field and the results of site-specific blasting.
  - Blasting safety measures and procedures to notify property owners that blasting will occur.
  - It is the responsibility of the blasting contractor to control blasting induced vibration and noise.
  - If specified vibration limits are exceeded, blasting operations shall cease immediately and a revised blasting plan shall be submitted to the County. Blasting shall not resume until a revised blasting plan has been reviewed and the Contractor has expressed in writing the conditions that will be applied to further blasting work.
- Monitoring Specifications:



- Name and qualifications of the person(s) responsible for monitoring and reporting blast vibrations.
- All blasting, including secondary blasting, associated with the project shall be monitored with portable seismograph and airblast instrumentation.
- The use of a minimum of two portable seismographs for monitoring peak ground vibration and air-overpressure should be used for each blast. One seismograph should be placed at the closest residential structure.
- The vibration equipment and its use shall conform fully to the standards developed by the Vibration Section of the International Society of Explosive Engineers (ISEE). For all blasts, the Noise and Vibration Abatement Plan shall require monitoring of ground motion and air overpressure at the nearest residential properties or other structure of concern.
- A minimum trigger level for monitoring of 0.05 in/s for ground motion and 120 dB for air-overpressure should be specified.
- Air-blasts should not exceed 133 dB at any residence.
- Maximum ground vibration should not exceed the limits as outlined in the U.S. Bureau of Mines publication R18507.
- Reporting Specifications:
  - Regular reporting of blasting and measurements should be submitted to the project engineer and shall include a copy of the instrument/software-generated blast monitoring report at each instrument location that includes measured peak particle velocity in inches per second, peak air-overpressure in linear-scale decibels, and vibration and air-overpressure event plots, with date and time of event recording.
- Pre-Blast Surveys:
  - Prior to commencement of any blasting, a pre-blast survey of the conditions of all existing property and aboveground utilities located within 300 feet of any potential blasting areas shall be conducted, or as specified by the County of Riverside, whichever is a lesser distance.
  - The pre-blast survey should be conducted by a third-party company with a minimum of five years of experience performing pre-blast and similar type surveys.
  - The pre-blast survey shall include a photographic record of all visible and accessible structures, facilities, utilities, or other improvements. If property owners refuse surveys, provide copies of certified-mail letters documenting attempts to provide the survey.
  - The required surveys shall include a description of the interior and exterior condition of the various structures examined. Descriptions shall include the locations of any cracks, damage, or other existing defects and shall include information needed to identify and describe the defect, if any, and to evaluate the construction operations on the defect. Survey records shall include photos of all cracks and other damaged, weathered, or otherwise deteriorated structural conditions. If necessary, macro lenses



and flash illumination shall be used to ensure defects are shown clearly in the photographs. Photos shall contain an accurate date stamp. No blasting shall occur prior to completion of surveys of surrounding residential properties.

 Surveys shall be repeated at facilities or properties where damage concerns have been expressed by individual residents, property owners, or other concerned parties. Details of any observed changes to surveyed structures and documenting photos shall be reported and submitted.

Project grading and blasting contractors shall be required to ensure compliance with the Noise and Vibration Abatement Plan requirements and shall permit periodic inspection of the construction site by County of Riverside staff or its designee to confirm compliance. The requirements of the Noise and Vibration Abatement Plan also shall be specified in bid documents issued to prospective construction contractors. Riverside County shall review all monitoring reports to ensure compliance with the Noise and Vibration Abatement Plan and shall have the authority to stop all blasting activities on site if it is determined that blasting activities are not being conducted in conformance with Noise and Vibration Abatement Plan.



This page intentionally left blank



# **11 REFERENCES**

- 1. State of California. California Environmental Quality Act, Appendix G. 2018.
- 2. **County of Riverside.** County of Riverside General Plan: Land Use Element. [Online] 2021. https://planning.rctlma.org/sites/g/files/aldnop416/files/migrated/Portals-14-genplan-GPA-2022-Compiled-MVAP-4-2022-rev.pdf.
- 3. California Department of Transportation Environmental Program. *Technical Noise Supplement A Technical Supplement to the Traffic Noise Analysis Protocol.* Sacramento, CA : s.n., September 2013.
- 4. Environmental Protection Agency Office of Noise Abatement and Control. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. March 1974. EPA/ONAC 550/9/74-004.
- 5. U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning, Noise and Air Quality Branch. *Highway Traffic Noise Analysis and Abatement Policy and Guidance*. December 2011.
- 6. U.S. Department of Transportation Federal Highway Administration. *Highway Noise Barrier Design Handbook*. 2001.
- 7. U.S. Department of Transportation, Federal Highway Administration. *Highway Traffic Noise in the United States, Problem and Response.* April 2000. p. 3.
- 8. U.S. Environmental Protection Agency Office of Noise Abatement and Control. *Noise Effects Handbook-A Desk Reference to Health and Welfare Effects of Noise.* October 1979 (revised July 1981). EPA 550/9/82/106.
- 9. U.S. Department of Transportation, Federal Transit Administration. *Transit Noise and Vibration Impact Assessment Manual.* September 2018.
- 10. Office of Planning and Research. State of California General Plan Guidelines. 2019.
- 11. County of Riverside. General Plan Noise Element. December 2015.
- 12. —. Municipal Code, Chapter 9.52 Noise Regulation.
- 13. National Institute for Occupational Safety and Health. Criteria for Recommended Standard: Occupational Noise Exposure. June 1998.
- 14. Occupational Safety and Health Administration. Standard 29 CRF, Part 1910.
- 15. Center for Disease Control and Prevention. About Hearing Loss. [Online] [Cited: 04 15, 2016.] http://www.cdc.gov/healthyschools/noise/signs.htm.
- 16. Caltrans. Standard Specifications in Section 14-8.02 Noise Control.
- 17. California Department of Transportation. *Transportation and Construction Vibration Guidance Manual.* April 2020.
- 18. Regulations, Code of Federal. 30 CFR 816.67 Use of Explosives: Contorl of Adverse Effects. July 2013.
- 19. County of Riverside. *Airport Land Use Compatibility Plan.* October 2004.
- 20. Air Force Reserve Command. Final Air Installations Compatible Use Zones Study March Air Reserve Base Riverside, California. 2018.
- 21. California Court of Appeal. *Gray v. County of Madera, F053661.* 167 Cal.App.4th 1099; Cal.Rptr.3d, October 2008.



- 22. Federal Interagency Committee on Noise. Federal Agency Review of Selected Airport Noise Analysis Issues. August 1992.
- 23. California Department of Transportation. Technical Noise Supplement. November 2009.
- 24. American National Standards Institute (ANSI). Specification for Sound Level Meters ANSI S1.4-2014/IEC 61672-1:2013.
- 25. U.S. Department of Transportation, Federal Highway Administration. FHWA Highway Traffic Noise Prediction Model. December 1978. FHWA-RD-77-108.
- 26. California Department of Transportation Environmental Program, Office of Environmental Engineering. Use of California Vehicle Noise Reference Energy Mean Emission Levels (Calveno REMELs) in FHWA Highway Traffic Noise Prediction. September 1995. TAN 95-03.
- 27. California Department of Transportation. *Traffic Noise Attenuation as a Function of Ground and Vegetation Final Report*. June 1995. FHWA/CA/TL-95/23.
- 28. Urban Crossroads, Inc. Mead Valley Commerce Center Traffic Analysis. May 2023.
- 29. CBIA v. BAAQMD (2015) 62 Cal.4th 369, 386 and Ballona Wetlands Land Trust v. City of Los Angeles (2011) 201 Cal.App.4th 455, 473.
- **30.** U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning. *FHWA Roadway Construction Noise Model.* January, 2006.



# 12 CERTIFICATION

The contents of this noise study report represent an accurate depiction of the noise environment and impacts associated with the proposed Mead Valley Commerce Center Project. The information contained in this noise study report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at (949) 584-3148.

Bill Lawson, P.E., INCE Principal URBAN CROSSROADS, INC. 1133 Camelback #8329 Newport Beach, CA 92658 (949) 581-3148 blawson@urbanxroads.com



## EDUCATION

Master of Science in Civil and Environmental Engineering California Polytechnic State University, San Luis Obispo • December, 1993

Bachelor of Science in City and Regional Planning California Polytechnic State University, San Luis Obispo • June, 1992

# **PROFESSIONAL REGISTRATIONS**

PE – Registered Professional Traffic Engineer – TR 2537 • January, 2009
AICP – American Institute of Certified Planners – 013011 • June, 1997–January 1, 2012
PTP – Professional Transportation Planner • May, 2007 – May, 2013
INCE – Institute of Noise Control Engineering • March, 2004

# **PROFESSIONAL AFFILIATIONS**

ASA – Acoustical Society of America ITE – Institute of Transportation Engineers

# **PROFESSIONAL CERTIFICATIONS**

Certified Acoustical Consultant – County of San Diego • March, 2018 Certified Acoustical Consultant – County of Orange • February, 2011 FHWA-NHI-142051 Highway Traffic Noise Certificate of Training • February, 2013



This page intentionally left blank



APPENDIX 3.1:

COUNTY OF RIVERSIDE MUNICIPAL CODE



This page intentionally left blank



# Chapter 9.52 NOISE REGULATION

Sections:

#### 9.52.010 Intent.

At certain levels, sound becomes noise and may jeopardize the health, safety or general welfare of Riverside County residents and degrade their quality of life. Pursuant to its police power, the board of supervisors declares that noise shall be regulated in the manner described in this chapter. This chapter is intended to establish countywide standards regulating noise. This chapter is not intended to establish thresholds of significance for the purpose of any analysis required by the California Environmental Quality Act and no such thresholds are established.

(Ord. 847 § 1, 2006)

#### 9.52.020 Exemptions.

Sound emanating from the following sources is exempt from the provisions of this chapter:

- A. Facilities owned or operated by or for a governmental agency;
- B. Capital improvement projects of a governmental agency;
- C. The maintenance or repair of public properties;
- D. Public safety personnel in the course of executing their official duties, including, but not limited to, sworn peace officers, emergency personnel and public utility personnel. This exemption includes, without limitation, sound emanating from all equipment used by such personnel, whether stationary or mobile;
- E. Public or private schools and school-sponsored activities;
- F. Agricultural operations on land designated "Agriculture" in the Riverside County general plan, or land zoned A-l (light agriculture), A-P (light agriculture with poultry), A-2 (heavy agriculture), A-D (agriculture-dairy) or C/V (citrus/vineyard), provided such operations are carried out in a manner consistent with accepted industry standards. This exemption includes, without limitation, sound emanating from all equipment used during such operations, whether stationary or mobile;
- G. Wind energy conversion systems (WECS), provided such systems comply with the WECS noise provisions of Riverside County Ordinance No. 348;
- H. Private construction projects located one-quarter of a mile or more from an inhabited dwelling;
- I. Private construction projects located within one-quarter of a mile from an inhabited dwelling, provided that:
  - 1. Construction does not occur between the hours of six p.m. and six a.m. during the months of June through September, and
  - 2. Construction does not occur between the hours of six p.m. and seven a.m. during the months of October through May;
- J. Property maintenance, including, but not limited to, the operation of lawnmowers, leaf blowers, etc., provided such maintenance occurs between the hours of seven a.m. and eight p.m.;

Created: 2022-09-21 15:13:00 [EST]

- K. Motor vehicles, other than off-highway vehicles. This exemption does not include sound emanating from motor vehicle sound systems;
- L. Heating and air conditioning equipment;
- M. Safety, warning and alarm devices, including, but not limited to, house and car alarms, and other warning devices that are designed to protect the public health, safety, and welfare;
- N. The discharge of firearms consistent with all state laws.

(Ord. 847 § 2, 2006)

#### 9.52.030 Definitions.

As used in this chapter, the following terms shall have the following meanings:

"Audio equipment" means a television, stereo, radio, tape player, compact disc player, mp3 player, I-POD or other similar device.

"Decibel (dB)" means a unit for measuring the relative amplitude of a sound equal approximately to the smallest difference normally detectable by the human ear, the range of which includes approximately one hundred thirty (130) decibels on a scale beginning with zero decibels for the faintest detectable sound. Decibels are measured with a sound level meter using different methodologies as defined below:

- 1. "A-weighting (dBA)" means the standard A-weighted frequency response of a sound level meter, which de-emphasizes low and high frequencies of sound in a manner similar to the human ear for moderate sounds.
- 2. "Maximum sound level (L<sub>max</sub>)" means the maximum sound level measured on a sound level meter.

"Governmental agency" means the United States, the state of California, Riverside County, any city within Riverside County, any special district within Riverside County or any combination of these agencies.

"Land use permit" means a discretionary permit issued by Riverside County pursuant to Riverside County Ordinance No. 348.

"Motor vehicle" means a vehicle that is self-propelled.

"Motor vehicle sound system" means a stereo, radio, tape player, compact disc player, mp3 player, I-POD or other similar device.

"Noise" means any loud, discordant or disagreeable sound.

"Occupied property" means property upon which is located a residence, business or industrial or manufacturing use.

"Off-highway vehicle" means a motor vehicle designed to travel over any terrain.

"Public or private school" means an institution conducting academic instruction at the preschool, elementary school, junior high school, high school, or college level.

"Public property" means property owned by a governmental agency or held open to the public, including, but not limited to, parks, streets, sidewalks, and alleys.

"Sensitive receptor" means a land use that is identified as sensitive to noise in the noise element of the Riverside County general plan, including, but not limited to, residences, schools, hospitals, churches, rest homes, cemeteries or public libraries.

"Sound-amplifying equipment" means a loudspeaker, microphone, megaphone or other similar device.

(Supp. No. 79)

"Sound level meter" means an instrument meeting the standards of the American National Standards Institute for Type 1 or Type 2 sound level meters or an instrument that provides equivalent data.

(Ord. 847 § 3, 2006)

#### 9.52.040 General sound level standards.

No person shall create any sound, or allow the creation of any sound, on any property that causes the exterior sound level on any other occupied property to exceed the sound level standards set forth in Table 1.

| GENERAL<br>PLAN | GENERAL PLAN<br>LAND USE | GENERAL PLAN LAND<br>USE DESIGNATION | DENSITY | MAXIMU | M DECIBEL |
|-----------------|--------------------------|--------------------------------------|---------|--------|-----------|
| FOUNDATION      | DESIGNATION              | NAME                                 |         | 7 am—  | 10 pm—    |
| COMPONENT       |                          |                                      |         | 10 pm  | 7 am      |
| Community       | EDR                      | Estate Density                       | 2 AC    | 55     | 45        |
| Development     |                          | Residential                          |         |        |           |
|                 | VLDR                     | Very Low Density<br>Residential      | 1 AC    | 55     | 45        |
|                 | LDR                      | Low Density<br>Residential           | 1/2 AC  | 55     | 45        |
|                 | MDR                      | Medium Density<br>Residential        | 2—5     | 55     | 45        |
|                 | MHDR                     | Medium High Density<br>Residential   | 5—8     | 55     | 45        |
|                 | HDR                      | High Density<br>Residential          | 8—14    | 55     | 45        |
|                 | VHDR                     | Very High Density<br>Residential     | 14—20   | 55     | 45        |
|                 | H'TDR                    | Highest Density<br>Residential       | 20+     | 55     | 45        |
|                 | CR                       | Retail Commercial                    |         | 65     | 55        |
|                 | СО                       | Office Commercial                    |         | 65     | 55        |
|                 | СТ                       | Tourist Commercial                   |         | 65     | 55        |
|                 | CC                       | Community Center                     |         | 65     | 55        |
|                 | LI                       | Light Industrial                     |         | 75     | 55        |
|                 | НІ                       | Heavy Industrial                     |         | 75     | 75        |
|                 | BP                       | Business Park                        |         | 65     | 45        |
|                 | PF                       | Public Facility                      |         | 65     | 45        |
|                 | SP                       | Specific Plan-<br>Residential        |         | 55     | 45        |

| TABLE 1                                      |
|----------------------------------------------|
| Sound Level Standards (Db L <sub>max</sub> ) |

Created: 2022-09-21 15:13:00 [EST]

|             |      |                      | 1      | 1  |    |
|-------------|------|----------------------|--------|----|----|
|             |      | Specific Plan-       |        | 65 | 55 |
|             |      | Commercial           |        |    |    |
|             |      | Specific Plan-Light  |        | 75 | 55 |
|             |      | Industrial           |        |    |    |
|             |      | Specific Plan-Heavy  |        | 75 | 75 |
|             |      | Industrial           |        |    |    |
| Rural       | EDR  | Estate Density       | 2 AC   | 55 | 45 |
| Community   |      | Residential          |        |    |    |
|             | VLDR | Very Low Density     | 1 AC   | 55 | 45 |
|             |      | Residential          |        |    |    |
|             | LDR  | Low Density          | 1/2 AC | 55 | 45 |
|             |      | Residential          |        |    |    |
| Rural       | RR   | Rural Residential    | 5 AC   | 45 | 45 |
|             | RM   | Rural Mountainous    | 10 AC  | 45 | 45 |
|             | RD   | Rural Desert         | 10 AC  | 45 | 45 |
| Agriculture | AG   | Agriculture          | 10 AC  | 45 | 45 |
| Open Space  | С    | Conservation         |        | 45 | 45 |
|             | СН   | Conservation Habitat |        | 45 | 45 |
|             | REC  | Recreation           |        | 45 | 45 |
|             | RUR  | Rural                | 20 AC  | 45 | 45 |
|             | W    | Watershed            |        | 45 | 45 |
|             | MR   | Mineral Resources    |        | 75 | 45 |

(Ord. 847 § 4, 2006)

#### 9.52.050 Sound level measurement methodology.

Sound level measurements may be made anywhere within the boundaries of an occupied property. The actual location of a sound level measurement shall be at the discretion of the enforcement officials identified in Section 9.52.080 of this chapter. Sound level measurements shall be made with a sound level meter. Immediately before a measurement is made, the sound level meter shall be calibrated utilizing an acoustical calibrator meeting the standards of the American National Standards Institute. Following a sound level measurement, the calibration of the sound level meter shall be re-verified. Sound level meters and calibration equipment shall be certified annually.

(Ord. 847 § 5, 2006)

#### 9.52.060 Special sound sources standards.

The general sound level standards set forth in Section 9.52.040 of this chapter apply to sound emanating from all sources, including the following special sound sources, and the person creating, or allowing the creation of, the sound is subject to the requirements of that section. The following special sound sources are also subject to the following additional standards, the failure to comply with which constitutes separate violations of this chapter:

- A. Motor Vehicles.
  - 1. Off-Highway Vehicles.
    - a. No person shall operate an off-highway vehicle unless it is equipped with a USDA-qualified spark arrester and a constantly operating and properly maintained muffler. A muffler is not considered constantly operating and properly maintained if it is equipped with a cutout, bypass or similar device.
    - b. No person shall operate an off-highway vehicle unless the noise emitted by the vehicle is not more than ninety-six (96) dBA if the vehicle was manufactured on or after January 1, 1986 or is not more than one hundred one (101) dBA if the vehicle was manufactured before January 1, 1986. For purposes of this subsection, emitted noise shall be measured a distance of twenty (20) inches from the vehicle tailpipe using test procedures established by the Society of Automotive Engineers under Standard J-1287.
  - 2. Sound Systems. No person shall operate a motor vehicle sound system, whether affixed to the vehicle or not, between the hours of ten p.m. and eight a.m., such that the sound system is audible to the human ear inside any inhabited dwelling. No person shall operate a motor vehicle sound system, whether affixed to the vehicle or not, at any other time such that the sound system is audible to the human ear at a distance greater than one hundred (100) feet from the vehicle.
- B. Power Tools and Equipment. No person shall operate any power tools or equipment between the hours of ten p.m. and eight a.m. such that the power tools or equipment are audible to the human ear inside an inhabited dwelling other than a dwelling in which the power tools or equipment may be located. No person shall operate any power tools or equipment at any other time such that the power tools or equipment are audible to the human ear at a distance greater than one hundred (100) feet from the power tools or equipment.
- C. Audio Equipment. No person shall operate any audio equipment, whether portable or not, between the hours of ten p.m. and eight a.m. such that the equipment is audible to the human ear inside an inhabited dwelling other than a dwelling in which the equipment may be located. No person shall operate any audio equipment, whether portable or not, at any other time such that the equipment is audible to the human ear at a distance greater than one hundred (100) feet from the equipment.
- D. Sound-Amplifying Equipment and Live Music. No person shall install, use or operate sound-amplifying equipment, or perform, or allow to be performed, live music unless such activities comply with the following requirements. To the extent that these requirements conflict with any conditions of approval attached to an underlying land use permit, these requirements shall control:
  - 1. Sound-amplifying equipment or live music is prohibited between the hours of ten p.m. and eight a.m.
  - 2. Sound emanating from sound-amplifying equipment or live music at any other time shall not be audible to the human ear at a distance greater than two hundred (200) feet from the equipment or music.

(Ord. 847 § 6, 2006)

#### 9.52.070 Exceptions.

Exceptions may be requested from the standards set forth in Section 9.52.040 or 9.52.060 of this chapter and may be characterized as construction-related, single-event or continuous-events exceptions.

(Supp. No. 79)

- A. Application and Processing.
  - 1. Construction-Related Exceptions. An application for a construction-related exception shall be made to and considered by the director of building and safety on forms provided by the building and safety department and shall be accompanied by the appropriate filing fee. No public hearing is required.
  - 2. Single-Event Exceptions. An application for a single-event exception shall be made to and considered by the planning director on forms provided by the planning department and shall be accompanied by the appropriate filing fee. No public hearing is required.
  - 3. Continuous-Events Exceptions. An application for a continuous-events exception shall be made to the planning director on forms provided by the planning department and shall be accompanied by the appropriate filing fee. Upon receipt of an application for a continuous-events exception, the planning director shall set the matter for public hearing before the planning commission, notice of which shall be given as provided in Section 18.26c of Riverside County Ordinance No. 348. Notwithstanding the above, an application for a continuous-events exception that is associated with an application for a land use permit shall be processed concurrently with the land use permit in the same manner that the land use permit is required to be processed.
- B. Requirements for Approval. The appropriate decisionmaking body or officer shall not approve an exception application unless the applicant demonstrates that the activities described in the application would not be detrimental to the health, safety or general welfare of the community. In determining whether activities are detrimental to the health, safety or general welfare of the community, the appropriate decisionmaking body or officer shall consider such factors as the proposed duration of the activities and their location in relation to sensitive receptors. If an exception application is approved, reasonable conditions may be imposed to minimize the public detriment, including, but not limited to, restrictions on sound level, sound duration and operating hours.
- C. Appeals. The director of building and safety's decision on an application for a construction-related exception is considered final. The planning director's decision on an application for a single-event exception is considered final. After making a decision on an application for a continuous-events exception, the appropriate decisionmaking body or officer shall mail notice of the decision to the applicant. Within ten (10) calendar days after the mailing of such notice, the applicant or an interested person may appeal the decision to the board of supervisors. Upon receipt of an appeal and payment of the appropriate appeal fee, the clerk of the board shall set the matter for hearing not less than five days nor more than thirty (30) days thereafter and shall give written notice of the hearing in the same manner as notice of the hearing was given by the appropriate hearing officer or body. The board of supervisors shall render its decision within thirty (30) days after the appeal hearing is closed.
- D. Effect of a Pending Continuous-Events Exception Application. For a period of one hundred eighty (180) days from the effective date of this chapter, no person creating any sound prohibited by this chapter shall be considered in violation of this chapter if the sound is related to a use that is operating pursuant to an approved land use permit, if an application for a continuous-events exception has been filed to sanction the sound and if a decision on the application is pending.

(Ord. 847 § 7, 2006)

#### 9.52.080 Enforcement.

The Riverside County sheriff and code enforcement shall have the primary responsibility for enforcing this chapter; provided, however, the sheriff and code enforcement may be assisted by the public health department. Violations shall be prosecuted as described in Section 9.52.100 of this chapter, but nothing in this chapter shall

prevent the sheriff, code enforcement or the department of public health from engaging in efforts to obtain voluntary compliance by means of warnings, notices, or educational programs.

(Ord. 847.1 § 1, 2007: Ord. 847 § 8, 2006)

#### 9.52.090 Duty to cooperate.

No person shall refuse to cooperate with, or obstruct, the enforcement officials identified in Section 9.52.080 of this chapter when they are engaged in the process of enforcing the provisions of this chapter. This duty to cooperate may require a person to extinguish a sound source so that it can be determined whether sound emanating from the source violates the provisions of this chapter.

(Ord. 847 § 9, 2006)

#### 9.52.100 Violations and penalties.

Any person who violates any provision of this chapter once or twice within a one hundred eighty (180) day period shall be guilty of an infraction. Any person who violates any provision of this chapter more than twice within a one hundred eighty (180) day period shall be guilty of a misdemeanor. Each day a violation is committed or permitted to continue shall constitute a separate offense and shall be punishable as such. Penalties shall not exceed the following amounts:

- A. For the first violation within a one hundred eighty (180) day period, the minimum mandatory fine shall be five hundred dollars (\$500.00).
- B. For the second violation within a one hundred eighty (180) day period, the minimum mandatory fine shall be seven hundred fifty dollars (\$750.00).
- C. For any further violations within a one hundred eighty (180) day period, the minimum mandatory fine shall be one thousand dollars (\$1,000.00) or imprisonment in the county jail for a period not exceeding six months, or both.

(Ord. 847 § 10, 2006)

### ORDINANCE NO. 847 (AS AMENDED THROUGH 847.1) AN ORDINANCE OF THE COUNTY OF RIVERSIDE AMENDING ORDINANCE NO. 847 REGULATING NOISE

The Board of Supervisors of the County of Riverside Ordains as Follows:

Section 1. INTENT. At certain levels, sound becomes noise and may jeopardize the health, safety or general welfare of Riverside County residents and degrade their quality of life. Pursuant to its police power, the Board of Supervisors hereby declares that noise shall be regulated in the manner described herein. This ordinance is intended to establish countywide standards regulating noise. This ordinance is not intended to establish thresholds of significance for the purpose of any analysis required by the California Environmental Quality Act and no such thresholds are hereby established.

Section 2. EXEMPTIONS. Sound emanating from the following sources is exempt from the provisions of this ordinance:

- a. Facilities owned or operated by or for a governmental agency.
- b. Capital improvement projects of a governmental agency.
- c. The maintenance or repair of public properties.
- d. Public safety personnel in the course of executing their official duties, including, but not limited to, sworn peace officers, emergency personnel and public utility personnel. This exemption includes, without limitation, sound emanating from all equipment used by such personnel, whether stationary or mobile.
- e. Public or private schools and school-sponsored activities
- f. Agricultural operations on land designated Agriculture in the Riverside County General Plan, or land zoned A-1 (Light Agriculture), A-P (Light Agriculture With Poultry), A-2 (Heavy Agriculture), A-D (Agriculture-Dairy) or C/V (Citrus/Vineyard), provided such operations are carried out in a manner consistent with accepted industry standards. This exemption includes, without limitation, sound emanating from all equipment used during such operations, whether stationary or mobile.
- g. Wind Energy Conversion Systems (WECS), provided such systems comply with the WECS noise provisions of Riverside County Ordinance No. 348.
- h. Private construction projects located one-quarter (1/4) of a mile or more from an inhabited dwelling.
- i. Private construction projects located within one-quarter (1/4) of a mile from an inhabited dwelling, provided that:
  - 1. Construction does not occur between the hours of 6:00 p.m. and 6:00 a.m. during the months of June through September; and
  - 2. Construction does not occur between the hours of 6:00 p.m. and 7:00 a.m. during the months of October through May.

- j. Property maintenance, including, but not limited to, the operation of lawnmowers, leaf blowers, etc., provided such maintenance occurs between the hours of 7 a.m. and 8 p.m.
- k. Motor vehicles, other than off-highway vehicles. This exemption does not include sound emanating from motor vehicle sound systems
- I. Heating and air conditioning equipment.
- m. Safety, warning and alarm devices, including, but not limited to, house and car alarms, and other warning devices that are designed to protect the public health, safety, and welfare.
- n. The discharge of firearms consistent with all state laws.

<u>Section 3</u>. DEFINITIONS. As used in this ordinance, the following terms shall have the following meanings:

- a. <u>Audio Equipment</u>. A television, stereo, radio, tape player, compact disc player, mp3 player, I-POD or other similar device.
- b. <u>Decibel (dB)</u>. A unit for measuring the relative amplitude of a sound equal approximately to the smallest difference normally detectable by the human ear, the range of which includes approximately one hundred thirty (130) decibels on a scale beginning with zero decibels for the faintest detectable sound. Decibels are measured with a sound level meter using different methodologies as defined below:
  - 1. A-weighting (dBA) means the standard A-weighted frequency response of a sound level meter, which de-emphasizes low and high frequencies of sound in a manner similar to the human ear for moderate sounds.
  - 2. Maximum Sound level (L<sub>max</sub>) means the maximum sound level measured on a sound level meter.
- c. <u>Governmental Agency</u>. The United States, the State of California, Riverside County, any city within Riverside County, any special district within Riverside County or any combination of these agencies.
- d. <u>Land Use Permit</u>. A discretionary permit issued by Riverside County pursuant to Riverside County Ordinance No. 348.
- e. <u>Motor Vehicle</u>. A vehicle that is self-propelled.
- f. <u>Motor Vehicle Sound System</u>. A stereo, radio, tape player, compact disc player, mp3 player, I-POD or other similar device.
- g. <u>Noise</u>. Any loud, discordant or disagreeable sound.
- h. <u>Occupied Property</u>. Property upon which is located a residence, business or industrial or manufacturing use.
- i. <u>Off-Highway Vehicle</u>. A motor vehicle designed to travel over any terrain.
- j. <u>Public Property</u>. Property owned by a governmental agency or held open to the public, including, but not limited to, parks, streets, sidewalks, and alleys.

- k. <u>Public or Private School</u>. An institution conducting academic instruction at the preschool, elementary school, junior high school, high school, or college level.
- I. <u>Sensitive Receptor</u>. A land use that is identified as sensitive to noise in the Noise Element of the Riverside County General Plan, including, but not limited to, residences, schools, hospitals, churches, rest homes, cemeteries or public libraries.
- m. <u>Sound Level Meter</u>. An instrument meeting the standards of the American National Standards Institute for Type 1 or Type 2 sound level meters or an instrument that provides equivalent data.
- n. <u>Sound Amplifying Equipment</u>. A loudspeaker, microphone, megaphone or other similar device.

<u>Section 4.</u> GENERAL SOUND LEVEL STANDARDS. No person shall create any sound, or allow the creation of any sound, on any property that causes the exterior sound level on any other occupied property to exceed the sound level standards set forth in Table 1.

|                                 | s                       | TABLE 1<br>SOUND LEVEL STANDARDS ( Db         | L <sub>max</sub> ) |              |                  |
|---------------------------------|-------------------------|-----------------------------------------------|--------------------|--------------|------------------|
| GENERAL                         | GENERAL<br>PLAN         | GENERAL PLAN LAND                             |                    | -            | N DECIBEL<br>VEL |
| PLAN<br>FOUNDATION<br>COMPONENT | LAND USE<br>DESIGNATION | DESIGNATION NAME                              | DENSITY            | 7am-<br>10pm | 10pm-<br>7am     |
|                                 | EDR                     | Estate Density<br>Residential                 | 2 AC               | 55           | 45               |
|                                 | VLDR                    | Very Low density                              | 1 AC               | 55           | 45               |
|                                 | LDR                     | Low Density Residential                       | 1/2 AC             | 55           | 45               |
|                                 | MDR                     | Medium Density<br>Residential                 | 25                 | 55           | 45               |
|                                 | MHDR                    | Medium High Density                           | 58                 | 55           | 45               |
|                                 | HDR                     | High Density Residential                      | 814                | 55           | 45               |
|                                 | VHDR                    | Very High Density                             | 14-20              | 55           | 45               |
| Community<br>Development        | H'TDR                   | Residential<br>Highest Density<br>Residential | 20+                | 55           | 45               |
|                                 | CR                      | Retail Commercial                             |                    | 65           | 55               |
|                                 | СО                      | Office Commercial                             |                    | 65           | 55               |
|                                 | СТ                      | Tourist Commercial                            |                    | 65           | 55               |
|                                 | CC                      | Community Center                              |                    | 65           | 55               |
|                                 | LI                      | Light Industrial                              |                    | 75           | 55               |
|                                 | HI                      | Heavy Industrial                              |                    | 75           | 75               |
|                                 | BP                      | Business Park                                 |                    | 65           | 45               |
|                                 | PF                      | Public Facility                               |                    | 65           | 45               |
|                                 |                         | Specific Plan-Residential                     |                    | 55           | 45               |
|                                 |                         | Specific Plan-                                |                    | 65           | 55               |
|                                 | SP                      | Specific Plan-Light                           |                    | 75           | 55               |
|                                 |                         | Specific Plan-Heavy                           |                    | 75           | 75               |
| Rural                           | EDR                     | Estate Density                                | 2 ac               | 55           | 45               |
| Community                       | VLDR                    | Very Low Density                              | 1 ac               | 55           | 45               |
|                                 | LDR                     | Low Density Residential                       | 1/2 ac             | 55           | 45               |
| Rural                           | RR                      | Rural Residential                             | 5 ac               | 45           | 45               |
|                                 | RM                      | Rural Mountainous                             | 10 ac              | 45           | 45               |
|                                 | RD                      | Rural Desert                                  | 10 ac              | -            |                  |
| Agriculture                     |                         | Agriculture                                   |                    | 45           | 45               |
|                                 | AG                      | Conservation                                  | 10 AC              | 45           | 45               |
| Open Space                      | С СН                    | Conservation Habitat                          |                    | 45           | 45               |
|                                 |                         | Recreation Habitat                            |                    | 45           | 45               |
|                                 | REC                     | Rural                                         | 20.40              | 45           | 45               |
|                                 | RUR                     | Watershed                                     | 20 AC              | 45           | 45               |
|                                 | W<br>MR                 | Mineral Resources                             |                    | 45<br>75     | 45<br>45         |

Section 5. SOUND LEVEL MEASUREMENT METHODOLOGY. Sound level measurements may be made anywhere within the boundaries of an occupied property. The actual location of a sound level measurement shall be at the discretion of the enforcement officials identified in Section 8. of this ordinance. Sound level measurements shall be made with a sound level meter. Immediately before a measurement is made, the sound level meter shall be calibrated utilizing an acoustical calibrator meeting the standards of the American National Standards Institute. Following a sound level measurement, the calibration of the sound level meter shall be re-verified. Sound level meters and calibration equipment shall be certified annually.

Section 6. SPECIAL SOUND SOURCES STANDARDS. The general sound level standards set forth in Section 4. of this ordinance apply to sound emanating from all sources, including the following special sound sources, and the person creating, or allowing the creation of, the sound is subject to the requirements of that section. The following special sound sources are also subject to the following additional standards, the failure to comply with which constitute separate violations of this ordinance.

- a. Motor Vehicles.
  - 1. Off-Highway Vehicles.
    - i. No person shall operate an off-highway vehicle unless it is equipped with a USDA qualified spark arrester and a constantly operating and properly maintained muffler. A muffler is not considered constantly operating and properly maintained if it is equipped with a cutout, bypass or similar device.
    - No person shall operate an off-highway vehicle unless the noise emitted by the vehicle is not more than 96 dBA if the vehicle was manufactured on or after January 1, 1986 or is not more that 101 dBA if the vehicle was manufactured before January 1, 1986. For purposes of this subsection, emitted noise shall be measured a distance of twenty (20) inches from the vehicle tailpipe using test procedures established by the Society of Automotive Engineers under Standard J-1287.
    - 2. Sound Systems. No person shall operate a motor vehicle sound system, whether affixed to the vehicle or not, between the hours of 10:00 p.m. and 8:00 a.m., such that the sound system is audible to the human ear inside any inhabited dwelling. No person shall operate a motor vehicle sound system, whether affixed to the vehicle or not, at any other time such that the sound system is audible to the human ear at a distance greater than one hundred (100) feet from the vehicle.
- b. Power Tools and Equipment. No person shall operate any power tools or equipment between the hours of 10:00 p.m. and 8:00 a.m. such that the power tools or equipment are audible to the human ear inside an inhabited dwelling other than a dwelling in which the power tools or equipment may be located. No person shall operate any power tools or equipment at any other time such that the power tools

or equipment are audible to the human ear at a distance greater than one hundred (100) feet from the power tools or equipment.

- c. Audio Equipment. No person shall operate any audio equipment, whether portable or not, between the hours of 10:00 p.m. and 8:00 a.m. such that the equipment is audible to the human ear inside an inhabited dwelling other than a dwelling in which the equipment may be located. No person shall operate any audio equipment, whether portable or not, at any other time such that the equipment is audible to the human ear at a distance greater than one hundred (100) feet from the equipment.
- d. Sound Amplifying Equipment and Live Music. No person shall install, use or operate sound amplifying equipment, or perform, or allow to be performed, live music unless such activities comply with the following requirements. To the extent that these requirements conflict with any conditions of approval attached to an underlying land use permit, these requirements shall control.
  - 1. Sound amplifying equipment or live music is prohibited between the hours of 10:00 p.m. and 8:00 a.m.
  - 2. Sound emanating from sound amplifying equipment or live music at any other time shall not be audible to the human ear at a distance greater than two hundred (200) feet from the equipment or music.

Section 7. EXCEPTIONS. Exceptions may be requested from the standards set forth in Sections 4. or 6. of this ordinance and may be characterized as construction-related, single event or continuous events exceptions.

- a. Application and Processing.
  - 1. Construction-Related Exceptions. An application for a construction-related exception shall be made to and considered by the Director of Building and Safety on forms provided by the Building and Safety Department and shall be accompanied by the appropriate filing fee. No public hearing is required.
  - 2. Single Event Exceptions. An application for a single event exception shall be made to and considered by the Planning Director on forms provided by the Planning Department and shall be accompanied by the appropriate filing fee. No public hearing is required.
  - 3. Continuous Events Exceptions. An application for a continuous events exception shall be made to the Planning Director on forms provided by the Planning Department and shall be accompanied by the appropriate filing fee. Upon receipt of an application for a continuous events exception, the Planning Director shall set the matter for public hearing before the Planning Commission, notice of which shall be given as provided in Section 18.26.c. of Riverside County Ordinance No. 348. Notwithstanding the above, an application for a

continuous events exception that is associated with an application for a land use permit shall be processed concurrently with the land use permit in the same manner that the land use permit is required to be processed.

- b. Requirements for Approval. The appropriate decision making body or officer shall not approve an exception application unless the applicant demonstrates that the activities described in the application would not be detrimental to the health, safety or general welfare of the community. In determining whether activities are detrimental to the health, safety or general welfare of the community, the appropriate decision making body or officer shall consider such factors as the proposed duration of the activities and their location in relation to sensitive receptors. If an exception application is approved, reasonable conditions may be imposed to minimize the public detriment, including, but not limited to, restrictions on sound level, sound duration and operating hours.
- The Director of Building and Safety's decision on an C. Appeals. application for a construction-related exception is considered final. The Planning Director's decision on an application for a single event exception is considered final. After making a decision on an application for a continuous events exception, the appropriate decision making body or officer shall mail notice of the decision to the applicant. Within ten (10) calendar days after the mailing of such notice, the applicant or an interested person may appeal the decision to the Board of Supervisors. Upon receipt of an appeal and payment of the appropriate appeal fee, the Clerk of the Board shall set the matter for hearing not less than five (5) days nor more than thirty (30) days thereafter and shall give written notice of the hearing in the same manner as notice of the hearing was given by the appropriate hearing officer or body. The Board of Supervisors shall render its decision within thirty (30) days after the appeal hearing is closed.
- d. Effect of a Pending Continuous Events Exception Application. For a period of one hundred and eighty (180) days from the effective date of this ordinance, no person creating any sound prohibited by this ordinance shall be considered in violation of this ordinance if the sound is related to a use that is operating pursuant to an approved land use permit, if an application for a continuous events exception has been filed to sanction the sound and if a decision on the application is pending.

Section 8. ENFORCEMENT. The Riverside County Sheriff and Code Enforcement shall have the primary responsibility for enforcing this ordinance; provided, however, the Sheriff and Code Enforcement may be assisted by the Public Health Department. Violations shall be prosecuted as described in Section 10. of this ordinance, but nothing in this ordinance shall prevent the Sheriff, Code Enforcement or the Department of Public Health from engaging in efforts to obtain voluntary compliance by means of warnings, notices, or educational programs. Section 9. DUTY TO COOPERATE. No person shall refuse to cooperate with, or obstruct, the enforcement officials identified in Section 8. of this ordinance when they are engaged in the process of enforcing the provisions of this ordinance. This duty to cooperate may require a person to extinguish a sound source so that it can be determined whether sound emanating from the source violates the provisions of this ordinance.

Section 10. VIOLATIONS AND PENALTIES. Any person who violates any provision of this ordinance once or twice within a one hundred and eighty (180) day period shall be guilty of an infraction. Any person who violates any provision of this ordinance more than twice within a one hundred and eighty (180) day period shall be guilty of a misdemeanor. Each day a violation is committed or permitted to continue shall constitute a separate offense and shall be punishable as such. Penalties shall not exceed the following amounts.

- a. For the first violation within a one hundred and eighty (180) day period the minimum mandatory fine shall be five hundred dollars (\$500).
- b. For the second violation within a one hundred and eighty (180) day period the minimum mandatory fine shall be seven hundred and fifty dollars (\$750).
- For any further violations within a one hundred and eighty (180) day period the minimum mandatory fine shall be one thousand dollars (\$1,000) or imprisonment in the County jail for a period not exceeding six (6) months, or both.

<u>Section 11</u>. SEVERABILITY. If any provision of this ordinance, or the application thereof to any person or circumstance, is held invalid, such invalidity shall not affect the remainder of the ordinance or the application of such provision(s) to other persons or circumstances.

Section 12. SAVINGS CLAUSE. The adoption of this ordinance shall not in any manner affect the prosecution of ordinance violations, which violations were committed prior to the effective date of this ordinance, nor be construed as a waiver of any permit, license, penalty or penal provisions applicable to such violations. The provisions of this ordinance, insofar as they are substantially the same as ordinance provisions previously adopted by Riverside County relating to the same subject matter, shall be construed as restatements and continuations, and not as new enactments.

Section 13. EFFECTIVE DATE. This ordinance shall take effect 30 days after its adoption.

Adopted: 847 Item 3.19 of 04/04/2006 (Eff: 05/04/2006) Amended: 847.1 Item 3.4 of 06/19/2007 (Eff: 07/19/2007) This page intentionally left blank



APPENDIX 5.1:

**STUDY AREA PHOTOS** 



This page intentionally left blank





15091\_L1\_C 1.North 33, 50' 17.040000", 117, 16' 5.310000"



15091\_L1\_C 2.South 33, 50' 16.980000", 117, 16' 5.290000"



15091\_L1\_C 3.East 33, 50' 17.000000", 117, 16' 5.230000"



15091\_L1\_C 4.West 33, 50' 17.190000", 117, 16' 5.070000"



15091\_L2\_D 1.North 33, 50' 15.030000", 117, 15' 53.230000"



15091\_L2\_D 2.South 33, 50' 15.050000", 117, 15' 53.260000"



15091\_L2\_D 3.East 33, 50' 15.020000", 117, 15' 53.310000"



15091\_L2\_D 4.West 33, 50' 15.030000", 117, 15' 53.590000"



15091\_L3\_J 1.North 33, 50' 2.670000", 117, 15' 41.530000"



15091\_L3\_J 2.South 33, 50' 2.550000", 117, 15' 41.640000"

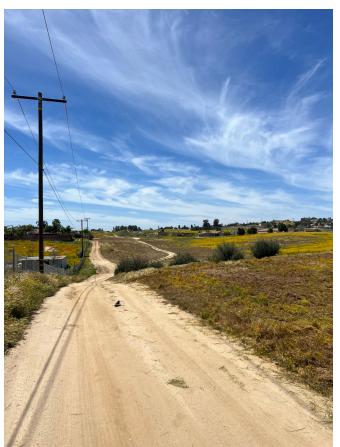


15091\_L3\_J 3.East 33, 50' 2.230000", 117, 15' 41.670000"



15091\_L3\_J 4.West 33, 50' 2.280000", 117, 15' 41.750000"




15091\_L4\_S 1.North 33, 50' 1.780000", 117, 15' 48.090000"



15091\_L4\_S 2.South 33, 50' 1.780000", 117, 15' 48.090000"



15091\_L4\_S 3.East 33, 50' 1.750000", 117, 15' 47.490000"



15091\_L4\_S 4.West 33, 50' 1.770000", 117, 15' 47.630000"



15091\_L5\_W 1.North 33, 50' 2.220000", 117, 16' 5.070000"



15091\_L5\_W 2.South 33, 50' 2.230000", 117, 16' 5.070000"



15091\_L5\_W 3.East 33, 50' 2.230000", 117, 16' 5.040000"



15091\_L5\_W 4.West 33, 50' 2.550000", 117, 16' 5.890000"



15596\_L6\_N 1.North 33, 49' 58.070000", 117, 15' 57.540000"



15596\_L6\_N 2.South 33, 49' 57.990000", 117, 15' 57.540000"



15596\_L6\_N 3.East 33, 49' 57.960000", 117, 15' 57.540000"



15596\_L6\_N 4.West 33, 49' 57.880000", 117, 15' 57.620000"



15596\_L7\_O 1.North 33, 49' 55.220000", 117, 15' 58.910000"



15596\_L7\_O 2.South 33, 49' 55.220000", 117, 15' 58.910000"



15596\_L7\_O 3.East 33, 49' 55.240000", 117, 15' 58.860000"



15596\_L7\_O 4.West 33, 49' 55.190000", 117, 15' 59.080000"

This page intentionally left blank



APPENDIX 5.2:

NOISE LEVEL MEASUREMENT WORKSHEETS

This page intentionally left blank



|                                                   |                                        |                 |              |                  |              | 24-Ho         | ur Noise Le              | evel Measu   | urement S    | ummary            |              |              |              |                 |               |                      |
|---------------------------------------------------|----------------------------------------|-----------------|--------------|------------------|--------------|---------------|--------------------------|--------------|--------------|-------------------|--------------|--------------|--------------|-----------------|---------------|----------------------|
|                                                   | Friday, Apri                           | -               |              |                  |              | L1 - Located  |                          |              | La Palapa Ra | anch              | Meter:       | Piccolo II   |              |                 |               | 15091                |
| Project:                                          | Cajalco Rd.                            | & Seaton Ave    | е.           |                  | Source:      | building at 1 | 9451 Decker              | Rd.          |              |                   |              |              |              |                 | Analyst:      | Z. Ibrahim           |
|                                                   |                                        |                 |              |                  |              |               | Hourly L <sub>eq</sub> ( | dBA Readings | (unadjusted) |                   |              |              |              |                 |               |                      |
| 85 (                                              | 0                                      |                 |              |                  |              |               |                          |              |              |                   |              |              |              |                 |               |                      |
| a 80.0                                            | ğ ———————————————————————————————————— |                 |              |                  |              |               |                          |              |              |                   |              |              |              |                 |               |                      |
| <b>a</b> 75.0<br><b>p</b> 70.0                    |                                        |                 |              |                  |              |               |                          |              |              |                   |              |              |              |                 |               |                      |
| 85.0<br>80.0<br>75.0<br>70.0<br>65.0<br>65.0<br>1 |                                        |                 |              | 0 9.             |              | 2             | <mark> </mark>           |              |              |                   |              |              | 0.2          |                 |               |                      |
| - 55.0                                            | 0 – v –                                | <u>о</u> 0      |              | 64.(             | 64.7         | 61.9          |                          | 8.8<br>62.1  |              | <mark>62.0</mark> | 8 0 8        | 61.9         | <u> </u>     | 4               | 60.3<br>60.2  | 29.8                 |
| <b>AJINOH</b>                                     | 58.5                                   | 57.5<br>58.6    | 59.          |                  |              | 9             |                          | 28.          | <u> </u>     | 2 <mark>9.</mark> | 61.(<br>58.0 | 9            | 28.7         | 28.<br>28.      | <mark></mark> | 23                   |
| ⊥ 40.0<br>35.0                                    |                                        |                 |              |                  |              |               |                          |              |              |                   |              |              |              |                 |               |                      |
|                                                   | 0                                      | 1 2             | 3            | 4 5              | 6            | 7 8           | 9 1                      | .0 11        | 12 1         | .3 14             | 15 10        | 5 17         | 18 19        | 20              | 21 22         | 23                   |
|                                                   |                                        |                 |              |                  |              |               |                          | Hour Be      | eginning     |                   |              |              |              |                 |               |                      |
| Timeframe                                         | Hour                                   | L <sub>eq</sub> | L max        | L min            | L1%          | L2%           | L5%                      | L8%          | L25%         | L50%              | L90%         | L95%         | L99%         | L <sub>eq</sub> | Adj.          | Adj. L <sub>eq</sub> |
|                                                   | 0                                      | 58.5            | 65.1         | 50.1             | 64.7         | 64.2          | 63.2                     | 62.5         | 59.8         | 56.9              | 52.0         | 51.2         | 50.4         | 58.5            | 10.0          | 68.5                 |
|                                                   | 1                                      | 57.5<br>58.6    | 65.0<br>66.4 | 51.3<br>52.9     | 64.5<br>65.7 | 63.7<br>64.9  | 62.0<br>63.1             | 61.1<br>62.0 | 58.5<br>59.3 | 55.9<br>56.9      | 52.4<br>53.9 | 52.0<br>53.5 | 51.5<br>53.1 | 57.5<br>58.6    | 10.0<br>10.0  | 67.5<br>68.6         |
| Night                                             | 3                                      | 58.0            | 65.9         | 52.9             | 65.6         | 65.0          | 63.8                     | 63.0         | 61.1         | 58.9              | 55.3         | 53.5<br>54.7 | 53.1         | 59.9            | 10.0          | 69.9                 |
|                                                   | 4                                      | 63.0            | 68.2         | 58.4             | 67.7         | 67.1          | 66.2                     | 65.6         | 63.9         | 62.4              | 59.5         | 59.1         | 58.6         | 63.0            | 10.0          | 73.0                 |
|                                                   | 5                                      | 64.6            | 69.0         | 61.1             | 68.7         | 68.4          | 67.4                     | 66.7         | 65.3         | 64.2              | 62.2         | 61.8         | 61.3         | 64.6            | 10.0          | 74.6                 |
|                                                   | 6                                      | 64.7            | 69.7         | 61.1             | 69.4         | 69.0          | 67.7                     | 67.0         | 65.3         | 64.1              | 62.0         | 61.6         | 61.2         | 64.7            | 10.0          | 74.7                 |
|                                                   | 7<br>8                                 | 61.9<br>72.5    | 68.3         | 57.7             | 68.0         | 67.5          | 65.8                     | 64.6<br>79.8 | 62.4         | 60.9              | 58.7         | 58.3         | 57.9<br>57.3 | 61.9<br>72.5    | 0.0           | 61.9                 |
|                                                   | °<br>9                                 | 68.3            | 83.5<br>77.7 | 57.1<br>52.1     | 83.3<br>77.4 | 83.0<br>77.1  | 81.5<br>75.8             | 79.8         | 66.3<br>68.3 | 60.7<br>61.4      | 58.1<br>55.0 | 57.7<br>53.5 | 57.5         | 68.3            | 0.0<br>0.0    | 72.5<br>68.3         |
|                                                   | 10                                     | 58.8            | 68.7         | 50.8             | 68.1         | 66.9          | 64.0                     | 62.2         | 58.9         | 56.6              | 52.5         | 51.8         | 51.1         | 58.8            | 0.0           | 58.8                 |
|                                                   | 11                                     | 62.1            | 70.7         | 51.6             | 70.2         | 69.5          | 67.7                     | 66.7         | 62.8         | 58.8              | 53.7         | 52.8         | 51.8         | 62.1            | 0.0           | 62.1                 |
|                                                   | 12                                     | 61.8            | 71.0         | 50.3             | 70.2         | 69.8          | 68.6                     | 67.3         | 61.5         | 57.2              | 52.5         | 51.6         | 50.6         | 61.8            | 0.0           | 61.8                 |
| Devi                                              | 13                                     | 62.0            | 73.9         | 51.0             | 72.5         | 70.7          | 67.3                     | 66.2         | 62.3         | 57.8              | 53.0         | 52.1         | 51.3         | 62.0            | 0.0           | 62.0                 |
| Day                                               | 14<br>15                               | 59.5<br>61.6    | 68.0<br>71.8 | 51.0<br>49.9     | 67.5<br>70.8 | 66.9<br>69.6  | 65.4<br>67.7             | 64.3<br>66.5 | 60.1<br>62.2 | 55.8<br>57.3      | 52.4<br>52.0 | 51.8<br>51.2 | 51.2<br>50.2 | 59.5<br>61.6    | 0.0<br>0.0    | 59.5<br>61.6         |
|                                                   | 15                                     | 58.0            | 66.8         | 49.1             | 66.4         | 65.8          | 64.1                     | 62.5         | 58.4         | 54.8              | 51.2         | 50.3         | 49.4         | 58.0            | 0.0           | 58.0                 |
|                                                   | 17                                     | 61.9            | 71.1         | 51.5             | 70.7         | 70.0          | 68.3                     | 67.0         | 62.1         | 57.8              | 53.6         | 52.7         | 51.8         | 61.9            | 0.0           | 61.9                 |
|                                                   | 18                                     | 58.7            | 66.4         | 52.1             | 65.9         | 65.3          | 63.5                     | 62.1         | 59.3         | 57.2              | 53.9         | 53.2         | 52.4         | 58.7            | 0.0           | 58.7                 |
|                                                   | 19                                     | 70.2            | 81.4         | 51.9             | 81.0         | 80.1          | 77.8                     | 76.6         | 66.1         | 57.9              | 53.8         | 53.0         | 52.2         | 70.2            | 5.0           | 75.2                 |
|                                                   | 20<br>21                               | 58.4<br>60.3    | 65.9<br>66.8 | 52.6<br>55.0     | 65.4<br>66.6 | 64.7<br>66.1  | 62.9<br>64.5             | 61.6<br>63.2 | 58.9<br>60.8 | 57.2<br>59.2      | 54.0<br>56.3 | 53.5<br>55.7 | 52.8<br>55.2 | 58.4<br>60.3    | 5.0<br>5.0    | 63.4<br>65.3         |
|                                                   | 21                                     | 60.3            | 65.1         | 55.0             | 64.8         | 64.4          | 63.4                     | 63.2         | 60.8         | 59.2              | 56.6         | 55.7         | 55.2         | 60.3            | 10.0          | 70.2                 |
| Night                                             | 23                                     | 59.8            | 65.3         | 54.7             | 65.0         | 64.5          | 63.4                     | 62.7         | 60.8         | 59.1              | 56.2         | 55.5         | 54.9         | 59.8            | 10.0          | 69.8                 |
| Timeframe                                         | Hour                                   | L <sub>eq</sub> | L max        | L <sub>min</sub> | L1%          | L2%           | L5%                      | L8%          | L25%         | L50%              | L90%         | L95%         | L99%         | 24-Hour         |               | (dBA)                |
| Day                                               | Min                                    | 58.0            | 65.9         | 49.1             | 65.4         | 64.7          | 62.9                     | 61.6         | 58.4         | 54.8              | 51.2         | 50.3         | 49.4         | CNEL            | Daytime       | Nighttime            |
| Energy                                            | Max<br>Average                         | 72.5<br>65.1    | 83.5<br>Ave  | 57.7<br>rage:    | 83.3<br>70.9 | 83.0<br>70.2  | 81.5<br>68.3             | 79.8<br>67.0 | 68.3<br>62.0 | 61.4<br>58.0      | 58.7<br>54.0 | 58.3<br>53.3 | 57.9<br>52.5 |                 | (7am-10pm)    | (10pm-7am,           |
|                                                   | Min                                    | 57.5            | 65.0         | 50.1             | 64.5         | 63.7          | 62.0                     | 61.1         | 58.5         | 55.9              | 52.0         | 51.2         | 50.4         | 69.3            | 65.1          | 61.5                 |
| Night                                             | Max                                    | 64.7            | 69.7         | 61.1             | 69.4         | 69.0          | 67.7                     | 67.0         | 65.3         | 64.2              | 62.2         | 61.8         | 61.3         |                 |               | 01.5                 |
| Energy                                            | Average                                | 61.5            | Ave          | rage:            | 66.2         | 65.7          | 64.5                     | 63.7         | 61.7         | 59.8              | 56.7         | 56.1         | 55.6         |                 |               |                      |



|                                                                                                      |                |                         |                          |                          |              | 24-Ho        | ur Noise Le              | evel Measu         | urement S    | ummary              |                      |                     |              |                 |                  |                         |
|------------------------------------------------------------------------------------------------------|----------------|-------------------------|--------------------------|--------------------------|--------------|--------------|--------------------------|--------------------|--------------|---------------------|----------------------|---------------------|--------------|-----------------|------------------|-------------------------|
|                                                                                                      | Friday, Apri   | -                       |                          |                          |              | L2 - Located | north of the             | site near the      | residence at | t 22840             | Meter:               | Piccolo II          |              |                 |                  | 15091                   |
| Project:                                                                                             | Cajalco Rd.    | & Seaton Av             | e.                       |                          | Source:      | Cajalco Rd.  |                          |                    |              |                     |                      |                     |              |                 | Analyst:         | Z. Ibrahim              |
|                                                                                                      |                |                         |                          |                          |              |              | Hourly L <sub>eq</sub> ( | IBA Readings       | (unadjusted) |                     |                      |                     |              |                 |                  |                         |
| 85.0                                                                                                 | 0              |                         |                          |                          |              |              |                          |                    |              |                     |                      |                     |              |                 |                  |                         |
| 85.0<br>80.0<br>75.0<br>70.0<br>10<br>65.0<br>10<br>65.0                                             | 0              |                         |                          |                          |              |              |                          |                    |              | _                   |                      |                     |              |                 |                  |                         |
| <b>5</b> 70.0                                                                                        | 0<br>0         |                         | 8.                       | 76.5                     | 78.3         | 76.9         | <u>6.4</u>               | 75.0               |              | <b>5.3</b>          | <mark></mark>        |                     | 5.3<br>5.8   | 2.2             | 5.1              | 4.4                     |
| 60.0 <b>ت</b>                                                                                        |                | 71.1                    | !∺ <b>≈</b>              |                          |              |              | ±'`±'                    |                    |              | × _ 2 _             | 2 <mark>- 2</mark> 2 | ! <u></u>           |              |                 |                  | ^                       |
| <b>1 b</b> 55.0<br><b>i</b> 50.0<br><b>i</b> 50.0<br><b>i</b> 45.0<br><b>i</b> 45.0<br><b>i</b> 40.0 | ğ — —          |                         |                          |                          | +-           |              | +                        |                    |              |                     |                      |                     |              | +- +-           |                  |                         |
| <b>H</b> 40.0                                                                                        | $\breve{o} =$  |                         |                          |                          |              |              | + $+$                    |                    |              |                     |                      | $\mp$ $\mp$         |              | <b>-</b> -      |                  |                         |
| 35.0                                                                                                 | 0 ++ 0         | 1 2                     | 3                        | 4 5                      | 6            | 7 8          | 9 1                      | .0 11              | 12 1         | .3 14               | 15 10                | 5 17                | 18 19        | 20              | 21 22            | 23                      |
|                                                                                                      | 0              | 1 2                     | 5                        | + J                      | 0            | , 0          | 5 1                      |                    | eginning     | .5 14               | 15 1                 | 5 17                | 10 15        | 20              | 21 22            | 25                      |
| Timeframe                                                                                            | Hour           | L <sub>eq</sub>         | L max                    | L <sub>min</sub>         | L1%          | L2%          | L5%                      | L8%                | L25%         | L50%                | L90%                 | L95%                | L99%         | L <sub>eq</sub> | Adj.             | Adj. L <sub>eq</sub>    |
|                                                                                                      | 0              | 71.9                    | 80.6                     | 55.3                     | 80.2         | 79.8         | 78.1                     | 77.1               | 72.9         | 67.5                | 58.4                 | 56.9                | 55.5         | 71.9            | 10.0             | 81.9                    |
|                                                                                                      | 1 2            | 71.1<br>72.5            | 80.6<br>82.7             | 52.0<br>52.6             | 80.4<br>82.3 | 79.9<br>81.8 | 78.2<br>79.4             | 76.9<br>78.0       | 71.1<br>72.5 | 64.7<br>66.0        | 53.9<br>54.9         | 52.8<br>53.5        | 52.1<br>52.7 | 71.1<br>72.5    | 10.0<br>10.0     | 81.1<br>82.5            |
| Night                                                                                                | 3              | 73.8                    | 82.5                     | 57.4                     | 82.2         | 81.8         | 80.0                     | 78.8               | 75.0         | 69.5                | 59.9                 | 58.7                | 57.6         | 73.8            | 10.0             | 83.8                    |
|                                                                                                      | 4              | 76.5                    | 83.3                     | 62.9                     | 83.0         | 82.7         | 81.5                     | 80.7               | 78.0         | 74.7                | 66.2                 | 64.4                | 63.1         | 76.5            | 10.0             | 86.5                    |
|                                                                                                      | 5<br>6         | 77.7<br>78.3            | 83.2<br>84.1             | 67.0<br>67.8             | 82.9<br>83.8 | 82.5<br>83.4 | 81.7<br>82.2             | 81.2<br>81.5       | 79.2<br>79.6 | 76.8<br>77.6        | 70.4<br>71.2         | 68.8<br>69.5        | 67.3<br>68.1 | 77.7<br>78.3    | 10.0<br>10.0     | 87.7<br>88.3            |
|                                                                                                      | 7              | 78.3                    | 83.4                     | 67.5                     | 83.8         | 83.4         | 82.2                     | 79.6               | 79.6         | 77.6                | 70.5                 | 69.5                | 67.8         | 78.3            | 0.0              | 76.4                    |
|                                                                                                      | 8              | 76.9                    | 82.5                     | 67.6                     | 82.3         | 81.9         | 80.9                     | 80.2               | 78.1         | 76.2                | 70.9                 | 69.5                | 67.8         | 76.9            | 0.0              | 76.9                    |
|                                                                                                      | 9              | 76.4                    | 83.6                     | 65.7                     | 83.2         | 82.7         | 81.0                     | 79.8               | 77.4         | 75.3                | 69.1                 | 67.4                | 66.0         | 76.4            | 0.0              | 76.4                    |
|                                                                                                      | 10<br>11       | 76.3<br>75.0            | 86.5<br>81.2             | 65.6<br>65.8             | 85.9<br>80.9 | 84.8<br>80.4 | 81.8<br>79.1             | 79.8<br>78.4       | 76.3<br>76.2 | 73.9<br>74.0        | 68.8<br>68.9         | 67.6<br>67.5        | 65.9<br>66.1 | 76.3<br>75.0    | 0.0<br>0.0       | 76.3<br>75.0            |
|                                                                                                      | 11             | 75.2                    | 81.2                     | 65.2                     | 81.5         | 80.4<br>80.9 | 79.1                     | 78.5               | 76.3         | 74.0                | 68.7                 | 67.1                | 65.5         | 75.2            | 0.0              | 75.2                    |
|                                                                                                      | 13             | 74.8                    | 82.0                     | 66.7                     | 81.6         | 80.9         | 79.0                     | 77.9               | 75.6         | 73.8                | 69.7                 | 68.4                | 67.0         | 74.8            | 0.0              | 74.8                    |
| Day                                                                                                  | 14             | 72.3                    | 78.5                     | 63.1                     | 78.2         | 77.8         | 76.5                     | 75.6               | 73.4         | 71.5                | 66.3                 | 64.9                | 63.5         | 72.3            | 0.0              | 72.3                    |
|                                                                                                      | 15<br>16       | 72.0<br>72.3            | 79.9<br>78.3             | 63.3<br>63.9             | 79.5<br>78.0 | 78.5<br>77.5 | 76.0<br>76.0             | 74.8<br>75.1       | 72.7<br>73.3 | 70.9<br>71.6        | 66.2<br>67.1         | 64.9<br>65.6        | 63.6<br>64.2 | 72.0<br>72.3    | 0.0<br>0.0       | 72.0<br>72.3            |
|                                                                                                      | 10             | 75.4                    | 80.9                     | 67.3                     | 80.5         | 80.0         | 78.9                     | 78.2               | 76.5         | 74.7                | 70.6                 | 69.1                | 67.5         | 75.4            | 0.0              | 75.4                    |
|                                                                                                      | 18             | 75.3                    | 80.3                     | 67.3                     | 80.0         | 79.6         | 78.5                     | 78.0               | 76.4         | 74.8                | 70.6                 | 69.2                | 67.6         | 75.3            | 0.0              | 75.3                    |
|                                                                                                      | 19             | 75.8                    | 81.9                     | 66.6                     | 81.6         | 81.1         | 79.8                     | 79.1               | 77.1         | 74.7                | 70.1                 | 68.6                | 66.8         | 75.8            | 5.0              | 80.8                    |
|                                                                                                      | 20<br>21       | 75.2<br>74.9            | 84.1<br>81.9             | 64.4<br>63.8             | 83.5<br>81.4 | 82.7<br>80.7 | 80.0<br>79.0             | 78.1<br>78.3       | 75.8<br>76.3 | 73.9<br>74.0        | 68.3<br>67.3         | 66.5<br>65.6        | 64.6<br>64.3 | 75.2<br>74.9    | 5.0<br>5.0       | 80.2<br>79.9            |
| Nicht                                                                                                | 22             | 74.9                    | 81.9                     | 63.7                     | 81.6         | 81.1         | 79.4                     | 78.6               | 76.5         | 73.9                | 66.6                 | 65.3                | 64.0         | 75.1            | 10.0             | 85.1                    |
| Night                                                                                                | 23             | 74.4                    | 82.3                     | 60.5                     | 81.9         | 81.4         | 79.6                     | 78.5               | 75.9         | 72.3                | 63.9                 | 62.3                | 60.9         | 74.4            | 10.0             | 84.4                    |
| Timeframe                                                                                            | Hour           | L <sub>eq</sub><br>72.0 | L <sub>max</sub><br>78.3 | L <sub>min</sub><br>63.1 | L1%<br>78.0  | L2%<br>77.5  | L5%<br>76.0              | <i>L8%</i><br>74.8 | L25%         | <i>L50%</i><br>70.9 | L90%                 | <b>L95%</b><br>64.9 | 63.5         | 24-Hour         | Leq (<br>Daytime | (dBA)<br>Nighttime      |
| Day                                                                                                  | Min<br>Max     | 72.0                    | 78.3<br>86.5             | 63.1<br>67.6             | 78.0<br>85.9 | 77.5<br>84.8 | 76.0<br>81.8             | 74.8<br>80.2       | 72.7<br>78.1 | 70.9                | 66.2<br>70.9         | 64.9<br>69.5        | 67.8         | CNEL            | (7am-10pm)       | Nighttime<br>(10pm-7am) |
| Energy                                                                                               | Average        | 75.2                    | Ave                      | rage:                    | 81.4         | 80.8         | 79.1                     | 78.1               | 75.9         | 73.9                | 68.9                 | 67.4                | 65.9         |                 |                  |                         |
| Night                                                                                                | Min            | 71.1                    | 80.6                     | 52.0                     | 80.2         | 79.8         | 78.1                     | 76.9               | 71.1         | 64.7                | 53.9                 | 52.8                | 52.1         | 81.9            | 75.2             | 75.2                    |
|                                                                                                      | Max<br>Average | 78.3                    | 84.1<br>Ave              | 67.8<br>rage:            | 83.8<br>82.0 | 83.4<br>81.6 | 82.2<br>80.0             | 81.5<br>79.0       | 79.6<br>75.6 | 77.6                | 71.2<br>62.8         | 69.5<br>61.4        | 68.1<br>60.1 |                 |                  |                         |
| Lincigy                                                                                              | A de lage      | 13.2                    | Ave                      | 1450.                    | 02.0         | 01.0         | 80.0                     | 79.0               | /3.0         | /1.4                | 02.0                 | 01.4                | 00.1         |                 |                  |                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                            |                          |                          |                    | 24-Ho                       | ur Noise Le              | evel Meas            | urement S           | ummary              |                     |                     |                     |                 |                |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|--------------------------|--------------------------|--------------------|-----------------------------|--------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|----------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Friday, Apri<br>Cajalco Rd. | l 21, 2023<br>& Seaton Ave | е.                       |                          |                    | L2 - Located<br>Seaton Ave. | south of the             | site near the        | residence a         | t 19701             | Meter:              | Piccolo II          |                     |                 |                | 15091<br>Z. Ibrahim  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                           |                            |                          |                          |                    |                             | Hourly L <sub>eq</sub> c | IBA Readings         | (unadjusted)        |                     |                     |                     |                     |                 | ,              |                      |
| 85.0<br>80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                           |                            |                          |                          |                    |                             |                          |                      |                     |                     |                     |                     |                     |                 |                |                      |
| <b>Yap</b> 75.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                            |                          |                          |                    |                             |                          |                      |                     |                     |                     |                     |                     |                 |                |                      |
| (Vgp)<br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup> |                             |                            |                          | 5.2                      | 66.2               | 67.0                        |                          | <mark>x, x, _</mark> | 4 1                 | 67.3<br>2.9         | 64.6                | 2 0,                | 68.7                | 6               | <mark>₹</mark> |                      |
| in 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.0                        | 54.7                       | 58.3                     | 65.                      | 9                  | 67<br>67                    |                          | 62.1                 | <u> </u>            |                     | 64.<br>64           | <u>65</u>           | 68<br>68            | <mark></mark>   | 60.4<br>60.1   | 60.1                 |
| ± 40.0<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | _ ŭ Ľ                      |                          |                          |                    |                             |                          |                      |                     |                     |                     |                     |                     |                 |                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                           | 1 2                        | 3                        | 4 5                      | 6                  | 7 8                         | 91                       | .0 11<br>Hour B      | 12 1<br>eginning    | .3 14               | 15 1                | 5 17                | 18 19               | 20              | 21 22          | 23                   |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hour                        | L <sub>eq</sub>            | L <sub>max</sub>         | L <sub>min</sub>         | L1%                | L2%                         | L5%                      | L8%                  | L25%                | L50%                | L90%                | L95%                | L99%                | L <sub>eq</sub> | Adj.           | Adj. L <sub>eq</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                           | 58.0                       | 70.2                     | 51.0                     | 69.8               | 68.9                        | 65.0                     | 61.3                 | 54.4                | 52.9                | 51.6                | 51.4                | 51.1                | 58.0            | 10.0           | 68.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | 54.7<br>56.1               | 65.0<br>67.0             | 50.1                     | 64.6               | 63.8                        | 61.0<br>63.0             | 58.1<br>59.4         | 53.1<br>53.9        | 51.9<br>52.7        | 50.7                | 50.4<br>51.0        | 50.2<br>50.8        | 54.7<br>56.1    | 10.0<br>10.0   | 64.7                 |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                           | 58.3                       | 69.2                     | 50.7<br>53.0             | 66.6<br>68.8       | 65.7<br>68.0                | 65.1                     | 62.2                 | 53.9                | 52.7                | 51.3<br>53.5        | 51.0                | 50.8                | 58.3            | 10.0           | 66.1<br>68.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                           | 63.2                       | 74.0                     | 55.9                     | 73.6               | 72.9                        | 70.2                     | 67.8                 | 61.3                | 58.2                | 56.4                | 56.2                | 56.0                | 63.2            | 10.0           | 73.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                           | 65.2                       | 75.5                     | 58.9                     | 75.0               | 74.2                        | 71.8                     | 70.0                 | 63.8                | 60.6                | 59.4                | 59.2                | 59.0                | 65.2            | 10.0           | 75.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                           | 66.2                       | 77.0                     | 59.6                     | 76.5               | 75.5                        | 72.9                     | 71.0                 | 64.4                | 61.4                | 60.1                | 59.9                | 59.7                | 66.2            | 10.0           | 76.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>8                      | 65.3<br>67.0               | 75.6<br>78.4             | 55.3<br>52.8             | 75.2<br>78.1       | 74.5<br>77.5                | 72.1<br>75.6             | 70.6<br>73.4         | 64.8<br>62.6        | 58.9<br>56.8        | 55.9<br>53.7        | 55.7<br>53.2        | 55.4<br>52.9        | 65.3<br>67.0    | 0.0<br>0.0     | 65.3<br>67.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                           | 71.0                       | 82.7                     | 45.9                     | 81.9               | 81.1                        | 78.3                     | 76.5                 | 69.3                | 62.1                | 49.2                | 48.1                | 46.3                | 71.0            | 0.0            | 71.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                          | 64.8                       | 78.5                     | 45.3                     | 78.1               | 76.8                        | 72.2                     | 68.6                 | 59.6                | 52.2                | 47.1                | 46.1                | 45.5                | 64.8            | 0.0            | 64.8                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                          | 62.8                       | 73.5                     | 44.9                     | 73.0               | 72.3                        | 69.9                     | 68.5                 | 62.4                | 54.9                | 47.1                | 46.1                | 45.2                | 62.8            | 0.0            | 62.8                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                          | 63.4                       | 76.1                     | 41.7                     | 75.1               | 74.0                        | 70.8                     | 68.8                 | 61.2                | 52.1                | 43.2                | 42.5                | 41.9                | 63.4            | 0.0            | 63.4                 |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13<br>14                    | 67.3<br>62.9               | 83.4<br>73.5             | 42.3<br>44.3             | 82.2<br>73.0       | 78.3<br>72.2                | 72.2<br>70.1             | 69.5<br>68.7         | 62.8<br>62.2        | 52.5<br>55.3        | 44.5<br>46.6        | 43.3<br>45.4        | 42.6<br>44.5        | 67.3<br>62.9    | 0.0<br>0.0     | 67.3<br>62.9         |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                          | 64.6                       | 73.5                     | 44.3                     | 73.0               | 73.3                        | 70.1                     | 70.1                 | 65.0                | 58.0                | 40.0                | 47.6                | 44.3                | 64.6            | 0.0            | 64.6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                          | 64.6                       | 74.4                     | 45.0                     | 73.9               | 73.1                        | 71.3                     | 70.2                 | 65.2                | 58.6                | 49.3                | 47.9                | 46.2                | 64.6            | 0.0            | 64.6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                          | 65.0                       | 76.6                     | 47.8                     | 76.1               | 74.9                        | 72.1                     | 70.6                 | 63.8                | 55.3                | 49.3                | 48.7                | 48.0                | 65.0            | 0.0            | 65.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                          | 63.3                       | 74.7                     | 50.4                     | 74.2               | 73.3                        | 70.5                     | 68.6                 | 61.9                | 55.9                | 51.7                | 51.1                | 50.6                | 63.3            | 0.0            | 63.3                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19<br>20                    | 68.7<br>60.9               | 79.2<br>72.1             | 52.0<br>50.1             | 78.7<br>71.8       | 78.2<br>71.0                | 76.5<br>68.5             | 75.1<br>66.3         | 67.1<br>58.4        | 59.7<br>53.7        | 53.2<br>50.9        | 52.8<br>50.6        | 52.2<br>50.2        | 68.7<br>60.9    | 5.0<br>5.0     | 73.7<br>65.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                          | 60.9                       | 72.1                     | 52.4                     | 71.8               | 70.2                        | 67.6                     | 65.6                 | 57.9                | 54.8                | 53.1                | 52.8                | 50.2                | 60.9            | 5.0            | 65.4                 |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                          | 60.1                       | 70.7                     | 55.0                     | 70.3               | 69.5                        | 66.7                     | 64.3                 | 57.8                | 56.5                | 55.5                | 55.3                | 55.1                | 60.1            | 10.0           | 70.1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23<br>Hour                  | 60.1                       | 70.9                     | 53.9                     | 70.5<br><b>L1%</b> | 69.8<br><b>L2%</b>          | 67.0<br><b>L5%</b>       | 64.5<br><b>L8%</b>   | 57.6<br><b>L25%</b> | 56.0<br><b>L50%</b> | 54.5<br><b>L90%</b> | 54.3<br><b>L95%</b> | 54.0<br><b>L99%</b> | 60.1            | 10.0           | 70.1<br>(dBA)        |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hour<br>Min                 | L <sub>eq</sub><br>60.4    | L <sub>max</sub><br>71.3 | L <sub>min</sub><br>41.7 | 71.0               | 70.2                        | 67.6                     | <b>L8%</b><br>65.6   | 57.9                | 52.1                | 43.2                | 42.5                | 41.9                | 24-Hour         | Daytime        | (авА)<br>Nighttime   |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max                         | 71.0                       | 83.4                     | 55.3                     | 82.2               | 81.1                        | 78.3                     | 76.5                 | 69.3                | 62.1                | 55.9                | 55.7                | 55.4                | CNEL            | (7am-10pm)     | (10pm-7am)           |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average                     | 65.7                       |                          | rage:                    | 75.8               | 74.7                        | 71.9                     | 70.1                 | 63.0                | 56.0                | 49.6                | 48.8                | 48.0                | <u> </u>        | <u> </u>       |                      |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min                         | 54.7                       | 65.0                     | 50.1                     | 64.6               | 63.8                        | 61.0                     | 58.1                 | 53.1                | 51.9                | 50.7                | 50.4                | 50.2                | 69.5            | 65.7           | 61.8                 |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max<br>Average              | 66.2<br>61.8               | 77.0<br>Ave              | 59.6<br>rage:            | 76.5<br>70.6       | 75.5<br>69.8                | 72.9<br>67.0             | 71.0<br>64.3         | 64.4<br>58.0        | 61.4<br>56.1        | 60.1<br>54.8        | 59.9<br>54.6        | 59.7<br>54.3        |                 |                |                      |



|                                                      |                   |                         |                          |                          |                    | 24-Ho              | our Noise Le             | evel Meas            | urement S           | Summary             |                     |                     |                     |                 |              |              |
|------------------------------------------------------|-------------------|-------------------------|--------------------------|--------------------------|--------------------|--------------------|--------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|--------------|--------------|
|                                                      | Friday, Apri      | -                       |                          |                          |                    | L4 - Located       |                          |                      | Huong Sen           | Buddhist            | Meter:              | Piccolo II          |                     |                 |              | 15091        |
| Project:                                             | Cajalco Rd.       | & Seaton Av             | re.                      |                          | Source:            | Temple at 19       |                          |                      | /                   | 1                   |                     |                     |                     |                 | Analyst:     | Z. Ibrahiı   |
|                                                      |                   |                         |                          |                          |                    |                    | Hourly L <sub>eq</sub> ( | IBA Readings         | (unadjusted         |                     |                     |                     |                     |                 |              |              |
| 85.0<br>80.0<br>75.0<br>70.0<br>65.0<br>60.0<br>55.0 | 2                 |                         |                          |                          |                    |                    |                          |                      |                     |                     |                     |                     |                     |                 |              |              |
| <b>a</b> 75.0                                        |                   |                         |                          |                          |                    |                    |                          |                      |                     |                     |                     |                     |                     |                 |              |              |
| رور ہو<br>65.0 چ                                     | 5                 |                         |                          |                          |                    |                    | - o                      |                      |                     |                     |                     |                     |                     |                 |              |              |
| 60.0 <b>°۔</b><br>55.0 <b>ح</b>                      | 3                 |                         |                          |                          |                    |                    | <mark>- 69</mark>        |                      | - <u>N</u>          |                     |                     |                     | <mark>.69</mark>    |                 |              |              |
| 60.0<br>60.0<br>55.0<br>55.0<br>45.0<br>45.0<br>40.0 | 20.0              | 49.8                    | 50.9                     | 56.8                     | 25.0               | <b>54.1</b>        |                          | <sup>3</sup><br>58.2 |                     | 57.3<br>57.9        | 58.5<br>58.5        | <b>26.7</b>         | 20.6                | 49.4            |              | 52.4         |
| ± 40.0<br>35.0                                       | Ď – ਯ –           | - 49                    | S B                      | Q                        | ŭ                  | - <u>2</u>         | i                        |                      |                     | "                   | Ū                   | <b>i</b>            | - <u>2</u>          | 49              | 52.          | 22           |
| 55.0                                                 | 0                 | 1 2                     | 3                        | 4 5                      | 6                  | 7 8                | 9 1                      | .0 11                |                     | 13 14               | 15 1                | 6 17                | 18 19               | 20              | 21 22        | 23           |
|                                                      |                   |                         |                          |                          |                    |                    |                          |                      | eginning            |                     |                     |                     |                     |                 |              |              |
| meframe                                              | Hour              | L <sub>eq</sub>         | L max                    | L <sub>min</sub>         | L1%                | L2%                | L5%                      | L8%                  | L25%                | L50%                | L90%                | L95%                | L99%                | L <sub>eq</sub> | Adj.         | Adj. L       |
|                                                      | 0                 | 50.0<br>49.8            | 53.3<br>53.0             | 47.8<br>48.2             | 53.1<br>52.6       | 52.8<br>52.4       | 52.2<br>51.5             | 51.8<br>51.1         | 50.5<br>50.1        | 49.6<br>49.5        | 48.4<br>48.7        | 48.1<br>48.5        | 47.9<br>48.3        | 50.0<br>49.8    | 10.0<br>10.0 | 60.0<br>59.8 |
|                                                      | 2                 | 50.7                    | 53.4                     | 49.0                     | 53.1               | 52.9               | 52.3                     | 52.0                 | 51.1                | 50.5                | 49.5                | 49.3                | 49.1                | 50.7            | 10.0         | 60.          |
| Night                                                | 3                 | 50.9                    | 53.5                     | 49.4                     | 53.2               | 52.9               | 52.4                     | 52.1                 | 51.3                | 50.7                | 49.8                | 49.7                | 49.5                | 50.9            | 10.0         | 60.          |
|                                                      | 4                 | 56.8                    | 67.3                     | 51.0                     | 66.8               | 66.3               | 63.9                     | 62.8                 | 54.1                | 52.6                | 51.5                | 51.3                | 51.1                | 56.8            | 10.0         | 66.          |
|                                                      | 5<br>6            | 54.8<br>55.0            | 56.6<br>58.2             | 53.7<br>53.7             | 56.4<br>58.0       | 56.2<br>57.7       | 55.9<br>56.7             | 55.6<br>56.0         | 55.1<br>55.1        | 54.7<br>54.7        | 54.1<br>54.1        | 53.9<br>54.0        | 53.8<br>53.8        | 54.8<br>55.0    | 10.0<br>10.0 | 64.8<br>65.0 |
|                                                      | 7                 | 54.1                    | 61.4                     | 51.1                     | 60.9               | 60.2               | 57.9                     | 56.6                 | 54.4                | 52.9                | 51.5                | 51.4                | 51.2                | 54.1            | 0.0          | 54.3         |
|                                                      | 8                 | 66.9                    | 78.7                     | 50.0                     | 78.2               | 77.5               | 75.7                     | 74.5                 | 57.8                | 52.8                | 50.6                | 50.4                | 50.1                | 66.9            | 0.0          | 66.9         |
|                                                      | 9<br>10           | 69.0<br>51.3            | 78.0<br>58.2             | 42.4<br>41.3             | 77.8<br>57.6       | 77.5<br>57.0       | 76.7<br>55.9             | 75.8<br>55.2         | 68.4<br>52.5        | 59.4<br>49.6        | 44.5<br>44.2        | 43.5<br>42.8        | 42.7<br>41.6        | 69.0<br>51.3    | 0.0<br>0.0   | 69.0<br>51.3 |
|                                                      | 10                | 58.2                    | 67.2                     | 39.8                     | 66.5               | 65.9               | 64.8                     | 63.8                 | 59.1                | 53.2                | 44.2                | 42.0                | 41.0                | 58.2            | 0.0          | 58.          |
|                                                      | 12                | 61.2                    | 71.4                     | 40.2                     | 70.9               | 70.5               | 69.7                     | 68.0                 | 59.7                | 53.1                | 44.6                | 42.8                | 40.8                | 61.2            | 0.0          | 61.          |
| Davis                                                | 13                | 57.3                    | 65.6                     | 41.0                     | 65.2               | 65.0               | 64.4                     | 63.7                 | 57.4                | 52.3                | 45.0                | 43.3                | 41.6                | 57.3            | 0.0          | 57.3         |
| Day                                                  | 14<br>15          | 57.9<br>58.5            | 67.1<br>67.8             | 42.8<br>40.6             | 66.6<br>66.8       | 66.3<br>66.1       | 64.6<br>64.8             | 63.9<br>64.1         | 58.2<br>60.5        | 53.0<br>51.6        | 46.4<br>43.0        | 44.9<br>41.9        | 43.3<br>40.8        | 57.9<br>58.5    | 0.0<br>0.0   | 57.<br>58.   |
|                                                      | 15                | 55.0                    | 65.8                     | 39.5                     | 65.1               | 63.9               | 62.4                     | 61.0                 | 54.1                | 46.3                | 43.0                | 41.3                | 39.6                | 55.0            | 0.0          | 55.0         |
|                                                      | 17                | 56.7                    | 67.8                     | 43.4                     | 67.0               | 66.1               | 63.6                     | 62.4                 | 56.5                | 46.8                | 44.3                | 43.9                | 43.5                | 56.7            | 0.0          | 56.          |
|                                                      | 18<br>19          | 50.6<br>69.5            | 60.2<br>80.7             | 45.5<br>47.1             | 59.7<br>80.4       | 58.7<br>79.9       | 55.8<br>77.2             | 53.4<br>74.9         | 50.2<br>67.9        | 48.7<br>57.8        | 46.5<br>48.2        | 46.1<br>47.7        | 45.6<br>47.2        | 50.6<br>69.5    | 0.0<br>5.0   | 50.<br>74.   |
|                                                      | 19<br>20          | 69.5<br>49.4            | 80.7<br>53.1             | 47.1<br>46.5             | 80.4<br>52.8       | 79.9<br>52.5       | 77.2<br>51.8             | 74.9<br>51.3         | 67.9<br>50.1        | 57.8<br>49.0        | 48.2<br>47.4        | 47.7<br>47.0        | 47.2<br>46.7        | 69.5<br>49.4    | 5.0          | 74.<br>54.   |
|                                                      | 21                | 50.6                    | 54.8                     | 48.1                     | 54.4               | 54.1               | 53.1                     | 52.5                 | 51.2                | 50.1                | 48.7                | 48.5                | 48.2                | 50.6            | 5.0          | 55.          |
| Night                                                | 22                | 52.2                    | 54.4                     | 50.9                     | 54.2               | 54.1               | 53.5                     | 53.2                 | 52.5                | 52.0                | 51.2                | 51.1                | 50.9                | 52.2            | 10.0         | 62.          |
| neframe                                              | 23<br><b>Hour</b> | 52.4<br>L <sub>eg</sub> | 55.7<br>L <sub>max</sub> | 50.4<br>L <sub>min</sub> | 55.4<br><b>L1%</b> | 55.0<br><b>L2%</b> | 54.5<br><b>L5%</b>       | 54.1<br><b>L8%</b>   | 52.9<br><b>L25%</b> | 52.2<br><b>L50%</b> | 50.9<br><b>L90%</b> | 50.7<br><b>L95%</b> | 50.5<br><b>L99%</b> | 52.4            | 10.0<br>Lea  | 62.<br>(dBA) |
| Day                                                  | Min               | 49.4                    | 53.1                     | - min<br>39.5            | 52.8               | 52.5               | 51.8                     | 51.3                 | 50.1                | 46.3                | 41.0                | 40.3                | 39.6                | 24-Hour<br>CNEL | Daytime      | Nightt       |
| '                                                    | Max               | 69.5                    | 80.7                     | 51.1                     | 80.4               | 79.9               | 77.2                     | 75.8                 | 68.4                | 59.4                | 51.5                | 51.4                | 51.2                | CNEL            | (7am-10pm)   | (10pm-7      |
| Energy                                               | Average<br>Min    | 62.6<br>49.8            | 53.0                     | erage: 47.8              | 66.0<br>52.6       | 65.4<br>52.4       | <u>63.9</u><br>51.5      | 62.7<br>51.1         | 57.2<br>50.1        | 51.8<br>49.5        | 46.0<br>48.4        | 45.1<br>48.1        | 44.2                | 64.3            | 62.6         | 53.          |
| Night                                                | Max               | 49.8<br>56.8            | 67.3                     | 53.7                     | 66.8               | 66.3               | 63.9                     | 62.8                 | 55.1                | 49.5<br>54.7        | 48.4<br>54.1        | 48.1<br>54.0        | 53.8                | 04.5            | 02.0         | 53.          |
| Energy                                               |                   | 53.2                    | Ave                      | erage:                   | 55.9               | 55.6               | 54.8                     | 54.3                 | 52.5                | 51.8                | 50.9                | 50.7                | 50.5                |                 |              | _            |



|                                                        |                |                 |                  |                  |              |                 | ur Noise Le              |                  |               |                     |              |                     |                     |                 |                     |                      |
|--------------------------------------------------------|----------------|-----------------|------------------|------------------|--------------|-----------------|--------------------------|------------------|---------------|---------------------|--------------|---------------------|---------------------|-----------------|---------------------|----------------------|
|                                                        | Friday, Apri   |                 |                  |                  |              | L5 - Located    | southwest of             | the site nea     | r the resider | nce at 22655        | Meter:       | Piccolo II          |                     |                 |                     | 15091                |
| Project:                                               | Cajalco Rd.    | & Seaton Ave    | е.               |                  | Source:      | Cajalco Rd.     |                          |                  |               |                     |              |                     |                     |                 | Analyst:            | Z. Ibrahim           |
|                                                        |                |                 |                  |                  |              |                 | Hourly L <sub>eq</sub> ( | dBA Readings     | (unadjusted)  |                     |              |                     |                     |                 |                     |                      |
| 85.0<br>2 80.0                                         | 0              |                 |                  |                  |              |                 |                          |                  |               |                     |              |                     |                     |                 |                     |                      |
| 80.0<br>75.0<br>70.0<br>65.0<br>1<br>60.0              |                |                 |                  |                  |              |                 |                          |                  |               |                     |              |                     |                     |                 |                     |                      |
| <b>B</b> 70.0                                          | ğ ———          |                 |                  |                  |              | <mark>ი</mark>  |                          |                  |               |                     |              |                     |                     |                 |                     |                      |
| ، 65 و<br>60.0 <b>ت</b>                                |                |                 |                  |                  |              | <mark>.2</mark> | <mark></mark>            |                  |               |                     |              |                     |                     |                 |                     |                      |
| <b>1</b> 55.0<br><b>1</b> 55.0<br>50.0<br>45.0<br>40.0 |                |                 |                  | N                |              |                 | 66.2                     | - u              | - N - 2       | o ∞                 | 9.6          | <u>.</u>            | <mark>.99</mark>    |                 |                     |                      |
| <b>P</b> 45.0                                          | 20.0           | 48.3            | 50.2             | 53.6             | 56.7         | - <mark></mark> |                          | 57.              | 22            | <mark>- 56.8</mark> | 59.<br>53.   | 2 <mark></mark>     | 52.7                | <b>51.7</b>     | <b>52.4</b><br>53.5 | 52.9                 |
| ± 40.0<br>35.0                                         |                | - 4 n           |                  |                  |              |                 |                          | <b>a</b> — — — — |               |                     |              |                     |                     |                 | <u> </u>            |                      |
|                                                        | 0              | 1 2             | 3                | 4 5              | 6            | 7 8             | 9 1                      | .0 11            |               | .3 14               | 15 10        | 5 17                | 18 19               | 20              | 21 22               | 23                   |
|                                                        |                |                 |                  |                  |              |                 |                          | Hour Be          | eginning      |                     |              |                     |                     |                 |                     |                      |
| Timeframe                                              | Hour           | L <sub>eq</sub> | L max            | L min            | L1%          | L2%             | L5%                      | L8%              | L25%          | L50%                | L90%         | L95%                | L99%                | L <sub>eq</sub> | Adj.                | Adj. L <sub>eq</sub> |
|                                                        | 0              | 50.0            | 55.3             | 45.6             | 55.0         | 54.7            | 53.8                     | 53.2             | 51.1          | 48.8                | 46.5         | 46.1                | 45.8                | 50.0            | 10.0                | 60.0                 |
|                                                        | 1              | 48.3<br>50.4    | 52.2<br>53.8     | 46.0<br>48.1     | 51.8<br>53.6 | 51.4<br>53.3    | 50.6<br>52.6             | 50.2<br>52.2     | 48.9<br>51.1  | 47.9<br>50.1        | 46.6<br>48.7 | 46.3<br>48.5        | 46.1<br>48.2        | 48.3<br>50.4    | 10.0<br>10.0        | 58.3<br>60.4         |
| Night                                                  | 3              | 50.4            | 53.8             | 48.1             | 53.0         | 53.4            | 52.8                     | 52.2             | 50.7          | 49.7                | 48.4         | 48.2                | 48.2                | 50.4            | 10.0                | 60.4                 |
|                                                        | 4              | 53.6            | 56.2             | 51.2             | 56.0         | 55.9            | 55.5                     | 55.3             | 54.4          | 53.4                | 51.8         | 51.6                | 51.3                | 53.6            | 10.0                | 63.6                 |
|                                                        | 5              | 56.2            | 58.0             | 54.6             | 57.8         | 57.7            | 57.4                     | 57.2             | 56.7          | 56.1                | 55.1         | 55.0                | 54.7                | 56.2            | 10.0                | 66.2                 |
|                                                        | 6              | 56.7            | 59.2             | 55.2             | 58.9         | 58.7            | 58.2                     | 57.9             | 57.1          | 56.5                | 55.6         | 55.5                | 55.3                | 56.7            | 10.0                | 66.7                 |
|                                                        | 7<br>8         | 55.7<br>72.9    | 61.1             | 53.4             | 60.6         | 60.1            | 58.8                     | 57.7             | 55.9          | 55.0                | 53.9         | 53.7                | 53.5                | 55.7            | 0.0                 | 55.7                 |
|                                                        | 8<br>9         | 66.2            | 84.4<br>75.4     | 53.4<br>45.2     | 84.2<br>75.2 | 83.7<br>74.9    | 82.4<br>73.0             | 80.3<br>72.2     | 62.2<br>65.9  | 56.3<br>57.5        | 53.9<br>47.7 | 53.7<br>46.1        | 53.5<br>45.4        | 72.9<br>66.2    | 0.0<br>0.0          | 72.9<br>66.2         |
|                                                        | 10             | 47.8            | 54.2             | 43.0             | 53.6         | 53.0            | 51.9                     | 50.9             | 48.3          | 46.6                | 44.2         | 43.7                | 43.2                | 47.8            | 0.0                 | 47.8                 |
|                                                        | 11             | 57.5            | 66.7             | 41.4             | 66.1         | 65.3            | 64.1                     | 62.7             | 58.8          | 51.9                | 42.6         | 42.1                | 41.6                | 57.5            | 0.0                 | 57.5                 |
|                                                        | 12             | 55.2            | 65.5             | 39.7             | 64.7         | 63.9            | 62.3                     | 61.2             | 54.0          | 48.4                | 40.7         | 40.3                | 39.9                | 55.2            | 0.0                 | 55.2                 |
| Davi                                                   | 13             | 58.6            | 68.8             | 38.7             | 68.3         | 67.4            | 66.2                     | 65.2             | 58.0          | 52.0                | 40.1         | 39.5                | 38.9                | 58.6            | 0.0                 | 58.6                 |
| Day                                                    | 14<br>15       | 56.8<br>59.6    | 66.3<br>70.1     | 41.7<br>43.2     | 65.8<br>69.7 | 65.2<br>69.3    | 64.1<br>67.6             | 62.5<br>65.9     | 57.5<br>58.6  | 48.8<br>51.0        | 43.2<br>45.2 | 42.6<br>44.3        | 41.9<br>43.6        | 56.8<br>59.6    | 0.0<br>0.0          | 56.8<br>59.6         |
|                                                        | 15             | 53.9            | 62.2             | 43.2             | 61.8         | 61.3            | 60.4                     | 59.5             | 55.4          | 48.0                | 43.2         | 44.3                | 43.0                | 53.9            | 0.0                 | 53.9                 |
|                                                        | 17             | 59.7            | 70.6             | 45.9             | 69.5         | 68.3            | 67.0                     | 65.5             | 59.5          | 53.3                | 47.2         | 46.6                | 46.0                | 59.7            | 0.0                 | 59.7                 |
|                                                        | 18             | 52.7            | 61.3             | 47.7             | 60.9         | 60.1            | 57.6                     | 56.3             | 52.8          | 50.6                | 48.6         | 48.2                | 47.9                | 52.7            | 0.0                 | 52.7                 |
|                                                        | 19             | 66.4            | 76.0             | 48.6             | 75.8         | 75.7            | 74.6                     | 72.9             | 63.5          | 52.3                | 49.5         | 49.2                | 48.8                | 66.4            | 5.0                 | 71.4                 |
|                                                        | 20<br>21       | 51.7<br>52.4    | 57.0<br>57.0     | 48.2<br>48.8     | 56.1         | 55.4            | 54.3<br>55.3             | 53.7<br>54.8     | 52.3<br>53.2  | 51.2<br>51.8        | 49.3         | 48.9<br>49.4        | 48.4<br>49.0        | 51.7<br>52.4    | 5.0<br>5.0          | 56.7<br>57.4         |
|                                                        | 21             | 52.4            | 61.2             | 48.8             | 56.5<br>60.3 | 56.1<br>59.6    | 55.3                     | 54.8             | 53.2          | 51.8                | 49.8<br>50.7 | <u>49.4</u><br>50.4 | <u>49.0</u><br>50.1 | 52.4            | 10.0                | 63.5                 |
| Night                                                  | 23             | 52.9            | 56.5             | 50.3             | 56.2         | 55.9            | 55.2                     | 54.7             | 53.5          | 52.5                | 51.1         | 50.7                | 50.4                | 52.9            | 10.0                | 62.9                 |
| Timeframe                                              | Hour           | L <sub>eq</sub> | L <sub>max</sub> | L <sub>min</sub> | L1%          | L2%             | L5%                      | L8%              | L25%          | L50%                | L90%         | L95%                | L99%                | 24-Hour         |                     | (dBA)                |
| Day                                                    | Min            | 47.8            | 54.2             | 38.7             | 53.6         | 53.0            | 51.9                     | 50.9             | 48.3          | 46.6                | 40.1         | 39.5                | 38.9                | CNEL            | Daytime             | Nighttime            |
| ,                                                      | Max<br>Average | 72.9<br>63.5    | 84.4             | 53.4<br>erage:   | 84.2<br>65.9 | 83.7<br>65.3    | 82.4<br>64.0             | 80.3<br>62.8     | 65.9<br>57.1  | 57.5<br>51.6        | 53.9<br>46.6 | 53.7<br>46.0        | 53.5<br>45.6        |                 | (7am-10pm)          | (10pm-7am)           |
|                                                        | Min            | 48.3            | 52.2             | 45.6             | 51.8         | 51.4            | <u>64.0</u><br>50.6      | 50.2             | 48.9          | 47.9                | 46.5         | 46.0                | 45.6                | 64.2            | 63.5                | 53.3                 |
| Night                                                  | Max            | 56.7            | 61.2             | 55.2             | 60.3         | 59.6            | 58.2                     | 57.9             | 57.1          | 56.5                | 55.6         | 55.5                | 55.3                | 04.2            | 03.3                | 55.5                 |
| Energy                                                 | Average        | 53.3            | Ave              | erage:           | 55.9         | 55.6            | 54.9                     | 54.4             | 53.0          | 51.9                | 50.5         | 50.2                | 50.0                |                 |                     |                      |



|                                                     |                |                            |                  |                  |                      | 24-Ho                     | ur Noise Le              | evel Measu      | urement S        | ummary       |              |              |              |                 |                 |                     |
|-----------------------------------------------------|----------------|----------------------------|------------------|------------------|----------------------|---------------------------|--------------------------|-----------------|------------------|--------------|--------------|--------------|--------------|-----------------|-----------------|---------------------|
|                                                     |                | /, Septembe<br>& Seaton Av | -                |                  | Location:<br>Source: | L6 - Located              | near the resid           | dence at 227    | '61 Cajalco R    | d.           | Meter:       | Piccolo II   |              |                 |                 | 15596<br>Z. Ibrahim |
|                                                     |                |                            |                  |                  |                      |                           | Hourly L <sub>eq</sub> a | IBA Readings    | (unadjusted)     |              |              |              |              |                 |                 |                     |
| 85.0                                                |                |                            |                  |                  |                      |                           |                          |                 |                  |              |              |              |              |                 |                 |                     |
| 85.0<br>80.0<br>75.0<br>70.0<br>65.0<br>1<br>1<br>1 |                |                            |                  |                  |                      |                           |                          |                 |                  |              |              |              |              |                 |                 |                     |
| 65.0<br>60.0                                        |                |                            |                  |                  |                      |                           |                          |                 | <del>.</del>     |              | 70.1         | <b>68.3</b>  | <b>6</b>     |                 |                 |                     |
| 1 55.0<br>50.0<br>45.0<br>45.0                      | )<br>          | <u>ы</u> а                 | 200              | 58.6<br>59.8     | 58.5                 | <mark>59.6</mark><br>60.4 |                          | 61.9            | <mark> </mark>   | 61.7         |              | 5 <u> </u>   | 66.3         |                 | 59.1            | o                   |
|                                                     |                | 50.5                       |                  |                  |                      |                           |                          | + -             |                  |              |              | + +          |              | + $+$           | 2 <mark></mark> | 54.9                |
| 35.0                                                | 0              | 1 2                        | 3                | 4 5              | 6                    | 7 8                       | 9 1                      | 0 11<br>Hour Be | 12 1<br>eginning | 3 14         | 15 10        | 5 17         | 18 19        | 20              | 21 22           | 23                  |
| meframe                                             | Hour           | L <sub>eq</sub>            | L <sub>max</sub> | L <sub>min</sub> | L1%                  | L2%                       | L5%                      | L8%             | L25%             | L50%         | L90%         | L95%         | L99%         | L <sub>eq</sub> | Adj.            | Adj. L              |
|                                                     | 0              | 50.9                       | 58.2             | 45.1             | 57.7                 | 57.1                      | 54.9                     | 54.2            | 52.0             | 49.5         | 45.9         | 45.5         | 45.2         | 50.9            | 10.0            | 60.9                |
|                                                     | 1<br>2         | 50.5<br>53.8               | 56.0<br>62.5     | 45.5<br>45.8     | 55.6<br>62.2         | 55.4<br>62.0              | 54.9<br>60.7             | 54.3<br>59.0    | 51.9<br>53.1     | 48.6<br>49.9 | 46.1<br>46.4 | 45.9<br>46.1 | 45.5<br>45.9 | 50.5<br>53.8    | 10.0<br>10.0    | 60.5<br>63.8        |
| Night                                               | 3              | 56.0                       | 62.6             | 48.4             | 62.4                 | 62.1                      | 61.0                     | 60.3            | 57.3             | 53.9         | 49.4         | 48.9         | 48.5         | 56.0            | 10.0            | 66.0                |
| -                                                   | 4              | 58.6                       | 66.6             | 51.4             | 66.3                 | 65.7                      | 63.7                     | 62.5            | 59.4             | 56.3         | 52.6         | 52.0         | 51.5         | 58.6            | 10.0            | 68.6                |
|                                                     | 5              | 59.8                       | 66.6             | 53.6             | 66.4                 | 66.1                      | 64.8                     | 63.7            | 60.2             | 58.2         | 54.9         | 54.4         | 53.8         | 59.8            | 10.0            | 69.8                |
|                                                     | 6              | 58.5<br>59.6               | 63.1<br>68.6     | 53.7<br>54.5     | 62.8<br>68.2         | 62.6<br>67.4              | 61.9<br>64.5             | 61.5<br>62.6    | 59.7<br>59.7     | 57.6<br>57.7 | 54.7<br>55.2 | 54.3<br>55.0 | 53.8<br>54.6 | 58.5<br>59.6    | 10.0<br>0.0     | 68.5<br>59.6        |
|                                                     | 8              | 60.4                       | 69.0             | 51.9             | 68.7                 | 68.2                      | 66.5                     | 65.4            | 60.8             | 56.3         | 52.7         | 52.4         | 52.1         | 60.4            | 0.0             | 60.4                |
|                                                     | 9              | 57.7                       | 63.4             | 51.3             | 63.0                 | 62.5                      | 61.8                     | 61.4            | 59.3             | 55.9         | 52.6         | 52.0         | 51.5         | 57.7            | 0.0             | 57.7                |
|                                                     | 10             | 61.5                       | 68.8             | 51.7             | 68.4                 | 68.1                      | 67.4                     | 66.8            | 62.5             | 58.4         | 53.1         | 52.5         | 51.9         | 61.5            | 0.0             | 61.5                |
|                                                     | 11<br>12       | 61.9<br>63.4               | 70.6<br>73.4     | 50.3<br>50.6     | 70.4<br>72.9         | 69.9<br>72.3              | 68.8<br>70.4             | 67.6<br>68.8    | 61.7<br>63.0     | 56.3<br>58.9 | 51.9<br>52.7 | 51.2<br>51.8 | 50.5<br>50.9 | 61.9<br>63.4    | 0.0<br>0.0      | 61.9<br>63.4        |
|                                                     | 12             | 63.4<br>69.1               | 73.4             | 50.6             | 72.9<br>78.4         | 72.3                      | 70.4                     | 73.8            | 69.4             | 58.9<br>65.5 | 52.7         | 51.8         | 56.2         | 63.4<br>69.1    | 0.0             | 63.4                |
| Day                                                 | 14             | 61.7                       | 70.4             | 49.7             | 69.7                 | 69.1                      | 67.4                     | 66.1            | 62.8             | 59.3         | 51.7         | 50.7         | 49.9         | 61.7            | 0.0             | 61.7                |
|                                                     | 15             | 70.1                       | 81.7             | 53.9             | 80.8                 | 79.6                      | 76.7                     | 75.1            | 69.7             | 64.5         | 56.9         | 55.7         | 54.3         | 70.1            | 0.0             | 70.3                |
|                                                     | 16             | 68.1                       | 78.4             | 53.6             | 77.3                 | 76.2                      | 74.0                     | 72.8            | 68.6             | 64.2         | 56.4         | 55.4         | 54.0         | 68.1            | 0.0             | 68.3                |
|                                                     | 17<br>18       | 68.3<br>66.9               | 78.4<br>77.1     | 53.8<br>54.3     | 77.5<br>76.1         | 76.6<br>74.9              | 74.8<br>72.7             | 73.5<br>71.7    | 68.5<br>67.5     | 63.9<br>63.5 | 57.1<br>57.2 | 55.7<br>56.0 | 54.2<br>54.8 | 68.3<br>66.9    | 0.0<br>0.0      | 68.3<br>66.9        |
|                                                     | 19             | 60.3                       | 67.6             | 51.0             | 67.2                 | 66.8                      | 65.8                     | 64.9            | 61.3             | 57.6         | 52.9         | 52.1         | 51.2         | 60.3            | 5.0             | 65.                 |
|                                                     | 20             | 60.9                       | 75.6             | 48.4             | 74.5                 | 72.9                      | 67.2                     | 62.6            | 56.0             | 53.2         | 49.7         | 49.2         | 48.6         | 60.9            | 5.0             | 65.9                |
|                                                     | 21             | 52.8                       | 58.5             | 47.6             | 58.0                 | 57.6                      | 56.7                     | 56.0            | 54.1             | 51.6         | 48.6         | 48.2         | 47.7         | 52.8            | 5.0             | 57.8                |
| Night                                               | 22<br>23       | 59.1<br>54.9               | 70.1<br>60.2     | 48.8<br>49.2     | 68.6<br>60.0         | 68.1<br>59.7              | 66.2<br>59.0             | 64.4<br>58.4    | 57.7<br>55.9     | 53.7<br>53.8 | 50.2<br>50.2 | 49.5<br>49.7 | 48.9<br>49.3 | 59.1<br>54.9    | 10.0<br>10.0    | 69.1<br>64.9        |
| meframe                                             | Hour           | L <sub>eq</sub>            | L max            | L <sub>min</sub> | L1%                  | L2%                       | L5%                      | L8%             | L25%             | L50%         | L90%         | L95%         | L99%         | 24-Hour         | Leq             | (dBA)               |
| Day                                                 | Min            | 52.8                       | 58.5             | 47.6             | 58.0                 | 57.6                      | 56.7                     | 56.0            | 54.1             | 51.6         | 48.6         | 48.2         | 47.7         | CNEL            | Daytime         | Nightti             |
| ,<br>Energy                                         | Max<br>Average | 70.1<br>65.1               | 81.7<br>Ave      | 55.6<br>erage:   | 80.8<br>71.4         | 79.6<br>70.6              | 76.7<br>68.7             | 75.1<br>67.3    | 69.7<br>63.0     | 65.5<br>59.1 | 59.1<br>53.9 | 57.7<br>53.0 | 56.2<br>52.2 |                 | (7am-10pm)      | (10pm-7             |
|                                                     | Min            | 50.5                       | 56.0             | 45.1             | 55.6                 | 55.4                      | 54.9                     | 54.2            | 51.9             | 48.6         | 45.9         | 45.5         | 45.2         | 66.1            | 65.1            | 56.                 |
| Night                                               | Max            | 59.8                       | 70.1             | 53.7             | 68.6                 | 68.1                      | 66.2                     | 64.4            | 60.2             | 58.2         | 54.9         | 54.4         | 53.8         |                 | 03.1            | 50.                 |
| Energy                                              | Average        | 56.9                       | Ave              | erage:           | 62.4                 | 62.1                      | 60.8                     | 59.8            | 56.4             | 53.5         | 50.1         | 49.6         | 49.2         |                 |                 |                     |

|                                                        |             |                             |                  |                  |                      | 24-Ho        | ur Noise Le              | evel Meas       | urement S        | ummary       |              |              |              |                 |                  |                    |
|--------------------------------------------------------|-------------|-----------------------------|------------------|------------------|----------------------|--------------|--------------------------|-----------------|------------------|--------------|--------------|--------------|--------------|-----------------|------------------|--------------------|
|                                                        | -           | r, September<br>& Seaton Av | -                |                  | Location:<br>Source: | L7 - Located | near the resi            | dence at 226    | 83 Cajalco R     | d.           | Meter:       | Piccolo II   |              |                 |                  | 15596<br>Z. Ibrahi |
|                                                        |             |                             |                  |                  |                      |              | Hourly L <sub>eq</sub> ( | dBA Readings    | (unadjusted)     |              |              |              |              |                 |                  |                    |
| 85.0<br>80.0<br>75.0<br>70.0<br>65.0<br>60.0<br>55.0   |             |                             |                  |                  |                      |              |                          |                 |                  |              |              |              |              |                 |                  |                    |
| <b>g</b> 70.0<br>65.0                                  |             |                             |                  |                  |                      |              |                          |                 |                  |              |              |              |              |                 |                  |                    |
| ο<br>60.0<br>Γ<br>55.0<br>55.0<br>45.0<br>45.0<br>40.0 | <b>57.4</b> | 54.3                        |                  | 58.5             | 64.9                 | 61.6<br>60.7 | 62.8<br>62.8             | 60.7            | 60.4<br>60.4     | 60.4         | 62.5<br>60 8 | 62:9         | 62.3<br>63.1 | 61.7            | 60.0 <u>60.8</u> | 60.6               |
| ± 40.0<br>35.0                                         | 0 ++        |                             | K                |                  |                      |              | +                        |                 |                  |              |              |              |              |                 |                  |                    |
|                                                        | 0           | 1 2                         | 3                | 4 5              | 6                    | 7 8          | 9 1                      | 0 11<br>Hour Be | 12 1<br>eginning | .3 14        | 15 1         | 6 17         | 18 19        | 20              | 21 22            | 23                 |
| neframe                                                | Hour        | L <sub>eq</sub>             | L <sub>max</sub> | L <sub>min</sub> | L1%                  | L2%          | L5%                      | L8%             | L25%             | L50%         | L90%         | L95%         | L99%         | L <sub>eq</sub> | Adj.             | Adj. L             |
|                                                        | 0           | 57.4<br>54.3                | 64.3<br>60.5     | 50.9             | 63.7                 | 63.0         | 61.8                     | 61.0<br>57.9    | 58.4             | 56.0         | 52.3         | 51.8<br>49.5 | 51.1<br>48.9 | 57.4<br>54.3    | 10.0             | 67.                |
|                                                        | 1 2         | 54.3<br>59.1                | 69.4             | 48.7<br>49.1     | 60.0<br>68.0         | 59.6<br>67.4 | 58.6<br>66.1             | 64.9            | 55.5<br>58.1     | 52.9<br>53.7 | 49.9<br>50.4 | 49.5<br>49.9 | 48.9         | 54.3<br>59.1    | 10.0<br>10.0     | 64.<br>69.         |
| Night                                                  | 3           | 56.3                        | 61.2             | 50.7             | 60.9                 | 60.5         | 59.8                     | 59.3            | 57.4             | 55.6         | 52.1         | 51.5         | 50.9         | 56.3            | 10.0             | 66                 |
| 0                                                      | 4           | 58.5                        | 63.0             | 54.2             | 62.6                 | 62.2         | 61.5                     | 60.9            | 59.5             | 57.9         | 55.6         | 55.0         | 54.4         | 58.5            | 10.0             | 68                 |
|                                                        | 5           | 58.4                        | 64.1             | 54.5             | 63.2                 | 62.6         | 61.5                     | 60.9            | 59.0             | 57.8         | 55.6         | 55.1         | 54.6         | 58.4            | 10.0             | 68.                |
|                                                        | 6           | 64.9                        | 75.1             | 56.3             | 73.8                 | 73.0         | 70.9                     | 69.6            | 65.1             | 61.3         | 57.8         | 57.3         | 56.5         | 64.9            | 10.0             | 74.                |
|                                                        | 7           | 61.6                        | 71.0             | 53.3             | 70.2                 | 69.3         | 67.3                     | 65.8            | 62.2             | 58.5         | 54.5         | 54.0         | 53.5         | 61.6            | 0.0              | 61.                |
|                                                        | 8<br>9      | 60.7<br>62.8                | 70.0<br>69.5     | 55.7<br>52.9     | 68.6<br>69.3         | 67.2<br>69.0 | 64.7<br>68.4             | 63.3<br>67.8    | 61.2<br>64.5     | 59.4<br>58.9 | 56.8<br>53.6 | 56.4<br>53.4 | 55.9<br>53.0 | 60.7<br>62.8    | 0.0<br>0.0       | 60.<br>62.         |
|                                                        | 10          | 60.7                        | 68.5             | 54.2             | 68.0                 | 67.2         | 66.3                     | 65.2            | 60.6             | 58.4         | 55.4         | 54.9         | 54.4         | 60.7            | 0.0              | 60.                |
|                                                        | 11          | 63.8                        | 72.0             | 55.0             | 71.4                 | 70.8         | 69.3                     | 68.3            | 65.1             | 59.9         | 56.1         | 55.7         | 55.2         | 63.8            | 0.0              | 63.                |
|                                                        | 12          | 60.4                        | 66.5             | 55.2             | 66.0                 | 65.4         | 63.8                     | 62.9            | 61.2             | 59.8         | 57.0         | 56.3         | 55.5         | 60.4            | 0.0              | 60.                |
|                                                        | 13          | 60.4                        | 69.4             | 54.5             | 68.5                 | 67.6         | 65.7                     | 64.0            | 60.6             | 58.5         | 55.5         | 55.0         | 54.6         | 60.4            | 0.0              | 60.                |
| Day                                                    | 14          | 64.7                        | 77.7             | 55.2             | 76.8                 | 75.7         | 72.1                     | 68.8            | 60.9             | 58.5         | 56.2         | 55.8         | 55.4         | 64.7            | 0.0              | 64.                |
|                                                        | 15<br>16    | 62.5<br>60.8                | 69.8<br>67.0     | 54.8<br>55.8     | 69.0<br>66.7         | 68.7<br>66.2 | 67.7<br>65.0             | 67.2<br>64.5    | 63.4<br>61.9     | 59.3<br>58.9 | 55.9<br>56.9 | 55.5<br>56.5 | 54.9<br>56.0 | 62.5<br>60.8    | 0.0<br>0.0       | 62.<br>60.         |
|                                                        | 16          | 62.9                        | 67.0             | 55.8<br>57.0     | 69.2                 | 68.8         | 68.0                     | 67.5            | 63.9             | 58.9<br>60.7 | 58.0         | 50.5         | 56.0         | 62.9            | 0.0              | 62.                |
|                                                        | 18          | 62.3                        | 66.8             | 58.7             | 66.2                 | 65.7         | 65.0                     | 64.5            | 63.1             | 61.8         | 59.8         | 59.4         | 58.9         | 62.3            | 0.0              | 62.                |
|                                                        | 19          | 63.1                        | 71.8             | 58.4             | 70.7                 | 69.9         | 67.9                     | 66.5            | 63.1             | 61.5         | 59.3         | 59.0         | 58.6         | 63.1            | 5.0              | 68.                |
|                                                        | 20          | 61.7                        | 67.4             | 57.5             | 67.0                 | 66.3         | 65.1                     | 64.5            | 62.7             | 60.8         | 58.8         | 58.3         | 57.7         | 61.7            | 5.0              | 66.                |
|                                                        | 21          | 60.8                        | 66.2             | 55.7             | 65.7                 | 65.4         | 64.4                     | 63.7            | 61.7             | 60.0         | 56.9         | 56.4         | 55.8         | 60.8            | 5.0              | 65.                |
| Night                                                  | 22<br>23    | 60.0<br>60.6                | 66.8<br>65.9     | 55.2<br>54.9     | 66.1<br>65.5         | 65.3<br>65.0 | 63.8<br>64.4             | 62.9<br>63.8    | 60.8<br>61.7     | 59.0<br>59.6 | 56.4<br>56.3 | 55.9<br>55.7 | 55.4<br>55.1 | 60.0<br>60.6    | 10.0<br>10.0     | 70.<br>70.         |
| eframe                                                 | Hour        | L <sub>eq</sub>             | L <sub>max</sub> | L <sub>min</sub> | L1%                  | L2%          | L5%                      | L8%             | L25%             | L50%         | L90%         | L95%         | L99%         | 24-Hour         |                  | (dBA)              |
| Day                                                    | Min         | 60.4                        | 66.2             | 52.9             | 65.7                 | 65.4         | 63.8                     | 62.9            | 60.6             | 58.4         | 53.6         | 53.4         | 53.0         | 24-Hour<br>CNEL | Daytime          | Nightt             |
| '                                                      | Max         | 64.7                        | 77.7             | 58.7             | 76.8                 | 75.7         | 72.1                     | 68.8            | 65.1             | 61.8         | 59.8         | 59.4         | 58.9         | CNEL            | (7am-10pm)       | (10pm-             |
| Energy                                                 | Average     | 62.2                        |                  | erage:           | 68.9                 | 68.2         | 66.7                     | 65.6            | 62.4             | 59.6         | 56.7         | 56.3         | 55.8         | 67.4            | 62.2             | ГО                 |
| Night                                                  | Min<br>Max  | 54.3<br>64.9                | 60.5<br>75.1     | 48.7<br>56.3     | 60.0<br>73.8         | 59.6<br>73.0 | 58.6<br>70.9             | 57.9<br>69.6    | 55.5<br>65.1     | 52.9<br>61.3 | 49.9<br>57.8 | 49.5<br>57.3 | 48.9<br>56.5 | 67.1            | 62.2             | 59                 |
| Energy                                                 | Average     | 59.9                        |                  | erage:           | 64.9                 | 64.3         | 63.1                     | 62.4            | 59.5             | 57.1         | 57.8         | 57.3         | 50.5         |                 | _                |                    |



This page intentionally left blank



APPENDIX 7.1:

**OFF-SITE TRAFFIC NOISE LEVEL CALCULATIONS** 



This page intentionally left blank



|                                                                            | FHWA-RD                                  | -77-108 HIGH                        | WAY NO                       | ISE PRED                           |                                  | IODEL (9                            | /12/20  | 021)                                  |             |                                     |
|----------------------------------------------------------------------------|------------------------------------------|-------------------------------------|------------------------------|------------------------------------|----------------------------------|-------------------------------------|---------|---------------------------------------|-------------|-------------------------------------|
|                                                                            | o: E<br>e: Clark St.<br>nt: n/o Cajalco  | Rd.                                 |                              |                                    |                                  | Name: N<br>lumber: 1                |         | /alley Com                            | merce C     | :                                   |
| SITE                                                                       | SPECIFIC IN                              | PUT DATA                            |                              |                                    |                                  |                                     |         | L INPUTS                              | 3           |                                     |
| Highway Data                                                               |                                          |                                     |                              | Site Co                            | onditions                        | (Hard =                             | 10, So  | ft = 15)                              |             |                                     |
| Average Daily                                                              | Traffic (Adt):                           | 5,404 vehicle                       | s                            |                                    |                                  |                                     | Autos:  | 15                                    |             |                                     |
| Peak Hour                                                                  | Percentage:                              | 8.10%                               |                              | N                                  | ledium Tr                        | ucks (2 A                           | xles):  | 15                                    |             |                                     |
| Peak H                                                                     | our Volume:                              | 438 vehicles                        | 6                            | E                                  | leavy Tru                        | cks (3+ A                           | xles):  | 15                                    |             |                                     |
| Vei                                                                        | hicle Speed:                             | 45 mph                              |                              | Vehicle                            | Mix                              |                                     |         |                                       |             |                                     |
| Near/Far Lai                                                               | ne Distance:                             | 36 feet                             |                              |                                    | hicleType                        |                                     | Dav     | Evenina                               | Night       | Daily                               |
| Site Data                                                                  |                                          |                                     |                              |                                    |                                  |                                     | 76.6%   | 8.9%                                  | 14.5%       |                                     |
| Bar                                                                        | rier Heiaht:                             | 0.0 feet                            |                              | 1                                  | Medium T                         | rucks:                              | 83.3%   | 4.6%                                  | 12.1%       | 7.10%                               |
| Barrier Type (0-W                                                          |                                          | 0.0                                 |                              |                                    | Heavy T                          | rucks:                              | 76.9%   | 5.2%                                  | 17.9%       | 6.34%                               |
| Centerline Dis                                                             |                                          | 50.0 feet                           |                              | Noico                              | Source El                        | ovations                            | (in fo  | of                                    |             |                                     |
| Centerline Dist.                                                           | to Observer:                             | 50.0 feet                           |                              | NOISE                              | Auto                             |                                     |         | eŋ                                    |             |                                     |
| Barrier Distance                                                           | to Observer:                             | 0.0 feet                            |                              | Madi                               | um Truck                         |                                     |         |                                       |             |                                     |
| Observer Height (                                                          | Above Pad):                              | 5.0 feet                            |                              |                                    | avy Truck                        |                                     |         | Grade Adj                             | ustment     | 0.0                                 |
| Pa                                                                         | d Elevation:                             | 0.0 feet                            |                              | 110                                | avy much                         | 3. 0.0                              |         | orado riaj                            | uounoni     | 0.0                                 |
| Roa                                                                        | d Elevation:                             | 0.0 feet                            |                              | Lane E                             | quivalent                        | t Distanc                           | e (in f | eet)                                  |             |                                     |
| F                                                                          | Road Grade:                              | 0.0%                                |                              |                                    | Auto                             |                                     |         |                                       |             |                                     |
|                                                                            | Left View:                               | -90.0 degree                        | s                            | Medi                               | um Truck                         |                                     |         |                                       |             |                                     |
|                                                                            | Right View:                              | 90.0 degree                         | es                           | Hei                                | avy Truck                        | s: 46.7                             | '44     |                                       |             |                                     |
| FHWA Noise Mode                                                            | l Calculations                           | 5                                   |                              |                                    |                                  |                                     |         |                                       |             |                                     |
| VehicleType                                                                | REMEL                                    | Traffic Flow                        | Distan                       | ce Finit                           | e Road                           | Fresn                               |         | Barrier Atte                          | en Ber      | m Atten                             |
| Autos:                                                                     | 68.46                                    | -6.05                               |                              | 0.31                               | -1.20                            |                                     | 4.65    | 0.0                                   |             | 0.000                               |
| Medium Trucks:                                                             | 79.45                                    | -16.91                              |                              | 0.34                               | -1.20                            |                                     | 4.87    | 0.0                                   |             | 0.000                               |
| Heavy Trucks:                                                              | 84.25                                    | -17.41                              |                              | 0.34                               | -1.20                            |                                     | -5.43   | 0.0                                   | 00          | 0.000                               |
| Unmitigated Noise                                                          | Levels (with                             | out Topo and                        | barrier a                    | tenuation                          | )                                |                                     |         |                                       |             |                                     |
| ommingated Noise                                                           | Ectere (main                             |                                     |                              |                                    |                                  |                                     |         | Ldn                                   | CI          | VEL                                 |
| VehicleType                                                                | Leq Peak Hou                             |                                     |                              | q Evening                          |                                  | Night                               |         |                                       | -           |                                     |
| VehicleType<br>Autos:                                                      | Leq Peak Hou<br>61                       | .5                                  | 60.5                         | 57.                                | .1                               | 54.5                                |         | 62.3                                  |             |                                     |
| VehicleType<br>Autos:<br>Medium Trucks:                                    | Leq Peak Hou<br>61<br>61                 | .5<br>.7                            | 60.5<br>61.0                 | 57.<br>54.                         | 1<br>5                           | 54.5<br>53.9                        |         | 62.3<br>62.0                          | )           | 62.2                                |
| VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | Leq Peak Hou<br>61<br>61<br>66           | 5<br>7<br>0                         | 60.5<br>61.0<br>65.0         | 57.<br>54.<br>59.                  | 1<br>5<br>3                      | 54.5<br>53.9<br>59.9                |         | 62.3<br>62.0<br>67.3                  | 1           | 62.2<br>67.5                        |
| VehicleType<br>Autos:<br>Medium Trucks:                                    | Leq Peak Hou<br>61<br>61                 | 5<br>7<br>0                         | 60.5<br>61.0                 | 57.<br>54.                         | 1<br>5<br>3                      | 54.5<br>53.9                        |         | 62.3<br>62.0                          | 1           | 62.2<br>67.5                        |
| VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | Leq Peak Hou<br>61.<br>61.<br>66.<br>68. | 5<br>7<br>0<br>4                    | 60.5<br>61.0<br>65.0<br>67.4 | 57.<br>54.<br>59.<br>62.           | 1<br>5<br>3<br>2                 | 54.5<br>53.9<br>59.9<br>61.8        |         | 62.3<br>62.0<br>67.3<br>69.3          | )<br>;<br>; | 62.2<br>67.5<br>69.6                |
| VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | Leq Peak Hou<br>61.<br>61.<br>66.<br>68. | 5<br>7<br>0<br>4<br>ntour (in feet) | 60.5<br>61.0<br>65.0<br>67.4 | 57.<br>54.<br>59.<br>62.<br>70 dBA | 1<br>5<br>3<br>2<br>65           | 54.5<br>53.9<br>59.9<br>61.8<br>dBA |         | 62.3<br>62.0<br>67.3<br>69.3<br>0 dBA | )<br>;<br>; | 62.6<br>62.2<br>67.5<br>69.6<br>dBA |
| VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | Leq Peak Hou<br>61.<br>61.<br>66.<br>68. | 5<br>7<br>0<br>4<br>ntour (in feet) | 60.5<br>61.0<br>65.0<br>67.4 | 57.<br>54.<br>59.<br>62.           | 1<br>5<br>3<br>2<br>2<br>65<br>5 | 54.5<br>53.9<br>59.9<br>61.8        |         | 62.3<br>62.0<br>67.3<br>69.3          | )<br>;<br>; | 62.2<br>67.5<br>69.6                |

|                                      | FHWA-RD                  | -77-108 HIGH     | NAY N        | NOISE    | PREDIC       |         | IODEL (            | 9/12/2  | 021)         |           |            |
|--------------------------------------|--------------------------|------------------|--------------|----------|--------------|---------|--------------------|---------|--------------|-----------|------------|
| Scenario<br>Road Name<br>Road Segmen | e: Clark St.             | Rd.              |              |          |              |         | t Name:<br>lumber: |         | Valley Corr  | nmerce C  | ;          |
| SITE S                               | PECIFIC IN               | PUT DATA         |              |          |              | 1       | NOISE              | NODE    |              | s         |            |
| Highway Data                         |                          |                  |              | S        | ite Cond     | ditions | (Hard =            | 10, Se  | oft = 15)    |           |            |
| Average Daily T                      | raffic (Adt):            | 5,453 vehicle    | s            |          |              |         |                    | Autos:  | 15           |           |            |
| Peak Hour F                          | Percentage:              | 8.10%            |              |          | Med          | dium Tr | ucks (2 )          | Axles): | 15           |           |            |
|                                      | our Volume:              | 442 vehicles     |              |          | Hea          | avy Tru | cks (3+ /          | Axles): | 15           |           |            |
|                                      | icle Speed:              | 45 mph           |              | ν        | ehicle N     | lix     |                    |         |              |           |            |
| Near/Far Lan                         | e Distance:              | 36 feet          |              |          | Vehi         | cleType | 9                  | Day     | Evening      | Night     | Daily      |
| Site Data                            |                          |                  |              |          |              |         | Autos:             | 76.6%   | 8.9%         | 14.5%     | 86.68%     |
| Barr                                 | rier Height:             | 0.0 feet         |              |          |              |         | rucks:             | 83.3%   | 4.6%         | 12.1%     | 7.03%      |
| Barrier Type (0-Wa                   | all, 1-Berm):            | 0.0              |              |          | H            | leavy T | rucks:             | 76.9%   | 5.2%         | 17.9%     | 6.289      |
| Centerline Dist                      | t. to Barrier:           | 50.0 feet        |              | Λ        | loise So     | urce E  | levation           | s (in f | eet)         |           |            |
| Centerline Dist. to                  | o Observer:              | 50.0 feet        |              | -        |              | Auto    |                    | 000     | ,            |           |            |
| Barrier Distance to                  |                          | 0.0 feet         |              |          | Mediun       |         |                    | 297     |              |           |            |
| Observer Height (A                   | ,                        | 5.0 feet         |              |          | Heav         | y Truck | s: 8.              | 004     | Grade Ad     | iustment. | 0.0        |
|                                      | d Elevation:             | 0.0 feet         |              |          | ana Eau      | inclan  | t Distan           | na lin  | faati        |           |            |
|                                      | d Elevation:             | 0.0 feet<br>0.0% |              | L        | ane Equ      | Auto    |                    | 915     | reet)        |           |            |
| ĸ                                    | oad Grade:<br>Left View: | -90.0 degree     | c .          |          | Mediur       |         |                    | 726     |              |           |            |
|                                      | Right View:              | 90.0 degree      |              |          |              | y Truck |                    | 744     |              |           |            |
| FHWA Noise Model                     |                          |                  |              |          |              |         |                    |         |              |           |            |
| VehicleType                          | REMEL                    | Traffic Flow     | Dist         | ance     | Finite       |         | Fresr              |         | Barrier Att  |           | m Atten    |
| Autos:                               | 68.46                    | -6.01            |              | 0.31     |              | -1.20   |                    | -4.65   |              | 000       | 0.00       |
| Medium Trucks:                       | 79.45                    | -16.91           |              | 0.34     |              | -1.20   |                    | -4.87   |              | 000       | 0.00       |
| Heavy Trucks:                        | 84.25                    | -17.41           |              | 0.34     |              | -1.20   |                    | -5.43   | 0.0          | 000       | 0.00       |
| Unmitigated Noise                    |                          |                  | barriei      | r attenu | uation)      |         |                    | -       |              |           |            |
|                                      | Leq Peak Hou             |                  |              | Leq Ev   |              | Leq     | Night              |         | Ldn          |           | VEL        |
| Autos:                               | 61.                      |                  | 60.5         |          | 57.2         |         | 54.5               |         | 62.3         |           | 62.        |
| Medium Trucks:                       | 61.                      |                  | 51.0         |          | 54.5         |         | 53.9               |         | 62.0         |           | 62.        |
| Heavy Trucks:<br>Vehicle Noise:      | 66.<br>68.               |                  | 35.0<br>37.4 |          | 59.3<br>62.2 |         | 59.9<br>61.8       |         | 67.3<br>69.4 |           | 67.<br>69. |
|                                      |                          |                  | 07.4         |          | 02.2         |         | 01.0               | )       | 09.4         | •         | 09.        |
| Centerline Distance                  | e to Nolse Co            | ntour (in feet)  |              | 70 d     | BA           | 65      | dBA                |         | 60 dBA       | 55        | dBA        |
|                                      |                          |                  | dn:          |          | 45           |         | 98                 | 1       | 210          |           | 453        |
|                                      |                          | ~                | IEL:         |          | 47           |         | 101                |         | 217          |           | 468        |

Thursday, July 27, 2023

| FHWA                          | RD-77-108 HIGH   | IWAY NOI   | SE PREDIC  | TION MO   | ODEL (9/12  | 2/2021)       |              |
|-------------------------------|------------------|------------|------------|-----------|-------------|---------------|--------------|
| Scenario: EAC                 |                  |            |            | Project I | Vame: Mea   | d Valley Comr | nerce C      |
| Road Name: Clark St.          |                  |            |            | Job Ni    | mber: 150   | 91            |              |
| Road Segment: n/o Caja        | lco Rd.          |            |            |           |             |               |              |
| SITE SPECIFIC                 | INPUT DATA       |            |            |           |             | DEL INPUTS    |              |
| Highway Data                  |                  |            | Site Con   | ditions ( | Hard = 10,  | Soft = 15)    |              |
| Average Daily Traffic (Adt)   | : 7,225 vehicl   | es         |            |           | Auto        | os: 15        |              |
| Peak Hour Percentage          | : 8.10%          |            | Me         | dium Tru  | cks (2 Axle | s): 15        |              |
| Peak Hour Volume              | : 585 vehicle    | s          | He         | avy Truc  | ks (3+ Axle | s): 15        |              |
| Vehicle Speed                 |                  |            | Vehicle I  | Mix       |             |               |              |
| Near/Far Lane Distance        | : 36 feet        |            |            | icleType  | Day         | Evening       | Night Daily  |
| Site Data                     |                  |            |            |           | utos: 76.   | •             | 14.5% 86.56  |
| Barrier Height                | : 0.0 feet       |            | M          | edium Tru | ucks: 83.   | 3% 4.6%       | 12.1% 7.10   |
| Barrier Type (0-Wall, 1-Berm) |                  |            | 1          | Heavy Tru | ucks: 76.   | 9% 5.2%       | 17.9% 6.34   |
| Centerline Dist. to Barrier   |                  |            | Noiso Se   |           | vations (ir | foot          |              |
| Centerline Dist. to Observer  | : 50.0 feet      |            | NUISE SC   | Autos     |             | i ieetj       |              |
| Barrier Distance to Observer  | : 0.0 feet       |            | Madiu      | m Trucks  | . 0.000     |               |              |
| Observer Height (Above Pad)   | : 5.0 feet       |            |            | vy Trucks |             | Grade Adiu    | stment: 0.0  |
| Pad Elevation                 | : 0.0 feet       |            | Ticas      | y mucks   | . 0.004     | endde maje    |              |
| Road Elevation                | : 0.0 feet       |            | Lane Eq    | uivalent  | Distance (I | in feet)      |              |
| Road Grade                    | 0.0%             |            |            | Autos     | : 46.915    |               |              |
| Left View                     | -90.0 degre      | es         | Mediu      | m Trucks  | 46.726      |               |              |
| Right View                    | 90.0 degre       | es         | Heav       | ry Trucks | 46.744      |               |              |
| FHWA Noise Model Calculati    | ons              |            |            |           |             |               |              |
| VehicleType REMEL             | Traffic Flow     | Distanc    | e Finite   | Road      | Fresnel     | Barrier Atte  | n Berm Atter |
| Autos: 68.                    |                  |            | 0.31       | -1.20     | -4.6        |               |              |
| Medium Trucks: 79.            |                  |            | 0.34       | -1.20     | -4.8        |               |              |
| Heavy Trucks: 84.             | 25 -16.14        |            | 0.34       | -1.20     | -5.4        | 13 0.00       | 0.0          |
| Unmitigated Noise Levels (wi  | ithout Topo and  | barrier at | tenuation) |           |             |               |              |
| VehicleType Leq Peak F        |                  |            | r Evening  | Leq N     | •           | Ldn           | CNEL         |
|                               | 62.8             | 61.7       | 58.4       |           | 55.8        | 63.5          | 63           |
|                               | 62.9             | 62.3       | 55.7       |           | 55.1        | 63.2          | 63           |
|                               | 67.2             | 66.2       | 60.5       |           | 61.2        | 68.5          | 68           |
| Vehicle Noise:                | 69.6             | 68.7       | 63.4       |           | 63.0        | 70.6          | 70           |
| Centerline Distance to Noise  | Contour (in feet | ,          |            |           |             |               |              |
|                               |                  |            | 70 dBA     | 65 d      |             | 60 dBA        | 55 dBA       |
|                               |                  | Ldn:       |            |           | 118         | 255           | 54           |
|                               |                  | NEL:       | 55<br>57   |           | 118         | 263           | 56           |

| Site Data         Autos:         76.6%         8.9%         14.5%         88.65           Barrier Height:         0.0 feet         Medium Trucks:         83.3%         4.6%         12.1%         7.05           Barrier Type (0-Wall, 1-Berm):         0.0         Centerline Dist. to Barrier:         50.0 feet         Meaium Trucks:         83.3%         4.6%         12.1%         7.05           Centerline Dist. to Diserver:         50.0 feet         Noise Source Elevations (in feet)         Autos:         0.000           Observer Height (Above Pad):         5.0 feet         Noise Source Elevations (in feet)         Autos:         0.000           Road Grade:         0.0%         Left View:         -90.0 degrees         Medium Trucks:         46.726           Heavy Trucks:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -16.14         0.34         -1.20         -4.65         0.000         0.0           Medium Trucks:         62.8         61.8         58.4         52.8         63.6         65           Mediu                                                                                                                                                                                              |                    | FHWA-RD        | -77-108 HIGHW   | AY NOIS | SE PREDI |           | NODEL (S   | 9/12/20    | )21)       |         |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------|---------|----------|-----------|------------|------------|------------|---------|-----------|
| Highway Data         Site Conditions (Hard = 10, Soft = 15)           Average Daily Traffic (Adt):         7,273 vehicles         Autos::         15           Peak Hour Percentage:         8,10%         Autos::         15           Peak Hour Volume:         589 vehicles         Medium Trucks (2,44kes):         15           Vehicle Speed:         45 mph         Heavy Trucks (3 + Axles):         15           Site Data         Vehicle Type         Day         Evening         Night         Daily           Site Data         Generified Dist.         0.0 feet         Heavy Trucks:         83.3%         4.6%         12.1%         7.05           Barrier Type (0-Wail, 1-Berm):         0.0         feet         Autos::         76.6%         8.9%         14.5%         66.30           Centerline Dist. to Dserver:         50.0 feet         Autos::         0.000         Medium Trucks:         2.297           Observer Height View:         90.0 degrees         Right View:         90.0 degrees         Medium Trucks:         46.726         Heavy Trucks:         46.746         0.31         -120         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -120         -4.65         0.000         0.0                                                                                                                                                                            | Road Name          | e: Clark St.   | Rd.             |         |          |           |            |            | /alley Com | merce C | ;         |
| Average Daily Traffic (Adt):         7,273 vehicles         Autos:         15           Peak Hour Percentage:         8,10%         Medium Trucks (2 Axles):         15           Peak Hour Volume:         589 vehicles         Medium Trucks (2 Axles):         15           Vehicle Speed:         45 mph         Medium Trucks (2 Axles):         15           Site Data         Autos:         7,67%         8,9%         14,5%         86           Barrier Height:         0.0 feet         Medium Trucks:         76,9%         5,2%         17,9%         6,30           Barrier Type (0-Wall, 1-Berm):         0.0         Centerline Dist. to Darrier:         50.0 feet         Medium Trucks:         76,9%         5,2%         17,9%         6,30           Centerline Dist. to Desriver:         50.0 feet         Autos:         0.00         Medium Trucks:         8,04         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Autos:         0.00         Medium Trucks:         8,04         Feet         Autos:         6,726           Pad Elevation::         0.0 feet         Autos:         6,726         Heavy Trucks:         46,726           Road Grade:         0.0%         Distance         Finite Road         Fresnel         Barrier                                                                                                                                                                    |                    | SPECIFIC IN    | PUT DATA        |         |          |           |            |            |            | 5       |           |
| Peak Hour Percentage:         8.10%         Medium Trucks (2 Axles):         15           Peak Hour Volume:         589 vehicles         Heavy Trucks (3 + Axles):         15           Vehicle Speed:         45 mph         Vehicle Mix         Day         Evening         Night         Dail           Site Data         Autos:         76.6%         8.9%         14.5%         86.65           Barrier Height:         0.0 feet         Autos:         76.6%         8.9%         12.1%         7.05           Barrier Distance to Observer:         50.0 feet         Medium Trucks:         8.3.3%         4.6%         12.1%         7.05           Barrier Distance to Observer:         50.0 feet         Autos:         0.000         Noise Source Elevations (in feet)         0.000           Centerline Dist. to Barrier:         0.0 feet         Autos:         0.000         Medium Trucks:         2.297           Observer Height (Above Pad):         5.0 feet         Medium Trucks:         46.726         Heavy Trucks:         46.726           Road Grade:         0.00 degrees         Finite Road         Fresnel         Barrier Atten         Berrier Atten           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0 </th <th>Highway Data</th> <th></th> <th></th> <th></th> <th>Site Col</th> <th>nditions</th> <th>(Hard =</th> <th>10, So</th> <th>ft = 15)</th> <th></th> <th></th> | Highway Data       |                |                 |         | Site Col | nditions  | (Hard =    | 10, So     | ft = 15)   |         |           |
| Peak Hour Volume:         589 vehicles           Vehicle Speed:         45 mph           Near/Far Lane Distance:         36 feet         Vehicle Type         Day         Evening         Night         Daily           Site Data         Vehicle Speed:         45 mph         Autos:         76.6%         8.9%         14.5%         86.65           Barrier Height:         0.0 feet         Barrier Type (0-Wail, 1-Berrn):         0.0 feet         Medium Trucks:         7.05         Heavy Trucks:         7.05         Medium Trucks:         7.05         Medium Trucks:         2.297         Noise Source Elevations (in feet)         Moise Source Elevations (in feet)         Medium Trucks:         2.297           Observer Height View:         -90.0 degrees         Medium Trucks:         46.716         0.0         Medium Trucks:         46.716         0.0           Road Grade:         0.0%         Lare Equivalent Distance (in feet)         Medium Trucks:         46.716         0.00         0.0           Wehicle Type         ReMedium Trucks:         7.265         0.34         -120         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -120         -4.67         0.000         0.0           Medium Trucks:                                                                                                                                                            | Average Daily      | Traffic (Adt): | 7,273 vehicles  |         |          |           |            | Autos:     |            |         |           |
| Vehicle Speed:<br>Near/Far Lane Distance:         45 mph<br>36 feet         Vehicle Type<br>Large         Day         Evening         Night         Day           Site Data         Autos:         76.6%         8.9%         14.5%         86.65           Barrier Height:         0.0 feet         Medium Trucks:         33.3%         4.6%         12.1%         7.05           Barrier Type (0-Wall, 1-Berm):         0.0 feet         Medium Trucks:         33.3%         4.6%         12.1%         7.05           Barrier Dist. to Dserver:         50.0 feet         Moles         0.00         Heavy Trucks:         76.9%         5.2%         17.9%         6.30           Centerline Dist. to Dserver:         0.0 feet         Autos:         0.00         Medium Trucks:         2.297           Pad Elevation:         0.0 feet         Autos:         46.915         Medium Trucks:         8.004         Grade Adjustment:         0.0           Road Grade:         0.0%         Autos:         46.74         0.31         -120         -4.65         0.000         0.0           Medium Trucks:         67.26         -15.65         0.34         -1.20         -4.67         0.000         0.0           Medium Trucks:         67.2         61.8         58.4                                                                                                                                                                                          |                    | •              |                 |         |          |           |            | ,          |            |         |           |
| Near/Far Lane Distance:         36 feet         Vehicle Wix         Day         Evening         Night         Daily           Site Data         Autos:         76.6%         8.9%         14.5%         86.65           Barrier Height:         0.0 feet         Medium Trucks:         83.3%         4.9%         12.1%         7.05           Barrier Type (0-Wall, 1-Bern):         0.0         Centerline Dist. to Barrier:         50.0 feet         Medium Trucks:         76.9%         5.2%         17.9%         6.30           Centerline Dist. to Dserver:         50.0 feet         Autos:         0.000         Noise Source Elevations (in feet)         0.000           Observer Height (Above Pad):         5.0 feet         Medium Trucks:         2.297         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Road Grade:         0.0%         Lane Equivalent Distance (in feet)         Autos:         46.76         14.4%         44.76           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnet         Barrier Atten         Berrier Atten           Autos:         68.46         4.76         0.31         -1.20         -4.65         0.000         0.0           Heavy Trucks:         79.45                                                                                                                                                                     |                    |                | 589 vehicles    |         | He       | eavy Tru  | icks (3+ A | xles):     | 15         |         |           |
| Site Data         Venicle type         Day         Day <thday< th="">         Day         Day</thday<>                                                                                                                                                                                 |                    |                | 45 mph          |         | Vehicle  | Mix       |            |            |            |         |           |
| Barrier Height:         0.0 feet           Barrier Type (0-Wail, 1-Berm):         0.0           Centerline Dist. to Barrier:         50.0 feet           Barrier Distance to Observer:         0.0 feet           Barrier Jbis to Observer:         0.0 feet           Barrier Distance to Observer:         0.0 feet           Barrier Distance to Observer:         0.0 feet           Road Grade:         0.0%           Left View:         -90.0 degrees           Right View:         90.0 degrees           Right View:         90.0 degrees           Heavy Trucks:         66.726           Medium Trucks:         7.05           Autos:         68.46           -4.76         0.31           -1.20         -4.65           Medium Trucks:         70.45           Medium Trucks:         70.46           Mutos:         68.46           -4.76         0.31           -120         -4.65         0.000           Medium Trucks:         84.25           -15.65         0.34           -120         -5.43         0.000           Medium Trucks:         82.57           55.1         63.2         63.2           Mediu                                                                                                                                                                                                                                                                                                                                                | Near/Far Lar       | ne Distance:   | 36 feet         |         | Vel      | nicleType | e          | Day        | Evening    | Night   | Daily     |
| Barrier Type (I-Wall, 1-Berm):         0.0 feet         Heavy Trucks:         76.9%         5.2%         17.9%         6.30           Centerline Dist to Diserver:         50.0 feet         Autos:         0.00         Noise Source Elevations (in feet)         Autos:         0.00           Diserver:         50.0 feet         Autos:         0.00         Noise Source Elevations (in feet)         Autos:         0.00           Diserver:         0.0 feet         Autos:         0.00         Heavy Trucks:         2.297           Pad Elevation:         0.0 feet         Autos:         68.00         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Autos:         46.915         Heavy Trucks:         46.915           WeinicitYpe         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         68.46         -4.76         0.31         -120         -4.65         0.000         0.0           Medium Trucks:         67.25         -15.65         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topa and barrier attenuation)         Leq Evening         Leq Right         Ldn         CNEL <td>Site Data</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Autos:</td> <td>,<br/>76.6%</td> <td>8.9%</td> <td>14.5%</td> <td>86.65</td>                  | Site Data          |                |                 |         |          |           | Autos:     | ,<br>76.6% | 8.9%       | 14.5%   | 86.65     |
| Barrier Type (0-Wall, 1-Bern):         0.0         Heavy Trucks:         76.9%         5.2%         17.9%         6.30           Centerline Dist. to Desriver:         50.0 feet         Noise Source Elevations (in feet)         Autos:         0.00         Noise Source Elevations (in feet)         Autos:         0.00         Medium Trucks:         2.297           Observer Height (Above Pad):         5.0 feet         Autos:         8.004         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Autos:         64.91         5.2%         17.9%         6.30           Road Elevation:         0.0 feet         Autos:         8.004         Grade Adjustment:         0.0           Left View:         90.0 degrees         Medium Trucks:         46.726         Medium Trucks:         46.744           FHWA Noise Model Calculations         VenicieType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Bern Atten           Autos:         68.46         -4.76         0.34         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -5.43         0.000         0.0           Ubmitigated Noise                                                                                                                                                            | Bar                | rier Heiaht:   | 0.0 feet        |         | N        | ledium 7  | rucks:     | 83.3%      | 4.6%       | 12.1%   | 7.05      |
| Noise         Source         Formula           Barrier Distance to Observer:         0.0 feet         Autos:         0.000           Deserver Height (Above Pad):         5.0 feet         Autos:         0.000           Pad Elevation:         0.0 feet         Autos:         0.000           Road Elevation:         0.0 feet         Lane Equivalent Distance (in feet)           Road Elevation:         0.0 feet         Lane Equivalent Distance (in feet)           Road Calculations         -90.0 degrees         Medium Trucks:         46.726           WehiceType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berner Atten           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.65         0.000         0.0           Unititigated Noise Levels (without Topo and barrier attenuation)         Ueq Deay         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.9         62.3         55.7         55.1         63.2         63.2           Medium Trucks:         69.6         68.7         6                                                                                                                                                                                            |                    |                | 0.0             |         |          | Heavy 1   | rucks:     | 76.9%      | 5.2%       | 17.9%   | 6.30      |
| Centerline Dist. to Observer:         5.0 feet         Autos:         0.000           Barrier Distance to Observer:         0.0 feet         Autos:         0.000           Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         2.297           Pad Elevation:         0.0 feet         Lane Equivalent Distance (in feet)         Lane Equivalent Distance (in feet)           Road Grade:         0.0%         Left View:         -90.0 degrees         Medium Trucks:         46.796           FHWA Noise Model Calculations         Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berrier Atten           Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.67         0.000         0.0           Medium Trucks:         84.25         -16.1         0.34         -1.20         -5.43         0.000         0.0           Umitigated Noise Levels (without Topo and barrier attenuation)         Vehicle Type         Leq Pask Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:                                                                                                                                                  | Centerline Dis     | t. to Barrier: | 50.0 feet       |         | Noise S  | ource F   | lovations  | in fo      | of)        |         |           |
| Barrier Distance to Observer:         0.0 feet         Medium Trucks:         2.297           Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         8.004         Grade Adjustment: 0.0           Pad Elevation:         0.0 feet         Lare Equivalent Distance (in feet)         Lare Equivalent Distance (in feet)           Road Grade:         0.0%         Lare Equivalent Distance (in feet)         Lare Equivalent Distance (in feet)           Webice Type         Ref Caculations         Medium Trucks:         46.726           Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berner Atter           Autos:         68.46         -4.76         0.31         -120         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -120         -5.43         0.000         0.0           Unnitigated Noise Levels (without Topo and barrier attenuation)         Leq Evening         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.9         62.3         55.7         55.1         63.2         63           Heavy Trucks:         67.2         66.2         60.5         61.2         65                                                                                                                                                                  | Centerline Dist. t | o Observer:    | 50.0 feet       |         | 110/30 0 |           |            |            | 01/        |         |           |
| Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Lane Equivalent Distance (in feet)           Left View:         90.0 degrees         Autos:         46.915         Heavy Trucks:         46.726           WehiceType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         67.92         -15.65         0.34         -1.20         -5.43         0.000         0.0           Medium Trucks:         67.92         -16.14         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         Leq Evening         Leq Right         Ldn         CNEL           VehicleType         Leq Deak Hour         Leq Day         Leq Evening         Ledn         63.6         63.6           Medium Trucks:         67.2         66.2         60.5                                                                                                                                                           | Barrier Distance t | o Observer:    | 0.0 feet        |         | Modiu    |           | 0.0        |            |            |         |           |
| Pad Elevation:         0.0 feet         Lane Equivalent Distance (in feet)           Road Glevation:         0.0 feet         Lane Equivalent Distance (in feet)           Road Grade:         0.0%         Autos:         46.915           Left View:         -90.0 degrees         Medium Trucks:         46.726           Right View:         -90.0 degrees         Medium Trucks:         46.744           FHWA Noise Model Calculations           Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berner Atten           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -5.43         0.000         0.0           Medium Trucks:         84.25         -16.1         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         Vehicle Type         Leg Day         Leg Evening         Leg Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         63.6         65         66           Medium Truc                                                                                                                                                                                                        | Observer Height (/ | Above Pad):    | 5.0 feet        |         |          |           |            |            | Grade Adi  | ustment | 0.0       |
| Road Grade:         0.0%         Autos:         46.915           Left View:         -90.0 degrees         Medium Trucks:         46.744           FHWA Noise Model Calculations         Venicle Type         Ref Left         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berner Atten           Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berner Atten           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.65         0.000         0.0           Heavy Trucks:         84.25         -16.14         0.34         -1.20         -4.67         0.000         0.0           Unnitigated Noise Levels (without Topo and barrier attenuation)         Vehicle Type         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.8         63.6         65           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         66           Medium Trucks:         69.6         68.7         63.4         63.0         70           Vehicle Noise:         69.6                                                                                                                                                                                                           | Pa                 | d Elevation:   | 0.0 feet        |         |          |           |            |            |            |         |           |
| Left View:         -90.0 degrees         Medium Trucks:         46.726           Right View:         90.0 degrees         Heavy Trucks:         46.744           FHWA Noise Model Calculations           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berna Atten           Autos:         68.46         -4.76         0.31         -120         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -120         -4.67         0.000         0.0           Medium Trucks:         84.25         -16.14         0.34         -120         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         VehicleType         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.9         62.3         55.7         55.1         63.2         63           Medium Trucks:         67.2         66.2         60.5         61.2         65           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                         | Roa                | d Elevation:   | 0.0 feet        |         | Lane Eq  |           |            |            | ieet)      |         |           |
| Right View:         90.0 degrees         Heavy Trucks:         46.744           FHWA Noise Model Calculations         Heavy Trucks:         46.744           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Freshel         Barrier Atten         Bern Atten           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Freshel         Barrier Atten         Bern Atten           Autos:         68.46         -15.55         0.34         -1.20         -4.67         0.000         0.0           Medium Trucks:         79.45         -15.55         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         Leq Devining         Leq Night         Ldn         CNEL           VehicleType         Leq Deak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Heavy Trucks:         67.2         66.2         60.5         61.2         63.5         68           Heavy Trucks:         67.2         66.2         60.5         61.2         65.5         68           Vehicle Noise:         69.6         68.7         63.4         63.0                                                                                                                                                                                                          | F                  |                | 0.0%            |         |          |           |            |            |            |         |           |
| FHWA Noise Model Calculations         Distance         Finite Road         Fresnel         Barrier Atten         Bermarkten           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.67         0.000         0.0           Heavy Trucks:         84.25         -16.14         0.34         -1.20         -5.43         0.000         0.0           Unnitigated Noise Levels (without Topo and barrier attenuation)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0.00         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                        |                    |                |                 |         |          |           |            |            |            |         |           |
| VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atter           Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.65         0.000         0.0           Heavy Trucks:         84.25         -16.14         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.6         63.6         63           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         68           Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         68           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                    |                    | Right View:    | 90.0 degrees    |         | Hea      | vy Truck  | (s: 46.7   | 744        |            |         |           |
| Autos:         68.46         -4.76         0.31         -1.20         -4.65         0.000         0.0           Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.87         0.000         0.0           Heavy Trucks:         84.25         -16.14         0.34         -1.20         -4.87         0.000         0.0           Unmitigated Moise Levels (without Topo and barrier attenuation)         VehicleType         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.8         63.6         63           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         68           Medium Trucks:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FHWA Noise Mode    |                |                 |         |          |           |            |            |            |         |           |
| Medium Trucks:         79.45         -15.65         0.34         -1.20         -4.87         0.000         0.0           Heavy Trucks:         84.25         -16.14         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)          -1.20         -5.43         0.000         0.0           VehicleType         Leq Deak Hour         Leq Deay         Leq Reining         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.8         63.6         66           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         63           Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         68           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                |                 |         |          |           |            | -          |            |         |           |
| Heavy Trucks:         84.25         -16.14         0.34         -1.20         -5.43         0.000         0.0           Unmitigated Noise Levels (without Topo and barrier attenuation)         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Vehicle Type         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Matos:         62.8         61.8         58.4         55.8         63.6         63.6           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         66.2           Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         68.5           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70.7           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                 | -       |          |           |            |            |            |         |           |
| Untiligited Noise Levels (without Topo and barrier attenuation)         Leq Night         Ldn         CNEL           VehicleType         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.8         63.6         63.           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         66.           Heavy Trucks:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                |                 | -       |          |           |            |            |            |         |           |
| VehicleType         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         62.8         61.8         58.4         55.8         63.6         65           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         66           Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         66           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                |                 |         |          | -1.20     |            | -5.43      | 0.0        | 100     | 0.00      |
| Autos:         62.8         61.8         58.4         55.8         63.6         63.7           Medium Trucks:         62.9         62.3         55.7         55.1         63.2         63.7           Heavy Trucks:         67.2         66.2         60.5         61.4         56.8         63.0         66.2           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)         70 dBA         65 dBA         60 dBA         55 dBA           Ldn:         55         118         255         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                |                 |         | ,        |           |            |            |            |         |           |
| Medium Trucks:         62.9         62.3         55.7         55.1         63.2         63.3           Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         66           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)         70 dBA         65 dBA         60 dBA         55 dBA           Ldn:         55         118         255         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                |                 |         | •        | ,         |            |            |            |         |           |
| Heavy Trucks:         67.2         66.2         60.5         61.2         68.5         66           Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 710100.            | 02             |                 |         |          |           |            |            |            |         |           |
| Vehicle Noise:         69.6         68.7         63.4         63.0         70.6         70           Centerline Distance to Noise Contour (in feet)         70 dBA         65 dBA         60 dBA         55 dBA           Ldn:         55         118         255         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                |                 |         |          |           |            |            |            |         |           |
| Centerline Distance to Noise Contour (in feet)         70 dBA         65 dBA         60 dBA         55 dBA           Ldn:         55         118         255         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | ÷              |                 |         |          |           |            |            |            |         |           |
| 70 dBA 65 dBA 60 dBA 55 dBA<br>Ldn: 55 118 255 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                |                 |         | 03.4     | •         | 03.0       |            | 70.0       | ,       | 70        |
| Ldn: 55 118 255 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centerline Distanc | e to Noise Co  | ntour (in feet) | 7       | 0 dBA    | 65        | dBA        | 6          | 0 dBA      | 55      | dBA       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                | 1.              |         |          | 05        |            | 0          |            | 55      | ивя<br>54 |
| UNEL. 37 122 204 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                |                 |         |          |           |            |            |            |         | 56        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                | CIVI            |         | 51       |           | 122        |            | 204        |         | 50        |

| FH                                                   | WA-RD-    | 77-108 HIGH     | WAY N        | IOISE  | PREDIC    | TION M   | ODEL (9             | /12/20  | 021)         |         |          |
|------------------------------------------------------|-----------|-----------------|--------------|--------|-----------|----------|---------------------|---------|--------------|---------|----------|
| Scenario: HY<br>Road Name: Clar<br>Road Segment: n/o |           | Rd.             |              |        |           |          | Name: N<br>umber: 1 |         | /alley Com   | merce ( | ;        |
| SITE SPECI                                           | FIC INP   | UT DATA         |              |        |           | N        | OISE N              | IODE    | L INPUTS     | 3       |          |
| Highway Data                                         |           |                 |              | S      | Site Con  | ditions  | (Hard =             | 10, So  | ft = 15)     |         |          |
| Average Daily Traffic                                | (Adt):    | 8,220 vehicle   | s            |        |           |          | A                   | Autos:  | 15           |         |          |
| Peak Hour Percen                                     | tage:     | 8.10%           |              |        | Me        | dium Tru | icks (2 A           | xles):  | 15           |         |          |
| Peak Hour Vol                                        | ume:      | 666 vehicles    | ;            |        | He        | avy Truc | cks (3+ A           | xles):  | 15           |         |          |
| Vehicle Sp                                           | peed:     | 45 mph          |              | 1      | /ehicle I | liv      |                     |         |              |         |          |
| Near/Far Lane Dist                                   | ance:     | 36 feet         |              | -      |           | icleType |                     | Dav     | Evenina      | Niaht   | Daily    |
| Site Data                                            |           |                 |              |        | VCIII     |          |                     | 76.6%   |              | 14.5%   |          |
| Barrier He                                           | iaht:     | 0.0 feet        |              |        | Me        | edium Tr | ucks:               | 83.3%   | 4.6%         | 12.1%   |          |
| Barrier Type (0-Wall, 1-B                            | 5         | 0.0             |              |        | F         | leavy Tr | ucks:               | 76.9%   | 5.2%         | 17.9%   |          |
| Centerline Dist. to Ba                               |           | 50.0 feet       |              |        |           |          |                     |         |              |         |          |
| Centerline Dist. to Obse                             |           | 50.0 feet       |              | ^      | loise So  |          | evations            |         | et)          |         |          |
| Barrier Distance to Obse                             |           | 0.0 feet        |              |        |           | Autos    |                     |         |              |         |          |
| Observer Height (Above                               |           | 5.0 feet        |              |        |           | n Trucks |                     |         |              |         |          |
| Pad Elev                                             |           | 0.0 feet        |              |        | Heav      | y Trucks | s: 8.0              | 104     | Grade Adj    | ustment | 0.0      |
| Road Elev                                            | ation:    | 0.0 feet        |              | L      | ane Equ   | uivalent | Distanc             | e (in f | eet)         |         |          |
| Road G                                               | rade:     | 0.0%            |              |        |           | Autos    | s: 46.9             | 915     |              |         |          |
| Left                                                 | View:     | -90.0 degree    | s            |        | Mediur    | n Trucks | s: 46.7             | 26      |              |         |          |
| Right                                                | View:     | 90.0 degree     | s            |        | Heav      | y Trucks | s: 46.7             | '44     |              |         |          |
| FHWA Noise Model Calc                                | ulations  |                 |              |        |           |          |                     |         |              |         |          |
| VehicleType REN                                      | 1EL ·     | Traffic Flow    | Dista        | ance   | Finite    | Road     | Fresne              | e/      | Barrier Atte | en Ber  | m Atter  |
| Autos:                                               | 68.46     | -4.23           |              | 0.31   |           | -1.20    |                     | 4.65    | 0.0          |         | 0.00     |
| Medium Trucks:                                       | 79.45     | -15.09          |              | 0.34   |           | -1.20    |                     | 4.87    | 0.0          |         | 0.00     |
| Heavy Trucks:                                        | 84.25     | -15.58          |              | 0.34   | 1         | -1.20    |                     | -5.43   | 0.0          | 00      | 0.00     |
| Unmitigated Noise Level                              | s (withou | ut Topo and     | barrier      | attenu | uation)   |          |                     |         |              |         |          |
| VehicleType Leq Pe                                   | eak Hour  | Leq Day         | 1            | Leq Ev | ening     | Leq      | Night               |         | Ldn          |         | VEL      |
| Autos:                                               | 63.3      |                 | 62.3         |        | 59.0      |          | 56.3                |         | 64.1         |         | 64       |
| Medium Trucks:                                       | 63.5      | -               | 62.8         |        | 56.3      |          | 55.7                |         | 63.8         |         | 64       |
| Heavy Trucks:                                        | 67.8      |                 | 66.8         |        | 61.1      |          | 61.7                |         | 69.1         |         | 69       |
| Vehicle Noise:                                       | 70.2      | 2               | 69.2         |        | 64.0      |          | 63.6                |         | 71.2         |         | 71       |
| Centerline Distance to N                             | oise Con  | ntour (in feet) |              |        |           | _        |                     |         |              |         |          |
|                                                      |           |                 |              | 70 d   | IBA       | 65 (     | dBA                 | 6       | 0 dBA        | 55      | dBA      |
|                                                      |           |                 |              |        |           |          |                     |         |              |         |          |
|                                                      |           |                 | Ldn:<br>IEL: |        | 60<br>62  |          | 129<br>133          |         | 277<br>287   |         | 59<br>61 |

| FHV                                                       | VA-RD-7 | 77-108 HIGHWA   | Y NOIS    | E PREDIC  | TION M             | ODEL (S             | 9/12/2   | 021)        |          |         |
|-----------------------------------------------------------|---------|-----------------|-----------|-----------|--------------------|---------------------|----------|-------------|----------|---------|
| Scenario: HY+F<br>Road Name: Clark<br>Road Segment: n/o C | St.     | d.              |           |           |                    | Name: I<br>umber: ' |          | Valley Corr | nmerce C | ;       |
| SITE SPECIF                                               | IC INP  | UT DATA         |           |           | N                  | OISE N              | IODE     |             | s        |         |
| Highway Data                                              |         |                 |           | Site Con  | ditions            | (Hard =             | 10, Sc   | oft = 15)   |          |         |
| Average Daily Traffic (A                                  | (dt):   | 8,269 vehicles  |           |           |                    |                     | Autos:   | 15          |          |         |
| Peak Hour Percenta                                        | age:    | 8.10%           |           | Mee       | dium Tri           | ucks (2 A           | (xles):  | 15          |          |         |
| Peak Hour Volu                                            | me:     | 670 vehicles    |           | Hei       | avy Tru            | cks (3+ A           | (xles)   | 15          |          |         |
| Vehicle Spe                                               |         | 45 mph          |           | Vehicle N | <i>lix</i>         |                     |          |             |          |         |
| Near/Far Lane Distar                                      | nce:    | 36 feet         |           | Vehi      | cleType            |                     | Day      | Evening     | Night    | Daily   |
| Site Data                                                 |         |                 |           |           | /                  | Autos:              | 76.6%    | 8.9%        | 14.5%    | 86.64   |
| Barrier Hei                                               | aht:    | 0.0 feet        |           | Me        | edium T            | rucks:              | 83.3%    | 4.6%        | 12.1%    | 7.05    |
| Barrier Type (0-Wall, 1-Be                                | -       | 0.0             |           | F         | leavy Ti           | ucks:               | 76.9%    | 5.2%        | 17.9%    | 6.30    |
| Centerline Dist. to Bar                                   | rier:   | 50.0 feet       |           | Noise So  | urco El            | ovation             | : (in fa | oof)        |          |         |
| Centerline Dist. to Obser                                 | ver:    | 50.0 feet       |           | 10130 00  | Auto               |                     | 000      |             |          |         |
| Barrier Distance to Obser                                 | ver:    | 0.0 feet        |           | Mediur    | n Truck            |                     | 297      |             |          |         |
| Observer Height (Above P                                  | ad):    | 5.0 feet        |           |           | y Truck            |                     | 004      | Grade Ad    | iustment | 0.0     |
| Pad Eleval                                                |         | 0.0 feet        |           |           |                    |                     |          |             |          |         |
| Road Eleval                                               |         | 0.0 feet        |           | Lane Equ  |                    |                     |          | feet)       |          |         |
| Road Gra                                                  |         | 0.0%            |           |           | Auto               |                     |          |             |          |         |
| Left V                                                    |         | -90.0 degrees   |           |           | n Truck<br>y Truck |                     |          |             |          |         |
| Right V                                                   | lew:    | 90.0 degrees    |           | neav      | y muck             | 5. 40.              | /44      |             |          |         |
| FHWA Noise Model Calcul                                   | ations  |                 |           |           |                    |                     |          |             |          |         |
| VehicleType REM                                           | EL 1    | Traffic Flow    | Distance  | Finite    | Road               | Fresn               | el       | Barrier Att | en Ber   | m Atten |
|                                                           | 68.46   | -4.20           |           | .31       | -1.20              |                     | -4.65    |             | 000      | 0.00    |
|                                                           | 79.45   | -15.09          |           | .34       | -1.20              |                     | -4.87    |             | 000      | 0.00    |
| Heavy Trucks:                                             | 84.25   | -15.58          | 0         | .34       | -1.20              |                     | -5.43    | 0.0         | 000      | 0.00    |
| Unmitigated Noise Levels                                  | (withou | ıt Topo and bar | rier atte | enuation) |                    |                     |          |             |          |         |
| VehicleType Leq Pea                                       | k Hour  | Leq Day         | Leq       | Evening   | Leq                | Night               |          | Ldn         |          | VEL     |
| Autos:                                                    | 63.4    |                 |           | 59.0      |                    | 56.4                |          | 64.1        |          | 64      |
| Medium Trucks:                                            | 63.5    |                 | -         | 56.3      |                    | 55.7                |          | 63.8        |          | 64      |
| Heavy Trucks:                                             | 67.8    |                 | -         | 61.1      |                    | 61.7                |          | 69.1        |          | 69.     |
| Vehicle Noise:                                            | 70.2    | 69.3            | 2         | 64.0      |                    | 63.6                | 5        | 71.2        | 2        | 71.     |
| Centerline Distance to No                                 | ise Con | tour (in feet)  |           |           |                    |                     |          |             |          |         |
|                                                           |         |                 |           | 0 dBA     | 65                 | dBA                 | 6        | 60 dBA      |          | dBA     |
|                                                           |         | Ldr             |           | 60        |                    | 129                 |          | 278         |          | 59      |
|                                                           |         | CNEL            |           | 62        |                    | 133                 |          | 287         |          | 619     |

Thursday, July 27, 2023

| FHWA-F                                                          | D-77-108 HIGHWA   | AY NOISE    | PREDIC    | TION MO   | ODEL (9)            | /12/20  | )21)         |                      |         |
|-----------------------------------------------------------------|-------------------|-------------|-----------|-----------|---------------------|---------|--------------|----------------------|---------|
| Scenario: E<br>Road Name: Clark St.<br>Road Segment: s/o Cajalo | o Rd.             |             |           |           | Name: M<br>umber: 1 |         | /alley Comr  | nerce C              |         |
| SITE SPECIFIC I                                                 | NPUT DATA         |             |           |           |                     |         | L INPUTS     |                      |         |
| Highway Data                                                    |                   | 4           | Site Cond | ditions ( | Hard = 1            | 10, So  | ft = 15)     |                      |         |
| Average Daily Traffic (Adt):                                    | 8,366 vehicles    |             |           |           | Α                   | utos:   | 15           |                      |         |
| Peak Hour Percentage:                                           | 8.10%             |             | Med       | dium Tru  | icks (2 A)          | xles):  | 15           |                      |         |
| Peak Hour Volume:                                               | 678 vehicles      |             | Hea       | avy Truc  | ks (3+ A)           | xles):  | 15           |                      |         |
| Vehicle Speed:                                                  | 40 mph            |             | Vehicle N | lix       |                     |         |              |                      |         |
| Near/Far Lane Distance:                                         | 12 feet           | -           |           | cleType   | Ľ                   | Dav     | Evening      | Night                | Daily   |
| Site Data                                                       |                   | -           |           |           | utos: 7             | 6.6%    | •            | 14.5%                | 86.56%  |
| Barrier Height:                                                 | 0.0 feet          |             | Me        | dium Tru  | ucks: 8             | 33.3%   | 4.6%         | 12.1%                | 7.10%   |
| Barrier Type (0-Wall, 1-Berm):                                  | 0.0               |             | h         | leavy Tru | ucks: 7             | 6.9%    | 5.2%         | 17.9%                | 6.34%   |
| Centerline Dist. to Barrier:                                    | 37.0 feet         | -           | Noise So  | urco Ela  | wations             | (in fo  | of           |                      |         |
| Centerline Dist. to Observer:                                   | 37.0 feet         | Ľ           | 10136 30  | Autos     |                     |         | eij          |                      |         |
| Barrier Distance to Observer:                                   | 0.0 feet          |             | Madium    | n Trucks  | 0.01                |         |              |                      |         |
| Observer Height (Above Pad):                                    | 5.0 feet          |             |           | v Trucks  |                     |         | Grade Adju   | istment <sup>.</sup> | 0.0     |
| Pad Elevation:                                                  | 0.0 feet          |             | neav.     | y mucks   | . 0.0               | 04      | orado riaja  | ioumonia.            | 0.0     |
| Road Elevation:                                                 | 0.0 feet          | 1           | Lane Equ  | ivalent   | Distance            | e (in f | eet)         |                      |         |
| Road Grade:                                                     | 0.0%              |             |           | Autos     |                     |         |              |                      |         |
| Left View:                                                      | -90.0 degrees     |             |           | n Trucks  |                     | 10      |              |                      |         |
| Right View:                                                     | 90.0 degrees      |             | Heav      | y Trucks  | 36.6                | 34      |              |                      |         |
| FHWA Noise Model Calculatio                                     | ns                |             |           |           |                     |         |              |                      |         |
| VehicleType REMEL                                               | Traffic Flow      | Distance    | Finite    | Road      | Fresne              | e/ 1    | Barrier Atte | n Berr               | n Atten |
| Autos: 66.5                                                     | 1 -3.64           | 1.8         | 8         | -1.20     |                     | 4.56    | 0.00         | 00                   | 0.00    |
| Medium Trucks: 77.7                                             | 2 -14.51          | 1.9         | 3         | -1.20     | -                   | 4.87    | 0.00         | 00                   | 0.00    |
| Heavy Trucks: 82.9                                              | 9 -15.00          | 1.9         | 2         | -1.20     | -                   | 5.61    | 0.00         | 00                   | 0.00    |
| Unmitigated Noise Levels (wit                                   | hout Topo and bar | rrier atten | uation)   |           |                     |         |              |                      |         |
| VehicleType Leq Peak Ho                                         |                   |             | vening    | Leq N     | •                   |         | Ldn          | CN                   |         |
|                                                                 | 3.6 62.           |             | 59.2      |           | 56.5                |         | 64.3         |                      | 64.     |
|                                                                 | 3.9 63.           |             | 56.7      |           | 56.1                |         | 64.3         |                      | 64.     |
|                                                                 | 8.7 67.           |             | 62.0      |           | 62.6                |         | 70.0         |                      | 70.     |
| Vehicle Noise: 7                                                | 0.9 69.           | 9           | 64.6      |           | 64.3                |         | 71.9         |                      | 72.     |
| Centerline Distance to Noise C                                  | Contour (in feet) |             |           |           |                     |         |              |                      |         |
|                                                                 |                   |             | dBA       | 65 d      |                     | 6       | 0 dBA        | 55 (                 |         |
|                                                                 | Ldr               |             | 49        |           | 106                 |         | 229          |                      | 493     |
|                                                                 | CNEL              |             | 51        |           | 110                 |         | 236          |                      | 509     |

| 11114-10-11-1001                                                                                                                                                                                                                                                         | IGHWAY NO                                                          | ISE PREDIC                                                         |           | ODEL (9/1                                    | 12/2021)                           |                              |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------|----------------------------------------------|------------------------------------|------------------------------|---------------------------------|
| Scenario: E+P<br>Road Name: Clark St.<br>Road Segment: s/o Cajalco Rd.                                                                                                                                                                                                   |                                                                    |                                                                    |           | Name: Me<br>Imber: 15                        | ead Valley Con<br>091              | nmerce C                     | ;                               |
| SITE SPECIFIC INPUT DA                                                                                                                                                                                                                                                   | TA                                                                 |                                                                    | N         | OISE MO                                      | DEL INPUT                          | s                            |                                 |
| Highway Data                                                                                                                                                                                                                                                             |                                                                    | Site Con                                                           |           |                                              | ), Soft = 15)                      | -                            |                                 |
| Average Daily Traffic (Adt): 8,432 ve                                                                                                                                                                                                                                    | hicles                                                             |                                                                    |           | AL                                           | itos: 15                           |                              |                                 |
| Peak Hour Percentage: 8.10%                                                                                                                                                                                                                                              |                                                                    | Me                                                                 | dium Tru  | cks (2 Ax                                    | <i>les):</i> 15                    |                              |                                 |
| Peak Hour Volume: 683 veh                                                                                                                                                                                                                                                | icles                                                              | He                                                                 | avy Truc  | ks (3+ Ax                                    | <i>les):</i> 15                    |                              |                                 |
| Vehicle Speed: 40 mp                                                                                                                                                                                                                                                     | h                                                                  | Vehicle                                                            | Mix       |                                              |                                    |                              |                                 |
| Near/Far Lane Distance: 12 fee                                                                                                                                                                                                                                           | t                                                                  |                                                                    | icleType  | D                                            | ay Evening                         | Night                        | Daily                           |
| Site Data                                                                                                                                                                                                                                                                |                                                                    | ven                                                                |           |                                              | 6.6% 8.9%                          | 14.5%                        |                                 |
| Barrier Height: 0.0 fe                                                                                                                                                                                                                                                   | at                                                                 | М                                                                  | edium Tr  |                                              | 3.3% 4.6%                          | 12.1%                        |                                 |
| Barrier Type (0-Wall, 1-Berm): 0.0                                                                                                                                                                                                                                       | et                                                                 |                                                                    | Heavy Tr  | ucks: 76                                     | 5.9% 5.2%                          | 17.9%                        | 6.29                            |
| Centerline Dist. to Barrier: 37.0 fe                                                                                                                                                                                                                                     | at                                                                 |                                                                    |           |                                              |                                    |                              |                                 |
| Centerline Dist. to Observer: 37.0 fe                                                                                                                                                                                                                                    |                                                                    | Noise Se                                                           |           | evations (                                   |                                    |                              |                                 |
| Barrier Distance to Observer: 0.0 fe                                                                                                                                                                                                                                     |                                                                    |                                                                    | Autos     |                                              |                                    |                              |                                 |
| Observer Height (Above Pad): 5.0 fe                                                                                                                                                                                                                                      |                                                                    |                                                                    | m Trucks  |                                              |                                    | . , ,                        |                                 |
| Pad Elevation: 0.0 fe                                                                                                                                                                                                                                                    |                                                                    | Hear                                                               | /y Trucks | : 8.00                                       | 4 Grade Ad                         | justment.                    | 0.0                             |
| Road Elevation: 0.0 fe                                                                                                                                                                                                                                                   |                                                                    | Lane Eq                                                            | uivalent  | Distance                                     | (in feet)                          |                              |                                 |
| Road Grade: 0.0%                                                                                                                                                                                                                                                         |                                                                    |                                                                    | Autos     | : 36.85                                      | 51                                 |                              |                                 |
| Left View: -90.0 de                                                                                                                                                                                                                                                      | arees                                                              | Mediu                                                              | m Trucks  | : 36.61                                      | 0                                  |                              |                                 |
| Right View: 90.0 de                                                                                                                                                                                                                                                      | 0                                                                  | Hear                                                               | /y Trucks | 36.63                                        | 4                                  |                              |                                 |
| FHWA Noise Model Calculations                                                                                                                                                                                                                                            |                                                                    |                                                                    |           |                                              |                                    |                              |                                 |
| VehicleType REMEL Traffic Flo                                                                                                                                                                                                                                            | ow Distance                                                        | ce Finite                                                          | Road      | Fresnel                                      | Barrier Att                        | en Ber                       | m Atten                         |
| Autos: 66.51 -3                                                                                                                                                                                                                                                          | 3.60                                                               | 1.88                                                               | -1.20     | -4                                           | .56 0.0                            | 000                          | 0.00                            |
| Medium Trucks: 77.72 -14                                                                                                                                                                                                                                                 | .51                                                                | 1.93                                                               | -1.20     | -4                                           | .87 0.0                            | 000                          | 0.00                            |
| Wouldin 1100K3. 11.12 -1-                                                                                                                                                                                                                                                |                                                                    |                                                                    |           |                                              |                                    | 000                          | 0.00                            |
|                                                                                                                                                                                                                                                                          | 5.00                                                               | 1.92                                                               | -1.20     | -5                                           | 6.61 0.0                           | JUU                          | 0.00                            |
|                                                                                                                                                                                                                                                                          |                                                                    |                                                                    | -1.20     | -5                                           | 5.61 0.0                           | JUU                          | 0.00                            |
| Heavy Trucks: 82.99 -15<br>Unmitigated Noise Levels (without Topo a<br>VehicleType Leq Peak Hour Leq                                                                                                                                                                     | and barrier at<br>Day Le                                           | t <b>tenuation)</b><br>q Evening                                   | Leq I     | light                                        | Ldn                                | CI                           | VEL                             |
| Heavy Trucks: 82.99 -15<br>Unmitigated Noise Levels (without Topo a<br>VehicleType Leq Peak Hour Leq<br>Autos: 63.6                                                                                                                                                      | and barrier at<br>Day Le<br>62.6                                   | t <b>tenuation)</b><br>q Evening<br>59.2                           | Leq I     | light<br>56.6                                | Ldn<br>64.3                        | C/<br>3                      | VEL<br>64                       |
| Heavy Trucks: 82.99 -15<br>Unmitigated Noise Levels (without Topo<br>VehicleType Leg Peak Hour Leg<br>Autos: 63.6<br>Medium Trucks: 63.9                                                                                                                                 | Day Leo<br>62.6<br>63.3                                            | rtenuation)<br>q Evening<br>59.2<br>56.7                           | Leq I     | <i>light</i><br>56.6<br>56.1                 | Ldn<br>64.                         | <i>Cl</i><br>3<br>3          | VEL<br>64                       |
| Heavy Trucks:         82.99         -18           Unmitigated Noise Levels (without Topo<br>VehicleType         Leq Peak Hour         Leq           Autos:         63.6         63.9           Medium Trucks:         68.7         68.7                                  | and barrier at<br>Day Le<br>62.6                                   | t <b>tenuation)</b><br>q Evening<br>59.2                           | Leq I     | light<br>56.6                                | Ldn<br>64.3                        | <i>Cl</i><br>3<br>3          | NEL<br>64.<br>70.               |
| Heavy Trucks:         82.99         -15           Unmitigated Noise Levels (without Topo<br>VehicleType         Leg Peak Hour         Leg           Autos:         63.6         Medium Trucks:         63.9                                                              | Day Leo<br>62.6<br>63.3                                            | rtenuation)<br>q Evening<br>59.2<br>56.7                           | Leq I     | <i>light</i><br>56.6<br>56.1                 | Ldn<br>64.                         | C/<br>3<br>3<br>0            | NEL<br>64.<br>70.               |
| Heavy Trucks:         82.99         -18           Unmitigated Noise Levels (without Topo<br>VehicleType         Leq Peak Hour         Leq           Autos:         63.6         63.9           Medium Trucks:         68.7         68.7                                  | and barrier at<br>Day Lee<br>62.6<br>63.3<br>67.7<br>69.9<br>feet) | ttenuation)<br>q Evening<br>59.2<br>56.7<br>62.0<br>64.6           | Leq I     | <i>light</i><br>56.6<br>56.1<br>62.6<br>64.3 | Ldn<br>64.<br>64.<br>70.<br>71.    | CI<br>3<br>3<br>9            | NEL<br>64<br>64<br>70<br>72     |
| Heavy Trucks:         82.99         -18           Unmitigated Noise Levels (without Topo<br>VehicleType         Leq Peak Hour         Leq           Autos:         63.6         63.9           Medium Trucks:         63.9         1000000000000000000000000000000000000 | and barrier at<br>Day Lee<br>62.6<br>63.3<br>67.7<br>69.9<br>feet) | ttenuation)<br>q Evening<br>59.2<br>56.7<br>62.0<br>64.6<br>70 dBA | Leq I     | light 56.6<br>56.1<br>62.6<br>64.3           | Ldn<br>64.<br>70.<br>71.<br>60 dBA | C/<br>3<br>3<br>9<br>55      | VEL<br>64.<br>70.<br>72.<br>dBA |
| Heavy Trucks:         82.99         -18           Unmitigated Noise Levels (without Topo<br>VehicleType         Leq Peak Hour         Leq           Autos:         63.6         63.9           Medium Trucks:         63.9         1000000000000000000000000000000000000 | and barrier at<br>Day Lee<br>62.6<br>63.3<br>67.7<br>69.9<br>feet) | ttenuation)<br>q Evening<br>59.2<br>56.7<br>62.0<br>64.6           | Leq I     | <i>light</i><br>56.6<br>56.1<br>62.6<br>64.3 | Ldn<br>64.<br>64.<br>70.<br>71.    | C/<br>3<br>3<br>0<br>9<br>55 | NEL<br>64.<br>70.<br>72.        |

|                                                             | FHWA-RD              | )-77-108 HIGH                           | IWAY NC              | ISE PREI              |                         | NODEL (S                    | 9/12/20    | 021)                 |            |                             |
|-------------------------------------------------------------|----------------------|-----------------------------------------|----------------------|-----------------------|-------------------------|-----------------------------|------------|----------------------|------------|-----------------------------|
| Scenario:<br>Road Name:<br>Road Segment:                    | Clark St.            | Rd.                                     |                      |                       |                         | t Name: 1<br>lumber: 1      |            | /alley Com           | merce C    |                             |
| SITE SP                                                     | ECIFIC IN            | PUT DATA                                |                      |                       |                         |                             |            | L INPUTS             | 5          |                             |
| Highway Data                                                |                      |                                         |                      | Site C                | onditions               | (Hard =                     | 10, So     | ft = 15)             |            |                             |
| Average Daily Tra                                           | affic (Adt):         | 10,368 vehicl                           | es                   |                       |                         |                             | Autos:     | 15                   |            |                             |
| Peak Hour Pe                                                | ercentage:           | 8.10%                                   |                      |                       | Medium T                | rucks (2 A                  | (xles):    | 15                   |            |                             |
| Peak Hou                                                    | r Volume:            | 840 vehicle                             | s                    |                       | Heavy Tru               | icks (3+ A                  | (xles):    | 15                   |            |                             |
| Vehic                                                       | le Speed:            | 40 mph                                  |                      | Vehic                 | le Mix                  |                             |            |                      |            |                             |
| Near/Far Lane                                               | Distance:            | 12 feet                                 |                      |                       | ehicleTyp               | •                           | Dav        | Evenina              | Niaht      | Daily                       |
| Site Data                                                   |                      |                                         |                      |                       |                         |                             | 76.6%      |                      | 14.5%      | 86.56%                      |
| Barrio                                                      | er Heiaht:           | 0.0 feet                                |                      |                       | Medium 1                | rucks:                      | 83.3%      | 4.6%                 | 12.1%      | 7.10%                       |
| Barrier Type (0-Wall                                        |                      | 0.0                                     |                      |                       | Heavy 1                 | rucks:                      | 76.9%      | 5.2%                 | 17.9%      | 6.34%                       |
| Centerline Dist.                                            | · /                  | 37.0 feet                               |                      | Malaa                 | 0                       |                             | . (i.e. f. | - 41                 |            |                             |
| Centerline Dist. to                                         | Observer:            | 37.0 feet                               |                      | NOISE                 | Source E                |                             |            | et)                  |            |                             |
| Barrier Distance to                                         | Observer:            | 0.0 feet                                |                      | 14-                   | Auto<br>dium Truci      |                             | 000<br>297 |                      |            |                             |
| Observer Height (Ab                                         | ove Pad):            | 5.0 feet                                |                      |                       | avy Truci               |                             | 297        | Grade Adji           | of month   | 0.0                         |
| Pad                                                         | Elevation:           | 0.0 feet                                |                      | п                     | avy muci                | 15. 0.1                     | JU4        | Graue Auji           | Journeriu. | 0.0                         |
| Road                                                        | Elevation:           | 0.0 feet                                |                      | Lane                  | Equivaler               | t Distanc                   | e (in f    | 'eet)                |            |                             |
| Ro                                                          | ad Grade:            | 0.0%                                    |                      |                       | Auto                    | os: 36.8                    | 351        |                      |            |                             |
|                                                             | Left View:           | -90.0 degre                             | es                   | Me                    | dium Truci              | (s: 36.6                    | 510        |                      |            |                             |
| R                                                           | light View:          | 90.0 degre                              | es                   | н                     | eavy Truci              | (s: 36.6                    | 534        |                      |            |                             |
| FHWA Noise Model                                            | Calculation          | 5                                       |                      |                       |                         |                             |            |                      |            |                             |
| VehicleType                                                 | REMEL                | Traffic Flow                            | Distan               | ce Fir                | ite Road                | Fresn                       | el         | Barrier Atte         | n Ben      | m Atten                     |
| Autos:                                                      | 66.51                | -2.71                                   |                      | 1.88                  | -1.20                   |                             | -4.56      | 0.0                  |            | 0.000                       |
| Medium Trucks:                                              | 77.72                | -13.57                                  |                      | 1.93                  | -1.20                   |                             | -4.87      | 0.0                  |            | 0.000                       |
| Heavy Trucks:                                               | 82.99                | -14.06                                  |                      | 1.92                  | -1.20                   |                             | -5.61      | 0.0                  | 00         | 0.000                       |
| Unmitigated Noise L                                         | evels (with          | out Topo and                            | barrier a            | ttenuatio             | n)                      |                             |            |                      |            |                             |
| VehicleType Le                                              |                      | r Leg Da                                | / Le                 | q Evening             | Leq                     | Night                       |            | Ldn                  |            | IEL                         |
|                                                             | eq Peak Hou          |                                         |                      |                       |                         |                             |            | 65.2                 |            | 65.6                        |
| Autos:                                                      | 64                   | .5                                      | 63.5                 | -                     | 0.1                     | 57.5                        |            |                      |            |                             |
| Autos:<br>Medium Trucks:                                    | 64<br>64             | .5<br>.9                                | 64.2                 | 5                     | 7.7                     | 57.1                        |            | 65.2                 |            |                             |
| Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | 64<br>64<br>69       | .5<br>.9<br>.7                          | 64.2<br>68.6         | 5                     | 7.7<br>2.9              | 57.1<br>63.6                |            | 65.2<br>70.9         |            | 71.1                        |
| Autos:<br>Medium Trucks:                                    | 64<br>64             | .5<br>.9<br>.7                          | 64.2                 | 5                     | 7.7                     | 57.1                        |            | 65.2                 |            | 71.1                        |
| Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | 64<br>64<br>69<br>71 | .5<br>.9<br>.7<br>.8                    | 64.2<br>68.6<br>70.8 | 5<br>6:<br>6:         | 7.7<br>2.9<br>5.5       | 57.1<br>63.6<br>65.2        |            | 65.2<br>70.9<br>72.8 |            | 71.1                        |
| Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | 64<br>64<br>69<br>71 | .5<br>.9<br>.7<br>.8                    | 64.2<br>68.6<br>70.8 | 5<br>6<br>6<br>70 dBA | 7.7<br>2.9<br>5.5<br>65 | 57.1<br>63.6<br>65.2<br>dBA |            | 65.2<br>70.9<br>72.8 |            | 65.4<br>71.1<br>73.0<br>dBA |
| Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | 64<br>64<br>69<br>71 | .5<br>.9<br>.7<br>.8<br>ontour (in feet | 64.2<br>68.6<br>70.8 | 5<br>6:<br>70 dBA     | 7.7<br>2.9<br>5.5       | 57.1<br>63.6<br>65.2        |            | 65.2<br>70.9<br>72.8 |            | 71.1                        |

|                    |                   | 77-108 HIGHWA   |           |           |            |          |        |             |          |         |
|--------------------|-------------------|-----------------|-----------|-----------|------------|----------|--------|-------------|----------|---------|
|                    | o: EAC+P          |                 |           |           |            |          |        | alley Corr  | imerce C |         |
|                    | e: Clark St.      |                 |           |           | Job Nu     | mber: 1  | 5091   |             |          |         |
| Road Segmer        | nt: s/o Cajalco F | ld.             |           |           |            |          |        |             |          |         |
|                    | SPECIFIC INF      | UT DATA         |           |           |            |          |        |             | S        |         |
| Highway Data       |                   |                 |           | Site Con  | ditions (l | Hard = 1 | 10, So | ft = 15)    |          |         |
| Average Daily      | Traffic (Adt): 1  | 0,434 vehicles  |           |           |            |          | utos:  | 15          |          |         |
| Peak Hour          | Percentage:       | 8.10%           |           |           | dium Truo  |          |        | 15          |          |         |
|                    | our Volume:       | 845 vehicles    |           | He        | avy Truck  | (3+ A    | xles): | 15          |          |         |
|                    | hicle Speed:      | 40 mph          |           | Vehicle I | Nix        |          |        |             |          |         |
| Near/Far La        | ne Distance:      | 12 feet         |           | Vehi      | cleType    | L        | Day    | Evening     | Night    | Daily   |
| Site Data          |                   |                 |           |           | Au         | itos: T  | 76.6%  | 8.9%        | 14.5%    | 86.65   |
| Bar                | rier Height:      | 0.0 feet        |           | Me        | edium Tru  | icks: 8  | 33.3%  | 4.6%        | 12.1%    | 7.05    |
| Barrier Type (0-W  |                   | 0.0             |           | ŀ         | leavy Tru  | icks: 7  | 76.9%  | 5.2%        | 17.9%    | 6.30    |
| Centerline Dis     | . ,               | 37.0 feet       |           | Noise So  | urce Ele   | vations  | (in fo | of)         |          |         |
| Centerline Dist.   | to Observer:      | 37.0 feet       |           | NUISE 30  | Autos:     |          |        | eij         |          |         |
| Barrier Distance   | to Observer:      | 0.0 feet        |           | Mediu     | n Trucks:  |          |        |             |          |         |
| Observer Height (  | Above Pad):       | 5.0 feet        |           |           | y Trucks:  |          |        | Grade Ad    | iustment | 0.0     |
| Pa                 | ad Elevation:     | 0.0 feet        |           |           |            |          | -      |             |          |         |
|                    | ad Elevation:     | 0.0 feet        |           | Lane Equ  |            |          |        | eet)        |          |         |
| F                  | Road Grade:       | 0.0%            |           |           | Autos:     |          |        |             |          |         |
|                    | Left View:        | -90.0 degrees   |           |           | n Trucks:  |          |        |             |          |         |
|                    | Right View:       | 90.0 degrees    |           | Heav      | y Trucks:  | 36.6     | 34     |             |          |         |
| FHWA Noise Mode    | al Calculations   |                 |           |           |            |          |        |             |          |         |
| VehicleType        | REMEL             | Traffic Flow    | Distance  | Finite    | Road       | Fresne   | el l   | Barrier Att | en Ber   | m Atten |
| Autos:             | 66.51             | -2.68           | 1         | .88       | -1.20      | -        | 4.56   | 0.0         | 000      | 0.00    |
| Medium Trucks:     | 77.72             | -13.57          | 1         | .93       | -1.20      | -        | 4.87   | 0.0         | 000      | 0.00    |
| Heavy Trucks:      | 82.99             | -14.06          | 1         | .92       | -1.20      | -        | 5.61   | 0.0         | 000      | 0.00    |
| Unmitigated Noise  | Levels (withou    | it Topo and bai | rier atte | enuation) |            |          |        |             |          |         |
| VehicleType        | Leq Peak Hour     | Leq Day         | Leq       | Evening   | Leq N      | light    |        | Ldn         | CI       | VEL     |
| Autos:             | 64.5              | 63.             | 5         | 60.1      |            | 57.5     |        | 65.3        | 3        | 65.     |
| Medium Trucks:     | 64.9              |                 | -         | 57.7      |            | 57.1     |        | 65.2        | -        | 65      |
| Heavy Trucks:      | 69.7              |                 |           | 62.9      |            | 63.6     |        | 70.9        |          | 71      |
| Vehicle Noise:     | 71.8              | 70.             | 9         | 65.5      |            | 65.2     |        | 72.8        | 3        | 73      |
| Centerline Distanc | e to Noise Con    | tour (in feet)  |           |           |            |          |        |             |          |         |
|                    |                   |                 |           | 0 dBA     | 65 di      | BA       | 6      | 0 dBA       | 55       | dBA     |
|                    |                   | Ldr             |           | 57        |            | 123      |        | 264         |          | 56      |
|                    |                   | CNEI            |           | 59        |            | 127      |        | 273         |          | 58      |

Thursday, July 27, 2023

| FHWA-                          | RD-77-108 HIGH   | IWAY NO      | DISE PRE   | DICTION    | IODEL (9)  | 12/2021)    |            |        |            |
|--------------------------------|------------------|--------------|------------|------------|------------|-------------|------------|--------|------------|
| Scenario: HY                   |                  |              |            |            |            | ead Valley  | Comme      | erce C |            |
| Road Name: Clark St.           |                  |              |            | Job N      | umber: 1   | 5091        |            |        |            |
| Road Segment: s/o Cajale       | co Rd.           |              |            |            |            |             |            |        |            |
| SITE SPECIFIC                  | INPUT DATA       |              |            |            |            | ODEL IN     |            |        |            |
| Highway Data                   |                  |              | Site C     | onditions  | •          | 0, Soft = 1 | <i>'</i>   |        |            |
| Average Daily Traffic (Adt):   |                  | es           |            |            |            | utos: 15    |            |        |            |
| Peak Hour Percentage:          |                  |              |            | Medium Tr  |            | ,           |            |        |            |
| Peak Hour Volume:              |                  | s            |            | Heavy Tru  | cks (3+ A) | des): 15    | 5          |        |            |
| Vehicle Speed:                 |                  |              | Vehic      | le Mix     |            |             |            |        |            |
| Near/Far Lane Distance:        | 12 feet          |              |            | ehicleType | e D        | ay Ever     | ning Ni    | ght    | Daily      |
| Site Data                      |                  |              |            |            | Autos: 7   | 6.6% 8      | .9% 1      | 4.5%   | 86.56%     |
| Barrier Height:                | 0.0 feet         |              |            | Medium T   | rucks: 8   | 3.3% 4      | .6% 1      | 2.1%   | 7.10%      |
| Barrier Type (0-Wall, 1-Berm). |                  |              |            | Heavy T    | rucks: 7   | 6.9% 5      | .2% 1      | 7.9%   | 6.34%      |
| Centerline Dist. to Barrier.   |                  |              |            |            |            |             |            |        |            |
| Centerline Dist. to Observer.  | 37.0 feet        |              | NOISE      | Source E   |            | • /         |            |        |            |
| Barrier Distance to Observer.  | 0.0 feet         |              |            | Auto       | 0.01       |             |            |        |            |
| Observer Height (Above Pad)    | 5.0 feet         |              |            | dium Truck |            |             | le Adjust  | mont   | 0.0        |
| Pad Elevation                  | 0.0 feet         |              | н          | eavy Truck | s: 8.00    | ją Grau     | e Aujusi   | ment.  | 0.0        |
| Road Elevation:                | 0.0 feet         |              | Lane       | Equivalen  | Distance   | e (in feet) |            |        |            |
| Road Grade:                    | 0.0%             |              |            | Auto       | s: 36.8    | 51          |            |        |            |
| Left View:                     | -90.0 degre      | es           | Me         | dium Truck | s: 36.6    | 10          |            |        |            |
| Right View.                    | 90.0 degre       | es           | н          | eavy Truck | s: 36.6    | 34          |            |        |            |
| FHWA Noise Model Calculatio    | ons              |              | 1          |            |            |             |            |        |            |
| VehicleType REMEL              | Traffic Flow     | Distar       | nce Fir    | ite Road   | Fresne     | l Barrie    | er Atten   | Berm   | n Atten    |
| Autos: 66.5                    | 1 -2.30          |              | 1.88       | -1.20      |            | 4.56        | 0.000      |        | 0.000      |
| Medium Trucks: 77.7            | 2 -13.16         |              | 1.93       | -1.20      |            | 4.87        | 0.000      |        | 0.000      |
| Heavy Trucks: 82.9             | 9 -13.65         |              | 1.92       | -1.20      | -          | 5.61        | 0.000      |        | 0.000      |
| Unmitigated Noise Levels (wi   |                  |              |            | ,          |            |             |            |        |            |
| VehicleType Leq Peak H         |                  |              | eq Evening |            | Night      | Ldn         |            | CN     |            |
|                                | 64.9             | 63.9         | -          | 0.5        | 57.9       |             | 65.6       |        | 66.0       |
|                                | 65.3             | 64.6         | -          | 3.1        | 57.5       |             | 65.6       |        | 65.8       |
|                                | 70.1             | 69.0         | -          | 3.3        | 64.0       |             | 71.4       |        | 71.        |
| Vehicle Noise:                 | 72.2             | 71.3         | 6          | 5.9        | 65.7       |             | 73.2       |        | 73.4       |
| Centerline Distance to Noise   | Contour (in feet | )            |            |            |            |             | Т          |        |            |
|                                |                  |              | 70 dBA     | 65         | dBA        | 60 dB/      | 4          | 55 d   |            |
|                                |                  |              |            |            |            |             |            |        |            |
|                                |                  | Ldn:<br>NEL: |            | 61<br>53   | 131<br>135 |             | 281<br>291 |        | 606<br>626 |

|                                                | FHWA-RD     | -77-108 HIGH    | WAY N        | IOISE  | PREDIC    |                    | MODEL (                | 9/12/20    | 021)         |          |            |
|------------------------------------------------|-------------|-----------------|--------------|--------|-----------|--------------------|------------------------|------------|--------------|----------|------------|
| Scenario: H<br>Road Name: (<br>Road Segment: s | Clark St.   | Rd.             |              |        |           |                    | t Name: I<br>lumber: 1 |            | /alley Com   | merce C  | ;          |
| SITE SPI                                       | CIFIC IN    | PUT DATA        |              |        |           | 1                  | NOISE                  | IODE       | L INPUTS     | 5        |            |
| Highway Data                                   |             |                 |              | 5      | Site Con  | ditions            | (Hard =                | 10, Sc     | oft = 15)    |          |            |
| Average Daily Trai                             | fic (Adt):  | 11,470 vehicle  | s            |        |           |                    | ,                      | Autos:     | 15           |          |            |
| Peak Hour Per                                  | centage:    | 8.10%           |              |        | Me        | dium Tr            | ucks (2 A              | xles):     | 15           |          |            |
| Peak Hour                                      | Volume:     | 929 vehicles    | 5            |        | He        | avy Tru            | cks (3+ A              | xles):     | 15           |          |            |
| Vehicle                                        | e Speed:    | 40 mph          |              | 1      | Vehicle I | Nix                |                        |            |              |          |            |
| Near/Far Lane L                                | Distance:   | 12 feet         |              | -      |           | cleType            | 9                      | Day        | Evening      | Night    | Daily      |
| Site Data                                      |             |                 |              | -      |           |                    |                        | 76.6%      |              | 14.5%    |            |
| Barrio                                         | ·Heiaht:    | 0.0 feet        |              |        | Me        | edium T            | rucks:                 | 83.3%      | 4.6%         | 12.1%    | 7.06%      |
| Barrier Type (0-Wall,                          |             | 0.0             |              |        | ŀ         | leavy T            | rucks:                 | 76.9%      | 5.2%         | 17.9%    | 6.30%      |
| Centerline Dist. to                            | ,           | 37.0 feet       |              |        | Naiaa Ca  | uree E             | levations              | lin fe     | at l         |          |            |
| Centerline Dist. to C                          | bserver:    | 37.0 feet       |              | -      | voise So  | Auto               |                        |            | eet)         |          |            |
| Barrier Distance to C                          | bserver:    | 0.0 feet        |              |        |           | Auto<br>n Truck    |                        | 000<br>297 |              |          |            |
| Observer Height (Abo                           | ve Pad):    | 5.0 feet        |              |        |           | n Truck<br>v Truck |                        | 004        | Grade Adj    | ustment  | . 0 0      |
| Pad E                                          | levation:   | 0.0 feet        |              |        | neav      | у писк             | .5. 0.0                | 704        | Oracio Auj   | usument  | 0.0        |
| Road E                                         | levation:   | 0.0 feet        |              | L      | Lane Equ  | uivalen            | t Distanc              | e (in i    | feet)        |          |            |
| Roa                                            | d Grade:    | 0.0%            |              |        |           | Auto               |                        | 351        |              |          |            |
| -                                              | eft View:   | -90.0 degree    |              |        |           | n Truck            |                        |            |              |          |            |
| Rig                                            | ght View:   | 90.0 degree     | :S           |        | Heav      | y Truck            | s: 36.0                | 534        |              |          |            |
| FHWA Noise Model C                             | alculations | :               |              |        |           |                    |                        |            |              |          |            |
|                                                | REMEL       | Traffic Flow    | Dista        |        | Finite    |                    | Fresn                  |            | Barrier Atte |          | m Atten    |
| Autos:                                         | 66.51       | -2.27           |              | 1.88   | -         | -1.20              |                        | -4.56      | 0.0          |          | 0.00       |
| Medium Trucks:                                 | 77.72       | -13.16          |              | 1.93   |           | -1.20              |                        | -4.87      | 0.0          |          | 0.00       |
| Heavy Trucks:                                  | 82.99       | -13.65          |              | 1.92   | 2         | -1.20              |                        | -5.61      | 0.0          | 00       | 0.00       |
| Unmitigated Noise Le                           |             |                 |              |        |           |                    |                        |            |              |          |            |
|                                                | Peak Hou    |                 |              | Leq Ev | vening    | Leq                | Night                  |            | Ldn          |          | NEL        |
| Autos:                                         | 64.         | -               | 63.9         |        | 60.6      |                    | 57.9                   |            | 65.7         |          | 66.        |
| Medium Trucks:                                 | 65.         | -               | 64.6         |        | 58.1      |                    | 57.5                   |            | 65.6         |          | 65.        |
| Heavy Trucks:                                  | 70.         | -               | 69.0         |        | 63.3      |                    | 64.0                   |            | 71.4         |          | 71.        |
| Vehicle Noise:                                 | 72.         | 2               | 71.3         |        | 66.0      |                    | 65.7                   |            | 73.2         | <u>.</u> | 73.        |
| Centerline Distance to                         | Noise Co    | ntour (in feet) |              | =0     |           |                    |                        |            |              |          |            |
|                                                |             |                 |              | 70 a   |           | 65                 | dBA                    | 6          | 60 dBA       | 55       | dBA        |
|                                                |             |                 | Ldn:<br>VEL: |        | 61<br>63  |                    | 131<br>135             |            | 281<br>291   |          | 606<br>627 |
|                                                |             | CI              | VEL:         |        | 63        |                    | 135                    |            | 291          |          | 627        |

| FHW                                                       | 4-RD-77 | 7-108 HIGH   | IWAY         | NOISE    | PREDIC    |          | ODEL (9             | )/12/20 | )21)         |         |            |
|-----------------------------------------------------------|---------|--------------|--------------|----------|-----------|----------|---------------------|---------|--------------|---------|------------|
| Scenario: E<br>Road Name: Seaton<br>Road Segment: n/o Caj |         | I.           |              |          |           |          | Name: N<br>umber: 1 |         | /alley Com   | merce C | ;          |
| SITE SPECIFI                                              | C INPU  | JT DATA      |              |          |           |          |                     |         | L INPUTS     | 3       |            |
| Highway Data                                              |         |              |              |          | Site Con  | ditions  | (Hard =             | 10, So  | ft = 15)     |         |            |
| Average Daily Traffic (Ad                                 | t):     | 656 vehicle  | es           |          |           |          |                     | Autos:  | 15           |         |            |
| Peak Hour Percentag                                       | e: 8    | .10%         |              |          | Me        | dium Tri | icks (2 A           | xles):  | 15           |         |            |
| Peak Hour Volum                                           | e:      | 53 vehicle   | s            |          | He        | avy Tru  | cks (3+ A           | xles):  | 15           |         |            |
| Vehicle Spee                                              | d:      | 45 mph       |              | F        | Vehicle I | Mix      |                     |         |              |         |            |
| Near/Far Lane Distand                                     | e:      | 36 feet      |              | -        |           | icleType |                     | Dav     | Evening      | Night   | Daily      |
| Site Data                                                 |         |              |              |          | 10/1      |          |                     | 76.6%   | 8.9%         | 14.5%   |            |
| Barrier Heigi                                             |         | 0.0 feet     |              |          | Me        | edium Ti | ucks:               | 83.3%   | 4.6%         | 12.1%   |            |
| Barrier Type (0-Wall, 1-Berr                              |         | 0.0          |              |          | ŀ         | leavy T  |                     | 76.9%   |              | 17.9%   |            |
| Centerline Dist. to Barri                                 | ·       | 50.0 feet    |              | _        |           |          |                     |         |              |         |            |
| Centerline Dist. to Observ                                |         | 50.0 feet    |              | -        | Noise So  |          |                     |         | et)          |         |            |
| Barrier Distance to Observ                                |         | 0.0 feet     |              |          |           | Auto     |                     | 000     |              |         |            |
| Observer Height (Above Pa                                 |         | 5.0 feet     |              |          |           | n Truck  |                     | 297     |              |         |            |
| Pad Elevatio                                              | ·       | 0.0 feet     |              |          | Heav      | y Truck  | s: 8.0              | 004     | Grade Adj    | ustment | : 0.0      |
| Road Elevation                                            | m:      | 0.0 feet     |              |          | Lane Equ  | uivalent | Distanc             | e (in f | eet)         |         |            |
| Road Grad                                                 | le: 0   | 0.0%         |              |          |           | Auto     | s: 46.9             | 915     |              |         |            |
| Left Vie                                                  | w: -    | 90.0 degre   | es           |          | Mediur    | n Truck  | s: 46.7             | 726     |              |         |            |
| Right Vie                                                 | w: 9    | 90.0 degre   | es           |          | Heav      | y Truck  | s: 46.7             | 744     |              |         |            |
| FHWA Noise Model Calcula                                  | tions   |              |              |          |           |          |                     |         |              |         |            |
| VehicleType REMEL                                         | . Tr    | affic Flow   |              | stance   | Finite    |          | Fresn               | -       | Barrier Atte | en Ber  | m Atten    |
|                                                           | 3.46    | -15.21       |              | 0.3      |           | -1.20    |                     | -4.65   | 0.0          |         | 0.000      |
|                                                           | 9.45    | -26.07       |              | 0.3      |           | -1.20    |                     | -4.87   | 0.0          |         | 0.000      |
| Heavy Trucks: 84                                          | 1.25    | -26.56       |              | 0.3      | 34        | -1.20    |                     | -5.43   | 0.0          | 00      | 0.000      |
| Unmitigated Noise Levels (                                | vithout | Topo and     | barri        | er atter | nuation)  |          |                     |         |              |         |            |
| VehicleType Leq Peak                                      |         | Leq Day      |              | Leq E    | vening    | Leq      | Night               |         | Ldn          |         | NEL        |
| Autos:                                                    | 52.4    |              | 51.3         |          | 48.0      |          | 45.3                |         | 53.1         |         | 53.4       |
| Medium Trucks:                                            | 52.5    |              | 51.8         |          | 45.3      |          | 44.7                |         | 52.8         |         | 53.0       |
| Heavy Trucks:                                             | 56.8    |              | 55.8         |          | 50.1      |          | 50.7                |         | 58.1         |         | 58.3       |
| Vehicle Noise:                                            | 59.2    |              | 58.3         |          | 53.0      |          | 52.6                |         | 60.2         |         | 60.4       |
| Centerline Distance to Nois                               | e Conto | our (in feet | )            |          |           |          |                     |         |              |         |            |
|                                                           |         |              | Т            | 70       | dBA       | 65       | dBA                 | 6       | 0 dBA        | 55      | dBA        |
|                                                           |         |              | L            |          |           | 00       |                     |         |              |         |            |
|                                                           |         |              | Ldn:<br>NEL: |          | 11        |          | 24<br>25            | 1       | 51<br>53     |         | 111<br>115 |

|                                 | FHWA-RD                                        | -77-108 HIGHW         | AY NO      | ISE PREDIO   |          | IODEL (              | 9/12/2     | 021)         |           |            |
|---------------------------------|------------------------------------------------|-----------------------|------------|--------------|----------|----------------------|------------|--------------|-----------|------------|
| Road Nam                        | io: E+P<br>ne: Seaton Av.<br>nt: n/o Cajalco I | Rd.                   |            |              |          | t Name: I<br>lumber: |            | /alley Corr  | imerce C  | ;          |
| SITE                            | SPECIFIC IN                                    | PUT DATA              |            |              | 1        | NOISE                | IODE       |              | S         |            |
| Highway Data                    |                                                |                       |            | Site Cor     | nditions | (Hard =              | 10, Sc     | oft = 15)    |           |            |
| Average Daily                   | Traffic (Adt):                                 | 727 vehicles          |            |              |          |                      | Autos:     | 15           |           |            |
| Peak Hour                       | Percentage:                                    | 8.10%                 |            | Me           | edium Tr | rucks (2 A           | Axles):    | 15           |           |            |
|                                 | lour Volume:                                   | 59 vehicles           |            | He           | eavy Tru | cks (3+ A            | Axles):    | 15           |           |            |
|                                 | hicle Speed:                                   | 45 mph                |            | Vehicle      | Mix      |                      |            |              |           |            |
| Near/Far La                     | ne Distance:                                   | 36 feet               |            | Veł          | icleType | e                    | Day        | Evening      | Night     | Daily      |
| Site Data                       |                                                |                       |            |              |          | Autos:               | 76.6%      | 8.9%         | 14.5%     | 87.88%     |
| Ba                              | rrier Height:                                  | 0.0 feet              |            | M            | ledium T | rucks:               | 83.3%      | 4.6%         | 12.1%     | 6.40%      |
| Barrier Type (0-W               |                                                | 0.0                   |            |              | Heavy T  | rucks:               | 76.9%      | 5.2%         | 17.9%     | 5.72%      |
| Centerline Di                   | st. to Barrier:                                | 50.0 feet             |            | Noise S      | ource F  | levation             | s (in fe   | pet)         |           |            |
| Centerline Dist.                | to Observer:                                   | 50.0 feet             |            |              | Auto     |                      | 000        |              |           |            |
| Barrier Distance                |                                                | 0.0 feet              |            | Mediu        | m Truck  |                      | 297        |              |           |            |
| Observer Height (               | ,                                              | 5.0 feet              |            | Hea          | vy Truck | s: 8.                | 004        | Grade Ad     | iustment  | : 0.0      |
|                                 | ad Elevation:                                  | 0.0 feet              |            | Laws Fr      |          | 6 Distant            | (in -      |              |           |            |
|                                 | ad Elevation:                                  | 0.0 feet              |            | Lane Eq      | Auto     | t Distand            | 915        | reet)        |           |            |
|                                 | Road Grade:<br>Left View:                      | 0.0%<br>-90.0 degrees |            | Madie        | m Truck  |                      | 915<br>726 |              |           |            |
|                                 | Right View:                                    | 90.0 degrees          |            |              | vy Truck |                      | 744        |              |           |            |
| FHWA Noise Mode                 | ol Calculations                                |                       |            |              |          |                      |            |              |           |            |
| VehicleType                     | REMEL                                          | Traffic Flow          | Distand    | e Finite     | Road     | Fresn                | e/         | Barrier Att  | en Ber    | m Atten    |
| Autos:                          | 68.46                                          | -14.70                |            | 0.31         | -1.20    |                      | -4.65      |              | 000       | 0.00       |
| Medium Trucks:                  | 79.45                                          | -26.07                |            | 0.34         | -1.20    |                      | -4.87      | 0.0          | 000       | 0.00       |
| Heavy Trucks:                   | 84.25                                          | -26.56                |            | 0.34         | -1.20    |                      | -5.43      | 0.0          | 000       | 0.00       |
| Unmitigated Noise               |                                                |                       |            |              |          |                      |            |              |           |            |
| VehicleType                     | Leq Peak Hour                                  |                       |            | q Evening    |          | Night                |            | Ldn          |           | NEL        |
| Autos:                          | 52.                                            |                       | 1.8        | 48.5         |          | 45.9                 |            | 53.6         |           | 54.        |
| Medium Trucks:                  | 52.<br>56.                                     |                       | 1.8<br>5.8 | 45.3<br>50.1 |          | 44.7<br>50.7         |            | 52.8<br>58.1 |           | 53.        |
| Heavy Trucks:<br>Vehicle Noise: | 59.                                            |                       | 5.8<br>8.4 | 50.1         |          | 50.7                 |            | 58.<br>60.3  |           | 58.<br>60. |
| Centerline Distand              | ce to Noise Co                                 | ntour (in feet)       |            |              |          |                      |            |              |           |            |
| Distance                        |                                                |                       |            | 70 dBA       | 65       | dBA                  | 6          | 0 dBA        | 55        | dBA        |
|                                 |                                                | 1                     | dn:        | 11           |          | 24                   |            | 52           | · · · · · | 113        |
|                                 |                                                |                       |            |              |          |                      |            |              |           |            |

Thursday, July 27, 2023

|                                                                     |                 |         | E PREDIC  |           |                    | /12/20   | 21)          |         |            |
|---------------------------------------------------------------------|-----------------|---------|-----------|-----------|--------------------|----------|--------------|---------|------------|
| Scenario: EAC<br>Road Name: Seaton Av.<br>Road Segment: n/o Cajalco | Rd.             |         |           |           | Vame: N<br>mber: 1 |          | alley Com    | merce ( | ;          |
| SITE SPECIFIC IN                                                    | PUT DATA        |         |           | N         | DISE M             | ODEL     | . INPUT      | 5       |            |
| Highway Data                                                        |                 |         | Site Con  | ditions ( | Hard = 1           | 10, Soi  | ft = 15)     |         |            |
| Average Daily Traffic (Adt):                                        | 696 vehicles    |         |           |           | A                  | utos:    | 15           |         |            |
| Peak Hour Percentage:                                               | 8.10%           |         | Med       | dium Tru  | cks (2 A.          | xles):   | 15           |         |            |
| Peak Hour Volume:                                                   | 56 vehicles     |         | Hea       | avy Truc  | ks (3+ A.          | xles):   | 15           |         |            |
| Vehicle Speed:                                                      | 45 mph          |         | Vehicle N | lix       |                    |          |              |         |            |
| Near/Far Lane Distance:                                             | 36 feet         |         |           | cleType   | [                  | Day      | Evening      | Night   | Daily      |
| Site Data                                                           |                 |         |           |           |                    | 6.6%     | 8.9%         | 14.5%   |            |
| Barrier Height:                                                     | 0.0 feet        |         | Me        | dium Tru  | icks: 8            | 33.3%    | 4.6%         | 12.1%   | 7.10%      |
| Barrier Type (0-Wall, 1-Berm):                                      | 0.0             |         | H         | leavy Tri | icks: 7            | 6.9%     | 5.2%         | 17.9%   | 6.349      |
| Centerline Dist. to Barrier:                                        | 50.0 feet       |         | Noise So  | uree Ele  | votiona            | lin fo   | a.#1         |         |            |
| Centerline Dist. to Observer:                                       | 50.0 feet       |         | Noise 30  | Autos     |                    | •        | e()          |         |            |
| Barrier Distance to Observer:                                       | 0.0 feet        |         | Madium    | n Trucks  | 0.0                |          |              |         |            |
| Observer Height (Above Pad):                                        | 5.0 feet        |         |           | v Trucks  |                    |          | Grade Adj    | ustment | . 0 0      |
| Pad Elevation:                                                      | 0.0 feet        |         | neav      | y mucks   | . 0.0              | 04       | orade Auj    | usunem  | . 0.0      |
| Road Elevation:                                                     | 0.0 feet        |         | Lane Equ  | ivalent   | Distanc            | e (in fe | eet)         |         |            |
| Road Grade:                                                         | 0.0%            |         |           | Autos     |                    |          |              |         |            |
| Left View:                                                          | -90.0 degrees   |         |           | n Trucks  |                    |          |              |         |            |
| Right View:                                                         | 90.0 degrees    |         | Heav      | y Trucks  | 46.7               | 44       |              |         |            |
| FHWA Noise Model Calculation                                        | 5               |         |           |           |                    |          |              |         |            |
| VehicleType REMEL                                                   | Traffic Flow D  | istance | Finite    | Road      | Fresne             | el E     | Barrier Atte | en Ber  | m Atten    |
| Autos: 68.46                                                        | -14.95          |         | 31        | -1.20     |                    | 4.65     | 0.0          |         | 0.00       |
| Medium Trucks: 79.45                                                | -25.82          |         | 34        | -1.20     |                    | 4.87     |              | 000     | 0.00       |
| Heavy Trucks: 84.25                                                 | -26.31          | 0.      | 34        | -1.20     | -                  | 5.43     | 0.0          | 000     | 0.00       |
| Unmitigated Noise Levels (with                                      |                 |         |           |           |                    |          |              |         |            |
| VehicleType Leq Peak Hou                                            |                 |         | Evening   | Leq N     | <b>J</b>           |          | Ldn          |         | NEL        |
| Autos: 52                                                           |                 |         | 48.2      |           | 45.6               |          | 53.4         |         | 53.        |
| Medium Trucks: 52                                                   |                 |         | 45.6      |           | 45.0               |          | 53.1         |         | 53.        |
| Heavy Trucks: 57<br>Vehicle Noise: 59                               |                 |         | 50.4      |           | 51.0               |          | 58.4         |         | 58.<br>60. |
|                                                                     |                 | 1       | 53.3      |           | 52.9               |          | 60.4         | ł       | 60.        |
| Centerline Distance to Noise Co                                     | ntour (in feet) | 70      | dBA       | 65 d      |                    | -        | ) dBA        | FF      | dBA        |
|                                                                     | Ldn:            |         | ава<br>12 | 000       | ва<br>25           | 00       | <i>54</i>    | 35      | ава<br>115 |
|                                                                     | CNEL:           |         | 12        |           | 25                 |          | 55           |         | 119        |
|                                                                     | CNLL.           |         | 12        |           | 20                 |          | 55           |         | 113        |

|                                  | FHWA-RD                                      | -77-108 HIGH   | WAY NC | ISE PRED                |           | MODEL (S               | 9/12/20 | 021)         |         |            |
|----------------------------------|----------------------------------------------|----------------|--------|-------------------------|-----------|------------------------|---------|--------------|---------|------------|
| Road Nam                         | o: EAC+P<br>e: Seaton Av.<br>nt: n/o Cajalco | Rd.            |        |                         |           | t Name: N<br>lumber: 1 |         | /alley Com   | merce C | ;          |
|                                  | SPECIFIC IN                                  | PUT DATA       |        |                         |           |                        |         | L INPUTS     | 5       |            |
| Highway Data                     |                                              |                |        | Site Co                 | onditions | (Hard =                | 10, Sc  | oft = 15)    |         |            |
| Average Daily                    | Traffic (Adt):                               | 767 vehicle    | es     |                         |           |                        | Autos:  | 15           |         |            |
|                                  | Percentage:                                  | 8.10%          |        |                         | fedium Tr |                        |         |              |         |            |
|                                  | our Volume:                                  | 62 vehicle     | 6      | F                       | leavy Tru | cks (3+ A              | (xles): | 15           |         |            |
|                                  | hicle Speed:                                 | 45 mph         |        | Vehicle                 | Mix       |                        |         |              |         |            |
| Near/Far Lar                     | ne Distance:                                 | 36 feet        |        | Ve                      | hicleType |                        | Day     | Evening      | Night   | Daily      |
| Site Data                        |                                              |                |        |                         |           | Autos:                 | 76.6%   | 8.9%         | 14.5%   | 87.819     |
| Bar                              | rier Heiaht:                                 | 0.0 feet       |        | 1                       | Medium T  | rucks:                 | 83.3%   | 4.6%         | 12.1%   | 6.44       |
| Barrier Type (0-W                |                                              | 0.0            |        |                         | Heavy T   | rucks:                 | 76.9%   | 5.2%         | 17.9%   | 5.759      |
| Centerline Dis                   | st. to Barrier:                              | 50.0 feet      |        | Noiso                   | Source E  | lovation               | in fr   | of           |         |            |
| Centerline Dist.                 | to Observer:                                 | 50.0 feet      |        | 140/36                  | Auto      |                        | 200     | eel)         |         |            |
| Barrier Distance                 | to Observer:                                 | 0.0 feet       |        | Mod                     | ium Truck |                        | 297     |              |         |            |
| Observer Height (J               | Above Pad):                                  | 5.0 feet       |        |                         | avy Truck |                        | 004     | Grade Adj    | ustment | · 0 0      |
| Pa                               | ad Elevation:                                | 0.0 feet       |        |                         |           |                        |         |              |         |            |
|                                  | ad Elevation:                                | 0.0 feet       |        | Lane E                  | quivalen  |                        |         | feet)        |         |            |
| F                                | Road Grade:                                  | 0.0%           |        |                         | Auto      |                        |         |              |         |            |
|                                  | Left View:                                   | -90.0 degre    |        |                         | um Truck  |                        |         |              |         |            |
|                                  | Right View:                                  | 90.0 degree    | 2S     | He                      | avy Truck | s: 46.7                | 744     |              |         |            |
| FHWA Noise Mode                  |                                              |                |        |                         |           |                        |         |              |         |            |
| VehicleType                      | REMEL                                        | Traffic Flow   | Distan |                         | e Road    | Fresn                  | -       | Barrier Atte |         | m Atten    |
| Autos:                           | 68.46                                        | -14.47         |        | 0.31                    | -1.20     |                        | -4.65   | 0.0          |         | 0.00       |
| Medium Trucks:                   | 79.45                                        | -25.82         |        | 0.34                    | -1.20     |                        | -4.87   | 0.0          |         | 0.00       |
| Heavy Trucks:                    | 84.25                                        | -26.31         |        | 0.34                    | -1.20     |                        | -5.43   | 0.0          | 100     | 0.00       |
| Unmitigated Noise<br>VehicleType | Levels (with<br>Leg Peak Hou                 |                |        | ttenuation<br>g Evening |           | Night                  |         | Ldn          | 0       | NEL        |
| Autos                            | 53                                           |                | 52.1   | 48.                     |           | 46.1                   |         | 53.8         |         | 54.        |
| Medium Trucks:                   | 52                                           |                | 52.1   | 45                      |           | 45.0                   |         | 53.1         |         | 53         |
| Heavy Trucks:                    | 57                                           |                | 56.1   | 50.                     | -         | 51.0                   |         | 58.4         |         | 58         |
| Vehicle Noise:                   | 59                                           |                | 58.6   | 53.                     |           | 53.0                   |         | 60.5         |         | 60.        |
|                                  |                                              |                |        |                         |           |                        |         |              |         |            |
| Centerline Distanc               | e to Noise Co                                | ntour (in feet | )      |                         |           |                        |         |              |         |            |
| Centerline Distanc               | e to Noise Co                                | ntour (in feet |        | 70 dBA                  | 65        | dBA                    | 6       | 0 dBA        | 55      | dBA        |
| Centerline Distanc               | e to Noise Co                                | ntour (in feet | Ldn:   | 70 dBA<br>12            |           | dBA<br>25              | e       | 60 dBA<br>54 | 55      | dBA<br>117 |

|                                    | FHWA-RD        | 0-77-108 HIGH    | WAY N        | OISE   | PREDIC    |                    | IODEL (9             | /12/2   | 021)         |         |            |
|------------------------------------|----------------|------------------|--------------|--------|-----------|--------------------|----------------------|---------|--------------|---------|------------|
| Scenari<br>Road Nam<br>Road Segmer | e: Seaton Av.  | Rd.              |              |        |           |                    | Name: N<br>lumber: 1 |         | /alley Com   | merce ( | >          |
| SITE S                             | SPECIFIC IN    | PUT DATA         |              |        |           |                    |                      |         | L INPUTS     | 3       |            |
| Highway Data                       |                |                  |              | S      | Site Con  | ditions            | (Hard =              | 10, Sc  | oft = 15)    |         |            |
| Average Daily                      | Traffic (Adt): | 766 vehicle      | es           |        |           |                    |                      | Autos:  | 15           |         |            |
| Peak Hour                          | Percentage:    | 8.10%            |              |        | Me        | dium Tr            | ucks (2 A            | xles):  | 15           |         |            |
| Peak H                             | our Volume:    | 62 vehicle       | s            |        | He        | avy Tru            | cks (3+ A            | xles):  | 15           |         |            |
| Vel                                | nicle Speed:   | 45 mph           |              | V      | /ehicle I | Mix                |                      |         |              |         |            |
| Near/Far Lar                       | ne Distance:   | 36 feet          |              |        |           | icleType           |                      | Dav     | Evening      | Niaht   | Dailv      |
| Site Data                          |                |                  |              |        |           |                    |                      | 76.6%   | •            | 14.5%   |            |
| Bar                                | rier Height:   | 0.0 feet         |              |        | Me        | edium T            | rucks:               | 83.3%   | 4.6%         | 12.1%   | 7.109      |
| Barrier Type (0-W                  | •              | 0.0              |              |        | ŀ         | leavy T            | rucks:               | 76.9%   | 5.2%         | 17.9%   | 6.349      |
| Centerline Dis                     | . ,            | 50.0 feet        |              |        |           |                    |                      | 6 F     | - 41         |         |            |
| Centerline Dist. I                 | o Observer:    | 50.0 feet        |              | N      | voise so  | Auto               | evations             |         | et)          |         |            |
| Barrier Distance t                 | o Observer:    | 0.0 feet         |              |        |           | Auto<br>n Truck    |                      |         |              |         |            |
| Observer Height (J                 | Above Pad):    | 5.0 feet         |              |        |           | т тrucк<br>v Truck |                      |         | Grade Adj    | ustmont |            |
| Pa                                 | d Elevation:   | 0.0 feet         |              |        | neav      | y muck             | s. o.u               | 104     | Grade Auj    | usunen  | . 0.0      |
| Roa                                | d Elevation:   | 0.0 feet         |              | L      | ane Equ   | uivalent           | t Distanc            | e (in i | feet)        |         |            |
| F                                  | Road Grade:    | 0.0%             |              |        |           | Auto               | s: 46.9              | 915     |              |         |            |
|                                    | Left View:     | -90.0 degree     | es           |        | Mediur    | n Truck            | s: 46.7              | 26      |              |         |            |
|                                    | Right View:    | 90.0 degree      | es           |        | Heav      | ry Truck           | s: 46.7              | '44     |              |         |            |
| FHWA Noise Mode                    | Calculations   | 5                |              |        |           |                    |                      |         |              |         |            |
| VehicleType                        | REMEL          | Traffic Flow     | Dista        | nce    | Finite    | Road               | Fresn                | e/      | Barrier Atte | en Bei  | rm Atten   |
| Autos:                             | 68.46          | -14.54           |              | 0.31   |           | -1.20              |                      | 4.65    | 0.0          | 00      | 0.00       |
| Medium Trucks:                     | 79.45          | -25.40           |              | 0.34   | 4         | -1.20              |                      | 4.87    | 0.0          | 00      | 0.00       |
| Heavy Trucks:                      | 84.25          | -25.89           |              | 0.34   | 4         | -1.20              |                      | 5.43    | 0.0          | 00      | 0.00       |
| Unmitigated Noise                  | Levels (with   | out Topo and     | barrier      | attenı | uation)   |                    |                      |         |              |         |            |
|                                    | Leq Peak Hou   |                  |              | Leq Ev |           | Leq                | Night                |         | Ldn          |         | NEL        |
| Autos:                             | 53             |                  | 52.0         |        | 48.7      |                    | 46.0                 |         | 53.8         |         | 54.        |
| Medium Trucks:                     | 53             |                  | 52.5         |        | 46.0      |                    | 45.4                 |         | 53.5         |         | 53.        |
| Heavy Trucks:                      | 57             |                  | 56.5         |        | 50.8      |                    | 51.4                 |         | 58.8         |         | 59.        |
| Vehicle Noise:                     | 59             | .9               | 58.9         |        | 53.7      |                    | 53.3                 |         | 60.9         | )       | 61.        |
| Centerline Distanc                 | e to Noise Co  | ontour (in feet, | )            |        |           |                    |                      |         |              |         |            |
|                                    |                |                  |              | 70 d   | 1BA       | 65                 | dBA                  | 6       | 60 dBA       | 55      | dBA        |
|                                    |                |                  |              |        |           |                    |                      |         |              |         |            |
|                                    |                |                  | Ldn:<br>NEL: |        | 12<br>13  |                    | 26<br>27             |         | 57<br>59     |         | 123<br>127 |

| Scenario: HY+P                              |                       |          |                    | Project Na           | me Mead        | Valley Con           | merce (  |                   |  |  |  |
|---------------------------------------------|-----------------------|----------|--------------------|----------------------|----------------|----------------------|----------|-------------------|--|--|--|
| Road Name: Seaton Av                        |                       |          |                    |                      | ber: 15091     |                      |          | ·                 |  |  |  |
| Road Segment: n/o Cajalco                   |                       |          |                    | 000 110/1            | 20. 1000       |                      |          |                   |  |  |  |
| SITE SPECIFIC II                            | IPUT DATA             |          | NOISE MODEL INPUTS |                      |                |                      |          |                   |  |  |  |
| Highway Data                                |                       |          | Site Con           | ditions (Ha          | ard = 10, S    | oft = 15)            |          |                   |  |  |  |
| Average Daily Traffic (Adt):                | 837 vehicles          |          |                    |                      | Autos          | : 15                 |          |                   |  |  |  |
| Peak Hour Percentage:                       | 8.10%                 |          | Me                 | dium Truck           | s (2 Axles)    | : 15                 |          |                   |  |  |  |
| Peak Hour Volume:                           | 68 vehicles           |          | Hei                | avy Trucks           | (3+ Axles)     | : 15                 |          |                   |  |  |  |
| Vehicle Speed:                              | 45 mph                | ŀ        | Vehicle N          | lix                  |                |                      |          |                   |  |  |  |
| Near/Far Lane Distance:                     | 36 feet               | Ē        | Vehi               | cleType              | Day            | Evening              | Night    | Daily             |  |  |  |
| Site Data                                   |                       |          |                    | Auto                 | os: 76.69      | 6 8.9%               | 14.5%    | 87.71             |  |  |  |
| Barrier Height:                             | 0.0 feet              |          | Me                 | edium Truc           | ks: 83.39      | 6 4.6%               | 12.1%    | 6.499             |  |  |  |
| Barrier Type (0-Wall, 1-Berm):              | 0.0                   |          | F                  | leavy Truc           | ks: 76.9       | 6 5.2%               | 17.9%    | 5.809             |  |  |  |
| Centerline Dist. to Barrier:                | 50.0 feet             | -        | Noise So           | urce Eleva           | ations (in t   | feet)                |          |                   |  |  |  |
| Centerline Dist. to Observer:               | 50.0 feet             | ŀ        |                    | Autos:               | 0.000          |                      |          |                   |  |  |  |
| Barrier Distance to Observer:               | 0.0 feet              |          | Mediur             | n Trucks:            | 2.297          |                      |          |                   |  |  |  |
| Observer Height (Above Pad):                | 5.0 feet              |          | Heav               | y Trucks:            | 8.004          | Grade Ad             | iustment | : 0.0             |  |  |  |
| Pad Elevation:                              | 0.0 feet              |          | Long E-            | ukualant Di          | atoneo (!      | faati                |          |                   |  |  |  |
| Road Elevation:<br>Road Grade:              | 0.0 feet<br>0.0%      | -        | Lane Equ           | ivalent Di<br>Autos: | 46.915         | leelj                |          |                   |  |  |  |
| Road Grade:<br>Left View:                   | 0.0%<br>-90.0 degrees |          | Mediur             | n Trucks:            | 46.915         |                      |          |                   |  |  |  |
| Right View:                                 | 90.0 degrees          |          |                    | y Trucks:            | 46.744         |                      |          |                   |  |  |  |
| right non.                                  | 50.0 dog.000          |          |                    | ,                    |                |                      |          |                   |  |  |  |
| FHWA Noise Model Calculation                |                       |          |                    |                      |                | _                    |          |                   |  |  |  |
| VehicleType REMEL                           |                       | listance | Finite             |                      | Fresnel        | Barrier Att          |          | m Atten           |  |  |  |
| Autos: 68.46                                |                       | 0.3      |                    | -1.20                | -4.65          |                      | 000      | 0.00              |  |  |  |
| Medium Trucks: 79.45<br>Heavy Trucks: 84.25 |                       | 0.3      |                    | -1.20<br>-1.20       | -4.87<br>-5.43 |                      | 000      | 0.00              |  |  |  |
| Heavy Trucks: 84.25                         | -20.89                | 0.3      | 54                 | -1.20                | -5.43          | 0.0                  | 000      | 0.00              |  |  |  |
| Unmitigated Noise Levels (with              |                       | i        | ,                  |                      |                |                      |          |                   |  |  |  |
| VehicleType Leq Peak Ho                     |                       |          | vening             | Leq Nig              |                | Ldn                  |          | NEL               |  |  |  |
|                                             | 3.5 52.4<br>3.2 52.5  |          | 49.1               |                      | 46.5           | 54.<br>53.           | -        | 54.<br>53.        |  |  |  |
|                                             | 3.2 52.5<br>7.5 56.5  |          | 46.0<br>50.8       |                      | 45.4<br>51.4   | 53.                  |          | 53.<br>59.        |  |  |  |
|                                             |                       |          | 53.8               |                      | 53.4           | 60.9                 |          | 61                |  |  |  |
|                                             |                       | ,        | 55.0               |                      | 00.4           | 00.                  | ,        | 01.               |  |  |  |
| Centerline Distance to Noise C              | ontour (in feet)      | 70       | dBA                | 65 dB/               | 4              | 60 dBA               | 55       | dBA               |  |  |  |
|                                             | Ldn.                  |          | <i>ава</i><br>12   | 00 <i>aB</i> /       | 27             | <i>60 ав</i> А<br>58 |          | <i>ав</i> я<br>12 |  |  |  |
|                                             | Lun                   | -        | 12                 |                      | 21             | 58                   |          | 123               |  |  |  |

Thursday, July 27, 2023

|                     | FHWA-RD       | -77-108 HIGH    | WAY    | NOISE   | PREDIC                               | TION M   | ODEL (9   | /12/2      | 021)         |                      |         |  |
|---------------------|---------------|-----------------|--------|---------|--------------------------------------|----------|-----------|------------|--------------|----------------------|---------|--|
| Scenario            | E             |                 |        |         | Project Name: Mead Valley Commerce C |          |           |            |              |                      |         |  |
| Road Name           | Seaton Av.    |                 |        |         |                                      | Job N    | umber: 1  | 5091       |              |                      |         |  |
| Road Segment        | : s/o Cajalco | Rd.             |        |         |                                      |          |           |            |              |                      |         |  |
|                     | PECIFIC IN    | PUT DATA        |        |         |                                      |          |           |            | L INPUTS     | ;                    |         |  |
| Highway Data        |               |                 |        | 3       | Site Con                             | ditions  | (Hard = 1 | 10, S      | oft = 15)    |                      |         |  |
| Average Daily T     | raffic (Adt): | 1,398 vehicle   | s      |         |                                      |          | A         | utos       | 15           |                      |         |  |
| Peak Hour P         | ercentage:    | 8.10%           |        |         |                                      |          | ucks (2 A |            |              |                      |         |  |
| Peak Ho             | ur Volume:    | 113 vehicles    |        |         | Hea                                  | avy Truo | cks (3+ A | xles).     | 15           |                      |         |  |
| Vehi                | icle Speed:   | 45 mph          |        | 5       | Vehicle N                            | lix      |           |            |              |                      |         |  |
| Near/Far Lane       | e Distance:   | 36 feet         |        | -       |                                      | cleType  |           | Dav        | Evening      | Night                | Daily   |  |
| Site Data           |               |                 |        |         |                                      |          | Autos:    | ,<br>76.6% | 6 8.9%       | 14.5%                | 86.56   |  |
| Barr                | ier Height:   | 0.0 feet        |        |         | Me                                   | dium Ti  | rucks: 8  | 33.3%      | 6 4.6%       | 12.1%                | 7.10    |  |
| Barrier Type (0-Wa  |               | 0.0             |        |         | F                                    | leavy Ti | rucks:    | 76.9%      | 5.2%         | 17.9%                | 6.34    |  |
| Centerline Dist     | to Barrier:   | 50.0 feet       |        |         | Noise So                             | urco El  | ovations  | (in f      | oot)         |                      |         |  |
| Centerline Dist. to | Observer:     | 50.0 feet       |        | Ľ       | 140136 30                            | Auto:    |           |            | een          |                      |         |  |
| Barrier Distance to | Observer:     | 0.0 feet        |        |         | Madium                               | n Truck  | 0.0       |            |              |                      |         |  |
| Observer Height (A  | bove Pad):    | 5.0 feet        |        |         |                                      | y Truck  |           |            | Grade Adju   | istment <sup>.</sup> | 0.0     |  |
| Pac                 | Elevation:    | 0.0 feet        |        |         | Tieav                                | y muck   | 5. 0.0    | 04         | 0/000//00/0  | ioumonia.            | 0.0     |  |
| Road                | Elevation:    | 0.0 feet        |        | 1       | Lane Equ                             | iivalent | Distanc   | e (in      | feet)        |                      |         |  |
| Re                  | oad Grade:    | 0.0%            |        |         |                                      | Auto     |           | 15         |              |                      |         |  |
|                     | Left View:    | -90.0 degree    | s      |         | Mediur                               | n Truck  | s: 46.7   | 26         |              |                      |         |  |
| 1                   | Right View:   | 90.0 degree     | s      |         | Heav                                 | y Truck  | s: 46.7   | 44         |              |                      |         |  |
| FHWA Noise Model    | Calculations  | 5               |        |         |                                      |          |           |            |              |                      |         |  |
| VehicleType         | REMEL         | Traffic Flow    | Dist   | ance    | Finite                               | Road     | Fresne    | e/         | Barrier Atte | n Berr               | m Atter |  |
| Autos:              | 68.46         | -11.92          |        | 0.3     | 1                                    | -1.20    | -         | 4.65       | 0.0          | 00                   | 0.00    |  |
| Medium Trucks:      | 79.45         | -22.79          |        | 0.3     | 4                                    | -1.20    | -         | 4.87       | 0.0          | 00                   | 0.00    |  |
| Heavy Trucks:       | 84.25         | -23.28          |        | 0.3     | 4                                    | -1.20    | -         | 5.43       | 0.0          | 00                   | 0.00    |  |
| Unmitigated Noise   | Levels (with  | out Topo and    | barrie | r atten | uation)                              |          |           |            |              |                      |         |  |
| VehicleType L       | eq Peak Hou   | r Leq Day       |        | Leq E   | vening                               | Leq      | Night     |            | Ldn          | CN                   | IEL     |  |
| Autos:              | 55            |                 | 54.6   |         | 51.3                                 |          | 48.6      |            | 56.4         |                      | 56      |  |
| Medium Trucks:      | 55            |                 | 55.1   |         | 48.6                                 |          | 48.0      |            | 56.1         |                      | 56      |  |
| Heavy Trucks:       | 60            |                 | 59.1   |         | 53.4                                 |          | 54.0      |            | 61.4         |                      | 61      |  |
| Vehicle Noise:      | 62            | .5              | 51.5   |         | 56.3                                 |          | 55.9      | _          | 63.5         |                      | 63      |  |
| Centerline Distance | to Noise Co   | ntour (in feet) |        |         |                                      |          |           |            |              |                      |         |  |
|                     |               |                 |        | 70 0    | dBA                                  | 65       | dBA       |            | 60 dBA       | 55                   | dBA     |  |
|                     |               |                 | dn:    |         | 18                                   |          | 40        |            | 85           |                      | 18      |  |
|                     |               |                 | IEL    |         | 10                                   |          | 40        |            | 88           |                      | 19      |  |

|                   | FHWA-RI                       | D-77-108 HIGH   | WAY  | NOISE  | PREDIC    | TION M             | ODEL (9/12              | /2021)             |          |         |
|-------------------|-------------------------------|-----------------|------|--------|-----------|--------------------|-------------------------|--------------------|----------|---------|
|                   | rio: E+P<br>ne: Seaton Av.    |                 |      |        |           |                    | Name: Mea<br>umber: 150 | d Valley Con<br>91 | nmerce C | ;       |
| Road Segme        | Road Segment: s/o Cajalco Rd. |                 |      |        |           |                    |                         |                    |          |         |
|                   | SPECIFIC IN                   | IPUT DATA       |      |        |           |                    |                         | DEL INPUT          | S        |         |
| Highway Data      |                               |                 |      | 5      | Site Con  | ditions            | (Hard = 10,             | Soft = 15)         |          |         |
| Average Daily     | Traffic (Adt):                | 2,869 vehicle   | es   |        |           |                    | Auto                    | os: 15             |          |         |
| Peak Hour         | Percentage:                   | 8.10%           |      |        | Me        | dium Tri           | ucks (2 Axle            | s): 15             |          |         |
| Peak H            | lour Volume:                  | 232 vehicle     | s    |        | He        | avy Tru            | cks (3+ Axle            | s): 15             |          |         |
| Ve                | hicle Speed:                  | 45 mph          |      | 1      | /ehicle l | Mix                |                         |                    |          |         |
| Near/Far La       | ne Distance:                  | 36 feet         |      | -      |           | icleType           | Day                     | Evening            | Night    | Daily   |
| Site Data         |                               |                 |      |        | VCIII     |                    | Autos: 76.0             |                    |          | 82.00   |
|                   |                               |                 |      |        | 14        | ,<br>edium Ti      |                         |                    | 12.1%    |         |
|                   | rrier Height:                 | 0.0 feet<br>0.0 |      |        |           | leavy Ti           |                         |                    |          | 13.51   |
| Barrier Type (0-V | . ,                           |                 |      |        | ,         | icavy n            | uono. 10.               | 570 5.270          | 17.570   | 10.01   |
|                   | st. to Barrier:               | 50.0 feet       |      | ٨      | loise Sc  | ource El           | evations (in            | i feet)            |          |         |
| Centerline Dist.  |                               | 50.0 feet       |      |        |           | Auto               | s: 0.000                |                    |          |         |
| Barrier Distance  |                               | 0.0 feet        |      |        | Mediui    | m Truck            | s: 2.297                |                    |          |         |
| Observer Height   | · ,                           | 5.0 feet        |      |        | Heav      | y Truck            | s: 8.004                | Grade Ad           | justment | : 0.0   |
| -                 | ad Elevation:                 | 0.0 feet        |      |        | ana Ea    | vivalant           | Distance (i             | in fact)           |          |         |
|                   | ad Elevation:                 | 0.0 feet        |      | -      | ane Equ   | Auto               |                         | n leelj            |          |         |
|                   | Road Grade:                   | 0.0%            |      |        | Madiu     | Auto<br>m Truck    |                         |                    |          |         |
|                   | Left View:                    | -90.0 degree    |      |        |           | n Truck<br>v Truck |                         |                    |          |         |
|                   | Right View:                   | 90.0 degree     | es   |        | neav      | y muck             | 5. 40.744               |                    |          |         |
| FHWA Noise Mod    |                               | -               |      |        |           |                    |                         |                    |          |         |
| VehicleType       | REMEL                         | Traffic Flow    | Dis  | tance  | Finite    |                    | Fresnel                 | Barrier Att        |          | m Atter |
| Autos:            |                               | -9.04           |      | 0.31   |           | -1.20              | -4.6                    |                    | 000      | 0.0     |
| Medium Trucks:    |                               | -21.65          |      | 0.34   |           | -1.20              | -4.8                    |                    | 000      | 0.0     |
| Heavy Trucks:     | 84.25                         | -16.87          |      | 0.34   | 1         | -1.20              | -5.4                    | 13 0.0             | 000      | 0.0     |
| Unmitigated Nois  |                               |                 |      |        |           |                    |                         |                    |          |         |
| VehicleType       | Leq Peak Hou                  |                 |      | Leq Ev |           | Leq                | Night                   | Ldn                |          | NEL     |
| Autos:            | 58                            |                 | 57.5 |        | 54.2      |                    | 51.5                    | 59.3               |          | 59      |
| Medium Trucks:    | 56                            |                 | 56.3 |        | 49.7      |                    | 49.1                    | 57.3               |          | 57      |
| Heavy Trucks:     | 66                            | -               | 65.5 |        | 59.8      |                    | 60.4                    | 67.                |          | 68      |
| Vehicle Noise:    | 67                            | .6              | 66.6 |        | 61.2      |                    | 61.2                    | 68.                | 7        | 68      |
| Centerline Distan | ce to Noise Co                | ontour (in feet | )    |        |           |                    |                         |                    | 1 .      |         |
|                   |                               |                 | L    | 70 d   |           | 65                 | dBA                     | 60 dBA             |          | dBA     |
|                   |                               |                 | Ldn: |        | 41        |                    | 88                      | 190                | )        | 40      |
|                   |                               |                 | NEL: |        | 42        |                    | 91                      | 196                |          | 42      |

| F                                                  | HWA-RD-   | 77-108 HIGH    | WAY N        | OISE   | PREDIC   | TION M            | ODEL (9             | /12/20    | )21)         |         |          |
|----------------------------------------------------|-----------|----------------|--------------|--------|----------|-------------------|---------------------|-----------|--------------|---------|----------|
| Scenario: EA<br>Road Name: Se<br>Road Segment: s/o | eaton Av. | Rd.            |              |        |          |                   | Name: N<br>umber: 1 |           | /alley Com   | merce C | ;        |
| SITE SPEC                                          | CIFIC INF | PUT DATA       |              |        |          |                   |                     |           | L INPUTS     | 6       |          |
| Highway Data                                       |           |                |              | S      | ite Con  | ditions           | (Hard =             | 10, So    | ft = 15)     |         |          |
| Average Daily Traffi                               | c (Adt):  | 1,484 vehicle  | es           |        |          |                   |                     | Autos:    | 15           |         |          |
| Peak Hour Perce                                    | entage:   | 8.10%          |              |        | Med      | dium Tru          | ucks (2 A           | xles):    | 15           |         |          |
| Peak Hour V                                        | olume:    | 120 vehicle    | s            |        | Hea      | avy Truc          | cks (3+ A           | xles):    | 15           |         |          |
| Vehicle                                            | Speed:    | 45 mph         |              | 1      | ehicle N | liv               |                     |           |              |         |          |
| Near/Far Lane Di                                   | stance:   | 36 feet        |              |        |          | cleType           |                     | Dav       | Evening      | Night   | Daily    |
| Site Data                                          |           |                |              |        | VCIII    |                   |                     | 76.6%     | •            | 14.5%   |          |
| Barrier I                                          | loiaht.   | 0.0 feet       |              |        | Me       | edium Tr          | rucks:              | 83.3%     | 4.6%         | 12.1%   | 7.10     |
| Barrier Type (0-Wall, 1-                           |           | 0.0            |              |        | H        | leavy Tr          | rucks:              | 76.9%     | 5.2%         | 17.9%   | 6.34     |
| Centerline Dist. to                                | ,         | 50.0 feet      |              |        |          |                   |                     |           |              |         |          |
| Centerline Dist. to Ob                             |           | 50.0 feet      |              | ^      | loise So |                   | evations            |           | et)          |         |          |
| Barrier Distance to Ob                             | server:   | 0.0 feet       |              |        |          | Auto:<br>n Truck: |                     | 00        |              |         |          |
| Observer Height (Abov                              | e Pad):   | 5.0 feet       |              |        |          |                   |                     | 97<br>104 | Grade Adj    | untmont | 0.0      |
| Pad Ele                                            | evation:  | 0.0 feet       |              |        | neav     | y Trucks          | 5. 0.0              | 104       | Grade Auj    | usunen. | 0.0      |
| Road Ele                                           | evation:  | 0.0 feet       |              | L      | ane Equ  | ıivalent          | Distanc             | e (in f   | eet)         |         |          |
| Road                                               | Grade:    | 0.0%           |              |        |          | Autos             | s: 46.9             | 915       |              |         |          |
| Lei                                                | ft View:  | -90.0 degre    | es           |        | Mediur   | n Trucks          | s: 46.7             | 26        |              |         |          |
| Righ                                               | t View:   | 90.0 degre     | es           |        | Heav     | y Trucks          | s: 46.7             | '44       |              |         |          |
| FHWA Noise Model Cal                               | culations |                |              |        |          |                   |                     |           |              |         |          |
| VehicleType RE                                     | MEL       | Traffic Flow   | Dista        | nce    | Finite   | Road              | Fresn               | e/        | Barrier Atte | en Ber  | m Atter  |
| Autos:                                             | 68.46     | -11.66         |              | 0.31   |          | -1.20             |                     | 4.65      | 0.0          | 00      | 0.00     |
| Medium Trucks:                                     | 79.45     | -22.53         |              | 0.34   |          | -1.20             |                     | 4.87      | 0.0          | 00      | 0.00     |
| Heavy Trucks:                                      | 84.25     | -23.02         |              | 0.34   | ļ        | -1.20             |                     | -5.43     | 0.0          | 00      | 0.00     |
| Unmitigated Noise Lev                              |           |                | barrier      | attenı | uation)  |                   |                     |           |              |         |          |
| VehicleType Leq I                                  | Peak Hour | Leq Day        | / L          | .eq Ev | ening    | Leq               | Night               |           | Ldn          |         | VEL      |
| Autos:                                             | 55.9      | -              | 54.9         |        | 51.5     |                   | 48.9                |           | 56.6         |         | 57       |
| Medium Trucks:                                     | 56.1      |                | 55.4         |        | 48.8     |                   | 48.3                |           | 56.4         |         | 56       |
| Heavy Trucks:                                      | 60.4      | -              | 59.4         |        | 53.6     |                   | 54.3                |           | 61.7         |         | 61       |
| Vehicle Noise:                                     | 62.7      | 7              | 61.8         |        | 56.5     |                   | 56.2                |           | 63.7         |         | 63       |
| Centerline Distance to                             | Noise Cor | ntour (in feet | )            |        |          |                   |                     |           |              |         |          |
|                                                    |           |                |              | 70 d   |          | 65 (              | dBA                 | 6         | i0 dBA       | 55      | dBA      |
|                                                    |           |                |              |        |          |                   |                     |           |              |         |          |
|                                                    |           |                | Ldn:<br>NEL: |        | 19<br>20 |                   | 41<br>43            |           | 89<br>92     |         | 19<br>19 |

| FH                                                     | WA-RD-7                  | 77-108 HIGHV         | VAY NC     | DISE F             | PREDIC             | TION N  | NODEL (       | 9/12/2   | 021)         |          |            |  |
|--------------------------------------------------------|--------------------------|----------------------|------------|--------------------|--------------------|---------|---------------|----------|--------------|----------|------------|--|
| Scenario: EAC<br>Road Name: Sea<br>Road Segment: s/o ( |                          |                      |            |                    | t Name:<br>lumber: |         | Valley Com    | imerce C | ;            |          |            |  |
| SITE SPECI                                             | FIC INP                  | UT DATA              |            | NOISE MODEL INPUTS |                    |         |               |          |              |          |            |  |
| Highway Data                                           |                          |                      |            | S                  | ite Cond           | ditions | (Hard =       | 10, So   | oft = 15)    |          |            |  |
| Average Daily Traffic                                  | 5                        |                      |            |                    |                    | Autos:  | 15            |          |              |          |            |  |
| Peak Hour Percen                                       | tage:                    | 8.10%                |            |                    | Med                | dium Ti | rucks (2 /    | Axles):  | 15           |          |            |  |
| Peak Hour Vo                                           |                          | 239 vehicles         |            |                    | Hea                | avy Tru | icks (3+ /    | Axles):  | 15           |          |            |  |
| Vehicle S                                              |                          | 45 mph               |            | V                  | ehicle N           | lix     |               |          |              |          |            |  |
| Near/Far Lane Dist                                     | ance:                    | 36 feet              |            |                    | Vehi               | cleTyp  | e             | Day      | Evening      | Night    | Daily      |  |
| Site Data                                              |                          |                      |            |                    |                    |         | Autos:        | 76.6%    | 8.9%         | 14.5%    | 82.149     |  |
| Barrier He                                             | Barrier Height: 0.0 feet |                      |            |                    |                    |         | rucks:        | 83.3%    | 4.6%         | 12.1%    | 4.56%      |  |
| Barrier Type (0-Wall, 1-B                              | erm):                    | 0.0                  |            |                    | H                  | leavy 1 | rucks:        | 76.9%    | 5.2%         | 17.9%    | 13.30%     |  |
| Centerline Dist. to Ba                                 | arrier:                  | 50.0 feet            |            | N                  | oise So            | urce E  | levation      | s (in fe | eet)         |          |            |  |
| Centerline Dist. to Obse                               |                          | 50.0 feet            |            |                    |                    | Auto    |               | 000      |              |          |            |  |
| Barrier Distance to Obse                               |                          | 0.0 feet             |            |                    | Mediun             | n Truck | (s: 2.        | 297      |              |          |            |  |
| Observer Height (Above                                 |                          | 5.0 feet             |            |                    | Heav               | y Truck | (s: 8.        | 004      | Grade Adj    | iustment | : 0.0      |  |
| Pad Elev<br>Road Elev                                  |                          | 0.0 feet<br>0.0 feet |            | 1                  | ano Fai            | uivalon | t Distan      | no (in   | foot)        |          |            |  |
| Road G                                                 |                          | 0.0%                 |            | _                  | uno 240            | Auto    |               | 915      |              |          |            |  |
|                                                        |                          | -90.0 degrees        | ;          |                    | Mediun             |         |               | 726      |              |          |            |  |
| Right                                                  |                          | 90.0 degrees         |            |                    | Heav               | y Trucł | (s: 46.       | 744      |              |          |            |  |
| FHWA Noise Model Calc                                  | ulations                 |                      |            |                    |                    |         |               |          |              |          |            |  |
| VehicleType REN                                        |                          | Traffic Flow         | Distan     |                    | Finite             |         | Fresr         | -        | Barrier Atte |          | m Atten    |  |
| Autos:                                                 | 68.46                    | -8.90                |            | 0.31               |                    | -1.20   |               | -4.65    |              | 000      | 0.00       |  |
| Medium Trucks:                                         | 79.45                    | -21.45               |            | 0.34               |                    | -1.20   |               | -4.87    |              | 000      | 0.00       |  |
| Heavy Trucks:                                          | 84.25                    | -16.81               |            | 0.34               |                    | -1.20   |               | -5.43    | 0.0          | 000      | 0.00       |  |
| Unmitigated Noise Level                                |                          |                      |            |                    |                    |         |               | 1        |              |          |            |  |
| VehicleType Leq Pe<br>Autos:                           | ak Hour<br>58.7          | Leq Day              | 7.6        | eq Eve             | ening<br>54.3      | Leq     | Night<br>51.7 | 7        | Ldn 59.4     |          | NEL<br>59. |  |
| Medium Trucks:                                         | 57.1                     |                      | 7.0<br>6.5 |                    | 49.9               |         | 49.3          |          | 57.5         |          | 59.        |  |
| Heavy Trucks:                                          | 66.6                     |                      | 5.6        |                    | 59.9               |         | 60.5          |          | 67.9         |          | 68.        |  |
| Vehicle Noise:                                         | 67.6                     |                      | 6.6        |                    | 61.3               |         | 61.3          |          | 68.8         |          | 69.        |  |
| Centerline Distance to N                               | oise Con                 | tour (in feet)       |            |                    |                    |         |               |          |              |          |            |  |
|                                                        |                          |                      |            | 70 dł              | BA                 | 65      | dBA           | 6        | 60 dBA       | 55       | dBA        |  |
|                                                        |                          |                      | dn:        |                    | 41                 |         | 89            |          | 192          |          | 41         |  |
|                                                        |                          |                      | EL:        |                    | 43                 |         | 92            |          | 198          |          | 428        |  |

Thursday, July 27, 2023

| FHWA-F                         | RD-77-108 HIGH    | WAY NO | ISE PREDIO |                                      | ODEL (9/1  | 12/2021)        |               |  |  |  |  |
|--------------------------------|-------------------|--------|------------|--------------------------------------|------------|-----------------|---------------|--|--|--|--|
| Scenario: HY                   |                   |        |            | Project Name: Mead Valley Commerce C |            |                 |               |  |  |  |  |
| Road Name: Seaton A            |                   | Job Ni | imber: 15  | 091                                  |            |                 |               |  |  |  |  |
| Road Segment: s/o Cajalo       | o Rd.             |        |            |                                      |            |                 |               |  |  |  |  |
| SITE SPECIFIC                  | INPUT DATA        |        |            |                                      |            | DEL INPUTS      | 1             |  |  |  |  |
| Highway Data                   |                   |        | Site Cor   | ditions (                            | Hard = 10  | ), Soft = 15)   |               |  |  |  |  |
| Average Daily Traffic (Adt):   | 1,632 vehicle     | s      |            |                                      |            | <i>itos:</i> 15 |               |  |  |  |  |
| Peak Hour Percentage:          | 8.10%             |        |            |                                      | cks (2 Axi | ,               |               |  |  |  |  |
| Peak Hour Volume:              |                   | ;      | He         | avy Truc                             | ks (3+ Axi | les): 15        |               |  |  |  |  |
| Vehicle Speed:                 |                   |        | Vehicle    | Mix                                  |            |                 |               |  |  |  |  |
| Near/Far Lane Distance:        | 36 feet           |        |            | icleType                             | Da         | ay Evening      | Night Daily   |  |  |  |  |
| Site Data                      |                   |        |            |                                      |            | 6.6% 8.9%       | 14.5% 86.56%  |  |  |  |  |
| Barrier Height:                | 0.0 feet          |        | М          | edium Tru                            | ucks: 83   | 3.3% 4.6%       | 12.1% 7.10%   |  |  |  |  |
| Barrier Type (0-Wall, 1-Berm): |                   |        |            | Heavy Tru                            | ucks: 76   | 6.9% 5.2%       | 17.9% 6.34%   |  |  |  |  |
| Centerline Dist. to Barrier:   |                   |        |            | -                                    |            |                 |               |  |  |  |  |
| Centerline Dist. to Observer:  | 50.0 feet         |        | Noise Se   |                                      | vations (  |                 |               |  |  |  |  |
| Barrier Distance to Observer:  | 0.0 feet          |        |            | Autos                                | . 0.00     | -               |               |  |  |  |  |
| Observer Height (Above Pad):   | 5.0 feet          |        |            | m Trucks                             |            |                 | ustment: 0.0  |  |  |  |  |
| Pad Elevation:                 | 0.0 feet          |        | Hea        | /y Trucks                            | : 8.00     | 4 Grade Auju    | Istinent. 0.0 |  |  |  |  |
| Road Elevation:                | 0.0 feet          |        | Lane Eq    | uivalent                             | Distance   | (in feet)       |               |  |  |  |  |
| Road Grade:                    | 0.0%              |        |            | Autos                                | : 46.91    | 5               |               |  |  |  |  |
| Left View:                     | -90.0 degree      | s      | Mediu      | m Trucks                             | 46.72      | :6              |               |  |  |  |  |
| Right View:                    | 90.0 degree       | s      | Hea        | /y Trucks                            | 46.74      | 4               |               |  |  |  |  |
| FHWA Noise Model Calculatio    | ns                |        | 1          |                                      |            |                 |               |  |  |  |  |
| VehicleType REMEL              | Traffic Flow      | Distan |            | Road                                 | Fresnel    |                 |               |  |  |  |  |
| Autos: 68.4                    | • • • • • • • • • |        | 0.31       | -1.20                                |            | .65 0.0         |               |  |  |  |  |
| Medium Trucks: 79.4            |                   |        | 0.34       | -1.20                                |            | .87 0.0         |               |  |  |  |  |
| Heavy Trucks: 84.2             | 5 -22.60          |        | 0.34       | -1.20                                | -5         | .43 0.0         | 0.00          |  |  |  |  |
| Unmitigated Noise Levels (wit  |                   | -      | ,          |                                      |            |                 |               |  |  |  |  |
| VehicleType Leq Peak H         |                   |        | q Evening  | Leq N                                | •          | Ldn             | CNEL          |  |  |  |  |
|                                |                   | 55.3   | 51.9       |                                      | 49.3       | 57.1            | 57.           |  |  |  |  |
|                                |                   | 55.8   | 49.3       |                                      | 48.7       | 56.8            | ••••          |  |  |  |  |
|                                |                   | 59.8   | 54.1       |                                      | 54.7       | 62.1            | 62.           |  |  |  |  |
|                                |                   | 62.2   | 57.0       |                                      | 56.6       | 64.1            | 64.           |  |  |  |  |
| Centerline Distance to Noise   | Contour (in feet) |        |            |                                      |            |                 |               |  |  |  |  |
|                                |                   |        | 70 dBA     | 65 d                                 |            | 60 dBA          | 55 dBA        |  |  |  |  |
|                                |                   | Ldn:   |            |                                      | 44         | 94              | 203           |  |  |  |  |
|                                |                   | IEL:   | 20<br>21   |                                      | 44         | 98              | 210           |  |  |  |  |

|                                      | FHWA-RD        | -77-108 HIGHV   | VAY NO                                                    | ISE PREDIO   |           | ODEL (9/1    | 2/2021)       |           |           |  |
|--------------------------------------|----------------|-----------------|-----------------------------------------------------------|--------------|-----------|--------------|---------------|-----------|-----------|--|
| Scenario<br>Road Name<br>Road Segmen | e: Seaton Av.  | Rd.             | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |              |           |              |               |           |           |  |
|                                      | PECIFIC IN     | PUT DATA        |                                                           |              |           |              | DEL INPUT     | s         |           |  |
| Highway Data                         |                |                 |                                                           | Site Cor     | ditions ( | Hard = 10    | , Soft = 15)  |           |           |  |
| Average Daily 7                      | raffic (Adt):  | 3,103 vehicles  | 3                                                         |              |           | Aut          | tos: 15       |           |           |  |
| Peak Hour F                          | Percentage:    | 8.10%           |                                                           | Me           | dium Tru  | cks (2 Axle  | es): 15       |           |           |  |
| Peak Ho                              | our Volume:    | 251 vehicles    |                                                           | He           | avy Truc  | ks (3+ Axle  | es): 15       |           |           |  |
| Veh                                  | icle Speed:    | 45 mph          |                                                           | Vehicle      | Mix       |              |               |           |           |  |
| Near/Far Lan                         | e Distance:    | 36 feet         |                                                           |              | icleType  | Da           | evening       | Night     | Daily     |  |
| Site Data                            |                |                 |                                                           |              |           |              | .6% 8.9%      | 14.5%     |           |  |
| Bari                                 | rier Heiaht:   | 0.0 feet        |                                                           | M            | edium Tr  | ucks: 83     | .3% 4.6%      | 12.1%     | 4.699     |  |
| Barrier Type (0-Wa                   |                | 0.0             |                                                           |              | Heavy Tr  | ucks: 76     | .9% 5.2%      | 17.9%     | 12.979    |  |
| Centerline Dis                       | t. to Barrier: | 50.0 feet       |                                                           | Noico S      | ourco Ek  | evations (i  | in foot)      |           |           |  |
| Centerline Dist. to                  | o Observer:    | 50.0 feet       |                                                           | 10136 3      | Autos     |              | ,             |           |           |  |
| Barrier Distance t                   | o Observer:    | 0.0 feet        |                                                           | 14-15        | m Trucks  | . 0.000      |               |           |           |  |
| Observer Height (A                   | Above Pad):    | 5.0 feet        |                                                           |              | /y Trucks |              |               | iustment  | . 0 0     |  |
| Pa                                   | d Elevation:   | 0.0 feet        |                                                           | Tica         | ry mucka  | . 0.004      | + 0/440 / Kg  | Juotinoni | . 0.0     |  |
| Roa                                  | d Elevation:   | 0.0 feet        |                                                           | Lane Eq      | uivalent  | Distance     | (in feet)     |           |           |  |
| R                                    | load Grade:    | 0.0%            |                                                           |              | Autos     |              | 5             |           |           |  |
|                                      | Left View:     | -90.0 degrees   | 3                                                         |              | m Trucks  |              | -             |           |           |  |
|                                      | Right View:    | 90.0 degrees    | 6                                                         | Hea          | /y Trucks | 46.744       | 4             |           |           |  |
| FHWA Noise Mode                      | I Calculations | ;               |                                                           |              |           |              |               |           |           |  |
| VehicleType                          | REMEL          | Traffic Flow    | Distan                                                    | ce Finite    | Road      | Fresnel      | Barrier Att   | en Ber    | m Atten   |  |
| Autos:                               | 68.46          | -8.68           |                                                           | 0.31         | -1.20     | -4.          |               | 000       | 0.00      |  |
| Medium Trucks:                       | 79.45          | -21.13          |                                                           | 0.34         | -1.20     | -4.          | •••           | 000       | 0.00      |  |
| Heavy Trucks:                        | 84.25          | -16.71          |                                                           | 0.34         | -1.20     | -5.          | 43 0.0        | 000       | 0.00      |  |
| Unmitigated Noise                    |                |                 |                                                           |              |           |              |               |           |           |  |
|                                      | Leq Peak Hou   |                 |                                                           | q Evening    | Leq I     | •            | Ldn           |           | NEL       |  |
| Autos:                               | 58.<br>57.     |                 | 7.9<br>6.8                                                | 54.5<br>50.2 |           | 51.9<br>49.7 | 59.6          | -         | 60.<br>58 |  |
| Medium Trucks:                       | ÷              |                 | 6.8<br>5.7                                                | 50.2<br>60.0 |           |              | 57.8<br>68.0  |           |           |  |
| Heavy Trucks:<br>Vehicle Noise:      | 66.<br>67.     |                 | 5.7<br>6.8                                                | 60.0         |           | 60.6<br>61.4 | 68.0          | -         | 68<br>69  |  |
|                                      |                |                 | 0.0                                                       | 01.4         |           | 01.4         | 68.9          | 9         | 69.       |  |
| Centerline Distance                  | e to Noise Co  | ntour (in feet) |                                                           | 70 dBA       | 65 0      | (DA          | 60 dBA        | FF        | dBA       |  |
|                                      |                | ,               | dn:                                                       | 70 ава<br>42 | 030       | ва<br>91     | 00 0BA<br>196 |           | ава<br>42 |  |
|                                      |                |                 | an:<br>EL:                                                | 42           |           | 91           | 203           |           | 42.       |  |
|                                      |                | CN              | <u></u> .                                                 | 44           |           | 94           | 203           |           | 43        |  |

| FHWA-RD-77                                                          | -108 HIGHWAY  | ' NOISE | PREDIC    | TION MC    | DDEL (9)           | 12/2021)              |         |           |
|---------------------------------------------------------------------|---------------|---------|-----------|------------|--------------------|-----------------------|---------|-----------|
| Scenario: E<br>Road Name: Seaton Av.<br>Road Segment: n/o Rider St. |               |         |           |            | Vame: M<br>mber: 1 | ead Valley Co<br>5091 | mmerce  | ÷C        |
| SITE SPECIFIC INPU                                                  | T DATA        |         |           |            |                    | ODEL INPUT            | rs      |           |
| Highway Data                                                        |               | 4       | Site Cond | ditions (l | Hard = 1           | 0, Soft = 15)         |         |           |
| Average Daily Traffic (Adt): 1,                                     | 398 vehicles  |         |           |            | Α                  | utos: 15              |         |           |
| Peak Hour Percentage: 8.                                            | .10%          |         | Med       | dium True  | cks (2 A)          | <i>(les):</i> 15      |         |           |
| Peak Hour Volume: 1                                                 | 13 vehicles   |         | Hea       | avy Truck  | (3+ A)             | <i>(les):</i> 15      |         |           |
| Vehicle Speed:                                                      | 45 mph        |         | Vehicle N | lix        |                    |                       |         |           |
| Near/Far Lane Distance:                                             | 36 feet       | -       |           | cleType    | 1                  | ay Evening            | Nigh    | Daily     |
| Site Data                                                           |               |         | 10/11     |            |                    | 6.6% 8.9%             |         |           |
| Barrier Height:                                                     | 0.0 feet      |         | Me        | dium Tru   | icks: 8            | 3.3% 4.6%             | 12.1    | % 7.10%   |
| Barrier Type (0-Wall, 1-Berm):                                      | 0.0           |         | h         | leavy Tru  | icks: 7            | 6.9% 5.2%             | 17.9    | % 6.34%   |
|                                                                     | 50.0 feet     | _       |           | -          |                    |                       |         |           |
|                                                                     | 50.0 feet     | 1       | Noise So  |            |                    | . ,                   |         |           |
| Barrier Distance to Observer:                                       | 0.0 feet      |         |           | Autos:     |                    |                       |         |           |
|                                                                     | 5.0 feet      |         |           | n Trucks:  |                    |                       |         |           |
| Pad Elevation:                                                      | 0.0 feet      |         | Heav      | y Trucks:  | 8.00               | 04 Grade A            | ajustme | nt: 0.0   |
| Road Elevation:                                                     | 0.0 feet      | 1       | Lane Equ  | ivalent l  | Distance           | e (in feet)           |         |           |
| Road Grade: 0                                                       | .0%           |         | -         | Autos      | 46.9               | 15                    |         |           |
| Left View: -9                                                       | 0.0 degrees   |         | Mediun    | n Trucks:  | 46.7               | 26                    |         |           |
| Right View: 9                                                       | 0.0 degrees   |         | Heav      | y Trucks:  | 46.7               | 44                    |         |           |
| FHWA Noise Model Calculations                                       |               |         |           |            |                    |                       |         |           |
| VehicleType REMEL Tra                                               | affic Flow Di | stance  | Finite    | Road       | Fresne             |                       | tten E  | erm Atten |
| Autos: 68.46                                                        | -11.92        | 0.3     | 1         | -1.20      |                    | 4.65 0                | .000    | 0.000     |
| Medium Trucks: 79.45                                                | -22.79        | 0.3     |           | -1.20      |                    |                       | .000    | 0.000     |
| Heavy Trucks: 84.25                                                 | -23.28        | 0.3     | 4         | -1.20      | -                  | 5.43 0                | .000    | 0.000     |
| Unmitigated Noise Levels (without                                   |               |         |           |            |                    |                       |         |           |
| VehicleType Leq Peak Hour                                           | Leq Day       | Leq E   | vening    | Leq N      |                    | Ldn                   |         | CNEL      |
| Autos: 55.6                                                         | 54.6          |         | 51.3      |            | 48.6               | 56                    |         | 56.7      |
| Medium Trucks: 55.8                                                 | 55.1          |         | 48.6      |            | 48.0               | 56                    |         | 56.3      |
| Heavy Trucks: 60.1                                                  | 59.1          |         | 53.4      |            | 54.0               | 61                    |         | 61.6      |
| Vehicle Noise: 62.5                                                 | 61.5          |         | 56.3      |            | 55.9               | 63                    | .5      | 63.7      |
| Centerline Distance to Noise Conto                                  | our (in feet) |         |           |            |                    |                       |         |           |
|                                                                     | , . L         | 70 0    | dBA       | 65 d       |                    | 60 dBA                | _       | 55 dBA    |
|                                                                     | Ldn:          |         | 18        |            | 40                 | 8                     | -       | 184       |
|                                                                     | CNEL:         |         | 19        |            | 41                 | 8                     | 8       | 190       |

| FHWA                                                        | A-RD- | 77-108 HIGH                                               | IWAY | NOISE   | PREDIC             |         | IODEL (   | 9/12/2   | 021)       |           |         |  |  |  |
|-------------------------------------------------------------|-------|-----------------------------------------------------------|------|---------|--------------------|---------|-----------|----------|------------|-----------|---------|--|--|--|
| Scenario: E+P<br>Road Name: Seaton<br>Road Segment: n/o Rid |       | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |      |         |                    |         |           |          |            |           |         |  |  |  |
| SITE SPECIFIC                                               | C INF | PUT DATA                                                  |      |         | NOISE MODEL INPUTS |         |           |          |            |           |         |  |  |  |
| Highway Data                                                |       |                                                           |      | 4       | Site Con           | ditions | (Hard =   | 10, So   | oft = 15)  |           |         |  |  |  |
| Average Daily Traffic (Ad                                   | ft):  | 1,885 vehicle                                             | es   |         |                    |         |           | Autos:   | 15         |           |         |  |  |  |
| Peak Hour Percentag                                         | je:   | 8.10%                                                     |      |         | Mee                | dium Tr | ucks (2 ) | Axles):  | 15         |           |         |  |  |  |
| Peak Hour Volum                                             | ne:   | 153 vehicle                                               | s    |         | Hei                | avy Tru | cks (3+ ) | Axles):  | 15         |           |         |  |  |  |
| Vehicle Spee                                                | ed:   | 45 mph                                                    |      | -       | Vehicle N          | Niv     |           |          |            |           |         |  |  |  |
| Near/Far Lane Distanc                                       | e:    | 36 feet                                                   |      | H       |                    | cleType | •         | Day      | Evening    | Night     | Daily   |  |  |  |
| Site Data                                                   |       |                                                           |      |         | 10/11              |         | Autos:    | 76.6%    |            |           |         |  |  |  |
| Barrier Height: 0.0 feet                                    |       |                                                           |      |         | Me                 | edium T | rucks:    | 83.3%    | 4.6%       | 12.1%     | 5.799   |  |  |  |
| Barrier Type (0-Wall, 1-Bern                                |       | 0.0 1001                                                  |      |         | F                  | leavy T |           | 76.9%    |            |           |         |  |  |  |
| Centerline Dist. to Barrie                                  |       | 50.0 feet                                                 |      | -       |                    |         |           |          |            |           |         |  |  |  |
| Centerline Dist. to Observe                                 |       | 50.0 feet                                                 |      | 1       | Noise So           |         |           |          | eet)       |           |         |  |  |  |
| Barrier Distance to Observe                                 |       | 0.0 feet                                                  |      |         |                    | Auto    |           | 000      |            |           |         |  |  |  |
| Observer Height (Above Pag                                  |       | 5.0 feet                                                  |      |         | Mediur             |         |           | 297      |            |           |         |  |  |  |
| Pad Elevatio                                                |       | 0.0 feet                                                  |      |         | Heav               | y Truck | (S. 8.    | 004      | Grade Ad   | ijustment | : 0.0   |  |  |  |
| Road Elevatio                                               |       | 0.0 feet                                                  |      | 1       | Lane Equ           | ıivalen | t Distan  | ce (in i | feet)      |           |         |  |  |  |
| Road Grad                                                   | le:   | 0.0%                                                      |      |         |                    | Auto    | s: 46.    | 915      |            |           |         |  |  |  |
| Left Vie                                                    | W.    | -90.0 degree                                              | es   |         | Mediur             | n Truck | s: 46.    | 726      |            |           |         |  |  |  |
| Right Vie                                                   | W.    | 90.0 degree                                               | es   |         | Heav               | y Truck | is: 46.   | 744      |            |           |         |  |  |  |
| FHWA Noise Model Calcula                                    |       |                                                           |      | 1       |                    |         |           |          |            |           |         |  |  |  |
| VehicleType REMEL                                           |       | Traffic Flow                                              | Di   | istance | Finite             |         | Fresr     |          | Barrier At |           | m Atten |  |  |  |
|                                                             | 8.46  | -10.74                                                    |      | 0.3     |                    | -1.20   |           | -4.65    |            | 000       | 0.00    |  |  |  |
|                                                             | 9.45  | -22.37                                                    |      | 0.3     |                    | -1.20   |           | -4.87    |            | 000       | 0.00    |  |  |  |
| Heavy Trucks: 84                                            | 4.25  | -20.00                                                    |      | 0.3     | 4                  | -1.20   |           | -5.43    | 0.         | 000       | 0.00    |  |  |  |
| Unmitigated Noise Levels (v                                 |       | · ·                                                       |      |         | <u> </u>           |         |           | 1        |            | -         |         |  |  |  |
| VehicleType Leq Peak                                        |       |                                                           |      | Leq E   |                    | Leq     | Night     |          | Ldn        |           | NEL     |  |  |  |
| Autos:                                                      | 56.8  |                                                           | 55.8 |         | 52.5               |         | 49.8      |          | 57.        |           | 57      |  |  |  |
| Medium Trucks:                                              | 56.2  |                                                           | 55.5 |         | 49.0               |         | 48.4      |          | 56.        |           | 56      |  |  |  |
| Heavy Trucks:                                               | 63.4  |                                                           | 62.4 |         | 56.7               |         | 57.3      |          | 64.        |           | 64      |  |  |  |
| Vehicle Noise:                                              | 64.9  | 9                                                         | 63.9 |         | 58.6               |         | 58.5      | >        | 66.        | 0         | 66      |  |  |  |
| Centerline Distance to Nois                                 | e Cor | ntour (in feet                                            | )    | 70      |                    |         | 10.4      |          |            |           | 10.4    |  |  |  |
|                                                             |       |                                                           | l    | 70 0    |                    | 65      | dBA       |          | 60 dBA     |           | dBA     |  |  |  |
|                                                             |       |                                                           | Ldn: |         | 27                 |         | 58        |          | 125        |           | 26      |  |  |  |
|                                                             |       | C                                                         | NEL: |         | 28                 |         | 60        |          | 129        | 9         | 27      |  |  |  |

Thursday, July 27, 2023

| FHWA                                                           | RD-77-108 HIGH                                            | IWAY NOI     | SE PREDIC  | TION MO    | DEL (9/12/  | 2021)         |              |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------|--------------|------------|------------|-------------|---------------|--------------|--|--|
| Scenario: EAC<br>Road Name: Seaton A<br>Road Segment: n/o Ride | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |              |            |            |             |               |              |  |  |
| SITE SPECIFIC                                                  | INPUT DATA                                                |              |            |            |             | EL INPUTS     |              |  |  |
| Highway Data                                                   |                                                           |              | Site Con   | ditions (H | ard = 10, S | Soft = 15)    |              |  |  |
| Average Daily Traffic (Adt)                                    | : 1,484 vehicl                                            | es           |            |            | Auto        | s: 15         |              |  |  |
| Peak Hour Percentage                                           | : 8.10%                                                   |              | Me         | dium Truc  | ks (2 Axles | ): 15         |              |  |  |
| Peak Hour Volume                                               | : 120 vehicle                                             | s            | He         | avy Truck  | s (3+ Axles | ): 15         |              |  |  |
| Vehicle Speed                                                  | : 45 mph                                                  |              | Vehicle I  | Mix        |             |               |              |  |  |
| Near/Far Lane Distance                                         | : 36 feet                                                 |              |            | icleType   | Day         | Evening       | Night Daily  |  |  |
| Site Data                                                      |                                                           |              |            |            | tos: 76.6   | •             | 14.5% 86.56  |  |  |
| Barrier Height                                                 | : 0.0 feet                                                |              | M          | edium Truc | ks: 83.3    | % 4.6%        | 12.1% 7.10   |  |  |
| Barrier Type (0-Wall, 1-Berm)                                  |                                                           |              | 1          | Heavy True | ks: 76.9    | % 5.2%        | 17.9% 6.349  |  |  |
| Centerline Dist. to Barrier                                    |                                                           |              | Noine Or   |            |             | f = = 43      |              |  |  |
| Centerline Dist. to Observer                                   | : 50.0 feet                                               |              | Noise Sc   |            | ations (in  | reet)         |              |  |  |
| Barrier Distance to Observer                                   | : 0.0 feet                                                |              |            | Autos:     | 0.000       |               |              |  |  |
| Observer Height (Above Pad)                                    | : 5.0 feet                                                |              |            | m Trucks:  | 2.297       | Crada Adiu    | stment: 0.0  |  |  |
| Pad Elevation                                                  | 0.0 feet                                                  |              | Heav       | y Trucks:  | 8.004       | Grade Adju    | sunenii. 0.0 |  |  |
| Road Elevation                                                 | 0.0 feet                                                  |              | Lane Eq    | uivalent D | istance (ir | n feet)       |              |  |  |
| Road Grade                                                     | 0.0%                                                      |              |            | Autos:     | 46.915      |               |              |  |  |
| Left View                                                      | -90.0 degre                                               | es           | Mediu      | m Trucks:  | 46.726      |               |              |  |  |
| Right View                                                     | 90.0 degre                                                | es           | Heav       | y Trucks:  | 46.744      |               |              |  |  |
| FHWA Noise Model Calculati                                     | ons                                                       |              | 1          |            |             |               |              |  |  |
| VehicleType REMEL                                              | Traffic Flow                                              | Distanc      | e Finite   | Road       | Fresnel     | Barrier Atter | n Berm Atten |  |  |
| Autos: 68.                                                     | 46 -11.66                                                 |              | 0.31       | -1.20      | -4.6        | 5 0.00        | 0.00         |  |  |
| Medium Trucks: 79.                                             | 45 -22.53                                                 |              | 0.34       | -1.20      | -4.8        | 7 0.00        | 0.00         |  |  |
| Heavy Trucks: 84.                                              | 25 -23.02                                                 |              | 0.34       | -1.20      | -5.4        | 3 0.00        | 0.00         |  |  |
| Unmitigated Noise Levels (w                                    | ithout Topo and                                           | barrier at   | tenuation) |            |             |               |              |  |  |
| VehicleType Leq Peak H                                         |                                                           |              | evening    | Leq Ni     |             | Ldn           | CNEL         |  |  |
| Autos:                                                         | 55.9                                                      | 54.9         | 51.5       |            | 48.9        | 56.6          | 57           |  |  |
| Medium Trucks:                                                 | 56.1                                                      | 55.4         | 48.8       |            | 48.3        | 56.4          | 56           |  |  |
| Heavy Trucks:                                                  | 60.4                                                      | 59.4         | 53.6       |            | 54.3        | 61.7          | 61           |  |  |
| Vehicle Noise:                                                 | 62.7                                                      | 61.8         | 56.5       |            | 56.2        | 63.7          | 63           |  |  |
| Centerline Distance to Noise                                   | Contour (in feet                                          | ,            |            |            |             |               |              |  |  |
|                                                                |                                                           | 3            | 70 dBA     | 65 dE      | A           | 60 dBA        | 55 dBA       |  |  |
|                                                                |                                                           |              |            |            |             |               |              |  |  |
|                                                                |                                                           | Ldn:<br>NEL: | 19<br>20   |            | 41<br>43    | 89<br>92      | 19<br>19     |  |  |

| FHWA-RD-77-108 HIGHWA                                         | AY NOISE | PREDIC       | TION MC                | DEL (9         | /12/20 | )21)         |         |                 |
|---------------------------------------------------------------|----------|--------------|------------------------|----------------|--------|--------------|---------|-----------------|
| Scenario: EAC+P                                               |          |              |                        |                |        | /alley Com   | merce C | )               |
| Road Name: Seaton Av.                                         |          |              | Job Nu                 | mber: 1        | 5091   |              |         |                 |
| Road Segment: n/o Rider St.                                   |          |              |                        |                |        |              |         |                 |
| SITE SPECIFIC INPUT DATA                                      |          | 0.44         |                        |                |        |              | 6       |                 |
| Highway Data                                                  | 2        | Site Conc    | titions (F             |                | · ·    | ,            |         |                 |
| Average Daily Traffic (Adt): 1,971 vehicles                   |          |              | lium Truc              |                | utos:  | 15<br>15     |         |                 |
| Peak Hour Percentage: 8.10%                                   |          |              |                        |                |        | 15           |         |                 |
| Peak Hour Volume: 160 vehicles                                |          | Hea          | avy Truck              | (S (3+ A       | xies): | 15           |         |                 |
| Vehicle Speed: 45 mph                                         | ١        | Vehicle M    | lix                    |                |        |              |         |                 |
| Near/Far Lane Distance: 36 feet                               |          | Vehic        | cleType                | l              | Day    | Evening      | Night   | Daily           |
| Site Data                                                     |          |              | AL                     | itos:          | 76.6%  | 8.9%         | 14.5%   | 84.33           |
| Barrier Height: 0.0 feet                                      |          | Me           | dium Tru               | icks: 8        | 33.3%  | 4.6%         | 12.1%   | 5.84            |
| Barrier Type (0-Wall, 1-Berm): 0.0                            |          | н            | leavy Tru              | icks:          | 76.9%  | 5.2%         | 17.9%   | 9.83            |
| Centerline Dist. to Barrier: 50.0 feet                        | ,        | Noise So     | urce Ele               | vations        | (in fe | ef)          |         |                 |
| Centerline Dist. to Observer: 50.0 feet                       | -        | 10/30 000    | Autos:                 |                |        | 01/          |         |                 |
| Barrier Distance to Observer: 0.0 feet                        |          | Medium       | 1 Trucks:              | 0.0            |        |              |         |                 |
| Observer Height (Above Pad): 5.0 feet                         |          |              | / Trucks:<br>/ Trucks: |                |        | Grade Adj    | ustment | .00             |
| Pad Elevation: 0.0 feet                                       |          |              |                        |                | •      |              |         |                 |
| Road Elevation: 0.0 feet                                      | 1        | Lane Equ     |                        |                |        | ieet)        |         |                 |
| Road Grade: 0.0%                                              |          |              | Autos:                 |                |        |              |         |                 |
| Left View: -90.0 degrees                                      |          |              | n Trucks:              |                |        |              |         |                 |
| Right View: 90.0 degrees                                      |          | Heavy        | / Trucks:              | 46.7           | '44    |              |         |                 |
| FHWA Noise Model Calculations                                 |          |              |                        |                |        |              |         |                 |
|                                                               | Distance | Finite F     |                        | Fresne         |        | Barrier Atte |         | m Atter         |
| Autos: 68.46 -10.55                                           | 0.31     |              | -1.20                  |                | 4.65   | 0.0          |         | 0.00            |
| Medium Trucks: 79.45 -22.14                                   | 0.34     |              | -1.20                  |                | 4.87   | 0.0          |         | 0.00            |
| Heavy Trucks: 84.25 -19.88                                    | 0.34     | 4            | -1.20                  | -              | 5.43   | 0.0          | 00      | 0.00            |
| Unmitigated Noise Levels (without Topo and bar                |          |              |                        |                |        |              |         |                 |
| VehicleType Leq Peak Hour Leq Day                             | Leg Ev   |              | Leq N                  | •              |        | Ldn          |         | NEL             |
| Autos: 57.0 56.                                               | -        | 52.7         |                        | 50.0           |        | 57.8         |         | 58              |
| Medium Trucks: 56.4 55.                                       | -        | 49.2         |                        | 48.7           |        | 56.8         |         | 57              |
| Heavy Trucks: 63.5 62.                                        | -        | 56.8         |                        | 57.4           |        | 64.8         |         | 65              |
| Vehicle Noise: 65.0 64.                                       | .1       | 58.7         |                        | 58.6           |        | 66.1         |         | 66              |
|                                                               |          |              |                        |                |        |              |         |                 |
| Centerline Distance to Noise Contour (in feet)                |          |              |                        |                |        |              |         | dBA             |
|                                                               | 70 a     |              | 65 dl                  |                | 6      | 0 dBA        | 55      |                 |
| Centerline Distance to Noise Contour (in feet)<br>Ldi<br>CNEI | n:       | 1BA 28<br>28 | 65 dl                  | BA<br>59<br>61 | 6      | 128<br>132   | 55      | ава<br>27<br>28 |

| FHWA-RD-77-108 HIGHWAY N                                             | OISE PREDICTION MODEL (9/12/2021)                         |
|----------------------------------------------------------------------|-----------------------------------------------------------|
| Scenario: HY<br>Road Name: Seaton Av.<br>Road Segment: n/o Rider St. | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |
| SITE SPECIFIC INPUT DATA                                             | NOISE MODEL INPUTS                                        |
| Highway Data                                                         | Site Conditions (Hard = 10, Soft = 15)                    |
| Average Daily Traffic (Adt): 1,632 vehicles                          | Autos: 15                                                 |
| Peak Hour Percentage: 8.10%                                          | Medium Trucks (2 Axles): 15                               |
| Peak Hour Volume: 132 vehicles                                       | Heavy Trucks (3+ Axles): 15                               |
| Vehicle Speed: 45 mph                                                | Vehicle Mix                                               |
| Near/Far Lane Distance: 36 feet                                      | VehicleType Day Evening Night Daily                       |
| Site Data                                                            | Autos: 76.6% 8.9% 14.5% 86.56%                            |
| Barrier Height: 0.0 feet                                             | Medium Trucks: 83,3% 4,6% 12,1% 7,10%                     |
| Barrier Type (0-Wall, 1-Berm): 0.0                                   | Heavy Trucks: 76,9% 5,2% 17,9% 6,34%                      |
| Centerline Dist. to Barrier: 50.0 feet                               |                                                           |
| Centerline Dist. to Observer: 50.0 feet                              | Noise Source Elevations (in feet)                         |
| Barrier Distance to Observer: 0.0 feet                               | Autos: 0.000                                              |
| Observer Height (Above Pad): 5.0 feet                                | Medium Trucks: 2.297                                      |
| Pad Elevation: 0.0 feet                                              | Heavy Trucks: 8.004 Grade Adjustment: 0.0                 |
| Road Elevation: 0.0 feet                                             | Lane Equivalent Distance (in feet)                        |
| Road Grade: 0.0%                                                     | Autos: 46.915                                             |
| Left View: -90.0 degrees                                             | Medium Trucks: 46.726                                     |
| Right View: 90.0 degrees                                             | Heavy Trucks: 46.744                                      |
| FHWA Noise Model Calculations                                        |                                                           |
| VehicleType REMEL Traffic Flow Dista                                 |                                                           |
| Autos: 68.46 -11.25                                                  | 0.31 -1.20 -4.65 0.000 0.000                              |
| Medium Trucks: 79.45 -22.11                                          | 0.34 -1.20 -4.87 0.000 0.000                              |
| Heavy Trucks: 84.25 -22.60                                           | 0.34 -1.20 -5.43 0.000 0.000                              |
| Unmitigated Noise Levels (without Topo and barrier                   | ,                                                         |
|                                                                      | eq Evening Leq Night Ldn CNEL                             |
| Autos: 56.3 55.3                                                     | 51.9 49.3 57.1 57.4                                       |
| Medium Trucks: 56.5 55.8                                             | 49.3 48.7 56.8 57.0                                       |
| Heavy Trucks: 60.8 59.8                                              | 54.1 54.7 62.1 62.3                                       |
| Vehicle Noise: 63.2 62.2                                             | 57.0 56.6 64.1 64.4                                       |
| Centerline Distance to Noise Contour (in feet)                       |                                                           |
| L                                                                    | 70 dBA 65 dBA 60 dBA 55 dBA                               |
| Ldn:                                                                 | 20 44 94 203                                              |
| CNEL:                                                                | 21 45 98 210                                              |

| FHWA-RD                                                               | -77-108 HIGHWA` | Y NOISE                       | PREDIC                           | TION MO   | DDEL (9  | /12/20 | 21)                                                       |                |         |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-----------------|-------------------------------|----------------------------------|-----------|----------|--------|-----------------------------------------------------------|----------------|---------|--|--|--|--|--|--|
| Scenario: HY+P<br>Road Name: Seaton Av.<br>Road Segment: n/o Rider St |                 |                               |                                  |           |          |        | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |                |         |  |  |  |  |  |  |
| SITE SPECIFIC IN                                                      | PUT DATA        |                               |                                  | N         | DISE N   | ODE    |                                                           | s              |         |  |  |  |  |  |  |
| Highway Data                                                          |                 |                               | Site Cond                        | litions ( | Hard =   | 10, So | ft = 15)                                                  |                |         |  |  |  |  |  |  |
| Average Daily Traffic (Adt):                                          | 2.119 vehicles  |                               |                                  |           | A        | utos:  | 15                                                        |                |         |  |  |  |  |  |  |
| Peak Hour Percentage:                                                 | 8.10%           |                               | Med                              | lium Tru  | cks (2 A | xles): | 15                                                        |                |         |  |  |  |  |  |  |
| Peak Hour Volume:                                                     | 172 vehicles    |                               | Hea                              | avy Truc  | ks (3+ A | xles): | 15                                                        |                |         |  |  |  |  |  |  |
| Vehicle Speed:                                                        | 45 mph          | -                             | Vehicle N                        | liv       |          |        |                                                           |                |         |  |  |  |  |  |  |
| Near/Far Lane Distance:                                               | ŀ               | VehicleType Day Evening Night |                                  |           |          |        |                                                           |                |         |  |  |  |  |  |  |
| Site Data                                                             |                 | venie                         |                                  |           | 76.6%    | 8.9%   | 14.5%                                                     | Daily<br>84.48 |         |  |  |  |  |  |  |
|                                                                       | 0.0 feet        |                               | Me                               | dium Tri  |          | 33.3%  | 4.6%                                                      | 12.1%          | 5.939   |  |  |  |  |  |  |
| Barrier Height:<br>Barrier Type (0-Wall, 1-Berm):                     | 0.0 reet        |                               | Heavy Trucks: 76.9% 5.2% 17.9% 9 |           |          |        |                                                           |                |         |  |  |  |  |  |  |
| Centerline Dist. to Barrier:                                          | 50.0 feet       |                               |                                  |           |          |        |                                                           |                |         |  |  |  |  |  |  |
| Centerline Dist. to Observer:                                         | 50.0 feet       |                               | Noise So                         |           |          |        | et)                                                       |                |         |  |  |  |  |  |  |
| Barrier Distance to Observer:                                         | 0.0 feet        |                               |                                  | Autos     |          |        |                                                           |                |         |  |  |  |  |  |  |
| Observer Height (Above Pad):                                          | 5.0 feet        |                               |                                  | n Trucks  |          |        |                                                           |                |         |  |  |  |  |  |  |
| Pad Elevation:                                                        | 0.0 feet        |                               | Heavy                            | y Trucks  | : 8.0    | 04     | Grade Adj                                                 | ustment.       | 0.0     |  |  |  |  |  |  |
| Road Elevation:                                                       | ŀ               | Lane Equ                      | ivalent                          | Distanc   | e (in f  | eet)   |                                                           |                |         |  |  |  |  |  |  |
| Road Grade:                                                           | ŀ               |                               | Autos                            | : 46.9    | 15       | ,      |                                                           |                |         |  |  |  |  |  |  |
| Left View:                                                            | -90.0 degrees   |                               | Mediun                           | n Trucks  | : 46.7   | 26     |                                                           |                |         |  |  |  |  |  |  |
| Right View:                                                           | 90.0 degrees    |                               | Heavy                            | / Trucks  | : 46.7   | '44    |                                                           |                |         |  |  |  |  |  |  |
| FHWA Noise Model Calculations                                         |                 |                               | Т                                | 1         |          |        |                                                           |                |         |  |  |  |  |  |  |
| VehicleType REMEL                                                     |                 | listance                      | Finite I                         |           | Fresn    |        | Barrier Atte                                              |                | m Atten |  |  |  |  |  |  |
| Autos: 68.46                                                          | -10.22          | 0.3                           |                                  | -1.20     |          | 4.65   |                                                           | 000            | 0.00    |  |  |  |  |  |  |
| Medium Trucks: 79.45                                                  | -21.76          | 0.3                           |                                  | -1.20     |          | 4.87   |                                                           | 000            | 0.00    |  |  |  |  |  |  |
| Heavy Trucks: 84.25                                                   | -19.68          | 0.3                           | 34                               | -1.20     |          | 5.43   | 0.0                                                       | 000            | 0.00    |  |  |  |  |  |  |
| Unmitigated Noise Levels (witho                                       |                 | rier atter                    | nuation)                         |           |          |        |                                                           |                |         |  |  |  |  |  |  |
| VehicleType Leq Peak Hour                                             |                 |                               | vening                           | Leq N     |          |        | Ldn                                                       |                | VEL     |  |  |  |  |  |  |
| Autos: 57.                                                            |                 |                               | 53.0                             |           | 50.3     |        | 58.1                                                      |                | 58.     |  |  |  |  |  |  |
| Medium Trucks: 56.                                                    |                 |                               | 49.6                             |           | 49.0     |        | 57.1                                                      |                | 57.     |  |  |  |  |  |  |
| Heavy Trucks: 63.                                                     |                 |                               | 57.0                             |           | 57.6     |        | 65.0                                                      |                | 65      |  |  |  |  |  |  |
| Vehicle Noise: 65.                                                    | 3 64.3          | 5                             | 59.0                             |           | 58.8     |        | 66.4                                                      | +              | 66      |  |  |  |  |  |  |
| Centerline Distance to Noise Co.                                      | ntour (in feet) |                               |                                  |           |          |        |                                                           |                |         |  |  |  |  |  |  |
|                                                                       |                 |                               | dBA                              | 65 a      |          | 6      | 0 dBA                                                     |                | dBA     |  |  |  |  |  |  |
|                                                                       | Ldn:            |                               | 29                               |           | 62       |        | 133                                                       |                | 28      |  |  |  |  |  |  |
|                                                                       | CNEL            |                               | 30                               |           | 64       |        | 137                                                       |                | 295     |  |  |  |  |  |  |

Thursday, July 27, 2023

| FHWA-                                                           | RD-77-108 HIGH   | IWAY NO | ISE PREDIO                                                | CTION MO   | DDEL (9/12   | /2021)       |               |  |  |  |  |
|-----------------------------------------------------------------|------------------|---------|-----------------------------------------------------------|------------|--------------|--------------|---------------|--|--|--|--|
| Scenario: E<br>Road Name: Harvill Av<br>Road Segment: n/o Cajal |                  |         | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |            |              |              |               |  |  |  |  |
| SITE SPECIFIC                                                   | INPUT DATA       |         |                                                           |            |              | DEL INPUTS   | 3             |  |  |  |  |
| Highway Data                                                    |                  |         | Site Cor                                                  | nditions ( | Hard = 10,   | Soft = 15)   |               |  |  |  |  |
| Average Daily Traffic (Adt).                                    | 9,765 vehicl     | es      |                                                           |            | Auto         | os: 15       |               |  |  |  |  |
| Peak Hour Percentage.                                           | 8.10%            |         | Me                                                        | edium Tru  | cks (2 Axle  | s): 15       |               |  |  |  |  |
| Peak Hour Volume:                                               | 791 vehicle      | s       | He                                                        | eavy Truci | ks (3+ Axles | s): 15       |               |  |  |  |  |
| Vehicle Speed:                                                  | 50 mph           |         | Vehicle                                                   | Mix        |              |              |               |  |  |  |  |
| Near/Far Lane Distance.                                         | 48 feet          |         |                                                           | nicleType  | Day          | Evening      | Night Daily   |  |  |  |  |
| Site Data                                                       |                  |         |                                                           |            | utos: 76.6   |              | 14.5% 86.56   |  |  |  |  |
| Barrier Height.                                                 | 0.0 feet         |         | M                                                         | ledium Tru | icks: 83.3   | 3% 4.6%      | 12.1% 7.10    |  |  |  |  |
| Barrier Type (0-Wall, 1-Berm)                                   |                  |         |                                                           | Heavy Tru  | icks: 76.9   | 9% 5.2%      | 17.9% 6.34    |  |  |  |  |
| Centerline Dist. to Barrier                                     |                  |         | Noise O                                                   |            |              | 64           |               |  |  |  |  |
| Centerline Dist. to Observer                                    | 59.0 feet        |         | Noise S                                                   |            | vations (in  | reet)        |               |  |  |  |  |
| Barrier Distance to Observer                                    | 0.0 feet         |         |                                                           | Autos      | 0.000        |              |               |  |  |  |  |
| Observer Height (Above Pad)                                     | 5.0 feet         |         |                                                           | m Trucks   |              | Crada Adi    | ustment: 0.0  |  |  |  |  |
| Pad Elevation                                                   | 0.0 feet         |         | неа                                                       | vy Trucks  | 8.004        | Grade Adji   | usimenii. 0.0 |  |  |  |  |
| Road Elevation                                                  | 0.0 feet         |         | Lane Eq                                                   | uivalent   | Distance (i  | n feet)      |               |  |  |  |  |
| Road Grade                                                      | 0.0%             |         |                                                           | Autos      | 54.129       |              |               |  |  |  |  |
| Left View                                                       | -90.0 degre      | es      | Mediu                                                     | m Trucks   | 53.966       |              |               |  |  |  |  |
| Right View.                                                     | 90.0 degre       | es      | Hea                                                       | vy Trucks  | 53.982       |              |               |  |  |  |  |
| FHWA Noise Model Calculatio                                     | ons              |         |                                                           |            |              |              |               |  |  |  |  |
| VehicleType REMEL                                               | Traffic Flow     | Distand | ce Finite                                                 | Road       | Fresnel      | Barrier Atte | en Berm Atter |  |  |  |  |
| Autos: 70.2                                                     |                  |         | 0.62                                                      | -1.20      | -4.6         | i9 0.0       | 00 0.0        |  |  |  |  |
| Medium Trucks: 81.0                                             |                  |         | 0.60                                                      | -1.20      | -4.8         |              | 00 0.0        |  |  |  |  |
| Heavy Trucks: 85.3                                              | -15.29           | -       | 0.60                                                      | -1.20      | -5.3         | 65 0.0       | 0.0           |  |  |  |  |
| Unmitigated Noise Levels (wi                                    |                  |         | ,                                                         |            |              |              |               |  |  |  |  |
| VehicleType Leq Peak H                                          |                  |         | q Evening                                                 | Leq N      | •            | Ldn          | CNEL          |  |  |  |  |
|                                                                 | 64.4             | 63.4    | 60.1                                                      |            | 57.4         | 65.2         |               |  |  |  |  |
|                                                                 | 64.4             | 63.7    | 57.2                                                      |            | 56.6         | 64.7         |               |  |  |  |  |
|                                                                 | 68.3             | 67.3    | 61.6                                                      |            | 62.2         | 69.6         |               |  |  |  |  |
| Vehicle Noise:                                                  | 70.9             | 69.9    | 64.7                                                      | •          | 64.3         | 71.9         | 72            |  |  |  |  |
| Centerline Distance to Noise                                    | Contour (in feet | ,       |                                                           |            |              |              | I             |  |  |  |  |
|                                                                 |                  |         | 70 dBA                                                    | 65 d       |              | 60 dBA       | 55 dBA        |  |  |  |  |
|                                                                 |                  | Ldn:    | 78                                                        |            | 169          | 364          | 78            |  |  |  |  |
|                                                                 |                  | NEL:    | 78<br>81                                                  |            | 109          | 376          | 81            |  |  |  |  |

| FHWA-RD-77-108 HIGHV                                                     | AY NOISE | PREDICT                                                   |            | DEL (9     | /12/20  | 21)             |          |            |  |  |
|--------------------------------------------------------------------------|----------|-----------------------------------------------------------|------------|------------|---------|-----------------|----------|------------|--|--|
| Scenario: E+P<br>Road Name: Harvill Av.<br>Road Segment: n/o Cajalco Rd. |          | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |            |            |         |                 |          |            |  |  |
| SITE SPECIFIC INPUT DATA                                                 |          |                                                           |            |            |         | L INPUTS        | 3        |            |  |  |
| Highway Data                                                             |          | Site Cond                                                 | litions (H | lard = 1   | 10, So  | ft = 15)        |          |            |  |  |
| Average Daily Traffic (Adt): 9,991 vehicles                              |          |                                                           |            | A          | utos:   | 15              |          |            |  |  |
| Peak Hour Percentage: 8.10%                                              |          | Med                                                       | lium Truc  | ks (2 A    | xles):  | 15              |          |            |  |  |
| Peak Hour Volume: 809 vehicles                                           |          | Hea                                                       | vy Truck   | s (3+ A    | xles):  | 15              |          |            |  |  |
| Vehicle Speed: 50 mph                                                    | -        | Vehicle M                                                 | live       |            |         |                 |          |            |  |  |
| Near/Far Lane Distance: 48 feet                                          | -        |                                                           | leType     |            | Dav     | Evening         | Night    | Daily      |  |  |
| Site Data                                                                |          | venic                                                     |            |            | 76.6%   | Evening<br>8.9% | 14.5%    |            |  |  |
| Barrier Height: 0.0 feet                                                 |          | Me                                                        | dium Tru   | cks: 8     | 33.3%   | 4.6%            | 12.1%    | 6.96       |  |  |
| Barrier Type (0-Wall, 1-Berm): 0.0                                       |          | H                                                         | eavy Tru   | cks: 7     | 76.9%   | 5.2%            | 17.9%    |            |  |  |
| Centerline Dist. to Barrier: 59.0 feet                                   | -        |                                                           |            |            |         |                 | -        |            |  |  |
| Centerline Dist. to Observer: 59.0 feet                                  | -        | Noise Sou                                                 |            |            |         | et)             |          |            |  |  |
| Barrier Distance to Observer: 0.0 feet                                   |          |                                                           | Autos:     | 0.0        |         |                 |          |            |  |  |
| Observer Height (Above Pad): 5.0 feet                                    |          |                                                           | Trucks:    | 2.2        |         |                 |          |            |  |  |
| Pad Elevation: 0.0 feet                                                  |          | Heavy                                                     | Trucks:    | 8.0        | 04      | Grade Adj       | ustment. | 0.0        |  |  |
| Road Elevation: 0.0 feet                                                 |          | Lane Equ                                                  | ivalent D  | Distanc    | e (in f | eet)            |          |            |  |  |
| Road Grade: 0.0%                                                         |          |                                                           | Autos:     | 54.1       | 29      |                 |          |            |  |  |
| Left View: -90.0 degrees                                                 |          | Medium                                                    | Trucks:    | 53.9       | 66      |                 |          |            |  |  |
| Right View: 90.0 degrees                                                 |          | Heavy                                                     | Trucks:    | 53.9       | 82      |                 |          |            |  |  |
| FHWA Noise Model Calculations                                            |          |                                                           |            |            |         |                 |          |            |  |  |
| VehicleType REMEL Traffic Flow                                           | Distance | Finite F                                                  | Road       | Fresne     | e/ 1    | Barrier Atte    | en Ber   | m Atter    |  |  |
| Autos: 70.20 -3.84                                                       | -0.6     | 32                                                        | -1.20      | -          | 4.69    | 0.0             | 00       | 0.00       |  |  |
| Medium Trucks: 81.00 -14.79                                              | -0.6     | 60                                                        | -1.20      | -          | 4.88    | 0.0             | 00       | 0.00       |  |  |
| Heavy Trucks: 85.38 -15.16                                               | -0.6     | 60                                                        | -1.20      | -          | 5.35    | 0.0             | 00       | 0.00       |  |  |
| Unmitigated Noise Levels (without Topo and b                             |          |                                                           |            |            |         |                 |          |            |  |  |
| VehicleType Leq Peak Hour Leq Day                                        |          | vening                                                    | Leq N      | •          |         | Ldn             |          | NEL        |  |  |
|                                                                          | 3.5      | 60.2                                                      |            | 57.5       |         | 65.3            |          | 65         |  |  |
|                                                                          | 3.7      | 57.2                                                      |            | 56.6       |         | 64.7            |          | 64         |  |  |
|                                                                          | 7.4      | 61.7                                                      |            | 62.3       |         | 69.7            |          | 69         |  |  |
|                                                                          | 0.0      | 64.8                                                      |            | 64.4       |         | 72.0            |          | 72         |  |  |
| Centerline Distance to Noise Contour (in feet)                           |          |                                                           |            |            |         |                 |          |            |  |  |
|                                                                          |          | dBA                                                       | 65 dE      |            | 6       | 0 dBA           | 55       | dBA        |  |  |
| L                                                                        | dn:      | 80<br>82                                                  |            | 172<br>178 |         | 370<br>383      |          | 791<br>824 |  |  |
|                                                                          |          |                                                           |            |            |         |                 |          |            |  |  |

| FHWA-RD-7                                                               | 7-108 HIGHWAY                | NOISE  | E PREDIC | TION M    | ODEL (9/             | 12/2021)             |        |                           |
|-------------------------------------------------------------------------|------------------------------|--------|----------|-----------|----------------------|----------------------|--------|---------------------------|
| Scenario: EAC<br>Road Name: Harvill Av.<br>Road Segment: n/o Cajalco Ro | d.                           |        |          |           | Name: M<br>umber: 15 | ead Valley C<br>5091 | Comme  | rce C                     |
| SITE SPECIFIC INP                                                       | JT DATA                      |        |          | N         | OISE M               | ODEL INP             | UTS    |                           |
| Highway Data                                                            |                              |        | Site Con | ditions ( | (Hard = 1            | 0, Soft = 15,        | )      |                           |
| Average Daily Traffic (Adt): 26                                         | 3,387 vehicles               |        |          |           | A                    | utos: 15             |        |                           |
| Peak Hour Percentage: 8                                                 | 3.10%                        |        | Me       | dium Tru  | icks (2 Ax           | <i>(les):</i> 15     |        |                           |
| Peak Hour Volume: 2,                                                    | 137 vehicles                 |        | He       | avy Truc  | ks (3+ Ax            | (les): 15            |        |                           |
| Vehicle Speed:                                                          | 50 mph                       | ł      | Vehicle  | Mix       |                      |                      |        |                           |
| Near/Far Lane Distance:                                                 | 48 feet                      | ł      |          | icleType  | 0                    | ay Evenir            | na Mi  | ght Daily                 |
| Site Data                                                               |                              |        | Ven      |           |                      | 6.6% 8.9             |        | 4.5% 86.56%               |
|                                                                         |                              |        | м        | edium Tr  |                      | 3.3% 4.6             |        | 4.3% 00.30%<br>2.1% 7.10% |
| Barrier Height:                                                         | 0.0 feet                     |        |          | Heavy Tr  |                      | 6.9% 5.2             |        | 7.9% 6.34%                |
| Barrier Type (0-Wall, 1-Berm):                                          | 0.0                          |        |          | icavy ii  | ucks. 1              | 0.570 3.2            | .70 1  | 1.970 0.3470              |
| Centerline Dist. to Barrier:                                            | 59.0 feet                    |        | Noise So | ource Ele | evations             | (in feet)            |        |                           |
| Centerline Dist. to Observer:                                           | 59.0 feet                    |        |          | Autos     | s: 0.00              | 00                   |        |                           |
| Barrier Distance to Observer:                                           | 0.0 feet                     |        | Mediu    | m Trucks  | 3: 2.29              | 97                   |        |                           |
| Observer Height (Above Pad):<br>Pad Elevation:                          | 5.0 feet<br>0.0 feet         |        | Heav     | /y Trucks | s: 8.00              | )4 Grade             | Adjust | ment: 0.0                 |
| Road Elevation:                                                         | 0.0 feet                     | -      | Lano Ea  | uivalont  | Distance             | (in foot)            |        |                           |
|                                                                         | 0.0 reet                     | ŀ      | Lane Ly  | Autos     |                      | , ,                  |        |                           |
|                                                                         | 90.0 degrees                 |        | Modiu    | m Trucks  |                      |                      |        |                           |
|                                                                         | 90.0 degrees<br>90.0 degrees |        |          | /y Trucks |                      |                      |        |                           |
| FHWA Noise Model Calculations                                           |                              |        |          |           |                      |                      |        |                           |
| VehicleType REMEL T                                                     | raffic Flow Di               | stance | Finite   | Road      | Fresne               | l Barrier            | Atten  | Berm Atten                |
| Autos: 70.20                                                            | 0.38                         | -0.6   | 52       | -1.20     | -4                   | 4.69                 | 0.000  | 0.000                     |
| Medium Trucks: 81.00                                                    | -10.49                       | -0.6   | 50       | -1.20     | -4                   | 4.88                 | 0.000  | 0.000                     |
| Heavy Trucks: 85.38                                                     | -10.98                       | -0.6   | 30       | -1.20     | -                    | 5.35                 | 0.000  | 0.000                     |
| Unmitigated Noise Levels (without                                       |                              |        |          |           |                      |                      |        |                           |
| VehicleType Leq Peak Hour                                               | Leq Day                      | Leq E  | vening   | Leq I     | •                    | Ldn                  |        | CNEL                      |
| Autos: 68.8                                                             | 67.7                         |        | 64.4     |           | 61.7                 |                      | 59.5   | 69.8                      |
| Medium Trucks: 68.7                                                     | 68.0                         |        | 61.5     |           | 60.9                 |                      | 59.0   | 69.2                      |
| Heavy Trucks: 72.6                                                      | 71.6                         |        | 65.9     |           | 66.5                 |                      | 73.9   | 74.1                      |
| Vehicle Noise: 75.2                                                     | 74.3                         |        | 69.0     |           | 68.6                 | 1                    | 76.2   | 76.4                      |
| Centerline Distance to Noise Cont                                       | our (in feet)                |        |          |           |                      |                      |        |                           |
|                                                                         | l                            | 70     | dBA      | 65 c      |                      | 60 dBA               |        | 55 dBA                    |
|                                                                         | Ldn:                         |        | 152      |           | 328                  |                      | 706    | 1,521                     |
|                                                                         | CNEL:                        |        | 157      |           | 339                  | 1                    | 730    | 1,573                     |

| FHW                        | /A-RD                                                                      | -77-108 HIGH   | IWAY         | NOISE    | PREDIC     | TION N  | NODEL (            | 9/12/2  | 021)        |           |              |
|----------------------------|----------------------------------------------------------------------------|----------------|--------------|----------|------------|---------|--------------------|---------|-------------|-----------|--------------|
| Road Name: Harvil          | Scenario: EAC+P<br>Road Name: Harvill Av.<br>Road Segment: n/o Cajalco Rd. |                |              |          |            |         | t Name:<br>lumber: |         | Valley Con  | nmerce (  | ;            |
| SITE SPECIF                | IC IN                                                                      | PUT DATA       |              |          |            | I       | NOISE              | NODE    | L INPUT     | s         |              |
| Highway Data               |                                                                            |                |              |          | Site Con   | ditions | (Hard =            | 10, Se  | oft = 15)   |           |              |
| Average Daily Traffic (A   | dt):                                                                       | 26,613 vehicle | es           |          |            |         |                    | Autos:  | 15          |           |              |
| Peak Hour Percenta         | ige:                                                                       | 8.10%          |              |          | Me         | dium Ti | rucks (2           | Axles): | 15          |           |              |
| Peak Hour Volu             | me:                                                                        | 2,156 vehicle  | s            |          | He         | avy Tru | icks (3+ .         | Axles): | 15          |           |              |
| Vehicle Spe                | ed:                                                                        | 50 mph         |              |          | Vehicle I  | Nix     |                    |         |             |           |              |
| Near/Far Lane Distar       | ice:                                                                       | 48 feet        |              | F        |            | cleType | e                  | Dav     | Evening     | Night     | Daily        |
| Site Data                  |                                                                            |                |              |          |            |         | Autos:             | 76.6%   | •           | 14.5%     |              |
| Barrier Heig               | tht.                                                                       | 0.0 feet       |              |          | Me         |         | rucks:             | 83.3%   |             | 12.1%     |              |
| Barrier Type (0-Wall, 1-Be |                                                                            | 0.0 1001       |              |          | F          | leavy 1 | rucks:             | 76.9%   |             | 17.9%     |              |
| Centerline Dist. to Ban    |                                                                            | 59.0 feet      |              | -        |            | _       |                    |         |             |           |              |
| Centerline Dist. to Obser  |                                                                            | 59.0 feet      |              | 4        | Noise So   |         |                    |         | eet)        |           |              |
| Barrier Distance to Obser  | ver:                                                                       | 0.0 feet       |              |          |            | Auto    |                    | 000     |             |           |              |
| Observer Height (Above P   | ad):                                                                       | 5.0 feet       |              |          | Mediur     |         |                    | 297     | Grade Ad    |           |              |
| Pad Elevat                 | ion:                                                                       | 0.0 feet       |              |          | Heav       | y Truck | (S. 8.             | 004     | Grade Ad    | Justinent | 0.0          |
| Road Elevat                |                                                                            | Lane Equ       | uivalen      | t Distan | ce (in     | feet)   |                    |         |             |           |              |
| Road Gra                   | ide:                                                                       | 0.0%           |              |          |            | Auto    | os: 54             | 129     |             |           |              |
| Left Vi                    | ew:                                                                        | -90.0 degree   | es           |          | Mediur     |         |                    | 966     |             |           |              |
| Right Vi                   | ew:                                                                        | 90.0 degree    | es           |          | Heav       | y Truck | (s: 53             | 982     |             |           |              |
| FHWA Noise Model Calcul    |                                                                            |                |              |          |            |         |                    |         |             |           |              |
| VehicleType REME           |                                                                            | Traffic Flow   |              | istance  | Finite     |         | Fresi              |         | Barrier Att |           | m Atten      |
|                            | 70.20                                                                      | 0.42           |              | -0.6     | -          | -1.20   |                    | -4.69   |             | 000       | 0.00         |
|                            | 31.00                                                                      | -10.48         |              | -0.6     |            | -1.20   |                    | -4.88   |             | 000       | 0.00         |
| Heavy Trucks: 8            | 35.38                                                                      | -10.92         |              | -0.6     | 0          | -1.20   |                    | -5.35   | 0.0         | 000       | 0.00         |
| Unmitigated Noise Levels   |                                                                            |                |              |          | <u> </u>   |         |                    |         |             |           |              |
| VehicleType Leq Pea        |                                                                            |                |              | Leq E    | vening     | Leq     | Night              |         | Ldn         |           | VEL          |
| Autos:                     | 68.                                                                        |                | 67.8         |          | 64.4       |         | 61.                |         | 69.         |           | 69           |
| Medium Trucks:             | 68.                                                                        |                | 68.0         |          | 61.5       |         | 60.                |         | 69.         |           | 69           |
| Heavy Trucks:              | 72.                                                                        |                | 71.6         |          | 65.9       |         | 66.                |         | 73.         |           | 74.          |
| Vehicle Noise:             | 75.                                                                        |                | 74.3         |          | 69.1       |         | 68.                | 5       | 76.         | 2         | 76           |
| Centerline Distance to Noi | se Co                                                                      | ntour (in feet | )            | 70       | 10.4       |         | -10.4              |         | 0 -0 4      |           | -04          |
|                            |                                                                            |                | I de :       | 70 (     | dBA        | 65      | dBA                | _       | 50 dBA      |           | dBA          |
|                            |                                                                            | 0              | Ldn:<br>NEL: |          | 153<br>158 |         | 330<br>341         |         | 710<br>735  |           | 1,53<br>1,58 |
|                            |                                                                            |                |              |          |            |         |                    |         |             |           |              |

Thursday, July 27, 2023

| FHWA-I                                                            | RD-77-108 HIGH    | WAY NO       | SE PREDIO                                                 | CTION MC    | DEL (9/12   | /2021)       |            |         |  |  |  |
|-------------------------------------------------------------------|-------------------|--------------|-----------------------------------------------------------|-------------|-------------|--------------|------------|---------|--|--|--|
| Scenario: HY<br>Road Name: Harvill Av<br>Road Segment: n/o Cajalo | -                 |              | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |             |             |              |            |         |  |  |  |
| SITE SPECIFIC                                                     | INPUT DATA        |              |                                                           |             |             | EL INPUTS    | 5          | -       |  |  |  |
| Highway Data                                                      |                   |              | Site Cor                                                  | nditions (H | lard = 10,  | Soft = 15)   |            |         |  |  |  |
| Average Daily Traffic (Adt):                                      | 29,026 vehicle    | s            |                                                           |             | Auto        |              |            |         |  |  |  |
| Peak Hour Percentage:                                             | 8.10%             |              |                                                           |             | ks (2 Axles | /            |            |         |  |  |  |
| Peak Hour Volume:                                                 | 2,351 vehicles    | 3            | He                                                        | eavy Truck  | s (3+ Axles | s): 15       |            |         |  |  |  |
| Vehicle Speed:                                                    |                   |              | Vehicle                                                   | Mix         |             |              |            |         |  |  |  |
| Near/Far Lane Distance:                                           | 48 feet           |              |                                                           | nicleType   | Day         | Evening      | Night      | Daily   |  |  |  |
| Site Data                                                         |                   |              |                                                           |             | itos: 76.6  |              | •          | 86.569  |  |  |  |
| Barrier Height:                                                   | 0.0 feet          |              | N                                                         | ledium Tru  | cks: 83.3   | 3% 4.6%      | 12.1%      | 7.109   |  |  |  |
| Barrier Type (0-Wall, 1-Berm):                                    |                   |              |                                                           | Heavy Tru   | cks: 76.9   | 9% 5.2%      | 17.9%      | 6.34%   |  |  |  |
| Centerline Dist. to Barrier:                                      | 59.0 feet         |              | Noiso S                                                   | ourco Elo   | vations (in | foot)        |            |         |  |  |  |
| Centerline Dist. to Observer:                                     | 59.0 feet         |              | 10130 0                                                   | Autos:      |             | 1001/        |            |         |  |  |  |
| Barrier Distance to Observer:                                     | 0.0 feet          |              | Modiu                                                     | m Trucks:   | 0.000       |              |            |         |  |  |  |
| Observer Height (Above Pad):                                      | 5.0 feet          |              |                                                           | vv Trucks:  |             | Grade Adj    | ustment: ( | 0.0     |  |  |  |
| Pad Elevation:                                                    | 0.0 1000          |              |                                                           |             |             |              |            |         |  |  |  |
| Road Elevation:                                                   |                   |              | Lane Eq                                                   |             | Distance (i | n feet)      |            |         |  |  |  |
| Road Grade:                                                       |                   |              |                                                           | Autos:      |             |              |            |         |  |  |  |
| Left View:                                                        |                   |              |                                                           | m Trucks:   | 00.000      |              |            |         |  |  |  |
| Right View:                                                       | 90.0 degree       | es           | Hea                                                       | vy Trucks:  | 53.982      |              |            |         |  |  |  |
| FHWA Noise Model Calculatio                                       | ons               |              |                                                           |             |             |              |            | -       |  |  |  |
| VehicleType REMEL                                                 | Traffic Flow      | Distanc      |                                                           | Road        | Fresnel     | Barrier Atte |            | n Atten |  |  |  |
| Autos: 70.2                                                       |                   |              | 0.62                                                      | -1.20       | -4.6        |              |            | 0.00    |  |  |  |
| Medium Trucks: 81.0                                               |                   |              | 0.60                                                      | -1.20       | -4.8        |              |            | 0.00    |  |  |  |
| Heavy Trucks: 85.3                                                | -10.56            | -            | 0.60                                                      | -1.20       | -5.3        | 5 0.0        | 000        | 0.00    |  |  |  |
| Unmitigated Noise Levels (wit                                     | thout Topo and    | barrier at   | tenuation)                                                |             |             |              |            | -       |  |  |  |
| VehicleType Leq Peak H                                            |                   |              | q Evening                                                 | Leq N       | •           | Ldn          | CNE        |         |  |  |  |
|                                                                   |                   | 68.1         | 64.8                                                      |             | 62.2        | 69.9         |            | 70.     |  |  |  |
|                                                                   |                   | 68.5         | 61.9                                                      |             | 61.3        | 69.4         |            | 69.     |  |  |  |
|                                                                   |                   | 72.0         | 66.3                                                      |             | 66.9        | 74.3         |            | 74.     |  |  |  |
| Vehicle Noise:                                                    | 75.6              | 74.7         | 69.5                                                      | 5           | 69.0        | 76.6         | 6          | 76.     |  |  |  |
| Orméralia - Distance de Noire a                                   | Contour (in feet) |              |                                                           |             |             |              |            |         |  |  |  |
| Centerline Distance to Noise                                      |                   |              |                                                           |             | -           | 60 dBA       | 55 d       | BA      |  |  |  |
| Centerline Distance to Noise                                      |                   |              | 70 dBA                                                    | 65 dl       |             |              |            |         |  |  |  |
| Centerline Distance to Noise                                      |                   | Ldn:<br>VEL: | 70 dBA<br>162<br>168                                      | 65 dl       | 349<br>361  | 752          |            | 1,620   |  |  |  |

|                   | FHWA-RI                                          | 0-77-108 HIGH   | WAY NO       | DISE PRED    |                                                           | IODEL (9/12  | 2/2021)      |              |  |  |  |  |  |
|-------------------|--------------------------------------------------|-----------------|--------------|--------------|-----------------------------------------------------------|--------------|--------------|--------------|--|--|--|--|--|
| Road Nan          | rio: HY+P<br>ne: Harvill Av.<br>ent: n/o Cajalco | Rd.             |              |              | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |              |              |              |  |  |  |  |  |
|                   | SPECIFIC IN                                      | IPUT DATA       |              |              |                                                           |              | DEL INPUTS   | 1            |  |  |  |  |  |
| Highway Data      |                                                  |                 |              | Site Co      | onditions                                                 | (Hard = 10,  | Soft = 15)   |              |  |  |  |  |  |
| Average Daily     | Traffic (Adt):                                   | 29,252 vehicle  | es           |              |                                                           | Auto         | os: 15       |              |  |  |  |  |  |
| Peak Hour         | Percentage:                                      | 8.10%           |              | ٨            | ledium Tr                                                 | ucks (2 Axle | s): 15       |              |  |  |  |  |  |
| Peak H            | lour Volume:                                     | 2,369 vehicle   | s            | F            | leavy Tru                                                 | cks (3+ Axle | s): 15       |              |  |  |  |  |  |
| Ve                | ehicle Speed:                                    | 50 mph          |              | Vehicl       | Mix                                                       |              |              |              |  |  |  |  |  |
| Near/Far La       | ane Distance:                                    | 48 feet         |              |              | hicleType                                                 | Da           | / Evening    | Night Daily  |  |  |  |  |  |
| Site Data         |                                                  |                 |              |              |                                                           | Autos: 76.   |              | 14.5% 86.59  |  |  |  |  |  |
| Ba                | rrier Height:                                    | 0.0 feet        |              |              | Medium T                                                  | rucks: 83.   | 3% 4.6%      | 12.1% 7.05   |  |  |  |  |  |
| Barrier Type (0-V |                                                  | 0.0             |              |              | Heavy T                                                   | rucks: 76.   | 9% 5.2%      | 17.9% 6.36   |  |  |  |  |  |
| Centerline D      | ist. to Barrier:                                 | 59.0 feet       |              | Noise        | Source F                                                  | evations (ii | 1 foot)      |              |  |  |  |  |  |
| Centerline Dist.  | to Observer:                                     | 59.0 feet       |              | 110130       | Auto                                                      |              | ,            |              |  |  |  |  |  |
| Barrier Distance  | to Observer:                                     | 0.0 feet        |              | Mod          | ium Truck                                                 | 0.000        |              |              |  |  |  |  |  |
| Observer Height   | (Above Pad):                                     | 5.0 feet        |              |              | avy Truck                                                 |              |              | istment: 0.0 |  |  |  |  |  |
| P                 | ad Elevation:                                    | 0.0 feet        |              |              |                                                           |              |              |              |  |  |  |  |  |
| Ro                | ad Elevation:                                    | 0.0 feet        |              | Lane E       |                                                           | Distance (   | ,            |              |  |  |  |  |  |
|                   | Road Grade:                                      | 0.0%            |              |              | Auto                                                      |              |              |              |  |  |  |  |  |
|                   | Left View:                                       | -90.0 degre     |              |              | ium Truck                                                 | - 00.000     |              |              |  |  |  |  |  |
|                   | Right View:                                      | 90.0 degre      | es           | He           | avy Truck                                                 | s: 53.982    |              |              |  |  |  |  |  |
| FHWA Noise Mod    | el Calculation                                   | s               |              | 1            |                                                           |              |              |              |  |  |  |  |  |
| VehicleType       | REMEL                                            | Traffic Flow    | Distar       | ce Fini      | te Road                                                   | Fresnel      | Barrier Atte | n Berm Atter |  |  |  |  |  |
| Autos:            | 70.20                                            | 0.83            |              | -0.62        | -1.20                                                     | -4.0         | 59 0.0       | 0.0          |  |  |  |  |  |
| Medium Trucks:    | 81.00                                            | -10.07          |              | -0.60        | -1.20                                                     | -4.8         | 88 0.0       | 0.0          |  |  |  |  |  |
| Heavy Trucks:     | 85.38                                            | -10.52          |              | -0.60        | -1.20                                                     | -5.3         | 35 0.0       | 0.0          |  |  |  |  |  |
| Unmitigated Nois  | e Levels (with                                   | out Topo and    | barrier a    | ttenuation   | )                                                         |              |              |              |  |  |  |  |  |
| VehicleType       | Leq Peak Hou                                     |                 |              | eq Evening   |                                                           | Night        | Ldn          | CNEL         |  |  |  |  |  |
| Autos:            |                                                  |                 | 68.2         | 64           |                                                           | 62.2         | 69.9         | 70           |  |  |  |  |  |
| Medium Trucks:    |                                                  |                 | 68.5         | 61           | -                                                         | 61.3         | 69.4         | 69           |  |  |  |  |  |
| Heavy Trucks:     |                                                  |                 | 72.0         | 66           |                                                           | 67.0         | 74.3         | 74           |  |  |  |  |  |
| Vehicle Noise:    | 75                                               | .7              | 74.7         | 69           | .5                                                        | 69.0         | 76.6         | 76           |  |  |  |  |  |
| Contorlino Distan | ce to Noise Co                                   | ontour (in feet | )            |              |                                                           |              |              |              |  |  |  |  |  |
| Centernite Distan |                                                  |                 |              | 70 dBA       |                                                           | dBA          | 60 dBA       | 55 dBA       |  |  |  |  |  |
| Centennie Distan  |                                                  |                 |              |              |                                                           | -            |              |              |  |  |  |  |  |
| Centennie Distan  |                                                  |                 | Ldn:<br>NEL: | 10 0BA<br>16 | 3                                                         | 351<br>363   | 756<br>782   | 1,62         |  |  |  |  |  |

| FHWA-RD-77-108 HI                                                      | GHWAY NC      | ISE PREDI  |                     | DEL (9/12/              | 2021)             |                |
|------------------------------------------------------------------------|---------------|------------|---------------------|-------------------------|-------------------|----------------|
| Scenario: E<br>Road Name: Harvill Av.<br>Road Segment: s/o Cajalco Rd. |               |            |                     | ame: Meac<br>nber: 1509 | l Valley Com<br>1 | merce C        |
| SITE SPECIFIC INPUT DAT                                                | A             |            |                     |                         | EL INPUTS         | 5              |
| Highway Data                                                           |               | Site Co.   | nditions (H         | ard = 10, S             | Soft = 15)        |                |
| Average Daily Traffic (Adt): 11,175 veh                                | icles         |            |                     | Autos                   | s: 15             |                |
| Peak Hour Percentage: 8.10%                                            |               | М          | edium Truci         | ks (2 Axles             | ): 15             |                |
| Peak Hour Volume: 905 vehi                                             | cles          | Н          | eavy Trucks         | s (3+ Axles             | ): 15             |                |
| Vehicle Speed: 50 mph                                                  |               | Vehicle    | Mix                 |                         |                   |                |
| Near/Far Lane Distance: 48 feet                                        |               |            | hicleType           | Dav                     | Evening           | Night Daily    |
| Site Data                                                              |               |            |                     | tos: 76.6               | ÷                 | 14.5% 86.56    |
| Barrier Height: 0.0 fee                                                | t             | ٨          | ledium Truc         | ks: 83.3                | % 4.6%            | 12.1% 7.10     |
| Barrier Type (0-Wall, 1-Berm): 0.0                                     |               |            | Heavy Truc          | ks: 76.9                | % 5.2%            | 17.9% 6.349    |
| Centerline Dist. to Barrier: 59.0 fee                                  | t             | Noine C    |                     |                         | 64)               |                |
| Centerline Dist. to Observer: 59.0 fee                                 | t             | Noise S    | ource Elev          |                         | feet)             |                |
| Barrier Distance to Observer: 0.0 fee                                  | t             | 14 m - 14  | Autos:<br>m Trucks: | 0.000                   |                   |                |
| Observer Height (Above Pad): 5.0 fee                                   | t             |            | vy Trucks:          | 2.297<br>8.004          | Crada Adi         | ustment: 0.0   |
| Pad Elevation: 0.0 fee                                                 | t             | nea        | vy mucks.           | 0.004                   | Graue Auji        | Journerit. 0.0 |
| Road Elevation: 0.0 fee                                                | t             | Lane Ed    | quivalent D         | istance (ir             | n feet)           |                |
| Road Grade: 0.0%                                                       |               |            | Autos:              | 54.129                  |                   |                |
| Left View: -90.0 deg                                                   | rees          | Media      | ım Trucks:          | 53.966                  |                   |                |
| Right View: 90.0 deg                                                   | grees         | Hea        | vy Trucks:          | 53.982                  |                   |                |
| FHWA Noise Model Calculations                                          |               |            |                     |                         |                   |                |
| VehicleType REMEL Traffic Flo                                          |               |            |                     | Fresnel                 | Barrier Atte      |                |
|                                                                        |               | -0.62      | -1.20               | -4.69                   |                   |                |
| Medium Trucks: 81.00 -14                                               |               | -0.60      | -1.20               | -4.88                   |                   |                |
| Heavy Trucks: 85.38 -14                                                | 71            | -0.60      | -1.20               | -5.38                   | 5 0.0             | 00 0.00        |
| Unmitigated Noise Levels (without Topo a                               |               | ,          |                     |                         |                   |                |
| VehicleType Leq Peak Hour Leq I                                        |               | eq Evening | Leq Ni              |                         | Ldn               | CNEL           |
| Autos: 65.0                                                            | 64.0          | 60.        |                     | 58.0                    | 65.8              |                |
| Medium Trucks: 65.0                                                    | 64.3          | 57.8       | -                   | 57.2                    | 65.3              |                |
| Heavy Trucks: 68.9                                                     | 67.9          | 62.        |                     | 62.8                    | 70.2              |                |
| Vehicle Noise: 71.5                                                    | 70.5          | 65.3       | 5                   | 64.8                    | 72.4              | 72             |
| Centerline Distance to Noise Contour (in f                             | eet)          | 70 -/04    | 05.15               |                         | CO -/D A          | <i></i>        |
|                                                                        | L             | 70 dBA     | 65 dB               |                         | 60 dBA            | 55 dBA         |
|                                                                        | Ldn:<br>CNEL: | 86         |                     | 185                     | 398               | 85             |
|                                                                        | UNEL:         | 89         |                     | 191                     | 412               | 88             |

|                    | FHWA-RD-                                     | 77-108 HIGHWA        | Y NOIS    | E PREDIC                                                  |         | IODEL (   | 9/12/20  | 021)        |          |         |  |  |
|--------------------|----------------------------------------------|----------------------|-----------|-----------------------------------------------------------|---------|-----------|----------|-------------|----------|---------|--|--|
|                    | o: E+P<br>e: Harvill Av.<br>t: s/o Cajalco F | Rd.                  |           | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |         |           |          |             |          |         |  |  |
| SITE S             |                                              | PUT DATA             |           | NOISE MODEL INPUTS                                        |         |           |          |             |          |         |  |  |
| Highway Data       |                                              |                      |           | Site Con                                                  | ditions | (Hard =   | 10, So   | oft = 15)   |          |         |  |  |
| Average Daily 1    | raffic (Adt):                                | 1,298 vehicles       |           |                                                           |         |           | Autos:   | 15          |          |         |  |  |
| Peak Hour I        | Percentage:                                  | 8.10%                |           | Me                                                        | dium Tr | ucks (2 A | Axles):  | 15          |          |         |  |  |
| Peak Ho            | our Volume:                                  | 915 vehicles         |           | He                                                        | avy Tru | cks (3+ A | Axles):  | 15          |          |         |  |  |
|                    | icle Speed:                                  | 50 mph               |           | Vehicle I                                                 | Nix     |           |          |             |          |         |  |  |
| Near/Far Lar       | e Distance:                                  | 48 feet              |           | VehicleType Day Evening Night L                           |         |           |          |             |          |         |  |  |
| Site Data          |                                              |                      |           |                                                           |         | Autos:    | 76.6%    | 8.9%        | 14.5%    | 86.719  |  |  |
| Bar                | rier Height:                                 | 0.0 feet             |           | Me                                                        | edium T | rucks:    | 83.3%    | 4.6%        | 12.1%    | 7.029   |  |  |
| Barrier Type (0-Wa |                                              | 0.0                  |           | ŀ                                                         | leavy T | rucks:    | 76.9%    | 5.2%        | 17.9%    | 6.27%   |  |  |
| Centerline Dis     | t. to Barrier:                               | 59.0 feet            |           | Noise So                                                  | urco F  | evation   | s (in fo | of)         |          |         |  |  |
| Centerline Dist. t | o Observer:                                  | 59.0 feet            |           | 110/30 00                                                 | Auto    |           | 000      |             |          |         |  |  |
| Barrier Distance t | o Observer:                                  | 0.0 feet             |           | Mediu                                                     | n Truck |           | 297      |             |          |         |  |  |
| Observer Height (# | Above Pad):                                  | 5.0 feet             |           |                                                           | y Truck |           | D04      | Grade Ad    | iustment | 0.0     |  |  |
| Pa                 | d Elevation:                                 | 0.0 feet<br>0.0 feet |           |                                                           |         |           |          |             | ,        |         |  |  |
|                    | d Elevation:                                 |                      | Lane Equ  |                                                           |         |           | feet)    |             |          |         |  |  |
| F                  | oad Grade:                                   | 0.0%                 |           |                                                           | Auto    |           | 129      |             |          |         |  |  |
|                    | Left View:                                   | -90.0 degrees        |           |                                                           | n Truck |           | 966      |             |          |         |  |  |
|                    | Right View:                                  | 90.0 degrees         |           | Heav                                                      | y Truck | S.' 53.'  | 982      |             |          |         |  |  |
| FHWA Noise Mode    | l Calculations                               |                      |           |                                                           |         |           |          |             |          |         |  |  |
| VehicleType        |                                              | Traffic Flow         | Distance  | e Finite                                                  | Road    | Fresn     | el       | Barrier Att | en Ber   | m Atten |  |  |
| Autos:             | 70.20                                        | -3.30                |           | .62                                                       | -1.20   |           | -4.69    |             | 000      | 0.00    |  |  |
| Medium Trucks:     | 81.00                                        | -14.22               |           | .60                                                       | -1.20   |           | -4.88    |             | 000      | 0.00    |  |  |
| Heavy Trucks:      | 85.38                                        | -14.71               | -0        | .60                                                       | -1.20   |           | -5.35    | 0.0         | 000      | 0.00    |  |  |
| Unmitigated Noise  | Levels (witho                                | ut Topo and bar      | rier atte | enuation)                                                 |         |           |          |             |          |         |  |  |
|                    | Leq Peak Hour                                |                      |           | Evening                                                   | Leq     | Night     |          | Ldn         |          | VEL     |  |  |
| Autos:             | 65.1                                         |                      |           | 60.7                                                      |         | 58.1      |          | 65.         |          | 66.     |  |  |
| Medium Trucks:     | 65.0                                         |                      | -         | 57.8                                                      |         | 57.2      | -        | 65.3        | -        | 65.     |  |  |
| Heavy Trucks:      | 68.9                                         |                      | -         | 62.1                                                      |         | 62.8      |          | 70.3        |          | 70.     |  |  |
| Vehicle Noise:     | 71.5                                         | 5 70.                | 5         | 65.3                                                      |         | 64.9      | )        | 72.4        | 4        | 72.     |  |  |
| Centerline Distanc | e to Noise Cor                               | ntour (in feet)      |           |                                                           |         |           |          |             |          |         |  |  |
|                    |                                              |                      |           | 0 dBA                                                     | 65      | dBA       | 6        | i0 dBA      |          | dBA     |  |  |
|                    |                                              | Ldr                  |           | 86                                                        |         | 185       |          | 399         |          | 859     |  |  |
|                    |                                              | CNEL                 |           | 89                                                        |         | 192       |          | 413         |          | 889     |  |  |

Thursday, July 27, 2023

| FHWA                         | RD-77-108 HIG  | GHWAY N | OISE P  | REDIC                                | TION MO   | ODEL (9/  | 12/202  | 21)                 |          |         |  |
|------------------------------|----------------|---------|---------|--------------------------------------|-----------|-----------|---------|---------------------|----------|---------|--|
| Scenario: EAC                |                |         |         | Project Name: Mead Valley Commerce C |           |           |         |                     |          |         |  |
| Road Name: Harvill A         | v.             |         |         |                                      | Job Ni    | imber: 15 | 5091    |                     |          |         |  |
| Road Segment: s/o Caja       | co Rd.         |         |         |                                      |           |           |         |                     |          |         |  |
| SITE SPECIFIC                | INPUT DATA     | 4       |         |                                      |           |           |         | INPUTS              | 6        |         |  |
| Highway Data                 |                |         | Sit     | te Cond                              | ditions ( | Hard = 1  | 0, Sofi | t = 15)             |          |         |  |
| Average Daily Traffic (Adt)  | : 26,260 vehi  | cles    |         |                                      |           |           | utos:   | 15                  |          |         |  |
| Peak Hour Percentage         | : 8.10%        |         |         |                                      |           | cks (2 Ax | ,       | 15                  |          |         |  |
| Peak Hour Volume             | ,              | les     |         | Hea                                  | avy Truc  | ks (3+ Ax | les):   | 15                  |          |         |  |
| Vehicle Speed                |                |         | Ve      | hicle N                              | lix       |           |         |                     |          |         |  |
| Near/Far Lane Distance       | : 48 feet      |         |         | Vehi                                 | cleType   | D         | ay E    | Evening             | Night    | Daily   |  |
| Site Data                    |                |         |         |                                      | A         | utos: 7   | 6.6%    | 8.9%                | 14.5%    | 86.56   |  |
| Barrier Heigh                | : 0.0 feet     |         |         | Me                                   | dium Tru  | ucks: 8   | 3.3%    | 4.6%                | 12.1%    | 7.10    |  |
| Barrier Type (0-Wall, 1-Berm |                |         |         | H                                    | leavy Tri | ucks: 7   | 6.9%    | 5.2%                | 17.9%    | 6.34    |  |
| Centerline Dist. to Barrie   | : 59.0 feet    |         | Ne      | vica Sa                              | urco Ela  | vations   | (in foo | <i>(</i> <b>#</b> ) |          |         |  |
| Centerline Dist. to Observe  | : 59.0 feet    |         | 140     | //30 00                              | Autos     |           |         | 9                   |          |         |  |
| Barrier Distance to Observe  | : 0.0 feet     |         |         | Madium                               | n Trucks  | . 0.00    | -       |                     |          |         |  |
| Observer Height (Above Pad   | : 5.0 feet     |         |         |                                      | y Trucks  |           |         | Grade Adj           | ustment: | 0.0     |  |
| Pad Elevation                | 0.0 feet       |         |         |                                      |           |           |         |                     |          |         |  |
| Road Elevation               | 0.0 1000       |         | La      | ne Equ                               |           | Distance  |         | et)                 |          |         |  |
| Road Grade                   | 0.070          |         |         |                                      | Autos     |           |         |                     |          |         |  |
| Left View                    | · 00.0 40g.    |         |         |                                      | n Trucks  |           |         |                     |          |         |  |
| Right View                   | : 90.0 degr    | ees     |         | Heav                                 | y Trucks  | 53.98     | 32      |                     |          |         |  |
| FHWA Noise Model Calculati   | ons            |         |         |                                      |           |           |         |                     |          |         |  |
| VehicleType REMEL            | Traffic Flow   |         |         | Finite                               |           | Fresnel   |         | arrier Atte         |          | m Atter |  |
| Autos: 70.                   |                |         | -0.62   |                                      | -1.20     |           | 1.69    | 0.0                 |          | 0.00    |  |
| Medium Trucks: 81.           |                |         | -0.60   |                                      | -1.20     |           | 1.88    | 0.0                 |          | 0.00    |  |
| Heavy Trucks: 85.            | 38 -11.0       | 00      | -0.60   |                                      | -1.20     | -5        | 5.35    | 0.0                 | 00       | 0.00    |  |
| Unmitigated Noise Levels (w  |                |         |         |                                      |           |           |         |                     |          |         |  |
| VehicleType Leq Peak I       |                |         | .eq Eve |                                      | Leq N     | •         | L       | _dn                 |          | IEL     |  |
| Autos:                       | 68.7           | 67.7    |         | 64.4                                 |           | 61.7      |         | 69.5                |          | 69      |  |
| Medium Trucks:               | 68.7           | 68.0    |         | 61.5                                 |           | 60.9      |         | 69.0                |          | 69      |  |
| Heavy Trucks:                | 72.6           | 71.6    |         | 65.9                                 |           | 66.5      |         | 73.9                |          | 74      |  |
| Vehicle Noise:               | 75.2           | 74.2    |         | 69.0                                 |           | 68.6      |         | 76.1                |          | 76      |  |
| Centerline Distance to Noise | Contour (in fe | et)     |         |                                      |           |           | _       |                     |          |         |  |
|                              |                |         | 70 dB   |                                      | 65 d      |           | 60      | dBA                 | 55       | dBA     |  |
|                              |                | Ldn:    |         | 152                                  |           | 327       |         | 704                 |          | 1,51    |  |
|                              |                | CNEL:   |         | 157                                  |           | 338       |         | 728                 |          | 1.56    |  |

| FHWA-RD                                                                | 0-77-108 HIGHWAY | NOISE  | PREDIC    | TION MO    | DEL (9/12             | /2021)             |              |
|------------------------------------------------------------------------|------------------|--------|-----------|------------|-----------------------|--------------------|--------------|
| Scenario: EAC+P<br>Road Name: Harvill Av.<br>Road Segment: s/o Cajalco | Rd.              |        |           |            | ame: Mea<br>nber: 150 | d Valley Com<br>91 | merce C      |
| SITE SPECIFIC IN                                                       | PUT DATA         |        |           |            |                       | DEL INPUTS         | 3            |
| Highway Data                                                           |                  |        | Site Con  | ditions (H | lard = 10,            | Soft = 15)         |              |
| Average Daily Traffic (Adt):                                           | 26,382 vehicles  |        |           |            | Auto                  | os: 15             |              |
| Peak Hour Percentage:                                                  | 8.10%            |        | Me        | dium Truc  | ks (2 Axle            | s): 15             |              |
| Peak Hour Volume:                                                      | 2,137 vehicles   |        | He        | avy Truck  | s (3+ Axle            | s): 15             |              |
| Vehicle Speed:                                                         | 50 mph           |        | Vehicle   | Mix        |                       |                    |              |
| Near/Far Lane Distance:                                                | 48 feet          | F      | Veh       | icleType   | Day                   | Evening            | Night Daily  |
| Site Data                                                              |                  |        |           | Au         | tos: 76.0             | 5% 8.9%            | 14.5% 86.63% |
| Barrier Height:                                                        | 0.0 feet         |        | М         | edium Tru  | cks: 83.3             | 3% 4.6%            | 12.1% 7.06%  |
| Barrier Type (0-Wall, 1-Berm):                                         | 0.0              |        |           | Heavy Tru  | cks: 76.9             | 9% 5.2%            | 17.9% 6.31%  |
| Centerline Dist. to Barrier:                                           | 59.0 feet        | H      | Noiso Si  | ource Elev | ations (ir            | foot               |              |
| Centerline Dist. to Observer:                                          | 59.0 feet        | ť      | 140/36 30 | Autos:     | 0.000                 | Teelj              |              |
| Barrier Distance to Observer:                                          | 0.0 feet         |        | Modiu     | m Trucks:  | 2.297                 |                    |              |
| Observer Height (Above Pad):                                           | 5.0 feet         |        |           | v Trucks:  | 8.004                 | Grade Adi          | ustment: 0.0 |
| Pad Elevation:                                                         | 0.0 feet         |        |           | · · · ·    |                       |                    |              |
| Road Elevation:                                                        | 0.0 feet         | 4      | Lane Eq   | uivalent D |                       | n feet)            |              |
| Road Grade:                                                            | 0.0%             |        |           | Autos:     | 54.129                |                    |              |
| Left View:                                                             | -90.0 degrees    |        |           | m Trucks:  | 53.966                |                    |              |
| Right View:                                                            | 90.0 degrees     |        | Heat      | y Trucks:  | 53.982                |                    |              |
| FHWA Noise Model Calculations                                          |                  |        |           |            |                       |                    |              |
| VehicleType REMEL                                                      |                  | stance |           | Road       | Fresnel               | Barrier Atte       |              |
| Autos: 70.20                                                           | 0.38             | -0.6   | -         | -1.20      | -4.6                  |                    |              |
| Medium Trucks: 81.00                                                   | -10.51           | -0.6   | -         | -1.20      | -4.8                  |                    |              |
| Heavy Trucks: 85.38                                                    | -11.00           | -0.6   | -         | -1.20      | -5.3                  | 5 0.0              | 00 0.00      |
| Unmitigated Noise Levels (with                                         |                  |        |           |            |                       |                    |              |
| VehicleType Leq Peak Hou                                               |                  | Leq E  | vening    | Leq Ni     | •                     | Ldn                | CNEL         |
| Autos: 68                                                              |                  |        | 64.4      |            | 61.7                  | 69.5               |              |
| Medium Trucks: 68                                                      |                  |        | 61.5      |            | 60.9                  | 69.0               |              |
| Heavy Trucks: 72<br>Vehicle Noise: 75                                  |                  |        | 65.9      |            | 66.5<br>68.6          | 73.9               |              |
| verificie ivolse: 75                                                   | .2 74.2          |        | 09.0      |            | 08.0                  | 76.2               | /6.          |
| Centerline Distance to Noise Co                                        | ntour (in feet)  |        |           |            |                       |                    |              |
|                                                                        | [                | 70 (   | dBA       | 65 dE      |                       | 60 dBA             | 55 dBA       |
|                                                                        | Ldn:             |        | 152       |            | 327                   | 704                | 1,517        |
|                                                                        | CNEL:            |        | 157       |            | 338                   | 728                | 1,569        |

|                                      | FHWA-RD        | 0-77-108 HIGH   | WAY N | DISE  | PREDIC   |          | IODEL (9             | )/12/2  | 021)         |         |         |
|--------------------------------------|----------------|-----------------|-------|-------|----------|----------|----------------------|---------|--------------|---------|---------|
| Scenario<br>Road Name<br>Road Segmen | e: Harvill Av. | Rd.             |       |       |          |          | Name: N<br>lumber: 1 |         | Valley Com   | merce C | ;       |
| SITE S                               | SPECIFIC IN    | IPUT DATA       |       |       |          |          |                      |         | L INPUTS     | 6       |         |
| Highway Data                         |                |                 |       | S     | Site Con | ditions  | (Hard =              | 10, Sc  | oft = 15)    |         |         |
| Average Daily                        | Traffic (Adt): | 28,886 vehicle  | es    |       |          |          |                      | Autos:  | 15           |         |         |
| Peak Hour I                          | Percentage:    | 8.10%           |       |       | Me       | dium Tr  | ucks (2 A            | xles):  | 15           |         |         |
| Peak He                              | our Volume:    | 2,340 vehicle   | s     |       | He       | avy Tru  | cks (3+ A            | xles):  | 15           |         |         |
| Vel                                  | nicle Speed:   | 50 mph          |       | L.    | /ehicle  | Mix      |                      |         |              |         |         |
| Near/Far Lar                         | e Distance:    | 48 feet         |       |       |          | icleType |                      | Dav     | Evening      | Niaht   | Dailv   |
| Site Data                            |                |                 |       |       | VCII     |          |                      | 76.6%   |              | 14.5%   |         |
|                                      | rier Height:   | 0.0 feet        |       |       | М        | edium Ti |                      | 83.3%   |              | 12.1%   |         |
| Barrier Type (0-Wa                   |                | 0.0             |       |       | 1        | Heavy T  | rucks:               | 76.9%   | 5.2%         | 17.9%   | 6.349   |
| Centerline Dis                       | . ,            | 59.0 feet       |       | -     |          | -        |                      |         |              |         |         |
| Centerline Dist. 1                   |                | 59.0 feet       |       | N     | loise Sc |          | evations             |         | eet)         |         |         |
| Barrier Distance t                   | o Observer:    | 0.0 feet        |       |       |          | Auto     |                      | 000     |              |         |         |
| Observer Height ()                   | Above Pad):    | 5.0 feet        |       |       |          | m Truck  |                      | 297     | Oursels Adi  |         |         |
| ÷ (                                  | d Elevation:   | 0.0 feet        |       |       | Heav     | ry Truck | s: 8.0               | 004     | Grade Adj    | usiment | 0.0     |
| Roa                                  | d Elevation:   | 0.0 feet        |       | L     | ane Eq   | uivalent | Distanc              | e (in i | feet)        |         |         |
| F                                    | Road Grade:    | 0.0%            |       |       |          | Auto     | s: 54.1              | 129     |              |         |         |
|                                      | Left View:     | -90.0 degre     | es    |       | Mediu    | m Truck  | s: 53.9              | 966     |              |         |         |
|                                      | Right View:    | 90.0 degre      | es    |       | Heav     | ry Truck | s: 53.9              | 982     |              |         |         |
| FHWA Noise Mode                      | I Calculation  | s               |       |       |          |          |                      |         |              |         |         |
| VehicleType                          | REMEL          | Traffic Flow    | Dista | nce   | Finite   | Road     | Fresn                | el      | Barrier Atte | en Ber  | m Atten |
| Autos:                               | 70.20          | 0.77            |       | -0.62 | -        | -1.20    |                      | -4.69   | 0.0          |         | 0.00    |
| Medium Trucks:                       | 81.00          | -10.09          |       | -0.60 | -        | -1.20    |                      | -4.88   | 0.0          |         | 0.00    |
| Heavy Trucks:                        | 85.38          | -10.58          |       | -0.60 | )        | -1.20    |                      | -5.35   | 0.0          | 00      | 0.00    |
| Unmitigated Noise                    |                |                 |       |       |          |          |                      |         |              |         |         |
|                                      | Leq Peak Hou   |                 |       | eq Ev | rening   | Leq      | Night                |         | Ldn          |         | VEL     |
| Autos:                               | 69             |                 | 68.1  |       | 64.8     |          | 62.1                 |         | 69.9         |         | 70.     |
| Medium Trucks:                       | 69             |                 | 68.4  |       | 61.9     |          | 61.3                 |         | 69.4         |         | 69.     |
| Heavy Trucks:                        | 73             |                 | 72.0  |       | 66.3     |          | 66.9                 |         | 74.3         |         | 74.     |
| Vehicle Noise:                       | 75             | .6              | 74.7  |       | 69.4     |          | 69.0                 |         | 76.6         |         | 76.     |
| Centerline Distanc                   | e to Noise Co  | ontour (in feet | )     |       |          |          |                      |         |              | I       |         |
|                                      |                |                 |       | 70 d  |          | 65       | dBA                  | 6       | 60 dBA       | 55      | dBA     |
|                                      |                |                 | Ldn:  |       | 162      |          | 348                  |         | 750          |         | 1.615   |
|                                      |                |                 | NEL:  |       | 162      |          | 348<br>360           |         | 730          |         | 1.671   |

|                    | FHWA-RD-                                      | 77-108 HIGHW                  | AY NOI    | ISE PREDI  |                      | NODEL (            | 9/12/20    | 021)         |           |         |
|--------------------|-----------------------------------------------|-------------------------------|-----------|------------|----------------------|--------------------|------------|--------------|-----------|---------|
| Road Name          | o: HY+P<br>e: Harvill Av.<br>t: s/o Cajalco F | Rd.                           |           |            |                      | t Name:<br>lumber: |            | /alley Com   | imerce C  | ;       |
| SITE S             | SPECIFIC INF                                  | UT DATA                       |           |            |                      |                    |            |              | S         |         |
| Highway Data       |                                               |                               |           | Site Col   | nditions             | (Hard =            | 10, So     | oft = 15)    |           |         |
| Average Daily      | Traffic (Adt): 2                              | 9,008 vehicles                |           |            |                      |                    | Autos:     | 15           |           |         |
| Peak Hour          | Percentage:                                   | 8.10%                         |           | M          | edium T              | rucks (2 /         | Axles):    | 15           |           |         |
| Peak He            | our Volume: 2                                 | 2,350 vehicles                |           | H          | eavy Tru             | icks (3+ /         | Axles):    | 15           |           |         |
|                    | nicle Speed:                                  | 50 mph                        |           | Vehicle    | Mix                  |                    |            |              |           |         |
| Near/Far Lar       | ne Distance:                                  | 48 feet                       |           | Vel        | nicleTyp             | e                  | Day        | Evening      | Night     | Daily   |
| Site Data          |                                               |                               |           |            |                      | Autos:             | 76.6%      | 8.9%         | 14.5%     | 86.629  |
| Bar                | rier Height:                                  | 0.0 feet                      |           | N          | ledium 1             | rucks:             | 83.3%      | 4.6%         | 12.1%     | 7.079   |
| Barrier Type (0-Wa | •                                             | 0.0                           |           |            | Heavy 1              | rucks:             | 76.9%      | 5.2%         | 17.9%     | 6.319   |
| Centerline Dis     | t. to Barrier:                                | 59.0 feet                     |           | Noise S    | ource F              | levation           | s (in fo   | of)          |           |         |
| Centerline Dist. t | o Observer:                                   | 59.0 feet                     |           | 10130 0    | Auto                 |                    | 000        |              |           |         |
| Barrier Distance t | o Observer:                                   | 0.0 feet                      |           | Mediu      | m Truck              |                    | 297        |              |           |         |
| Observer Height (/ | Above Pad):                                   | 5.0 feet                      |           |            | vy Truci             |                    | 004        | Grade Ad     | iustment. | 0.0     |
|                    | d Elevation:                                  | 0.0 feet                      |           |            |                      |                    |            |              |           |         |
|                    | d Elevation:                                  | 0.0 feet                      |           | Lane Eq    |                      | t Distan           |            | 'eet)        |           |         |
| F                  | Road Grade:                                   | 0.0%                          |           | 14-15      | Auto                 |                    | 129        |              |           |         |
|                    | Left View:                                    | -90.0 degrees<br>90.0 degrees |           |            | ım Trucl<br>vy Trucl |                    | 966<br>982 |              |           |         |
|                    | Right View:                                   | 90.0 degrees                  |           | 1100       | vy muci              | 13. 33.            | 502        |              |           |         |
| FHWA Noise Mode    | I Calculations                                |                               |           |            |                      |                    |            |              |           |         |
| VehicleType        | REMEL                                         | Traffic Flow                  | Distanc   | e Finite   | Road                 | Fresr              | el         | Barrier Atte | en Ber    | m Atten |
| Autos:             | 70.20                                         | 0.79                          | -         | 0.62       | -1.20                |                    | -4.69      | 0.0          | 000       | 0.00    |
| Medium Trucks:     | 81.00                                         | -10.09                        |           | 0.60       | -1.20                |                    | -4.88      |              | 000       | 0.00    |
| Heavy Trucks:      | 85.38                                         | -10.58                        | -         | 0.60       | -1.20                |                    | -5.35      | 0.0          | 000       | 0.00    |
| Unmitigated Noise  | Levels (without                               | ut Topo and ba                | arrier at | tenuation) |                      |                    |            |              |           |         |
| VehicleType        | Leq Peak Hour                                 | Leq Day                       | Leo       | q Evening  | Leq                  | Night              |            | Ldn          | CI        | VEL     |
| Autos:             | 69.2                                          |                               | 3.1       | 64.8       |                      | 62.2               |            | 69.9         |           | 70.     |
| Medium Trucks:     | 69.1                                          |                               | 3.4       | 61.9       |                      | 61.3               |            | 69.4         |           | 69.     |
| Heavy Trucks:      | 73.0                                          |                               | 2.0       | 66.3       |                      | 66.9               |            | 74.3         |           | 74.     |
| Vehicle Noise:     | 75.6                                          | 5 74                          | 1.7       | 69.4       |                      | 69.0               | )          | 76.6         | 6         | 76.     |
| Centerline Distanc | e to Noise Con                                | tour (in feet)                |           |            |                      |                    |            |              |           |         |
|                    |                                               |                               |           | 70 dBA     | 65                   | dBA                | -          | i0 dBA       |           | dBA     |
|                    |                                               | LC                            | in:       | 162        |                      | 348                |            | 750          |           | 1,616   |
|                    |                                               |                               |           | 167        |                      | 360                |            | 776          |           | 1.672   |

Thursday, July 27, 2023

| FHWA-F                         | 2D-77-108 HIGHW   | AY NOIS     | E PREDIC                             | TION MC    | DEL (9/12   | /2021)       |            |       |  |  |
|--------------------------------|-------------------|-------------|--------------------------------------|------------|-------------|--------------|------------|-------|--|--|
| Scenario: E                    |                   |             | Project Name: Mead Valley Commerce C |            |             |              |            |       |  |  |
| Road Name: Cajalco R           |                   |             |                                      | Job Nu     | mber: 1509  | 91           |            |       |  |  |
| Road Segment: w/o Clark        | St.               |             |                                      |            |             |              |            |       |  |  |
| SITE SPECIFIC I                | NPUT DATA         |             |                                      |            |             | DEL INPUTS   | 6          |       |  |  |
| Highway Data                   |                   |             | Site Con                             | ditions (F | Hard = 10,  | Soft = 15)   |            |       |  |  |
| Average Daily Traffic (Adt):   | 18,885 vehicles   |             |                                      |            | Auto        | os: 15       |            |       |  |  |
| Peak Hour Percentage:          | 8.10%             |             | Me                                   | dium Truc  | cks (2 Axle | s): 15       |            |       |  |  |
| Peak Hour Volume:              | 1,530 vehicles    |             | He                                   | avy Truck  | is (3+ Axle | s): 15       |            |       |  |  |
| Vehicle Speed:                 | 55 mph            |             | Vehicle I                            | Niv        |             |              |            |       |  |  |
| Near/Far Lane Distance:        | 102 feet          |             |                                      | cleType    | Day         | Evening      | Night      | Daily |  |  |
| Site Data                      |                   |             |                                      |            | itos: 76.0  | •            | •          | 86.56 |  |  |
| Barrier Height:                | 0.0 feet          |             | Me                                   | edium Tru  | cks: 83.3   | 3% 4.6%      | 12.1%      | 7.10  |  |  |
| Barrier Type (0-Wall, 1-Berm): | 0.0               |             | F                                    | leavy Tru  | cks: 76.9   | 9% 5.2%      | 17.9%      | 6.349 |  |  |
| Centerline Dist. to Barrier:   | 110.0 feet        |             | Naina C-                             |            | vations (in | faat         |            |       |  |  |
| Centerline Dist. to Observer:  | 110.0 feet        |             | Noise Sc                             |            |             | reet)        |            |       |  |  |
| Barrier Distance to Observer:  | 0.0 feet          |             |                                      | Autos:     | 0.000       |              |            |       |  |  |
| Observer Height (Above Pad):   | 5.0 feet          |             |                                      | n Trucks:  |             | Grade Adju   | internet i | 0.0   |  |  |
| Pad Elevation:                 | 0.0 feet          |             | Heav                                 | y Trucks:  | 8.004       | Grade Aujt   | JSUITETIL  | 0.0   |  |  |
| Road Elevation:                | 0.0 feet          |             | Lane Equ                             | ivalent l  | Distance (i | n feet)      |            |       |  |  |
| Road Grade:                    | 0.0%              |             |                                      | Autos:     | 97.591      |              |            |       |  |  |
| Left View:                     | -90.0 degrees     |             | Mediur                               | n Trucks:  | 97.500      |              |            |       |  |  |
| Right View:                    | 90.0 degrees      |             | Heav                                 | y Trucks:  | 97.509      |              |            |       |  |  |
| FHWA Noise Model Calculatio    | ns                |             |                                      |            |             |              |            |       |  |  |
| VehicleType REMEL              | Traffic Flow      | Distance    | Finite                               | Road       | Fresnel     | Barrier Atte | n Berm     | Atten |  |  |
| Autos: 71.7                    | 8 -1.49           | -4.         | 46                                   | -1.20      | -4.7        | 8 0.0        | 00         | 0.00  |  |  |
| Medium Trucks: 82.4            |                   | -4.         | 45                                   | -1.20      | -4.8        |              | 00         | 0.00  |  |  |
| Heavy Trucks: 86.4             | 0 -12.84          | -4.         | 45                                   | -1.20      | -5.1        | 4 0.0        | 00         | 0.00  |  |  |
| Unmitigated Noise Levels (wit  | hout Topo and ba  | arrier atte | nuation)                             |            |             |              |            |       |  |  |
| VehicleType Leq Peak Ho        |                   |             | Evening                              | Leq N      | •           | Ldn          | CN         |       |  |  |
|                                |                   | 3.6         | 60.3                                 |            | 57.6        | 65.4         |            | 65.   |  |  |
|                                |                   | 3.7         | 57.2                                 |            | 56.6        | 64.7         |            | 64    |  |  |
|                                |                   | 6.9         | 61.2                                 |            | 61.8        | 69.2         |            | 69.   |  |  |
| Vehicle Noise: 7               | 0.7 69            | 9.8         | 64.6                                 |            | 64.1        | 71.7         |            | 71.   |  |  |
| Centerline Distance to Noise ( | Contour (in feet) |             |                                      |            |             |              |            |       |  |  |
|                                |                   |             | ) dBA                                | 65 di      |             | 60 dBA       | 55 d       |       |  |  |
|                                |                   | dn:         | 142                                  |            | 306         | 660          |            | 1.42  |  |  |
|                                | L                 | un.         | 142                                  |            | 300         | 000          |            | .,    |  |  |

| FHWA-RD-77-108 HIGHW                                                   | AY NOIS  |                                                           | ON MODEL (   | (9/12/2) | 021)         |         |                |  |  |  |
|------------------------------------------------------------------------|----------|-----------------------------------------------------------|--------------|----------|--------------|---------|----------------|--|--|--|
| Scenario: E+P<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Clark St. |          | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |              |          |              |         |                |  |  |  |
| SITE SPECIFIC INPUT DATA                                               |          |                                                           |              |          | L INPUTS     | 3       |                |  |  |  |
| Highway Data                                                           |          | Site Condit                                               | ions (Hard = | : 10, Sc | oft = 15)    |         |                |  |  |  |
| Average Daily Traffic (Adt): 19,315 vehicles                           |          |                                                           |              | Autos:   | 15           |         |                |  |  |  |
| Peak Hour Percentage: 8.10%                                            |          | Mediu                                                     | m Trucks (2  | Axles):  | 15           |         |                |  |  |  |
| Peak Hour Volume: 1,564 vehicles                                       |          | Heavy                                                     | y Trucks (3+ | Axles):  | 15           |         |                |  |  |  |
| Vehicle Speed: 55 mph                                                  |          | Vehicle Mix                                               | ,            |          |              |         |                |  |  |  |
| Near/Far Lane Distance: 102 feet                                       |          | Vehicle                                                   |              | Dav      | Evening      | Night   | Daily          |  |  |  |
| Site Data                                                              |          |                                                           | Autos:       | 76.6%    |              | 14.5%   |                |  |  |  |
| Barrier Height: 0.0 feet                                               |          | Medi                                                      | um Trucks:   | 83.3%    | 4.6%         | 12.1%   | 6.979          |  |  |  |
| Barrier Type (0-Wall, 1-Berm): 0.0                                     |          | Hea                                                       | avy Trucks:  | 76.9%    | 5.2%         | 17.9%   | 6.51%          |  |  |  |
| Centerline Dist. to Barrier: 110.0 feet                                |          | Noise Sour                                                | ce Elevation | s (in fa | oof)         |         |                |  |  |  |
| Centerline Dist. to Observer: 110.0 feet                               |          | -                                                         |              | .000     |              |         |                |  |  |  |
| Barrier Distance to Observer: 0.0 feet                                 |          | Medium                                                    |              | .297     |              |         |                |  |  |  |
| Observer Height (Above Pad): 5.0 feet                                  |          | Heavy                                                     |              | .004     | Grade Adj    | ustment | 0.0            |  |  |  |
| Pad Elevation: 0.0 feet                                                |          |                                                           |              |          |              |         |                |  |  |  |
| Road Elevation: 0.0 feet                                               |          |                                                           | alent Distan |          | feet)        |         |                |  |  |  |
| Road Grade: 0.0%                                                       |          |                                                           |              | .591     |              |         |                |  |  |  |
| Left View: -90.0 degrees                                               |          | Medium                                                    |              | .500     |              |         |                |  |  |  |
| Right View: 90.0 degrees                                               |          | Heavy                                                     | frucks: 97   | .509     |              |         |                |  |  |  |
| FHWA Noise Model Calculations                                          |          |                                                           |              |          |              |         |                |  |  |  |
| VehicleType REMEL Traffic Flow                                         | Distance |                                                           |              |          | Barrier Atte |         | m Atten        |  |  |  |
| Autos: 71.78 -1.39                                                     |          |                                                           | 1.20         | -4.78    | 0.0          |         | 0.00           |  |  |  |
| Medium Trucks: 82.40 -12.33                                            |          |                                                           | 1.20         | -4.88    | 0.0          |         | 0.00           |  |  |  |
| Heavy Trucks: 86.40 -12.63                                             | -4       | .45 -                                                     | 1.20         | -5.14    | 0.0          | 00      | 0.00           |  |  |  |
| Unmitigated Noise Levels (without Topo and b                           |          |                                                           |              |          |              |         |                |  |  |  |
| VehicleType Leq Peak Hour Leq Day                                      |          | Evening                                                   | Leq Night    |          | Ldn          |         | VEL            |  |  |  |
|                                                                        | 3.7      | 60.4                                                      | 57.          |          | 65.5         |         | 65.            |  |  |  |
|                                                                        | 3.7      | 57.2                                                      | 56.          |          | 64.7         |         | 64.            |  |  |  |
|                                                                        | 7.1      | 61.4                                                      | 62.          | -        | 69.4         |         | 69.            |  |  |  |
|                                                                        | 9.9      | 64.8                                                      | 64.          | 2        | 71.8         |         | 72.            |  |  |  |
| Centerline Distance to Noise Contour (in feet)                         |          |                                                           |              |          |              |         |                |  |  |  |
|                                                                        | 70       | 0 dBA                                                     | 65 dBA       | 6        | 60 dBA       | 55      | dBA            |  |  |  |
|                                                                        |          |                                                           |              |          |              |         |                |  |  |  |
| L<br>CNI                                                               | dn:      | 145<br>151                                                | 313<br>324   |          | 675<br>699   |         | 1,454<br>1,505 |  |  |  |

| FHWA-RD-77-108 HI                                                      | SHWAY NOI  | SE PREDICTION MODEL (9/12/2021)                           |
|------------------------------------------------------------------------|------------|-----------------------------------------------------------|
| Scenario: EAC<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Clark St. |            | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |
| SITE SPECIFIC INPUT DAT                                                | 4          | NOISE MODEL INPUTS                                        |
| Highway Data                                                           |            | Site Conditions (Hard = 10, Soft = 15)                    |
| Average Daily Traffic (Adt): 26,993 veh                                | cles       | Autos: 15                                                 |
| Peak Hour Percentage: 8.10%                                            |            | Medium Trucks (2 Axles): 15                               |
| Peak Hour Volume: 2,186 vehic                                          | les        | Heavy Trucks (3+ Axles): 15                               |
| Vehicle Speed: 55 mph                                                  |            | Vehicle Mix                                               |
| Near/Far Lane Distance: 102 feet                                       |            | VehicleType Day Evening Night Daily                       |
| Site Data                                                              |            | Autos: 76.6% 8.9% 14.5% 86.56                             |
|                                                                        |            | Medium Trucks: 83.3% 4.6% 12.1% 7.10                      |
| Barrier Height: 0.0 feet<br>Barrier Type (0-Wall, 1-Berm): 0.0         |            | Heavy Trucks: 76.9% 5.2% 17.9% 6.34                       |
| Centerline Dist. to Barrier: 110.0 feet                                |            |                                                           |
| Centerline Dist. to Observer: 110.0 feet                               |            | Noise Source Elevations (in feet)                         |
| Barrier Distance to Observer: 0.0 feet                                 |            | Autos: 0.000                                              |
| Observer Height (Above Pad): 5.0 feet                                  |            | Medium Trucks: 2.297                                      |
| Pad Elevation: 0.0 feet                                                |            | Heavy Trucks: 8.004 Grade Adjustment: 0.0                 |
| Road Elevation: 0.0 feet                                               |            | Lane Equivalent Distance (in feet)                        |
| Road Grade: 0.0%                                                       |            | Autos: 97.591                                             |
| Left View: -90.0 deg                                                   | rees       | Medium Trucks: 97.500                                     |
| Right View: 90.0 deg                                                   |            | Heavy Trucks: 97.509                                      |
| FHWA Noise Model Calculations                                          |            |                                                           |
| VehicleType REMEL Traffic Flow                                         | / Distance | Finite Road Fresnel Barrier Atten Berm Atte               |
| Autos: 71.78 0.                                                        | )6 -4      | .46 -1.20 -4.78 0.000 0.0                                 |
| Medium Trucks: 82.40 -10.4                                             | 30 -4      | .45 -1.20 -4.88 0.000 0.0                                 |
| Heavy Trucks: 86.40 -11.                                               | 29 -4      | .45 -1.20 -5.14 0.000 0.0                                 |
| Unmitigated Noise Levels (without Topo an                              |            | ,                                                         |
| VehicleType Leq Peak Hour Leq D                                        |            | Evening Leq Night Ldn CNEL                                |
| Autos: 66.2                                                            | 65.2       | 61.8 59.2 66.9 6                                          |
| Medium Trucks: 65.9                                                    | 65.3       | 58.7 58.2 66.3 6                                          |
| Heavy Trucks: 69.5                                                     | 68.4       | 62.7 63.4 70.7 70                                         |
| Vehicle Noise: 72.3                                                    | 71.3       | 66.2 65.6 73.2 7                                          |
| Centerline Distance to Noise Contour (in fe                            |            | 0 dBA 65 dBA 60 dBA 55 dBA                                |
|                                                                        | Ldn:       | 180 389 837 1.8                                           |
|                                                                        | CNEL:      | 180 389 837 1,80<br>187 402 867 1,80                      |
|                                                                        | UNILL.     | 107 402 007 1,0                                           |

|                            | FHWA-RD                                                                  | -77-108 HIGH      | WAY  | NOISE F | REDICT    | ION MC         | DDEL (                                                    | 9/12/20 | 021)                |          |              |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------|-------------------|------|---------|-----------|----------------|-----------------------------------------------------------|---------|---------------------|----------|--------------|--|--|--|--|--|
| Road Name                  | Scenario: EAC+P<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Clark St. |                   |      |         |           |                | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |         |                     |          |              |  |  |  |  |  |
| SITE S                     | PECIFIC IN                                                               | PUT DATA          |      |         |           | N              | DISE N                                                    | IODE    | L INPUT             | s        |              |  |  |  |  |  |
| Highway Data               |                                                                          |                   |      | Si      | ite Condi | itions (I      | Hard =                                                    | 10, Sc  | ft = 15)            |          |              |  |  |  |  |  |
| Average Daily T            | raffic (Adt):                                                            | 27,423 vehicle    | es   |         |           |                |                                                           | Autos:  | 15                  |          |              |  |  |  |  |  |
| Peak Hour F                | Percentage:                                                              | 8.10%             |      |         | Medi      | ium Tru        | cks (2 A                                                  | xles):  | 15                  |          |              |  |  |  |  |  |
| Peak Ho                    | ur Volume:                                                               | 2,221 vehicle     | s    |         | Heav      | vy Truci       | ks (3+ A                                                  | xles):  | 15                  |          |              |  |  |  |  |  |
| Veh                        | icle Speed:                                                              | 55 mph            |      | 14      | ehicle Mi | iv             |                                                           |         |                     |          |              |  |  |  |  |  |
| Near/Far Lan               | e Distance:                                                              | 102 feet          |      |         |           | leType         |                                                           | Day     | Evening             | Night    | Daily        |  |  |  |  |  |
| Site Data                  |                                                                          |                   |      |         | 10/110    |                |                                                           | 76.6%   | •                   | 14.5%    |              |  |  |  |  |  |
|                            | ior Hoight                                                               | 0.0 feet          |      |         | Med       | dium Tru       |                                                           | 83.3%   |                     | 12.1%    | 7.019        |  |  |  |  |  |
| вагг<br>Barrier Type (0-Wa | ier Height:                                                              | 0.0 Teet          |      |         |           | avy Tru        |                                                           | 76.9%   |                     | 17.9%    |              |  |  |  |  |  |
| Centerline Dist            | . ,                                                                      | 0.0<br>110.0 feet |      |         |           |                |                                                           |         |                     |          |              |  |  |  |  |  |
| Centerline Dist. to        |                                                                          | 110.0 feet        |      | N       | oise Sou  |                |                                                           |         | eet)                |          |              |  |  |  |  |  |
| Barrier Distance to        |                                                                          | 0.0 feet          |      |         |           | Autos.         |                                                           | 000     |                     |          |              |  |  |  |  |  |
| Observer Height (A         |                                                                          | 5.0 feet          |      |         | Medium    |                |                                                           | 297     |                     |          |              |  |  |  |  |  |
|                            | d Elevation:                                                             | 0.0 feet          |      |         | Heavy     | Trucks.        | : 8.0                                                     | 004     | Grade Ad            | ustment. | 0.0          |  |  |  |  |  |
|                            | d Elevation:                                                             | 0.0 feet          |      | La      | ane Equi  | valent         | Distand                                                   | e (in i | feet)               |          |              |  |  |  |  |  |
|                            | oad Grade:                                                               | 0.0%              |      |         |           | Autos.         | 97.                                                       | 591     |                     |          |              |  |  |  |  |  |
|                            | Left View:                                                               | -90.0 degree      | es   |         | Medium    | Trucks.        | 97.                                                       | 500     |                     |          |              |  |  |  |  |  |
|                            | Right View:                                                              | 90.0 degree       | es   |         | Heavy     | Trucks.        | 97.                                                       | 509     |                     |          |              |  |  |  |  |  |
| FHWA Noise Model           |                                                                          |                   |      |         |           |                |                                                           |         |                     |          |              |  |  |  |  |  |
| VehicleType                | REMEL                                                                    | Traffic Flow      |      | stance  | Finite R  |                | Fresn                                                     | -       | Barrier Att         |          | m Atten      |  |  |  |  |  |
| Autos:                     | 71.78                                                                    | 0.13              |      | -4.46   |           | -1.20          |                                                           | -4.78   |                     | 000      | 0.00         |  |  |  |  |  |
| Medium Trucks:             | 82.40                                                                    | -10.79            |      | -4.45   |           | -1.20<br>-1.20 |                                                           | -4.88   |                     | 000      | 0.00         |  |  |  |  |  |
| Heavy Trucks:              | 86.40                                                                    | -11.14            |      | -4.45   |           | -1.20          |                                                           | -5.14   | 0.0                 | 000      | 0.00         |  |  |  |  |  |
| Unmitigated Noise          |                                                                          |                   | -    |         |           |                |                                                           |         |                     | Т        |              |  |  |  |  |  |
|                            | .eq Peak Hou                                                             |                   |      | Leq Eve |           | Leq N          | •                                                         |         | Ldn                 |          | VEL          |  |  |  |  |  |
| Autos:                     | 66                                                                       |                   | 65.2 |         | 61.9      |                | 59.2                                                      |         | 67.                 |          | 67.          |  |  |  |  |  |
| Medium Trucks:             | 66                                                                       |                   | 65.3 |         | 58.8      |                | 58.2                                                      |         | 66.                 |          | 66.          |  |  |  |  |  |
| Heavy Trucks:              | 69                                                                       | -                 | 68.6 |         | 62.9      |                | 63.5                                                      |         | 70.9                |          | 71.          |  |  |  |  |  |
| Vehicle Noise:             | 72                                                                       |                   | 71.4 |         | 66.3      |                | 65.7                                                      |         | 73.3                | 3        | 73.          |  |  |  |  |  |
| Centerline Distance        | to Noise Co                                                              | ntour (in feet    | )    | 70 dE   | 24        | 65 d           | D A                                                       | 4       | 0 dBA               | FF       | dBA          |  |  |  |  |  |
|                            |                                                                          |                   | Ldn: | 70 01   | 183       | 05 0           | BA<br>395                                                 |         | <i>и ава</i><br>851 |          | ава<br>1.833 |  |  |  |  |  |
|                            |                                                                          | ~                 | NEL: |         | 183       |                | 395<br>409                                                |         | 881                 |          | 1,83         |  |  |  |  |  |
|                            |                                                                          | 0                 | •    |         | 150       |                | 409                                                       |         | 001                 |          | 1,091        |  |  |  |  |  |

Thursday, July 27, 2023

| FHWA-F                                                          | RD-77-108 HIGH   | IWAY NO                                                   | SE PRED   |                       | IODEL (9   | /12/20   | 21)          |                      |         |  |
|-----------------------------------------------------------------|------------------|-----------------------------------------------------------|-----------|-----------------------|------------|----------|--------------|----------------------|---------|--|
| Scenario: HY<br>Road Name: Cajalco R<br>Road Segment: w/o Clark |                  | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |           |                       |            |          |              |                      |         |  |
| SITE SPECIFIC                                                   | INPUT DATA       |                                                           |           |                       |            |          | INPUTS       | ;                    |         |  |
| Highway Data                                                    |                  |                                                           | Site Co   | nditions              | (Hard = 1  | 10, Soi  | ft = 15)     |                      |         |  |
| Average Daily Traffic (Adt):                                    | 29,693 vehicl    | es                                                        |           |                       | A          | utos:    | 15           |                      |         |  |
| Peak Hour Percentage:                                           | 8.10%            |                                                           | /         | ledium Tr             | ucks (2 A  | xles):   | 15           |                      |         |  |
| Peak Hour Volume:                                               | 2,405 vehicle    | s                                                         | 1         | leavy Tru             | cks (3+ A. | xles):   | 15           |                      |         |  |
| Vehicle Speed:                                                  | 55 mph           |                                                           | Vehicl    | Mix                   |            |          |              |                      |         |  |
| Near/Far Lane Distance:                                         | 102 feet         |                                                           |           | hicleType             |            | Dav      | Evening      | Night                | Daily   |  |
| Site Data                                                       |                  |                                                           |           |                       |            | 76.6%    | 8.9%         | 14.5%                | 86.56%  |  |
| Barrier Height:                                                 | 0.0 feet         |                                                           |           | Medium T              | rucks: 8   | 33.3%    | 4.6%         | 12.1%                | 7.10%   |  |
| Barrier Type (0-Wall, 1-Berm):                                  |                  |                                                           |           | Heavy T               | rucks: 7   | 76.9%    | 5.2%         | 17.9%                | 6.34%   |  |
| Centerline Dist. to Barrier:                                    |                  |                                                           | Noice     | Source El             | ovetiene   | lin fo   | o.#)         |                      |         |  |
| Centerline Dist. to Observer:                                   | 110.0 feet       |                                                           | Noise     | Auto                  |            |          | ei)          |                      |         |  |
| Barrier Distance to Observer:                                   | 0.0 feet         |                                                           |           | um Truck              | . 0.0      |          |              |                      |         |  |
| Observer Height (Above Pad):                                    | 5.0 feet         |                                                           |           | um Truck<br>avv Truck |            |          | Grade Adjı   | istment <sup>.</sup> | 0.0     |  |
| Pad Elevation:                                                  | 0.0 feet         |                                                           | пе        | avy muck              | s. o.u     | 04       | orade Auja   | isuneni.             | 0.0     |  |
| Road Elevation:                                                 | 0.0 feet         |                                                           | Lane E    | quivalent             | Distance   | e (in fe | eet)         |                      |         |  |
| Road Grade:                                                     | 0.0%             |                                                           |           | Auto                  | s: 97.5    | 91       |              |                      |         |  |
| Left View:                                                      |                  | es                                                        |           | um Truck              |            | 00       |              |                      |         |  |
| Right View:                                                     | 90.0 degre       | es                                                        | He        | avy Truck             | s: 97.5    | 09       |              |                      |         |  |
| FHWA Noise Model Calculatio                                     | ns               |                                                           | -         |                       |            |          |              |                      |         |  |
| VehicleType REMEL                                               | Traffic Flow     | Distanc                                                   | e Fini    | e Road                | Fresne     | el E     | Barrier Atte | n Berr               | n Atten |  |
| Autos: 71.7                                                     | 8 0.48           | -                                                         | 4.46      | -1.20                 | -          | 4.78     | 0.00         | 00                   | 0.000   |  |
| Medium Trucks: 82.4                                             | 0 -10.39         | -                                                         | 4.45      | -1.20                 | -          | 4.88     | 0.00         | 00                   | 0.000   |  |
| Heavy Trucks: 86.4                                              | 0 -10.88         | -                                                         | 4.45      | -1.20                 | -          | 5.14     | 0.00         | 00                   | 0.000   |  |
| Unmitigated Noise Levels (wit                                   |                  |                                                           |           |                       |            |          |              |                      |         |  |
| VehicleType Leq Peak H                                          |                  |                                                           | q Evening | ,                     | Night      |          | Ldn          | CN                   | IEL     |  |
|                                                                 | 6.6              | 65.6                                                      | 62        |                       | 59.6       |          | 67.3         |                      | 67.3    |  |
|                                                                 | 6.4              | 65.7                                                      | 59        |                       | 58.6       |          | 66.7         |                      | 66.9    |  |
|                                                                 | 39.9             | 68.8                                                      | 63        |                       | 63.8       |          | 71.2         |                      | 71.3    |  |
|                                                                 | 72.7             | 71.8                                                      | 66        | 6                     | 66.0       |          | 73.6         |                      | 73.9    |  |
| Centerline Distance to Noise                                    | Contour (in feet | ,                                                         |           |                       |            |          |              |                      |         |  |
|                                                                 |                  |                                                           | 70 dBA    |                       | dBA        | 60       | 0 dBA        | 55 (                 | dBA     |  |
|                                                                 |                  | Ldn:                                                      | 19        | 2                     | 414        |          | 892          |                      | 1,922   |  |
|                                                                 |                  | NEL:                                                      | 19        |                       | 429        |          | 924          |                      |         |  |

|                                      | FHWA-RD       | -77-108 HIGHWA  | AY NOISI                                                  | E PREDIC   | TION M    | ODEL (9   | /12/20 | )21)         |         |         |  |
|--------------------------------------|---------------|-----------------|-----------------------------------------------------------|------------|-----------|-----------|--------|--------------|---------|---------|--|
| Scenario<br>Road Name<br>Road Segmen | Cajalco Rd.   |                 | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |            |           |           |        |              |         |         |  |
|                                      | PECIFIC IN    | PUT DATA        |                                                           |            |           |           |        | L INPUTS     | 5       |         |  |
| Highway Data                         |               |                 |                                                           | Site Con   | ditions ( | Hard =    | 10, So | ft = 15)     |         |         |  |
| Average Daily 1                      | raffic (Adt): | 30,122 vehicles |                                                           |            |           | A         | Autos: | 15           |         |         |  |
| Peak Hour F                          | Percentage:   | 8.10%           |                                                           | Me         | dium Tru  | icks (2 A | xles): | 15           |         |         |  |
| Peak Ho                              | ur Volume:    | 2,440 vehicles  |                                                           | He         | avy Truc  | ks (3+ A  | xles): | 15           |         |         |  |
| Veh                                  | icle Speed:   | 55 mph          |                                                           | Vehicle I  | Mix       |           |        |              |         |         |  |
| Near/Far Lan                         | e Distance:   | 102 feet        |                                                           |            | icleType  |           | Dav    | Evening      | Night   | Dailv   |  |
| Site Data                            |               |                 |                                                           | VCIII      |           |           | 76.6%  | 8.9%         | 14.5%   |         |  |
| Barr                                 | ier Height:   | 0.0 feet        |                                                           | Me         | edium Tr  | ucks:     | 83.3%  | 4.6%         | 12.1%   | 7.02%   |  |
| Barrier Type (0-Wa                   |               | 0.0             |                                                           | ŀ          | leavy Tr  | ucks:     | 76.9%  | 5.2%         | 17.9%   | 6.45%   |  |
| Centerline Dis                       | . ,           | 110.0 feet      |                                                           | Noise So   | ource Ele | vations   | in fe  | ef)          |         |         |  |
| Centerline Dist. to                  | Observer:     | 110.0 feet      |                                                           |            | Autos     |           |        |              |         |         |  |
| Barrier Distance to                  | o Observer:   | 0.0 feet        |                                                           | Modiu      | m Trucks  | . 0.0     | 97     |              |         |         |  |
| Observer Height (A                   | bove Pad):    | 5.0 feet        |                                                           |            | v Trucks  |           |        | Grade Adj    | ustment | 0.0     |  |
| Pa                                   | d Elevation:  | 0.0 feet        |                                                           |            |           |           | -      |              |         |         |  |
| Roa                                  | d Elevation:  | 0.0 feet        |                                                           | Lane Equ   |           |           |        | ieet)        |         |         |  |
| R                                    | oad Grade:    | 0.0%            |                                                           |            | Autos     |           | 591    |              |         |         |  |
|                                      | Left View:    | -90.0 degrees   |                                                           |            | m Trucks  |           |        |              |         |         |  |
|                                      | Right View:   | 90.0 degrees    |                                                           | Heav       | ry Trucks | s: 97.5   | 509    |              |         |         |  |
| FHWA Noise Mode                      | Calculations  | 5               |                                                           |            |           |           |        |              |         |         |  |
| VehicleType                          | REMEL         |                 | Distance                                                  | Finite     |           | Fresn     |        | Barrier Atte | en Ber  | m Atten |  |
| Autos:                               | 71.78         | 0.54            | -4.4                                                      |            | -1.20     |           | -4.78  | 0.0          |         | 0.000   |  |
| Medium Trucks:                       | 82.40         | -10.37          | -4.4                                                      |            | -1.20     |           | -4.88  | 0.0          |         | 0.000   |  |
| Heavy Trucks:                        | 86.40         | -10.74          | -4.4                                                      | 45         | -1.20     |           | -5.14  | 0.0          | 00      | 0.000   |  |
| Unmitigated Noise                    |               |                 |                                                           |            |           |           |        |              |         |         |  |
|                                      | .eq Peak Hou  |                 | ,                                                         | Evening    | Leq I     |           |        | Ldn          |         | NEL     |  |
| Autos:                               | 66            |                 | -                                                         | 62.3       |           | 59.6      |        | 67.4         |         | 67.7    |  |
| Medium Trucks:                       | 66            |                 |                                                           | 59.2       |           | 58.6      |        | 66.7         |         | 66.9    |  |
| Heavy Trucks:                        | 70            |                 |                                                           | 63.3       |           | 63.9      |        | 71.3         |         | 71.5    |  |
| Vehicle Noise:                       | 72            |                 | 8.                                                        | 66.7       |           | 66.1      |        | 73.7         |         | 74.0    |  |
| Centerline Distance                  | e to Noise Co | ntour (in feet) |                                                           |            |           |           |        |              |         |         |  |
|                                      |               |                 |                                                           | dBA        | 65 0      |           | 6      | 0 dBA        | 55      | dBA     |  |
|                                      |               | Ldr             |                                                           | 195<br>202 |           | 420       |        | 905          |         | 1,950   |  |
|                                      |               | CNEL            | L.:                                                       | 202        |           | 435       |        | 937          |         | 2,019   |  |

| FHV                        | /A-RD-                                                             | 77-108 HIGH     | WAY N   | IOISE   | PREDIC            |                                                           | ODEL (9           | /12/20  | )21)                |         |                       |  |  |  |
|----------------------------|--------------------------------------------------------------------|-----------------|---------|---------|-------------------|-----------------------------------------------------------|-------------------|---------|---------------------|---------|-----------------------|--|--|--|
|                            | Scenario: E<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Day St. |                 |         |         |                   | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |                   |         |                     |         |                       |  |  |  |
| SITE SPECIF                | IC INP                                                             | UT DATA         |         |         |                   | N                                                         | OISE N            | IODE    | L INPUTS            | 3       |                       |  |  |  |
| Highway Data               |                                                                    |                 |         |         | Site Con          | ditions (                                                 | 'Hard = '         | 10, So  | ft = 15)            |         |                       |  |  |  |
| Average Daily Traffic (A   | dt): 2                                                             | 1,942 vehicle   | s       |         |                   |                                                           | A                 | Autos:  | 15                  |         |                       |  |  |  |
| Peak Hour Percenta         | ge:                                                                | 8.10%           |         |         | Me                | dium Tru                                                  | icks (2 A         | xles):  | 15                  |         |                       |  |  |  |
| Peak Hour Volu             | ne: 1                                                              | ,777 vehicles   | 3       |         | He                | avy Truc                                                  | ks (3+ A          | xles):  | 15                  |         |                       |  |  |  |
| Vehicle Spe                | ed:                                                                | 55 mph          |         | 5       | Vehicle I         | Mix                                                       |                   |         |                     |         |                       |  |  |  |
| Near/Far Lane Distar       | ice:                                                               | 102 feet        |         | F       |                   | icleType                                                  | 1                 | Dav     | Evening             | Niaht   | Daily                 |  |  |  |
| Site Data                  |                                                                    |                 |         |         |                   |                                                           |                   | 76.6%   | 8.9%                | 14.5%   |                       |  |  |  |
| Barrier Heid               | tht.                                                               | 0.0 feet        |         |         | Me                | edium Tr                                                  | ucks:             | 83.3%   | 4.6%                | 12.1%   | 7.10%                 |  |  |  |
| Barrier Type (0-Wall, 1-Be |                                                                    | 0.0             |         |         | F                 | leavy Tr                                                  | ucks:             | 76.9%   | 5.2%                | 17.9%   | 6.34%                 |  |  |  |
| Centerline Dist. to Bar    |                                                                    | 110.0 feet      |         | H       | N 0               |                                                           |                   | 6 F.    | - 41                |         |                       |  |  |  |
| Centerline Dist. to Obser  | ver:                                                               | 110.0 feet      |         | Ľ       | Noise So          | Autos                                                     |                   |         | et)                 |         |                       |  |  |  |
| Barrier Distance to Obser  | ver:                                                               | 0.0 feet        |         |         | Madiuu            | Autos<br>n Trucks                                         |                   |         |                     |         |                       |  |  |  |
| Observer Height (Above P   | ad):                                                               | 5.0 feet        |         |         |                   | v Trucks                                                  |                   |         | Grade Adj           | uctmont |                       |  |  |  |
| Pad Elevat                 | ion:                                                               | 0.0 feet        |         |         | Ticav             | y mucka                                                   | . 0.0             | 104     | Orade Auj           | usunon  | . 0.0                 |  |  |  |
| Road Elevat                | ion:                                                               | 0.0 feet        |         | 1       | Lane Equ          | uivalent                                                  | Distanc           | e (in f | eet)                |         |                       |  |  |  |
| Road Gra                   | de:                                                                | 0.0%            |         |         |                   | Autos                                                     | : 97.5            | 591     |                     |         |                       |  |  |  |
| Left Vi                    | ew:                                                                | -90.0 degree    | es      |         | Mediur            | n Trucks                                                  | : 97.5            | 500     |                     |         |                       |  |  |  |
| Right Vi                   | ew:                                                                | 90.0 degree     | es      |         | Heav              | y Trucks                                                  | : 97.5            | 509     |                     |         |                       |  |  |  |
| FHWA Noise Model Calcul    | ations                                                             |                 |         |         |                   |                                                           |                   |         |                     |         |                       |  |  |  |
| VehicleType REME           | L                                                                  | Traffic Flow    | Dista   | ance    | Finite            | Road                                                      | Fresne            | e/      | Barrier Atte        | en Ber  | m Atten               |  |  |  |
|                            | 71.78                                                              | -0.84           |         | -4.4    | -                 | -1.20                                                     |                   | 4.78    | 0.0                 |         | 0.000                 |  |  |  |
|                            | 32.40                                                              | -11.70          |         | -4.4    | -                 | -1.20                                                     |                   | 4.88    | 0.0                 |         | 0.000                 |  |  |  |
| Heavy Trucks:              | 36.40                                                              | -12.19          |         | -4.4    | 5                 | -1.20                                                     |                   | -5.14   | 0.0                 | 00      | 0.000                 |  |  |  |
| Unmitigated Noise Levels   | (withou                                                            | ut Topo and     | barrier | ' atten | uation)           |                                                           |                   |         |                     |         |                       |  |  |  |
| VehicleType Leq Pea        |                                                                    |                 |         | Leq E   | vening            | Leq I                                                     |                   |         | Ldn                 |         | NEL                   |  |  |  |
| Autos:                     | 65.3                                                               |                 | 64.3    |         | 60.9              |                                                           | 58.3              |         | 66.0                |         | 66.4                  |  |  |  |
| Medium Trucks:             | 65.0                                                               |                 | 64.4    |         | 57.8              |                                                           | 57.3              |         | 65.4                |         | 65.6                  |  |  |  |
| Heavy Trucks:              | 68.6                                                               |                 | 67.5    |         | 61.8              |                                                           | 62.5              |         | 69.8                |         | 70.0                  |  |  |  |
| Vehicle Noise:             | 71.4                                                               | ļ               | 70.4    |         | 65.3              |                                                           | 64.7              |         | 72.3                |         | 72.5                  |  |  |  |
|                            |                                                                    |                 |         |         |                   |                                                           |                   |         |                     |         |                       |  |  |  |
| Centerline Distance to Noi | se Con                                                             | ntour (in feet) |         |         |                   |                                                           |                   |         |                     |         |                       |  |  |  |
| Centerline Distance to Noi | se Con                                                             |                 |         | 70 (    | dBA               | 65 c                                                      |                   | 6       | 0 dBA               | 55      | dBA                   |  |  |  |
| Centerline Distance to Noi | se Con                                                             |                 | Ldn:    | 70 (    | dBA<br>157<br>163 | 65 c                                                      | IBA<br>339<br>350 | 6       | 0 dBA<br>729<br>755 | 55      | dBA<br>1,571<br>1.627 |  |  |  |

| FH                                                      | WA-RD             | -77-108 HIGH   | IWAY         | ' NOISE   | PREDIC             | TION       | MODEL (            | 9/12/2   | 021)        |          |         |  |  |
|---------------------------------------------------------|-------------------|----------------|--------------|-----------|--------------------|------------|--------------------|----------|-------------|----------|---------|--|--|
| Scenario: E+P<br>Road Name: Caja<br>Road Segment: w/o [ |                   |                |              |           |                    |            | t Name:<br>Number: |          | Valley Corr | nmerce C | ;       |  |  |
| SITE SPECI                                              | FIC IN            | PUT DATA       |              |           | NOISE MODEL INPUTS |            |                    |          |             |          |         |  |  |
| Highway Data                                            |                   |                |              | 5         | Site Cond          | ditions    | (Hard =            | 10, Sc   | oft = 15)   |          |         |  |  |
| Average Daily Traffic (                                 | Adt):             | 22,486 vehicle | es           |           |                    |            |                    | Autos:   | 15          |          |         |  |  |
| Peak Hour Percent                                       | tage:             | 8.10%          |              |           | Med                | dium Ti    | rucks (2 )         | Axles):  | 15          |          |         |  |  |
| Peak Hour Volu                                          | ume:              | 1,821 vehicle  | s            |           | Hea                | avy Tru    | ıcks (3+ )         | Axles):  | 15          |          |         |  |  |
| Vehicle Sp                                              | eed:              | 55 mph         |              | 1         | Vehicle N          | <i>lix</i> |                    |          |             |          |         |  |  |
| Near/Far Lane Dista                                     | ince:             | 102 feet       |              | -         |                    | cleTyp     | e                  | Dav      | Evening     | Night    | Daily   |  |  |
| Site Data                                               |                   |                |              |           | -                  |            | Autos:             | 76.6%    | •           | 14.5%    |         |  |  |
| Barrier He                                              | iaht <sup>.</sup> | 0.0 feet       |              |           | Me                 | dium 1     | rucks:             | 83.3%    | 4.6%        | 12.1%    | 6.95%   |  |  |
| Barrier Type (0-Wall, 1-Be                              | •                 | 0.0            |              |           | H                  | leavy T    | Frucks:            | 76.9%    | 5.2%        | 17.9%    | 6.45%   |  |  |
| Centerline Dist. to Ba                                  |                   | 110.0 feet     |              | L.        | Noise So           | uree F     | Invetion           | o (in fi | n (1        |          |         |  |  |
| Centerline Dist. to Obse                                | erver:            | 110.0 feet     |              | '         | voise 30           | Auto       |                    | 000      | eel)        |          |         |  |  |
| Barrier Distance to Obse                                | erver:            | 0.0 feet       |              |           | Mediun             |            |                    | 297      |             |          |         |  |  |
| Observer Height (Above F                                | Pad):             | 5.0 feet       |              |           |                    | y Truck    |                    | 257      | Grade Ad    | iustment | 0.0     |  |  |
| Pad Eleva                                               | ation:            | 0.0 feet       |              |           |                    |            |                    |          |             | aounom   | 0.0     |  |  |
| Road Eleva                                              |                   | 0.0 feet       |              | 1         | Lane Equ           |            |                    |          | feet)       |          |         |  |  |
| Road Gr                                                 |                   | 0.0%           |              |           |                    | Auto       |                    | 591      |             |          |         |  |  |
| Left                                                    |                   | -90.0 degree   |              |           | Mediun             |            |                    | 500      |             |          |         |  |  |
| Right \                                                 | /iew:             | 90.0 degree    | es           |           | Heav               | y Truci    | (S: 97.            | 509      |             |          |         |  |  |
| FHWA Noise Model Calcu                                  | lations           |                |              |           |                    |            |                    |          |             |          |         |  |  |
| VehicleType REM                                         | IEL               | Traffic Flow   | Di           | stance    | Finite             | Road       | Fresr              | nel      | Barrier Att | en Ber   | m Atten |  |  |
| Autos:                                                  | 71.78             | -0.73          |              | -4.40     |                    | -1.20      |                    | -4.78    |             | 000      | 0.00    |  |  |
| Medium Trucks:                                          | 82.40             | -11.68         |              | -4.4      |                    | -1.20      |                    | -4.88    |             | 000      | 0.00    |  |  |
| Heavy Trucks:                                           | 86.40             | -12.01         |              | -4.4      | 5                  | -1.20      |                    | -5.14    | 0.0         | 000      | 0.00    |  |  |
| Unmitigated Noise Levels                                | s (witho          | ut Topo and    | barri        | ier atten | uation)            |            |                    |          |             |          |         |  |  |
|                                                         | ak Hour           |                |              | Leg Ev    |                    | Leq        | Night              |          | Ldn         |          | VEL     |  |  |
| Autos:                                                  | 65.               |                | 64.4         |           | 61.0               |            | 58.4               |          | 66.1        |          | 66.     |  |  |
| Medium Trucks:                                          | 65.               |                | 64.4         |           | 57.9               |            | 57.3               |          | 65.4        |          | 65      |  |  |
| Heavy Trucks:                                           | 68.<br>71.        |                | 67.7         |           | 62.0               |            | 62.0               |          | 70.0        |          | 70.     |  |  |
| Vehicle Noise:                                          |                   | -              | 70.6         |           | 65.4               |            | 64.3               | 9        | 72.5        | 0        | 12.     |  |  |
| Centerline Distance to No                               | oise Col          | ntour (in feet | )            | -         |                    | 67         | (8.4               |          |             | 1        | (8.4    |  |  |
|                                                         |                   |                | 1 -          | 70 c      |                    | 65         | dBA                |          | 60 dBA      |          | dBA     |  |  |
|                                                         |                   |                | Ldn:<br>NEL: |           | 160                |            | 345                |          | 744         |          | 1,603   |  |  |
|                                                         |                   | C              | VEL.         |           | 166                |            | 358                |          | 770         |          | 1,660   |  |  |

Thursday, July 27, 2023

| FHWA                                                                 | RD-77-1 | 08 HIGH     | WAY NO    | DISE  | PREDIC                                                    |                      | ODEL (S   | 9/12/2     | .021)        |          | _       |  |  |
|----------------------------------------------------------------------|---------|-------------|-----------|-------|-----------------------------------------------------------|----------------------|-----------|------------|--------------|----------|---------|--|--|
| Scenario: EAC<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Day St. |         |             |           |       | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |                      |           |            |              |          |         |  |  |
| SITE SPECIFIC                                                        | INPUT   | DATA        |           |       |                                                           |                      |           |            | EL INPUTS    | 3        |         |  |  |
| Highway Data                                                         |         |             |           | 1     | Site Con                                                  | ditions              | (Hard =   | 10, S      | oft = 15)    |          |         |  |  |
| Average Daily Traffic (Adt)                                          | 33,21   | 17 vehicle  | s         |       |                                                           |                      | ,         | Autos.     | 15           |          |         |  |  |
| Peak Hour Percentage                                                 | : 8.10  | 0%          |           |       | Med                                                       | dium Tru             | icks (2 A | (xles)     | : 15         |          |         |  |  |
| Peak Hour Volume                                                     | 2,69    | 1 vehicles  |           |       | Hea                                                       | avy Truc             | cks (3+ A | (xles)     | : 15         |          |         |  |  |
| Vehicle Speed                                                        | 5       | 5 mph       |           |       | Vehicle N                                                 | lix                  |           |            |              |          |         |  |  |
| Near/Far Lane Distance                                               | : 10    | 2 feet      |           | H     |                                                           | cleType              |           | Day        | Evening      | Night    | Daily   |  |  |
| Site Data                                                            |         |             |           | -     |                                                           |                      |           | 76.6%      | •            | 14.5%    |         |  |  |
| Barrier Height                                                       | · 0     | .0 feet     |           |       | Me                                                        | dium Ti              | ucks:     | 83.3%      | 6 4.6%       | 12.1%    | 7.10    |  |  |
| Barrier Type (0-Wall, 1-Berm)                                        |         | .0          |           |       | H                                                         | leavy Tr             | ucks:     | 76.9%      | 6 5.2%       | 17.9%    | 6.34    |  |  |
| Centerline Dist. to Barrier                                          |         | .0 feet     |           |       | Noise So                                                  | uree El              | ovotion   | . /in 6    | in a fi      |          |         |  |  |
| Centerline Dist. to Observer                                         | : 110   | .0 feet     |           | 4     | NUISE 30                                                  | Auto:                |           | 000        | eel)         |          |         |  |  |
| Barrier Distance to Observer                                         | : 0     | .0 feet     |           |       | 1 4 m ali                                                 | n Truck:             |           | 297        |              |          |         |  |  |
| Observer Height (Above Pad)                                          | : 5     | .0 feet     |           |       |                                                           | n Trucks<br>y Trucks |           | 297<br>004 | Grade Adj    | ustment  | 0.0     |  |  |
| Pad Elevation                                                        | : 0     | .0 feet     |           |       | neav                                                      | y mucks              | 5. 0.0    | JU4        | Orade Auj    | usunent. | 0.0     |  |  |
| Road Elevation                                                       | : 0     | .0 feet     |           | 1     | Lane Equ                                                  | iivalent             | Distanc   | e (in      | feet)        |          |         |  |  |
| Road Grade                                                           | : 0.0   | %           |           |       |                                                           | Autos                |           | 591        |              |          |         |  |  |
| Left View                                                            | : -90   | .0 degree   | s         |       | Mediur                                                    | n Trucks             | s: 97.    | 500        |              |          |         |  |  |
| Right View                                                           | : 90    | .0 degree   | s         |       | Heav                                                      | y Trucks             | s: 97.    | 509        |              |          |         |  |  |
| FHWA Noise Model Calculati                                           | ons     |             |           | _     |                                                           |                      |           |            |              |          |         |  |  |
| VehicleType REMEL                                                    | Trafi   | fic Flow    | Distar    | nce   | Finite                                                    | Road                 | Fresn     | el         | Barrier Atte | en Ben   | m Atter |  |  |
| Autos: 71.                                                           | 78      | 0.96        |           | -4.4  | 6                                                         | -1.20                |           | -4.78      | 0.0          | 00       | 0.00    |  |  |
| Medium Trucks: 82                                                    | 40      | -9.90       |           | -4.4  | 5                                                         | -1.20                |           | -4.88      | 0.0          | 00       | 0.00    |  |  |
| Heavy Trucks: 86.                                                    | 40      | -10.39      |           | -4.4  | 5                                                         | -1.20                |           | -5.14      | 0.0          | 00       | 0.00    |  |  |
| Unmitigated Noise Levels (wi                                         | thout T | opo and l   | barrier a | tten  | uation)                                                   |                      |           |            |              |          |         |  |  |
| VehicleType Leq Peak F                                               |         | Leq Day     |           | eq Ei | vening                                                    | Leq                  | Night     |            | Ldn          |          | VEL     |  |  |
|                                                                      | 67.1    |             | 56.1      |       | 62.7                                                      |                      | 60.1      |            | 67.8         |          | 68      |  |  |
|                                                                      | 66.8    |             | 56.2      |       | 59.6                                                      |                      | 59.1      |            | 67.2         |          | 67      |  |  |
|                                                                      | 70.4    |             | 59.3      |       | 63.6                                                      |                      | 64.3      | _          | 71.6         |          | 71      |  |  |
| Vehicle Noise:                                                       | 73.2    | ī           | 72.2      |       | 67.1                                                      |                      | 66.5      |            | 74.1         |          | 74      |  |  |
| Centerline Distance to Noise                                         | Contou  | r (in feet) |           |       |                                                           |                      |           |            |              |          |         |  |  |
|                                                                      |         |             |           | 70 c  | dBA                                                       | 65 (                 | dBA       |            | 60 dBA       | 55       | dBA     |  |  |
|                                                                      |         |             | .dn:      |       | 207                                                       |                      | 446       |            | 962          |          | 2,07    |  |  |
|                                                                      |         |             | IEL       |       | 214                                                       |                      | 462       |            | 995          |          | 2.14    |  |  |

| FHWA-RD-77-108 HIGHW                                                   | ay nois  | SE PREDIC                                                 | TION M   | ODEL (9           | /12/20  | 21)                   |         |                       |  |  |
|------------------------------------------------------------------------|----------|-----------------------------------------------------------|----------|-------------------|---------|-----------------------|---------|-----------------------|--|--|
| Scenario: EAC+P<br>Road Name: Cajalco Rd.<br>Road Segment: wlo Day St. |          | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |          |                   |         |                       |         |                       |  |  |
| SITE SPECIFIC INPUT DATA                                               |          |                                                           |          |                   |         | LINPUTS               | 3       |                       |  |  |
| Highway Data                                                           |          | Site Con                                                  | ditions  | (Hard = 1         | 10, So  | ft = 15)              |         |                       |  |  |
| Average Daily Traffic (Adt): 33,761 vehicles                           |          |                                                           |          | A                 | utos:   | 15                    |         |                       |  |  |
| Peak Hour Percentage: 8.10%                                            |          | Mee                                                       | dium Tru | icks (2 A         | xles):  | 15                    |         |                       |  |  |
| Peak Hour Volume: 2,735 vehicles                                       |          | Hei                                                       | avy Truc | :ks (3+ A         | xles):  | 15                    |         |                       |  |  |
| Vehicle Speed: 55 mph                                                  |          | Vehicle M                                                 | Nix      |                   |         |                       |         |                       |  |  |
| Near/Far Lane Distance: 102 feet                                       |          |                                                           | cleType  | 1                 | Dav     | Evening               | Night   | Daily                 |  |  |
| Site Data                                                              |          |                                                           |          |                   | 76.6%   | 8.9%                  | 14.5%   |                       |  |  |
| Barrier Height: 0.0 feet                                               |          | Me                                                        | edium Tr | ucks: 8           | 33.3%   | 4.6%                  | 12.1%   | 7.00%                 |  |  |
| Barrier Type (0-Wall, 1-Berm): 0.0                                     |          | F                                                         | leavy Tr | ucks: 7           | 76.9%   | 5.2%                  | 17.9%   | 6.419                 |  |  |
| Centerline Dist. to Barrier: 110.0 feet                                |          | Noise So                                                  | urco El  | ovations          | (in fo  | of)                   |         |                       |  |  |
| Centerline Dist. to Observer: 110.0 feet                               |          | 110/30 00                                                 | Autos    |                   |         | 01/                   |         |                       |  |  |
| Barrier Distance to Observer: 0.0 feet                                 |          | Madium                                                    | n Trucks | . 0.0             |         |                       |         |                       |  |  |
| Observer Height (Above Pad): 5.0 feet                                  |          |                                                           | v Trucks |                   |         | Grade Adj             | ustment | · 0.0                 |  |  |
| Pad Elevation: 0.0 feet                                                |          |                                                           |          |                   | -       |                       | aounom  | . 0.0                 |  |  |
| Road Elevation: 0.0 feet                                               |          | Lane Equ                                                  | uivalent | Distanc           | e (in f | eet)                  |         |                       |  |  |
| Road Grade: 0.0%                                                       |          |                                                           | Autos    |                   | 91      |                       |         |                       |  |  |
| Left View: -90.0 degrees                                               |          |                                                           | n Trucks |                   | 00      |                       |         |                       |  |  |
| Right View: 90.0 degrees                                               |          | Heav                                                      | y Trucks | s: 97.5           | 09      |                       |         |                       |  |  |
| FHWA Noise Model Calculations                                          |          | 1                                                         |          |                   |         |                       |         |                       |  |  |
| VehicleType REMEL Traffic Flow                                         | Distance | e Finite                                                  |          | Fresne            |         | Barrier Atte          | en Ber  | m Atten               |  |  |
| Autos: 71.78 1.03                                                      |          | .46                                                       | -1.20    |                   | 4.78    | 0.0                   |         | 0.00                  |  |  |
| Medium Trucks: 82.40 -9.89                                             |          | .45                                                       | -1.20    |                   | 4.88    | 0.0                   |         | 0.00                  |  |  |
| Heavy Trucks: 86.40 -10.27                                             | -4       | .45                                                       | -1.20    | -                 | 5.14    | 0.0                   | 00      | 0.00                  |  |  |
| Unmitigated Noise Levels (without Topo and ba                          |          | ,                                                         |          |                   |         |                       |         |                       |  |  |
| VehicleType Leq Peak Hour Leq Day                                      | ,        | Evening                                                   | Leq      |                   |         | Ldn                   |         | NEL                   |  |  |
|                                                                        | 5.1      | 62.8                                                      |          | 60.1              |         | 67.9                  |         | 68.                   |  |  |
|                                                                        | 5.2      | 59.6                                                      |          | 59.1              |         | 67.2                  |         | 67.                   |  |  |
|                                                                        | 9.5      | 63.8                                                      |          | 64.4              |         | 71.8                  |         | 71.                   |  |  |
| Vehicle Noise: 73.3 72                                                 | 2.3      | 67.2                                                      |          | 66.6              |         | 74.2                  |         | 74.                   |  |  |
|                                                                        |          |                                                           |          |                   | -       | -                     | -       |                       |  |  |
| Centerline Distance to Noise Contour (in feet)                         |          |                                                           |          |                   |         |                       |         |                       |  |  |
|                                                                        |          | 0 dBA                                                     | 65 (     |                   | 6       | 0 dBA                 | 55      | dBA                   |  |  |
|                                                                        | dn:      | 0 dBA<br>210<br>217                                       | 65 (     | dBA<br>452<br>468 | 6       | 0 dBA<br>975<br>1.009 | 55      | dBA<br>2,100<br>2,174 |  |  |

| FHWA-RD-77-108 H                                                    | IGHWAY NOI      | SE PREDICT                                                | ION MODEL (     | 9/12/2021)               |               |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------------|--------------------------|---------------|--|--|--|--|--|
| Scenario: HY<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Day St. |                 | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |                 |                          |               |  |  |  |  |  |
| SITE SPECIFIC INPUT DA                                              | ГА              |                                                           | NOISE N         | ODEL INPUT               | 5             |  |  |  |  |  |
| Highway Data                                                        |                 | Site Cond                                                 | itions (Hard =  | 10, Soft = 15)           |               |  |  |  |  |  |
| Average Daily Traffic (Adt): 36,538 ve                              | hicles          |                                                           |                 | Autos: 15                |               |  |  |  |  |  |
| Peak Hour Percentage: 8.10%                                         |                 | Medi                                                      | ium Trucks (2 A | Axles): 15               |               |  |  |  |  |  |
| Peak Hour Volume: 2,960 veh                                         | nicles          | Hear                                                      | vy Trucks (3+ A | Axles): 15               |               |  |  |  |  |  |
| Vehicle Speed: 55 mp                                                | h               | Vehicle Mi                                                | iv              |                          |               |  |  |  |  |  |
| Near/Far Lane Distance: 102 fee                                     | t               |                                                           |                 | Day Evening              | Night Daily   |  |  |  |  |  |
| Site Data                                                           |                 | Verner                                                    |                 | 76.6% 8.9%               | 14.5% 86.56%  |  |  |  |  |  |
| Barrier Height: 0.0 fe                                              | ot              | Med                                                       | lium Trucks:    | 83.3% 4.6%               | 12.1% 7.10%   |  |  |  |  |  |
| Barrier Type (0-Wall, 1-Berm): 0.0                                  | el              | He                                                        |                 | 76.9% 5.2%               | 17.9% 6.34%   |  |  |  |  |  |
| Centerline Dist. to Barrier: 110.0 fe                               | et              |                                                           | •               |                          |               |  |  |  |  |  |
| Centerline Dist. to Observer: 110.0 fe                              |                 | Noise Sou                                                 | rce Elevation:  | , ,                      |               |  |  |  |  |  |
| Barrier Distance to Observer: 0.0 fe                                |                 |                                                           |                 | 000                      |               |  |  |  |  |  |
| Observer Height (Above Pad): 5.0 fe                                 | et              | Medium                                                    |                 | 297                      |               |  |  |  |  |  |
| Pad Elevation: 0.0 fe                                               | et              | Heavy                                                     | Trucks: 8.0     | 004 Grade Adj            | ustment: 0.0  |  |  |  |  |  |
| Road Elevation: 0.0 fe                                              | et              | Lane Equi                                                 | valent Distand  | ce (in feet)             |               |  |  |  |  |  |
| Road Grade: 0.0%                                                    |                 |                                                           | Autos: 97.      | 591                      |               |  |  |  |  |  |
| Left View: -90.0 de                                                 | grees           | Medium                                                    | Trucks: 97.     | 500                      |               |  |  |  |  |  |
| Right View: 90.0 de                                                 | grees           | Heavy                                                     | Trucks: 97.     | 509                      |               |  |  |  |  |  |
| FHWA Noise Model Calculations                                       |                 | 1                                                         |                 |                          |               |  |  |  |  |  |
| VehicleType REMEL Traffic Fl                                        | ow Distanc      | e Finite R                                                | Road Fresh      | el Barrier Atte          | en Berm Atten |  |  |  |  |  |
|                                                                     |                 |                                                           |                 |                          | 000 0.000     |  |  |  |  |  |
|                                                                     |                 |                                                           |                 |                          | 000 0.000     |  |  |  |  |  |
| Heavy Trucks: 86.40 -9                                              | 9.98 -4         | 1.45                                                      | -1.20           | -5.14 0.0                | 0.000         |  |  |  |  |  |
| Unmitigated Noise Levels (without Topo                              | and barrier att | enuation)                                                 |                 |                          |               |  |  |  |  |  |
|                                                                     |                 | Evening                                                   | Leq Night       | Ldn                      | CNEL          |  |  |  |  |  |
| Autos: 67.5                                                         | 66.5            | 63.1                                                      | 60.5            |                          |               |  |  |  |  |  |
| Medium Trucks: 67.3                                                 | 66.6            | 60.1                                                      | 59.5            |                          |               |  |  |  |  |  |
| Heavy Trucks: 70.8                                                  | 69.7            | 64.0                                                      | 64.7            |                          |               |  |  |  |  |  |
|                                                                     |                 | 67.5                                                      | 66.9            | 9 74.5                   | 5 74.8        |  |  |  |  |  |
| Vehicle Noise: 73.6                                                 | 72.7            | 07.5                                                      | 00.0            |                          |               |  |  |  |  |  |
|                                                                     | feet)           |                                                           |                 | 1                        | 1             |  |  |  |  |  |
| Vehicle Noise: 73.6                                                 | feet)           | '0 dBA                                                    | 65 dBA          | 60 dBA                   | 55 dBA        |  |  |  |  |  |
| Vehicle Noise: 73.6                                                 | feet)           |                                                           |                 | 60 dBA<br>1,025<br>1.061 |               |  |  |  |  |  |

|                                      | FHWA-RD-        | 77-108 HIGH                                               | WAY NO             | ISE PRED   | ICTION I                               | MODEL (   | 9/12/2   | 021)         |           |         |  |  |  |
|--------------------------------------|-----------------|-----------------------------------------------------------|--------------------|------------|----------------------------------------|-----------|----------|--------------|-----------|---------|--|--|--|
| Scenario<br>Road Name<br>Road Segmen |                 | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |                    |            |                                        |           |          |              |           |         |  |  |  |
| SITE S                               | PECIFIC INF     |                                                           | NOISE MODEL INPUTS |            |                                        |           |          |              |           |         |  |  |  |
| Highway Data                         |                 |                                                           |                    | Site Co    | onditions                              | ; (Hard = | 10, Sc   | oft = 15)    |           |         |  |  |  |
| Average Daily T                      | raffic (Adt): 3 | 7,083 vehicle                                             | s                  |            |                                        |           | Autos:   | 15           |           |         |  |  |  |
| Peak Hour F                          | Percentage:     | 8.10%                                                     |                    | N          | Medium Trucks (2 Axles): 15            |           |          |              |           |         |  |  |  |
| Peak Ho                              | our Volume: 3   | 3,004 vehicles                                            |                    | F          | Heavy Trucks (3+ Axles): 15            |           |          |              |           |         |  |  |  |
|                                      | icle Speed:     | 55 mph                                                    |                    | Vehicle    | Mix                                    |           |          |              |           |         |  |  |  |
| Near/Far Lan                         | e Distance:     | 102 feet                                                  |                    | Ve         | hicleTyp                               | e         | Day      | Evening      | Night     | Daily   |  |  |  |
| Site Data                            |                 |                                                           |                    |            |                                        | Autos:    | 76.6%    | 8.9%         | 14.5%     | 86.58%  |  |  |  |
| Barr                                 | ier Height:     | 0.0 feet                                                  |                    | 1          | Medium                                 | Frucks:   | 83.3%    | 4.6%         | 12.1%     | 7.01%   |  |  |  |
| Barrier Type (0-Wa                   |                 | 0.0                                                       |                    |            | Heavy                                  | Frucks:   | 76.9%    | 5.2%         | 17.9%     | 6.41%   |  |  |  |
| Centerline Dist                      | to Barrier:     | 110.0 feet                                                |                    | Noise      | Source F                               | levation  | s (in fa | pet)         |           |         |  |  |  |
| Centerline Dist. to                  | o Observer:     | 110.0 feet                                                |                    | 10/30 0    | Auto                                   |           | 000      |              |           |         |  |  |  |
| Barrier Distance to                  | o Observer:     | 0.0 feet                                                  |                    | Med        | um Truc                                |           | 297      |              |           |         |  |  |  |
| Observer Height (A                   | ,               | 5.0 feet                                                  |                    |            | avy Truci                              |           | D04      | Grade Ad     | iustment. | 0.0     |  |  |  |
|                                      | d Elevation:    | 0.0 feet                                                  |                    |            | ·                                      |           |          |              |           |         |  |  |  |
|                                      | d Elevation:    | 0.0 feet                                                  |                    | Lane E     |                                        | t Distand |          | leet)        |           |         |  |  |  |
| Road Grade: 0.0%                     |                 |                                                           |                    |            | Autos: 97.591<br>Medium Trucks: 97.500 |           |          |              |           |         |  |  |  |
| Left View: -90.0 degrees             |                 |                                                           |                    |            | Heavy Trucks: 97.509                   |           |          |              |           |         |  |  |  |
|                                      | Right View:     | 90.0 degree                                               | s                  | ne         | avy muc                                | (5. 97.)  | 509      |              |           |         |  |  |  |
| FHWA Noise Model                     | Calculations    |                                                           |                    |            |                                        |           |          |              |           |         |  |  |  |
| VehicleType                          | REMEL           | Traffic Flow                                              | Distan             | ce Finit   | e Road                                 | Fresh     | el       | Barrier Atte | en Ber    | m Atten |  |  |  |
| Autos:                               | 71.78           | 1.44                                                      |                    | -4.46      | -1.20                                  |           | -4.78    | 0.0          | 000       | 0.00    |  |  |  |
| Medium Trucks:                       | 82.40           | -9.48                                                     |                    | -4.45      | -1.20                                  |           | -4.88    |              | 000       | 0.00    |  |  |  |
| Heavy Trucks:                        | 86.40           | -9.87                                                     |                    | -4.45      | -1.20                                  |           | -5.14    | 0.0          | 000       | 0.00    |  |  |  |
| Unmitigated Noise                    | Levels (witho   | ut Topo and I                                             | barrier a          | ttenuation | )                                      |           |          |              |           |         |  |  |  |
| VehicleType I                        | eq Peak Hour    | Leq Day                                                   | Le                 | q Evening  | Leo                                    | Night     |          | Ldn          | CI        | VEL     |  |  |  |
| Autos:                               | 67.6            | 6 6                                                       | 6.5                | 63.        | 2                                      | 60.5      | 5        | 68.3         | 3         | 68.     |  |  |  |
| Medium Trucks:                       | 67.3            |                                                           | 56.6               | 60.        |                                        | 59.5      |          | 67.6         |           | 67.     |  |  |  |
| Heavy Trucks:                        | 70.9            |                                                           | 59.9               | 64.        |                                        | 64.8      |          | 72.2         | -         | 72.     |  |  |  |
| Vehicle Noise:                       | 73.7            | ,                                                         | 72.7               | 67.        | 6                                      | 67.0      | )        | 74.6         | 6         | 74.     |  |  |  |
| Centerline Distance                  | e to Noise Con  | tour (in feet)                                            |                    |            |                                        |           |          |              |           |         |  |  |  |
|                                      |                 |                                                           |                    | 70 dBA     |                                        | dBA       | 6        | 60 dBA       |           | dBA     |  |  |  |
|                                      |                 |                                                           | Ldn:               | 223        | -                                      | 481       |          | 1,037        |           | 2,235   |  |  |  |
|                                      |                 |                                                           | IEL:               | 23         |                                        | 498       |          | 1.074        |           | 2,313   |  |  |  |

Thursday, July 27, 2023

|                               |        | -77-108 HIGH\           |        |       |                                                           |           |          |        |              |         |         |  |
|-------------------------------|--------|-------------------------|--------|-------|-----------------------------------------------------------|-----------|----------|--------|--------------|---------|---------|--|
| Scenario: E                   |        |                         |        |       | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |           |          |        |              |         |         |  |
| Road Name: Cajalco Rd.        |        |                         |        |       |                                                           | JOD NL    | imper:   | 5091   |              |         |         |  |
| Road Segment: w/o De          | ecker  | Rd.                     |        |       |                                                           |           |          |        |              |         |         |  |
| SITE SPECIFI                  | C INI  | PUT DATA                |        |       |                                                           |           |          |        | L INPUT      | 5       |         |  |
| Highway Data                  |        |                         |        | 4     | Site Con                                                  | ditions ( | Hard =   | 10, So | oft = 15)    |         |         |  |
| Average Daily Traffic (A      | dt): 1 | 24,256 vehicle          | s      |       |                                                           |           | ,        | Autos: | 15           |         |         |  |
| Peak Hour Percenta            | ge:    | 8.10%<br>1,965 vehicles |        |       | Medium Trucks (2 Axles): 15                               |           |          |        |              |         |         |  |
| Peak Hour Volun               | ne:    |                         |        |       | Hea                                                       | avy Truc  | ks (3+ A | xles): | 15           |         |         |  |
| Vehicle Spe                   | ed:    | 55 mph                  |        | h     | Vehicle N                                                 | Aiv       |          |        |              |         |         |  |
| Near/Far Lane Distan          | ce:    | 102 feet                |        |       |                                                           | cleTvpe   |          | Dav    | Evening      | Night   | Dailv   |  |
| Site Data                     |        |                         |        | -     |                                                           |           |          | 76.6%  | •            | 14.5%   |         |  |
| Barrier Heig                  | hé.    | 0.0 feet                |        |       | Me                                                        | dium Tri  |          | 83.3%  |              | 12.1%   |         |  |
| Barrier Type (0-Wall, 1-Ben   |        | 0.0 reet<br>0.0         |        |       |                                                           | leavy Tru |          | 76.9%  | 5.2%         | 17.9%   | 6.34    |  |
| Centerline Dist. to Barr      | ·      | 110.0 feet              |        |       |                                                           |           |          |        |              |         |         |  |
| Centerline Dist. to Observer: |        | 110.0 feet              |        | 4     | Noise So                                                  |           |          |        | eet)         |         |         |  |
| Barrier Distance to Observer: |        | 0.0 feet                |        |       |                                                           | Autos     |          | 000    |              |         |         |  |
| Observer Height (Above Pad):  |        | 5.0 feet                |        |       |                                                           | n Trucks  |          | 297    |              |         |         |  |
| Pad Elevation:                |        | 0.0 feet                |        |       | Heav                                                      | y Trucks  | : 8.0    | 004    | Grade Adj    | ustment | : 0.0   |  |
| Road Elevati                  |        | 0.0 feet                |        |       | Lane Equ                                                  | ivalent   | Distand  | e (in  | feet)        |         |         |  |
| Road Grade:                   |        | 0.0%                    |        | F     |                                                           | Autos     |          |        | ,            |         |         |  |
| Left View:                    |        | -90.0 degree            | -      |       | Mediur                                                    | n Trucks  | 97       | 500    |              |         |         |  |
| Right View:                   |        | 90.0 degree             |        |       | Heav                                                      | y Trucks  | 97.      | 509    |              |         |         |  |
| FHWA Noise Model Calcula      | tions  |                         |        |       |                                                           |           |          |        |              |         |         |  |
| VehicleType REME              | L      | Traffic Flow            | Dista  | ance  | Finite                                                    | Road      | Fresn    | e/     | Barrier Atte | en Ber  | m Atter |  |
| Autos: 7                      | 1.78   | -0.40                   |        | -4.4  | -6                                                        | -1.20     |          | -4.78  | 0.0          | 000     | 0.00    |  |
| Medium Trucks: 8              | 2.40   | -11.27                  |        | -4.4  | 5                                                         | -1.20     |          | -4.88  | 0.0          | 000     | 0.00    |  |
| Heavy Trucks: 8               | 6.40   | -11.76                  |        | -4.4  | -5                                                        | -1.20     |          | -5.14  | 0.0          | 000     | 0.00    |  |
| Unmitigated Noise Levels (    | witho  | ut Topo and b           | arrier | atten | uation)                                                   |           |          |        |              |         |         |  |
| VehicleType Leq Peak          |        |                         |        | Leq E | vening                                                    | Leq N     |          |        | Ldn          |         | VEL     |  |
| Autos:                        | 65.    |                         | 64.7   |       | 61.3                                                      |           | 58.7     |        | 66.5         |         | 66      |  |
| Medium Trucks:                | 65.    |                         | 64.8   |       | 58.3                                                      |           | 57.7     |        | 65.8         |         | 66      |  |
| Heavy Trucks:                 | 69.    |                         | 6.8    |       | 62.3                                                      |           | 62.9     |        | 70.3         |         | 70      |  |
| Vehicle Noise:                | 71.    | 8 7                     | 0.9    |       | 65.7                                                      |           | 65.2     |        | 72.8         | 3       | 73      |  |
| Centerline Distance to Nois   | se Col | ntour (in feet)         |        |       |                                                           |           |          |        |              |         |         |  |
|                               |        |                         |        | 70 0  | dBA                                                       | 65 d      | BA       | (      | 60 dBA       |         | dBA     |  |
|                               |        |                         |        |       |                                                           |           |          |        |              |         |         |  |
|                               |        | L                       | .dn:   |       | 168                                                       |           | 362      |        | 780          |         | 1,68    |  |

| Scenario:         E+P         Project Name:         Mead Valley Commerce C           Road Segment:         Vio Decker Rd.         Job Number:         15091           SITE SPECIFIC INPUT DATA         NOISE MODEL INPUTS           Highway Data         Site Conditions (Hard = 10, Soft = 15)           Average Daily Traffic (Adt):         24,825 vehicles         Autos:         15           Peak Hour Percentage:         8,10%         Medium Trucks: (34 Axles):         15           Vehicle Speed:         55 mph         Medium Trucks: (34 Axles):         15           Vehicle Type         Day         Evening         Night         Daily           Site Data         Autos:         76.6%         8.9%         14.5%         86.61%           Barrier Type (0-Wall, 1-Berm):         0.0         Feet         Moles Source:         10.9%         6.43%           Centerline Dist. to Observer:         10.0 feet         Autos:         76.9%         5.2%         17.9%         6.43%           Deserver Height:         0.0 feet         Autos:         97.501         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Road Grade:         0.0%         Left View:         90.0 degrees         Fresnel         Barrier Atten         Bernier Atten                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                        | HWA-RD-            | 77-108 HIGHWA   | AY NOISI  | E PREDIC | TION M   | ODEL (9   | /12/20  | 21)        |         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-----------------|-----------|----------|----------|-----------|---------|------------|---------|-------|
| Site Conditions (Hard = 10, Soft = 15)           Average Daily Traffic (Adt):         24,825 vehicles         Autos:         15           Peak Hour Volume:         2,011 vehicles         Autos:         15           Peak Hour Volume:         2,011 vehicles         Medium Trucks: (3+ Axles):         15           Vehicle Speed:         55 mph         Medium Trucks: (3+ Axles):         15           Site Data         Vehicle Type         Day         Evening         Night         Daily           Barrier Type (0-Wall, 1-Berm):         0.0 feet         Autos:         76.6%         8.9%         12.1%         6.96%           Barrier Distance to Observer:         10.0 feet         Medium Trucks:         83.3%         4.6%         12.1%         6.96%           Barrier Distance to Observer:         0.0 feet         Autos:         0.00         Medium Trucks:         2.297           Observer Height (Above Pag):         5.0 feet         Medium Trucks:         87.500         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Left View:         90.0 degrees         Medium Trucks:         97.591         Heavy Trucks:         97.591           Heavy Trucks:         86.40         -11.25         -4.45         -1.20         -5.14 <t< th=""><th>Road Name: Ca</th><th>jalco Rd.</th><th>Rd.</th><th></th><th></th><th></th><th></th><th></th><th>/alley Com</th><th>merce C</th><th>:</th></t<>                                                                                                                                                                                                                                                                                            | Road Name: Ca            | jalco Rd.          | Rd.             |           |          |          |           |         | /alley Com | merce C | :     |
| Average Daily Traffic (Adt):         24,825 vehicles         Autos:         15           Peak Hour Percentage:         8.10%         Medium Trucks (2 Axles):         15           Peak Hour Volume:         2,011 vehicles         Heavy Trucks (2 Axles):         15           Vehicle Speed:         55 mph         Heavy Trucks (3 Axles):         15           Site Data         Autos:         76.8%         8.9%         14.5%         86.61%           Barrier Type (0-Wall, 1-Berm):         0.0         64.3%         Medium Trucks:         83.3%         4.6%         12.1%         6.9%           Barrier Type (0-Wall, 1-Berm):         0.0         10.0         feavy Trucks:         76.9%         5.2%         17.9%         6.43%           Observer:         0.0 feet         Mole Source Elevations (in feet)         Medium Trucks:         2.000         Medium Trucks:         2.97           Observer:         0.0 feet         Mutos:         0.000         Medium Trucks:         2.00         4.400         0.0         0.0           Road Elevation:         0.0 feet         Mutos:         97.591         Medium Trucks:         97.591           Road Elevation:         0.0 feet         Medium Trucks:         97.500         Heavy Trucks:         97.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SITE SPEC                | NOISE MODEL INPUTS |                 |           |          |          |           |         |            |         |       |
| Notes         15           Peak Hour Volume:         2,011 vehicles           Vehicle Speed:         55 mph           Near/Far Lane Distance:         102 feet           Site Data         Autos:           Barrier Height:         0.0 feet           Barrier Neight:         0.0 feet           Barrier Neight:         0.0 feet           Road Elevation:         0.0 feet           Road Elevation:         0.0 feet           Road Elevation:         0.0 feet           Road Grade:         0.0%           Left View:         90.0 degrees           Right View:         90.0 degrees           FHWA Noise Model Cacluations         Finite Road           VehicleType         REMEL         Traffic Flow <th>Highway Data</th> <th></th> <th></th> <th></th> <th>Site Con</th> <th>ditions</th> <th>(Hard =</th> <th>10, So</th> <th>ft = 15)</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                 | Highway Data             |                    |                 |           | Site Con | ditions  | (Hard =   | 10, So  | ft = 15)   |         |       |
| Peak Hour Volume:         2,011 vehicles           Vehicle Speed:         55 mph           Near/Far Lane Distance:         102 feet           Barrier Height:         0.0 feet           Barrier Type (0-Wall, 1-Berm):         0.0           Centerline Dist to Observer:         10.0 feet           Barrier Distance to Observer:         10.0 feet           Barrier Distance to Observer:         10.0 feet           Barrier Dist to Observer:         10.0 feet           Barrier Distance to Observer:         10.0 feet           Barrier Distance to Observer:         0.0 feet           Barrier Distance to Observer:         0.0 feet           Road Grade:         0.0%           Road Grade:         0.0%           Actos:         97.591           Heavy Trucks:         8.04           Road Grade:         0.0%           Left View:         -90.0 degrees           Right View:         90.0 degrees           Right View:         90.0 degrees           Vehicle Type         REMEL           Vehicle Type         RelMEL           Traffic Flow         Distance           Vehicle Type         Relware           Vehicle Type         Relwintrucks:           90.0 degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Daily Traffic    | ; (Adt): 2         | 4,825 vehicles  |           |          |          | A         | lutos:  | 15         |         |       |
| Vehicle Speed:<br>Near/Far Lane Distance:         55 mph<br>102 feet         Vehicle Mix           Site Data         Autos:         76.6%         8.9%         14.5%         86.61%           Barrier Height:         0.0 feet         Medium Trucks:         83.3%         4.6%         12.1%         6.96%           Barrier Type (0-Wall, 1-Berm):         0.0         Medium Trucks:         83.3%         4.6%         12.1%         6.96%           Barrier Type (0-Wall, 1-Berm):         0.0         Noise Source Elevations (in feet)         6.43%           Centerline Dist to Observer:         0.0 feet         Autos:         0.000         Medium Trucks:         2.97           Observer Height (Above Pad):         5.0 feet         Medium Trucks:         8.004         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Left View:         90.0 degrees         Medium Trucks:         97.591           Heavy Trucks:         8.004         Carde Adjustment:         0.0         0.000         Heavy Trucks:         97.591           Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         71.78         -0.30         -4.46         -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Hour Perce          | entage:            | 8.10%           |           | Me       | dium Tru | icks (2 A | xles):  | 15         |         |       |
| Near/Far Lane Distance:         102 fet         Vehicle Mix         Day         Evening         Night         Daily           Site Data         Autos:         76.6%         8.9%         14.5%         86.61%           Barrier Height:         0.0 feet         Medium Trucks:         83.3%         4.6%         5.2%         17.9%         6.43%           Barrier Type (C-Walt .1-Berm):         0.0         Feet         Medium Trucks:         83.3%         4.6%         6.43%           Centerline Dist. to Barrier:         110.0 feet         Noise Source Elevations (in feet)         76.9%         5.2%         17.9%         6.43%           Observer Height (Above Pad):         5.0 feet         Autos:         0.000         Medium Trucks:         8.004         Grade Adjustment:         0.0           Pad Elevation:         0.0 feet         Autos:         97.501         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Right View:         90.0 degrees         Medium Trucks:         97.500         Heavy Trucks:         97.500           FHMA Noise Model Calculations         Vehicle Type         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Bern Atten           Autos:         71                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak Hour V              | olume: 2           | 2,011 vehicles  |           | He       | avy Truc | :ks (3+ A | xles):  | 15         |         |       |
| Near/Far Lane Distance:         102 feet           Site Data         Autos::         76.%         8.9%         14.5%         86.6%         10.9%           Barrier Height:         0.0 feet         Medium Trucks::         83.3%         46.6%         12.1%         6.9%           Barrier Type (0-Wall, 1-Berm):         0.0         Feet         Medium Trucks::         83.3%         46.6%         12.1%         6.93%           Centerline Dist. to Doserver:         110.0 feet         Autos::         0.00         Medium Trucks::         82.297           Observer Height (Above Pad):         5.0 feet         Autos::         0.00         Medium Trucks::         82.297           Pad Elevation:         0.0 feet         Autos::         97.591         Medium Trucks::         80.04         Grade Adjustment:         0.0           Left View:         90.0 degrees         Medium Trucks::         97.509         Medium Trucks::         97.509           FHWA Noise Model Calculations         Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Heavy Trucks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000         0.000         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vehicle                  | Speed:             | 55 mph          |           | Vehicle  | Mix      |           |         |            |         |       |
| Site Data         Autos:         76.6%         8.9%         14.5%         86.81%           Barrier Height:         0.0 feet         Medium Trucks:         83.3%         4.6%         12.1%         6.96%           Barrier Type (0-Wall, 1-Berm):         0.0         Medium Trucks:         83.3%         4.6%         12.1%         6.96%           Centerline Dist. to Barrier:         110.0 feet         Moise Source Elevations (in feet)         76.9%         5.2%         17.9%         6.43%           Observer Height (Above Pad):         5.0 feet         Autos:         0.000         Medium Trucks:         2.297           Pad Elevation:         0.0 feet         Medium Trucks:         2.297         Medium Trucks:         9.004           Road Grade:         0.0%         Left View:         90.0 degrees         Medium Trucks:         97.500           FHWA Noise Model Calculations         VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         71.78         -0.30         4.46         -1.20         -4.78         0.000         0.000           Heavy Trucks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Near/Far Lane Dis        | stance:            | 102 feet        |           |          |          |           | Dav     | Evenina    | Night   | Daily |
| Barrier Height:         0.0 feet           Barrier Type (0-Wall, 1-Berm):         0.0           Centerline Dist. to Barrier:         110.0 feet           Barrier Jistence to Observer:         110.0 feet           Barrier Distance to Observer:         10.0 feet           Road Elevation:         0.0 feet           Road Grade:         0.0%           Left View:         90.0 degrees           Right View:         90.0 degrees           FHWA Noise Model Calculations         Distance           VehicleType         REMEL           Traffic Flow         Distance           VehicleType         REMEL           VehicleType         REMEL           VehicleType         REMEL           VehicleType         REMEL           VehicleType         REMEL           VehicleType         Leq Veat           VehicleType         Leq Veat           VehicleType         Equations           VehicleType         Equat           Leq Veat <td>Site Data</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site Data                |                    |                 |           |          |          |           |         |            |         |       |
| Barrier Type (0-Wall, 1-Berm):         0.0         Heavy Trucks:         76.9%         5.2%         17.9%         6.43%           Centerline Dist. to Diserver:         110.0 feet         Noise Source Elevations (in feet)         Autos:         0.00           Barrier Distance to Observer:         0.0 feet         Autos:         0.00         Medium Trucks:         2.297           Observer Height (Above Pad):         0.0 feet         Autos:         0.00         Medium Trucks:         2.297           Pad Elevation:         0.0 feet         Autos:         97.591         Left Ivew:         90.0 degrees           FHWA Noise Model Calculations         Qued reades         Finite Road         Fresnel         Barrier Atten         Berm Atten           Wehine Trucks:         82.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Medium Trucks:         86.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Medium Trucks:         86.40         -11.55         -4.45         -1.20         -6.74         0.000         0.000           Medium Trucks:         86.40         -11.55         -4.45         -1.20         -6.74         0.000         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parrier L                | loight:            | 0.0 foot        |           | M        | edium Ti | ucks:     | 33.3%   | 4.6%       | 12.1%   | 6.96% |
| Centerline Dist. to Barrier:         110.0 feet           Centerline Dist. to Diserver:         110.0 feet           Centerline Dist. to Observer:         110.0 feet           Barrier Distance to Observer:         0.0 feet           Barrier Distance to Observer:         0.0 feet           Pad Elevation:         0.0 feet           Road Elevation:         0.0 degrees           Right View:         90.0 degrees           VehicleType         REMEL         Traffic Flow           VehicleType         Leq Peek Hour           Leq Vening           Leq Vening         Leq Night         Lon           Autos:         65.8         64.8         58.3           Finite Topo         Edeveni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                    |                 |           | 1        | Heavy Tr | ucks:     | 76.9%   | 5.2%       | 17.9%   | 6.43% |
| Centerline Dist. to Observer:         110.0 feet         Noise Source Elevations (in feet)           Barrier Distance to Observer:         0.0 feet         Autos:         0.000           Barrier Distance to Observer:         0.0 feet         Medium Trucks:         2.297           Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Road Grade:         0.0 feet         Lane Equivalent Distance (in feet)         Lane Equivalent Distance (in feet)           Road Grade:         0.0%         Lane Equivalent Distance (in feet)         Medium Trucks:         97.500           FHWA Noise Model Calculations         90.0 degrees         Heavy Trucks:         97.500         Heavy Trucks:         97.500           FHWA Noise Model Calculations         11.25         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Medium Trucks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         Leq Night         Ldn         CNEL           Medium Trucks:         <                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1</b> 1 ( )           | ,                  |                 |           |          |          |           |         |            |         |       |
| Barrier Distance to Observer:         0.0 feet         Medium Trucks:         2.297           Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         8.004         Grade Adjustment: 0.0           Pad Elevation:         0.0 feet         Leat View:         90.0 degrees         Lane Equivalent Distance (in feet)         Lane Equivalent Distance (in feet)           Road Grade:         0.0%         Autos:         97.500         Heavy Trucks:         97.500           FHWA Noise Model Calculations         WeinliceType         REMEL         Traffic Flow         Distance         Fresnel         Barrier Atten         Berr Atten           Autos:         71.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Medium Trucks:         82.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000           Urnitigated Noise Levels (without Topo and barrier attenuation)         Leq Reving         Leq Night         Len         CNEL           VehicleType         Leq Deak Hour         Leq Day         Leq Zevening         Leq Night         Len         CNEL                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                 |           | Noise So |          |           |         | et)        |         |       |
| Observer Height (Above Pad):         5.0 feet         Heavy Trucks:         8.004         Grade Adjustment:         0.0           Road Elevation:         0.0 feet         Lane Equivalent Distance (in feet)         Lane Equivalent Distance D | Barrier Distance to Ob   | server:            | 0.0 feet        |           |          |          |           |         |            |         |       |
| Pad Elevation:         0.0 feet           Road Elevation:         0.0 degrees           Right View:         -90.0 degrees           FHWA Noise Model Calculations         Heavy Trucks:         97.500           FHWA Noise Model Calculations:         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         T7.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         Leq Day         Leq Day         Leq Day         Leq Night         Ldn         CNEL           Medium Trucks:         65.8         64.8         58.3         57.7         65.8         66.6         66.5           Medium Trucks:         69.2         68.1         62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observer Height (Above   | e Pad):            | 5.0 feet        |           |          |          |           |         | Our de Adi |         |       |
| Road Grade:         0.0%         Autos:         97.591           Left View:         -90.0 degrees         Medium Trucks:         97.509           Right View:         90.0 degrees         Heavy Trucks:         97.509           FHWA Noise Model Calculations         Heavy Trucks:         97.509           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Medium Trucks:         86.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         VehicleType         Leq Peak Hour         Leq Qay         Leq Evening         Leq Night         Ldn         CNEL           Autos:         65.5         64.8         58.3         57.7         65.8         66.6           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.6           Medium Trucks:         65.2         71.9         71.0         65.8         65.3         72.9         73.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                    | 0.0 feet        |           | Heav     | y Truck  | s: 8.0    | 04      | Grade Adj  | ustment | 0.0   |
| Left View:         -90.0 degrees         Medium Tracks:         97.500           FHWA Noise Model Calculations         Heavy Tracks:         97.500           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         T/1.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Tracks:         82.40         -11.25         -4.45         -1.20         -4.88         0.000         0.000           Medium Tracks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         Vehicle Type         Leq Peak Hour         Leq Day         Leq Revining         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         58.3         57.7         65.8         66.6         66.5           Medium Tracks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Road Ele                 | vation:            | 0.0 feet        |           | Lane Eq  | uivalent | Distanc   | e (in f | eet)       |         |       |
| Right View:         90.0 degrees         Heavy Trucks:         97.509           FHWA Noise Model Calculations         Heavy Trucks:         97.509           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         71.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Ummitigated Noise Levels (without Topo and barrier attenuation)         Leq Revening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.6           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.6           Medium Trucks:         69.2         68.1         62.4         63.1         70.4         70.6           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Road                     | Grade:             | 0.0%            |           |          | Autos    | s: 97.5   | i91     |            |         |       |
| FHWA Noise Model Calculations           FHWA Noise Model Calculations           VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Bern Atten           Autos:         71.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.88         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         VehicleType         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.5           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.6           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.0           Heavy Trucks:         65.5         64.8         58.3         57.7         65.8         66.1           Heavy Trucks:         65.5         64.8         58.3         57.7         65.8         66.1           Vehicle Noise:         71.9         71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lef                      | t View:            | -90.0 degrees   |           | Mediu    | m Truck  | s: 97.5   | 00      |            |         |       |
| VehicleType         REMEL         Traffic Flow         Distance         Finite Road         Fresnel         Barrier Atten         Berm Atten           Autos:         71.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.88         0.000         0.000           Heavy Trucks:         86.40         -11.25         -4.45         -1.20         -5.14         0.000         0.000           Ummitgated Noise Levels (without Topo and barrier attenuation)         -5.14         0.000         0.000           Ummitgated Noise Levels (without Topo and barrier attenuation)         Leq Revening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         58.3         57.7         65.8         66.6         66.5           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.4           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Righ                     | t View:            | 90.0 degrees    |           | Heav     | y Truck  | s: 97.5   | 09      |            |         |       |
| Autos:         71.78         -0.30         -4.46         -1.20         -4.78         0.000         0.000           Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Heavy Trucks:         82.40         -11.25         -4.45         -1.20         -4.78         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         VehicleType         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.8           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.0           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FHWA Noise Model Cal     | culations          |                 |           |          |          |           |         |            |         |       |
| Medium Trucks:         82.40         -11.25         -4.45         -1.20         -4.88         0.000         0.000           Heavy Trucks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000           Umitigated Noise Levels (without Topo and barrier attenuation)          -         -         -5.14         0.000         0.000           VehicleType         Leq Peak Hour         Leq Day         Leq Revining         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.6           Medium Trucks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                    |                 |           |          |          |           |         |            |         |       |
| Heavy Trucks:         86.40         -11.59         -4.45         -1.20         -5.14         0.000         0.000           Unnitigated Noise Levels (without Topo and barrier attenuation)         Leq Evening         Leq Night         Ldn         CNEL           Vehicle Type         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         65.8           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.6           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                    |                 |           |          |          |           |         |            |         |       |
| Unmitigated Noise Levels (without Topo and barrier attenuation)           VehicleType         Leq Peak Hour         Leq Day         Leq Evening         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.6           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.0           Heavy Trucks:         69.2         68.1         65.3         70.4         70.4           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                    |                 |           |          |          |           |         |            |         |       |
| VehicleType         Leq Peak Hour         Leq Day         Leq Vehicle         Leq Night         Ldn         CNEL           Autos:         65.8         64.8         61.4         58.8         66.6         66.5           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.0           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heavy Trucks:            | 86.40              | -11.59          | -4.4      | 45       | -1.20    |           | 5.14    | 0.0        | 00      | 0.000 |
| Autos:         65.8         64.8         61.4         58.8         66.6         66.5           Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.6           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.6           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unmitigated Noise Leve   | els (withou        | ut Topo and bai | rier atte | nuation) |          |           |         |            |         |       |
| Medium Trucks:         65.5         64.8         58.3         57.7         65.8         66.0           Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.6           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1           Centerline Distance to Noise Contour (in feet)         Image: Contour (in feet)<                                                                                                                                                                                                                       | VehicleType Leq F        | Peak Hour          | Leq Day         | Leg E     | Evening  | Leq      | Night     |         | Ldn        | CI      | VEL   |
| Heavy Trucks:         69.2         68.1         62.4         63.1         70.4         70.0           Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.7           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                    |                 | -         |          |          |           |         |            |         |       |
| Vehicle Noise:         71.9         71.0         65.8         65.3         72.9         73.1           Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                    |                 | -         |          |          |           |         |            |         |       |
| Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                    |                 |           |          |          |           |         |            |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vehicle Noise:           | 71.9               | ) 71.           | 0         | 65.8     |          | 65.3      |         | 72.9       |         | 73.1  |
| 70 dBA 65 dBA 60 dBA 55 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Centerline Distance to I | Noise Con          | tour (in feet)  |           |          |          |           |         |            |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                    |                 |           |          | 65       |           | 6       |            | 55      |       |
| Ldn: 171 369 794 1,711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                    |                 |           |          |          |           |         |            |         | '     |
| CNEL: 177 382 822 1,772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                    | CNEL            |           | 177      |          | 382       |         | 822        |         | 1,772 |

| Fł                        | HWA-RD                                                                  | 0-77-108 HIGH   | IWAY N  | IOISE  | PREDIC            | TION M   | ODEL (S             | )/12/20    | )21)                    |           |                       |
|---------------------------|-------------------------------------------------------------------------|-----------------|---------|--------|-------------------|----------|---------------------|------------|-------------------------|-----------|-----------------------|
| Road Name: Caj            | Scenario: EAC<br>Road Name: Cajalco Rd.<br>Road Segment: w/o Decker Rd. |                 |         |        |                   |          | Name: I<br>umber: 1 |            | /alley Com              | merce (   | 2                     |
| SITE SPEC                 | IFIC IN                                                                 | PUT DATA        |         |        |                   | N        | IOISE N             | IODE       | L INPUTS                | 3         |                       |
| Highway Data              |                                                                         |                 |         | 1      | Site Con          | ditions  | (Hard =             | 10, So     | ft = 15)                |           |                       |
| Average Daily Traffic     | (Adt):                                                                  | 35,672 vehicl   | es      |        |                   |          | ,                   | Autos:     | 15                      |           |                       |
| Peak Hour Percer          | ntage:                                                                  | 8.10%           |         |        | Me                | dium Tri | ucks (2 A           | xles):     | 15                      |           |                       |
| Peak Hour Vo              | olume:                                                                  | 2,889 vehicle   | s       |        | He                | avy Tru  | cks (3+ A           | xles):     | 15                      |           |                       |
| Vehicle S                 | peed:                                                                   | 55 mph          |         |        | Vehicle I         | Mix      |                     |            |                         |           |                       |
| Near/Far Lane Dist        | tance:                                                                  | 102 feet        |         | H      |                   | icleType |                     | Dav        | Evening                 | Night     | Daily                 |
| Site Data                 |                                                                         |                 |         |        |                   |          |                     | 76.6%      | 8.9%                    | 14.5%     |                       |
| Barrier H                 | oight:                                                                  | 0.0 feet        |         |        | Me                | edium Ti | rucks:              | 83.3%      | 4.6%                    | 12.1%     |                       |
| Barrier Type (0-Wall, 1-E | •                                                                       | 0.0             |         |        | ŀ                 | leavy Ti | rucks:              | 76.9%      | 5.2%                    | 17.9%     | 6.34%                 |
| Centerline Dist. to B     |                                                                         | 110.0 feet      |         | H      |                   |          |                     |            | 0                       |           |                       |
| Centerline Dist. to Obs   |                                                                         | 110.0 feet      |         | 4      | Noise So          |          |                     |            | et)                     |           |                       |
| Barrier Distance to Obs   | erver:                                                                  | 0.0 feet        |         |        |                   | Auto     |                     | 000        |                         |           |                       |
| Observer Height (Above    | Pad):                                                                   | 5.0 feet        |         |        |                   | n Truck  |                     | 297<br>004 | Grade Adj               | unternant |                       |
| Pad Elev                  | ation:                                                                  | 0.0 feet        |         |        | Heav              | y Truck  | 5: 8.0              | 104        | Grade Auj               | usuneni   | . 0.0                 |
| Road Elev                 | ation:                                                                  | 0.0 feet        |         | 1      | Lane Equ          | uivalent | Distanc             | e (in f    | eet)                    |           |                       |
| Road G                    | Grade:                                                                  | 0.0%            |         |        |                   | Auto     | s: 97.              | 591        |                         |           |                       |
| Left                      | View:                                                                   | -90.0 degre     | es      |        | Mediur            | n Truck  | s: 97.              | 500        |                         |           |                       |
| Right                     | View:                                                                   | 90.0 degre      | es      |        | Heav              | y Truck  | s: 97.              | 509        |                         |           |                       |
| FHWA Noise Model Calc     | ulations                                                                | 5               |         |        |                   |          |                     |            |                         |           |                       |
| VehicleType REI           | MEL                                                                     | Traffic Flow    | Dista   | ance   | Finite            | Road     | Fresn               | el i       | Barrier Atte            | en Ber    | m Atten               |
| Autos:                    | 71.78                                                                   | 1.27            |         | -4.4   | 6                 | -1.20    |                     | -4.78      | 0.0                     | 00        | 0.000                 |
| Medium Trucks:            | 82.40                                                                   | -9.59           |         | -4.4   | 5                 | -1.20    |                     | -4.88      | 0.0                     | 00        | 0.000                 |
| Heavy Trucks:             | 86.40                                                                   | -10.08          |         | -4.4   | 5                 | -1.20    |                     | -5.14      | 0.0                     | 00        | 0.000                 |
| Unmitigated Noise Level   | ls (witho                                                               | out Topo and    | barrier | atten  | uation)           |          |                     |            |                         |           |                       |
| VehicleType Leq P         | eak Hou                                                                 | r Leq Da        | / L     | Leg Ei | vening            | Leq      | Night               |            | Ldn                     | C         | NEL                   |
| Autos:                    | 67                                                                      |                 | 66.4    |        | 63.0              |          | 60.4                |            | 68.1                    |           | 68.                   |
| Medium Trucks:            | 67                                                                      |                 | 66.5    |        | 59.9              |          | 59.4                |            | 67.5                    |           | 67.7                  |
| Heavy Trucks:             | 70                                                                      |                 | 69.6    |        | 63.9              |          | 64.6                |            | 71.9                    |           | 72.1                  |
|                           |                                                                         |                 | 72.6    |        | 67.4              |          | 66.8                |            | 74.4                    |           | 74.7                  |
| Vehicle Noise:            | 73                                                                      | .5              | 12.0    |        |                   |          |                     |            |                         |           |                       |
|                           |                                                                         |                 |         |        |                   |          |                     |            |                         |           |                       |
| Vehicle Noise:            |                                                                         |                 | )       | 70 0   | dBA               | 65       | dBA                 | 6          | 0 dBA                   | 55        | dBA                   |
| Vehicle Noise:            |                                                                         | ontour (in feel |         | 70 0   | dBA<br>217<br>225 | 65       | dBA<br>468<br>485   | 6          | 0 dBA<br>1,008<br>1.044 | 55        | dBA<br>2,172<br>2,249 |

|                                       | FHWA-RD-                                        | -77-108 HIGHW                 | AY NO     | ISE PREDIC                      | TION                 | IODEL (    | 9/12/20     | 021)        |          |         |  |  |  |
|---------------------------------------|-------------------------------------------------|-------------------------------|-----------|---------------------------------|----------------------|------------|-------------|-------------|----------|---------|--|--|--|
| Road Nam                              | io: EAC+P<br>e: Cajalco Rd.<br>nt: w/o Decker F |                               |           |                                 | t Name: I<br>lumber: |            | /alley Corr | imerce C    | ;        |         |  |  |  |
| SITE                                  | SPECIFIC IN                                     | PUT DATA                      |           | NOISE MODEL INPUTS              |                      |            |             |             |          |         |  |  |  |
| Highway Data                          |                                                 |                               |           | Site Con                        | ditions              | (Hard =    | 10, So      | oft = 15)   |          |         |  |  |  |
| Average Daily                         | Traffic (Adt):                                  | 36,241 vehicles               |           |                                 |                      |            | Autos:      | 15          |          |         |  |  |  |
| Peak Hour                             | Percentage:                                     | 8.10%                         |           | Me                              | dium Tr              | rucks (2 A | (xles)      | 15          |          |         |  |  |  |
|                                       |                                                 | 2,936 vehicles                |           | He                              | avy Tru              | cks (3+ A  | (xles):     | 15          |          |         |  |  |  |
|                                       | hicle Speed:                                    | 55 mph                        |           | Vehicle                         | Mix                  |            |             |             |          |         |  |  |  |
| Near/Far La                           | ne Distance:                                    | 102 feet                      |           | Veh                             | icleType             | 9          | Day         | Evening     | Night    | Daily   |  |  |  |
| Site Data                             |                                                 |                               |           |                                 |                      | Autos:     | 76.6%       | 8.9%        | 14.5%    | 86.59%  |  |  |  |
| Bai                                   | rier Height:                                    | 0.0 feet                      |           | Medium Trucks: 83.3% 4.6% 12.1% |                      |            |             |             |          |         |  |  |  |
| Barrier Type (0-W                     |                                                 | 0.0                           |           | 1                               | Heavy T              | rucks:     | 76.9%       | 5.2%        | 17.9%    | 6.40%   |  |  |  |
| Centerline Dis                        | st. to Barrier:                                 | 110.0 feet                    |           | Noise So                        | ource E              | levation   | : (in fe    | ef)         |          |         |  |  |  |
| Centerline Dist.                      | to Observer:                                    | 110.0 feet                    |           |                                 | Auto                 |            | 000         |             |          |         |  |  |  |
| Barrier Distance                      |                                                 | 0.0 feet                      |           | Mediu                           | m Truck              |            | 297         |             |          |         |  |  |  |
| Observer Height (Above Pad): 5.0 feet |                                                 |                               |           |                                 | vy Truck             |            | 004         | Grade Ad    | iustment | : 0.0   |  |  |  |
| Pad Elevation: 0.0 feet               |                                                 |                               |           |                                 |                      |            |             |             |          |         |  |  |  |
|                                       | ad Elevation:                                   | 0.0 feet                      |           | Lane Eq                         |                      |            |             | 'eet)       |          |         |  |  |  |
|                                       | Road Grade:<br>Left View:                       | 0.0%                          |           | Madiu                           | Auto<br>m Truck      |            |             |             |          |         |  |  |  |
|                                       | Right View:                                     | -90.0 degrees<br>90.0 degrees |           |                                 | vy Truck             |            |             |             |          |         |  |  |  |
|                                       | Night view.                                     | 90.0 degrees                  |           | 11001                           | y much               | 3. 51.     | 505         |             |          |         |  |  |  |
| FHWA Noise Mode                       | el Calculations                                 |                               |           |                                 |                      |            |             |             |          |         |  |  |  |
| VehicleType                           |                                                 | Traffic Flow                  | Distand   |                                 | Road                 | Fresh      | -           | Barrier Att |          | m Atten |  |  |  |
| Autos:                                | 71.78                                           | 1.34                          |           | 4.46                            | -1.20                |            | -4.78       |             | 000      | 0.00    |  |  |  |
| Medium Trucks:                        | 82.40                                           | -9.58                         |           | 4.45                            | -1.20                |            | -4.88       |             | 000      | 0.00    |  |  |  |
| Heavy Trucks:                         | 86.40                                           | -9.97                         | -         | 4.45                            | -1.20                |            | -5.14       | 0.0         | 000      | 0.00    |  |  |  |
| Unmitigated Noise                     | e Levels (witho                                 | ut Topo and b                 | arrier at | tenuation)                      |                      |            |             |             |          |         |  |  |  |
| VehicleType                           | Leq Peak Hour                                   |                               |           | q Evening                       | Leq                  | Night      |             | Ldn         |          | NEL     |  |  |  |
| Autos:                                | 67.5                                            |                               | 5.4       | 63.1                            |                      | 60.4       |             | 68.2        |          | 68.     |  |  |  |
| Medium Trucks:                        | 67.2                                            |                               | 6.5       | 60.0                            |                      | 59.4       |             | 67.5        |          | 67.     |  |  |  |
| Heavy Trucks:                         | 70.8                                            |                               | 9.8       | 64.1                            |                      | 64.7       |             | 72.1        |          | 72.     |  |  |  |
| Vehicle Noise:                        | 73.0                                            | o 72                          | 2.6       | 67.5                            |                      | 66.9       |             | 74.5        | )        | 74.     |  |  |  |
| Centerline Distand                    | e to Noise Cor                                  | ntour (in feet)               |           |                                 |                      |            |             |             |          |         |  |  |  |
|                                       |                                                 |                               |           | 70 dBA                          | 65                   | dBA        | 6           | i0 dBA      | 55       | dBA     |  |  |  |
|                                       |                                                 | CNE                           | in:       | 220<br>228                      |                      | 474        |             | 1,021       |          | 2,200   |  |  |  |
|                                       |                                                 |                               |           |                                 |                      | 491        |             | 1.057       |          | 2.278   |  |  |  |

Thursday, July 27, 2023

| FHWA                         | -RD        | -77-108 HIGH    | NAY         | NOISE    | PREDIC     | TION M                               | ODEL (9    | /12/2  | 021)           |          |         |  |  |
|------------------------------|------------|-----------------|-------------|----------|------------|--------------------------------------|------------|--------|----------------|----------|---------|--|--|
| Scenario: HY                 |            |                 |             |          |            | Project Name: Mead Valley Commerce C |            |        |                |          |         |  |  |
| Road Name: Cajalco           |            |                 |             |          |            | Job N                                | umber: 1   | 5091   |                |          |         |  |  |
| Road Segment: w/o Decker Rd. |            |                 |             |          |            |                                      |            |        |                |          |         |  |  |
| SITE SPECIFIC                | : INI      | PUT DATA        |             |          |            |                                      |            |        |                | 3        |         |  |  |
| Highway Data                 |            |                 |             |          | Site Con   | ditions                              |            | · ·    | · · ·          |          |         |  |  |
| Average Daily Traffic (Adl   | ): :       | 39,240 vehicle  | s           |          |            |                                      |            | utos   |                |          |         |  |  |
| Peak Hour Percentage         | e.:        | 8.10%           |             |          |            |                                      | ıcks (2 A  |        |                |          |         |  |  |
| Peak Hour Volum              | e: :       | 3,178 vehicles  |             |          | He         | avy Truc                             | cks (3+ A  | xles). | : 15           |          |         |  |  |
| Vehicle Speer                | d:         | 55 mph          |             | -        | Vehicle I  | <i>lix</i>                           |            |        |                |          |         |  |  |
| Near/Far Lane Distance       | e:         | 102 feet        |             |          | Vehi       | cleType                              | 1          | Day    | Evening        | Night    | Daily   |  |  |
| Site Data                    |            |                 |             |          |            |                                      |            | 76.6%  | •              | 14.5%    |         |  |  |
| Barrier Heigh                | <i>t</i> - | 0.0 feet        |             |          | Me         | edium Tr                             | ucks: 8    | 33.3%  | 6 4.6%         | 12.1%    | 7.109   |  |  |
| Barrier Type (0-Wall, 1-Berm |            | 0.0             |             |          | ŀ          | leavy Tr                             | ucks:      | 76.9%  | 6 5.2%         | 17.9%    | 6.349   |  |  |
| Centerline Dist. to Barrie   | · · · ·    | 110.0 feet      |             | -        | Noise So   |                                      |            | 6 m #  |                |          |         |  |  |
| Centerline Dist. to Observe  | r:         | 110.0 feet      |             | -        | Noise So   |                                      |            |        | eet)           |          |         |  |  |
| Barrier Distance to Observe  | r:         | 0.0 feet        |             |          |            | Autos                                |            |        |                |          |         |  |  |
| Observer Height (Above Pag   | ):         | 5.0 feet        |             |          |            | n Trucks                             |            |        | Crada Adi      | untmont  |         |  |  |
| Pad Elevatio                 | n:         | 0.0 feet        |             |          | Heav       | y Trucks                             | s: 8.0     | 04     | Grade Adj      | usuneni. | 0.0     |  |  |
| Road Elevation               | n:         | 0.0 feet        |             |          | Lane Equ   | ivalent                              | Distanc    | e (in  | feet)          |          |         |  |  |
| Road Grad                    | e:         | 0.0%            |             |          |            | Autos                                | s: 97.5    | 91     |                |          |         |  |  |
| Left View                    | V.         | -90.0 degree    | s           |          | Mediur     | n Trucks                             | s: 97.5    | 00     |                |          |         |  |  |
| Right View                   | V.         | 90.0 degree     | s           |          | Heav       | y Truck:                             | s: 97.5    | 09     |                |          |         |  |  |
| FHWA Noise Model Calculat    | ions       |                 |             |          |            |                                      |            |        |                |          |         |  |  |
| VehicleType REMEL            |            | Traffic Flow    | Di          | stance   | Finite     | Road                                 | Fresne     | e/     | Barrier Atte   | en Ber   | m Atten |  |  |
| Autos: 71                    | .78        | 1.69            |             | -4.4     | 16         | -1.20                                | -          | 4.78   | 0.0            | 00       | 0.00    |  |  |
| Medium Trucks: 82            | .40        | -9.18           |             | -4.4     | 15         | -1.20                                | -          | 4.88   | 0.0            | 00       | 0.00    |  |  |
| Heavy Trucks: 86             | .40        | -9.67           |             | -4.4     | 15         | -1.20                                | -          | 5.14   | 0.0            | 00       | 0.00    |  |  |
| Unmitigated Noise Levels (w  | ritho      | ut Topo and I   | oarri       | er atter | nuation)   |                                      |            |        |                |          |         |  |  |
| VehicleType Leq Peak         |            |                 |             | Leq E    | vening     | Leq                                  | Night      |        | Ldn            |          | VEL     |  |  |
| Autos:                       | 67.        |                 | 6.8         |          | 63.4       |                                      | 60.8       |        | 68.5           |          | 68      |  |  |
| Medium Trucks:               | 67.        |                 | 6.9         |          | 60.4       |                                      | 59.8       |        | 67.9           |          | 68.     |  |  |
| Heavy Trucks:                | 71.        |                 | 70.1        |          | 64.4       |                                      | 65.0       |        | 72.4           |          | 72.     |  |  |
| Vehicle Noise:               | 73.9       | 9 7             | 73.0        |          | 67.8       |                                      | 67.2       |        | 74.8           |          | 75      |  |  |
| Centerline Distance to Noise | Col        | ntour (in feet) |             |          |            |                                      |            |        |                |          |         |  |  |
|                              |            |                 | <u> </u>    | 70       | dBA        | 65 (                                 | dBA        |        | 60 dBA         | 55       | dBA     |  |  |
|                              |            |                 | .dn:<br>IEL |          | 231<br>240 |                                      | 499<br>516 |        | 1,075<br>1,112 |          | 2,31    |  |  |
|                              |            |                 |             |          |            |                                      |            |        |                |          |         |  |  |

|                                     | FHWA-RI                             | D-77-108 HIGH   | IWAY NC           | DISE PRED            |                                      | IODEL (9/12   | /2021)                   |         |                     |  |  |  |  |
|-------------------------------------|-------------------------------------|-----------------|-------------------|----------------------|--------------------------------------|---------------|--------------------------|---------|---------------------|--|--|--|--|
|                                     | io: HY+P                            |                 |                   |                      | Project Name: Mead Valley Commerce C |               |                          |         |                     |  |  |  |  |
| Road Nam                            | ne: Cajalco Rd                      |                 |                   |                      | Job N                                | lumber: 1509  | 91                       |         |                     |  |  |  |  |
| Road Segme                          | nt: w/o Decker                      | Rd.             |                   |                      |                                      |               |                          |         |                     |  |  |  |  |
|                                     | SPECIFIC IN                         | IPUT DATA       |                   |                      |                                      |               | EL INPUTS                | 5       |                     |  |  |  |  |
| Highway Data                        |                                     |                 |                   | Site Co              | nditions                             | (Hard = 10,   | Soft = 15)               |         |                     |  |  |  |  |
| Average Daily                       | Traffic (Adt):                      | 39,809 vehicl   | es                |                      |                                      | Auto          | s: 15                    |         |                     |  |  |  |  |
| Peak Hour                           | Percentage:                         | 8.10%           |                   | N                    | ledium Tr                            | ucks (2 Axles | s): 15                   |         |                     |  |  |  |  |
| Peak H                              | lour Volume:                        | 3,224 vehicle   | s                 | H                    | leavy Tru                            | cks (3+ Axles | s): 15                   |         |                     |  |  |  |  |
| Ve                                  | hicle Speed:                        | 55 mph          |                   | Vehicle              | Mix                                  |               |                          |         |                     |  |  |  |  |
| Near/Far La                         | ne Distance:                        | 102 feet        |                   |                      | hicleType                            | Day           | Evening                  | Night   | Daily               |  |  |  |  |
| Site Data                           | e Data                              |                 |                   |                      |                                      | Autos: 76.6   | •                        | 14.5%   |                     |  |  |  |  |
| Ba                                  | rrier Height:                       | 0.0 feet        |                   | 1                    | Medium T                             | rucks: 83.3   | 3% 4.6%                  | 12.1%   | 7.01                |  |  |  |  |
| Barrier Type (0-W                   |                                     | 0.0             |                   |                      | Heavy T                              | rucks: 76.9   | 9% 5.2%                  | 17.9%   | 6.40                |  |  |  |  |
|                                     | ist. to Barrier:                    | 110.0 feet      |                   | Noine                | Course E                             | evations (in  | faati                    |         |                     |  |  |  |  |
| Centerline Dist.                    | to Observer:                        | 110.0 feet      |                   | NOISes               | Auto                                 |               | leel)                    |         |                     |  |  |  |  |
| Barrier Distance                    | to Observer:                        | 0.0 feet        |                   |                      |                                      | 0.000         |                          |         |                     |  |  |  |  |
| Observer Height                     | server Height (Above Pad): 5.0 feet |                 |                   |                      | um Truck                             |               | Grade Adji               | uctmont | 0.0                 |  |  |  |  |
| Pad Elevation: 0.0 feet             |                                     |                 | неа               | avy Truck            | s: 8.004                             | Grade Auj     | usuneni.                 | 0.0     |                     |  |  |  |  |
| Ro                                  | ad Elevation:                       | 0.0 feet        |                   | Lane E               | quivalen                             | t Distance (i | n feet)                  |         |                     |  |  |  |  |
|                                     | Road Grade:                         | 0.0%            |                   |                      | Auto                                 | s: 97.591     |                          |         |                     |  |  |  |  |
|                                     | Left View:                          | -90.0 degre     | es                | Medi                 | um Truck                             | s: 97.500     |                          |         |                     |  |  |  |  |
|                                     | Right View:                         | 90.0 degre      | es                | Hea                  | avy Truck                            | s: 97.509     |                          |         |                     |  |  |  |  |
| FHWA Noise Mod                      | el Calculation                      | s               |                   |                      |                                      |               |                          |         |                     |  |  |  |  |
| VehicleType                         | REMEL                               | Traffic Flow    | Distan            | ce Finit             | e Road                               | Fresnel       | Barrier Atte             | en Ber  | m Attei             |  |  |  |  |
| Autos:                              | 71.78                               | 1.75            |                   | -4.46                | -1.20                                | -4.7          | 8 0.0                    | 00      | 0.0                 |  |  |  |  |
| Medium Trucks:                      | 82.40                               | -9.17           |                   | -4.45                | -1.20                                | -4.8          | 8 0.0                    | 00      | 0.0                 |  |  |  |  |
| Heavy Trucks:                       | 86.40                               | -9.56           |                   | -4.45                | -1.20                                | -5.1          | 4 0.0                    | 00      | 0.0                 |  |  |  |  |
| Unmitigated Nois                    | e Levels (with                      | out Topo and    | barrier a         | ttenuation           | )                                    |               |                          |         |                     |  |  |  |  |
| VehicleType                         | Leq Peak Hou                        |                 | / Le              | eq Evening           | Leq                                  | Night         | Ldn                      |         | VEL                 |  |  |  |  |
| Autos:                              |                                     |                 | 66.8              | 63.                  |                                      | 60.9          | 68.6                     |         | 69                  |  |  |  |  |
| Medium Trucks:                      |                                     |                 | 66.9              | 60.                  |                                      | 59.8          | 67.9                     |         | 68                  |  |  |  |  |
| Heavy Trucks:                       |                                     |                 | 70.2              | 64.                  |                                      | 65.1          | 72.5                     |         | 72                  |  |  |  |  |
|                                     | 74                                  | .0              | 73.0              | 67.                  | 9                                    | 67.3          | 74.9                     | )       | 75                  |  |  |  |  |
| Vehicle Noise:                      |                                     |                 |                   |                      |                                      |               |                          |         |                     |  |  |  |  |
|                                     | ce to Noise Co                      | ontour (in feet | )                 |                      | -                                    |               |                          |         |                     |  |  |  |  |
| Vehicle Noise:<br>Centerline Distan | ce to Noise Co                      | ontour (in feet |                   | 70 dBA               |                                      | dBA           | 60 dBA                   | 55      | dBA                 |  |  |  |  |
|                                     | ce to Noise Co                      |                 | )<br>Ldn:<br>NEL: | 70 dBA<br>234<br>242 | 1                                    | dBA 505 522   | 60 dBA<br>1,087<br>1,125 | 55      | dBA<br>2,34<br>2,42 |  |  |  |  |

| FHWA-RD                                                           | -77-108 HIGHWAY   | NOISE  | PREDICTION MODEL (9/12/2021)                         |             |
|-------------------------------------------------------------------|-------------------|--------|------------------------------------------------------|-------------|
| Scenario: E<br>Road Name: Cajalco Rd.<br>Road Segment: e/o Decker | Rd.               |        | Project Name: Mead Valley Comme<br>Job Number: 15091 | erce C      |
| SITE SPECIFIC IN                                                  | PUT DATA          |        | NOISE MODEL INPUTS                                   |             |
| Highway Data                                                      |                   |        | ite Conditions (Hard = 10, Soft = 15)                |             |
| Average Daily Traffic (Adt):                                      | 27,611 vehicles   |        | Autos: 15                                            |             |
| Peak Hour Percentage:                                             | 8.10%             |        | Medium Trucks (2 Axles): 15                          |             |
| Peak Hour Volume:                                                 | 2,236 vehicles    |        | Heavy Trucks (3+ Axles): 15                          |             |
| Vehicle Speed:                                                    | 55 mph            |        | ehicle Mix                                           |             |
| Near/Far Lane Distance:                                           | 102 feet          |        |                                                      | ight Daily  |
| Site Data                                                         |                   |        |                                                      | 4.5% 86.56% |
|                                                                   | 0.0.6             |        |                                                      | 2.1% 7.10%  |
| Barrier Height:                                                   | 0.0 feet<br>0.0   |        |                                                      | 7.9% 6.34%  |
| Barrier Type (0-Wall, 1-Berm):<br>Centerline Dist, to Barrier:    | 0.0<br>110.0 feet |        |                                                      | 1.070 0.017 |
| Centerline Dist. to Observer:                                     | 110.0 feet        |        | oise Source Elevations (in feet)                     |             |
| Barrier Distance to Observer:                                     | 0.0 feet          |        | Autos: 0.000                                         |             |
| Observer Height (Above Pad):                                      | 5.0 feet          |        | Medium Trucks: 2.297                                 |             |
| Pad Elevation:                                                    | 0.0 feet          |        | Heavy Trucks: 8.004 Grade Adjus                      | ment: 0.0   |
| Road Elevation:                                                   | 0.0 feet          |        | ane Equivalent Distance (in feet)                    |             |
| Road Grade:                                                       | 0.0%              |        | Autos: 97.591                                        |             |
| Left View:                                                        | -90.0 degrees     |        | Medium Trucks: 97.500                                |             |
| Right View:                                                       | 90.0 degrees      |        | Heavy Trucks: 97.509                                 |             |
| FHWA Noise Model Calculations                                     | 5                 |        |                                                      |             |
| VehicleType REMEL                                                 | Traffic Flow Di   | stance | Finite Road Fresnel Barrier Atten                    | Berm Atten  |
| Autos: 71.78                                                      | 0.16              | -4.4   |                                                      | 0.00        |
| Medium Trucks: 82.40                                              | -10.70            | -4.4   | -1.20 -4.88 0.000                                    | 0.00        |
| Heavy Trucks: 86.40                                               | -11.19            | -4.4   | -1.20 -5.14 0.000                                    | 0.00        |
| Unmitigated Noise Levels (with                                    |                   |        |                                                      |             |
| VehicleType Leq Peak Hou                                          |                   | Leq E  |                                                      | CNEL        |
| Autos: 66                                                         |                   |        | 61.9 59.3 67.0                                       | 67.         |
| Medium Trucks: 66                                                 |                   |        | 58.8 58.3 66.4                                       | 66.         |
| Heavy Trucks: 69                                                  |                   |        | 62.8 63.5 70.8                                       | 71.         |
| Vehicle Noise: 72                                                 |                   |        | 66.3 65.7 73.3                                       | 73.         |
| Centerline Distance to Noise Co                                   | ntour (in feet)   | 70     | BA 65 dBA 60 dBA                                     | EE dDA      |
|                                                                   | Ldn:              | 70     |                                                      | 55 dBA      |
|                                                                   | Lan:<br>CNEL:     |        | 183 395 850<br>190 408 880                           | 1,831       |
|                                                                   | CNEL:             |        | 190 408 880                                          | 1,896       |

| FHV                        | /A-RD-7                                                                 | 77-108 HIGH    | NAY    | NOISE   | E PREDIC           | TION    | MODEL (            | 9/12/2   | 021)        |          |         |  |  |  |
|----------------------------|-------------------------------------------------------------------------|----------------|--------|---------|--------------------|---------|--------------------|----------|-------------|----------|---------|--|--|--|
|                            | Scenario: E+P<br>Road Name: Cajalco Rd.<br>Road Segment: e/o Decker Rd. |                |        |         |                    |         | t Name:<br>Number: |          | /alley Con  | nmerce C | :       |  |  |  |
| SITE SPECIF                | IC INP                                                                  | UT DATA        |        |         | NOISE MODEL INPUTS |         |                    |          |             |          |         |  |  |  |
| Highway Data               |                                                                         |                |        |         | Site Con           | ditions | ; (Hard =          | 10, Sc   | oft = 15)   |          |         |  |  |  |
| Average Daily Traffic (A   | dt): 2                                                                  | 8,704 vehicle  | s      |         |                    |         |                    | Autos:   | 15          |          |         |  |  |  |
| Peak Hour Percenta         | ige:                                                                    | 8.10%          |        |         | Mee                | dium Ti | rucks (2 /         | Axles):  | 15          |          |         |  |  |  |
| Peak Hour Volu             | me: 2                                                                   | ,325 vehicles  |        |         | Hea                | avy Tru | ıcks (3+ )         | Axles):  | 15          |          |         |  |  |  |
| Vehicle Spe                |                                                                         | 55 mph         |        |         | Vehicle N          | lix     |                    |          |             |          |         |  |  |  |
| Near/Far Lane Distar       | ice:                                                                    | 102 feet       |        |         | Vehi               | cleTyp  | е                  | Day      | Evening     | Night    | Daily   |  |  |  |
| Site Data                  |                                                                         |                |        |         |                    |         | Autos:             | 76.6%    | 8.9%        | 14.5%    | 86.85%  |  |  |  |
| Barrier Heig               | nht:                                                                    | 0.0 feet       |        |         | Me                 | dium 1  | Frucks:            | 83.3%    | 4.6%        | 12.1%    | 6.85%   |  |  |  |
| Barrier Type (0-Wall, 1-Be |                                                                         | 0.0            |        |         | F                  | leavy T | Frucks:            | 76.9%    | 5.2%        | 17.9%    | 6.319   |  |  |  |
| Centerline Dist. to Bar    | rier:                                                                   | 110.0 feet     |        |         | Noise So           | urco F  | lovation           | e (in fa | of)         |          |         |  |  |  |
| Centerline Dist. to Obser  | ver:                                                                    | 110.0 feet     |        |         | 110/30 00          | Auto    |                    | 000      |             |          |         |  |  |  |
| Barrier Distance to Obser  | ver:                                                                    | 0.0 feet       |        |         | Mediur             |         |                    | 297      |             |          |         |  |  |  |
| Observer Height (Above P   | ad):                                                                    | 5.0 feet       |        |         |                    | y Truci |                    | 004      | Grade Ad    | iustment | 0.0     |  |  |  |
| Pad Elevat                 | ion:                                                                    | 0.0 feet       |        |         |                    |         |                    |          |             |          |         |  |  |  |
| Road Elevat                |                                                                         | 0.0 feet       |        |         | Lane Equ           |         |                    |          | feet)       |          |         |  |  |  |
| Road Gra                   |                                                                         | 0.0%           |        |         |                    | Auto    |                    | 591      |             |          |         |  |  |  |
| Left Vi                    |                                                                         | -90.0 degree   |        |         | Mediur             |         |                    | 500      |             |          |         |  |  |  |
| Right V                    | ew:                                                                     | 90.0 degree    | s      |         | Heav               | y Trucl | (S: 97.            | 509      |             |          |         |  |  |  |
| FHWA Noise Model Calcul    | ations                                                                  |                |        |         |                    |         |                    |          |             |          |         |  |  |  |
| VehicleType REME           |                                                                         | raffic Flow    | Dis    | tance   | Finite             | Road    | Fresr              |          | Barrier Att | en Ber   | m Atten |  |  |  |
|                            | 71.78                                                                   | 0.34           |        | -4.4    |                    | -1.20   |                    | -4.78    |             | 000      | 0.00    |  |  |  |
|                            | 32.40                                                                   | -10.69         |        | -4.4    |                    | -1.20   |                    | -4.88    |             | 000      | 0.00    |  |  |  |
| Heavy Trucks:              | 36.40                                                                   | -11.05         |        | -4.4    | 45                 | -1.20   |                    | -5.14    | 0.0         | 000      | 0.00    |  |  |  |
| Unmitigated Noise Levels   | (withou                                                                 | t Topo and I   | barrie | r attei | nuation)           |         |                    |          |             |          |         |  |  |  |
| VehicleType Leq Pea        |                                                                         | Leq Day        |        | Leq E   | vening             | Leq     | Night              |          | Ldn         |          | VEL     |  |  |  |
| Autos:                     | 66.5                                                                    |                | 65.4   |         | 62.1               |         | 59.4               |          | 67.3        |          | 67.     |  |  |  |
| Medium Trucks:             | 66.1                                                                    | -              | 35.4   |         | 58.8               |         | 58.3               | -        | 66.         |          | 66.     |  |  |  |
| Heavy Trucks:              | 69.7                                                                    |                | 8.7    |         | 63.0               |         | 63.6               |          | 71.         |          | 71.     |  |  |  |
| Vehicle Noise:             | 72.5                                                                    |                | 71.6   |         | 66.4               |         | 65.8               | 5        | 73.4        | ł        | 73.     |  |  |  |
| Centerline Distance to Noi | se Con                                                                  | tour (in feet) |        |         |                    |         |                    |          |             |          |         |  |  |  |
|                            |                                                                         |                | L      | 70      | dBA                | 65      | dBA                |          | i0 dBA      |          | dBA     |  |  |  |
|                            |                                                                         |                | dn:    |         | 187                |         | 402                |          | 867         |          | 1,868   |  |  |  |
|                            |                                                                         | CA             | IEL:   |         | 193                |         | 417                |          | 898         |          | 1,934   |  |  |  |

Thursday, July 27, 2023

| FHWA-                         | RD-77-  | 108 HIGH     | WAY   | NOISE    | PREDIC                               | TION M   | ODEL (9   | /12/2  | 021)         |         |         |  |
|-------------------------------|---------|--------------|-------|----------|--------------------------------------|----------|-----------|--------|--------------|---------|---------|--|
| Scenario: EAC                 |         |              |       |          | Project Name: Mead Valley Commerce C |          |           |        |              |         |         |  |
| Road Name: Cajalco F          |         |              |       |          |                                      | Job N    | umber: 1  | 5091   |              |         |         |  |
| Road Segment: e/o Decker Rd.  |         |              |       |          |                                      |          |           |        |              |         |         |  |
| SITE SPECIFIC                 | INPUT   | DATA         |       |          |                                      |          |           |        |              | 3       |         |  |
| Highway Data                  |         |              |       |          | Site Con                             | ditions  | Hard =    | 10, So | ,            |         |         |  |
| Average Daily Traffic (Adt)   | 39,2    | 33 vehicle   | s     |          |                                      |          |           | Autos: |              |         |         |  |
| Peak Hour Percentage          | 8.1     | 0%           |       |          |                                      |          | ıcks (2 A | /      |              |         |         |  |
| Peak Hour Volume              | 3,17    | 8 vehicles   |       |          | Hea                                  | avy Truc | :ks (3+ A | xles): | 15           |         |         |  |
| Vehicle Speed                 | 5       | i5 mph       |       | ŀ        | Vehicle N                            | lix      |           |        |              |         |         |  |
| Near/Far Lane Distance        | 10      | 2 feet       |       | -        |                                      | cleType  | 1         | Day    | Evening      | Night   | Daily   |  |
| Site Data                     |         |              |       |          |                                      | A        | utos:     | 76.6%  | 8.9%         | 14.5%   | 86.56   |  |
| Barrier Height                |         | ).0 feet     |       |          | Me                                   | dium Ti  | ucks:     | 83.3%  | 4.6%         | 12.1%   | 7.10    |  |
| Barrier Type (0-Wall, 1-Berm) |         | 0.0          |       |          | H                                    | leavy Tr | ucks:     | 76.9%  | 5.2%         | 17.9%   | 6.349   |  |
| Centerline Dist. to Barrier   | : 110   | 0.0 feet     |       | -        | Noise So                             | urco El  | ovations  | (in f  | oot)         |         |         |  |
| Centerline Dist. to Observer  | : 110   | 0.0 feet     |       | -        | 10130 00                             | Autos    |           |        |              |         |         |  |
| Barrier Distance to Observer  | : 0     | 0.0 feet     |       |          | Madium                               | n Truck: |           |        |              |         |         |  |
| Observer Height (Above Pad)   | : 5     | 5.0 feet     |       |          |                                      | y Trucks |           |        | Grade Adj    | ustment | 0.0     |  |
| Pad Elevation                 | : C     | 0.0 feet     |       |          | Tieav                                | y mucks  | s. 0.0    | 104    | 0/000/10/    | uounoni | 0.0     |  |
| Road Elevation                | : C     | 0.0 feet     |       |          | Lane Equ                             | iivalent | Distanc   | e (in  | feet)        |         |         |  |
| Road Grade                    | 0.0     | )%           |       |          |                                      | Autos    | s: 97.5   | 591    |              |         |         |  |
| Left View                     | -90     | 0.0 degree   | s     |          | Mediur                               | n Trucks | s: 97.5   | 500    |              |         |         |  |
| Right View                    | 90      | 0.0 degree   | s     |          | Heav                                 | y Trucks | s: 97.5   | 509    |              |         |         |  |
| FHWA Noise Model Calculatio   | ons     |              |       |          |                                      |          |           |        |              |         |         |  |
| VehicleType REMEL             | Trat    | ffic Flow    | Dis   | stance   | Finite                               | Road     | Fresne    | e/     | Barrier Atte | en Ber  | m Atter |  |
| Autos: 71.                    | 78      | 1.69         |       | -4.4     | -6                                   | -1.20    |           | 4.78   | 0.0          | 00      | 0.00    |  |
| Medium Trucks: 82.4           | 40      | -9.18        |       | -4.4     | -5                                   | -1.20    |           | 4.88   | 0.0          | 00      | 0.00    |  |
| Heavy Trucks: 86.4            | 40      | -9.67        |       | -4.4     | 5                                    | -1.20    |           | -5.14  | 0.0          | 00      | 0.00    |  |
| Unmitigated Noise Levels (wi  | thout T | opo and l    | barri | er atter | uation)                              |          |           |        |              |         |         |  |
| VehicleType Leq Peak H        | lour    | Leq Day      |       | Leq E    | vening                               | Leq      | Night     |        | Ldn          | CI      | VEL     |  |
| Autos:                        | 67.8    | 6            | 6.8   |          | 63.4                                 |          | 60.8      |        | 68.5         | i       | 68      |  |
| Medium Trucks:                | 67.6    | 6            | 6.9   |          | 60.4                                 |          | 59.8      |        | 67.9         | )       | 68      |  |
| Heavy Trucks:                 | 71.1    | 1            | 70.1  |          | 64.4                                 |          | 65.0      |        | 72.4         |         | 72      |  |
| Vehicle Noise:                | 73.9    | 1            | 73.0  |          | 67.8                                 |          | 67.2      |        | 74.8         | 1       | 75      |  |
| Centerline Distance to Noise  | Contou  | ır (in feet) |       |          |                                      |          |           |        |              |         |         |  |
|                               |         |              |       | 70       | dBA                                  | 65 (     | dBA       | (      | 60 dBA       | 55      | dBA     |  |
|                               |         | 1            | Ldn:  |          | 231                                  |          | 499       |        | 1,074        |         | 2,31    |  |
|                               |         |              | IEL : |          | 240                                  |          | 516       |        | 1.112        |         | 2.39    |  |

| FHW                                                | A-RD                                                                      | -77-108 HIGH                | WAY  | NOISE  | PREDIC         | TION N             | NODEL (9                                                  | 9/12/20  | 021)         |          |           |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|------|--------|----------------|--------------------|-----------------------------------------------------------|----------|--------------|----------|-----------|--|--|--|--|
| Road Name: Cajalco                                 | Scenario: EAC+P<br>Road Name: Cajalco Rd.<br>Road Segment: e/o Decker Rd. |                             |      |        |                |                    | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |          |              |          |           |  |  |  |  |
| SITE SPECIFI                                       | C IN                                                                      | PUT DATA                    |      |        |                |                    |                                                           |          | L INPUTS     | 3        |           |  |  |  |  |
| Highway Data                                       |                                                                           |                             |      | 1      | Site Con       | ditions            | (Hard =                                                   | 10, Sc   | oft = 15)    |          |           |  |  |  |  |
| Average Daily Traffic (Ac                          | ft): ·                                                                    | 40,325 vehicle              | s    |        |                |                    |                                                           | Autos:   | 15           |          |           |  |  |  |  |
| Peak Hour Percentag                                |                                                                           | 8.10%                       |      |        |                |                    | rucks (2 A                                                |          |              |          |           |  |  |  |  |
| Peak Hour Volum                                    |                                                                           | 3,266 vehicles              | 6    |        | Hea            | avy Tru            | icks (3+ A                                                | (xles):  | 15           |          |           |  |  |  |  |
| Vehicle Spee                                       |                                                                           | 55 mph                      |      | 1      | Vehicle N      | lix                |                                                           |          |              |          |           |  |  |  |  |
| Near/Far Lane Distand                              | e:                                                                        | 102 feet                    |      |        | Vehi           | cleType            | e                                                         | Day      | Evening      | Night    | Daily     |  |  |  |  |
| Site Data                                          |                                                                           |                             |      |        |                |                    | Autos:                                                    | 76.6%    | 8.9%         | 14.5%    | 86.779    |  |  |  |  |
| Barrier Heigi                                      | ht:                                                                       | 0.0 feet                    |      |        | Me             | dium 1             | rucks:                                                    | 83.3%    | 4.6%         | 12.1%    | 6.929     |  |  |  |  |
| Barrier Type (0-Wall, 1-Berr                       | n):                                                                       | 0.0                         |      |        | H              | leavy 1            | rucks:                                                    | 76.9%    | 5.2%         | 17.9%    | 6.329     |  |  |  |  |
| Centerline Dist. to Barri                          | er:                                                                       | 110.0 feet                  |      | -      | Noise So       | urco F             | lovations                                                 | : (in fa | oof)         |          |           |  |  |  |  |
| Centerline Dist. to Observ                         | er:                                                                       | 110.0 feet                  |      | ŕ      | 10/30 00       | Auto               |                                                           | 000      |              |          |           |  |  |  |  |
| Barrier Distance to Observ                         | er:                                                                       | 0.0 feet                    |      |        | Mediun         |                    |                                                           | 297      |              |          |           |  |  |  |  |
| Observer Height (Above Pa                          | d):                                                                       | 5.0 feet                    |      |        |                | y Truck            |                                                           | 004      | Grade Adj    | ustment. | : 0.0     |  |  |  |  |
| Pad Elevation                                      |                                                                           | 0.0 feet                    |      | _      |                |                    |                                                           |          |              |          |           |  |  |  |  |
| Road Elevation                                     |                                                                           | 0.0 feet                    |      | 1      | Lane Equ       |                    |                                                           |          | feet)        |          |           |  |  |  |  |
| Road Grad                                          |                                                                           | 0.0%                        |      |        |                | Auto               |                                                           |          |              |          |           |  |  |  |  |
| Left Vie<br>Right Vie                              |                                                                           | -90.0 degree<br>90.0 degree |      |        | Mediun<br>Heav | n Truck<br>y Truck |                                                           |          |              |          |           |  |  |  |  |
| FHWA Noise Model Calcula                           | tions                                                                     |                             |      |        |                |                    |                                                           |          |              |          |           |  |  |  |  |
| VehicleType REMEL                                  |                                                                           | Traffic Flow                | Dis  | tance  | Finite         | Road               | Fresn                                                     | el       | Barrier Atte | en Ber   | m Atten   |  |  |  |  |
|                                                    | 1.78                                                                      | 1.82                        |      | -4.46  | -              | -1.20              |                                                           | -4.78    | 0.0          |          | 0.00      |  |  |  |  |
|                                                    | 2.40                                                                      | -9.17                       |      | -4.4   | -              | -1.20              |                                                           | -4.88    | 0.0          |          | 0.00      |  |  |  |  |
|                                                    | 5.40                                                                      | -9.56                       |      | -4.4   | -              | -1.20              |                                                           | -5.14    | 0.0          | 00       | 0.00      |  |  |  |  |
| Unmitigated Noise Levels (<br>VehicleType Leq Peak |                                                                           |                             |      | Leg Ev |                | 1.00               | Night                                                     |          | Ldn          | 0        | NEL       |  |  |  |  |
| Autos:                                             | 67.                                                                       |                             | 66.9 | LEYEN  | 63.6           | Leq                | 60.9                                                      |          | 68.7         |          | VEL<br>69 |  |  |  |  |
| Medium Trucks:                                     | 67.                                                                       |                             | 66.9 |        | 60.4           |                    | 59.8                                                      |          | 67.9         |          | 68        |  |  |  |  |
| Heavy Trucks:                                      | 71.                                                                       | -                           | 70.2 |        | 64.5           |                    | 65.1                                                      |          | 72.5         |          | 72        |  |  |  |  |
| Vehicle Noise:                                     | 74.                                                                       |                             | 73.1 |        | 67.9           |                    | 67.3                                                      |          | 74.9         |          | 75        |  |  |  |  |
| Centerline Distance to Nois                        | e Co                                                                      | ntour (in feet)             | )    |        |                |                    |                                                           |          |              |          |           |  |  |  |  |
|                                                    |                                                                           |                             |      | 70 c   |                | 65                 | dBA                                                       | 6        | 60 dBA       | 55       | dBA       |  |  |  |  |
|                                                    |                                                                           |                             | Ldn: |        | 235            |                    | 506                                                       |          | 1,089        |          | 2,347     |  |  |  |  |
|                                                    |                                                                           |                             | VEL  |        | 243            |                    | 523                                                       |          | 1.128        |          | 2.43      |  |  |  |  |

| FHWA-RD-77-108 HIGI                                                    | IWAY NO    |                                                           |            | DDEL (9/         | 12/2021)                 |               |  |  |  |  |
|------------------------------------------------------------------------|------------|-----------------------------------------------------------|------------|------------------|--------------------------|---------------|--|--|--|--|
| Scenario: HY<br>Road Name: Cajalco Rd.<br>Road Segment: e/o Decker Rd. |            | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |            |                  |                          |               |  |  |  |  |
| SITE SPECIFIC INPUT DATA                                               |            |                                                           | N          | DISE MO          | DDEL INPUT               | 5             |  |  |  |  |
| Highway Data                                                           |            | Site Cor                                                  | nditions ( | Hard = 1         | 0, Soft = 15)            |               |  |  |  |  |
| Average Daily Traffic (Adt): 43,156 vehic                              | es         |                                                           |            | AL               | <i>itos:</i> 15          |               |  |  |  |  |
| Peak Hour Percentage: 8.10%                                            |            | Me                                                        | edium Tru  | cks (2 Ax        | <i>les):</i> 15          |               |  |  |  |  |
| Peak Hour Volume: 3,496 vehicle                                        | s          | He                                                        | eavy Truci | ks (3+ Ax        | <i>les):</i> 15          |               |  |  |  |  |
| Vehicle Speed: 55 mph                                                  |            | Vehicle                                                   | Mix        |                  |                          |               |  |  |  |  |
| Near/Far Lane Distance: 102 feet                                       |            |                                                           | nicleType  | D                | ay Evening               | Night Daily   |  |  |  |  |
| Site Data                                                              |            |                                                           |            |                  | 6.6% 8.9%                | 14.5% 86.56%  |  |  |  |  |
| Barrier Height: 0.0 feet                                               |            | м                                                         | ledium Tru | icks: 8          | 3.3% 4.6%                | 12.1% 7.10%   |  |  |  |  |
| Barrier Type (0-Wall, 1-Berm): 0.0                                     |            |                                                           | Heavy Tru  |                  | 6.9% 5.2%                | 17.9% 6.34%   |  |  |  |  |
| Centerline Dist. to Barrier: 110.0 feet                                |            |                                                           |            |                  |                          |               |  |  |  |  |
| Centerline Dist. to Observer: 110.0 feet                               |            | Noise Se                                                  | ource Ele  |                  | , ,                      |               |  |  |  |  |
| Barrier Distance to Observer: 0.0 feet                                 |            |                                                           | Autos      |                  | -                        |               |  |  |  |  |
| Observer Height (Above Pad): 5.0 feet                                  |            |                                                           | m Trucks   |                  |                          |               |  |  |  |  |
| Pad Elevation: 0.0 feet                                                |            | Hea                                                       | vy Trucks  | 8.00             | 4 Grade Adj              | ustment: 0.0  |  |  |  |  |
| Road Elevation: 0.0 feet                                               |            | Lane Eq                                                   | uivalent   | Distance         | (in feet)                |               |  |  |  |  |
| Road Grade: 0.0%                                                       |            |                                                           | Autos      | 97.59            | 91                       |               |  |  |  |  |
| Left View: -90.0 degre                                                 | es         | Mediu                                                     | m Trucks   | 97.50            | 00                       |               |  |  |  |  |
| Right View: 90.0 degre                                                 | es         | Hea                                                       | vy Trucks  | 97.50            | 9                        |               |  |  |  |  |
| FHWA Noise Model Calculations                                          |            |                                                           |            |                  |                          |               |  |  |  |  |
| VehicleType REMEL Traffic Flow                                         | Distanc    | e Finite                                                  | Road       | Fresnel          |                          | en Berm Atten |  |  |  |  |
| Autos: 71.78 2.10                                                      |            | 4.46                                                      | -1.20      |                  |                          | 000 0.000     |  |  |  |  |
| Medium Trucks: 82.40 -8.76                                             |            | 4.45                                                      | -1.20      |                  |                          | 0.000         |  |  |  |  |
| Heavy Trucks: 86.40 -9.25                                              | -          | 4.45                                                      | -1.20      | -5               | 5.14 0.0                 | 0.000         |  |  |  |  |
| Unmitigated Noise Levels (without Topo and                             | barrier at | tenuation)                                                |            |                  |                          |               |  |  |  |  |
| VehicleType Leq Peak Hour Leq Da                                       |            | q Evening                                                 | Leq N      | •                | Ldn                      | CNEL          |  |  |  |  |
| Autos: 68.2                                                            | 67.2       | 63.8                                                      |            | 61.2             | 69.0                     |               |  |  |  |  |
| Medium Trucks: 68.0                                                    | 67.3       | 60.8                                                      |            | 60.2             | 68.3                     |               |  |  |  |  |
| Heavy Trucks: 71.5                                                     | 70.5       | 64.8                                                      |            | 65.4             | 72.8                     |               |  |  |  |  |
| Vehicle Noise: 74.3                                                    | 73.4       | 68.2                                                      | 2          | 67.7             | 75.3                     | 3 75.5        |  |  |  |  |
|                                                                        |            |                                                           |            |                  |                          |               |  |  |  |  |
| Centerline Distance to Noise Contour (in fee                           |            |                                                           |            |                  |                          |               |  |  |  |  |
| Centerline Distance to Noise Contour (in fee                           | í l        | 70 dBA                                                    | 65 d       |                  | 60 dBA                   | 55 dBA        |  |  |  |  |
|                                                                        |            | 70 dBA<br>247<br>255                                      | 65 d       | BA<br>531<br>550 | 60 dBA<br>1,145<br>1,185 | 2,467         |  |  |  |  |

|                    | FHWA-RD-                                      | 77-108 HIGHWA    | Y NOISE   | E PREDIC           | TION MO              | DEL (9  | /12/20 | 21)          |          |         |  |  |  |
|--------------------|-----------------------------------------------|------------------|-----------|--------------------|----------------------|---------|--------|--------------|----------|---------|--|--|--|
| Road Nam           | o: HY+P<br>e: Cajalco Rd.<br>nt: e/o Decker R | td.              |           |                    | Project N<br>Job Nui |         |        | /alley Com   | imerce C | :       |  |  |  |
| SITE S             | SPECIFIC INP                                  | UT DATA          |           | NOISE MODEL INPUTS |                      |         |        |              |          |         |  |  |  |
| Highway Data       |                                               |                  |           | Site Con           | ditions (H           | lard =  | 10, So | ft = 15)     |          |         |  |  |  |
| Average Daily      | Traffic (Adt): 4                              | 4,248 vehicles   |           |                    |                      | A       | Autos: | 15           |          |         |  |  |  |
| Peak Hour          | Percentage:                                   | 8.10%            |           | Mee                | dium Truc            | ks (2 A | xles): | 15           |          |         |  |  |  |
| Peak H             | our Volume: 3                                 | 3,584 vehicles   |           | Hei                | avy Truck            | s (3+ A | xles): | 15           |          |         |  |  |  |
| Vel                | hicle Speed:                                  | 55 mph           | F         | Vehicle N          | Nix                  |         |        |              |          |         |  |  |  |
| Near/Far Lar       | ne Distance:                                  | 102 feet         | ľ         |                    | cleType              |         | Day    | Evening      | Night    | Daily   |  |  |  |
| Site Data          |                                               |                  |           |                    | Au                   | itos:   | 76.6%  | 8.9%         | 14.5%    | 86.75%  |  |  |  |
| Bar                | rier Height:                                  | 0.0 feet         |           | Me                 | edium Tru            | cks:    | 83.3%  | 4.6%         | 12.1%    | 6.94%   |  |  |  |
| Barrier Type (0-W  | •                                             | 0.0              |           | F                  | leavy Tru            | cks:    | 76.9%  | 5.2%         | 17.9%    | 6.32%   |  |  |  |
| Centerline Dis     | . ,                                           | 110.0 feet       | ŀ         | Noise So           | urco Elo             | ations  | (in fo | of           |          |         |  |  |  |
| Centerline Dist.   | to Observer:                                  | 110.0 feet       | -         | NUISE 30           | Autos:               | 0.0     |        | eij          |          |         |  |  |  |
| Barrier Distance t | to Observer:                                  | 0.0 feet         |           | Mediur             | n Trucks:            |         |        |              |          |         |  |  |  |
| Observer Height (J | Above Pad):                                   | 5.0 feet         |           |                    | y Trucks:            |         |        | Grade Ad     | iustment | 0.0     |  |  |  |
|                    | ad Elevation:                                 | 0.0 feet         |           |                    |                      |         | _      |              |          |         |  |  |  |
|                    | ad Elevation:                                 | 0.0 feet         | -         | Lane Equ           |                      |         |        | eet)         |          |         |  |  |  |
| F                  | Road Grade:                                   | 0.0%             |           |                    | Autos:               |         |        |              |          |         |  |  |  |
|                    | Left View:                                    | -90.0 degrees    |           |                    | n Trucks:            |         |        |              |          |         |  |  |  |
|                    | Right View:                                   | 90.0 degrees     |           | Heav               | y Trucks:            | 97.5    | 09     |              |          |         |  |  |  |
| FHWA Noise Mode    | el Calculations                               |                  |           |                    |                      |         |        |              |          |         |  |  |  |
| VehicleType        | REMEL                                         | Traffic Flow Di  | istance   | Finite             | Road                 | Fresn   | e/ I   | Barrier Atte | en Ber   | m Atten |  |  |  |
| Autos:             | 71.78                                         | 2.22             | -4.4      | 16                 | -1.20                |         | -4.78  | 0.0          | 000      | 0.00    |  |  |  |
| Medium Trucks:     | 82.40                                         | -8.75            | -4.4      |                    | -1.20                |         | -4.88  |              | 000      | 0.00    |  |  |  |
| Heavy Trucks:      | 86.40                                         | -9.16            | -4.4      | 15                 | -1.20                |         | -5.14  | 0.0          | 000      | 0.00    |  |  |  |
| Unmitigated Noise  | Levels (withou                                | ut Topo and barr | ier atter | nuation)           |                      |         |        |              |          |         |  |  |  |
| VehicleType        | Leq Peak Hour                                 | Leq Day          | Leq E     | vening             | Leq N                | ight    |        | Ldn          | CI       | VEL     |  |  |  |
| Autos:             | 68.3                                          |                  |           | 64.0               |                      | 61.3    |        | 69.1         |          | 69.     |  |  |  |
| Medium Trucks:     | 68.0                                          |                  |           | 60.8               |                      | 60.2    |        | 68.3         |          | 68.     |  |  |  |
| Heavy Trucks:      | 71.6                                          |                  |           | 64.9               |                      | 65.5    |        | 72.9         |          | 73.     |  |  |  |
| Vehicle Noise:     | 74.4                                          | 73.5             |           | 68.3               |                      | 67.7    |        | 75.3         | 3        | 75.     |  |  |  |
| Centerline Distanc | e to Noise Con                                | tour (in feet)   |           |                    |                      |         |        |              |          |         |  |  |  |
|                    |                                               |                  |           | dBA                | 65 dE                |         | 6      | 0 dBA        |          | dBA     |  |  |  |
|                    |                                               | Ldn:             |           | 250                |                      | 538     |        | 1,159        |          | 2,498   |  |  |  |
|                    |                                               | CNEL:            |           | 259                |                      | 557     |        | 1,200        |          | 2,586   |  |  |  |

Thursday, July 27, 2023

| FHWA-                         | RD-77-108 HIG   | HWAY NO     | OISE PI | REDIC                                | TION MO   | ODEL (9   | /12/20    | 021)         |          |         |  |  |
|-------------------------------|-----------------|-------------|---------|--------------------------------------|-----------|-----------|-----------|--------------|----------|---------|--|--|
| Scenario: E                   |                 |             |         | Project Name: Mead Valley Commerce C |           |           |           |              |          |         |  |  |
| Road Name: Cajalco F          | Rd.             |             |         |                                      | Job Ni    | ımber: 1  | 5091      |              |          |         |  |  |
| Road Segment: e/o Seate       | on Av.          |             |         |                                      |           |           |           |              |          |         |  |  |
| SITE SPECIFIC                 | INPUT DATA      |             |         |                                      |           |           |           | L INPUTS     | 6        |         |  |  |
| Highway Data                  |                 |             | Sit     | e Con                                | ditions ( | Hard = 1  | 10, Sc    | oft = 15)    |          |         |  |  |
| Average Daily Traffic (Adt).  | 23,167 vehi     | les         |         |                                      |           | A         | utos:     | 15           |          |         |  |  |
| Peak Hour Percentage          | 8.10%           |             |         | Mee                                  | dium Tru  | cks (2 A. | xles):    | 15           |          |         |  |  |
| Peak Hour Volume              | 1,877 vehicl    | es          |         | Hea                                  | avy Truc  | ks (3+ A. | xles):    | 15           |          |         |  |  |
| Vehicle Speed:                | 55 mph          |             | Ve      | hicle N                              | lix       |           |           |              |          |         |  |  |
| Near/Far Lane Distance.       | 102 feet        |             |         |                                      | cleType   | 1         | Day       | Evening      | Night    | Daily   |  |  |
| Site Data                     |                 |             |         |                                      | A         | utos: ī   | ,<br>6.6% | 8.9%         | 14.5%    | 86.56   |  |  |
| Barrier Height                | 0.0 feet        |             |         | Me                                   | dium Tru  | ucks: 8   | 33.3%     | 4.6%         | 12.1%    | 7.10    |  |  |
| Barrier Type (0-Wall, 1-Berm) |                 |             |         | H                                    | leavy Tru | ucks: 7   | 76.9%     | 5.2%         | 17.9%    | 6.34    |  |  |
| Centerline Dist. to Barrier   | 110.0 feet      |             | No      | ico So                               | urco Ela  | vations   | (in fe    | nof)         |          |         |  |  |
| Centerline Dist. to Observer  | 110.0 feet      |             | NO      | 136 30                               | Autos     |           |           | ei)          |          |         |  |  |
| Barrier Distance to Observer  | 0.0 feet        |             |         | A da ali                             | n Trucks  | . 0.0     |           |              |          |         |  |  |
| Observer Height (Above Pad)   | 5.0 feet        |             |         |                                      | y Trucks  |           |           | Grade Adj    | ustment  | 0.0     |  |  |
| Pad Elevation                 | 0.0 feet        |             |         | neav                                 | y mucks   | . 0.0     | 04        | Orade Auj    | usunent. | 0.0     |  |  |
| Road Elevation                | 0.0 feet        |             | La      | ne Equ                               | ivalent   | Distanc   | e (in i   | feet)        |          |         |  |  |
| Road Grade                    | 0.0%            |             |         |                                      | Autos     | : 97.5    | 91        |              |          |         |  |  |
| Left View                     | -90.0 degr      | ees         |         |                                      | n Trucks  |           | 00        |              |          |         |  |  |
| Right View                    | 90.0 degr       | ees         |         | Heav                                 | y Trucks  | 97.5      | 09        |              |          |         |  |  |
| FHWA Noise Model Calculatio   | ons             |             |         |                                      |           |           |           |              |          |         |  |  |
| VehicleType REMEL             | Traffic Flow    | Dista       | nce     | Finite                               | Road      | Fresne    | e/        | Barrier Atte | en Ben   | m Atter |  |  |
| Autos: 71.7                   | 78 -0.6         | 0           | -4.46   |                                      | -1.20     | -         | 4.78      | 0.0          | 00       | 0.00    |  |  |
| Medium Trucks: 82.4           | 10 -11.4        | 6           | -4.45   |                                      | -1.20     |           | 4.88      | 0.0          | 00       | 0.00    |  |  |
| Heavy Trucks: 86.4            | 40 -11.9        | 6           | -4.45   |                                      | -1.20     | -         | 5.14      | 0.0          | 00       | 0.00    |  |  |
| Unmitigated Noise Levels (wi  | thout Topo an   | d barrier a | attenua | tion)                                |           |           |           |              |          |         |  |  |
| VehicleType Leq Peak H        |                 |             | eq Ever |                                      | Leq N     | •         |           | Ldn          |          | IEL     |  |  |
|                               | 65.5            | 64.5        |         | 61.1                                 |           | 58.5      |           | 66.3         |          | 66      |  |  |
|                               | 65.3            | 64.6        |         | 58.1                                 |           | 57.5      |           | 65.6         |          | 65      |  |  |
|                               | 68.8            | 67.8        |         | 62.1                                 |           | 62.7      |           | 70.1         |          | 70      |  |  |
| Vehicle Noise:                | 71.6            | 70.7        |         | 65.5                                 |           | 65.0      |           | 72.6         |          | 72      |  |  |
| Centerline Distance to Noise  | Contour (in fee | et)         |         |                                      |           |           |           |              |          |         |  |  |
|                               |                 |             | 70 dB.  |                                      | 65 d      |           | 6         | 60 dBA       | 55       | dBA     |  |  |
|                               |                 | Ldn:        |         | 163                                  |           | 351       |           | 756          |          | 1.62    |  |  |
|                               |                 | CNEL:       |         | 169                                  |           | 363       |           | 783          |          | 1.68    |  |  |

| FHWA-RD-77-108 HIGHWAY NO                                               | DISE PREDICTION MODEL (9/12/2021)                         |
|-------------------------------------------------------------------------|-----------------------------------------------------------|
| Scenario: E+P<br>Road Name: Cajalco Rd.<br>Road Segment: e/o Seaton Av. | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |
| SITE SPECIFIC INPUT DATA                                                | NOISE MODEL INPUTS                                        |
| Highway Data                                                            | Site Conditions (Hard = 10, Soft = 15)                    |
| Average Daily Traffic (Adt): 24,926 vehicles                            | Autos: 15                                                 |
| Peak Hour Percentage: 8.10%                                             | Medium Trucks (2 Axles): 15                               |
| Peak Hour Volume: 2,019 vehicles                                        | Heavy Trucks (3+ Axles): 15                               |
| Vehicle Speed: 55 mph                                                   | Vehicle Mix                                               |
| Near/Far Lane Distance: 102 feet                                        | VehicleType Day Evening Night Daily                       |
| Site Data                                                               | Autos: 76.6% 8.9% 14.5% 86.46%                            |
| Barrier Height: 0.0 feet                                                | Medium Trucks: 83.3% 4.6% 12.1% 6.69%                     |
| Barrier Type (0-Wall, 1-Berm): 0.0                                      | Heavy Trucks: 76.9% 5.2% 17.9% 6.85%                      |
| Centerline Dist. to Barrier: 110.0 feet                                 | Noise Source Elevations (in feet)                         |
| Centerline Dist. to Observer: 110.0 feet                                | Autos: 0.000                                              |
| Barrier Distance to Observer: 0.0 feet                                  | Medium Trucks: 2.297                                      |
| Observer Height (Above Pad): 5.0 feet                                   | Heavy Trucks: 8.004 Grade Adjustment: 0.0                 |
| Pad Elevation: 0.0 feet                                                 |                                                           |
| Road Elevation: 0.0 feet                                                | Lane Equivalent Distance (in feet)                        |
| Road Grade: 0.0%                                                        | Autos: 97.591                                             |
| Left View: -90.0 degrees                                                | Medium Trucks: 97.500                                     |
| Right View: 90.0 degrees                                                | Heavy Trucks: 97.509                                      |
| FHWA Noise Model Calculations                                           |                                                           |
| VehicleType REMEL Traffic Flow Distar                                   |                                                           |
| Autos: 71.78 -0.29                                                      | -4.46 -1.20 -4.78 0.000 0.000                             |
| Medium Trucks: 82.40 -11.40                                             | -4.45 -1.20 -4.88 0.000 0.000                             |
| Heavy Trucks: 86.40 -11.30                                              | -4.45 -1.20 -5.14 0.000 0.000                             |
| Unmitigated Noise Levels (without Topo and barrier a                    |                                                           |
|                                                                         | eq Evening Leq Night Ldn CNEL                             |
| Autos: 65.8 64.8                                                        | 61.5 58.8 66.6 66.9                                       |
| Medium Trucks: 65.3 64.7                                                | 58.1 57.6 65.7 65.9                                       |
| Heavy Trucks: 69.4 68.4                                                 | 62.7 63.4 70.7 70.9                                       |
| Vehicle Noise: 72.1 71.1                                                | 65.9 65.4 73.0 73.2                                       |
| Centerline Distance to Noise Contour (in feet)                          |                                                           |
|                                                                         | 70 dBA 65 dBA 60 dBA 55 dBA                               |
| Ldn:                                                                    | 175 377 812 1,749                                         |
| CNEL:                                                                   | 181 390 840 1.810                                         |

| FHWA                                                          | RD-77-1   | 08 HIGH     | NAY N        | IOISE  | PREDIC   |                 | IODEL (9             | )/12/20    | 021)         |           |         |
|---------------------------------------------------------------|-----------|-------------|--------------|--------|----------|-----------------|----------------------|------------|--------------|-----------|---------|
| Scenario: EAC<br>Road Name: Cajalco<br>Road Segment: e/o Seat |           |             |              |        |          |                 | Name: N<br>lumber: 1 |            | /alley Com   | merce C   | ;       |
| SITE SPECIFIC                                                 | INPUT     | DATA        |              |        |          |                 |                      |            | L INPUTS     | 3         |         |
| Highway Data                                                  |           |             |              | S      | ite Con  | ditions         | (Hard =              | 10, Sc     | oft = 15)    |           |         |
| Average Daily Traffic (Adt)                                   | : 34,51   | 7 vehicle   | s            |        |          |                 |                      | Autos:     | 15           |           |         |
| Peak Hour Percentage                                          | : 8.10    | 0%          |              |        | Me       | dium Tr         | ucks (2 A            | xles):     | 15           |           |         |
| Peak Hour Volume                                              | : 2,796   | 3 vehicles  |              |        | He       | avy Tru         | cks (3+ A            | xles):     | 15           |           |         |
| Vehicle Speed                                                 | 55        | 5 mph       |              | V      | ehicle l | Niv             |                      |            |              |           |         |
| Near/Far Lane Distance                                        | : 102     | 2 feet      |              | -      |          | cleType         |                      | Dav        | Evening      | Night     | Daily   |
| Site Data                                                     |           |             |              |        | Veni     |                 |                      | 76.6%      | •            | 14.5%     |         |
| Barrier Height                                                | · 0       | .0 feet     |              |        | Me       | edium T         | rucks:               | 83.3%      | 4.6%         | 12.1%     | 7.109   |
| Barrier Type (0-Wall, 1-Berm)                                 |           | .0          |              |        | F        | leavy T         | rucks:               | 76.9%      | 5.2%         | 17.9%     | 6.349   |
| Centerline Dist. to Barrier                                   |           | .0 feet     |              | -      |          |                 |                      |            |              |           |         |
| Centerline Dist. to Observer                                  |           | .0 feet     |              | ^      | ioise So |                 | levations            |            | eet)         |           |         |
| Barrier Distance to Observer                                  | . 0       | .0 feet     |              |        |          | Auto<br>n Truck |                      | 000        |              |           |         |
| Observer Height (Above Pad)                                   | : 5       | .0 feet     |              |        |          |                 |                      | 297<br>)04 | Grade Adj    | unternent |         |
| Pad Elevation                                                 | : 0       | .0 feet     |              |        | Heav     | y Truck         | S: 8.0               | 104        | Grade Auj    | usuneni   | 0.0     |
| Road Elevation                                                | : 0       | .0 feet     |              | L      | ane Equ  | ivalen          | t Distanc            | e (in i    | feet)        |           |         |
| Road Grade                                                    | : 0.0     | %           |              |        |          | Auto            | s: 97.5              | 591        |              |           |         |
| Left View                                                     | -90       | .0 degree   | s            |        | Mediur   | n Truck         | s: 97.5              | 500        |              |           |         |
| Right View                                                    | 90        | .0 degree   | S            |        | Heav     | y Truck         | s: 97.8              | 509        |              |           |         |
| FHWA Noise Model Calculati                                    | ons       |             |              |        |          |                 |                      |            |              |           |         |
| VehicleType REMEL                                             | Traff     | fic Flow    | Dista        | ance   | Finite   | Road            | Fresn                | el         | Barrier Atte | en Ber    | m Atten |
| Autos: 71.                                                    |           | 1.13        |              | -4.46  |          | -1.20           |                      | -4.78      | 0.0          |           | 0.00    |
| Medium Trucks: 82.                                            |           | -9.73       |              | -4.45  |          | -1.20           |                      | -4.88      | 0.0          |           | 0.00    |
| Heavy Trucks: 86.                                             | 40        | -10.22      |              | -4.45  | 5        | -1.20           |                      | -5.14      | 0.0          | 00        | 0.00    |
| Unmitigated Noise Levels (w                                   | ithout To |             | arrier       | attenu | uation)  |                 |                      |            |              |           |         |
| VehicleType Leq Peak H                                        | lour      | Leq Day     |              | Leq Ev |          | Leq             | Night                |            | Ldn          |           | VEL     |
| Autos:                                                        | 67.3      |             | 6.2          |        | 62.9     |                 | 60.2                 |            | 68.0         |           | 68.     |
| Medium Trucks:                                                | 67.0      |             | 6.3          |        | 59.8     |                 | 59.2                 |            | 67.3         |           | 67.     |
| Heavy Trucks:                                                 | 70.5      |             | 9.5          |        | 63.8     |                 | 64.4                 |            | 71.8         |           | 72.     |
| Vehicle Noise:                                                | 73.3      | 7           | 2.4          |        | 67.2     |                 | 66.7                 |            | 74.3         |           | 74.     |
| Centerline Distance to Noise                                  | Contou    | r (in feet) | T            |        |          |                 |                      |            |              | I         |         |
|                                                               |           |             |              | 70 d   |          | 65              | dBA                  | 6          | 60 dBA       | 55        | dBA     |
|                                                               |           |             | .dn:<br>IEL: |        | 213      |                 | 458                  |            | 986          |           | 2,125   |
|                                                               |           |             |              |        | 220      |                 | 474                  |            | 1.021        |           | 2.200   |

|                                          | FHWA-RD-7       | 7-108 HIGHW   | ay noi:   | SE PREDIC  |         | NODEL (              | 9/12/20  | 021)         |          |         |
|------------------------------------------|-----------------|---------------|-----------|------------|---------|----------------------|----------|--------------|----------|---------|
| Scenario:<br>Road Name:<br>Road Segment: | Cajalco Rd.     |               |           |            |         | t Name: I<br>lumber: |          | √alley Com   | imerce C | ;       |
| SITE SP                                  | ECIFIC INPL     | JT DATA       |           | 1          |         |                      |          | L INPUT      | 5        |         |
| Highway Data                             |                 |               |           | Site Con   | ditions | (Hard =              | 10, Sc   | oft = 15)    |          |         |
| Average Daily Tra                        | affic (Adt): 36 | ,276 vehicles |           |            |         |                      | Autos:   | 15           |          |         |
| Peak Hour Pe                             | ercentage: 8    | .10%          |           | Me         | dium Ti | rucks (2 A           | Axles):  | 15           |          |         |
| Peak Hou                                 | r Volume: 2,9   | 938 vehicles  |           | He         | avy Tru | icks (3+ A           | Axles):  | 15           |          |         |
|                                          | le Speed:       | 55 mph        |           | Vehicle I  | Mix     |                      |          |              |          |         |
| Near/Far Lane                            | Distance:       | 102 feet      |           | Veh        | icleTyp | e                    | Day      | Evening      | Night    | Daily   |
| Site Data                                |                 |               |           |            |         | Autos:               | 76.6%    | 8.9%         | 14.5%    | 86.49%  |
| Barrie                                   | er Height:      | 0.0 feet      |           | M          | edium 1 | Trucks:              | 83.3%    | 4.6%         | 12.1%    | 6.82%   |
| Barrier Type (0-Wall                     |                 | 0.0           |           | 1          | Heavy 7 | rucks:               | 76.9%    | 5.2%         | 17.9%    | 6.69%   |
| Centerline Dist.                         | to Barrier: 1   | 10.0 feet     |           | Noise So   | urce F  | levation             | s (in fa | pet)         |          |         |
| Centerline Dist. to                      | Observer: 1     | 10.0 feet     |           | 110/30 00  | Auto    |                      | 000      |              |          |         |
| Barrier Distance to                      | Observer:       | 0.0 feet      |           | Mediu      | m Truck |                      | 297      |              |          |         |
| Observer Height (Ab                      | ,               | 5.0 feet      |           |            | y Truck |                      | 004      | Grade Adj    | ustment. | 0.0     |
|                                          | Elevation:      | 0.0 feet      |           |            | •       |                      |          |              |          |         |
|                                          | Elevation:      | 0.0 feet      |           | Lane Eq    |         |                      |          | leet)        |          |         |
|                                          |                 | .0%           |           |            | Auto    |                      |          |              |          |         |
|                                          |                 | 90.0 degrees  |           |            | m Truck |                      |          |              |          |         |
| ĸ                                        | ight View:      | 90.0 degrees  |           | near       | y Truck | (5. 97.)             | 509      |              |          |         |
| FHWA Noise Model (                       | Calculations    |               |           |            |         |                      |          |              |          |         |
| VehicleType                              | REMEL Tr        | affic Flow    | Distance  | e Finite   | Road    | Fresn                | el       | Barrier Atte | en Ber   | m Atten |
| Autos:                                   | 71.78           | 1.34          | -4        | 1.46       | -1.20   |                      | -4.78    | 0.0          | 000      | 0.00    |
| Medium Trucks:                           | 82.40           | -9.69         |           | 1.45       | -1.20   |                      | -4.88    |              | 000      | 0.00    |
| Heavy Trucks:                            | 86.40           | -9.77         | -4        | 1.45       | -1.20   |                      | -5.14    | 0.0          | 000      | 0.00    |
| Unmitigated Noise L                      | evels (without  | Topo and ba   | rrier att | enuation)  |         |                      |          |              |          |         |
| VehicleType Le                           | eq Peak Hour    | Leq Day       | Leg       | Evening    | Leq     | Night                |          | Ldn          | CI       | VEL     |
| Autos:                                   | 67.5            | 66            | .4        | 63.1       |         | 60.4                 | Ļ        | 68.2         | 2        | 68.     |
| Medium Trucks:                           | 67.1            | 66            |           | 59.8       |         | 59.3                 |          | 67.4         |          | 67.     |
| Heavy Trucks:                            | 71.0            | 70            |           | 64.2       |         | 64.9                 |          | 72.3         |          | 72.     |
| Vehicle Noise:                           | 73.6            | 72            | .7        | 67.5       |         | 67.0                 | )        | 74.6         | 6        | 74.     |
| Centerline Distance                      | to Noise Conte  | our (in feet) |           |            |         |                      |          |              |          |         |
|                                          |                 |               |           | '0 dBA     | 65      | dBA                  | 6        | 60 dBA       |          | dBA     |
|                                          |                 | Ld<br>CNE     |           | 223<br>231 |         | 481                  |          | 1,035        |          | 2,231   |
|                                          |                 |               |           |            |         | 497                  |          | 1.072        |          | 2.309   |

Thursday, July 27, 2023

|                              | -KD-//     | '-108 HIGH\   | WAY          | NOISE   | PREDIC     |            |         |        |             |          |          |
|------------------------------|------------|---------------|--------------|---------|------------|------------|---------|--------|-------------|----------|----------|
| Scenario: HY                 |            |               |              |         |            |            |         |        | Valley Corr | merce (  | 2        |
| Road Name: Cajalco           |            |               |              |         |            | Job Nu     | mber: 1 | 5091   |             |          |          |
| Road Segment: e/o Sea        | ton Av.    |               |              |         |            |            |         |        |             |          |          |
| SITE SPECIFIC                | INPU       | T DATA        |              |         |            |            |         |        |             | S        |          |
| Highway Data                 |            |               |              |         | Site Con   | ditions (l |         |        | ,           |          |          |
| Average Daily Traffic (Adt   |            | 968 vehicle   | s            |         |            |            |         | utos:  |             |          |          |
| Peak Hour Percentage         |            | .10%          |              |         |            | dium True  |         |        |             |          |          |
| Peak Hour Volume             | e: 3,0     | 75 vehicles   |              |         | Hea        | avy Truck  | (3+ A   | xles): | 15          |          |          |
| Vehicle Speed                |            | 55 mph        |              | F       | Vehicle N  | lix        |         |        |             |          |          |
| Near/Far Lane Distance       | e: 1       | 02 feet       |              | -       |            | cleType    | l       | Day    | Evening     | Night    | Daily    |
| Site Data                    |            |               |              |         |            | A          | utos:   | 76.6%  | 8.9%        | 14.5%    | 86.56    |
| Barrier Heigh                | <i>t</i> . | 0.0 feet      |              |         | Me         | dium Tru   | icks: 8 | 33.3%  | 4.6%        | 12.1%    | 7.109    |
| Barrier Type (0-Wall, 1-Berm |            | 0.0           |              |         | H          | leavy Tru  | icks:   | 76.9%  | 5.2%        | 17.9%    | 6.34     |
| Centerline Dist. to Barrie   | r: 1'      | 10.0 feet     |              | -       | Noise So   | urce Ele   | vations | (in fi | eet)        |          |          |
| Centerline Dist. to Observe  | r: 1'      | 10.0 feet     |              | -       |            | Autos      |         |        | ,           |          |          |
| Barrier Distance to Observe  | r:         | 0.0 feet      |              |         | Mediur     | n Trucks:  | 0.0     |        |             |          |          |
| Observer Height (Above Pad   | ):         | 5.0 feet      |              |         |            | y Trucks:  |         |        | Grade Ad    | iustment | 0.0      |
| Pad Elevation                | n:         | 0.0 feet      |              |         |            |            |         | -      |             |          |          |
| Road Elevation               | 1:         | 0.0 feet      |              |         | Lane Equ   |            |         |        | feet)       |          |          |
| Road Grade                   | e: 0       | .0%           |              |         |            | Autos:     |         | 91     |             |          |          |
| Left Viev                    | V9         | 0.0 degree    | s            |         | Mediur     | n Trucks:  | 97.5    | 00     |             |          |          |
| Right View                   | V: 9       | 90.0 degree   | s            |         | Heav       | y Trucks:  | 97.5    | 09     |             |          |          |
| FHWA Noise Model Calculat    | ions       |               |              |         |            |            |         |        |             |          |          |
| VehicleType REMEL            | Tr         | affic Flow    | Dis          | tance   | Finite     | Road       | Fresne  | e/     | Barrier Att | en Bei   | rm Atter |
| Autos: 71                    | .78        | 1.54          |              | -4.4    | 6          | -1.20      | -       | 4.78   | 0.0         | 000      | 0.00     |
| Medium Trucks: 82            | .40        | -9.32         |              | -4.4    | 15         | -1.20      | -       | 4.88   | 0.0         | 000      | 0.00     |
| Heavy Trucks: 86             | .40        | -9.81         |              | -4.4    | 15         | -1.20      | -       | 5.14   | 0.0         | 000      | 0.00     |
| Unmitigated Noise Levels (w  | rithout    | Topo and b    | oarrie       | r atter | nuation)   |            |         |        |             |          |          |
| VehicleType Leq Peak         |            | Leq Day       |              | Leq E   | vening     | Leq N      | light   |        | Ldn         |          | NEL      |
| Autos:                       | 67.7       |               | 6.6          |         | 63.3       |            | 60.6    |        | 68.4        |          | 68       |
| Medium Trucks:               | 67.4       |               | 6.8          |         | 60.2       |            | 59.6    |        | 67.7        |          | 67       |
| Heavy Trucks:                | 70.9       | 6             | 69.9         |         | 64.2       |            | 64.8    |        | 72.2        |          | 72       |
| Vehicle Noise:               | 73.8       | 7             | 2.8          |         | 67.6       |            | 67.1    |        | 74.7        | 7        | 74       |
| Centerline Distance to Noise | Conto      | our (in feet) |              |         |            |            |         |        |             |          |          |
|                              |            |               | ſ            | 70      | dBA        | 65 d       | BA      | (      | 60 dBA      |          | dBA      |
|                              |            |               |              |         |            |            |         |        |             |          |          |
|                              |            |               | .dn:<br>IEL: |         | 226<br>234 |            | 488     |        | 1,051       |          | 2,26     |

|                                      | FHWA-RD       | 0-77-108 HIGH   | WAY NO | DISE  | PREDIC                                                    | TION       | NODEL (    | 9/12/20    | 021)         |         |         |  |  |
|--------------------------------------|---------------|-----------------|--------|-------|-----------------------------------------------------------|------------|------------|------------|--------------|---------|---------|--|--|
| Scenario<br>Road Name<br>Road Segmen | : Cajalco Rd. |                 |        |       | Project Name: Mead Valley Commerce C<br>Job Number: 15091 |            |            |            |              |         |         |  |  |
| SITE S                               | PECIFIC IN    | IPUT DATA       |        |       |                                                           |            |            |            | L INPUT      | 5       |         |  |  |
| Highway Data                         |               |                 |        | 5     | Site Cond                                                 | ditions    | (Hard =    | 10, Sc     | oft = 15)    |         |         |  |  |
| Average Daily 1                      | raffic (Adt): | 39,727 vehicle  | es     |       |                                                           |            | ,          | Autos:     | 15           |         |         |  |  |
| Peak Hour I                          | Percentage:   | 8.10%           |        |       | Med                                                       | dium Ti    | rucks (2 A | (xles)     | 15           |         |         |  |  |
| Peak Ho                              | our Volume:   | 3,218 vehicle   | 5      |       | Hea                                                       | avy Tru    | icks (3+ A | (xles)     | 15           |         |         |  |  |
| Veh                                  | icle Speed:   | 55 mph          |        | 1     | Vehicle N                                                 | <i>lix</i> |            |            |              |         |         |  |  |
| Near/Far Lar                         | e Distance:   | 102 feet        |        | F     |                                                           | cleTyp     | e          | Day        | Evening      | Night   | Daily   |  |  |
| Site Data                            |               |                 |        |       |                                                           |            |            | 76.6%      |              | 14.5%   |         |  |  |
| Bar                                  | rier Heiaht:  | 0.0 feet        |        |       | Me                                                        | edium 1    | rucks:     | 83.3%      | 4.6%         | 12.1%   | 6.849   |  |  |
| Barrier Type (0-Wa                   |               | 0.0             |        |       | H                                                         | leavy T    | rucks:     | 76.9%      | 5.2%         | 17.9%   | 6.66%   |  |  |
| Centerline Dis                       | . ,           | 110.0 feet      |        |       |                                                           |            |            | . (in f.   | 41           |         |         |  |  |
| Centerline Dist. t                   | o Observer:   | 110.0 feet      |        |       | Noise So                                                  |            |            |            | eet)         |         |         |  |  |
| Barrier Distance t                   | o Observer:   | 0.0 feet        |        |       | Mediun                                                    | Auto       |            | 000<br>297 |              |         |         |  |  |
| Observer Height (/                   | Above Pad):   | 5.0 feet        |        |       |                                                           |            |            | 297        | Grade Adj    | ustment | 0.0     |  |  |
| Pa                                   | d Elevation:  | 0.0 feet        |        |       | Heav                                                      | y Truck    | (S: 8.0    | JU4        | Graue Auj    | usimeni | 0.0     |  |  |
| Roa                                  | d Elevation:  | 0.0 feet        |        | L     | Lane Equ                                                  | ıivalen    | t Distanc  | e (in i    | feet)        |         |         |  |  |
| F                                    | oad Grade:    | 0.0%            |        |       |                                                           | Auto       | os: 97.    | 591        |              |         |         |  |  |
|                                      | Left View:    | -90.0 degree    | es     |       | Mediun                                                    |            |            | 500        |              |         |         |  |  |
|                                      | Right View:   | 90.0 degre      | es     |       | Heav                                                      | y Truck    | (s: 97.    | 509        |              |         |         |  |  |
| FHWA Noise Mode                      |               | -               |        |       |                                                           |            |            |            |              |         |         |  |  |
| VehicleType                          | REMEL         | Traffic Flow    | Distai |       | Finite                                                    |            | Fresn      | -          | Barrier Atte |         | m Atten |  |  |
| Autos:                               | 71.78         | 1.74            |        | -4.46 | -                                                         | -1.20      |            | -4.78      | 0.0          |         | 0.00    |  |  |
| Medium Trucks:                       | 82.40         | -9.28           |        | -4.4  | -                                                         | -1.20      |            | -4.88      | 0.0          |         | 0.00    |  |  |
| Heavy Trucks:                        | 86.40         | -9.40           |        | -4.45 | -                                                         | -1.20      |            | -5.14      | 0.0          | 100     | 0.00    |  |  |
| Unmitigated Noise                    |               |                 |        |       |                                                           |            |            |            |              |         |         |  |  |
|                                      | Leq Peak Hou  |                 |        | eq Ev | vening                                                    | Leq        | Night      |            | Ldn          |         | VEL     |  |  |
| Autos:                               | 67            |                 | 66.8   |       | 63.5                                                      |            | 60.8       |            | 68.6         |         | 68.     |  |  |
| Medium Trucks:                       | 67            |                 | 66.8   |       | 60.3                                                      |            | 59.7       |            | 67.8         |         | 68.     |  |  |
| Heavy Trucks:<br>Vehicle Noise:      | 71            | -               | 70.3   |       | 64.6                                                      |            | 65.3       |            | 72.6         |         | 72.     |  |  |
| venicie ivoise:                      | 74            | .0              | 73.1   |       | 67.9                                                      |            | 67.4       | •          | 75.0         | 1       | 75.     |  |  |
| Centerline Distance                  | e to Noise Co | ontour (in feet | )      |       |                                                           |            |            | _          |              |         |         |  |  |
|                                      |               |                 |        | 70 a  |                                                           | 65         | dBA        | 6          | 60 dBA       | 55      | dBA     |  |  |
|                                      |               |                 | Ldn:   |       | 237                                                       |            | 510        |            | 1,099        |         | 2,367   |  |  |
|                                      |               | C               | NEL:   |       | 245                                                       |            | 528        |            | 1,137        |         | 2,450   |  |  |

| FI                                                 | HWA-RD   | -77-108 HIGH    | WAY N | IOISE  | PREDIC    | TION M     | ODEL (9             | )/12/20 | 021)         |           |         |
|----------------------------------------------------|----------|-----------------|-------|--------|-----------|------------|---------------------|---------|--------------|-----------|---------|
| Scenario: E<br>Road Name: Caj<br>Road Segment: e/o |          | v.              |       |        |           |            | Name: N<br>umber: 1 |         | /alley Com   | merce C   | ;       |
| SITE SPEC                                          | IFIC IN  | PUT DATA        |       |        |           |            |                     |         | L INPUTS     | 3         |         |
| Highway Data                                       |          |                 |       | ( v    | Site Con  | ditions    | (Hard =             | 10, So  | ft = 15)     |           |         |
| Average Daily Traffic                              | (Adt):   | 23,947 vehicle  | s     |        |           |            |                     | Autos:  | 15           |           |         |
| Peak Hour Perce                                    | ntage:   | 8.10%           |       |        | Me        | dium Tru   | icks (2 A           | xles):  | 15           |           |         |
| Peak Hour Vo                                       | olume:   | 1,940 vehicles  | ;     |        | He        | avy Truc   | cks (3+ A           | xles):  | 15           |           |         |
| Vehicle S                                          | peed:    | 55 mph          |       |        | Vehicle I | <i>liv</i> |                     |         |              |           |         |
| Near/Far Lane Dis                                  | tance:   | 102 feet        |       | H      |           | cleType    |                     | Dav     | Evening      | Night     | Daily   |
| Site Data                                          |          |                 |       |        | 1011      |            |                     | 76.6%   | •            | 14.5%     |         |
| Barrier H                                          | oiaht:   | 0.0 feet        |       |        | Me        | edium Tr   | ucks:               | 83.3%   | 4.6%         | 12.1%     | 7.10    |
| Barrier Type (0-Wall, 1-L                          |          | 0.0             |       |        | F         | leavy Tr   | ucks:               | 76.9%   | 5.2%         | 17.9%     | 6.34    |
| Centerline Dist. to E                              |          | 110.0 feet      |       | H      |           |            |                     |         |              |           |         |
| Centerline Dist. to Obs                            |          | 110.0 feet      |       | '      | Voise So  |            |                     |         | et)          |           |         |
| Barrier Distance to Obs                            | erver:   | 0.0 feet        |       |        |           | Autos      |                     | 000     |              |           |         |
| Observer Height (Above                             | Pad):    | 5.0 feet        |       |        |           | n Trucks   |                     |         | Grade Adj    | unternant |         |
| Pad Ele                                            | vation:  | 0.0 feet        |       |        | neav      | y Trucks   | s. o.u              | 004     | Grade Auj    | usuneni   | 0.0     |
| Road Ele                                           | vation:  | 0.0 feet        |       | L      | Lane Equ  | ıivalent   | Distanc             | e (in f | 'eet)        |           |         |
| Road (                                             | Grade:   | 0.0%            |       |        |           | Autos      | s: 97.5             | 591     |              |           |         |
| Left                                               | View:    | -90.0 degree    | 'S    |        | Mediur    | n Trucks   | s: 97.5             | 500     |              |           |         |
| Right                                              | View:    | 90.0 degree     | s     |        | Heav      | y Trucks   | s: 97.8             | 509     |              |           |         |
| FHWA Noise Model Cald                              | ulations |                 |       |        |           |            |                     |         |              |           |         |
| VehicleType RE                                     | MEL      | Traffic Flow    | Dista | ance   | Finite    | Road       | Fresn               | el      | Barrier Atte | en Ber    | m Atter |
| Autos:                                             | 71.78    | -0.46           |       | -4.46  | -         | -1.20      |                     | -4.78   | 0.0          |           | 0.00    |
| Medium Trucks:                                     | 82.40    | -11.32          |       | -4.4   | -         | -1.20      |                     | -4.88   | 0.0          |           | 0.00    |
| Heavy Trucks:                                      | 86.40    | -11.81          |       | -4.4   | 5         | -1.20      |                     | -5.14   | 0.0          | 00        | 0.00    |
| Unmitigated Noise Leve                             |          |                 |       |        |           |            |                     |         |              |           |         |
|                                                    | eak Hou  |                 |       | Leg Ev | /ening    | Leq        | Night               |         | Ldn          |           | VEL     |
| Autos:                                             | 65.      | -               | 64.6  |        | 61.3      |            | 58.6                |         | 66.4         |           | 66      |
| Medium Trucks:                                     | 65.      |                 | 64.8  |        | 58.2      |            | 57.6                |         | 65.7         |           | 65      |
| Heavy Trucks:                                      | 68.      |                 | 67.9  |        | 62.2      |            | 62.8                |         | 70.2         |           | 70      |
| Vehicle Noise:                                     | 71.      | 8               | 70.8  |        | 65.6      |            | 65.1                |         | 72.7         |           | 72      |
| Centerline Distance to N                           | loise Co | ntour (in feet) |       | -      |           |            |                     | -       |              |           |         |
|                                                    |          |                 |       | 70 c   |           | 65 (       | dBA                 | 6       | 0 dBA        | 55        | dBA     |
|                                                    |          |                 | Ldn:  |        | 167       |            | 359                 |         | 773          |           | 1,666   |
|                                                    |          | CI              | VEL:  |        | 172       |            | 371                 |         | 800          |           | 1,724   |

| Road Name: Cajalco Rd.     Jo       Road Segment: elo Harvill Av.     Sitte SPECIFIC INPUT DATA       Highway Data     Sitte Condition       Average Daily Traffic (Adl): 25,357 vehicles     Medium       Peak Hour Volume: 2,054 vehicles     Heavy       Vehicle Speed:     55 mph       Vehicle Speed:     102 feet       Sitte Data     Medium       Barrier Height:     0.0 feet       Barrier Type (0-Wall, 1-Berm):     0.0       Centerline Dist. to Diserver:     110.0 feet       Noise Source     Noise Source       Centerline Dist. to Desrver:     110.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOISE<br>Dans (Hard<br>n Trucks (2<br>Trucks (3-1<br>Trucks (3-1<br>Trucks (3-1<br>Trucks)<br>Autos:<br>m Trucks:<br>ry Trucks: | :: 15091           :: MODE           = 10, Si           Autos.           2 Axles).           + Axles).           Day           76.6%           83.3% | EL INPUT:<br>off = 15)<br>15<br>15<br>15<br>Evening<br>& 8.9%<br>& 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Daily<br>86.36% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|
| Highway Data     Site Condition       Average Daily Traffic (Adt):     25,357 vehicles       Peak Hour Percentage:     8.10%       Peak Hour Volume:     2,054 vehicles       Vehicle Speed:     55 mph       Vehicle Speed:     102 feet       Site Data     Wehicle Mix       Barrier Height:     0.0 feet       Barrier Type (0-Wail, 1-Berri):     0.0       Centerline Dist. to Diserver:     110.0 feet       Noise Source:     0.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Trucks (2<br>Trucks (3<br>Type<br>Autos:<br>m Trucks:<br>ry Trucks:                                                           | = 10, S<br>Autos<br>2 Axles).<br>+ Axles).<br>Day<br>76.6%<br>83.3%                                                                                  | oft = 15)           :         15           :         15           :         15           :         15           :         15           :         15           :         15           :         15           :         15           :         15           :         15           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         .           :         . | Night<br>14.5% | 86.36%          |
| Average Daily Traffic (Adt): 25,357 vehicles<br>Peak Hour Percentage: 8.10%<br>Peak Hour Volume: 2,054 vehicles<br>Vehicle Speed: 55 mph<br>Vehicle Mix<br>Vehicle Mix<br>Veh | n Trucks (2<br>Trucks (3+<br>Type<br>Autos:<br>m Trucks:<br>ry Trucks:                                                          | Autos:<br>2 Axles):<br>+ Axles):<br>Day<br>76.6%<br>83.3%                                                                                            | : 15<br>: 15<br>: 15<br>: 15<br><i>Evening</i><br>6 8.9%<br>6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.5%          | 86.36%          |
| Peak Hour Percentage:     8.10%     Medium       Peak Hour Volume:     2.054 vehicles     Heavy       Vehicle Speed:     55 mph     Vehicle Mix       Near/Far Lane Distance:     102 feet     Vehicle Mix       Site Data     Barrier Height:     0.0 feet     Medium       Barrier Height:     0.0 feet     Medium     Medium       Centerline Dist. to Observer:     110.0 feet     Noise Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trucks (3+<br>Type<br>Autos:<br>m Trucks:<br>ry Trucks:                                                                         | 2 Axles).<br>+ Axles).<br>Day<br>76.6%<br>83.3%                                                                                                      | : 15<br>: 15<br><i>Evening</i><br>6 8.9%<br>6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.5%          | 86.36%          |
| Peak Hour Volume:     2,054 vehicles     Heavy       Vehicle Speed:     55 mph     Vehicle Mix       Near/Far Lane Distance:     102 feet     Vehicle T       Site Data     Barrier Height:     0.0 feet     Mediur       Barrier Type (0-Wail, 1-Berri):     0.0     Heavy       Centerline Dist. to Dserver:     110.0 feet     Noise Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trucks (3+<br>Type<br>Autos:<br>m Trucks:<br>ry Trucks:                                                                         | + Axles).<br>Day<br>76.6%<br>83.3%                                                                                                                   | Evening<br>8.9%<br>4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.5%          | 86.36%          |
| Vehicle Speed: 55 mph<br>Near/Far Lane Distance: 102 feet<br>Vehicle MX<br>Vehicle T<br>Site Data<br>Barrier Height: 0.0 feet<br>Barrier Type (0-Wall, 1-Berm): 0.0<br>Centerline Dist. to Barrier: 110.0 feet<br>Noise Source:<br>Centerline Dist. to Observer: 110.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Type<br>Autos:<br>m Trucks:<br>ry Trucks:                                                                                       | Day<br>76.6%<br>83.3%                                                                                                                                | Evening<br>6 8.9%<br>6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.5%          | 86.36%          |
| Bear/Far Lane Distance:         102 feet         Venicle Mix           Site Data         Venice         Wedium           Barrier Height:         0.0 feet         Medium           Barrier Type (0-Wail, 1-Berrn):         0.0         Noise Source           Centerline Dist. to Barrier:         110.0 feet         Noise Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Autos:<br>m Trucks:<br>vy Trucks:                                                                                               | 76.6%<br>83.3%                                                                                                                                       | 6 8.9%<br>6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.5%          | 86.36%          |
| Barrier Height:         0.0 feet         Mediur           Barrier Type (0-Wail, 1-Berri):         0.0         Heav           Centerline Dist. to Barrier:         110.0 feet         Noise Source           Centerline Dist. to Observer:         110.0 feet         Noise Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Autos:<br>m Trucks:<br>vy Trucks:                                                                                               | 76.6%<br>83.3%                                                                                                                                       | 6 8.9%<br>6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.5%          | 86.36%          |
| Barrier Height:         0.0 feet         Medium           Barrier Type (-0-Wall, 1-Berm):         0.0         Heav           Centerline Dist. to Barrier:         110.0 feet         Noise Source           Centerline Dist. to Observer:         110.0 feet         Noise Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Trucks:<br>/y Trucks:                                                                                                         | 83.3%                                                                                                                                                | 6 4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |
| Barrier Type (0-Wall, 1-Bern): 0.0 feet Heav<br>Centerline Dist. to Barrier: 110.0 feet Noise Source<br>Centerline Dist. to Observer: 110.0 feet Average Ave                                                                                                                                                                                                                                                                                                         | y Trucks:                                                                                                                       | 00.07                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.1%          | 6 70%           |
| Centerline Dist. to Observer: 110.0 feet Centerline Dist. to Observer: 110.0 feet A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 | 76.9%                                                                                                                                                | 6 5.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 0.797           |
| Centerline Dist. to Observer: 110.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Elevatio                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.9%          | 6.85%           |
| Centerline Dist. to Observer: 110.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | ns (in f                                                                                                                                             | eet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lutos:                                                                                                                          | 0.000                                                                                                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                 |
| Barrier Distance to Observer: 0.0 feet Medium Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 | 2.297                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
| Observer Height (Above Pad): 5.0 feet Heavy Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ucks:                                                                                                                           | 8.004                                                                                                                                                | Grade Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | justment       | : 0.0           |
| Pad Elevation: 0.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | la má Diada                                                                                                                     |                                                                                                                                                      | f 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |
| Road Elevation: 0.0 feet Lane Equiva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                      | reet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 7.591<br>7.500                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
| Left View: -90.0 degrees Medium Tr<br>Right View: 90.0 degrees Heavy Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 | 7.500                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
| Hight view. 30.0 degrees houry h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.00.0                                                                                                                         | 1.000                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
| FHWA Noise Model Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
| VehicleType REMEL Traffic Flow Distance Finite Roa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 | snel                                                                                                                                                 | Barrier Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | rm Atten        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .20                                                                                                                             | -4.78                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000            | 0.00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .20                                                                                                                             | -4.88                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000            | 0.00            |
| Heavy Trucks: 86.40 -11.23 -4.45 -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .20                                                                                                                             | -5.14                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000            | 0.00            |
| Unmitigated Noise Levels (without Topo and barrier attenuation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Leq Night                                                                                                                       |                                                                                                                                                      | Ldn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | NEL             |
| Autos: 65.9 64.9 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | 3.9                                                                                                                                                  | 66.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 67.             |
| Medium Trucks: 65.5 64.8 58.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | 7.7                                                                                                                                                  | 65.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 66.             |
| Heavy Trucks: 69.5 68.5 62.8<br>Vehicle Noise: 72.1 71.2 66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | 3.4<br>5.5                                                                                                                                           | 70.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 71.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.                                                                                                                              | 5.5                                                                                                                                                  | 73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1              | 15.             |
| Centerline Distance to Noise Contour (in feet) 70 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 dBA                                                                                                                          |                                                                                                                                                      | 60 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | dBA             |
| Ldn: 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 dBA<br>38                                                                                                                    |                                                                                                                                                      | 60 dBA<br>822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ава<br>1.772    |
| CNEL: 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                              |                                                                                                                                                      | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,772           |

Thursday, July 27, 2023

| FHWA-F                         | RD-77-108 HIGHW   | AY NOIS  | E PREDIC   | TION MO    | DEL (9/12/   | 2021)          |             |
|--------------------------------|-------------------|----------|------------|------------|--------------|----------------|-------------|
| Scenario: EAC                  |                   |          |            |            |              | I Valley Comr  | nerce C     |
| Road Name: Cajalco R           |                   |          |            | Job Nu     | nber: 1509   | 1              |             |
| Road Segment: e/o Harvil       | Av.               |          |            |            |              |                |             |
| SITE SPECIFIC I                | NPUT DATA         |          |            |            |              | EL INPUTS      |             |
| Highway Data                   |                   |          | Site Cond  | ditions (H | lard = 10, S |                |             |
| Average Daily Traffic (Adt):   | 50,399 vehicles   |          |            |            | Autos        |                |             |
| Peak Hour Percentage:          | 8.10%             |          |            |            | ks (2 Axles  | · ·            |             |
| Peak Hour Volume:              | 4,082 vehicles    |          | Hea        | avy Truck  | s (3+ Axles  | ): 15          |             |
| Vehicle Speed:                 | 55 mph            |          | Vehicle N  | lix        |              |                |             |
| Near/Far Lane Distance:        | 102 feet          |          | Vehi       | cleType    | Day          | Evening        | Night Daily |
| Site Data                      |                   |          |            | Au         | tos: 76.6    | % 8.9%         | 14.5% 86.56 |
| Barrier Height:                | 0.0 feet          |          | Me         | dium Tru   | cks: 83.3    | % 4.6%         | 12.1% 7.109 |
| Barrier Type (0-Wall, 1-Berm): | 0.0               |          | h          | leavy Tru  | cks: 76.9    | % 5.2%         | 17.9% 6.34  |
| Centerline Dist. to Barrier:   | 110.0 feet        |          | Noise So   | urce Elev  | ations (in   | feet)          |             |
| Centerline Dist. to Observer:  | 110.0 feet        |          |            | Autos:     | 0.000        |                |             |
| Barrier Distance to Observer:  | 0.0 feet          |          | Mediun     | n Trucks:  | 2.297        |                |             |
| Observer Height (Above Pad):   | 5.0 feet          |          |            | v Trucks:  | 8.004        | Grade Adiu     | stment: 0.0 |
| Pad Elevation:                 | 0.0 feet          |          |            |            |              |                |             |
| Road Elevation:                | 0.0 feet          |          | Lane Equ   |            | Distance (in | n feet)        |             |
| Road Grade:                    | 0.0%              |          |            | Autos:     | 97.591       |                |             |
| Left View:                     | -90.0 degrees     |          |            | n Trucks:  | 97.500       |                |             |
| Right View:                    | 90.0 degrees      |          | Heav       | y Trucks:  | 97.509       |                |             |
| FHWA Noise Model Calculatio    | ns                |          |            |            |              |                |             |
| VehicleType REMEL              |                   | Distance |            |            | Fresnel      | Barrier Atte   |             |
| Autos: 71.7                    |                   | -4.      |            | -1.20      | -4.78        |                |             |
| Medium Trucks: 82.4            |                   | -4.      |            | -1.20      | -4.88        |                |             |
| Heavy Trucks: 86.4             | 0 -8.58           | -4.      | .45        | -1.20      | -5.14        | 4 0.00         | 00.00       |
| Unmitigated Noise Levels (wit  |                   |          |            |            |              |                |             |
| VehicleType Leq Peak Ho        |                   |          | Evening    | Leq N      |              | Ldn            | CNEL        |
|                                | 8.9 67            |          | 64.5       |            | 61.9         | 69.6           | 70.         |
|                                |                   | 3.0      | 61.4       |            | 60.9         | 69.0           | 69.         |
|                                |                   | 1.1      | 65.4       |            | 66.1         | 73.4           | 73.         |
|                                |                   | 1.1      | 68.9       |            | 68.3         | 75.9           | 76.         |
| Centerline Distance to Noise ( | Contour (in feet) |          |            |            | 1            |                |             |
|                                |                   | 70       | ) dBA      | 65 dE      | BA           | 60 dBA         | 55 dBA      |
|                                |                   |          |            |            |              |                |             |
|                                | La<br>CNE         | in:      | 274<br>283 |            | 589<br>610   | 1,270<br>1,314 | 2,73        |

| FHV                                                       | VA-RD      | -77-108 HIGHV   | /AY N      | IOISE | PREDIC       | TION MO              | DEL (9/ <sup>.</sup> | 12/202  | 1)           |         |            |
|-----------------------------------------------------------|------------|-----------------|------------|-------|--------------|----------------------|----------------------|---------|--------------|---------|------------|
| Scenario: EAC+<br>Road Name: Cajal<br>Road Segment: e/o H | co Rd.     | v.              |            |       |              | Project N<br>Job Nui | lame: Me<br>mber: 15 |         | lley Com     | merce C | ;          |
| SITE SPECIF                                               | IC IN      | PUT DATA        |            |       |              |                      |                      |         | INPUTS       | 5       |            |
| Highway Data                                              |            |                 |            |       | Site Con     | ditions (H           |                      |         | ,            |         |            |
| Average Daily Traffic (A                                  |            | 51,810 vehicles |            |       |              |                      |                      | itos:   | 15           |         |            |
| Peak Hour Percente                                        |            | 8.10%           |            |       |              | dium Truc            |                      | /       | 15           |         |            |
| Peak Hour Volu                                            |            | 4,197 vehicles  |            |       | Hei          | avy Truck            | s (3+ Ax             | les):   | 15           |         |            |
| Vehicle Spe                                               |            | 55 mph          |            |       | Vehicle N    | lix                  |                      |         |              |         |            |
| Near/Far Lane Dista                                       | nce:       | 102 feet        |            | Ē     | Vehi         | cleType              | D                    | ay E    | vening       | Night   | Daily      |
| Site Data                                                 |            |                 |            |       |              | Au                   | itos: 76             | 6.6%    | 8.9%         | 14.5%   | 86.46%     |
| Barrier Hei                                               | aht:       | 0.0 feet        |            |       | Me           | dium Tru             | cks: 8               | 3.3%    | 4.6%         | 12.1%   | 6.95%      |
| Barrier Type (0-Wall, 1-Be                                |            | 0.0             |            |       | F            | leavy Tru            | cks: 76              | 6.9%    | 5.2%         | 17.9%   | 6.59%      |
| Centerline Dist. to Bar                                   | rier:      | 110.0 feet      |            | H     | Noise So     | urco Elos            | vations              | (in foo | 6            |         |            |
| Centerline Dist. to Obser                                 | ver:       | 110.0 feet      |            | Ľ     | 140/36 30    | Autos:               |                      |         | 9            |         |            |
| Barrier Distance to Obser                                 | ver:       | 0.0 feet        |            |       | Mediur       | n Trucks:            | 0.00                 |         |              |         |            |
| Observer Height (Above P                                  | ad):       | 5.0 feet        |            |       |              | v Trucks:            |                      |         | rade Adj     | istment | 0.0        |
| Pad Eleva                                                 |            | 0.0 feet        |            |       |              |                      |                      |         |              |         |            |
| Road Eleva                                                | tion:      | 0.0 feet        |            | 1     | Lane Equ     |                      |                      |         | et)          |         |            |
| Road Gr                                                   |            | 0.0%            |            |       |              | Autos:               |                      |         |              |         |            |
| Left V                                                    |            | -90.0 degrees   |            |       |              | n Trucks:            |                      |         |              |         |            |
| Right V                                                   | iew:       | 90.0 degrees    |            |       | Heav         | y Trucks:            | 97.50                | 9       |              |         |            |
| FHWA Noise Model Calcu                                    |            |                 |            |       |              |                      |                      |         |              |         |            |
| VehicleType REM                                           |            | Traffic Flow    | Dista      |       | Finite       |                      | Fresnel              |         | arrier Atte  |         | m Atten    |
|                                                           | 71.78      | 2.89            |            | -4.4  | -            | -1.20                |                      | 1.78    | 0.0          |         | 0.00       |
|                                                           | 82.40      | -8.06           |            | -4.4  | -            | -1.20                |                      | 1.88    | 0.0          |         | 0.00       |
| Heavy Trucks:                                             | 86.40      | -8.29           |            | -4.4  | 5            | -1.20                | -5                   | 5.14    | 0.0          | 00      | 0.00       |
| Unmitigated Noise Levels                                  |            |                 | -          |       |              |                      |                      |         |              |         |            |
| VehicleType Leq Pea                                       |            |                 |            | Leq E | vening       | Leq N                | •                    | L       | dn           |         | VEL        |
| Autos:                                                    | 69.        |                 | B.O        |       | 64.6         |                      | 62.0                 |         | 69.7         |         | 70.        |
| Medium Trucks:                                            | 68.<br>72. |                 | 8.0<br>1.4 |       | 61.5<br>65.7 |                      | 60.9<br>66.4         |         | 69.0<br>73.7 |         | 69.<br>73. |
| Heavy Trucks:<br>Vehicle Noise:                           | 72.        | -               | 4.2        |       | 69.1         |                      | 68.5                 |         | 76.1         |         | 73.        |
|                                                           |            |                 | +.2        |       | 09.1         |                      | 00.0                 |         | 10.1         |         | 10.        |
| Centerline Distance to No.                                | ise Co     | ntour (in feet) |            | 70    | dBA          | 65 dE                | 84                   | 60      | dBA          | 55      | dBA        |
|                                                           |            | ,               | dn:        | ,01   | 282          | 00 01                | 607                  | 00      | 1.308        | 55      | 2.819      |
|                                                           |            | CN              |            |       | 202          |                      | 629                  |         | 1,354        |         | 2,018      |
|                                                           |            | 0/1             |            |       | 252          |                      | 020                  |         | .,004        |         | 2,010      |

|                                                                                                 | FHWA-RD                                              | 0-77-108 HIGH                                                         | WAY NC                               | DISE P           | REDICT                                         | ION M   | ODEL (9/12                            | 2/2021)                                |          |                                     |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|------------------|------------------------------------------------|---------|---------------------------------------|----------------------------------------|----------|-------------------------------------|
| Scenari<br>Road Nam<br>Road Segmer                                                              | e: Cajalco Rd                                        |                                                                       |                                      |                  |                                                |         | Name: Mea<br>umber: 150               | ad Valley Com<br>91                    | merce C  |                                     |
| SITE                                                                                            | SPECIFIC IN                                          | IPUT DATA                                                             |                                      |                  |                                                |         |                                       | DEL INPUTS                             | 3        |                                     |
| Highway Data                                                                                    |                                                      |                                                                       |                                      | Si               | te Condi                                       | tions ( | 'Hard = 10,                           | Soft = 15)                             |          |                                     |
| Average Daily                                                                                   | Traffic (Adt):                                       | 55,439 vehicle                                                        | es                                   |                  |                                                |         | Aut                                   | os: 15                                 |          |                                     |
| Peak Hour                                                                                       | Percentage:                                          | 8.10%                                                                 |                                      |                  | Medi                                           | um Tru  | icks (2 Axle                          | s): 15                                 |          |                                     |
| Peak H                                                                                          | our Volume:                                          | 4,491 vehicle                                                         | s                                    |                  | Heav                                           | y Truc  | ks (3+ Axle                           | s): 15                                 |          |                                     |
| Ve                                                                                              | hicle Speed:                                         | 55 mph                                                                |                                      | Ve               | hicle Mi                                       | x       |                                       |                                        |          |                                     |
| Near/Far Lar                                                                                    | ne Distance:                                         | 102 feet                                                              |                                      | -                |                                                | eType   | Da                                    | / Evening                              | Night    | Daily                               |
| Site Data                                                                                       |                                                      |                                                                       |                                      |                  |                                                |         | utos: 76.                             | •                                      | 14.5%    | 86.56%                              |
| Bar                                                                                             | rier Height:                                         | 0.0 feet                                                              |                                      |                  | Med                                            | lium Tr | ucks: 83.                             | 3% 4.6%                                | 12.1%    | 7.10%                               |
| Barrier Type (0-W                                                                               | •                                                    | 0.0                                                                   |                                      |                  | He                                             | avy Tr  | ucks: 76.                             | 9% 5.2%                                | 17.9%    | 6.34%                               |
| Centerline Dis                                                                                  | . ,                                                  | 110.0 feet                                                            |                                      |                  |                                                |         | evations (ii                          | - f 41                                 |          |                                     |
| Centerline Dist.                                                                                | to Observer:                                         | 110.0 feet                                                            |                                      | /\\C             | lise Sou                                       | Autos   |                                       |                                        |          |                                     |
| Barrier Distance                                                                                | to Observer:                                         | 0.0 feet                                                              |                                      |                  | Medium                                         |         |                                       |                                        |          |                                     |
| Observer Height (                                                                               | Above Pad):                                          | 5.0 feet                                                              |                                      |                  | Heavy                                          |         |                                       |                                        | ustment  | 0.0                                 |
| Pa                                                                                              | d Elevation:                                         | 0.0 feet                                                              |                                      |                  | neavy                                          | TTUCKS  | . 0.004                               | Orade Auj                              | usunoni. | 0.0                                 |
| Roa                                                                                             | d Elevation:                                         | 0.0 feet                                                              |                                      | La               | ne Equi                                        | valent  | Distance (                            | in feet)                               |          |                                     |
| F                                                                                               | Road Grade:                                          | 0.0%                                                                  |                                      |                  |                                                | Autos   |                                       |                                        |          |                                     |
|                                                                                                 | Left View:                                           | -90.0 degre                                                           | es                                   |                  | Medium                                         | Trucks  |                                       |                                        |          |                                     |
|                                                                                                 | Right View:                                          | 90.0 degre                                                            | es                                   |                  | Heavy                                          | Trucks  | 97.509                                |                                        |          |                                     |
| FHWA Noise Mode                                                                                 | l Calculation                                        | s                                                                     |                                      |                  |                                                |         |                                       |                                        |          |                                     |
| VehicleType                                                                                     | REMEL                                                | Traffic Flow                                                          | Distan                               | се               | Finite R                                       | oad     | Fresnel                               | Barrier Atte                           | en Berr  | n Atten                             |
| Autos:                                                                                          | 71.78                                                | 3.19                                                                  |                                      | -4.46            |                                                | -1.20   | -4.                                   | 78 0.0                                 | 00       | 0.000                               |
| Medium Trucks:                                                                                  | 82.40                                                | -7.68                                                                 |                                      | -4.45            |                                                | -1.20   | -4.6                                  | 38 0.0                                 | 00       | 0.000                               |
|                                                                                                 |                                                      | -8.17                                                                 |                                      | -4.45            |                                                | -1.20   | -5                                    | 14 0.0                                 | 00       | 0.000                               |
| Heavy Trucks:                                                                                   | 86.40                                                | -0.17                                                                 |                                      |                  |                                                | 1.20    | -0.                                   |                                        |          |                                     |
|                                                                                                 |                                                      |                                                                       | barrier a                            | ttenua           |                                                | 1.20    | -0.                                   |                                        |          |                                     |
| Unmitigated Noise                                                                               |                                                      | out Topo and                                                          |                                      | ttenua<br>eq Eve | ation)                                         | Leq I   |                                       | Ldn                                    | CN       | IEL                                 |
| Unmitigated Noise<br>VehicleType<br>Autos:                                                      | Levels (with<br>Leq Peak Hou<br>69                   | out Topo and<br>Ir Leq Day<br>.3                                      | / Le                                 |                  | ning<br>64.9                                   |         | Vight<br>62.3                         | 70.0                                   | )        | 70.4                                |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:                                    | Levels (with<br>Leq Peak Hou<br>69                   | out Topo and<br>r Leq Day<br>.3                                       | 68.3<br>68.4                         |                  | ning<br>64.9<br>61.9                           |         | Vight<br>62.3<br>61.3                 | 70.0                                   |          | 70.4<br>69.6                        |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | Levels (with<br>Leq Peak Hou<br>69<br>69<br>72       | out Topo and<br>r Leq Day<br>.3<br>.1<br>.6                           | / Le<br>68.3<br>68.4<br>71.6         |                  | ation)<br>ning<br>64.9<br>61.9<br>65.9         |         | Vight<br>62.3<br>61.3<br>66.5         | 70.0<br>69.4<br>73.9                   | )<br>    | 70.4<br>69.6<br>74.0                |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:                                    | Levels (with<br>Leq Peak Hou<br>69                   | out Topo and<br>r Leq Day<br>.3<br>.1<br>.6                           | 68.3<br>68.4                         |                  | ning<br>64.9<br>61.9                           |         | Vight<br>62.3<br>61.3                 | 70.0                                   | )<br>    | 70.4<br>69.6<br>74.0                |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:                   | Levels (with<br>Leq Peak Hou<br>69<br>69<br>72<br>75 | out Topo and<br>r Leq Day<br>.3<br>.1<br>.6<br>.4                     | 68.3<br>68.4<br>71.6<br>74.5         | eq Eve           | ation)<br>ning<br>64.9<br>61.9<br>65.9<br>69.3 | Leq I   | Vight<br>62.3<br>61.3<br>66.5<br>68.7 | 70.0<br>69.4<br>73.9<br>76.3           | )<br>    | 70.4<br>69.6<br>74.0<br>76.6        |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | Levels (with<br>Leq Peak Hou<br>69<br>69<br>72<br>75 | out Topo and<br>r Leq Day<br>.3<br>.1<br>.6<br>.4                     | / Le<br>68.3<br>68.4<br>71.6<br>74.5 |                  | ation)<br>ning<br>64.9<br>61.9<br>65.9<br>69.3 |         | Vight 62.3<br>61.3<br>66.5<br>68.7    | 70.0<br>69.4<br>73.9<br>76.3<br>60 dBA | )<br>    | 70.4<br>69.6<br>74.0<br>76.6<br>dBA |
| Unmitigated Noise<br>VehicleType<br>Autos:<br>Medium Trucks:<br>Heavy Trucks:<br>Vehicle Noise: | Levels (with<br>Leq Peak Hou<br>69<br>69<br>72<br>75 | Dut Topo and<br>r Leq Day<br>.3<br>.1<br>.6<br>.4<br>Dontour (in feet | 68.3<br>68.4<br>71.6<br>74.5         | eq Eve           | ation)<br>ning<br>64.9<br>61.9<br>65.9<br>69.3 | Leq I   | Vight<br>62.3<br>61.3<br>66.5<br>68.7 | 70.0<br>69.4<br>73.9<br>76.3           | )<br>    | 70.4<br>69.6<br>74.0<br>76.6        |

| F                                                 | HWA-RD-77   | 7-108 HIGHWA  | Y NOISE | E PREDIC  | TION MO              | DEL (9   | /12/20  | 21)          |          |         |
|---------------------------------------------------|-------------|---------------|---------|-----------|----------------------|----------|---------|--------------|----------|---------|
| Scenario: H`<br>Road Name: Ca<br>Road Segment: e/ | ajalco Rd.  |               |         |           | Project N<br>Job Nui |          |         | alley Com    | imerce C | :       |
| SITE SPE                                          | CIFIC INPU  | IT DATA       |         |           |                      |          |         |              | 5        |         |
| Highway Data                                      |             |               |         | Site Con  | ditions (H           | lard = 1 | 0, So   | ft = 15)     |          |         |
| Average Daily Traffi                              | c (Adt): 56 | 850 vehicles  |         |           |                      | A        | utos:   | 15           |          |         |
| Peak Hour Perce                                   | entage: 8   | .10%          |         | Mee       | dium Truc            | ks (2 A  | kles):  | 15           |          |         |
| Peak Hour V                                       | olume: 4,6  | 05 vehicles   |         | Hei       | avy Truck            | s (3+ A  | kles):  | 15           |          |         |
| Vehicle                                           | Speed:      | 55 mph        | F       | Vehicle N | <i>lix</i>           |          |         |              |          |         |
| Near/Far Lane Di                                  | stance: 1   | 102 feet      | ŀ       |           | cleType              | [        | Dav     | Evening      | Night    | Daily   |
| Site Data                                         |             |               |         |           |                      | tos: 7   | 6.6%    | 8.9%         | 14.5%    |         |
| Barrier I                                         | loiaht.     | 0.0 feet      |         | Me        | edium Tru            | cks: 8   | 3.3%    | 4.6%         | 12.1%    | 6.96%   |
| Barrier Type (0-Wall, 1-                          |             | 0.0           |         | F         | leavy Tru            | cks: 7   | 6.9%    | 5.2%         | 17.9%    | 6.579   |
| Centerline Dist. to                               | ,           | 10.0 feet     | -       | Noise So  | urae Ela             | otiona   | lin fo  | of)          |          |         |
| Centerline Dist. to Ob                            | server: 1   | 10.0 feet     | -       | Noise 30  | Autos:               | 0.0      |         | el)          |          |         |
| Barrier Distance to Ob                            | server:     | 0.0 feet      |         | Modiur    | n Trucks:            | 2.2      |         |              |          |         |
| Observer Height (Abov                             | e Pad):     | 5.0 feet      |         |           | y Trucks:            | 8.0      |         | Grade Ad     | iustment | 0.0     |
| Pad Ele                                           | evation:    | 0.0 feet      |         | Tieav     | y mucks.             | 0.0      | 04      | onduc Adj    | usunoni  | 0.0     |
| Road Ele                                          | evation:    | 0.0 feet      |         | Lane Equ  | ivalent D            | )istanc  | e (in f | eet)         |          |         |
| Road                                              | Grade: 0    | .0%           |         |           | Autos:               | 97.5     |         |              |          |         |
|                                                   |             | 90.0 degrees  |         |           | n Trucks:            | 97.5     |         |              |          |         |
| Righ                                              | t View:     | 90.0 degrees  |         | Heav      | y Trucks:            | 97.5     | 09      |              |          |         |
| FHWA Noise Model Cal                              | culations   |               |         |           |                      |          |         |              |          |         |
| VehicleType RE                                    | EMEL Tr     | affic Flow D  | istance | Finite    | Road                 | Fresne   | e/ 1    | Barrier Atte | en Ber   | m Atten |
| Autos:                                            | 71.78       | 3.29          | -4.4    |           | -1.20                |          | 4.78    | 0.0          |          | 0.00    |
| Medium Trucks:                                    | 82.40       | -7.65         | -4.4    |           | -1.20                |          | 4.88    |              | 000      | 0.00    |
| Heavy Trucks:                                     | 86.40       | -7.90         | -4.4    | 45        | -1.20                | -        | 5.14    | 0.0          | 000      | 0.00    |
| Unmitigated Noise Lev                             |             |               |         | ,         |                      |          |         |              |          |         |
|                                                   | Peak Hour   | Leq Day       |         | vening    | Leq N                | •        |         | Ldn          |          | VEL     |
| Autos:                                            | 69.4        | 68.4          |         | 65.0      |                      | 62.4     |         | 70.2         |          | 70.     |
| Medium Trucks:                                    | 69.1        | 68.4          |         | 61.9      |                      | 61.3     |         | 69.4         |          | 69.     |
| Heavy Trucks:                                     | 72.8        | 71.8          |         | 66.1      |                      | 66.7     |         | 74.1         |          | 74.     |
| Vehicle Noise:                                    | 75.6        | 74.6          |         | 69.5      |                      | 68.9     |         | 76.5         | 0        | 76.     |
| Centerline Distance to                            | Noise Conto | our (in feet) | 70      | -10.4     | <b>65 </b> <i>1</i>  |          |         | 0 -10 4      |          | -/0.4   |
|                                                   |             | I da          |         | dBA       | 65 dE                |          | 6       | 0 dBA        |          | dBA     |
|                                                   |             | Ldn:          |         | 300       |                      | 645      |         | 1,391        |          | 2,996   |
|                                                   |             | CNEL:         |         | 310       |                      | 668      |         | 1,439        |          | 3,101   |

APPENDIX 9.1:

# **UNMITIGATED OPERATIONAL NOISE CALCULATIONS**





# 15091 - Mead Valley Commerce Center

CadnaA Noise Prediction Model: 15091-07.cna Date: 14.02.24 Analyst: B. Lawson

### **Calculation Configuration**

| ParameterValueGeneral0.00Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00Partition0.00Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line Sources0nProj. Line Sources0nRef. Time0.00Ref. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0.00Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.00Sore Obj0.01.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Soure Himit (ISO 9613)DEarrier Coefficients C1,2,33.020.0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wink Igseed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)3.0Railways (FTA/FRA)3.0Railways (FTA/FRA)3.0Railways (FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Configurat                           | tion                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Area SourcesOnRef. Time.000Daytime Penalty (dB)5.00Night-time Penalty (dB)10.00DTM.000DTM.000Model of TerrainTriangulationReflection2Search Radius Rcvr100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                            | Value                          |
| Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnProj. Area SourcesOnRef. Time.0.00Daytime Penalty (dB)0.00Night-time Penalty (dB)10.00Night-time Penalty (dB)10.00DTM.000Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionSoure Officients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General                              |                                |
| Min. Dist Src to Rcvr0.00Partition0.00Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTM0.00Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.00Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Error (dB)                      | 0.00                           |
| PartitionDescriptionRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTM5Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Rcvr100.00Min. Distance Source - Rcvr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)Darrier Coefficients C1,2,3Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TNM)Railways (FTA/FRA)Aircraft (???)Interfaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max. Search Radius (#(Unit,LEN))     | 2000.01                        |
| Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)0.00Ref. TimeDaytime Penalty (dB)Daytime Penalty (dB)10.00DTMDTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Src100.00Min. Distance Source - Rcvr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Intel Search (Reflection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min. Dist Src to Rcvr                | 0.00                           |
| Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)0.00Rer. Time Penalty (dB)0.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Jane ObjLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Industri (??)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Partition                            |                                |
| Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Ref. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Raster Factor                        | 0.50                           |
| Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Rovr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionSome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Length of Section (#(Unit,LEN)) | 999.99                         |
| Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Industri (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min. Length of Section (#(Unit,LEN)) | 1.01                           |
| Proj. Area SourcesOnRef. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Length of Section (%)           | 0.00                           |
| Ref. Time0.00Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0Standard Height (m)0.00Model of TerrainTriangulationReflection2search Radius Src100.00Max. Order of Reflection2Search Radius Src100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Rcvr1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)100Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TIM)Railways (FTA/FRA)Aircraft (???)Interaful for Dir (#Complexite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proj. Line Sources                   | On                             |
| Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proj. Area Sources                   | On                             |
| Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2search Radius Src100.00Search Radius Rxvr100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionScreeningIncl. Ground Att. over Barrier<br>Do xwith limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Incl. Ground Att. over Barrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref. Time                            |                                |
| Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Daytime Penalty (dB)                 | 0.00                           |
| DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Max. Distance Source - Revr     1000.00       Min. Distance Source - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     1       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Darrier Coefficients C1,2,3       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: State Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recr. Time Penalty (dB)              | 5.00                           |
| Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       search Radius Src     100.00       Search Radius Rovr     100.00       Max. Distance Source - Revr     1000.00       Min. Distance Source - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction       Screening     Incl. Ground Att. over Barrier       Do st. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dramperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Internet (??)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Night-time Penalty (dB)              | 10.00                          |
| Model of Terrain     Triangulation       Reflection     2       search Radius Src     100.00       Search Radius Rovr     1000.00       Max. Distance Source - Revr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00       Min. Distance Rvcr - Reflector     0.10       Industrial (ISO 9613)     1       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Darrier Coefficients C1,2,3       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)     Railways (FTA/FRA)       Aircraft (???)     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DTM                                  |                                |
| ReflectionEndmax. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Industrial (27?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard Height (m)                  | 0.00                           |
| max. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Rource - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit, SPEED))3.0Roads (TTM)Railways (FTA/FRA)Aircraft (???)International Statement                                                                                                                                                                                                                                                                         | Model of Terrain                     | Triangulation                  |
| Search Radius Src 100.00<br>Search Radius Rcvr 1000.00<br>Max. Distance Source - Rcvr 1000.00 1000.00<br>Min. Distance Source - Reflector 1.00 1.00<br>Industrial (ISO 9613)<br>Lateral Diffraction some Obj<br>Obst. within Area Src do not shield On<br>Screening Incl. Ground Att. over Barrier<br>Dz with limit (20/25)<br>Barrier Coefficients C1,2,3 3.0 20.0 0.0<br>Temperature (#(Unit,TEMP)) 10<br>rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TMM)<br>Railways (FTA/FRA) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reflection                           |                                |
| Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Rvcr - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDzDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Internet and the state of the state o                                                                                                                                                                                                                           | max. Order of Reflection             | 2                              |
| Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Darrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Intercent and the second secon                                                                                                                                                                                                                          | Search Radius Src                    | 100.00                         |
| Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Lateral for Dir (??)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Search Radius Rcvr                   | 100.00                         |
| Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. Distance Source - Rcvr          | 1000.00 1000.00                |
| Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min. Distance Rvcr - Reflector       | 1.00 1.00                      |
| Lateral Diffraction         some Obj           Obst. within Area Src do not shield         On           Screening         Incl. Ground Att. over Barrier           Dz with limit (20/25)           Barrier Coefficients C1,2,3         3.0 20.0 0.0           Temperature (#(Unit,TEMP))         10           rel. Humidity (%)         70           Ground Absorption G         0.50           Wind Speed for Dir. (#(Unit,SPEED))         3.0           Roads (TNM)         Railways (FTA/FRA)           Aircraft (???)         Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Distance Source - Reflector     | 0.10                           |
| Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Intervalue of the second                                                                                      | Industrial (ISO 9613)                |                                |
| Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of Direct (Comparison of Comparison of Compar                                                      | Lateral Diffraction                  | some Obj                       |
| Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of Comparison o                       | Obst. within Area Src do not shield  | On                             |
| Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of the comparison o | Screening                            | Incl. Ground Att. over Barrier |
| Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | Dz with limit (20/25)          |
| rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barrier Coefficients C1,2,3          | 3.0 20.0 0.0                   |
| Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature (#(Unit,TEMP))           | 10                             |
| Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rel. Humidity (%)                    | 70                             |
| Roads (TNM) Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ground Absorption G                  | 0.50                           |
| Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wind Speed for Dir. (#(Unit,SPEED))  | 3.0                            |
| Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roads (TNM)                          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Railways (FTA/FRA)                   |                                |
| Strictly acc. to AzB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aircraft (???)                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strictly acc. to AzB                 |                                |

#### **Receiver Noise Levels**

| М. | ID  |                                                                                           | Level Lr                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nit. Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C          | oordinates |      |
|----|-----|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------|
|    |     | Day                                                                                       | Night                                                                                                                                                                                                                                                                                          | CNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Noise Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Х          | Y          | Z    |
|    |     | (dBA)                                                                                     | (dBA)                                                                                                                                                                                                                                                                                          | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ft)       | (ft)       | (ft) |
|    | R01 | 50.2                                                                                      | 49.7                                                                                                                                                                                                                                                                                           | 56.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252359.12 | 2249964.74 | 5.00 |
|    | R02 | 56.5                                                                                      | 56.5                                                                                                                                                                                                                                                                                           | 63.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6253705.57 | 2249935.66 | 5.00 |
|    | R03 | 54.6                                                                                      | 54.3                                                                                                                                                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6254179.53 | 2248469.51 | 5.00 |
|    | R04 | 57.6                                                                                      | 56.5                                                                                                                                                                                                                                                                                           | 63.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6253307.27 | 2248425.19 | 5.00 |
|    | R05 | 54.8                                                                                      | 47.3                                                                                                                                                                                                                                                                                           | 55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252049.84 | 2248238.08 | 5.00 |
|    | R06 | 52.3                                                                                      | 48.1                                                                                                                                                                                                                                                                                           | 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252729.91 | 2247767.15 | 5.00 |
|    | R07 | 72.5                                                                                      | 49.8                                                                                                                                                                                                                                                                                           | 69.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252258.11 | 2248426.81 | 5.00 |
|    | R08 | 65.0                                                                                      | 55.0                                                                                                                                                                                                                                                                                           | 64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252804.59 | 2248477.27 | 5.00 |
|    | R09 | 63.0                                                                                      | 56.6                                                                                                                                                                                                                                                                                           | 64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6253013.95 | 2248474.05 | 5.00 |
|    | R10 | 58.7                                                                                      | 54.9                                                                                                                                                                                                                                                                                           | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6253150.30 | 2248346.29 | 5.00 |
|    | R11 | 54.5                                                                                      | 51.5                                                                                                                                                                                                                                                                                           | 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6253142.53 | 2248050.05 | 5.00 |
|    | R12 | 56.1                                                                                      | 47.0                                                                                                                                                                                                                                                                                           | 56.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6252302.77 | 2247841.12 | 5.00 |
|    | _   | M. ID<br>R01<br>R01<br>R03<br>R03<br>R04<br>R05<br>R06<br>R07<br>R08<br>R09<br>R10<br>R11 | ID         JD           (dBA)         (dBA)           R01         50.2           R02         56.5           R03         54.6           R04         57.6           R05         54.8           R06         52.3           R08         65.0           R09         63.0           R10         58.7 | M.         ID         Level Lr           M.         Day         Night           (dBA)         (dBA)           R01         50.2         49.7           R02         56.5         56.5           R03         54.6         54.3           R04         57.6         56.5           R05         52.3         48.1           R06         52.3         48.1           R07         72.5         49.8           R08         65.0         55.0           R09         63.0         56.6           R10         58.7         54.9           R11         54.5         51.5 | Day         Night         CNEL           (dBA)         (dBA)         (dBA)           R01         50.2         49.7         56.4           R02         56.5         56.5         63.2           R03         54.6         54.3         61.0           R04         57.6         56.5         63.3           R05         54.8         47.3         55.7           R06         52.3         48.1         55.5           R07         72.5         49.8         69.7           R08         65.0         55.0         64.6           R09         63.0         56.6         64.6           R10         58.7         54.9         62.2           R11         54.5         51.5         58.6 | M.         ID         Level L*         Lin           0         Day         Night         CNEL         Day           (dBA)         (dBA)         (dBA)         (dBA)         (dBA)           R01         50.2         49.7         56.4         55.0           R02         56.5         56.5         63.2         55.0           R03         54.6         54.3         61.0         55.0           R04         57.6         56.5         63.3         55.0           R05         54.8         47.3         55.7         55.0           R06         52.3         48.1         55.5         55.0           R07         72.5         49.8         69.7         55.0           R08         65.0         55.0         64.6         55.0           R09         63.0         56.6         64.6         55.0           R10         58.7         54.9         62.2         55.0           R11         54.5         51.5         58.6         55.0 | M.         ID         Level L         Limit. Vali           M.         Day         Night         CNEL         Day         Night           (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)           R01         50.2         49.7         56.4         55.0         45.0           R02         56.5         56.5         63.2         55.0         45.0           R03         54.6         54.3         61.0         55.0         45.0           R04         57.6         56.5         63.3         55.0         45.0           R05         54.8         47.3         55.7         55.0         45.0           R07         52.5         56.5         63.4         55.0         45.0           R07         52.5         55.0         45.0         45.0           R08         65.0         55.0         55.0         45.0           R08         65.0         55.0         55.0         45.0           R08         65.0         55.0         64.6         55.0         45.0           R09         63.0         56.6         64.6         55.0         45.0           < | M.         ID         Level Lr         Limit. Value           M.         Day         Night         CNEL         Day         Night         CNEL           (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)           R01         50.2         49.7         56.4         55.0         45.0         0.0           R02         56.5         56.5         63.2         55.0         45.0         0.0           R03         54.6         54.3         61.0         55.0         45.0         0.0           R04         57.6         56.5         63.3         55.0         45.0         0.0           R05         54.8         47.3         55.7         55.0         45.0         0.0           R05         52.3         48.1         55.5         55.0         45.0         0.0           R07         72.5         49.8         69.7         55.0         45.0         0.0           R08         65.0         55.0         64.6         55.0         45.0         0.0           R08         65.0         55.0         45.0         0.0         0.0         0.0           < | ID         L=v=l Lr         Limit. Value           Image: Night (dBA)         (Nght (dBA)         (Day (dBA)         (dBA) | M.         ID         Level Lr         Limit. Value         Land           M.         ID         Night         CNEL         Day         Night         CNEL         Type         Auto           (dBA)         (dBA) | M.         ID         Level Lr         Limit. Value         Land Use           M.         ID         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type           (dBA)         (dBA) </td <td>M.         ID         Level Lr         Limit. Value         Land Use         Height           M.         Day         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type         Might         Noise Type         Might         Might         (dBA)         (dBA)</td> <td></td> <td></td> <td></td> | M.         ID         Level Lr         Limit. Value         Land Use         Height           M.         Day         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type         Might         Noise Type         Might         Might         (dBA)         (dBA) |            |            |      |

#### Point Source(s)

| Name        | М. | ID   | R     | esult. PW | 'L    |      | Lw/L  | i     | Op     | erating Ti | me     | Height | : | Co         | oordinates |       |
|-------------|----|------|-------|-----------|-------|------|-------|-------|--------|------------|--------|--------|---|------------|------------|-------|
|             |    |      | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night  |        |   | Х          | Y          | Z     |
|             |    |      | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min)  | (ft)   |   | (ft)       | (ft)       | (ft)  |
| POINTSOURCE |    | AC01 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254189.54 | 2248848.13 | 50.00 |
| POINTSOURCE |    | AC02 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254080.65 | 2248845.54 | 50.00 |
| POINTSOURCE |    | AC03 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254167.50 | 2249453.52 | 50.00 |
| POINTSOURCE |    | AC04 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254067.68 | 2249454.82 | 50.00 |
| POINTSOURCE |    | AC05 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252797.27 | 2248858.50 | 50.00 |
| POINTSOURCE |    | AC06 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252710.42 | 2248863.69 | 50.00 |
| POINTSOURCE |    | AC07 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252810.23 | 2249524.82 | 50.00 |
| POINTSOURCE |    | AC08 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252714.31 | 2249526.12 | 50.00 |

| Name        | M. | ID       | R     | esult. PW | 'L    |      | Lw/L  | i     | Op     | erating Ti | ime    | Height | : | C          | oordinates |      |
|-------------|----|----------|-------|-----------|-------|------|-------|-------|--------|------------|--------|--------|---|------------|------------|------|
|             |    |          | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night  |        |   | х          | Y          | Z    |
|             |    |          | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min)  | (ft)   |   | (ft)       | (ft)       | (ft) |
| POINTSOURCE |    | BBALL01  | 83.7  | 83.7      | 83.7  | Lw   | 83.7  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252354.12 | 2248063.76 | 5.00 |
| POINTSOURCE |    | BBALL02  | 83.7  | 83.7      | 83.7  | Lw   | 83.7  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252353.42 | 2248124.87 | 5.00 |
| POINTSOURCE |    | DOG01    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252235.98 | 2247941.44 | 3.00 |
| POINTSOURCE |    | DOG02    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252312.23 | 2247939.64 | 3.00 |
| POINTSOURCE |    | DOG03    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252372.31 | 2247937.08 | 3.00 |
| POINTSOURCE |    | DOG04    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252325.58 | 2248004.34 | 3.00 |
| POINTSOURCE |    | DOG05    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252232.39 | 2248010.24 | 3.00 |
| POINTSOURCE |    | DOG06    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252416.72 | 2248011.27 | 3.00 |
| POINTSOURCE |    | DOG07    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252332.51 | 2247862.11 | 3.00 |
| POINTSOURCE |    | DOG08    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252236.50 | 2247862.11 | 3.00 |
| POINTSOURCE |    | PA01     | 98.4  | 98.4      | 98.4  | Lw   | 98.4  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252264.48 | 2248066.44 | 5.00 |
| POINTSOURCE |    | PA02     | 98.4  | 98.4      | 98.4  | Lw   | 98.4  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252264.48 | 2248124.78 | 5.00 |
| POINTSOURCE |    | PLAY01   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252701.99 | 2248076.97 | 5.00 |
| POINTSOURCE |    | PLAY02   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252753.05 | 2248029.10 | 5.00 |
| POINTSOURCE |    | PLAY03   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252754.87 | 2248040.27 | 5.00 |
| POINTSOURCE |    | PLAY04   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252771.05 | 2248072.18 | 5.00 |
| POINTSOURCE |    | PLAY05   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252775.61 | 2248084.49 | 5.00 |
| POINTSOURCE |    | PLAY06   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252779.03 | 2248094.74 | 5.00 |
| POINTSOURCE |    | PLAY07   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252826.44 | 2248102.27 | 5.00 |
| POINTSOURCE |    | PLAY08   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252832.82 | 2248071.50 | 5.00 |
| POINTSOURCE |    | PLAY09   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252837.83 | 2248079.02 | 5.00 |
| POINTSOURCE |    | PLAY10   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252842.39 | 2248087.91 | 5.00 |
| POINTSOURCE |    | PLAY11   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252864.96 | 2248119.82 | 5.00 |
| POINTSOURCE |    | PLAY12   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | a | 6252866.78 | 2248131.21 | 5.00 |
| POINTSOURCE |    | SPORTS01 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252391.94 | 2248378.39 | 5.00 |
| POINTSOURCE |    | SPORTS02 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252392.60 | 2248438.41 | 5.00 |
| POINTSOURCE |    | SPORTS03 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252329.31 | 2248406.35 | 5.00 |
| POINTSOURCE |    | SPORTS04 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252268.32 | 2248379.86 | 5.00 |
| POINTSOURCE |    | SPORTS05 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252269.14 | 2248436.77 | 5.00 |
| POINTSOURCE |    | SPORTS06 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252962.91 | 2248381.16 | 5.00 |
| POINTSOURCE |    | SPORTS07 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252700.05 | 2248383.20 | 5.00 |
| POINTSOURCE |    | SPORTS08 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252830.06 | 2248381.16 | 5.00 |
| POINTSOURCE |    | SPORTS09 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252896.48 | 2248321.66 | 5.00 |
| POINTSOURCE |    | SPORTS10 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252890.37 | 2248439.44 | 5.00 |
| POINTSOURCE |    | SPORTS11 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252746.51 | 2248318.81 | 5.00 |
| POINTSOURCE |    | SPORTS12 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252749.77 | 2248443.93 | 5.00 |
| POINTSOURCE |    | SPORTS13 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252643.40 | 2248358.34 | 5.00 |
| POINTSOURCE |    | SPORTS14 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252644.22 | 2248407.65 | 5.00 |
| POINTSOURCE |    | SPORTS15 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6253015.89 | 2248353.86 | 5.00 |
| POINTSOURCE |    | SPORTS16 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6253017.52 | 2248406.43 | 5.00 |
| POINTSOURCE |    | SPORTS17 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252912.38 | 2248277.65 | 5.00 |
| POINTSOURCE |    | SPORTS18 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252743.66 | 2248279.69 | 5.00 |
| POINTSOURCE |    | SPORTS19 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252916.86 | 2248482.64 | 5.00 |
| POINTSOURCE |    | SPORTS20 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252751.40 | 2248483.05 | 5.00 |
| POINTSOURCE |    | TRASH01  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | а | 6252309.01 | 2248160.73 | 5.00 |
| POINTSOURCE |    | TRASH02  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | а | 6252309.28 | 2248309.92 | 5.00 |
| POINTSOURCE |    | TRASH03  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6252860.79 | 2249673.90 | 5.00 |
| POINTSOURCE |    | TRASH04  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6254013.24 | 2249666.12 | 5.00 |
| POINTSOURCE |    | TRASH05  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6252850.42 | 2248787.20 | 5.00 |
|             |    |          |       |           |       |      |       |       |        |            |        |        |   |            |            |      |

## Line Source(s)

| Name       | М. | ID      | R     | esult. PW | Ľ     | R     | esult. PW | Ľ     |      | Lw/L  | i     | Op    | erating Ti | me    |     | Moving  | Pt. Src |       | Heigh | ht |
|------------|----|---------|-------|-----------|-------|-------|-----------|-------|------|-------|-------|-------|------------|-------|-----|---------|---------|-------|-------|----|
|            |    |         | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day   | Special    | Night |     | Number  |         | Speed |       |    |
|            |    |         | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min) | (min)      | (min) | Day | Evening | Night   | (mph) | (ft)  |    |
| LINESOURCE |    | TRUCK01 | 93.2  | 93.2      | 93.2  | 72.2  | 72.2      | 72.2  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |
| LINESOURCE |    | TRUCK02 | 93.2  | 93.2      | 93.2  | 73.0  | 73.0      | 73.0  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |
| LINESOURCE |    | TRUCK03 | 93.2  | 93.2      | 93.2  | 67.4  | 67.4      | 67.4  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |

| Name       | ID      | ł     | lei | ght  |            | Coordinat  | es   |        |
|------------|---------|-------|-----|------|------------|------------|------|--------|
|            |         | Begin |     | End  | х          | У          | z    | Ground |
|            |         | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
| LINESOURCE | TRUCK01 | 8.00  | а   |      | 6254022.66 | 2249589.64 | 8.00 | 0.00   |
|            |         |       |     |      | 6254126.98 | 2249588.68 | 8.00 | 0.00   |
|            |         |       |     |      | 6254149.10 | 2249583.29 | 8.00 | 0.00   |
|            |         |       |     |      | 6254170.63 | 2249575.89 | 8.00 | 0.00   |
|            |         |       |     |      | 6254191.39 | 2249566.55 | 8.00 | 0.00   |
|            |         |       |     |      | 6254211.20 | 2249555.33 | 8.00 | 0.00   |
|            |         |       |     |      | 6254229.90 | 2249542.34 | 8.00 | 0.00   |
|            |         |       |     |      | 6254252.85 | 2249524.23 | 8.00 | 0.00   |
|            |         |       |     |      | 6254276.51 | 2249507.07 | 8.00 | 0.00   |
|            |         |       |     |      | 6254300.85 | 2249490.88 | 8.00 | 0.00   |
|            |         |       |     |      | 6254320.71 | 2249485.56 | 8.00 | 0.00   |
|            |         |       |     |      | 6254341.04 | 2249482.42 | 8.00 | 0.00   |
|            |         |       |     |      | 6254361.58 | 2249481.51 | 8.00 | 0.00   |
|            |         |       |     |      | 6254382.10 | 2249482.84 | 8.00 | 0.00   |

| Name       | ID      | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|---------|-------|-----|------|------------|------------|------|--------|
|            |         | Begin |     | End  | х          | у          | z    | Ground |
|            |         | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
|            |         |       |     |      | 6254402.35 | 2249486.39 | 8.00 | 0.00   |
| LINESOURCE | TRUCK02 | 8.00  | а   |      | 6254073.07 | 2248708.07 | 8.00 | 0.00   |
|            |         |       |     |      | 6254167.85 | 2248706.74 | 8.00 | 0.00   |
|            |         |       |     |      | 6254189.22 | 2248704.27 | 8.00 | 0.00   |
|            |         |       |     |      | 6254210.31 | 2248699.99 | 8.00 | 0.00   |
|            |         |       |     |      | 6254230.95 | 2248693.93 | 8.00 | 0.00   |
|            |         |       |     |      | 6254259.27 | 2248682.54 | 8.00 | 0.00   |
|            |         |       |     |      | 6254287.96 | 2248672.14 | 8.00 | 0.00   |
|            |         |       |     |      | 6254304.25 | 2248665.87 | 8.00 | 0.00   |
|            |         |       |     |      | 6254321.14 | 2248661.50 | 8.00 | 0.00   |
|            |         |       |     |      | 6254338.42 | 2248659.10 | 8.00 | 0.00   |
|            |         |       |     |      | 6254355.87 | 2248658.69 | 8.00 | 0.00   |
|            |         |       |     |      | 6254409.75 | 2248661.58 | 8.00 | 0.00   |
| LINESOURCE | TRUCK03 | 8.00  | а   |      | 6252843.28 | 2248718.67 | 8.00 | 0.00   |
|            |         |       |     |      | 6252704.02 | 2248722.76 | 8.00 | 0.00   |
|            |         |       |     |      | 6252693.85 | 2248722.93 | 8.00 | 0.00   |
|            |         |       |     |      | 6252683.84 | 2248724.73 | 8.00 | 0.00   |
|            |         |       |     |      | 6252674.25 | 2248728.11 | 8.00 | 0.00   |
|            |         |       |     |      | 6252665.33 | 2248732.98 | 8.00 | 0.00   |
|            |         |       |     |      | 6252657.30 | 2248739.22 | 8.00 | 0.00   |
|            |         |       |     |      | 6252650.37 | 2248746.66 | 8.00 | 0.00   |
|            |         |       |     |      | 6252644.72 | 2248755.12 | 8.00 | 0.00   |
|            |         |       |     |      | 6252640.51 | 2248764.37 | 8.00 | 0.00   |
|            |         |       |     |      | 6252637.83 | 2248774.18 | 8.00 | 0.00   |
|            |         |       |     |      | 6252636.75 | 2248784.29 | 8.00 | 0.00   |
|            |         |       |     |      | 6252641.67 | 2249545.56 | 8.00 | 0.00   |
|            |         |       |     |      | 6252644.20 | 2249556.15 | 8.00 | 0.00   |
|            |         |       |     |      | 6252648.44 | 2249566.18 | 8.00 | 0.00   |
|            |         |       |     |      | 6252654.28 | 2249575.37 | 8.00 | 0.00   |
|            |         |       |     |      | 6252661.54 | 2249583.48 | 8.00 | 0.00   |
|            |         |       |     |      | 6252670.04 | 2249590.28 | 8.00 | 0.00   |
|            |         |       |     |      | 6252679.55 | 2249595.59 | 8.00 | 0.00   |
|            |         |       |     |      | 6252689.80 | 2249599.26 | 8.00 | 0.00   |
|            |         |       |     |      | 6252700.51 | 2249601.20 | 8.00 | 0.00   |
|            |         |       |     |      | 6252711.40 | 2249601.34 | 8.00 | 0.00   |
|            |         |       |     |      | 6252846.55 | 2249601.43 | 8.00 | 0.00   |

## Area Source(s)

| Name       | М. | ID     | R     | esult. PW | 'L    | Re    | esult. PW | L''   |      | Lw/L  | i     | Оре    | erating Ti | me    | Heigh | t |
|------------|----|--------|-------|-----------|-------|-------|-----------|-------|------|-------|-------|--------|------------|-------|-------|---|
|            |    |        | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night | (ft)  |   |
|            |    |        | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min) |       |   |
| AREASOURCE |    | CAR01  | 81.1  | 81.1      | 81.1  | 51.9  | 51.9      | 51.9  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR02  | 81.1  | 81.1      | 81.1  | 47.3  | 47.3      | 47.3  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR03  | 81.1  | 81.1      | 81.1  | 58.5  | 58.5      | 58.5  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR04  | 81.1  | 81.1      | 81.1  | 53.9  | 53.9      | 53.9  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR05  | 81.1  | 81.1      | 81.1  | 52.3  | 52.3      | 52.3  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR06  | 81.1  | 81.1      | 81.1  | 51.6  | 51.6      | 51.6  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR07  | 81.1  | 81.1      | 81.1  | 52.7  | 52.7      | 52.7  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR08  | 81.1  | 81.1      | 81.1  | 56.4  | 56.4      | 56.4  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR09  | 81.1  | 81.1      | 81.1  | 47.7  | 47.7      | 47.7  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00  | 5     | а |
| AREASOURCE |    | CAR10  | 81.1  | 81.1      | 81.1  | 57.5  | 57.5      | 57.5  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00  | 5     | а |
| AREASOURCE |    | COLD01 | 111.5 | 111.5     | 111.5 | 68.5  | 68.5      | 68.5  | Lw   | 111.5 |       |        |            |       | 8     | а |
| AREASOURCE |    | COLD02 | 111.5 | 111.5     | 111.5 | 68.4  | 68.4      | 68.4  | Lw   | 111.5 |       |        |            |       | 8     | а |

| Name       | ID    | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|-------|-------|-----|------|------------|------------|------|--------|
|            |       | Begin |     | End  | x          | У          | z    | Ground |
|            |       | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
| AREASOURCE | CAR01 | 5.00  | а   |      | 6254033.80 | 2249554.58 | 5.00 | 0.00   |
|            |       |       |     |      | 6254164.88 | 2249553.92 | 5.00 | 0.00   |
|            |       |       |     |      | 6254165.54 | 2249536.07 | 5.00 | 0.00   |
|            |       |       |     |      | 6254191.97 | 2249535.41 | 5.00 | 0.00   |
|            |       |       |     |      | 6254191.09 | 2249493.34 | 5.00 | 0.00   |
|            |       |       |     |      | 6254034.68 | 2249495.10 | 5.00 | 0.00   |
| AREASOURCE | CAR02 | 5.00  | а   |      | 6254251.15 | 2249450.80 | 5.00 | 0.00   |
|            |       |       |     |      | 6254340.87 | 2249454.50 | 5.00 | 0.00   |
|            |       |       |     |      | 6254340.00 | 2249158.49 | 5.00 | 0.00   |
|            |       |       |     |      | 6254251.46 | 2249161.10 | 5.00 | 0.00   |
| AREASOURCE | CAR03 | 5.00  | а   |      | 6254296.60 | 2249148.94 | 5.00 | 0.00   |
|            |       |       |     |      | 6254339.13 | 2249150.68 | 5.00 | 0.00   |
|            |       |       |     |      | 6254339.13 | 2249102.94 | 5.00 | 0.00   |
|            |       |       |     |      | 6254296.60 | 2249104.67 | 5.00 | 0.00   |
| AREASOURCE | CAR04 | 5.00  | а   |      | 6254248.86 | 2249134.19 | 5.00 | 0.00   |
|            |       |       |     |      | 6254266.22 | 2249135.06 | 5.00 | 0.00   |
|            |       |       |     |      | 6254264.48 | 2248819.95 | 5.00 | 0.00   |
|            |       |       |     |      | 6254246.25 | 2248820.82 | 5.00 | 0.00   |
| AREASOURCE | CAR05 | 5.00  | а   |      | 6254294.00 | 2248953.63 | 5.00 | 0.00   |

| Name       | ID     | I     | lei | ght  |            | Coordinat  | es   |        |
|------------|--------|-------|-----|------|------------|------------|------|--------|
|            |        | Begin | _   | End  | x          | У          | z    | Ground |
|            |        | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
|            |        |       |     |      | 6254337.40 | 2248952.76 | 5.00 | 0.00   |
|            |        |       |     |      | 6254335.66 | 2248760.06 | 5.00 | 0.00   |
|            |        |       |     |      | 6254294.00 | 2248761.79 | 5.00 | 0.00   |
| AREASOURCE | CAR06  | 5.00  | а   |      | 6254095.38 | 2248797.73 | 5.00 | 0.00   |
|            |        |       |     |      | 6254253.72 | 2248797.73 | 5.00 | 0.00   |
|            |        |       |     |      | 6254253.02 | 2248736.62 | 5.00 | 0.00   |
|            |        |       |     |      | 6254094.69 | 2248738.01 | 5.00 | 0.00   |
| AREASOURCE | CAR07  | 5.00  | а   |      | 6252671.34 | 2248808.12 | 5.00 | 0.00   |
|            |        |       |     |      | 6252802.93 | 2248807.83 | 5.00 | 0.00   |
|            |        |       |     |      | 6252802.36 | 2248748.69 | 5.00 | 0.00   |
|            |        |       |     |      | 6252689.45 | 2248748.97 | 5.00 | 0.00   |
|            |        |       |     |      | 6252689.73 | 2248767.37 | 5.00 | 0.00   |
|            |        |       |     |      | 6252670.77 | 2248767.65 | 5.00 | 0.00   |
| AREASOURCE | CAR08  | 5.00  | а   |      | 6252667.70 | 2249623.45 | 5.00 | 0.00   |
|            |        |       |     |      | 6252667.43 | 2249643.19 | 5.00 | 0.00   |
|            |        |       |     |      | 6252835.28 | 2249641.29 | 5.00 | 0.00   |
|            |        |       |     |      | 6252836.09 | 2249623.45 | 5.00 | 0.00   |
| AREASOURCE | CAR09  | 5.00  | а   |      | 6252653.42 | 2248267.23 | 5.00 | 0.00   |
|            |        |       |     |      | 6252997.87 | 2248266.54 | 5.00 | 0.00   |
|            |        |       |     |      | 6253000.64 | 2248199.18 | 5.00 | 0.00   |
|            |        |       |     |      | 6252654.81 | 2248198.48 | 5.00 | 0.00   |
| AREASOURCE | CAR10  | 5.00  | а   |      | 6252278.05 | 2248296.04 | 5.00 | 0.00   |
|            |        |       |     |      | 6252297.00 | 2248296.04 | 5.00 | 0.00   |
|            |        |       |     |      | 6252298.87 | 2248175.68 | 5.00 | 0.00   |
|            |        |       |     |      | 6252276.45 | 2248176.48 | 5.00 | 0.00   |
| AREASOURCE | COLD01 | 8.00  | а   |      | 6252848.18 | 2249499.19 | 8.00 | 0.00   |
|            |        |       |     |      | 6252849.92 | 2249681.08 | 8.00 | 0.00   |
|            |        |       |     |      | 6254023.35 | 2249671.99 | 8.00 | 0.00   |
|            |        |       |     |      | 6254023.14 | 2249488.11 | 8.00 | 0.00   |
| AREASOURCE | COLD02 | 8.00  | а   |      | 6252844.00 | 2248881.49 | 8.00 | 0.00   |
|            |        |       |     |      | 6254017.73 | 2248872.62 | 8.00 | 0.00   |
|            |        |       |     |      | 6254017.73 | 2248812.86 | 8.00 | 0.00   |
|            |        |       |     |      | 6254073.37 | 2248811.99 | 8.00 | 0.00   |
|            |        |       |     |      | 6254071.18 | 2248689.60 | 8.00 | 0.00   |
|            |        |       |     |      | 6252844.25 | 2248698.03 | 8.00 | 0.00   |

# Barrier(s)

| Name           | Sel. | М. | ID | Abso | rption | Z-Ext. | Canti | lever | H     | leig | ght  |            | Coordinate | es   |        |
|----------------|------|----|----|------|--------|--------|-------|-------|-------|------|------|------------|------------|------|--------|
|                |      |    |    | left | right  |        | horz. | vert. | Begin |      | End  | x          | У          | z    | Ground |
|                |      |    |    |      |        | (ft)   | (ft)  | (ft)  | (ft)  |      | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 0.00  | а    |      | 6252847.29 | 2249556.92 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252847.21 | 2249577.33 | 0.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 0.00  | а    |      | 6252847.79 | 2249617.86 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252847.98 | 2249683.02 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254024.91 | 2249673.82 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254024.48 | 2249609.06 | 0.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 0.00  | а    |      | 6254024.13 | 2249568.26 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254023.79 | 2249488.11 | 0.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 0.00  | а    |      | 6252841.75 | 2248823.37 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252841.36 | 2248737.48 | 0.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 0.00  | а    |      | 6252842.11 | 2248696.85 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6253255.65 | 2248693.73 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6253639.85 | 2248690.78 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254072.84 | 2248688.17 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254158.43 | 2248687.13 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254177.90 | 2248685.46 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254197.09 | 2248681.75 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254220.05 | 2248675.16 | 0.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254242.48 | 2248666.95 | 0.00 | 0.00   |

### Building(s)

|          | <u> </u> |    |               |    |           |            |        |   |            |            |       |        |
|----------|----------|----|---------------|----|-----------|------------|--------|---|------------|------------|-------|--------|
| Name     | Sel.     | м. | ID            | RB | Residents | Absorption | Height |   |            | Coordinat  | es    |        |
|          |          |    |               |    |           |            | Begin  |   | x          | У          | z     | Ground |
|          |          |    |               |    |           |            | (ft)   |   | (ft)       | (ft)       | (ft)  | (ft)   |
| BUILDING |          |    | BUILDING00001 | х  | 0         |            | 45.00  | а | 6252683.18 | 2249560.17 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6252847.29 | 2249556.92 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6252845.20 | 2249496.50 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254211.78 | 2249486.77 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254211.99 | 2249481.85 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254240.02 | 2249481.75 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254239.39 | 2249453.61 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254244.83 | 2249453.72 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254240.35 | 2248845.57 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254235.32 | 2248845.74 | 45.00 | 0.00   |
|          |          |    |               |    |           |            |        |   | 6254234.81 | 2248817.75 | 45.00 | 0.00   |

| Name | Sel. | М. | ID | RB | Residents | Absorption | Height | : |            | Coordinat  | es    |        |
|------|------|----|----|----|-----------|------------|--------|---|------------|------------|-------|--------|
|      |      |    |    |    |           |            | Begin  |   | х          | У          | z     | Ground |
|      |      |    |    |    |           |            | (ft)   |   | (ft)       | (ft)       | (ft)  | (ft)   |
|      |      |    |    |    |           |            |        |   | 6254208.57 | 2248817.90 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6254207.16 | 2248812.72 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6254019.25 | 2248814.39 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6254019.41 | 2248874.24 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252842.50 | 2248882.80 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252842.50 | 2248823.36 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252710.01 | 2248823.88 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252710.18 | 2248829.00 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252681.76 | 2248829.57 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252682.27 | 2248857.48 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        |   | 6252677.10 | 2248857.99 | 45.00 | 0.00   |

### Ground Absorption(s)

| Name   | Sel. | М. | ID | G   | Coord      | inates     |
|--------|------|----|----|-----|------------|------------|
|        |      |    |    |     | х          | У          |
|        |      |    |    |     | (ft)       | (ft)       |
| GROUND |      |    | 0  | 0.5 | 6254665.08 | 2248616.10 |
|        |      |    |    |     | 6254665.08 | 2248478.76 |
|        |      |    |    |     | 6251546.42 | 2248521.68 |
|        |      |    |    |     | 6251514.95 | 2248721.96 |



APPENDIX 9.2:

MITIGATED OPERATIONAL NOISE CALCULATIONS





# 15091 - Mead Valley Commerce Center

CadnaA Noise Prediction Model: 15091-07\_Mitigated.cna Date: 14.02.24 Analyst: B. Lawson

### **Calculation Configuration**

| ParameterValueGeneral0.00Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00Partition0.00Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line Sources0nProj. Line Sources0nRef. Time0.00Ref. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0.00Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.00Sore Obj0.01.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Soure Himit (ISO 9613)DEarrier Coefficients C1,2,33.020.0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wink Igseed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)3.0Railways (FTA/FRA)3.0Railways (FTA/FRA)3.0Railways (FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Configurat                           | tion                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Area SourcesOnRef. Time.000Daytime Penalty (dB)5.00Night-time Penalty (dB)10.00DTM.000DTM.000Model of TerrainTriangulationReflection2Search Radius Rcvr100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                            | Value                          |
| Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnProj. Area SourcesOnRef. Time.0.00Daytime Penalty (dB)0.00Night-time Penalty (dB)10.00Night-time Penalty (dB)10.00DTM.000Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionSoure Officients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General                              |                                |
| Min. Dist Src to Rcvr0.00Partition0.00Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTM0.00Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.00Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Error (dB)                      | 0.00                           |
| PartitionDescriptionRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTM5Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Ror100.00Min. Distance Source - Revr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)Darrier Coefficients C1,2,3Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TNM)Railways (FTA/FRA)Aircraft (???)Interfaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. Search Radius (#(Unit,LEN))     | 2000.01                        |
| Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)0.00Ref. TimeDaytime Penalty (dB)Daytime Penalty (dB)10.00DTMDTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Src100.00Min. Distance Source - Rcvr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Intel Search (Reflection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min. Dist Src to Rcvr                | 0.00                           |
| Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)0.00Rer. Time Penalty (dB)0.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)June ObjLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)June Call And Call A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Partition                            |                                |
| Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Ref. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Raster Factor                        | 0.50                           |
| Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Rovr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionSome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Length of Section (#(Unit,LEN)) | 999.99                         |
| Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)Daytime Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Industri (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min. Length of Section (#(Unit,LEN)) | 1.01                           |
| Proj. Area SourcesOnRef. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Length of Section (%)           | 0.00                           |
| Ref. Time0.00Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0Standard Height (m)0.00Model of TerrainTriangulationReflection2search Radius Src100.00Max. Order of Reflection2Search Radius Src100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Rcvr1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)100Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TIM)Railways (FTA/FRA)Aircraft (???)Interaful for Dir (#Complexite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proj. Line Sources                   | On                             |
| Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proj. Area Sources                   | On                             |
| Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2search Radius Src100.00Search Radius Rxvr100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionScreeningIncl. Ground Att. over Barrier<br>Do xwith limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Incl. Ground Att. over Barrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref. Time                            |                                |
| Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Daytime Penalty (dB)                 | 0.00                           |
| DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Max. Distance Source - Revr     1000.00       Min. Distance Source - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     1       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Darrier Coefficients C1,2,3       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: State Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recr. Time Penalty (dB)              | 5.00                           |
| Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       search Radius Src     100.00       Search Radius Rovr     100.00       Max. Distance Source - Revr     1000.00       Min. Distance Source - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction       Screening     Incl. Ground Att. over Barrier       Do st. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dramperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Interfaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Night-time Penalty (dB)              | 10.00                          |
| Model of Terrain     Triangulation       Reflection     2       search Radius Src     100.00       Search Radius Rovr     1000.00       Max. Distance Source - Revr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00       Min. Distance Rvcr - Reflector     0.10       Industrial (ISO 9613)     1       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Darrier Coefficients C1,2,3       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)     Railways (FTA/FRA)       Aircraft (???)     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DTM                                  |                                |
| ReflectionEndmax. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Edited SourceLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Editional Source Sourc                                                                                                                                                                                                                                                                                  | Standard Height (m)                  | 0.00                           |
| max. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Rource - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit, SPEED))3.0Roads (TTM)Railways (FTA/FRA)Aircraft (???)International Statement                                                                                                                                                                                                                                                                         | Model of Terrain                     | Triangulation                  |
| Search Radius Src 100.00<br>Search Radius Rcvr 1000.00<br>Max. Distance Source - Rcvr 1000.00 1000.00<br>Min. Distance Source - Reflector 1.00 1.00<br>Industrial (ISO 9613)<br>Lateral Diffraction some Obj<br>Obst. within Area Src do not shield On<br>Screening Incl. Ground Att. over Barrier<br>Dz with limit (20/25)<br>Barrier Coefficients C1,2,3 3.0 20.0 0.0<br>Temperature (#(Unit,TEMP)) 10<br>rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TMM)<br>Railways (FTA/FRA) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reflection                           |                                |
| Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Rvcr - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDzDz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Internet and the state of the state o                                                                                                                                                                                                                           | max. Order of Reflection             | 2                              |
| Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Darrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Intercent and the second secon                                                                                                                                                                                                                          | Search Radius Src                    | 100.00                         |
| Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Lateral for Dir (??)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Search Radius Rcvr                   | 100.00                         |
| Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. Distance Source - Rcvr          | 1000.00 1000.00                |
| Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min. Distance Rvcr - Reflector       | 1.00 1.00                      |
| Lateral Diffraction         some Obj           Obst. within Area Src do not shield         On           Screening         Incl. Ground Att. over Barrier           Dz with limit (20/25)           Barrier Coefficients C1,2,3         3.0 20.0 0.0           Temperature (#(Unit,TEMP))         10           rel. Humidity (%)         70           Ground Absorption G         0.50           Wind Speed for Dir. (#(Unit,SPEED))         3.0           Roads (TNM)         Railways (FTA/FRA)           Aircraft (???)         Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Distance Source - Reflector     | 0.10                           |
| Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Intervalue of the state of th                                                                                     | Industrial (ISO 9613)                |                                |
| Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of Direct (Comparison of Comparison of Compar                                                      | Lateral Diffraction                  | some Obj                       |
| Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of Comparison o                       | Obst. within Area Src do not shield  | On                             |
| Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of the comparison o | Screening                            | Incl. Ground Att. over Barrier |
| Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | Dz with limit (20/25)          |
| rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barrier Coefficients C1,2,3          | 3.0 20.0 0.0                   |
| Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature (#(Unit,TEMP))           | 10                             |
| Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM)<br>Railways (FTA/FRA)<br>Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rel. Humidity (%)                    | 70                             |
| Roads (TNM) Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ground Absorption G                  | 0.50                           |
| Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wind Speed for Dir. (#(Unit,SPEED))  | 3.0                            |
| Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roads (TNM)                          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Railways (FTA/FRA)                   |                                |
| Strictly acc. to AzB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aircraft (???)                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strictly acc. to AzB                 |                                |

#### **Receiver Noise Levels**

|    | •••• | 10.5                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |      |
|----|------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------|
| М. | ID   |                                                                                           | Level Lr                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   | Lii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mit. Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Land | l Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C          | oordinates |      |
|    |      | Day                                                                                       | Night                                                                                                                                                                                                                                                                                                                                           | CNEL                                                                                                                                                                                                                                                                                                                                                                                              | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto | Noise Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х          | Y          | Z    |
|    |      | (dBA)                                                                                     | (dBA)                                                                                                                                                                                                                                                                                                                                           | (dBA)                                                                                                                                                                                                                                                                                                                                                                                             | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ft)       | (ft)       | (ft) |
|    | R01  | 42.7                                                                                      | 39.4                                                                                                                                                                                                                                                                                                                                            | 46.5                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252359.12 | 2249964.74 | 5.00 |
|    | R02  | 42.9                                                                                      | 42.6                                                                                                                                                                                                                                                                                                                                            | 49.2                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6253705.57 | 2249935.66 | 5.00 |
|    | R03  | 46.2                                                                                      | 43.8                                                                                                                                                                                                                                                                                                                                            | 50.8                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6254179.53 | 2248469.51 | 5.00 |
|    | R04  | 51.7                                                                                      | 42.4                                                                                                                                                                                                                                                                                                                                            | 51.6                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6253307.27 | 2248425.19 | 5.00 |
|    | R05  | 54.2                                                                                      | 40.0                                                                                                                                                                                                                                                                                                                                            | 52.3                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252049.84 | 2248238.08 | 5.00 |
|    | R06  | 50.4                                                                                      | 37.4                                                                                                                                                                                                                                                                                                                                            | 48.9                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252729.91 | 2247767.15 | 5.00 |
|    | R07  | 72.5                                                                                      | 44.3                                                                                                                                                                                                                                                                                                                                            | 69.5                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252258.11 | 2248426.81 | 5.00 |
|    | R08  | 64.5                                                                                      | 43.5                                                                                                                                                                                                                                                                                                                                            | 61.8                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252804.59 | 2248477.27 | 5.00 |
|    | R09  | 61.9                                                                                      | 42.9                                                                                                                                                                                                                                                                                                                                            | 59.3                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6253013.95 | 2248474.05 | 5.00 |
|    | R10  | 56.5                                                                                      | 41.5                                                                                                                                                                                                                                                                                                                                            | 54.5                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6253150.30 | 2248346.29 | 5.00 |
|    | R11  | 51.7                                                                                      | 39.0                                                                                                                                                                                                                                                                                                                                            | 50.3                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6253142.53 | 2248050.05 | 5.00 |
|    | R12  | 55.6                                                                                      | 38.1                                                                                                                                                                                                                                                                                                                                            | 53.2                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6252302.77 | 2247841.12 | 5.00 |
|    | _    | M. ID<br>R01<br>R01<br>R03<br>R03<br>R04<br>R05<br>R06<br>R07<br>R08<br>R09<br>R10<br>R11 | M.         ID           U         Day           (dBA)         R01           R02         42.9           R03         46.2           R04         51.7           R05         54.2           R06         50.4           R07         72.5           R08         64.5           R09         61.9           R10         56.5           R11         51.7 | M.         ID         Level Lr           Day         Night           (dBA)         (dBA)           R01         42.7           R02         42.9           R03         46.2           R03         46.2           R05         54.2           R06         50.4           R07         72.5           R08         64.5           R09         61.9           R10         56.5           R11         51.7 | Day         Night         CNEL           (dBA)         (dBA)         (dBA)           R01         42.7         39.4         46.5           R02         42.9         42.6         49.2           R03         46.2         43.8         50.8           R04         51.7         42.4         51.6           R05         54.2         40.0         52.3           R06         50.4         37.4         48.9           R07         72.5         44.3         69.5           R08         64.5         43.5         61.8           R09         61.9         42.9         59.3           R10         56.5         41.5         54.5           R11         51.7         39.0         50.3 | M.         ID         LEVELL         Lit           Variable         Night         CNEL         Day           (dBA)         (dBA)         (dBA)         (dBA)           R01         42.7         39.4         46.5         55.0           R02         42.9         42.6         49.2         55.0           R03         46.2         43.8         50.8         55.0           R04         51.7         42.4         51.6         55.0           R05         54.2         40.0         52.3         55.0           R05         54.2         40.0         52.3         55.0           R06         50.4         37.4         48.9         55.0           R07         72.5         44.3         69.5         55.0           R08         64.5         43.5         61.8         55.0           R09         61.9         42.9         59.3         55.0           R09         61.9         42.9         59.3         55.0           R10         56.5         41.5         54.5         55.0           R11         51.7         39.0         50.3         55.0 | M.         ID         LEvel L         Limit. Val           M.         Day         Night         CNEL         Day         Night           (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)           R01         42.7         39.4         46.5         55.0         45.0           R02         42.9         42.6         49.2         55.0         45.0           R03         46.2         43.8         50.8         55.0         45.0           R04         51.7         42.4         51.6         55.0         45.0           R05         54.2         40.0         52.3         55.0         45.0           R05         54.2         40.0         52.3         55.0         45.0           R06         50.4         37.4         48.9         55.0         45.0           R07         72.5         44.3         69.5         55.0         45.0           R08         64.5         43.5         61.8         55.0         45.0           R09         61.9         42.9         59.3         55.0         45.0           R10         56.5         41.5         54.5 | M.         ID         Limit. Value           M.         ID         Level Lr         Limit. Value           (dBA)         Night         CNEL         Day         Night         CNEL           (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)         (dBA)           R01         42.7         39.4         46.5         55.0         45.0         0.0           R02         42.9         42.6         49.2         55.0         45.0         0.0           R03         46.2         43.8         50.8         55.0         45.0         0.0           R04         51.7         42.4         51.6         55.0         45.0         0.0           R05         54.2         40.0         52.3         55.0         45.0         0.0           R05         54.2         40.0         52.3         55.0         45.0         0.0           R07         72.5         44.3         69.5         55.0         45.0         0.0           R08         64.5         43.5         51.8         55.0         45.0         0.0           R08         64.5         43.5         54.8         55.0         < |      | M.         ID         Level Lr         Limit. Value         Lance           M.         ID         Night         CNEL         Day         Night         CNEL         Type         Auto           (dBA)         (dA)         (dBA)         (dA) | M.         ID         Level Lr         Limit. Value         Land Use           M.         ID         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type           (dBA)         (dA)         (dBA)         (dA) <td>M.         ID         Level Lr         Limit. Value         Land Use         Height           M.         Day         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type         Height           (dBA)         (dBA</td> <td></td> <td></td> <td></td> | M.         ID         Level Lr         Limit. Value         Land Use         Height           M.         Day         Night         CNEL         Day         Night         CNEL         Type         Auto         Noise Type         Height           (dBA)         (dBA |            |            |      |

### Point Source(s)

| Name        | М. | ID   | R     | esult. PW | L     |      | Lw/L  | i     | Op     | erating Ti | ime    | Height | : | Co         | oordinates |       |
|-------------|----|------|-------|-----------|-------|------|-------|-------|--------|------------|--------|--------|---|------------|------------|-------|
|             |    |      | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night  |        |   | Х          | Y          | Z     |
|             |    |      | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min)  | (ft)   |   | (ft)       | (ft)       | (ft)  |
| POINTSOURCE |    | AC01 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254189.54 | 2248848.13 | 50.00 |
| POINTSOURCE |    | AC02 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254080.65 | 2248845.54 | 50.00 |
| POINTSOURCE |    | AC03 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254167.50 | 2249453.52 | 50.00 |
| POINTSOURCE |    | AC04 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6254067.68 | 2249454.82 | 50.00 |
| POINTSOURCE |    | AC05 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252797.27 | 2248858.50 | 50.00 |
| POINTSOURCE |    | AC06 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252710.42 | 2248863.69 | 50.00 |
| POINTSOURCE |    | AC07 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252810.23 | 2249524.82 | 50.00 |
| POINTSOURCE |    | AC08 | 88.9  | 88.9      | 88.9  | Lw   | 88.9  |       | 585.00 | 0.00       | 252.00 | 5.00   | g | 6252714.31 | 2249526.12 | 50.00 |

| Name        | M. | ID       | R     | esult. PW | 'L    |      | Lw/L  | i     | Op     | erating Ti | ime    | Height | : | C          | oordinates |      |
|-------------|----|----------|-------|-----------|-------|------|-------|-------|--------|------------|--------|--------|---|------------|------------|------|
|             |    |          | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night  |        |   | х          | Y          | Z    |
|             |    |          | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min)  | (ft)   |   | (ft)       | (ft)       | (ft) |
| POINTSOURCE |    | BBALL01  | 83.7  | 83.7      | 83.7  | Lw   | 83.7  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252354.12 | 2248063.76 | 5.00 |
| POINTSOURCE |    | BBALL02  | 83.7  | 83.7      | 83.7  | Lw   | 83.7  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252353.42 | 2248124.87 | 5.00 |
| POINTSOURCE |    | DOG01    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252235.98 | 2247941.44 | 3.00 |
| POINTSOURCE |    | DOG02    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252312.23 | 2247939.64 | 3.00 |
| POINTSOURCE |    | DOG03    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252372.31 | 2247937.08 | 3.00 |
| POINTSOURCE |    | DOG04    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252325.58 | 2248004.34 | 3.00 |
| POINTSOURCE |    | DOG05    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252232.39 | 2248010.24 | 3.00 |
| POINTSOURCE |    | DOG06    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252416.72 | 2248011.27 | 3.00 |
| POINTSOURCE |    | DOG07    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252332.51 | 2247862.11 | 3.00 |
| POINTSOURCE |    | DOG08    | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 3.00   | а | 6252236.50 | 2247862.11 | 3.00 |
| POINTSOURCE |    | PA01     | 98.4  | 98.4      | 98.4  | Lw   | 98.4  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252264.48 | 2248066.44 | 5.00 |
| POINTSOURCE |    | PA02     | 98.4  | 98.4      | 98.4  | Lw   | 98.4  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252264.48 | 2248124.78 | 5.00 |
| POINTSOURCE |    | PLAY01   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252701.99 | 2248076.97 | 5.00 |
| POINTSOURCE |    | PLAY02   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252753.05 | 2248029.10 | 5.00 |
| POINTSOURCE |    | PLAY03   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252754.87 | 2248040.27 | 5.00 |
| POINTSOURCE |    | PLAY04   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252771.05 | 2248072.18 | 5.00 |
| POINTSOURCE |    | PLAY05   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252775.61 | 2248084.49 | 5.00 |
| POINTSOURCE |    | PLAY06   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252779.03 | 2248094.74 | 5.00 |
| POINTSOURCE |    | PLAY07   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252826.44 | 2248102.27 | 5.00 |
| POINTSOURCE |    | PLAY08   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252832.82 | 2248071.50 | 5.00 |
| POINTSOURCE |    | PLAY09   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252837.83 | 2248079.02 | 5.00 |
| POINTSOURCE |    | PLAY10   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252842.39 | 2248087.91 | 5.00 |
| POINTSOURCE |    | PLAY11   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252864.96 | 2248119.82 | 5.00 |
| POINTSOURCE |    | PLAY12   | 81.1  | 81.1      | 81.1  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00   | 5.00   | a | 6252866.78 | 2248131.21 | 5.00 |
| POINTSOURCE |    | SPORTS01 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252391.94 | 2248378.39 | 5.00 |
| POINTSOURCE |    | SPORTS02 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252392.60 | 2248438.41 | 5.00 |
| POINTSOURCE |    | SPORTS03 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252329.31 | 2248406.35 | 5.00 |
| POINTSOURCE |    | SPORTS04 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252268.32 | 2248379.86 | 5.00 |
| POINTSOURCE |    | SPORTS05 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252269.14 | 2248436.77 | 5.00 |
| POINTSOURCE |    | SPORTS06 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252962.91 | 2248381.16 | 5.00 |
| POINTSOURCE |    | SPORTS07 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252700.05 | 2248383.20 | 5.00 |
| POINTSOURCE |    | SPORTS08 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252830.06 | 2248381.16 | 5.00 |
| POINTSOURCE |    | SPORTS09 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252896.48 | 2248321.66 | 5.00 |
| POINTSOURCE |    | SPORTS10 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252890.37 | 2248439.44 | 5.00 |
| POINTSOURCE |    | SPORTS11 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252746.51 | 2248318.81 | 5.00 |
| POINTSOURCE |    | SPORTS12 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252749.77 | 2248443.93 | 5.00 |
| POINTSOURCE |    | SPORTS13 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252643.40 | 2248358.34 | 5.00 |
| POINTSOURCE |    | SPORTS14 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252644.22 | 2248407.65 | 5.00 |
| POINTSOURCE |    | SPORTS15 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6253015.89 | 2248353.86 | 5.00 |
| POINTSOURCE |    | SPORTS16 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6253017.52 | 2248406.43 | 5.00 |
| POINTSOURCE |    | SPORTS17 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252912.38 | 2248277.65 | 5.00 |
| POINTSOURCE |    | SPORTS18 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252743.66 | 2248279.69 | 5.00 |
| POINTSOURCE |    | SPORTS19 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252916.86 | 2248482.64 | 5.00 |
| POINTSOURCE |    | SPORTS20 | 94.0  | 94.0      | 94.0  | Lw   | 94    |       | 900.00 | 0.00       | 0.00   | 5.00   | а | 6252751.40 | 2248483.05 | 5.00 |
| POINTSOURCE |    | TRASH01  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | а | 6252309.01 | 2248160.73 | 5.00 |
| POINTSOURCE |    | TRASH02  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | а | 6252309.28 | 2248309.92 | 5.00 |
| POINTSOURCE |    | TRASH03  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6252860.79 | 2249673.90 | 5.00 |
| POINTSOURCE |    | TRASH04  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6254013.24 | 2249666.12 | 5.00 |
| POINTSOURCE |    | TRASH05  | 89.0  | 89.0      | 89.0  | Lw   | 89    |       | 900.00 | 0.00       | 270.00 | 5.00   | a | 6252850.42 | 2248787.20 | 5.00 |
|             |    |          |       |           |       |      |       |       |        |            |        |        |   |            |            |      |

# Line Source(s)

| Name       | М. | ID      | R     | esult. PW | Ľ     | R     | esult. PW | Ľ     |      | Lw/L  | i     | Op    | erating Ti | me    |     | Moving  | Pt. Src |       | Heigh | ht |
|------------|----|---------|-------|-----------|-------|-------|-----------|-------|------|-------|-------|-------|------------|-------|-----|---------|---------|-------|-------|----|
|            |    |         | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day   | Special    | Night |     | Number  |         | Speed |       |    |
|            |    |         | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min) | (min)      | (min) | Day | Evening | Night   | (mph) | (ft)  |    |
| LINESOURCE |    | TRUCK01 | 93.2  | 93.2      | 93.2  | 72.2  | 72.2      | 72.2  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |
| LINESOURCE |    | TRUCK02 | 93.2  | 93.2      | 93.2  | 73.0  | 73.0      | 73.0  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |
| LINESOURCE |    | TRUCK03 | 93.2  | 93.2      | 93.2  | 67.4  | 67.4      | 67.4  | Lw   | 93.2  |       |       |            |       |     |         |         |       | 8     | а  |

| Name       | ID      | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|---------|-------|-----|------|------------|------------|------|--------|
|            |         | Begin |     | End  | х          | У          | z    | Ground |
|            |         | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
| LINESOURCE | TRUCK01 | 8.00  | а   |      | 6254022.66 | 2249589.64 | 8.00 | 0.00   |
|            |         |       |     |      | 6254126.98 | 2249588.68 | 8.00 | 0.00   |
|            |         |       |     |      | 6254149.10 | 2249583.29 | 8.00 | 0.00   |
|            |         |       |     |      | 6254170.63 | 2249575.89 | 8.00 | 0.00   |
|            |         |       |     |      | 6254191.39 | 2249566.55 | 8.00 | 0.00   |
|            |         |       |     |      | 6254211.20 | 2249555.33 | 8.00 | 0.00   |
|            |         |       |     |      | 6254229.90 | 2249542.34 | 8.00 | 0.00   |
|            |         |       |     |      | 6254252.85 | 2249524.23 | 8.00 | 0.00   |
|            |         |       |     |      | 6254276.51 | 2249507.07 | 8.00 | 0.00   |
|            |         |       |     |      | 6254300.85 | 2249490.88 | 8.00 | 0.00   |
|            |         |       |     |      | 6254320.71 | 2249485.56 | 8.00 | 0.00   |
|            |         |       |     |      | 6254341.04 | 2249482.42 | 8.00 | 0.00   |
|            |         |       |     |      | 6254361.58 | 2249481.51 | 8.00 | 0.00   |
|            |         |       |     |      | 6254382.10 | 2249482.84 | 8.00 | 0.00   |

| Name       | ID      | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|---------|-------|-----|------|------------|------------|------|--------|
|            |         | Begin |     | End  | x          | у          | z    | Ground |
|            |         | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
|            |         |       |     |      | 6254402.35 | 2249486.39 | 8.00 | 0.00   |
| LINESOURCE | TRUCK02 | 8.00  | а   |      | 6254073.07 | 2248708.07 | 8.00 | 0.00   |
|            |         |       |     |      | 6254167.85 | 2248706.74 | 8.00 | 0.00   |
|            |         |       |     |      | 6254189.22 | 2248704.27 | 8.00 | 0.00   |
|            |         |       |     |      | 6254210.31 | 2248699.99 | 8.00 | 0.00   |
|            |         |       |     |      | 6254230.95 | 2248693.93 | 8.00 | 0.00   |
|            |         |       |     |      | 6254259.27 | 2248682.54 | 8.00 | 0.00   |
|            |         |       |     |      | 6254287.96 | 2248672.14 | 8.00 | 0.00   |
|            |         |       |     |      | 6254304.25 | 2248665.87 | 8.00 | 0.00   |
|            |         |       |     |      | 6254321.14 | 2248661.50 | 8.00 | 0.00   |
|            |         |       |     |      | 6254338.42 | 2248659.10 | 8.00 | 0.00   |
|            |         |       |     |      | 6254355.87 | 2248658.69 | 8.00 | 0.00   |
|            |         |       |     |      | 6254409.75 | 2248661.58 | 8.00 | 0.00   |
| LINESOURCE | TRUCK03 | 8.00  | а   |      | 6252843.28 | 2248718.67 | 8.00 | 0.00   |
|            |         |       |     |      | 6252704.02 | 2248722.76 | 8.00 | 0.00   |
|            |         |       |     |      | 6252693.85 | 2248722.93 | 8.00 | 0.00   |
|            |         |       |     |      | 6252683.84 | 2248724.73 | 8.00 | 0.00   |
|            |         |       |     |      | 6252674.25 | 2248728.11 | 8.00 | 0.00   |
|            |         |       |     |      | 6252665.33 | 2248732.98 | 8.00 | 0.00   |
|            |         |       |     |      | 6252657.30 | 2248739.22 | 8.00 | 0.00   |
|            |         |       |     |      | 6252650.37 | 2248746.66 | 8.00 | 0.00   |
|            |         |       |     |      | 6252644.72 | 2248755.12 | 8.00 | 0.00   |
|            |         |       |     |      | 6252640.51 | 2248764.37 | 8.00 | 0.00   |
|            |         |       |     |      | 6252637.83 | 2248774.18 | 8.00 | 0.00   |
|            |         |       |     |      | 6252636.75 | 2248784.29 | 8.00 | 0.00   |
|            |         |       |     |      | 6252641.67 | 2249545.56 | 8.00 | 0.00   |
|            |         |       |     |      | 6252644.20 | 2249556.15 | 8.00 | 0.00   |
|            |         |       |     |      | 6252648.44 | 2249566.18 | 8.00 | 0.00   |
|            |         |       |     |      | 6252654.28 | 2249575.37 | 8.00 | 0.00   |
|            |         |       |     |      | 6252661.54 | 2249583.48 | 8.00 | 0.00   |
|            |         |       |     |      | 6252670.04 | 2249590.28 | 8.00 | 0.00   |
|            |         |       |     |      | 6252679.55 | 2249595.59 | 8.00 | 0.00   |
|            |         |       |     |      | 6252689.80 | 2249599.26 | 8.00 | 0.00   |
|            |         |       |     |      | 6252700.51 | 2249601.20 | 8.00 | 0.00   |
|            |         |       |     |      | 6252711.40 | 2249601.34 | 8.00 | 0.00   |
|            |         |       |     |      | 6252846.55 | 2249601.43 | 8.00 | 0.00   |

## Area Source(s)

| Name       | M. | ID    | R     | esult. PW | Ľ     | Re    | esult. PW | L''   |      | Lw/L  | i     | Op     | erating Ti | me    | Heigh | t |
|------------|----|-------|-------|-----------|-------|-------|-----------|-------|------|-------|-------|--------|------------|-------|-------|---|
|            |    |       | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day    | Special    | Night | (ft)  |   |
|            |    |       | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min)  | (min)      | (min) |       | Π |
| AREASOURCE |    | CAR01 | 81.1  | 81.1      | 81.1  | 51.9  | 51.9      | 51.9  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR02 | 81.1  | 81.1      | 81.1  | 47.3  | 47.3      | 47.3  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR03 | 81.1  | 81.1      | 81.1  | 58.5  | 58.5      | 58.5  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR04 | 81.1  | 81.1      | 81.1  | 53.9  | 53.9      | 53.9  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR05 | 81.1  | 81.1      | 81.1  | 52.3  | 52.3      | 52.3  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR06 | 81.1  | 81.1      | 81.1  | 51.6  | 51.6      | 51.6  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR07 | 81.1  | 81.1      | 81.1  | 52.7  | 52.7      | 52.7  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR08 | 81.1  | 81.1      | 81.1  | 56.4  | 56.4      | 56.4  | Lw   | 81.1  |       |        |            |       | 5     | а |
| AREASOURCE |    | CAR09 | 81.1  | 81.1      | 81.1  | 47.7  | 47.7      | 47.7  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00  | 5     | а |
| AREASOURCE |    | CAR10 | 81.1  | 81.1      | 81.1  | 57.5  | 57.5      | 57.5  | Lw   | 81.1  |       | 900.00 | 0.00       | 0.00  | 5     | а |
| AREASOURCE |    | DRY01 | 103.4 | 103.4     | 103.4 | 60.4  | 60.4      | 60.4  | Lw   | 103.4 |       |        |            |       | 8     | а |
| AREASOURCE |    | DRY02 | 103.4 | 103.4     | 103.4 | 60.3  | 60.3      | 60.3  | Lw   | 103.4 |       |        |            |       | 8     | а |

| Name       | ID    | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|-------|-------|-----|------|------------|------------|------|--------|
|            |       | Begin |     | End  | х          | У          | z    | Ground |
|            |       | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
| AREASOURCE | CAR01 | 5.00  | а   |      | 6254033.80 | 2249554.58 | 5.00 | 0.00   |
|            |       |       |     |      | 6254164.88 | 2249553.92 | 5.00 | 0.00   |
|            |       |       |     |      | 6254165.54 | 2249536.07 | 5.00 | 0.00   |
|            |       |       |     |      | 6254191.97 | 2249535.41 | 5.00 | 0.00   |
|            |       |       |     |      | 6254191.09 | 2249493.34 | 5.00 | 0.00   |
|            |       |       |     |      | 6254034.68 | 2249495.10 | 5.00 | 0.00   |
| AREASOURCE | CAR02 | 5.00  | а   |      | 6254251.15 | 2249450.80 | 5.00 | 0.00   |
|            |       |       |     |      | 6254340.87 | 2249454.50 | 5.00 | 0.00   |
|            |       |       |     |      | 6254340.00 | 2249158.49 | 5.00 | 0.00   |
|            |       |       |     |      | 6254251.46 | 2249161.10 | 5.00 | 0.00   |
| AREASOURCE | CAR03 | 5.00  | а   |      | 6254296.60 | 2249148.94 | 5.00 | 0.00   |
|            |       |       |     |      | 6254339.13 | 2249150.68 | 5.00 | 0.00   |
|            |       |       |     |      | 6254339.13 | 2249102.94 | 5.00 | 0.00   |
|            |       |       |     |      | 6254296.60 | 2249104.67 | 5.00 | 0.00   |
| AREASOURCE | CAR04 | 5.00  | а   |      | 6254248.86 | 2249134.19 | 5.00 | 0.00   |
|            |       |       |     |      | 6254266.22 | 2249135.06 | 5.00 | 0.00   |
|            |       |       |     |      | 6254264.48 | 2248819.95 | 5.00 | 0.00   |
|            |       |       |     |      | 6254246.25 | 2248820.82 | 5.00 | 0.00   |
| AREASOURCE | CAR05 | 5.00  | а   |      | 6254294.00 | 2248953.63 | 5.00 | 0.00   |

| Name       | ID    | ŀ     | lei | ght  |            | Coordinat  | es   |        |
|------------|-------|-------|-----|------|------------|------------|------|--------|
|            |       | Begin |     | End  | x          | У          | z    | Ground |
|            |       | (ft)  |     | (ft) | (ft)       | (ft)       | (ft) | (ft)   |
|            |       |       |     |      | 6254337.40 | 2248952.76 | 5.00 | 0.00   |
|            |       |       |     |      | 6254335.66 | 2248760.06 | 5.00 | 0.00   |
|            |       |       |     |      | 6254294.00 | 2248761.79 | 5.00 | 0.00   |
| AREASOURCE | CAR06 | 5.00  | а   |      | 6254095.38 | 2248797.73 | 5.00 | 0.00   |
|            |       |       |     |      | 6254253.72 | 2248797.73 | 5.00 | 0.00   |
|            |       |       |     |      | 6254253.02 | 2248736.62 | 5.00 | 0.00   |
|            |       |       |     |      | 6254094.69 | 2248738.01 | 5.00 | 0.00   |
| AREASOURCE | CAR07 | 5.00  | а   |      | 6252671.34 | 2248808.12 | 5.00 | 0.00   |
|            |       |       |     |      | 6252802.93 | 2248807.83 | 5.00 | 0.00   |
|            |       |       |     |      | 6252802.36 | 2248748.69 | 5.00 | 0.00   |
|            |       |       |     |      | 6252689.45 | 2248748.97 | 5.00 | 0.00   |
|            |       |       |     |      | 6252689.73 | 2248767.37 | 5.00 | 0.00   |
|            |       |       |     |      | 6252670.77 | 2248767.65 | 5.00 | 0.00   |
| AREASOURCE | CAR08 | 5.00  | а   |      | 6252667.70 | 2249623.45 | 5.00 | 0.00   |
|            |       |       |     |      | 6252667.43 | 2249643.19 | 5.00 | 0.00   |
|            |       |       |     |      | 6252835.28 | 2249641.29 | 5.00 | 0.00   |
|            |       |       |     |      | 6252836.09 | 2249623.45 | 5.00 | 0.00   |
| AREASOURCE | CAR09 | 5.00  | а   |      | 6252653.42 | 2248267.23 | 5.00 | 0.00   |
|            |       |       |     |      | 6252997.87 | 2248266.54 | 5.00 | 0.00   |
|            |       |       |     |      | 6253000.64 | 2248199.18 | 5.00 | 0.00   |
|            |       |       |     |      | 6252654.81 | 2248198.48 | 5.00 | 0.00   |
| AREASOURCE | CAR10 | 5.00  | а   |      | 6252278.05 | 2248296.04 | 5.00 | 0.00   |
|            |       |       |     |      | 6252297.00 | 2248296.04 | 5.00 | 0.00   |
|            |       |       |     |      | 6252298.87 | 2248175.68 | 5.00 | 0.00   |
|            |       |       |     |      | 6252276.45 | 2248176.48 | 5.00 | 0.00   |
| AREASOURCE | DRY01 | 8.00  | а   |      | 6252848.18 | 2249499.19 | 8.00 | 0.00   |
|            |       |       |     |      | 6252849.92 | 2249681.08 | 8.00 | 0.00   |
|            |       |       |     |      | 6254023.35 | 2249671.99 | 8.00 | 0.00   |
|            |       |       |     |      | 6254023.14 | 2249488.11 | 8.00 | 0.00   |
| AREASOURCE | DRY02 | 8.00  | а   |      | 6252844.00 | 2248881.49 | 8.00 | 0.00   |
|            |       |       |     |      | 6254017.73 | 2248872.62 | 8.00 | 0.00   |
|            |       |       |     |      | 6254017.73 | 2248812.86 | 8.00 | 0.00   |
|            |       |       |     |      | 6254073.37 | 2248811.99 | 8.00 | 0.00   |
|            |       |       |     |      | 6254071.18 | 2248689.60 | 8.00 | 0.00   |
|            |       |       |     |      | 6252844.25 | 2248698.03 | 8.00 | 0.00   |

# Barrier(s)

| Name           | Sel. | М. | ID | Abso | rption | Z-Ext. | Canti | lever | H     | leig | ght  |            | Coordinate | es    |        |
|----------------|------|----|----|------|--------|--------|-------|-------|-------|------|------|------------|------------|-------|--------|
|                |      |    |    | left | right  |        | horz. | vert. | Begin |      | End  | x          | У          | z     | Ground |
|                |      |    |    |      |        | (ft)   | (ft)  | (ft)  | (ft)  |      | (ft) | (ft)       | (ft)       | (ft)  | (ft)   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6252847.29 | 2249556.92 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252847.21 | 2249577.33 | 14.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6252847.79 | 2249617.86 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252847.98 | 2249683.02 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254024.91 | 2249673.82 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254024.48 | 2249609.06 | 14.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6254024.13 | 2249568.26 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254023.79 | 2249488.11 | 14.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6252841.75 | 2248823.37 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6252841.36 | 2248737.48 | 14.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6252842.11 | 2248696.85 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6253255.65 | 2248693.73 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6253639.85 | 2248690.78 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254072.84 | 2248688.17 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254158.43 | 2248687.13 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254177.90 | 2248685.46 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254197.09 | 2248681.75 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254220.05 | 2248675.16 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      |      | 6254242.48 | 2248666.95 | 14.00 | 0.00   |
| BARRIERPLANNED |      |    | 0  |      |        |        |       |       | 14.00 | а    |      | 6254074.78 | 2248813.90 | 14.00 | 0.00   |
|                |      |    |    |      |        |        |       |       |       |      | T    | 6254074.31 | 2248728.21 | 14.00 | 0.00   |

# Building(s)

| Name     | Sel. | М. | ID            | RB | Residents | Absorption | Height | : |            | Coordinat  | es    |        |
|----------|------|----|---------------|----|-----------|------------|--------|---|------------|------------|-------|--------|
|          |      |    |               |    |           |            | Begin  |   | х          | У          | z     | Ground |
|          |      |    |               |    |           |            | (ft)   |   | (ft)       | (ft)       | (ft)  | (ft)   |
| BUILDING |      |    | BUILDING00001 | x  | 0         |            | 45.00  | а | 6252683.18 | 2249560.17 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6252847.29 | 2249556.92 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6252845.20 | 2249496.50 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254211.78 | 2249486.77 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254211.99 | 2249481.85 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254240.02 | 2249481.75 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254239.39 | 2249453.61 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254244.83 | 2249453.72 | 45.00 | 0.00   |
|          |      |    |               |    |           |            |        |   | 6254240.35 | 2248845.57 | 45.00 | 0.00   |

| Name | Sel. | M. | ID | RB | Residents | Absorption | Height |            | Coordinat  | es    |        |
|------|------|----|----|----|-----------|------------|--------|------------|------------|-------|--------|
|      |      |    |    |    |           |            | Begin  | х          | У          | z     | Ground |
|      |      |    |    |    |           |            | (ft)   | (ft)       | (ft)       | (ft)  | (ft)   |
|      |      |    |    |    |           |            |        | 6254235.32 | 2248845.74 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6254234.81 | 2248817.75 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6254208.57 | 2248817.90 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6254207.16 | 2248812.72 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6254019.25 | 2248814.39 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6254019.41 | 2248874.24 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252842.50 | 2248882.80 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252842.50 | 2248823.36 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252710.01 | 2248823.88 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252710.18 | 2248829.00 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252681.76 | 2248829.57 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252682.27 | 2248857.48 | 45.00 | 0.00   |
|      |      |    |    |    |           |            |        | 6252677.10 | 2248857.99 | 45.00 | 0.00   |

# Ground Absorption(s)

| Name   | Sel. | м. | ID | G   | Coord      | inates     |
|--------|------|----|----|-----|------------|------------|
|        |      |    |    |     | x          | У          |
|        |      |    |    |     | (ft)       | (ft)       |
| GROUND |      |    | 0  | 0.5 | 6254665.08 | 2248616.10 |
|        |      |    |    |     | 6254665.08 | 2248478.76 |
|        |      |    |    |     | 6251546.42 | 2248521.68 |
|        |      |    |    |     | 6251514.95 | 2248721.96 |



APPENDIX 10.1:

**PROJECT CONSTRUCTION NOISE CALCULATIONS** 





# 15091 - Mead Valley Commerce Center CadnaA Noise Prediction Model: 15091-05\_Construction.cna

CadnaA Noise Prediction Model: 15091-05\_Construction.cna Date: 20.12.23 Analyst: B. Lawson

## Calculation Configuration

| ParameterValueGeneral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Configurat                           | tion                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)0.00Daytime Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Rcvr100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10ScreeningIncl. Ground Att. over BarrierDots. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierMin Speed for Dir. (#(Unit,SPEED))3.0Ground Absorption G0.50Wind Speed for Dir. (#Unit,SPEED)3.0Min Speed for Dir. (#Unit,SPEED)3.0Radiways (FTA/FRA)Industrial IGTAircraft (???)Industria IGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                            | Value                          |
| Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General                              |                                |
| Min. Dist Src to Rov0.00Partition0.50Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Line SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTM100Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.00Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Intel Stance Scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max. Error (dB)                      | 0.00                           |
| Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max. Search Radius (#(Unit,LEN))     | 2000.01                        |
| Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnProj. Area SourcesOnRef. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min. Dist Src to Rcvr                | 0.00                           |
| Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnRef. TimeDaytime Penalty (dB)0.00Rer. Time Penalty (dB)0.00Standard Height (m)0.00Min. Length of Section (%)0.00Night-time Penalty (dB)0.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Src100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDerrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Partition                            |                                |
| Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Ref. Time Penalty (dB)10.00Night-time Penalty (dB)10.00DTMStandard Height (m)Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rovr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Some ObjLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raster Factor                        | 0.50                           |
| Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReffection2Search Radius Rcvr100.00Max. Order of Reflection2Search Radius Rcvr100.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max. Length of Section (#(Unit,LEN)) | 999.99                         |
| Proj. Line SourcesOnProj. Area SourcesOnRef. TimeOnDaytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMOnStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Some ObjLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)Interf Carling State (Construct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min. Length of Section (#(Unit,LEN)) | 1.01                           |
| Proj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Revr1000.00Min. Distance Source - Reflector1.00Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min. Length of Section (%)           | 0.00                           |
| Ref. TimeImage: Constant of the system of the s | Proj. Line Sources                   | On                             |
| Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2search Radius Src100.00Max. Order of Reflection2Search Radius Rxr100.00Max. Distance Source - Rcvr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (TMM)Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proj. Area Sources                   | On                             |
| Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref. Time                            |                                |
| Night-time Penalty (dB)10.00DTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Daytime Penalty (dB)                 | 0.00                           |
| DTMDTMStandard Height (m)0.00Model of TerrainTriangulationReflection2max. Order of Reflection2Search Radius Src100.00Search Radius Rovr100.00Max. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)100Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over Barrier<br>Dz with limit (20/25)Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Railways (FTA/FRA)Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recr. Time Penalty (dB)              | 5.00                           |
| Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rovr     100.00 1000.00       Max. Distance Source - Revr     100.00       Min. Distance Source - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     E       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Interline function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Night-time Penalty (dB)              | 10.00                          |
| Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rovr     100.00       Max. Distance Source - Revr     1000.00 1000.00       Min. Distance Source - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     1       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DTM                                  |                                |
| ReflectionCmax. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDrawth limit (20/25)Destrier Coefficients C1,2,3Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Radad (TNM)International Additional Addit                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard Height (m)                  | 0.00                           |
| max. Order of Reflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Rvr - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit, TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit, SPEED))3.0Roads (TMM)Industrial (SC)Railways (FTA/FRA)Industrial (SC)Aircraft (???)Industrial (SC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Model of Terrain                     | Triangulation                  |
| Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00       Min. Distance Rcvr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Darrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Intel State                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reflection                           |                                |
| Search Radius Rovr 1000.00<br>Max. Distance Source - Rcvr 1000.00 1000.00<br>Min. Distance Source - Reflector 0.10<br>Industrial (ISO 9613) =<br>Lateral Diffraction some Obj<br>Obst. within Area Src do not shield On<br>Screening Incl. Ground Att. over Barrier<br>Dz with limit (20/25)<br>Barrier Coefficients C1,2,3 3.0 20.0 0.0<br>Temperature (#(Unit, TEMP)) 10<br>rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TMM)<br>Railways (FTA/FRA) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | max. Order of Reflection             | 2                              |
| Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Darrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Intercent (#Content (#Conten (#Content (#Content (#Content (#Conten (#Content (#Cont                                                                                                                                                                                                                                                                                                                                                                                      | Search Radius Src                    | 100.00                         |
| Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Lateral and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                      | Search Radius Rcvr                   | 100.00                         |
| Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)     Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Interface       Aircraft (???)     Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max. Distance Source - Rcvr          | 1000.00 1000.00                |
| Industrial (ISO 9613)     some Obj       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Railways (FTA/FRA)     Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min. Distance Rvcr - Reflector       | 1.00 1.00                      |
| Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Radas (TNM)     Railways (FTA/FRA)       Aircraft (???)     Interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min. Distance Source - Reflector     | 0.10                           |
| Obst. within Area Src do not shield     On       Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Industrial (ISO 9613)                |                                |
| Screening     Incl. Ground Att. over Barrier       Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Image: Comparison of                                                                                                                                                                                                                                                  | Lateral Diffraction                  | some Obj                       |
| Dz with limit (20/25)       Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit, TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Letter (Construction of Construction of Constructin of Construction of Construction of Construction of Const                                                                                                                                                                                                                  | Obst. within Area Src do not shield  | On                             |
| Barrier Coefficients C1,2,3     3.0 20.0 0.0       Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TMM)     Railways (FTA/FRA)       Aircraft (???)     Letter (Comparison of Comparison of Compa                                                                                                                                                                                            | Screening                            | Incl. Ground Att. over Barrier |
| Temperature (#(Unit,TEMP))     10       rel. Humidity (%)     70       Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | Dz with limit (20/25)          |
| rel. Humidity (%) 70<br>Ground Absorption G 0.50<br>Wind Speed for Dir. (#(Unit,SPEED)) 3.0<br>Roads (TNM) Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barrier Coefficients C1,2,3          | 3.0 20.0 0.0                   |
| Ground Absorption G     0.50       Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temperature (#(Unit,TEMP))           | 10                             |
| Wind Speed for Dir. (#(Unit,SPEED))     3.0       Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rel. Humidity (%)                    | 70                             |
| Roads (TNM) Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ground Absorption G                  | 0.50                           |
| Railways (FTA/FRA) Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wind Speed for Dir. (#(Unit,SPEED))  | 3.0                            |
| Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Roads (TNM)                          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Railways (FTA/FRA)                   |                                |
| Strictly acc. to AzB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aircraft (???)                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Strictly acc. to AzB                 |                                |

### **Receiver Noise Levels**

|      | _  |     |       |          |       |              |       |       |          |      |            |        |   |             |            |      |  |
|------|----|-----|-------|----------|-------|--------------|-------|-------|----------|------|------------|--------|---|-------------|------------|------|--|
| Name | М. | ID  |       | Level Lr |       | Limit. Value |       |       | Land Use |      |            | Height |   | Coordinates |            |      |  |
|      |    |     | Day   | Night    | CNEL  | Day          | Night | CNEL  | Туре     | Auto | Noise Type |        |   | Х           | Y          | Z    |  |
|      |    |     | (dBA) | (dBA)    | (dBA) | (dBA)        | (dBA) | (dBA) |          |      |            | (ft)   |   | (ft)        | (ft)       | (ft) |  |
| R01  |    | R01 | 56.8  | 56.8     | 63.5  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6252359.12  | 2249964.74 | 5.00 |  |
| R02  |    | R02 | 59.6  | 59.6     | 66.3  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6253705.57  | 2249935.66 | 5.00 |  |
| R03  |    | R03 | 60.1  | 60.1     | 66.8  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6254179.53  | 2248469.51 | 5.00 |  |
| R04  |    | R04 | 63.6  | 63.6     | 70.3  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6253307.27  | 2248425.19 | 5.00 |  |
| R05  |    | R05 | 64.4  | 64.4     | 71.1  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6252049.84  | 2248238.08 | 5.00 |  |
| R06  |    | R06 | 66.0  | 66.0     | 72.7  | 55.0         | 45.0  | 0.0   |          |      |            | 5.00   | а | 6252729.91  | 2247767.15 | 5.00 |  |

## Area Source(s)

| Name         | M. | ID             | R     | esult. PW | /L    | Re    | esult. PW | L''   |      | Lw/L  | i     | Op    | erating Ti | me    | Heigh | t |
|--------------|----|----------------|-------|-----------|-------|-------|-----------|-------|------|-------|-------|-------|------------|-------|-------|---|
|              |    |                | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day   | Special    | Night | (ft)  |   |
|              |    |                | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min) | (min)      | (min) |       |   |
| SITEBOUNDARY |    | CONSTRUCTION01 | 118.4 | 118.4     | 118.4 | 65.8  | 65.8      | 65.8  | Lw   | 118.4 |       |       |            |       | 8     | а |
| SITEBOUNDARY |    | CONSTRUCTION02 | 118.4 | 118.4     | 118.4 | 70.6  | 70.6      | 70.6  | Lw   | 118.4 |       |       |            |       | 8     | а |

| Name         | ID             | Height |           |      |   |            | Coordinat  | es     |      |
|--------------|----------------|--------|-----------|------|---|------------|------------|--------|------|
|              |                | Begin  | Begin End |      | x | У          | z          | Ground |      |
|              |                | (ft)   |           | (ft) |   | (ft)       | (ft)       | (ft)   | (ft) |
| SITEBOUNDARY | CONSTRUCTION01 | 8.00   | а         |      |   | 6252564.26 | 2249715.91 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254403.85 | 2249701.33 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254401.79 | 2249406.28 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254413.51 | 2249406.71 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254412.21 | 2249169.73 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254411.77 | 2249170.17 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6254409.60 | 2248625.90 | 8.00   | 0.00 |
|              |                |        |           |      |   | 6253466.90 | 2248662.35 | 8.00   | 0.00 |

| Name         | ID             | Height |   |      |  |            | Coordinat  | es   |        |
|--------------|----------------|--------|---|------|--|------------|------------|------|--------|
|              |                | Begin  |   | End  |  | х          | У          | z    | Ground |
|              |                | (ft)   |   | (ft) |  | (ft)       | (ft)       | (ft) | (ft)   |
|              |                |        |   |      |  | 6252541.11 | 2248698.38 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6252546.32 | 2249230.50 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6252547.19 | 2249357.23 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6252562.38 | 2249481.80 | 8.00 | 0.00   |
| SITEBOUNDARY | CONSTRUCTION02 | 8.00   | а |      |  | 6253145.73 | 2248496.91 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6253141.01 | 2247836.68 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6252154.78 | 2247841.91 | 8.00 | 0.00   |
|              |                |        |   |      |  | 6252161.02 | 2248502.70 | 8.00 | 0.00   |

# Ground Absorption(s)

| Name   | Sel. | М. | ID | G   | Coord      | inates     |
|--------|------|----|----|-----|------------|------------|
|        |      |    |    |     | х          | У          |
|        |      |    |    |     | (ft)       | (ft)       |
| GROUND |      |    | 0  | 0.5 | 6254665.08 | 2248616.10 |
|        |      |    |    |     | 6254665.08 | 2248478.76 |
|        |      |    |    |     | 6251546.42 | 2248521.68 |
|        |      |    |    |     | 6251514.95 | 2248721.96 |

APPENDIX 10.2:

# NIGHTTIME CONCRETE POUR NOISE CALCULATIONS





# 15091 - Mead Valley Commerce Center

CadnaA Noise Prediction Model: 15091-05\_Pour.cna Date: 20.12.23 Analyst: B. Lawson

### **Calculation Configuration**

| Configurat                           | tion                           |
|--------------------------------------|--------------------------------|
| Parameter                            | Value                          |
| General                              |                                |
| Max. Error (dB)                      | 0.00                           |
| Max. Search Radius (#(Unit,LEN))     | 2000.01                        |
| Min. Dist Src to Rcvr                | 0.00                           |
| Partition                            |                                |
| Raster Factor                        | 0.50                           |
| Max. Length of Section (#(Unit,LEN)) | 999.99                         |
| Min. Length of Section (#(Unit,LEN)) | 1.01                           |
| Min. Length of Section (%)           | 0.00                           |
| Proj. Line Sources                   | On                             |
| Proj. Area Sources                   | On                             |
| Ref. Time                            |                                |
| Daytime Penalty (dB)                 | 0.00                           |
| Recr. Time Penalty (dB)              | 5.00                           |
| Night-time Penalty (dB)              | 10.00                          |
| DTM                                  |                                |
| Standard Height (m)                  | 0.00                           |
| Model of Terrain                     | Triangulation                  |
| Reflection                           |                                |
| max. Order of Reflection             | 2                              |
| Search Radius Src                    | 100.00                         |
| Search Radius Rcvr                   | 100.00                         |
| Max. Distance Source - Rcvr          | 1000.00 1000.00                |
| Min. Distance Rvcr - Reflector       | 1.00 1.00                      |
| Min. Distance Source - Reflector     | 0.10                           |
| Industrial (ISO 9613)                |                                |
| Lateral Diffraction                  | some Obj                       |
| Obst. within Area Src do not shield  | On                             |
| Screening                            | Incl. Ground Att. over Barrier |
|                                      | Dz with limit (20/25)          |
| Barrier Coefficients C1,2,3          | 3.0 20.0 0.0                   |
| Temperature (#(Unit,TEMP))           | 10                             |
| rel. Humidity (%)                    | 70                             |
| Ground Absorption G                  | 0.50                           |
| Wind Speed for Dir. (#(Unit,SPEED))  | 3.0                            |
| Roads (TNM)                          |                                |
| Railways (FTA/FRA)                   |                                |
| Aircraft (???)                       |                                |
| Strictly acc. to AzB                 |                                |
|                                      |                                |

#### **Receiver Noise Levels**

| Name | М. | ID  |       | Level Lr |       | Limit. Value |       |       |      | Land | Use        | Height |   | Coordinates |            |      |  |
|------|----|-----|-------|----------|-------|--------------|-------|-------|------|------|------------|--------|---|-------------|------------|------|--|
|      |    |     | Day   | Night    | CNEL  | Day          | Night | CNEL  | Туре | Auto | Noise Type |        |   | Х           | Y          | Z    |  |
|      |    |     | (dBA) | (dBA)    | (dBA) | (dBA)        | (dBA) | (dBA) |      |      |            | (ft)   |   | (ft)        | (ft)       | (ft) |  |
| R01  |    | R01 | 36.9  | 36.9     | 43.5  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6252359.12  | 2249964.74 | 5.00 |  |
| R02  |    | R02 | 40.5  | 40.5     | 47.1  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6253705.57  | 2249935.66 | 5.00 |  |
| R03  |    | R03 | 39.5  | 39.5     | 46.1  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6254179.53  | 2248469.51 | 5.00 |  |
| R04  |    | R04 | 40.4  | 40.4     | 47.1  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6253307.27  | 2248425.19 | 5.00 |  |
| R05  |    | R05 | 34.4  | 34.4     | 41.1  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6252049.84  | 2248238.08 | 5.00 |  |
| R06  |    | R06 | 34.5  | 34.5     | 41.1  | 55.0         | 45.0  | 0.0   |      |      |            | 5.00   | а | 6252729.91  | 2247767.15 | 5.00 |  |

### Area Source(s)

|          |    |    | • •   |           |       |       |           |       |      |       |       |       |                |       |      |   |
|----------|----|----|-------|-----------|-------|-------|-----------|-------|------|-------|-------|-------|----------------|-------|------|---|
| Name     | м. | ID | R     | esult. PW | /L    | R     | esult. PW | L''   |      | Lw/L  | i     | Op    | Operating Time |       |      | t |
|          |    |    | Day   | Evening   | Night | Day   | Evening   | Night | Туре | Value | norm. | Day   | Special        | Night | (ft) |   |
|          |    |    | (dBA) | (dBA)     | (dBA) | (dBA) | (dBA)     | (dBA) |      |       | dB(A) | (min) | (min)          | (min) |      |   |
| CONCRETE |    | 0  | 100.3 | 100.3     | 100.3 | 50.1  | 50.1      | 50.1  | Lw   | 100.3 |       |       |                |       | 8    | а |

| Name     | ID | Height    |   |      | Coordinat  | es         |        |      |
|----------|----|-----------|---|------|------------|------------|--------|------|
|          |    | Begin End |   | х    | У          | z          | Ground |      |
|          |    | (ft)      |   | (ft) | (ft)       | (ft)       | (ft)   | (ft) |
| CONCRETE | 0  | 8.00      | а |      | 6252683.42 | 2249560.18 | 8.00   | 0.00 |
|          |    |           |   |      | 6252805.17 | 2249562.13 | 8.00   | 0.00 |
|          |    |           |   |      | 6254015.87 | 2249554.50 | 8.00   | 0.00 |
|          |    |           |   |      | 6254017.35 | 2249495.45 | 8.00   | 0.00 |
|          |    |           |   |      | 6254212.55 | 2249494.35 | 8.00   | 0.00 |
|          |    |           |   |      | 6254244.45 | 2249489.03 | 8.00   | 0.00 |
|          |    |           |   |      | 6254247.11 | 2249459.79 | 8.00   | 0.00 |
|          |    |           |   |      | 6254237.80 | 2248821.89 | 8.00   | 0.00 |
|          |    |           |   |      | 6254011.88 | 2248816.57 | 8.00   | 0.00 |

| Name | ID | F     | lei | ght  |  | Coordinates |            |      |        |  |  |  |
|------|----|-------|-----|------|--|-------------|------------|------|--------|--|--|--|
|      |    | Begin |     | End  |  | х           | у          | z    | Ground |  |  |  |
|      |    | (ft)  |     | (ft) |  | (ft)        | (ft)       | (ft) | (ft)   |  |  |  |
|      |    |       |     |      |  | 6252801.18  | 2248827.20 | 8.00 | 0.00   |  |  |  |
|      |    |       |     |      |  | 6252678.34  | 2248830.22 | 8.00 | 0.00   |  |  |  |

## Ground Absorption(s)

| Name   | Sel. | М. | ID | G   | Coord      | Coordinates |  |  |
|--------|------|----|----|-----|------------|-------------|--|--|
|        |      |    |    |     | x          | У           |  |  |
|        |      |    |    |     | (ft)       | (ft)        |  |  |
| GROUND |      |    | 0  | 0.5 | 6254665.08 | 2248616.10  |  |  |
|        |      |    |    |     | 6254665.08 | 2248478.76  |  |  |
|        |      |    |    |     | 6251546.42 | 2248521.68  |  |  |
|        |      |    |    |     | 6251514.95 | 2248721.96  |  |  |

APPENDIX 10.3:

**BLASTING NOISE CALCULATIONS** 





# 15091 - Mead Valley Commerce Center

CadnaA Noise Prediction Model: 15091-05\_Blasting.cna Date: 20.12.23 Analyst: B. Lawson

## Calculation Configuration

| ParameterValueGeneral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Configurat                           | tion                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|--|--|--|--|
| Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00PartitionRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (#(Unit,LEN))0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeDaytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral Diffractionsome ObjObst. within Area Src do not shieldOn                                                                                                           | Parameter                            | Value                          |  |  |  |  |
| Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Rcvr0.00Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General                              |                                |  |  |  |  |
| Min. Dist Src to Rcvr0.00Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max. Error (dB)                      | 0.00                           |  |  |  |  |
| Partition0.50Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnRef. Time0.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)0.00Night-time Penalty (dB)10.00DTM0.00Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Min. Distance Source - Rctvr1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.01Lateral Diffractionsome ObjObst. within Area Src do not shieldOn                                                                                                                                    | Max. Search Radius (#(Unit,LEN))     | 2000.01                        |  |  |  |  |
| Raster Factor     0.50       Max. Length of Section (#(Unit,LEN))     999.99       Min. Length of Section (%)     0.00       Proj. Line Sources     On       Proj. Line Sources     On       Ref. Time     Daytime Penalty (dB)       Daytime Penalty (dB)     0.00       DTM     Standard Height (m)       Model of Terrain     Triangulation       Refeftcion     2       Search Radius Src     100.00       Search Radius Src     100.00       Min. Distance Source - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction                                                                                                             | Min. Dist Src to Rcvr                | 0.00                           |  |  |  |  |
| Max. Length of Section (#(Unit,LEN))       999.99         Min. Length of Section (%)       0.00         Proj. Line Sources       On         Proj. Line Sources       On         Ref. Time       Daytime Penalty (dB)         Daytime Penalty (dB)       0.00         DTM       Standard Height (m)         Model of Terrain       Triangulation         Reflection       Triangulation         Reflection       2         Search Radius Src       100.00         Search Radius Revr       100.00         Min. Distance Source - Reflector       1.00         Min. Distance Source - Reflector       0.10         Industrial (ISO 9613)       Lateral Diffraction         Lateral Diffraction       some Obj | Partition                            |                                |  |  |  |  |
| Min. Length of Section (#(Unit,LEN))       1.01         Min. Length of Section (%)       0.00         Proj. Line Sources       On         Proj. Area Sources       On         Ref. Time       Daytime Penalty (dB)         Daytime Penalty (dB)       5.00         Night-time Penalty (dB)       10.00         DTM       Standard Height (m)         Model of Terrain       Triangulation         Reflection       2         Search Radius Src       100.00         Max. Distance Source - Reflector       1.00         Min. Distance Source - Reflector       0.10         Industrial (ISO 9613)       Lateral Diffraction         Lateral Diffraction       some Obj                                      | Raster Factor                        | 0.50                           |  |  |  |  |
| Min. Length of Section (%)       0.00         Proj. Line Sources       On         Proj. Area Sources       On         Ref. Time       Daytime Penalty (dB)         Daytime Penalty (dB)       5.00         Night-time Penalty (dB)       10.00         DTM       Standard Height (m)         Standard Height (m)       0.00         Model of Terrain       Triangulation         Reflection       2         Search Radius Src       100.00         Search Radius Rcvr       100.00         Min. Distance Source - Rcvr       1.00 1.00         Min. Distance Source - Reflector       0.10         Industrial (ISO 9613)       Lateral Diffraction         Lateral Diffraction       some Obj               | Max. Length of Section (#(Unit,LEN)) | 999.99                         |  |  |  |  |
| Proj. Line Sources     On       Proj. Area Sources     On       Ref. Time     Daytime Penalty (dB)       Daytime Penalty (dB)     0.00       Rer. Time Penalty (dB)     10.00       Night-time Penalty (dB)     10.00       DTM     Standard Height (m)       Model of Terrain     Triangulation       Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Min. Distance Source - Rcvr     1000.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction       Dots. within Area Src do not shield     On                                                                                                           | Min. Length of Section (#(Unit,LEN)) | 1.01                           |  |  |  |  |
| Proj. Area Sources     On       Ref. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min. Length of Section (%)           | 0.00                           |  |  |  |  |
| Ref. Time     0.00       Daytime Penalty (dB)     0.00       Recr. Time Penalty (dB)     5.00       Night-time Penalty (dB)     10.00       DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Min. Distance Source - Rcvr     1000.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     1.01       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                               | Proj. Line Sources                   | On                             |  |  |  |  |
| Daytime Penalty (dB)     0.00       Recr. Time Penalty (dB)     5.00       Night-time Penalty (dB)     10.00       DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Revr     100.00       Min. Distance Source - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction       Data Diffraction     some Obj                                                                                                                                                                 | Proj. Area Sources                   | On                             |  |  |  |  |
| Recr. Time Penalty (dB)     5.00       Night-time Penalty (dB)     10.00       DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Revr     100.00       Max. Distance Source - Revr     1000.00 1000.00       Min. Distance Source - Reflector     1.00       Industrial (ISO 9613)     1.00       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                               | Ref. Time                            |                                |  |  |  |  |
| Night-time Penalty (dB)     10.00       DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     100       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                              | Daytime Penalty (dB)                 | 0.00                           |  |  |  |  |
| DTM     0.00       Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     2       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                   | Recr. Time Penalty (dB)              | 5.00                           |  |  |  |  |
| Standard Height (m)     0.00       Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Source - Reflector     1.00       Industrial (ISO 9613)     100       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                   | Night-time Penalty (dB)              | 10.00                          |  |  |  |  |
| Model of Terrain     Triangulation       Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     100       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                       | DTM                                  |                                |  |  |  |  |
| Reflection     2       max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     100       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                                           | Standard Height (m)                  | 0.00                           |  |  |  |  |
| max. Order of Reflection     2       Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Lateral Diffraction       Dost. within Area Src do not shield     On                                                                                                                                                                                                                                                                                                                                         | Model of Terrain                     | Triangulation                  |  |  |  |  |
| Search Radius Src     100.00       Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Editeral Diffraction       Some Obj     Obst. within Area Src do not shield                                                                                                                                                                                                                                                                                                                                                                       | Reflection                           |                                |  |  |  |  |
| Search Radius Rcvr     100.00       Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial Diffraction       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                                                                                                                       | max. Order of Reflection             | 2                              |  |  |  |  |
| Max. Distance Source - Rcvr     1000.00 1000.00       Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                                                                                                                                                            | Search Radius Src                    | 100.00                         |  |  |  |  |
| Min. Distance Rvcr - Reflector     1.00 1.00       Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Search Radius Rcvr                   | 100.00                         |  |  |  |  |
| Min. Distance Source - Reflector     0.10       Industrial (ISO 9613)     Industrial (ISO 9613)       Lateral Diffraction     some Obj       Obst. within Area Src do not shield     On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max. Distance Source - Rcvr          | 1000.00 1000.00                |  |  |  |  |
| Industrial (ISO 9613)<br>Lateral Diffraction some Obj<br>Obst. within Area Src do not shield On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min. Distance Rvcr - Reflector       | 1.00 1.00                      |  |  |  |  |
| Lateral Diffraction         some Obj           Obst. within Area Src do not shield         On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min. Distance Source - Reflector     | 0.10                           |  |  |  |  |
| Obst. within Area Src do not shield On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Industrial (ISO 9613)                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lateral Diffraction                  | some Obj                       |  |  |  |  |
| Screening Incl. Ground Att. over Barrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Obst. within Area Src do not shield  | On                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Screening                            | Incl. Ground Att. over Barrier |  |  |  |  |
| Dz with limit (20/25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | Dz with limit (20/25)          |  |  |  |  |
| Barrier Coefficients C1,2,3 3.0 20.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barrier Coefficients C1,2,3          | 3.0 20.0 0.0                   |  |  |  |  |
| Temperature (#(Unit,TEMP)) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temperature (#(Unit,TEMP))           | 10                             |  |  |  |  |
| rel. Humidity (%) 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rel. Humidity (%)                    | 70                             |  |  |  |  |
| Ground Absorption G 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ground Absorption G                  | 0.00                           |  |  |  |  |
| Wind Speed for Dir. (#(Unit,SPEED)) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wind Speed for Dir. (#(Unit,SPEED))  | 3.0                            |  |  |  |  |
| Roads (TNM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Roads (TNM)                          |                                |  |  |  |  |
| Railways (FTA/FRA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Railways (FTA/FRA)                   |                                |  |  |  |  |
| Aircraft (???)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aircraft (???)                       |                                |  |  |  |  |
| Strictly acc. to AzB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strictly acc. to AzB                 |                                |  |  |  |  |

### **Receiver Noise Levels**

| Name      | М. | ID | Level Lr |       |       | Limit. Value |       |       | Land Use |      |            | Height |   | Coordinates |            |      |
|-----------|----|----|----------|-------|-------|--------------|-------|-------|----------|------|------------|--------|---|-------------|------------|------|
|           |    |    | Day      | Night | CNEL  | Day          | Night | CNEL  | Туре     | Auto | Noise Type |        |   | Х           | Y          | Z    |
|           |    |    | (dBA)    | (dBA) | (dBA) | (dBA)        | (dBA) | (dBA) |          |      |            | (ft)   |   | (ft)        | (ft)       | (ft) |
| RECEIVERS |    | R1 | 78.5     | 78.5  | 85.2  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6252359.12  | 2249964.74 | 5.00 |
| RECEIVERS |    | R2 | 74.3     | 74.3  | 81.0  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6253705.57  | 2249935.66 | 5.00 |
| RECEIVERS |    | R3 | 70.5     | 70.5  | 77.2  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6254179.53  | 2248469.51 | 5.00 |
| RECEIVERS |    | R4 | 76.7     | 76.7  | 83.4  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6253307.27  | 2248425.19 | 5.00 |
| RECEIVERS |    | R5 | 73.3     | 73.3  | 80.0  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6252049.84  | 2248238.08 | 5.00 |
| RECEIVERS |    | R6 | 72.1     | 72.1  | 78.8  | 0.0          | 0.0   | 0.0   |          | х    | Total      | 5.00   | а | 6252729.91  | 2247767.15 | 5.00 |

### Area Source(s)

| Name        | М. | ID      | Result. PWL |         |       | Re    | esult. PW | Lw / Li |      |       | Op    | Height | t       |       |      |   |
|-------------|----|---------|-------------|---------|-------|-------|-----------|---------|------|-------|-------|--------|---------|-------|------|---|
|             |    |         | Day         | Evening | Night | Day   | Evening   | Night   | Туре | Value | norm. | Day    | Special | Night | (ft) | Π |
|             |    |         | (dBA)       | (dBA)   | (dBA) | (dBA) | (dBA)     | (dBA)   |      |       | dB(A) | (min)  | (min)   | (min) |      |   |
| BLASTBUFF20 |    | BLAST01 | 125.7       | 125.7   | 125.7 | 97.6  | 97.6      | 97.6    | Lw   | 125.7 |       |        |         |       | 3    | а |
| BLASTBUFF20 |    | BLAST02 | 125.7       | 125.7   | 125.7 | 97.7  | 97.7      | 97.7    | Lw   | 125.7 |       |        |         |       | 3    | а |
| BLASTBUFF20 |    | BLAST03 | 125.7       | 125.7   | 125.7 | 97.3  | 97.3      | 97.3    | Lw   | 125.7 |       |        |         |       | 3    | а |
| BLASTBUFF20 |    | BLAST04 | 125.7       | 125.7   | 125.7 | 97.3  | 97.3      | 97.3    | Lw   | 125.7 |       |        |         |       | 3    | а |

| Name        | ID      | ŀ     | lei | ght  |   | Coordinates |            |        |      |  |  |  |
|-------------|---------|-------|-----|------|---|-------------|------------|--------|------|--|--|--|
|             |         | Begin | End |      | x | У           | z          | Ground |      |  |  |  |
|             |         | (ft)  |     | (ft) |   | (ft)        | (ft)       | (ft)   | (ft) |  |  |  |
| BLASTBUFF20 | BLAST01 | 3.00  | а   |      |   | 6252524.90  | 2249540.98 | 3.00   | 0.00 |  |  |  |
|             |         |       |     |      |   | 6252521.60  | 2249540.68 | 3.00   | 0.00 |  |  |  |
|             |         |       |     |      |   | 6252518.29  | 2249540.93 | 3.00   | 0.00 |  |  |  |
|             |         |       |     |      |   | 6252515.07  | 2249541.72 | 3.00   | 0.00 |  |  |  |
|             |         |       |     |      |   | 6252512.02  | 2249543.03 | 3.00   | 0.00 |  |  |  |
|             |         |       |     |      |   | 6252509.23  | 2249544.83 | 3.00   | 0.00 |  |  |  |

| Name        | ID      | Begin | iel | ght<br>End |          | x                        | Coordinat  | z    | Ground |
|-------------|---------|-------|-----|------------|----------|--------------------------|------------|------|--------|
|             |         | (ft)  |     | (ft)       | <b>—</b> | (ft)                     | у<br>(ft)  | (ft) | (ft)   |
|             |         | (11)  | -   | (11)       |          |                          | 2249547.06 | 3.00 | 0.00   |
|             |         |       | -   |            |          | 6252506.78<br>6252504.73 | 2249549.67 | 3.00 | 0.00   |
|             |         |       | -   |            | _        | 6252504.73               |            |      |        |
|             |         |       | -   |            |          |                          | 2249552.58 | 3.00 | 0.00   |
|             |         |       | _   |            |          | 6252502.05               | 2249555.71 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252501.50               | 2249558.98 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252501.49               | 2249562.30 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252502.04               | 2249565.57 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252503.11               | 2249568.71 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252504.69               | 2249571.63 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252506.73               | 2249574.24 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252604.26               | 2249679.90 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252606.69               | 2249682.13 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252609.46               | 2249683.93 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252612.48               | 2249685.26 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252615.69               | 2249686.06 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252618.98               | 2249686.33 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252622.27               | 2249686.05 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252625.47               | 2249685.24 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252628.49               | 2249683.91 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252631.26               | 2249682.10 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252633.68               | 2249679.86 | 3.00 | 0.00   |
|             |         |       | -   |            | ⊢        | 6252635.71               | 2249677.25 | 3.00 | 0.00   |
| -           |         |       | -   |            | ⊢        | 6252635.71               | 2249674.34 | 3.00 | 0.00   |
|             |         |       | -   |            | ⊢        |                          | 2249674.34 | 3.00 | 0.00   |
|             |         |       | -   |            | ŀ        | 6252638.35               | 2249671.21 |      |        |
|             |         |       | -   |            | -        | 6252638.89               |            | 3.00 | 0.00   |
|             |         |       | -   |            | -        | 6252638.88               | 2249664.65 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252638.33               | 2249661.39 | 3.00 | 0.00   |
|             |         |       | _   |            |          | 6252637.26               | 2249658.27 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252635.68               | 2249655.37 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252633.65               | 2249652.76 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252536.12               | 2249547.11 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252533.73               | 2249544.91 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252531.01               | 2249543.13 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252528.04               | 2249541.81 | 3.00 | 0.00   |
| LASTBUFF20  | BLAST02 | 3.00  | а   |            |          | 6252705.73               | 2249118.38 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252702.25               | 2249118.07 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252698.78               | 2249118.38 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252695.41               | 2249119.28 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252692.25               | 2249120.75 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252689.40               | 2249122.75 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252686.93               | 2249125.22 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252684.93               | 2249128.07 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252683.46               | 2249131.23 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252682.56               | 2249134.60 | 3.00 | 0.00   |
|             |         |       | -   |            |          | 6252682.25               | 2249134.00 | 3.00 | 0.00   |
|             |         |       | -   |            |          |                          | 2249138.07 |      | 0.00   |
|             |         |       | -   |            |          | 6252682.25               |            | 3.00 |        |
|             |         |       | _   |            |          | 6252682.56               | 2249279.71 | 3.00 | 0.00   |
|             |         |       | _   |            |          |                          | 2249283.07 | 3.00 | 0.00   |
|             |         |       |     |            |          |                          | 2249286.23 | 3.00 | 0.00   |
|             |         |       |     |            |          |                          | 2249289.09 | 3.00 | 0.00   |
|             |         |       |     |            |          |                          | 2249291.55 | 3.00 | 0.00   |
|             |         |       |     |            | L        |                          | 2249293.55 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252695.41               | 2249295.03 | 3.00 | 0.00   |
|             |         |       |     |            |          |                          | 2249295.93 | 3.00 | 0.00   |
|             |         |       |     |            | Ĺ        |                          | 2249296.23 | 3.00 | 0.00   |
|             |         | _     |     |            |          | 6252705.73               | 2249295.93 | 3.00 | 0.00   |
|             |         |       | L   |            | L        | 6252709.09               | 2249295.03 | 3.00 | 0.00   |
|             |         |       |     |            | Ľ        | 6252712.25               | 2249293.55 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252715.11               | 2249291.55 | 3.00 | 0.00   |
|             |         | -     |     |            |          | 6252717.57               | 2249289.09 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252719.57               | 2249286.23 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252721.05               | 2249283.07 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252721.95               | 2249279.71 | 3.00 | 0.00   |
|             |         |       |     |            | F        | 6252722.25               | 2249276.23 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6252722.25               | 2249138.07 | 3.00 | 0.00   |
|             |         |       |     |            | F        | 6252721.95               | 2249138.60 | 3.00 | 0.00   |
|             |         |       | -   |            | ŀ        |                          | 2249134.60 | 3.00 | 0.00   |
|             |         |       | -   |            | -        |                          |            |      |        |
|             |         |       | -   |            | ⊢        | 6252719.57               | 2249128.07 | 3.00 | 0.00   |
|             |         |       | -   |            | -        | 6252717.57               | 2249125.22 | 3.00 | 0.00   |
|             |         |       | -   |            | -        | 6252715.11               | 2249122.75 | 3.00 | 0.00   |
|             |         |       | -   |            | 1        | 6252712.25               | 2249120.75 | 3.00 | 0.00   |
|             |         |       | _   |            |          | 6252709.09               | 2249119.28 | 3.00 | 0.00   |
| BLASTBUFF20 | BLAST03 | 3.00  | а   |            | Ĺ        | 6253412.78               | 2249008.66 | 3.00 | 0.00   |
|             |         |       |     |            |          | 6253409.18               | 2249008.36 | 3.00 | 0.00   |
|             |         |       | L   |            | Ĺ        | 6253252.60               | 2249010.39 | 3.00 | 0.00   |
|             |         |       |     |            | . —      |                          |            |      |        |
|             |         |       |     |            |          | 6253249.14               | 2249010.74 | 3.00 | 0.00   |

| Name        | ID      |       | Hei      | ght         |          |                                                                                                                                          | Coordinat                                                                                                                                              |                                                              |                                                             |  |
|-------------|---------|-------|----------|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--|
|             |         | Begin |          | End<br>(ft) | <u> </u> | X (f+)                                                                                                                                   | У<br>(f+)                                                                                                                                              | Z (f+)                                                       | Ground                                                      |  |
|             |         | (ft)  | $\vdash$ | (ft)        |          | (ft)                                                                                                                                     | (ft)<br>2249013.19                                                                                                                                     | (ft)                                                         | (ft)                                                        |  |
|             |         |       | ┝        |             |          | 6253242.66<br>6253239.83                                                                                                                 | 2249013.19                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             | -        | 6253237.40                                                                                                                               | 2249013.22                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253237.40                                                                                                                               | 2249017.71                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | $\vdash$ |             |          | 6253235.43                                                                                                                               | 2249020.58                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             | _        |                                                                                                                                          |                                                                                                                                                        |                                                              | 0.00                                                        |  |
|             |         |       | -        |             |          | 6253233.13                                                                                                                               | 2249027.11                                                                                                                                             | 3.00                                                         |                                                             |  |
|             |         |       | -        |             | _        | 6253232.86                                                                                                                               | 2249030.58                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6253233.20                                                                                                                               | 2249034.05                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253234.13                                                                                                                               | 2249037.40                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253235.63                                                                                                                               | 2249040.54                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253237.65                                                                                                                               | 2249043.37                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253240.13                                                                                                                               | 2249045.81                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253242.99                                                                                                                               | 2249047.78                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253246.16                                                                                                                               | 2249049.23                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253249.52                                                                                                                               | 2249050.11                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253252.99                                                                                                                               | 2249050.39                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253409.57                                                                                                                               | 2249048.36                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253413.02                                                                                                                               | 2249048.01                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253416.36                                                                                                                               | 2249047.07                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | L        |             |          | 6253419.49                                                                                                                               | 2249045.57                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | L        |             |          | 6253422.31                                                                                                                               | 2249043.55                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | Ĺ        |             | L        | 6253424.75                                                                                                                               | 2249041.07                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253426.71                                                                                                                               | 2249038.21                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253428.15                                                                                                                               | 2249035.05                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253429.03                                                                                                                               | 2249031.69                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253429.31                                                                                                                               | 2249028.24                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253428.98                                                                                                                               | 2249024.78                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253428.07                                                                                                                               | 2249021.43                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253426.59                                                                                                                               | 2249018.29                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253424.59                                                                                                                               | 2249015.45                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253422.13                                                                                                                               | 2249013.01                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253419.28                                                                                                                               | 2249011.02                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253416.13                                                                                                                               | 2249009.56                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
| BLASTBUFF20 | BLAST04 | 3.00  | a        |             |          | 6253000.33                                                                                                                               | 2248695.77                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252996.73                                                                                                                               | 2248695.47                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252842.18                                                                                                                               | 2248697.50                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252838.72                                                                                                                               | 2248697.85                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252835.37                                                                                                                               | 2248698.79                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252832.24                                                                                                                               | 2248000.30                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252829.41                                                                                                                               | 2248702.33                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252825.41                                                                                                                               | 2248702.33                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          |                                                                                                                                          | 2248704.82                                                                                                                                             |                                                              | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252825.02                                                                                                                               |                                                                                                                                                        | 3.00                                                         |                                                             |  |
|             |         |       | -        |             |          | 6252823.58                                                                                                                               | 2248710.86                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252822.71                                                                                                                               | 2248714.23                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252822.45                                                                                                                               | 2248717.69                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             |          | 6252822.78                                                                                                                               | 2248721.16                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | -        |             | Ĺ        | 6252823.71                                                                                                                               | 2248724.51                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          |                                                                                                                                          | 2248727.65                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             | Ĺ        |                                                                                                                                          | 2248730.48                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             | Ĺ        |                                                                                                                                          | 2248732.92                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252832.58                                                                                                                               | 2248734.89                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          |                                                                                                                                          | 2248736.34                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252839.11                                                                                                                               | 2248737.22                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6252842.58                                                                                                                               | 2248737.50                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | L        |             | L        | 6252997.12                                                                                                                               | 2248735.46                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253000.58                                                                                                                               | 2248735.12                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       | 117      |             | 117      | 6253003.92                                                                                                                               | 2248734.18                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          |                                                                                                                                          |                                                                                                                                                        |                                                              |                                                             |  |
|             |         |       |          |             |          |                                                                                                                                          | 2248732.68                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          |                                                                                                                                          | 2248732.68<br>2248730.66                                                                                                                               | 3.00<br>3.00                                                 |                                                             |  |
|             |         |       |          |             |          | 6253007.05                                                                                                                               | 2248730.66                                                                                                                                             |                                                              | 0.00                                                        |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30                                                                                                   | 2248730.66                                                                                                                                             | 3.00                                                         | 0.00                                                        |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30                                                                                                   | 2248730.66<br>2248728.18<br>2248725.32                                                                                                                 | 3.00<br>3.00                                                 | 0.00<br>0.00<br>0.00                                        |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71                                                                       | 2248730.66<br>2248728.18<br>2248725.32                                                                                                                 | 3.00<br>3.00<br>3.00                                         | 0.00<br>0.00<br>0.00<br>0.00                                |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58                                                         | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16                                                                                                   | 3.00<br>3.00<br>3.00<br>3.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.86                                           | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34                                                                       | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.86<br>6253016.54                             | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34<br>2248711.89                                                         | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.86<br>6253016.54<br>6253015.62               | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34<br>2248711.89<br>2248708.54                                           | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.54<br>6253015.62<br>6253014.14               | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34<br>2248711.89<br>2248708.54<br>2248705.40                             | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.54<br>6253015.62<br>6253014.14<br>6253012.14 | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34<br>2248715.34<br>2248708.54<br>2248705.40<br>2248702.56               | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |  |
|             |         |       |          |             |          | 6253007.05<br>6253009.87<br>6253012.30<br>6253014.26<br>6253015.71<br>6253016.58<br>6253016.54<br>6253015.62<br>6253014.14               | 2248730.66<br>2248728.18<br>2248725.32<br>2248722.16<br>2248718.80<br>2248715.34<br>2248715.34<br>2248708.54<br>2248705.40<br>2248702.56<br>2248700.12 | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |  |

# Ground Absorption(s)

| Name   | Sel. | м. | ID | G   | Coord      | dinates    |  |  |
|--------|------|----|----|-----|------------|------------|--|--|
|        |      |    |    |     | x          | У          |  |  |
|        |      |    |    |     | (ft)       | (ft)       |  |  |
| GROUND |      |    | 0  | 0.5 | 6254665.08 | 2248616.10 |  |  |
|        |      |    |    |     | 6254665.08 | 2248478.76 |  |  |
|        |      |    |    |     | 6251546.42 | 2248521.68 |  |  |
|        |      |    |    |     | 6251514.95 | 2248721.96 |  |  |