


Appendix J: Traffic Supporting Information





# Memorandum

Date: December 2024

To: City of Chico Department of Public Works

From: Sonia Anthoine and Ron Milam, Fehr & Peers

Subject: Transportation Entitlement Review/Non-CEQA Intersection Operations Analysis for

the Barber Yard Specific Plan - Updated

RS22-4219

# **Introduction & Background**

This study addresses traffic operations associated with the Barber Yard Specific Plan (BYSP) project (proposed project) located in the City of Chico. Intersection operations under four scenarios are analyzed to determine compliance with the entitlement review requirements of the City. This technical memorandum documents the methodologies, inputs, and results of the analysis.

# **Project Description**

The BYSP Area is approximately 133 acres, located in the Barber Neighborhood within incorporated city limits at the southwestern-most side of Chico. The large BYSP Area is bounded by the Union Pacific Railroad (UPRR) mainline, Estes Road, Normal Avenue, and various individual city properties. **Figure 1** shows the location of the BYSP Area. <sup>1</sup>

The proposed project consists of the full buildout of the BYSP, including off-site improvements, resulting in a mixed-use community accommodating a diverse range of housing opportunities with a mix of commercial, and recreational/open space uses located throughout. For purposes of this analysis, the following proposed land uses have been assumed to ensure a conservative analysis:

- 530 detached single-family houses
- 107 attached single-family houses
- 613 multi-family apartment units
- A 130,000 square foot health/fitness club (i.e., indoor/outdoor athletic facility)
- 40,000 square feet of retail space

<sup>&</sup>lt;sup>1</sup> The project site consists, collectively, of the approximately 133-acre BYSP Area as well as the following approximately 16-acre offsite improvement area located adjacent to the BYSP Area. These off-site improvements would consist of a stormwater detention basin; various public utility connections, including, among others, an associated storm drain alignment and outfall at Comanche Creek in unincorporated Butte County; and various public roadway/bike path connections.



- 22,800 square feet of restaurant space
- A 17,200 square foot event center

Residential parking would be provided along all newly built local streets. The retail, food, and event center would be located near the center of the BYSP Area.

**Figure 2a** displays the proposed zoning of the BYSP Area. **Figure 2b** displays the access points to the proposed project. Primary access to the BYSP Area would be provided via extensions of the even-numbered streets between 14th Street and 20th Street, as well as Ivy Street.

# **Study Area**

The study area was selected based on the access to the BYSP Area and expected trip distribution throughout south Chico. The analysis considers traffic operations at the following intersections, which are displayed in **Figure 1**.

#### Study Intersections

| 1   | W. 11th Ctroot & Dark Avanua     | 11 M/ 10th Ctract & Dark Avenue                   |
|-----|----------------------------------|---------------------------------------------------|
| ١.  | W. 11th Street & Park Avenue     | 11. W. 18th Street & Park Avenue                  |
| 2.  | Ivy Street & W. 8th Street       | 12. W. 18th Street & Broadway                     |
| 3.  | Ivy Street & W. 9th Street       | 13. W. 18th Street & Normal Avenue                |
| 4.  | Ivy Street & W. 12th Street      | 14. E. 20th Street - W. 20th Street & Park Avenue |
| 5.  | W. 14th Street & Park Avenue     | 15. W. 20th Street & Normal Avenue                |
| 6.  | W. 14th Street & Broadway        | 16. W. 22nd Street & Park Avenue                  |
| 7.  | W. 14th Street & Chestnut Street | 17. 22nd Street & Normal Avenue/Estes Road        |
| 8.  | W. 16th Street & Park Avenue     | 18. Park Avenue-Midway & E. Park Avenue           |
| 9.  | W. 16th Street & Broadway        | 19. E. 20th Street & SR 99 SB Ramps               |
| 10. | W. 16th Street & Chestnut Street | 20. E. 20th Street & SR 99 NB Ramps               |
|     |                                  |                                                   |

#### **Study Scenarios**

The study intersections were evaluated for the following four scenarios:

- **Existing Conditions** Analyzes operations as they exist in 2022, when the environmental analysis for the proposed project commenced.
- Existing Plus Project Conditions Analyzes existing operations with the addition of trips generated by the proposed project. Version 1.2 of the BCAG RTP/SCS travel demand model was used to develop project trip distribution during the AM peak hour and PM peak hour.
- **Cumulative No Project Conditions** Analyzes cumulative (2045) volumes based on Version 1.2 of the BCAG RTP/SCS travel demand model, assuming the BYSP Area remains in its current undeveloped state.
- **Cumulative Plus Project Conditions** Analyzes cumulative year (2045) volumes with the addition of trips generated by the proposed project.



#### **Data Collection**

## Traffic Counts

At the commencement of environmental analysis for the proposed project, traffic count data at all study intersections besides intersections #1 and #18 were ordered by the City of Chico and collected in May 2022 by Idax. Traffic count data for intersections #1 and #18 was ordered by Fehr & Peers and collected by NDS in September 2022. Intersection turning movement counts for both time periods were conducted during the AM (7:00 to 9:00) and PM (4:00 to 6:00) peak periods. Traffic counts at 11th Street / Park Avenue and Park Avenue-Midway/E. Park Avenue were reviewed for consistency and adjusted to ensure traffic flow conservation. **Appendix A** displays the existing intersection turning movement counts at the study intersections.

#### Roadway Pavement Condition

Physical roadway conditions have the potential to influence safety, comfort, and aesthetic appeal. The following observations about existing physical roadway conditions were made during field visits in Summer 2022 and Fall 2023.

- Areas of decayed pavement (edges deteriorating into gravel shoulders) on local streets in the proposed project vicinity: W. 18th Street and W. 20th Street.
- Pavement in poor condition (e.g., alligator cracks) on local streets in the project vicinity: W. 16th Street, W. 18th Street, W. 20th Street from Park Avenue to the Barber Yard Plan Area and Broadway from 12th Street and 20th Street.
- Pavement in good condition along W. 22nd Street and Park Avenue (recently paved).

# **Intersection Operations Analysis**

This chapter describes the methodology and operational thresholds used to analyze the study intersections identified below, as well as methodology used to develop traffic forecasts.

### **Level of Service Methodology**

Study intersections were analyzed using procedures contained in the *Highway Capacity Manual (HCM) 7<sup>th</sup> Edition* (Transportation Research Board, 2022). These methodologies were applied using Synchro 11 software which considers traffic volumes, lane configurations, signal timings, signal coordination, and other pertinent parameters of intersection operations.

Level of Service (LOS) is a qualitative measure of traffic operating conditions whereby a letter grade, from A (the best) to F (the worst), is assigned. These grades represent the perspective of drivers and are an indication of the comfort and convenience associated with driving. In general, LOS A represents free-flow conditions with little to no congestion, and LOS F represents severe congestion with oversaturated conditions where traffic demand exceeds capacity resulting in long queues and delays. Typical factors that affect motorized vehicle LOS include speed, travel time, traffic interruptions, and freedom to maneuver. Empirical LOS criteria and methods of calculation have been documented in the HCM (Transportation Research Board, 2022).



For signalized intersections, roundabouts and all way stop control intersections, LOS is based on the average delay experienced by all vehicles passing through the intersection. For side-street stop-controlled intersections, the delay and LOS for the overall intersection is reported along with the delay for the worstcase movement (or shared movement/approach). Table 1 displays the delay range associated with each LOS category for signalized and unsignalized intersections.

**Table 1: Intersection Level of Service (LOS) Criteria** 

| LOS      | Description (for Signalized Intersections)                                                                                                                                                         | Average Delay<br>(Seconds/Vehicle)<br>at Signalized<br>Intersections | Average Delay<br>(Seconds/Vehicle)<br>at Unsignalized<br>Intersections |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| А        | Operations with very low delay occurring with favorable traffic signal progression and/or short cycle lengths.                                                                                     | < 10.0                                                               | < 10.0                                                                 |  |  |  |  |  |
| В        | Operations with low delay occurring with good progression and/or short cycle lengths.                                                                                                              | > 10.0 to 20.0                                                       | > 10.0 to 15.0                                                         |  |  |  |  |  |
| С        | Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.                                                             | > 20.0 to 35.0                                                       | > 15.0 to 25.0                                                         |  |  |  |  |  |
| D        | Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop and individual cycle failures are noticeable.            | > 35.0 to 55.0                                                       | > 25.0 to 35.0                                                         |  |  |  |  |  |
| E        | Operations with high delay values indicating poor progression, and long cycle lengths. Individual cycle failures are frequent occurrences. This is considered to be the limit of acceptable delay. | > 55.0 to 80.0                                                       | > 35.0 to 50.0                                                         |  |  |  |  |  |
| F        | Operations with delays unacceptable to most drivers occurring due to over-saturation, poor progression, or very long cycle lengths.                                                                | > 80.0                                                               | > 50.0                                                                 |  |  |  |  |  |
| Note: L0 | Note: LOS = level of service; V/C ratio = volume-to-capacity ratio                                                                                                                                 |                                                                      |                                                                        |  |  |  |  |  |

Source: Highway Capacity Manual, 7<sup>th</sup> Edition (Transportation Research Board, 2022)

The analysis results for each scenario were compared against the Chico 2030 General Plan LOS performance expectations for each intersection.

Policy CIRC-1.4 – Maintain LOS D or better for roadways and intersections at the peak PM period, except as specified below:

- LOS E is acceptable for City streets and intersections under the following circumstances:
  - o Downtown streets within the boundaries identified in Figure DT-1 of the Downtown Element.
  - Arterials served by scheduled transit.
  - o Arterials not served by scheduled transit, if bicycle and pedestrian facilities are provided within or adjacent to the roadway.



- Utilize Caltrans LOS standards for Caltrans' facilities.
- There are no LOS standards for private roads.

LOS E would be acceptable on W. 8th Street, W. 9th Street, Park Avenue, and E. 20th Street in the study area because they are served by scheduled transit.

#### Synchro Limitations

The Synchro program only analyzes vehicle intersection capacity and signal optimization at a macroscopic static level. Synchro typically inaccurately analyzes closely spaced intersections by inappropriately applying delays and queues to intersections most impacted rather than attributing to intersections causing the operational issues.

Synchro Bicycle & Pedestrian Considerations

Current travel behavior in the existing residential neighborhood adjacent to the BYSP Area shows higher than California's average bicycle and walking commute trips (American Community Survey, U.S. Census Bureau, 2022). Consistent with HCM methodology, Synchro accounts for a variety of operational factors including bicycle and pedestrian crossing activity that compete for signalized intersection green time. Bicycles and pedestrians that conflict with permitted left or right turn vehicle movements are accounted for in intersection delay and LOS calculations.

# **Traffic Volume Forecasting**

Traffic volume forecasts for the Existing Plus Project and Cumulative (with and without Project) scenarios were developed using Version 1.2 of the BCAG RTP/SCS travel demand model. This version of the model is based on post-Camp Fire conditions and reflects updated population and employment growth forecasts for the BCAG region based on the redistribution effects of the fire. Several network changes were made to the existing "off-the-shelf" model in order to calibrate the model to current conditions, including lane and speed changes in the project vicinity.

The traffic forecasting adjustment procedure known as the difference method was used to develop Existing Plus Project and Cumulative (with and without Project) year traffic forecasts. For a given intersection, this forecasting procedure is calculated as follows for every movement:

Existing Plus Project Forecast =

Existing Volume + (Base Year Plus Project Model Volume – Base Year Model Volume)

Cumulative No Project Forecast =

Existing Volume + (Cumulative Year Model Volume – Base Year Model Volume)

Cumulative Plus Project Forecast =

Existing Volume + (Cumulative Year Plus Project Model Volume – Base Year Model Volume)



# **Existing Conditions**

This chapter presents the results of intersection operations analysis under Existing and Existing Plus Project conditions.

#### **Existing Intersection Operations**

**Table 2** displays the existing AM and PM peak hour operations at the study intersections. AM and PM peak hour turning movements, lane configurations, and technical calculations at the study intersections under Existing conditions are displayed in **Appendix A**.

Based on Synchro analysis, all intersections currently operate at an acceptable LOS according to City standards. However, field observations conducted during the AM and PM peak hours along E. 20<sup>th</sup> Street near State Route (SR) 99 suggested delays far exceeded those estimated by Synchro. Queuing was observed to extend from the E. 20<sup>th</sup> Street eastbound approach at the southbound SR 99 ramp intersection through the adjacent intersection of Dr. Martin Luther King Jr. Parkway. Synchro inappropriately assigns queue delay to the intersection most impacted by the queue, rather than the source of the queuing. These observations indicate that the LOS at both E. 20<sup>th</sup> Street & SR 99 ramp intersections likely exceed Synchro estimates. Nevertheless, to the extent this is the case, given the presence of transit service and bicycle facilities in the vicinity, coupled with the fact that Caltrans no longer applies a Level of Service policy, operations along E. 20<sup>th</sup> Street near SR 99 would have an LOS performance expectation of LOS E (See *Chico 2030 General Plan, Policy CIRC-1.4*).

**Table 2: Intersection Operations – Existing Conditions** 

|                                      | Control | AM Pea             | ık Hour | PM Peak Hour       |       |
|--------------------------------------|---------|--------------------|---------|--------------------|-------|
| Intersection                         | Туре    | Delay <sup>1</sup> | LOS     | Delay <sup>1</sup> | LOS   |
| 1a. W. 11th Street & Park Avenue     | SSSC    | 1 (25)             | A (C)   | 1 (16)             | A (C) |
| 1b. E. 11th Street & Park Avenue     | SSSC    | 1 (12)             | A (B)   | 1 (12)             | A (B) |
| 2. Ivy Street & W. 8th Street        | Signal  | 6                  | Α       | 7                  | А     |
| 3. Ivy Street & W. 9th Street        | Signal  | 6                  | Α       | 8                  | А     |
| 4. Ivy Street & W. 12th Street       | SSSC    | 3 (10)             | A (A)   | 2 (11)             | A (B) |
| 5. W. 14th Street & Park Avenue      | Signal  | 4                  | А       | 4                  | А     |
| 6a. W. 14th Street & Broadway        | SSSC    | 3 (9)              | A (A)   | 3 (9)              | A (A) |
| 6b. W. 14th Street & Broadway        | SSSC    | 3 (9)              | A (A)   | 3 (9)              | A (A) |
| 7. W. 14th Street & Chestnut Street  | SSSC    | 8 (9)              | A (A)   | 2 (9)              | A (A) |
| 8. W. 16th Street & Park Avenue      | Signal  | 4                  | Α       | 5                  | Α     |
| 9. W. 16th Street & Broadway         | AWSC    | 7 (7)              | A (A)   | 7 (7)              | A (A) |
| 10. W. 16th Street & Chestnut Street | SSSC    | 4 (9)              | A (A)   | 3 (9)              | A (A) |
| 11. W. 18th Street & Park Avenue     | SSSC    | 1 (16)             | A (C)   | 1 (19)             | A (C) |



| luce and a state                                 | Control | AM Pea             | ık Hour | PM Pea             | ak Hour |
|--------------------------------------------------|---------|--------------------|---------|--------------------|---------|
| Intersection                                     | Type    | Delay <sup>1</sup> | LOS     | Delay <sup>1</sup> | LOS     |
| 12. W. 18th Street & Broadway                    | SSSC    | 5 (9)              | A (A)   | 4 (9)              | A (A)   |
| 13. W. 18th Street & Normal Avenue               | SSSC    | 8 (9)              | A (A)   | 8 (9)              | A (A)   |
| 14a. E. 20th Street & Park Avenue                | Signal  | 10                 | В       | 13                 | В       |
| 14b. W. 20th Street & Park Avenue                | SSSC    | 1 (10)             | A (B)   | 1 (11)             | A (B)   |
| 15. W. 20th Street & Normal Avenue               | SSSC    | 2 (9)              | A (A)   | 1 (9)              | A (A)   |
| 16. W. 22nd Street & Park Avenue                 | Signal  | 2                  | Α       | 2                  | А       |
| 17. 22nd Street & Normal Avenue/Estes Road       | SSSC    | 3 (5)              | A (A)   | 2 (4)              | A (A)   |
| 18. Park Avenue-Midway & E. Park Avenue          | Signal  | 15                 | В       | 16                 | В       |
| 19. E. 20th Street & SR 99 SB Ramps <sup>2</sup> | Signal  | 12                 | В       | 20                 | В       |
| 20. E. 20th Street & SR 99 NB Ramps <sup>2</sup> | Signal  | 8                  | Α       | 12                 | В       |

#### Notes:

SSSC = Side-Street Stop Control; AWSC = All-Way Stop Control; LOS = Level of Service.

"a" or "b" indicate a pair of T-legged intersections

**Bold** indicates deficient operations based on *Chico 2030 General Plan* LOS performance expectations.

- 1. For signalized intersections, average intersection delay is reported in seconds per vehicle for all approaches. For side street stop-controlled intersections, intersection delay is reported in seconds per vehicle for the overall intersection and worst-case movement/approach. Intersection delay is calculated based on the procedures and methodology contained in the *Highway Capacity Manual 7<sup>th</sup> Edition* (Transportation Research Board, 2022).
- 2. Synchro analysis results at the SR 99 ramp intersections conflict with field observations of this area. See discussion above.

Source: Fehr & Peers, 2024.

# **Project Trip Generation**

Project trip generation estimates were prepared using a combination of the *Trip Generation Manual*, 11<sup>th</sup> *Edition* (Institute of Transportation Engineers, 2021) and the Mixed-Use Trip Generation Model (MXD+), which was originally developed for the US Environmental Protection Agency (EPA) to estimate internal trip-making and external trips made by non-auto travel modes for mixed-use land development projects. The model was developed based on empirical evidence at 240 mixed-use projects located across the U.S. and considers various built environment variables such as land use density, regional location, proximity to transit, and various design variables when calculating the project's internal trips and external trips made by auto, transit, and non-motorized modes. Estimated internal trips between on-site land uses and other trip reductions due to mode shift from vehicle to walk, bike, or transit trips are subtracted from the gross trip generation.

Because land uses such as retail and restaurants attract pass-by trips, they are also considered in project trip generation. Pass-by trips represent drivers already travelling adjacent to the project that decide to patronize the project site. Therefore, pass-by trips are not generated by the project but are existing



vehicles on the roadway facility. The rates were calculated from the *Trip Generation Manual Appendices* (Institute of Transportation Engineers, 2021).

**Table 3** presents the estimated daily, AM peak hour, and PM peak hour vehicle trips created by the proposed project. While the proposed project would generate substantial numbers of entering/exiting trips, roughly a third of those trips would be internal trips, trips of other transportation modes, or pass-by trips.

**Table 3: Project Trip Generation** 

| Land Use Type                           | Land Use Type             |        | AM P | eak Hour | Trips | PM Peak Hour Trips |     |       |
|-----------------------------------------|---------------------------|--------|------|----------|-------|--------------------|-----|-------|
| (ITE Code)                              | Quantity                  | Trips  | ln   | Out      | Total | ln                 | Out | Total |
| Single Family Detached<br>Housing (210) | 530 DUs                   | 4,680  | 88   | 251      | 340   | 300                | 176 | 477   |
| Single Family Attached<br>Housing (215) | 107 DUs                   | 765    | 15   | 34       | 50    | 34                 | 26  | 60    |
| Multifamily Housing<br>(Low-Rise) (220) | 613 DUs                   | 4,005  | 37   | 208      | 245   | 228                | 84  | 313   |
| Health/Fitness Club (492)               | 130.0 KSF                 | 3,094  | 87   | 83       | 170   | 256                | 193 | 449   |
| Retail Plaza (821)                      | 40.0 KSF                  | 1,918  | 57   | 38       | 94    | 132                | 132 | 264   |
| Restaurant (932)                        | 22.8 KSF                  | 2,444  | 120  | 98       | 218   | 126                | 80  | 206   |
| Event Center <sup>1</sup>               | 17.2 KSF                  | NA     | -    | -        | -     | -                  | -   | -     |
| Gross                                   | Gross Daily Trips         |        | 404  | 714      | 1,118 | 1,076              | 692 | 1,768 |
| Vehicle Trip Reduction <sup>2</sup>     |                           | 2,627  | 89   | 157      | 246   | 251                | 161 | 412   |
| Pa                                      | ass-by Trips <sup>3</sup> | 1,725  | 65   | 50       | 115   | 92                 | 75  | 167   |
| New Daily V                             | ehicle Trips              | 12,553 | 250  | 506      | 756   | 733                | 455 | 1,189 |

Notes: DU = Dwelling Units, KSF = 1,000 square feet

- 1. Communications with the project applicant and the City of Chico indicated that on a typical weekday during peak hours of traffic, no vehicular trips would be generated by the event center given its infrequent use as a private event center. Future special use of the facility shall be determined by conditional use permit.
- 2. Vehicle trip reduction is based on MXD+ and includes internal capture of vehicles and mode shifts from vehicle to transit, walking, and biking.
- 3. Pass-by trip percentages are based on data from the *Trip Generation Manual, 11<sup>th</sup> Edition* (Institute of Transportation Engineers, 2021).

Source: Trip generation is based on trip rates published in *Trip Generation Manual, 11<sup>th</sup> Edition* (ITE, 2021). Fehr & Peers, 2023.

### **Project Trip Distribution**

The distribution of project trips is based on existing travel patterns, location of complimentary land uses, and output from the BCAG/RTP Model. **Figure 3** illustrates the project trip distribution percentages. In general, trips were assigned to use the most time efficient travel paths between the proposed project's trip origins and destinations.



# **Existing Plus Project Intersection Operations**

Existing Plus Project conditions reflect the addition of project trips to the existing intersection traffic volumes.

**Table 4** displays the resulting AM and PM peak hour intersection operations. As shown in Table 4, all intersections would operate acceptably based on City standards in the AM and PM peak hours under Existing Plus Project conditions. Peak hour turning movements, lane configurations, and technical calculations at the study intersections under Existing Plus Project conditions are displayed in **Appendix B**.

**Table 4: Intersection Operations – Existing vs. Existing Plus Project Conditions** 

| Table 4: Intersection                   |         |                    | xisting C |                    |       |                    |         | oject Cor          | ditions      |
|-----------------------------------------|---------|--------------------|-----------|--------------------|-------|--------------------|---------|--------------------|--------------|
| Intersection                            | Control |                    | ak Hour   | PM Peak Hour       |       |                    | ak Hour | PM Pea             |              |
|                                         | Туре    | Delay <sup>1</sup> | LOS       | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS     | Delay <sup>1</sup> | LOS          |
| 1a. W. 11th Street &<br>Park Avenue     | SSSC    | 2 (25)             | A (C)     | 1 (16)             | A (C) | 1 (27)             | A (D)   | 1 (18)             | A (C)        |
| 1b. E. 11th Street &<br>Park Avenue     | SSSC    | 1 (12)             | A (B)     | 1 (12)             | A (B) | 1 (14)             | A (B)   | 1 (15)             | A (B)        |
| 2. Ivy Street & W. 8th<br>Street        | Signal  | 6                  | А         | 7                  | А     | 8                  | А       | 13                 | В            |
| 3. Ivy Street & W. 9th<br>Street        | Signal  | 6                  | А         | 8                  | А     | 9                  | А       | 36                 | D            |
| 4. Ivy Street & W. 12th<br>Street       | SSSC    | 3 (10)             | A (A)     | 2 (11)             | A (B) | 2 (18)             | A (C)   | 2 (28)             | A (D)        |
| 5. W. 14th Street &<br>Park Avenue      | Signal  | 4                  | А         | 4                  | Α     | 5                  | А       | 8                  | А            |
| 6a. W. 14th Street &<br>Broadway        | SSSC    | 3 (9)              | A (A)     | 3 (9)              | A (A) | 7 (9)              | A (A)   | 9 (11)             | A (B)        |
| 6b. W. 14th Street &<br>Broadway        | SSSC    | 3 (9)              | A (A)     | 3 (9)              | A (A) | 7 (10)             | A (A)   | 10 (16)            | B (C)        |
| 7. W. 14th Street &<br>Chestnut Street  | SSSC    | 8 (9)              | A (A)     | 2 (9)              | A (A) | 3 (11)             | A (B)   | 11 (15)            | B (B)        |
| 8. W. 16th Street &<br>Park Avenue      | Signal  | 4                  | А         | 5                  | А     | 10                 | А       | 31                 | С            |
| 9. W. 16th Street &<br>Broadway         | AWSC    | 7 (7)              | A (A)     | 7 (7)              | A (A) | 12 (13)            | B (B)   | 21 (26)            | C (D)        |
| 10. W. 16th Street &<br>Chestnut Street | SSSC    | 4 (9)              | A (A)     | 3 (9)              | A (A) | 1 (13)             | A (B)   | 1 (20)             | A (C)        |
| 11. W. 18th Street & Park Avenue        | SSSC    | 1 (16)             | A (C)     | 1 (19)             | A (C) | 3 (34)             | A (D)   | 10<br><b>(182)</b> | A <b>(F)</b> |
| 12. W. 18th Street &<br>Broadway        | SSSC    | 5 (9)              | A (A)     | 4 (9)              | A (A) | 10 (11)            | B (B)   | 9 (11)             | A (B)        |



|                                                     |                 | E                  | xisting C | Condition          | ıs    | Existing           | g Plus Pr | oject Cor          | nditions |
|-----------------------------------------------------|-----------------|--------------------|-----------|--------------------|-------|--------------------|-----------|--------------------|----------|
| Intersection                                        | Control<br>Type | AM Peak Hour       |           | PM Peak Hour       |       | AM Peak Hour       |           | PM Peak Hour       |          |
|                                                     | . , p =         | Delay <sup>1</sup> | LOS       | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS       | Delay <sup>1</sup> | LOS      |
| 13. W. 18th Street &<br>Normal Avenue               | SSSC            | 8 (9)              | A (A)     | 8 (9)              | A (A) | 2 (12)             | A (B)     | 3 (12)             | A (B)    |
| 14a. E. 20th Street & Park Avenue                   | Signal          | 10                 | В         | 13                 | В     | 11                 | В         | 23                 | С        |
| 14b. W. 20th Street & Park Avenue                   | SSSC            | 1 (10)             | A (B)     | 1 (11)             | A (B) | 2 (15)             | A (B)     | 1 (13)             | A (B)    |
| 15. W. 20th Street &<br>Normal Avenue               | SSSC            | 2 (9)              | A (A)     | 1 (9)              | A (A) | 10 (11)            | B (B)     | 9 (10)             | A (B)    |
| 16. W. 22nd Street & Park Avenue                    | Signal          | 2                  | Α         | 2                  | Α     | 4                  | Α         | 5                  | А        |
| 17. 22nd Street &<br>Normal Avenue/Estes<br>Road    | SSSC            | 3 (5)              | A (A)     | 2 (4)              | A (A) | 4 (10)             | A (B)     | 8 (11)             | A (B)    |
| 18. Park Avenue-<br>Midway & E. Park<br>Avenue      | Signal          | 15                 | В         | 16                 | В     | 22                 | С         | 23                 | С        |
| 19. E. 20th Street & SR<br>99 SB Ramps <sup>2</sup> | Signal          | 12                 | В         | 20                 | В     | 12                 | В         | 22                 | С        |
| 20. E. 20th Street & SR<br>99 NB Ramps <sup>2</sup> | Signal          | 8                  | А         | 12                 | В     | 8                  | А         | 12                 | В        |

Notes: SSSC = Side-Street Stop Control; AWSC = All-Way Stop Control; LOS = Level of Service.

**Bold** indicates deficient operations based on *Chico 2030 General Plan* LOS performance expectations.

- 1. For signalized intersections, average intersection delay is reported in seconds per vehicle for all approaches. For side street stop-controlled intersections, intersection delay is reported in seconds per vehicle for the overall intersection and worst-case movement/approach. Intersection delay is calculated based on the procedures and methodology contained in the *Highway Capacity Manual*, 7<sup>th</sup> Edition (Transportation Research Board, 2022).
- 2. Synchro analysis results at the SR 99 ramp intersections, which show 95th percentile queues of roughly two to four vehicles on major approaches, conflict with field observations of this area. See discussion in Existing Intersection Operations.

Source: Fehr & Peers, 2024.

As displayed in **Table 4**, with the addition of project trips, the side-street movements of the W. 18th Street & Park Avenue intersection would operate deficiently in the PM peak hour with LOS of F, though the average delay across all movements would be acceptable at an LOS of A. Potential intersection control modifications to the intersection include all-way stop control and signalization. Given the imbalanced approach volumes, higher volume of existing traffic on Park Avenue, and the surrounding intersection control (including signals at 16<sup>th</sup> Street and 20<sup>th</sup> Street along Park Avenue), a signal is recommended. The intersection passes California Manual of Uniform Traffic Control Devices (MUTCD) (Caltrans, 2014) Peak Hour Signal Warrants 3A and 3B, as shown in **Appendix C**. This condition may also warrant a signal based

<sup>&</sup>quot;a" or "b" indicate a pair of T-legged intersections.



on Warrant 8, which considers the concentration and organization of traffic flow on a roadway network, as copied in **Appendix C**.

**Table 5** displays the intersection AM and PM peak hour intersection operations with recommended intersection improvements. Under Existing Plus Project conditions, the installation of a signal at the 18th Street and Park Avenue intersection would improve operations to LOS A during both peak hours. Signal timing modification to coordinate with the signals at intersections 14th Street & Park Ave and 16th & Park Ave were made so all study intersections would operate acceptably. The installation of a traffic signal at 18th Street & Park Avenue would likely also improve operations at the adjacent intersections of 16th Street & Park Avenue and 20th Street & Park Avenue.

**Table 5: Intersection Operations – Existing Plus Project Conditions with Improvements** 

| lutaura etia u                   | Updated      | AM Peak            | Hour | PM Peak            | Hour |
|----------------------------------|--------------|--------------------|------|--------------------|------|
| Intersection                     | Control Type | Delay <sup>1</sup> | LOS  | Delay <sup>1</sup> | LOS  |
| 11. W. 18th Street & Park Avenue | Signal       | 7                  | А    | 6                  | А    |

Notes: LOS = Level of Service.

<sup>1</sup> For signalized intersections, average intersection delay is reported in seconds per vehicle for all approaches. Intersection delay is calculated based on the procedures and methodology contained in the Highway Capacity Manual 7<sup>th</sup> Edition (Transportation Research Board, 2022).

Source: Fehr & Peers, 2024.

To estimate the traffic impacts of the proposed project on nearby arterials, **Table 6** shows the traffic volume changes between Existing and Existing Plus Project.

**Table 6: Traffic Volume Changes – Existing Plus Project Conditions** 

|                                                     |                       | AM Peak                 | Hour              | PM Peak Hour            |                   |  |
|-----------------------------------------------------|-----------------------|-------------------------|-------------------|-------------------------|-------------------|--|
| Location                                            | Scenario              | Bidirectional<br>Volume | Percent<br>Change | Bidirectional<br>Volume | Percent<br>Change |  |
| Ivy Street between 9th                              | Existing              | 169                     | +291%             | 353                     | +182%             |  |
| Street and 12th Street                              | Existing Plus Project | 660                     | +291%             | 995                     | +102%             |  |
| Park Avenue between                                 | Existing              | 1,407                   | 70/               | 1,522                   | 224               |  |
| W. 9th Street and 11th<br>Street                    | Existing Plus Project | 1,495                   | +7%               | 1,645                   | +8%               |  |
| Park Avenue between                                 | Existing              | 994                     | +57%              | 1,575                   | +53%              |  |
| 18 <sup>th</sup> Street and 20 <sup>th</sup> Street | Existing Plus Project | 1,565                   | 1 37 70           | 2,410                   | + 33 /6           |  |
| Midway south of E. Park                             | Existing              | 1,243                   | +13%              | 1,377                   | +23%              |  |
| Avenue                                              | Existing Plus Project | 1,405                   | +13%              | 1,700                   |                   |  |
| Source: Fehr & Peers, 2023                          |                       |                         |                   |                         |                   |  |



# **Existing Plus Project Roadway Condition**

While the proposed project would increase the volume of traffic on study area roadways, the mix and speed of traffic is expected to remain like existing conditions. However, an increase in volume could exacerbate physical deficiencies, such as poor pavement condition.

Therefore, the applicant should work with the City to address already present deficiencies and restore physical roadway conditions to a state of good repair along several roadways in the BYSP Area through in lieu fees or a fair share agreement.

Any phasing of these improvements should be coordinated between the project applicant, the city of Chico, and BCAG, especially for improvements that may be appropriate to include in the Regional Transportation Plan (RTP) for additional funding. One potential phased approach is introduced in Table 7 below.

**Table 7: Phased Approach to Pavement Improvements** 

| Phase   | Streets to Improve                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase 1 | Ivy Street from within the Barber Yard Plan Area to 10th Avenue W 14th Street from within the Barber Yard Plan Area to Park Avenue Chestnut Street from W 9th Street to W 14th Street W 16th Street from within the Barber Yard Plan Area to Park Avenue |
| Phase 2 | W 18th Street from within the Barber Yard Plan Area to Park Avenue Broadway from W 8th Street to W 20th Street Salem Street from W 9th Street to 11th Street and W 15th Street to W 20th Street Normal Avenue from W 12th Street to W 20th Street        |
| Phase 3 | W 20th Street from within the Barber Yard Plan Area to Park Avenue Estes Road from the southeast corner of the Barber Yard Plan Area to Normal Avenue                                                                                                    |



# **Cumulative Conditions**

This chapter presents the results of intersection operations analysis under Cumulative conditions. The analysis reflects long-term development in the City of Chico and the Butte County region using the 2045 cumulative model previously described. Reviewers should note that intersection turning movement volume forecasts beyond five years have high levels of uncertainty and may be speculative.

The Cumulative Year analysis includes modifications to the roadway network that are planned to be funded and constructed by 2045 according to the BCAG RTP/SCS. Within the study area, that includes widening Midway from two to four lanes between E. Park Avenue and Hegan Lane. The cumulative model also includes construction of a new SR 99 interchange at Southgate Avenue<sup>2</sup>, roughly two miles south of E. 20<sup>th</sup> Street and one mile south of E. Park Avenue, which impacts the distribution of vehicle trips.

### **Cumulative No Project Intersection Operations**

**Table 7** presents the AM and PM peak hour intersection operations under Cumulative No Project conditions. As shown in Table 7, all intersections would operate acceptably based on City standards in the peak hours under Cumulative No Project conditions. AM and PM peak hour turning movements, lane configurations, and technical calculations at the study intersections under Cumulative No Project conditions are displayed in **Appendix D**.

**Table 7: Intersection Operations – Cumulative No Project Conditions** 

| Latina attac                         | Control | AM Pea             | k Hour | PM Peak Hour       |       |
|--------------------------------------|---------|--------------------|--------|--------------------|-------|
| Intersection                         | Туре    | Delay <sup>1</sup> | LOS    | Delay <sup>1</sup> | LOS   |
| 1a. W. 11th Street & Park Avenue     | SSSC    | 2 (41)             | A (E)  | 2 (22)             | A (C) |
| 1b. E. 11th Street & Park Avenue     | SSSC    | 1 (16)             | A (C)  | 1 (14)             | A (B) |
| 2. Ivy Street & W. 8th Street        | Signal  | 6                  | А      | 7                  | А     |
| 3. Ivy Street & W. 9th Street        | Signal  | 6                  | А      | 10                 | А     |
| 4. Ivy Street & W. 12th Street       | SSSC    | 4 (10)             | A (A)  | 3 (11)             | A (B) |
| 5. W. 14th Street & Park Avenue      | Signal  | 4                  | А      | 5                  | А     |
| 6a. W. 14th Street & Broadway        | SSSC    | 4 (9)              | A (A)  | 3 (9)              | A (A) |
| 6b. W. 14th Street & Broadway        | SSSC    | 4 (9)              | A (A)  | 3 (9)              | A (A) |
| 7. W. 14th Street & Chestnut Street  | SSSC    | 8 (9)              | A (A)  | 2 (9)              | A (A) |
| 8. W. 16th Street & Park Avenue      | Signal  | 5                  | А      | 5                  | А     |
| 9. W. 16th Street & Broadway         | AWSC    | 7 (7)              | A (A)  | 7 (7)              | A (A) |
| 10. W. 16th Street & Chestnut Street | SSSC    | 3 (9)              | A (A)  | 3 (9)              | A (A) |
| 11. W. 18th Street & Park Avenue     | SSSC    | 1 (34)             | A (D)  | 2 (39)             | A (E) |

<sup>&</sup>lt;sup>2</sup> This interchange is also contained in the project list of the *State Route 70-99 Comprehensive Multimodal Corridor Plan* (Caltrans District 3, June 23, 2022).



| Latina attac                                     | Control | AM Pea             | k Hour | PM Peak            | Hour  |
|--------------------------------------------------|---------|--------------------|--------|--------------------|-------|
| Intersection                                     | Туре    | Delay <sup>1</sup> | LOS    | Delay <sup>1</sup> | LOS   |
| 12. W. 18th Street & Broadway                    | SSSC    | 6 (9)              | A (A)  | 6 (10)             | A (A) |
| 13. W. 18th Street & Normal Avenue               | SSSC    | 6 (9)              | A (A)  | 5 (10)             | A (A) |
| 14a. E. 20th Street & Park Avenue                | Signal  | 12                 | В      | 14                 | В     |
| 14b. W. 20th Street & Park Avenue                | SSSC    | 1 (10)             | A (B)  | 1 (11)             | A (B) |
| 15. W. 20th Street & Normal Avenue               | SSSC    | 3 (9)              | A (A)  | 3 (9)              | A (A) |
| 16. W. 22nd Street & Park Avenue                 | Signal  | 3                  | Α      | 3                  | А     |
| 17. 22nd Street & Normal Avenue/Estes Road       | SSSC    | 3 (5)              | A (A)  | 1 (4)              | A (A) |
| 18. Park Avenue-Midway & E. Park Avenue          | Signal  | 33                 | С      | 30                 | С     |
| 19. E. 20th Street & SR 99 SB Ramps <sup>2</sup> | Signal  | 13                 | В      | 29                 | С     |
| 20. E. 20th Street & SR 99 NB Ramps <sup>2</sup> | Signal  | 10                 | В      | 23                 | С     |

#### Notes:

SSSC = Side-Street Stop Control; AWSC = All-Way Stop Control; LOS = Level of Service.

"a" or "b" indicate a pair of T-legged intersections

**Bold** indicates deficient operations based on *Chico 2030 General Plan* LOS performance expectations.

- 1. For signalized intersections, average intersection delay is reported in seconds per vehicle for all approaches. For side street stop-controlled intersections, intersection delay is reported in seconds per vehicle for the overall intersection and worst-case movement/approach. Intersection delay is calculated based on the procedures and methodology contained in the *Highway Capacity Manual*, 7<sup>th</sup> Edition (Transportation Research Board, 2022).
- 2. Synchro analysis results at the SR 99 ramp intersections conflict with existing field observations of this area. Vehicular delay and LOS are expected to degrade with increases in traffic in the cumulative condition. The E. 20th Street & SR 99 ramp intersections will require further analysis by Caltrans.

Source: Fehr & Peers, 2024.



# **Cumulative Plus Project Intersection Operations**

The Cumulative BCAG RTP/SCS Year 2045 Model was used to develop Cumulative Plus Project trip distribution and forecasts. Project access with the same permitted movements as under Existing Plus Project conditions are analyzed under the Cumulative Plus Project conditions.

**Table 8** presents displays the AM and PM peak hour intersection operations under Cumulative Plus Project conditions. As shown in Table 8, all intersections would operate acceptably based on City standards in the peak hours under Cumulative Plus Project conditions. AM and PM peak hour turning movements, lane configurations, and technical calculations at the study intersections under Cumulative Plus Project conditions are displayed in **Appendix E**.

Table 8: Intersection Operations – Cumulative No Project vs. Cumulative Plus Project Conditions

|                                         |                 | Cum                |       | No Proje           | ect   | Cum                | ulative<br>Cond | Plus Proje<br>itions | ect          |
|-----------------------------------------|-----------------|--------------------|-------|--------------------|-------|--------------------|-----------------|----------------------|--------------|
| Intersection                            | Control<br>Type | AM P<br>Hou        |       | PM P               |       | AM P<br>Hou        |                 | PM P<br>Hot          |              |
|                                         |                 | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS             | Delay <sup>1</sup>   | LOS          |
| 1a. W. 11th Street & Park<br>Avenue     | SSSC            | 2 (41)             | A (E) | 2 (22)             | A (C) | 2 (49)             | A (E)           | 2 (22)               | A (C)        |
| 1b. E. 11th Street & Park<br>Avenue     | SSSC            | 1 (16)             | A (C) | 1 (14)             | A (B) | 1 (17)             | A (C)           | 1 (14)               | A (B)        |
| 2. Ivy Street & W. 8th Street           | Signal          | 6                  | Α     | 7                  | Α     | 8                  | Α               | 13                   | В            |
| 3. Ivy Street & W. 9th Street           | Signal          | 6                  | Α     | 10                 | Α     | 9                  | Α               | 61                   | E            |
| 4. Ivy Street & W. 12th Street          | SSSC            | 4 (10)             | A (A) | 3 (11)             | A (B) | 2 (18)             | A (C)           | 2 (26)               | A (D)        |
| 5. W. 14th Street & Park<br>Avenue      | Signal          | 4                  | Α     | 5                  | А     | 5                  | А               | 9                    | А            |
| 6a. W. 14th Street &<br>Broadway        | SSSC            | 4 (9)              | A (A) | 3 (9)              | A (A) | 7 (9)              | A (A)           | 9 (12)               | A (B)        |
| 6b. W. 14th Street &<br>Broadway        | SSSC            | 4 (9)              | A (A) | 3 (9)              | A (A) | 7 (10)             | A (B)           | 11 (17)              | B (C)        |
| 7. W. 14th Street & Chestnut<br>Street  | SSSC            | 8 (9)              | A (A) | 2 (9)              | A (A) | 4 (11)             | A (B)           | 12 (15)              | B (C)        |
| 8. W. 16th Street & Park<br>Avenue      | Signal          | 5                  | Α     | 5                  | Α     | 10                 | А               | 31                   | С            |
| 9. W. 16th Street & Broadway            | AWSC            | 7 (7)              | A (A) | 7 (7)              | A (A) | 12 (13)            | B (B)           | 23 (29)              | C (D)        |
| 10. W. 16th Street &<br>Chestnut Street | SSSC            | 3 (9)              | A (A) | 3 (9)              | A (A) | 1 (13)             | A (B)           | 1 (19)               | A (C)        |
| 11. W. 18th Street & Park<br>Avenue     | SSSC            | 1 (34)             | A (D) | 2 (39)             | A (E) | 4 (66)             | A <b>(F)</b>    | 15<br><b>(237)</b>   | B <b>(F)</b> |
| 12. W. 18th Street &<br>Broadway        | SSSC            | 6 (9)              | A (A) | 6 (10)             | A (A) | 10 (11)            | B (B)           | 9 (11)               | A (B)        |



|                                                     |                 | Cum                |       | No Proje           | ect   | Cum                | ulative<br>Cond | Plus Proje<br>itions | ect   |
|-----------------------------------------------------|-----------------|--------------------|-------|--------------------|-------|--------------------|-----------------|----------------------|-------|
| Intersection                                        | Control<br>Type | AM P               |       | PM P               |       | AM P<br>Hou        |                 | PM P<br>Hot          |       |
|                                                     |                 | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS   | Delay <sup>1</sup> | LOS             | Delay <sup>1</sup>   | LOS   |
| 13. W. 18th Street & Normal<br>Avenue               | SSSC            | 6 (9)              | A (A) | 5 (10)             | A (A) | 3 (12)             | A (B)           | 3 (12)               | A (B) |
| 14a. E. 20th Street & Park<br>Avenue                | Signal          | 12                 | В     | 14                 | В     | 13                 | В               | 21                   | С     |
| 14b. W. 20th Street & Park<br>Avenue                | SSSC            | 1 (10)             | A (B) | 1 (11)             | A (B) | 2 (14)             | A (B)           | 1 (14)               | A (B) |
| 15. W. 20th Street & Normal<br>Avenue               | SSSC            | 3 (9)              | A (A) | 3 (9)              | A (A) | 10 (12)            | A (B)           | 9 (11)               | A (B) |
| 16. W. 22nd Street & Park<br>Avenue                 | Signal          | 3                  | А     | 3                  | Α     | 6                  | А               | 8                    | А     |
| 17. 22nd Street & Normal<br>Avenue/Estes Road       | SSSC            | 3 (7)              | A (A) | 1 (7)              | A (A) | 4 (10)             | A (A)           | 9 (12)               | A (B) |
| 18. Park Avenue-Midway & E.<br>Park Avenue          | Signal          | 30                 | С     | 30                 | С     | 58                 | E               | 76                   | E     |
| 19. E. 20th Street & SR 99 SB<br>Ramps <sup>2</sup> | Signal          | 13                 | В     | 30                 | С     | 13                 | В               | 34                   | С     |
| 20. E. 20th Street & SR 99 NB Ramps <sup>2</sup>    | Signal          | 10                 | В     | 23                 | С     | 11                 | В               | 24                   | С     |

Notes: SSSC = Side-Street Stop Control; AWSC = All-Way Stop Control; LOS = Level of Service.

**Bold** indicates deficient operations based on *Chico 2030 General Plan* LOS performance expectations.

- 1. Average signalized intersection delay is reported in seconds per vehicle for all approaches. Intersection delay is calculated based on the procedures and methodology contained in the *Highway Capacity Manual*, 7<sup>th</sup> Edition (Transportation Research Board, 2022).
- 2. Synchro analysis results at the SR 99 ramp intersections conflict with existing field observations of this area, with delay expected to degrade with the increase in traffic in the future.

Source: Fehr & Peers, 2024.

As displayed in **Table 8**, with the addition of project trips, the side-street movements of the W. 18th Street & Park Avenue intersection would operate deficiently in the peak hours with LOS of F, though the average delay across all movements would be LOS of A or B. As discussed in the Existing Plus Project Intersection Operations section above, signalizing the 18<sup>th</sup> Street & Park Avenue intersection would bring the LOS on the side-street movements to an acceptable level in the peak hours in the Cumulative Plus Project condition, as shown in Table 9 below.

Additionally, though the intersections of Ivy Street & 9<sup>th</sup> Street and E. Park Avenue & Midway would operate at an LOS of E, this LOS is acceptable according to Chico 2030 General Plan LOS performance expectations as 9<sup>th</sup> Street, Park Avenue, and E. Park Avenue are served by transit and include bicycle and pedestrian facilities.

<sup>&</sup>quot;a" or "b" indicate a pair of T-legged intersections



Table 9: Intersection Operations – Cumulative Plus Project Conditions with Improvements

| lutava atiava                    | Control | AM Peal | ( Hour | PM Peak | Hour |
|----------------------------------|---------|---------|--------|---------|------|
| Intersection                     | Type    | Delay   | LOS    | Delay   | LOS  |
| 11. W. 18th Street & Park Avenue | Signal  | 6       | А      | 6       | А    |

Note: Intersection delay is calculated based on the procedures and methodology contained in the Highway Capacity Manual 7th Edition (Transportation Research Board, 2022) in Synchro. Source: Fehr & Peers, 2024.

# Conclusion

This chapter presents the conclusions of the entitlement review/intersection operations analysis for the proposed project (Barber Yard Specific Plan) located in the City of Chico.

#### **Intersection Operations Analysis**

Results of the intersection operations analysis indicate that overall, the current study area can generally absorb the additional transportation demand that would be caused by the development of the proposed project without significantly diminishing the level of service at study intersections. With the additional project traffic, none of the 20 study intersections analyzed would operate deficiently during the AM and PM peak hours, though field observations indicated that the E. 20th Street & SR 99 ramp intersections may currently operate deficiently. Additionally, under Existing Plus Project conditions, signalization of the W. 18<sup>th</sup> Street & Park Avenue intersection would decrease excessive delays on the side-street approaches during peak hours.

Under Cumulative No Project and Cumulative Plus Project conditions, with improvements identified in the BCAG RTP/SCS, none of the 20 study intersections analyzed would operate deficiently during the AM and PM peak hours. However, under Cumulative Plus Project conditions, the side-street movements of the W. 18<sup>th</sup> Street & Park Avenue intersection would continue to experience high delays in the peak hours without signalization.

# **Recommended Intersection Improvements**

Due to the uncertainty of forecasting intersection-level volumes, the developer and City of Chico should coordinate to monitor traffic operations for the intersection listed below to determine when improvements are justified or warranted. The developer should perform an intersection traffic analysis prior to each phase of development, except for the first phase, to determine if the phase is likely to result in traffic signal warrants being met. Traffic signal warrant analysis shall be performed by a licensed traffic engineer and submitted to the City of Chico Public Works – Engineering Department for review and approval, as a condition of reviewing improvement plans for each project phase, except for the first phase provided that the first phase constitutes less than one-half of the overall project area.

• Install a traffic signal at the intersection of 18<sup>th</sup> Street & Park Avenue when appropriate signal warrants are met and/or when triggered by an observed LOS deficiency.

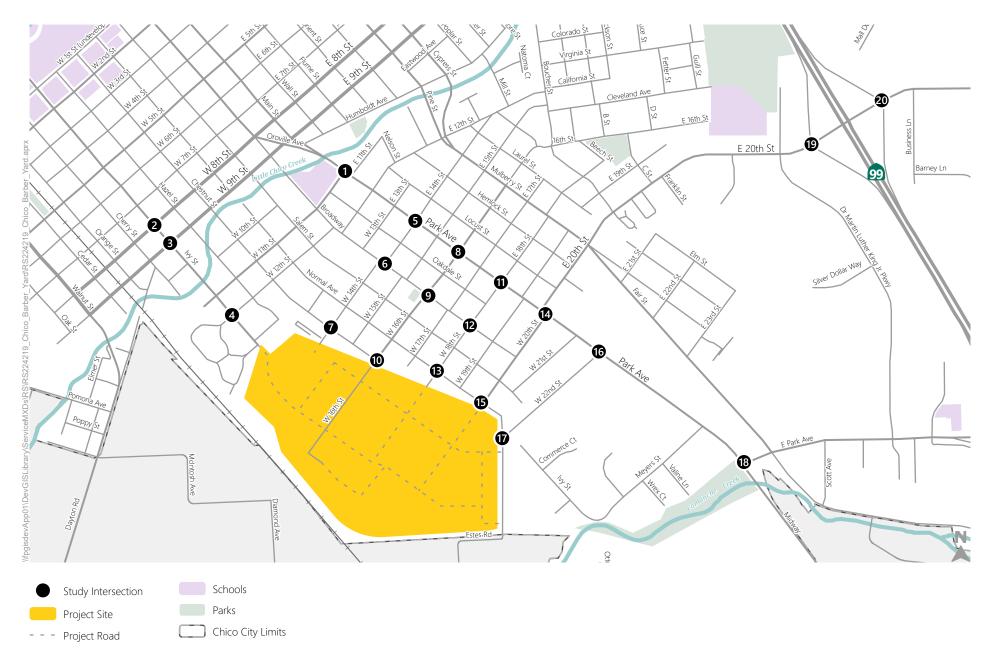
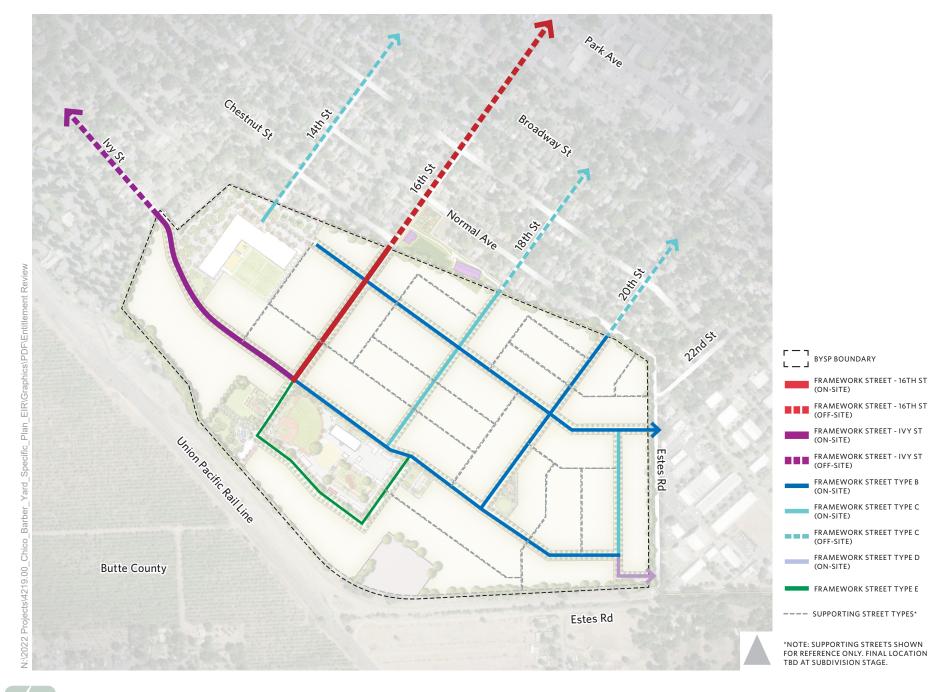






Figure 1









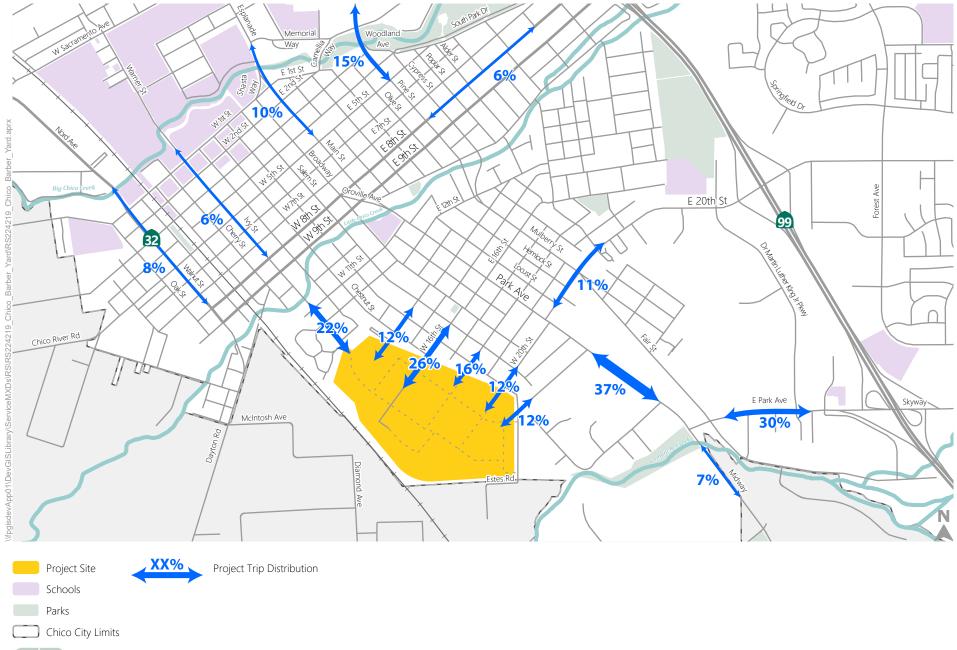





Figure 3

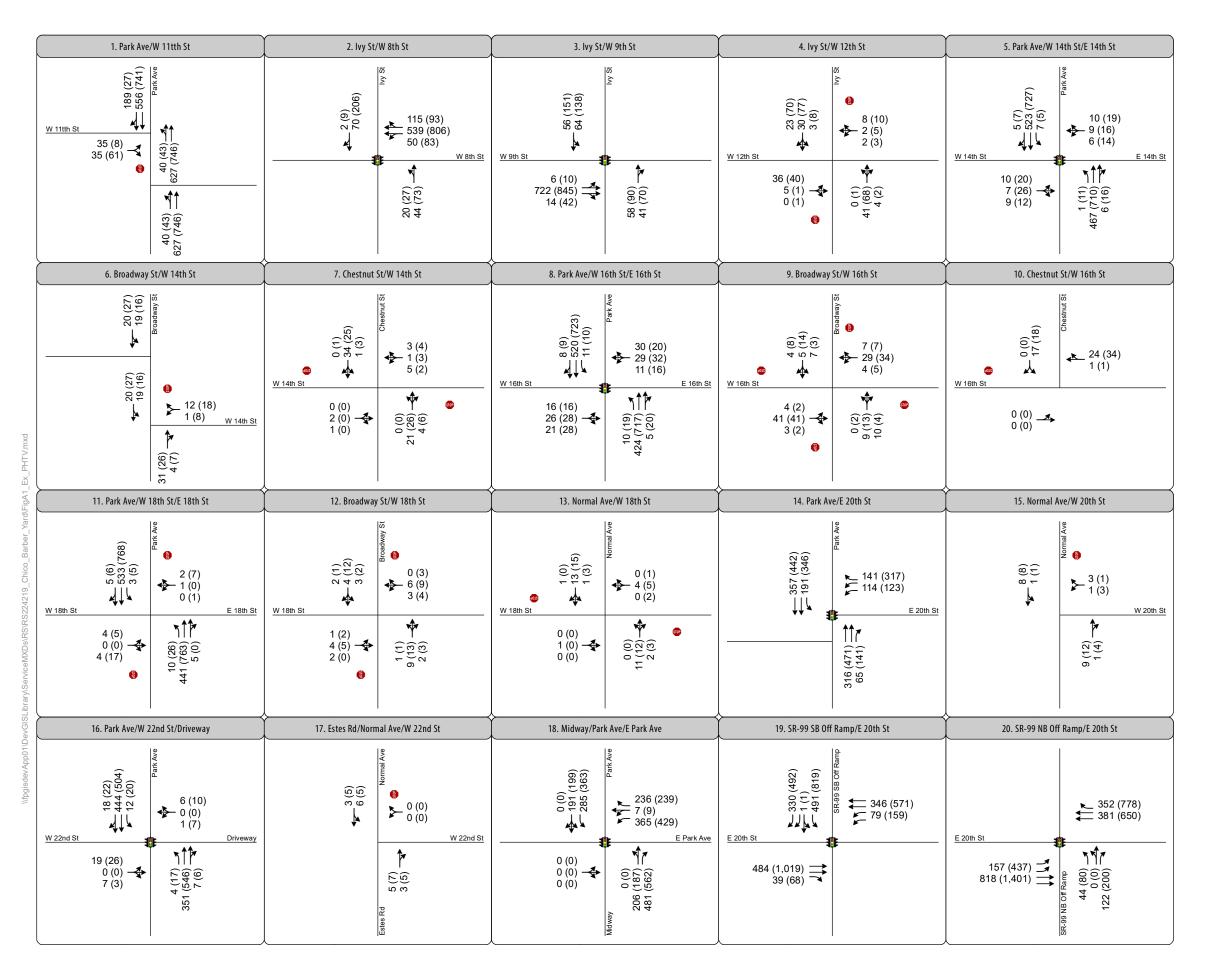





Figure A1

Peak Hour Traffic Volumes and Lane Configurations -Existing Conditions



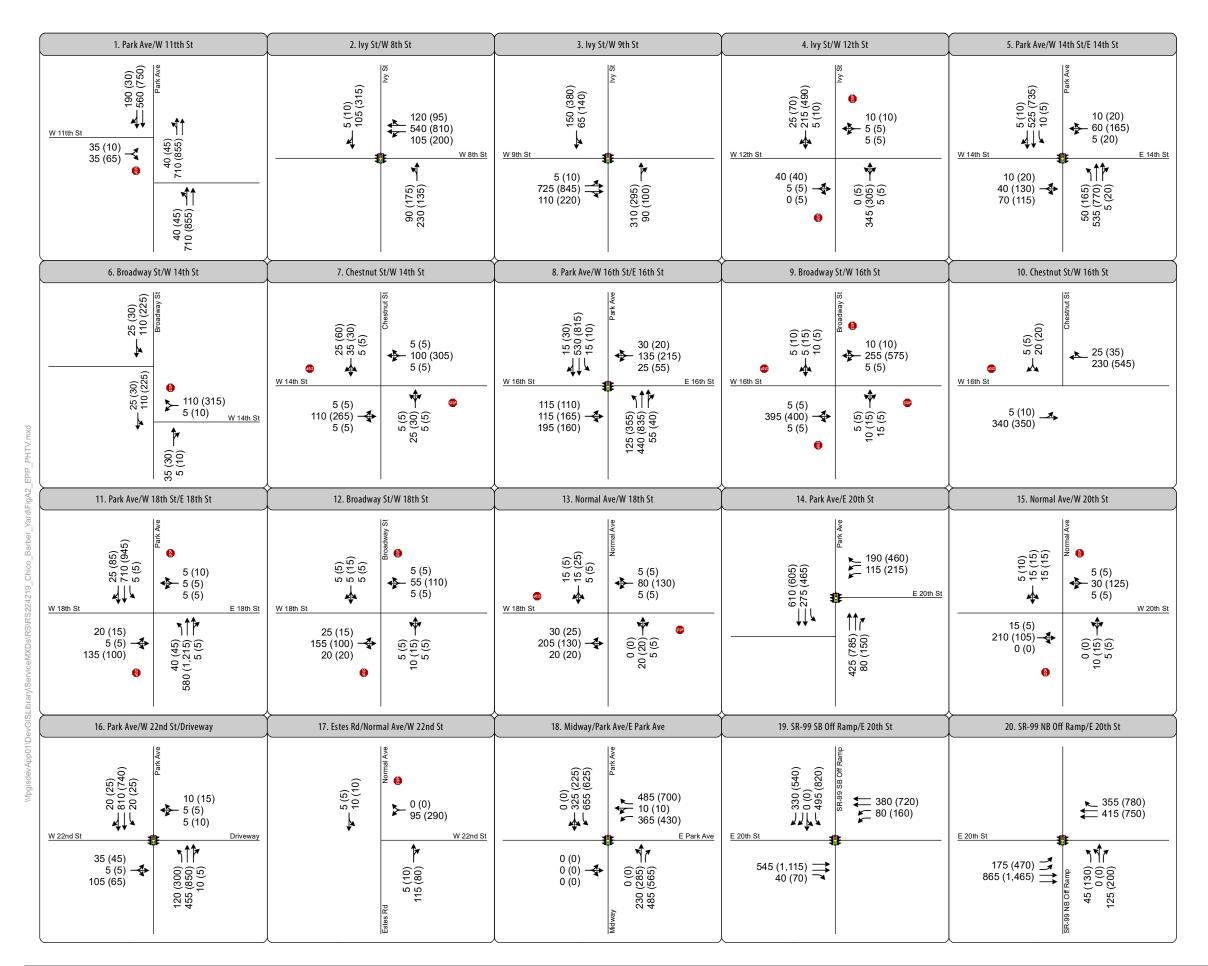





Figure A2

Peak Hour Traffic Volumes and Lane Configurations -Existing Plus Project Conditions



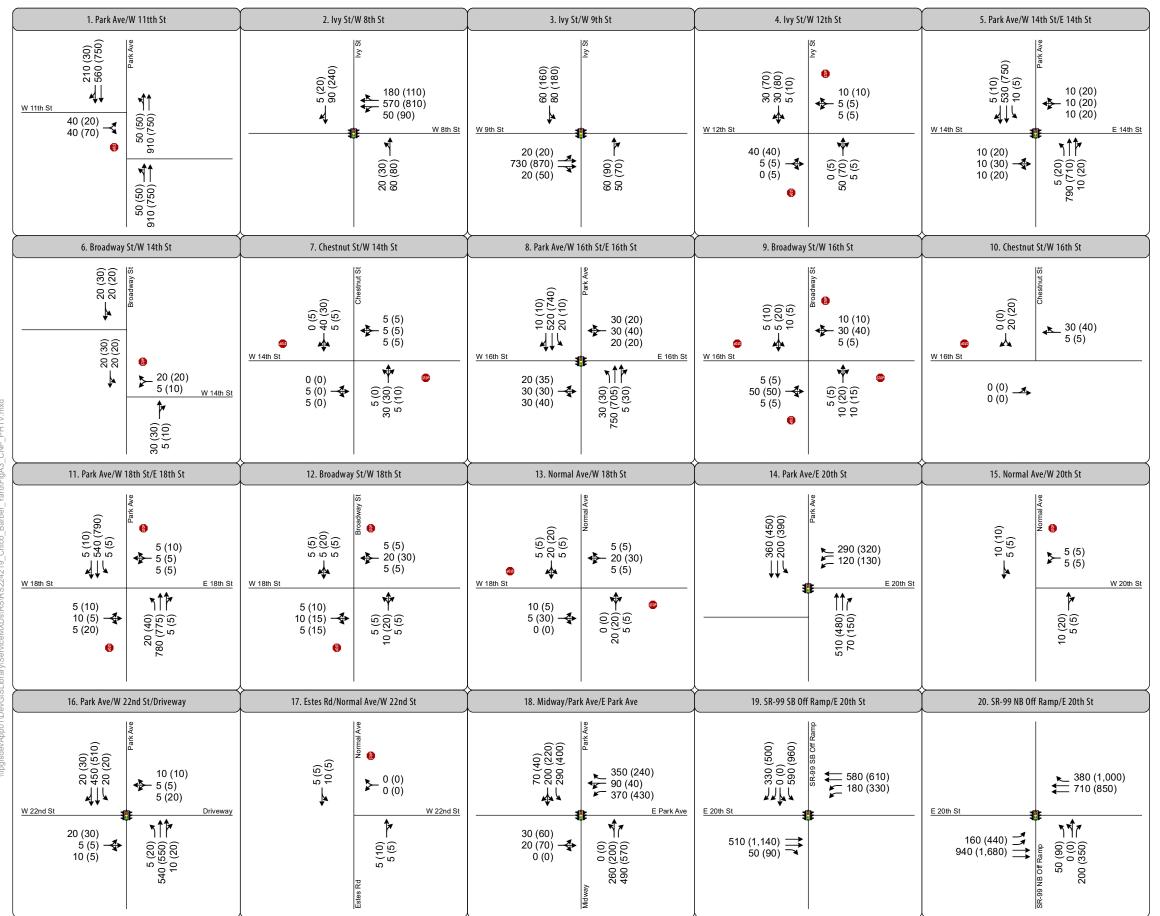





Figure A3

Peak Hour Traffic Volumes and Lane Configurations -Cumulative No Project Conditions



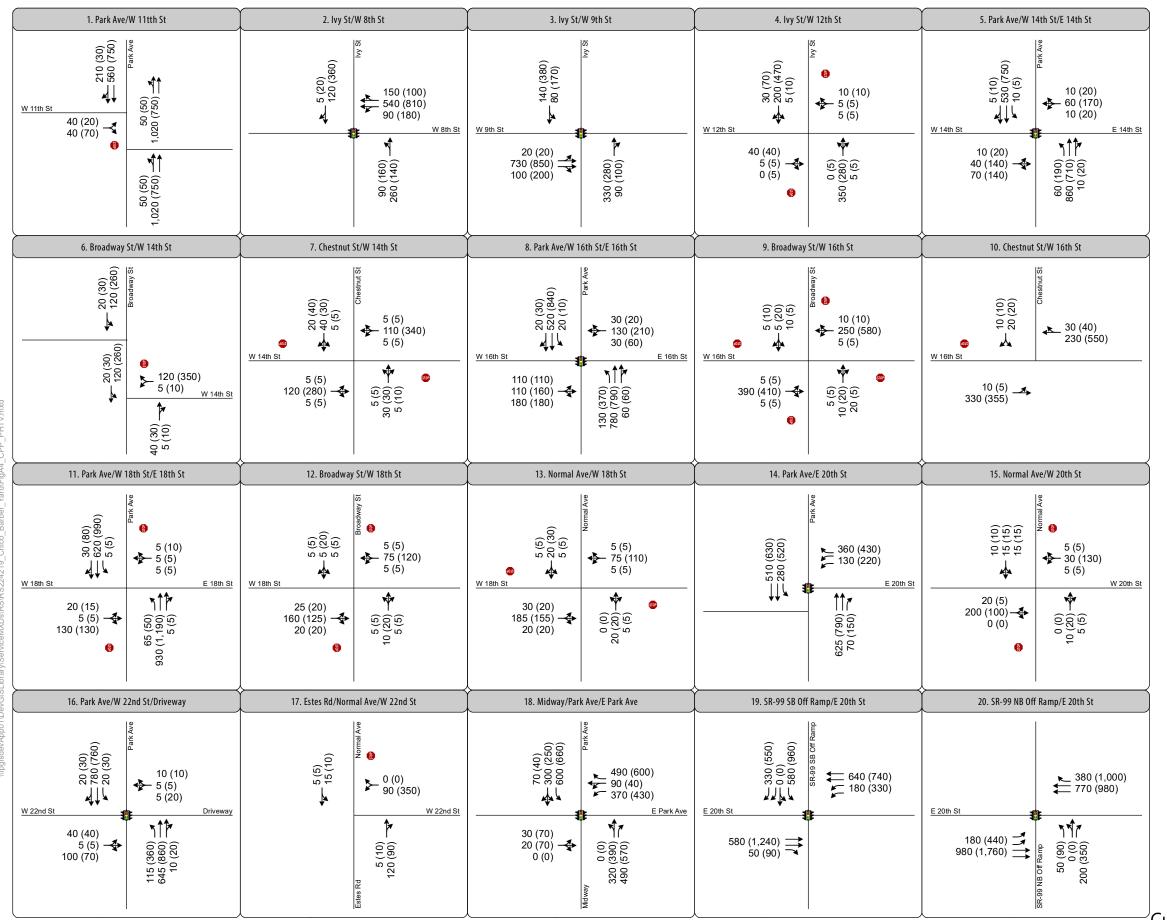





Figure A4

Peak Hour Traffic Volumes and Lane Configurations -Cumulative Plus Project Conditions



Appendix A – **Existing Conditions**Peak Hour Traffic Volume

Forecasts, Lane Configurations, and Technical Calculations

| Intersection           |         |       |         |          |            |      |
|------------------------|---------|-------|---------|----------|------------|------|
| Int Delay, s/veh       | 1.4     |       |         |          |            |      |
| Movement               | EBL     | EBR   | NBL     | NBT      | SBT        | SBR  |
| Lane Configurations    | ¥       |       |         | <b>^</b> | <b>∱</b> } |      |
| Traffic Vol, veh/h     | 35      | 35    | 40      | 627      | 556        | 189  |
| Future Vol, veh/h      | 35      | 35    | 40      | 627      | 556        | 189  |
| Conflicting Peds, #/hr | 0       | 0     | 7       | 0        | 0          | 0    |
| Sign Control           | Stop    | Stop  | Free    | Free     | Free       | Free |
| RT Channelized         | -       | None  | -       |          | -          | None |
| Storage Length         | 0       | -     | -       | -        | _          | -    |
| Veh in Median Storage  |         | _     | _       | 0        | 0          | _    |
| Grade, %               | 0       | _     | _       | 0        | 0          | _    |
| Peak Hour Factor       | 90      | 90    | 90      | 90       | 90         | 90   |
| Heavy Vehicles, %      | 3       | 3     | 3       | 3        | 3          | 3    |
| Mymt Flow              | 39      | 39    | 44      | 697      | 618        | 210  |
| MALL LIOW              | 39      | 39    | 44      | 091      | 010        | 210  |
|                        |         |       |         |          |            |      |
| Major/Minor N          | /linor2 | N     | //ajor1 | N        | //ajor2    |      |
| Conflicting Flow All   | 1167    | 421   | 835     | 0        | -          | 0    |
| Stage 1                | 730     | -     | -       | -        | -          | -    |
| Stage 2                | 437     | -     | -       | -        | -          | -    |
| Critical Hdwy          | 6.86    | 6.96  | 4.16    | -        | -          | -    |
| Critical Hdwy Stg 1    | 5.86    | -     | -       | -        | -          | -    |
| Critical Hdwy Stg 2    | 5.86    | -     | -       | -        | -          | -    |
| Follow-up Hdwy         | 3.53    | 3.33  | 2.23    | _        | _          | -    |
| Pot Cap-1 Maneuver     | 185     | 578   | 788     | -        | _          | -    |
| Stage 1                | 435     | -     | -       | _        | _          | -    |
| Stage 2                | 616     | -     | -       | -        | -          | _    |
| Platoon blocked, %     |         |       |         | _        | _          | _    |
| Mov Cap-1 Maneuver     | 166     | 574   | 783     | _        | _          | _    |
| Mov Cap-2 Maneuver     | 166     | -     |         | _        | _          | _    |
| Stage 1                | 392     | _     | _       | _        | _          | _    |
| Stage 2                | 612     | _     | _       | _        | _          | _    |
| Stage 2                | 012     | _     | -       |          | _          | _    |
|                        |         |       |         |          |            |      |
| Approach               | EB      |       | NB      |          | SB         |      |
| HCM Control Delay, s   | 24.9    |       | 0.6     |          | 0          |      |
| HCM LOS                | С       |       |         |          |            |      |
|                        |         |       |         |          |            |      |
| Minor Long (Maior M    |         | NDI   | NDT     | EDL 4    | CDT        | CDD  |
| Minor Lane/Major Mvm   | ι       | NBL   |         | EBLn1    | SBT        | SBR  |
| Capacity (veh/h)       |         | 783   | -       |          | -          | -    |
| HCM Lane V/C Ratio     |         | 0.057 |         | 0.301    | -          | -    |
| HCM Control Delay (s)  |         | 9.9   | -       |          | -          | -    |
| HCM Lane LOS           |         | A     | -       | C        | -          | -    |
| HCM 95th %tile Q(veh)  |         | 0.2   | _       | 1.2      | _          |      |

| Intersection           |        |      |            |       |        |          |
|------------------------|--------|------|------------|-------|--------|----------|
| Int Delay, s/veh       | 0.4    |      |            |       |        |          |
| Movement               | WBL    | WBR  | NBT        | NBR   | SBL    | SBT      |
| Lane Configurations    | ¥#     |      | <b>↑</b> ↑ |       |        | <b>^</b> |
| Traffic Vol, veh/h     | 7      | 26   | 641        | 7     | 13     | 578      |
| Future Vol, veh/h      | 7      | 26   | 641        | 7     | 13     | 578      |
| Conflicting Peds, #/hr | 0      | 0    | 0          | 7     | 0      | 0        |
| Sign Control           | Stop   | Stop | Free       | Free  | Free   | Free     |
| RT Channelized         |        | None |            | None  |        | None     |
|                        | -      |      | -          | None  | -      |          |
| Storage Length         | 0      | -    | -          | -     | -      | -        |
| Veh in Median Storage, |        | -    | 0          | -     | -      | 0        |
| Grade, %               | 0      | -    | 0          | -     | -      | 0        |
| Peak Hour Factor       | 90     | 90   | 90         | 90    | 90     | 90       |
| Heavy Vehicles, %      | 3      | 3    | 3          | 3     | 3      | 3        |
| Mvmt Flow              | 8      | 29   | 712        | 8     | 14     | 642      |
|                        |        |      |            |       |        |          |
| N. 4 . ' (N. 4)' N. 4  | r 4    |      |            |       |        |          |
|                        | linor1 |      | Major1     |       | Major2 | _        |
| Conflicting Flow All   | 1072   | 367  | 0          | 0     | 727    | 0        |
| Stage 1                | 723    | -    | -          | -     | -      | -        |
| Stage 2                | 349    | -    | -          | -     | -      | -        |
| Critical Hdwy          | 6.86   | 6.96 | -          | -     | 4.16   | -        |
| Critical Hdwy Stg 1    | 5.86   | -    | -          | -     | -      | -        |
| Critical Hdwy Stg 2    | 5.86   | -    | -          | _     | _      | -        |
| Follow-up Hdwy         | 3.53   | 3.33 | _          | _     | 2.23   | _        |
| Pot Cap-1 Maneuver     | 214    | 627  | _          | _     | 866    | _        |
| Stage 1                | 439    | -    | _          | _     | -      | _        |
| Stage 2                | 682    | _    | _          | _     | _      | _        |
| Platoon blocked, %     | 002    |      |            |       |        | _        |
|                        | 207    | 623  | -          | _     | 960    |          |
| Mov Cap-1 Maneuver     |        |      | -          | -     | 860    | -        |
| Mov Cap-2 Maneuver     | 328    | -    | -          | _     | -      | -        |
| Stage 1                | 436    | -    | -          | -     | -      | -        |
| Stage 2                | 665    | -    | -          | -     | -      | -        |
|                        |        |      |            |       |        |          |
| Approach               | WB     |      | NB         |       | SB     |          |
|                        | 12.4   |      | 0          |       | 0.2    |          |
| HCM Control Delay, s   |        |      | U          |       | 0.2    |          |
| HCM LOS                | В      |      |            |       |        |          |
|                        |        |      |            |       |        |          |
| Minor Lane/Major Mvmt  |        | NBT  | NBRV       | VBLn1 | SBL    | SBT      |
| Capacity (veh/h)       |        |      |            | 523   | 860    |          |
| HCM Lane V/C Ratio     |        |      |            |       | 0.017  | <u>-</u> |
|                        |        | _    | -          | 12.4  |        |          |
| HCM Control Delay (s)  |        | -    | -          |       | 9.3    | -        |
| HCM Lane LOS           |        | -    | -          | В     | A      | -        |
| HCM 95th %tile Q(veh)  |        | -    | -          | 0.2   | 0.1    | -        |
| HCM 95th %tile Q(veh)  |        | -    | -          | 0.2   | 0.1    | -        |

|                                                        | ۶   | <b>→</b> | •   | •    | •    | •    | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|--------------------------------------------------------|-----|----------|-----|------|------|------|------|----------|----------|-------------|----------|------|
| Movement                                               | EBL | EBT      | EBR | WBL  | WBT  | WBR  | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations                                    |     |          |     |      |      |      |      | र्स      |          |             | f)       |      |
| Traffic Volume (veh/h)                                 | 0   | 0        | 0   | 50   | 539  | 115  | 20   | 44       | 0        | 0           | 70       | 2    |
| Future Volume (veh/h)                                  | 0   | 0        | 0   | 50   | 539  | 115  | 20   | 44       | 0        | 0           | 70       | 2    |
| Initial Q (Qb), veh                                    |     |          |     | 0    | 0    | 0    | 0    | 0        | 0        | 0           | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                    |     |          |     | 1.00 |      | 1.00 | 1.00 |          | 1.00     | 1.00        |          | 0.98 |
| Parking Bus, Adj                                       |     |          |     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |
| Work Zone On Approach                                  |     |          |     |      | No   |      |      | No       |          |             | No       |      |
| Adj Sat Flow, veh/h/ln                                 |     |          |     | 1856 | 1856 | 1856 | 1856 | 1856     | 0        | 0           | 1856     | 1856 |
| Adj Flow Rate, veh/h                                   |     |          |     | 56   | 599  | 101  | 22   | 49       | 0        | 0           | 78       | 2    |
| Peak Hour Factor                                       |     |          |     | 0.90 | 0.90 | 0.90 | 0.90 | 0.90     | 0.90     | 0.90        | 0.90     | 0.90 |
| Percent Heavy Veh, %                                   |     |          |     | 3    | 3    | 3    | 3    | 3        | 0        | 0           | 3        | 3    |
| Cap, veh/h                                             |     |          |     | 89   | 995  | 177  | 318  | 232      | 0        | 0           | 323      | 8    |
| Arrive On Green                                        |     |          |     | 0.35 | 0.35 | 0.35 | 0.18 | 0.18     | 0.00     | 0.00        | 0.18     | 0.18 |
| Sat Flow, veh/h                                        |     |          |     | 256  | 2844 | 505  | 397  | 1290     | 0        | 0           | 1800     | 46   |
| Grp Volume(v), veh/h                                   |     |          |     | 404  | 0    | 352  | 71   | 0        | 0        | 0           | 0        | 80   |
| Grp Sat Flow(s),veh/h/ln                               |     |          |     | 1843 | 0    | 1762 | 1687 | 0        | 0        | 0           | 0        | 1846 |
| Q Serve(g_s), s                                        |     |          |     | 3.5  | 0.0  | 3.1  | 0.0  | 0.0      | 0.0      | 0.0         | 0.0      | 0.7  |
| Cycle Q Clear(g_c), s                                  |     |          |     | 3.5  | 0.0  | 3.1  | 0.6  | 0.0      | 0.0      | 0.0         | 0.0      | 0.7  |
| Prop In Lane                                           |     |          |     | 0.14 |      | 0.29 | 0.31 |          | 0.00     | 0.00        |          | 0.02 |
| Lane Grp Cap(c), veh/h                                 |     |          |     | 645  | 0    | 617  | 549  | 0        | 0        | 0           | 0        | 332  |
| V/C Ratio(X)                                           |     |          |     | 0.63 | 0.00 | 0.57 | 0.13 | 0.00     | 0.00     | 0.00        | 0.00     | 0.24 |
| Avail Cap(c_a), veh/h                                  |     |          |     | 2408 | 0    | 2302 | 1541 | 0        | 0        | 0           | 0        | 1447 |
| HCM Platoon Ratio                                      |     |          |     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |
| Upstream Filter(I)                                     |     |          |     | 1.00 | 0.00 | 1.00 | 1.00 | 0.00     | 0.00     | 0.00        | 0.00     | 1.00 |
| Uniform Delay (d), s/veh                               |     |          |     | 5.2  | 0.0  | 5.1  | 6.7  | 0.0      | 0.0      | 0.0         | 0.0      | 6.7  |
| Incr Delay (d2), s/veh                                 |     |          |     | 0.4  | 0.0  | 0.3  | 0.0  | 0.0      | 0.0      | 0.0         | 0.0      | 0.1  |
| Initial Q Delay(d3),s/veh                              |     |          |     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0         | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln                               |     |          |     | 0.4  | 0.0  | 0.3  | 0.1  | 0.0      | 0.0      | 0.0         | 0.0      | 0.1  |
| Unsig. Movement Delay, s/veh                           |     |          |     |      |      |      |      |          |          |             |          |      |
| LnGrp Delay(d),s/veh                                   |     |          |     | 5.6  | 0.0  | 5.4  | 6.7  | 0.0      | 0.0      | 0.0         | 0.0      | 6.9  |
| LnGrp LOS                                              |     |          |     | Α    | Α    | Α    | Α    | Α        | Α        | Α           | Α        | Α    |
| Approach Vol, veh/h                                    |     |          |     |      | 756  |      |      | 71       |          |             | 80       |      |
| Approach Delay, s/veh                                  |     |          |     |      | 5.5  |      |      | 6.7      |          |             | 6.9      |      |
| Approach LOS                                           |     |          |     |      | A    |      |      | A        |          |             | Α        |      |
| Timer - Assigned Phs                                   |     | 2        |     | 4    |      |      |      | 8        |          |             |          |      |
| Phs Duration (G+Y+Rc), s                               |     | 11.7     |     | 7.4  |      |      |      | 7.4      |          |             |          |      |
| , , ,                                                  |     | * 5      |     | * 4  |      |      |      | * 4      |          |             |          |      |
| Change Period (Y+Rc), s<br>Max Green Setting (Gmax), s |     | * 25     |     | * 15 |      |      |      | * 15     |          |             |          |      |
|                                                        |     |          |     |      |      |      |      |          |          |             |          |      |
| Max Q Clear Time (g_c+l1), s                           |     | 5.5      |     | 2.7  |      |      |      | 2.6      |          |             |          |      |
| Green Ext Time (p_c), s                                |     | 1.1      |     | 0.1  |      |      |      | 0.1      |          |             |          |      |
| Intersection Summary                                   |     |          |     |      |      |      |      |          |          |             |          |      |
| HCM 6th Ctrl Delay                                     |     |          | 5.7 |      |      |      |      |          |          |             |          |      |
| HCM 6th LOS                                            |     |          | Α   |      |      |      |      |          |          |             |          |      |
| Notes                                                  |     |          |     |      |      |      |      |          |          |             |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| ٦                             | <b>→</b> | $\rightarrow$ | •    | •   | •   | •    | <b>†</b> | /    | -    | <b>↓</b> | 4    |
|-------------------------------|----------|---------------|------|-----|-----|------|----------|------|------|----------|------|
| Movement EBL                  | EBT      | EBR           | WBL  | WBT | WBR | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations           | <b>^</b> |               |      |     |     |      | f)       |      |      | 4        |      |
| Traffic Volume (veh/h) 6      | 722      | 14            | 0    | 0   | 0   | 0    | 58       | 41   | 64   | 56       | 0    |
| Future Volume (veh/h) 6       | 722      | 14            | 0    | 0   | 0   | 0    | 58       | 41   | 64   | 56       | 0    |
| Initial Q (Qb), veh 0         | 0        | 0             | U    | J   | U   | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT) 1.00      | U        | 0.99          |      |     |     | 1.00 | U        | 0.98 | 0.99 | U        | 1.00 |
| Parking Bus, Adj 1.00         | 1.00     | 1.00          |      |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach         | No       | 1.00          |      |     |     | 1.00 | No       | 1.00 | 1.00 | No       | 1.00 |
| Adj Sat Flow, veh/h/ln 1856   | 1856     | 1856          |      |     |     | 0    | 1856     | 1856 | 1856 | 1856     | 0    |
| Adj Flow Rate, veh/h 7        | 802      | 14            |      |     |     | 0    | 64       | 18   | 71   | 62       | 0    |
| Peak Hour Factor 0.90         | 0.90     | 0.90          |      |     |     | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |
| Percent Heavy Veh, % 3        | 3        | 3             |      |     |     | 0.30 | 3        | 3    | 3    | 3        | 0.50 |
| Cap, veh/h                    | 1288     | 24            |      |     |     | 0    | 299      | 84   | 405  | 193      | 0    |
| Arrive On Green 0.36          | 0.36     | 0.36          |      |     |     | 0.00 | 0.22     | 0.22 | 0.22 | 0.22     | 0.00 |
| Sat Flow, veh/h 30            | 3601     | 66            |      |     |     | 0.00 | 1385     | 390  | 663  | 894      | 0.00 |
|                               |          |               |      |     |     |      |          |      |      |          |      |
| Grp Volume(v), veh/h 432      | 0        | 391           |      |     |     | 0    | 0        | 82   | 133  | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln1854 | 0        | 1843          |      |     |     | 0    | 0        | 1775 | 1556 | 0        | 0    |
| Q Serve(g_s), s 4.1           | 0.0      | 3.6           |      |     |     | 0.0  | 0.0      | 0.8  | 0.6  | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s 4.1     | 0.0      | 3.6           |      |     |     | 0.0  | 0.0      | 0.8  | 1.4  | 0.0      | 0.0  |
| Prop In Lane 0.02             | _        | 0.04          |      |     |     | 0.00 | _        | 0.22 | 0.53 | _        | 0.00 |
| Lane Grp Cap(c), veh/h 663    | 0        | 659           |      |     |     | 0    | 0        | 383  | 598  | 0        | 0    |
| V/C Ratio(X) 0.65             | 0.00     | 0.59          |      |     |     | 0.00 | 0.00     | 0.21 | 0.22 | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h 2197    | 0        | 2184          |      |     |     | 0    | 0        | 1262 | 1344 | 0        | 0    |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00          |      |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I) 1.00       | 0.00     | 1.00          |      |     |     | 0.00 | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 |
| Uniform Delay (d), s/veh 5.7  | 0.0      | 5.5           |      |     |     | 0.0  | 0.0      | 6.8  | 7.0  | 0.0      | 0.0  |
| Incr Delay (d2), s/veh 0.4    | 0.0      | 0.3           |      |     |     | 0.0  | 0.0      | 0.1  | 0.1  | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0           |      |     |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/lr0.6   | 0.0      | 0.5           |      |     |     | 0.0  | 0.0      | 0.2  | 0.3  | 0.0      | 0.0  |
| Unsig. Movement Delay, s/vel  |          |               |      |     |     |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh 6.1      | 0.0      | 5.8           |      |     |     | 0.0  | 0.0      | 6.9  | 7.1  | 0.0      | 0.0  |
| LnGrp LOS A                   | Α        | Α             |      |     |     | Α    | Α        | Α    | Α    | Α        | Α    |
| Approach Vol, veh/h           | 823      |               |      |     |     |      | 82       |      |      | 133      |      |
| Approach Delay, s/veh         | 6.0      |               |      |     |     |      | 6.9      |      |      | 7.1      |      |
| Approach LOS                  | Α        |               |      |     |     |      | Α        |      |      | Α        |      |
|                               | 2        |               |      |     |     |      | 0        |      |      |          |      |
| Timer - Assigned Phs          | 2        |               | 4    |     |     |      | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s      | 12.5     |               | 8.6  |     |     |      | 8.6      |      |      |          |      |
| Change Period (Y+Rc), s       | * 5      |               | * 4  |     |     |      | * 4      |      |      |          |      |
| Max Green Setting (Gmax), s   | * 25     |               | * 15 |     |     |      | * 15     |      |      |          |      |
| Max Q Clear Time (g_c+l1), s  | 6.1      |               | 3.4  |     |     |      | 2.8      |      |      |          |      |
| Green Ext Time (p_c), s       | 1.2      |               | 0.2  |     |     |      | 0.1      |      |      |          |      |
| Intersection Summary          |          |               |      |     |     |      |          |      |      |          |      |
| HCM 6th Ctrl Delay            |          | 6.2           |      |     |     |      |          |      |      |          |      |
| HCM 6th LOS                   |          | Α             |      |     |     |      |          |      |      |          |      |
| Notes                         |          |               |      |     |     |      |          |      |      |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |       |        |        |       |        |      |      |         |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|---------|------|------|
| Int Delay, s/veh       | 3.4    |       |       |        |        |       |        |      |      |         |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |         | 4    |      |
| Traffic Vol, veh/h     | 36     | 5     | 0     | 2      | 2      | 8     | 0      | 41   | 4    | 3       | 30   | 23   |
| Future Vol, veh/h      | 36     | 5     | 0     | 2      | 2      | 8     | 0      | 41   | 4    | 3       | 30   | 23   |
| Conflicting Peds, #/hr | 7      | 0     | 2     | 2      | 0      | 7     | 0      | 0    | 1    | 1       | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free    | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None | -       | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -       | -    | -    |
| Veh in Median Storage  | ,# -   | 0     | -     | -      | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90      | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3      | 3     | 3      | 3    | 3    | 3       | 3    | 3    |
| Mvmt Flow              | 40     | 6     | 0     | 2      | 2      | 9     | 0      | 46   | 4    | 3       | 33   | 26   |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Major/Minor N          | Minor2 |       | 1     | Minor1 |        |       | Major1 |      | N    | //ajor2 |      |      |
| Conflicting Flow All   | 113    | 103   | 48    | 106    | 114    | 56    | 59     | 0    | 0    | 51      | 0    | 0    |
| Stage 1                | 52     | 52    | -     | 49     | 49     | -     | -      | -    | -    | _       | -    | -    |
| Stage 2                | 61     | 51    | -     | 57     | 65     | -     | -      | -    | -    | -       | -    | -    |
| Critical Hdwy          | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23  | 4.13   | -    | -    | 4.13    | -    | -    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -    | -       | -    | -    |
| Critical Hdwy Stg 2    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -    | -       | -    | -    |
| Follow-up Hdwy         | 3.527  | 4.027 | 3.327 | 3.527  | 4.027  | 3.327 | 2.227  | -    | -    | 2.227   | -    | -    |
| Pot Cap-1 Maneuver     | 862    | 785   | 1018  | 871    | 774    | 1008  | 1538   | -    | -    | 1549    | -    | -    |
| Stage 1                | 958    | 850   | -     | 962    | 852    | -     | -      | -    | -    | -       | -    | -    |
| Stage 2                | 948    | 850   | -     | 952    | 839    | -     | -      | -    | -    | -       | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |         | -    | -    |
| Mov Cap-1 Maneuver     | 846    | 783   | 1016  | 862    | 772    | 1000  | 1538   | -    | -    | 1548    | -    | -    |
| Mov Cap-2 Maneuver     | 846    | 783   | -     | 862    | 772    | -     | -      | -    | -    | -       | -    | -    |
| Stage 1                | 958    | 848   | -     | 961    | 851    | -     | -      | -    | -    | -       | -    | -    |
| Stage 2                | 931    | 849   | -     | 942    | 837    | -     | -      | -    | -    | -       | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB      |      |      |
| HCM Control Delay, s   | 9.5    |       |       | 8.9    |        |       | 0      |      |      | 0.4     |      |      |
| HCM LOS                | A      |       |       | A      |        |       |        |      |      | 7.1     |      |      |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Minor Lane/Major Mvm   | t      | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |         |      |      |
| Capacity (veh/h)       |        | 1538  | -     | _      |        | 929   | 1548   | _    | _    |         |      |      |
| HCM Lane V/C Ratio     |        | -     | _     |        |        | 0.014 |        | _    | _    |         |      |      |
| HCM Control Delay (s)  |        | 0     | -     | _      | 9.5    | 8.9   | 7.3    | 0    | -    |         |      |      |
| HCM Lane LOS           |        | A     | _     | -      | A      | A     | A      | A    | _    |         |      |      |
| HCM 95th %tile Q(veh)  |        | 0     | -     | -      | 0.2    | 0     | 0      | -    | -    |         |      |      |
| A(1011)                |        |       |       |        |        |       |        |      |      |         |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1    | <b>†</b>   | /    | <b>/</b> | <b>+</b>   | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>ተ</b> ኈ |      | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 10   | 7        | 9    | 6    | 9        | 10   | 1    | 467        | 6    | 7        | 523        | 5    |
| Future Volume (veh/h)        | 10   | 7        | 9    | 6    | 9        | 10   | 1    | 467        | 6    | 7        | 523        | 5    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 1.00 | 0.99 |          | 1.00 | 1.00 |            | 0.98 | 1.00     |            | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 11   | 8        | 0    | 7    | 10       | 0    | 1    | 519        | 6    | 8        | 581        | 6    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 332  | 40       | 0    | 289  | 58       | 0    | 683  | 1789       | 21   | 713      | 1792       | 19   |
| Arrive On Green              | 0.06 | 0.06     | 0.00 | 0.06 | 0.06     | 0.00 | 0.50 | 0.50       | 0.50 | 0.50     | 0.50       | 0.50 |
| Sat Flow, veh/h              | 915  | 665      | 0    | 682  | 974      | 0    | 821  | 3568       | 41   | 869      | 3575       | 37   |
| Grp Volume(v), veh/h         | 19   | 0        | 0    | 17   | 0        | 0    | 1    | 256        | 269  | 8        | 286        | 301  |
| Grp Sat Flow(s),veh/h/ln     | 1580 | 0        | 0    | 1655 | 0        | 0    | 821  | 1763       | 1847 | 869      | 1763       | 1849 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 1.7        | 1.7  | 0.1      | 2.0        | 2.0  |
| Cycle Q Clear(g_c), s        | 0.2  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 2.0  | 1.7        | 1.7  | 1.9      | 2.0        | 2.0  |
| Prop In Lane                 | 0.58 |          | 0.00 | 0.41 |          | 0.00 | 1.00 |            | 0.02 | 1.00     |            | 0.02 |
| Lane Grp Cap(c), veh/h       | 371  | 0        | 0    | 347  | 0        | 0    | 683  | 884        | 926  | 713      | 884        | 927  |
| V/C Ratio(X)                 | 0.05 | 0.00     | 0.00 | 0.05 | 0.00     | 0.00 | 0.00 | 0.29       | 0.29 | 0.01     | 0.32       | 0.32 |
| Avail Cap(c_a), veh/h        | 2161 | 0        | 0    | 2230 | 0        | 0    | 2274 | 4300       | 4505 | 2397     | 4300       | 4509 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 9.2  | 0.0      | 0.0  | 9.2  | 0.0      | 0.0  | 3.6  | 3.0        | 3.0  | 3.5      | 3.0        | 3.0  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.3        | 0.2  | 0.0      | 0.3        | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.1  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.1        | 0.1  | 0.0      | 0.1        | 0.1  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 9.2  | 0.0      | 0.0  | 9.2  | 0.0      | 0.0  | 3.6  | 3.2        | 3.2  | 3.5      | 3.3        | 3.3  |
| LnGrp LOS                    | Α    | Α        | Α    | Α    | Α        | Α    | Α    | Α          | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 19       |      |      | 17       |      |      | 526        |      |          | 595        |      |
| Approach Delay, s/veh        |      | 9.2      |      |      | 9.2      |      |      | 3.2        |      |          | 3.3        |      |
| Approach LOS                 |      | Α        |      |      | Α        |      |      | Α          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 15.3     |      | 5.2  |          | 15.3 |      | 5.2        |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |      | 25.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 4.0      |      | 2.2  |          | 4.0  |      | 2.2        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 5.3      |      | 0.0  |          | 6.1  |      | 0.0        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 3.5  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |            |      |

| 2.9    |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBI    | WBR                                                                                                    | NBT                                                                     | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 7,51                                                                                                   |                                                                         | TI SIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>ક્</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 12                                                                                                     |                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                        | -                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                        | <u>-</u>                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1      | 13                                                                                                     | 34                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minor1 | N                                                                                                      | Major1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 104    |                                                                                                        |                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | _                                                                                                      | -                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | _                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 6.23                                                                                                   | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | -                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | _                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | -                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | _                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 330    |                                                                                                        | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 876    | 1022                                                                                                   |                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | -                                                                                                      | _                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | -                                                                                                      | _                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 943    | -                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WB     |                                                                                                        | NB                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.6    |                                                                                                        | 0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Α      |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -4     | NDT                                                                                                    | NDD                                                                     | MDI 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| it     |                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | -                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | -                                                                                                      | -                                                                       | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                        |                                                                         | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | -                                                                                                      | -                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| )      |                                                                                                        |                                                                         | 8.6<br>A<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.3<br>A<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | WBL  1 1 0 Stop - 0 90 3 1  Minor1 104 40 64 6.43 5.43 5.43 3.527 892 980 956  876 976 976 943  WB 8.6 | WBL WBR  1 12 1 12 0 1 Stop Stop - None 0 9, # 0 90 90 3 3 1 13  Minor1 | WBL         WBR         NBT           1         12         31           1         12         31           0         1         0           Stop         Stop         Free           None         -         -           0         -         0           90         90         90           3         3         3           1         13         34           Minor1         Major1           104         41         0           40         -         -           644         -         -           643         6.23         -           5.43         -         -           5.43         -         -           980         -         -           980         -         -           976         -         -           976         -         -           943         -         -           WB         NB           at         NBT         NBRV | WBL         WBR         NBT         NBR           1         12         31         4           1         12         31         4           0         1         0         4           Stop         Stop         Free         Free           -         None         -         None           0         -         -         -           90         90         90         90           3         3         3         3           1         13         34         4           Minor1         Major1         I           104         41         0         0           40         -         -         -           64         -         -         -           5.43         -         -         -           5.43         -         -         -           980         -         -         -           976         -         -         -           976         -         -         -           943         -         -         -           WB         NB         -         - | WBL         WBR         NBT         NBR         SBL           1         12         31         4         19           1         12         31         4         19           0         1         0         4         4           Stop         Free         Free         Free         Free           - None         -         None         -           0         -         -         -           3         -         0         -         -           90         90         90         90         90           3         3         3         3         3         3           1         13         34         4         21           Minor1         Major1         Major2           104         41         0         0         42           40         -         -         -         -           64         -         -         -         -           643         6.23         -         4.13         -           5.43         -         -         -         -           980         -         -         - </td |

| Intersection           |        |       |        |       |         |      |
|------------------------|--------|-------|--------|-------|---------|------|
| Int Delay, s/veh       | 2.5    |       |        |       |         |      |
| Movement               | EBL    | EBR   | NBL    | NBT   | SBT     | SBR  |
| Lane Configurations    | W      |       |        | 4     | \$      |      |
| Traffic Vol, veh/h     | 0      | 15    | 13     | 30    | 24      | 9    |
| Future Vol, veh/h      | 0      | 15    | 13     | 30    | 24      | 9    |
| Conflicting Peds, #/hr | 0      | 1     | 2      | 0     | 0       | 4    |
| Sign Control           | Stop   | Stop  | Free   | Free  | Free    | Free |
| RT Channelized         | -      | None  | -      | None  | -       | None |
| Storage Length         | 0      | -     | _      | -     | _       | -    |
| Veh in Median Storage  |        | _     | _      | 0     | 0       | _    |
| Grade, %               | 0, # 0 | _     | _      | 0     | 0       | _    |
| Peak Hour Factor       | 90     | 90    | 90     | 90    | 90      | 90   |
|                        | 3      | 3     | 3      | 3     | 3       | 3    |
| Heavy Vehicles, %      |        |       |        |       |         |      |
| Mvmt Flow              | 0      | 17    | 14     | 33    | 27      | 10   |
|                        |        |       |        |       |         |      |
| Major/Minor            | Minor2 |       | Major1 | N     | //ajor2 |      |
| Conflicting Flow All   | 97     | 37    | 41     | 0     | -       | 0    |
| Stage 1                | 36     | _     | -      | -     | _       | -    |
| Stage 2                | 61     | -     | _      | -     | _       | -    |
| Critical Hdwy          | 6.43   | 6.23  | 4.13   | -     | _       | _    |
| Critical Hdwy Stg 1    | 5.43   | -     | -      | _     | _       | _    |
| Critical Hdwy Stg 2    | 5.43   | _     | _      | _     | _       | _    |
| Follow-up Hdwy         | 3.527  | 3.327 | 2 227  | _     | _       | _    |
| Pot Cap-1 Maneuver     | 900    | 1032  | 1562   | _     | _       | _    |
| Stage 1                | 984    | -     | 1002   | _     | _       | _    |
| Stage 2                | 959    | _     | _      | _     | _       | _    |
| Platoon blocked, %     | 909    | _     | _      | _     | _       | -    |
| Mov Cap-1 Maneuver     | 885    | 1027  | 1556   |       | _       | -    |
|                        |        |       | 1550   | _     |         |      |
| Mov Cap-2 Maneuver     |        | -     | -      | -     | -       | -    |
| Stage 1                | 971    | -     | -      | -     | -       | -    |
| Stage 2                | 955    | -     | -      | -     | -       | -    |
|                        |        |       |        |       |         |      |
| Approach               | EB     |       | NB     |       | SB      |      |
| HCM Control Delay, s   | 8.6    |       | 2.2    |       | 0       |      |
| HCM LOS                | A      |       |        |       | •       |      |
| TIOW EGG               | ,,     |       |        |       |         |      |
|                        |        |       |        |       |         |      |
| Minor Lane/Major Mvr   | nt     | NBL   | NBT    | EBLn1 | SBT     | SBR  |
| Capacity (veh/h)       |        | 1556  | -      | 1027  | -       | -    |
| HCM Lane V/C Ratio     |        | 0.009 | -      | 0.016 | -       | -    |
| HCM Control Delay (s   | )      | 7.3   | 0      | 8.6   | -       | -    |
| HCM Lane LOS           |        | Α     | Α      | Α     | -       | -    |
| HCM 95th %tile Q(veh   | 1)     | 0     | -      | 0     | -       | -    |
|                        |        |       |        |       |         |      |

| Intersection           |        |       |      |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 8.2    |       |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |      |        | 4    |       |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 0      | 2     | 1    | 5      | 1    | 3     | 0      | 21    | 4     | 1      | 34    | 0     |
| Future Vol, veh/h      | 0      | 2     | 1    | 5      | 1    | 3     | 0      | 21    | 4     | 1      | 34    | 0     |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | -      | -     | -    | -      | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3    | 3      | 3    | 3     | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 0      | 2     | 1    | 6      | 1    | 3     | 0      | 23    | 4     | 1      | 38    | 0     |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Major/Minor N          | Major1 |       |      | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 4      | 0     | 0    | 3      | 0    | 0     | 37     | 19    | 3     | 31     | 18    | 3     |
| Stage 1                | -      | -     | -    |        | -    | -     | 3      | 3     | -     | 15     | 15    | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 34     | 16    | -     | 16     | 3     | -     |
| Critical Hdwy          | 4.13   | -     | -    | 4.13   | -    | -     | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227  | -     | -    | 2.227  | -    | -     | 3.527  | 4.027 | 3.327 | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1611   | -     | -    | 1612   | -    | -     | 966    | 873   | 1078  | 975    | 874   | 1078  |
| Stage 1                | -      | -     | -    | -      | -    | -     | 1017   | 891   | -     | 1002   | 881   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 979    | 880   | -     | 1001   | 891   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1611   | -     | -    | 1612   | -    | -     | 931    | 870   | 1078  | 949    | 871   | 1078  |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 931    | 870   | -     | 949    | 871   | -     |
| Stage 1                | -      | -     | -    | -      | -    | -     | 1017   | 891   | -     | 1002   | 877   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 933    | 876   | -     | 971    | 891   | -     |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0      |       |      | 4      |      |       | 9.1    |       |       | 9.3    |       |       |
| HCM LOS                |        |       |      |        |      |       | Α      |       |       | Α      |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 898   | 1611 | -      | -    | 1612  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.031 | -    | -      |      | 0.003 | -      | -     | 0.045 |        |       |       |
| HCM Control Delay (s)  |        | 9.1   | 0    | -      | -    | 7.2   | 0      | -     | 9.3   |        |       |       |
| HCM Lane LOS           |        | Α     | A    | _      | -    | Α     | A      | -     | Α     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 0.1   | 0    | -      | -    | 0     | -      | -     | 0.1   |        |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | <b>+</b>   | -√       |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR      |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>ተ</b> ኈ |      | ሻ        | <b>∱</b> ∱ |          |
| Traffic Volume (veh/h)       | 16   | 26       | 21   | 11   | 29       | 30   | 10   | 424        | 5    | 11       | 520        | 8        |
| Future Volume (veh/h)        | 16   | 26       | 21   | 11   | 29       | 30   | 10   | 424        | 5    | 11       | 520        | 8        |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0        |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 1.00 | 0.99 |          | 1.00 | 1.00 |            | 0.97 | 1.00     |            | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |          |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856       | 1856     |
| Adj Flow Rate, veh/h         | 18   | 29       | 1    | 12   | 32       | 1    | 11   | 471        | 5    | 12       | 578        | 8        |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90     |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3          | 3        |
| Cap, veh/h                   | 293  | 112      | 4    | 255  | 138      | 4    | 638  | 1721       | 18   | 691      | 1715       | 24       |
| Arrive On Green              | 0.11 | 0.11     | 0.11 | 0.11 | 0.11     | 0.11 | 0.48 | 0.48       | 0.48 | 0.48     | 0.48       | 0.48     |
| Sat Flow, veh/h              | 624  | 1005     | 35   | 439  | 1239     | 38   | 821  | 3572       | 38   | 908      | 3560       | 49       |
| Grp Volume(v), veh/h         | 48   | 0        | 0    | 45   | 0        | 0    | 11   | 232        | 244  | 12       | 286        | 300      |
| Grp Sat Flow(s),veh/h/ln     | 1663 | 0        | 0    | 1717 | 0        | 0    | 821  | 1763       | 1847 | 908      | 1763       | 1846     |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.2  | 1.7        | 1.7  | 0.2      | 2.2        | 2.2      |
| Cycle Q Clear(g_c), s        | 0.5  | 0.0      | 0.0  | 0.5  | 0.0      | 0.0  | 2.4  | 1.7        | 1.7  | 1.9      | 2.2        | 2.2      |
| Prop In Lane                 | 0.37 |          | 0.02 | 0.27 |          | 0.02 | 1.00 |            | 0.02 | 1.00     |            | 0.03     |
| Lane Grp Cap(c), veh/h       | 409  | 0        | 0    | 398  | 0        | 0    | 638  | 849        | 890  | 691      | 849        | 889      |
| V/C Ratio(X)                 | 0.12 | 0.00     | 0.00 | 0.11 | 0.00     | 0.00 | 0.02 | 0.27       | 0.27 | 0.02     | 0.34       | 0.34     |
| Avail Cap(c_a), veh/h        | 2063 | 0        | 0    | 2112 | 0        | 0    | 2097 | 3982       | 4174 | 2306     | 3982       | 4171     |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Uniform Delay (d), s/veh     | 9.0  | 0.0      | 0.0  | 9.0  | 0.0      | 0.0  | 4.3  | 3.4        | 3.4  | 4.0      | 3.5        | 3.5      |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.2        | 0.2  | 0.0      | 0.3        | 0.3      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.0  | 0.1        | 0.1  | 0.0      | 0.2        | 0.2      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |          |
| LnGrp Delay(d),s/veh         | 9.0  | 0.0      | 0.0  | 9.0  | 0.0      | 0.0  | 4.3  | 3.7        | 3.7  | 4.0      | 3.9        | 3.9      |
| LnGrp LOS                    | Α    | Α        | Α    | Α    | Α        | Α    | Α    | Α          | Α    | Α        | Α          | <u>A</u> |
| Approach Vol, veh/h          |      | 48       |      |      | 45       |      |      | 487        |      |          | 598        |          |
| Approach Delay, s/veh        |      | 9.0      |      |      | 9.0      |      |      | 3.7        |      |          | 3.9        |          |
| Approach LOS                 |      | Α        |      |      | Α        |      |      | Α          |      |          | Α          |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |          |
| Phs Duration (G+Y+Rc), s     |      | 15.7     |      | 6.5  |          | 15.7 |      | 6.5        |      |          |            |          |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |          |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |      | 25.0       |      |          |            |          |
| Max Q Clear Time (g_c+l1), s |      | 4.4      |      | 2.5  |          | 4.2  |      | 2.5        |      |          |            |          |
| Green Ext Time (p_c), s      |      | 4.8      |      | 0.1  |          | 6.1  |      | 0.1        |      |          |            |          |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |          |
| HCM 6th Ctrl Delay           |      |          | 4.2  |      |          |      |      |            |      |          |            |          |
| HCM 6th LOS                  |      |          | A    |      |          |      |      |            |      |          |            |          |

| Intersection                                 |        |  |  |  |  |
|----------------------------------------------|--------|--|--|--|--|
| Intersection Delay, s/ve<br>Intersection LOS | eh 7.2 |  |  |  |  |
| Intersection LOS                             | Α      |  |  |  |  |
|                                              |        |  |  |  |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 4              | 41   | 3    | 4    | 29   | 7    | 0    | 9    | 10   | 7    | 5    | 4    |  |
| Future Vol, veh/h       | 4              | 41   | 3    | 4    | 29   | 7    | 0    | 9    | 10   | 7    | 5    | 4    |  |
| Peak Hour Factor        | 0.90           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 3              | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |  |
| Mvmt Flow               | 4              | 46   | 3    | 4    | 32   | 8    | 0    | 10   | 11   | 8    | 6    | 4    |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      |      | NB   |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      |      | SB   |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      |      | 1    |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB         |      |      | NB   |      |      |      | EB   |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 1    |      |      |      | 1    |      | 1    |      |      |  |
| Conflicting Approach R  | igh <b>N</b> B |      |      | SB   |      |      |      | WB   |      | EB   |      |      |  |
| Conflicting Lanes Right | : 1            |      |      | 1    |      |      |      | 1    |      | 1    |      |      |  |
| HCM Control Delay       | 7.3            |      |      | 7.2  |      |      |      | 7    |      | 7.2  |      |      |  |
| HCM LOS                 | Α              |      |      | Α    |      |      |      | Α    |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | VBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 0%    | 8%     | 10%   | 44%   |
| Vol Thru, %            | 47%   | 85%    | 72%   | 31%   |
| Vol Right, %           | 53%   | 6%     | 17%   | 25%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 19    | 48     | 40    | 16    |
| LT Vol                 | 0     | 4      | 4     | 7     |
| Through Vol            | 9     | 41     | 29    | 5     |
| RT Vol                 | 10    | 3      | 7     | 4     |
| Lane Flow Rate         | 21    | 53     | 44    | 18    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.022 | 0.06   | 0.049 | 0.02  |
| Departure Headway (Hd) | 3.818 | 4.032  | 3.974 | 4.074 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 932   | 889    | 901   | 874   |
| Service Time           | 1.864 | 2.054  | 1.999 | 2.119 |
| HCM Lane V/C Ratio     | 0.023 | 0.06   | 0.049 | 0.021 |
| HCM Control Delay      | 7     | 7.3    | 7.2   | 7.2   |
| HCM Lane LOS           | Α     | Α      | Α     | Α     |
| HCM 95th-tile Q        | 0.1   | 0.2    | 0.2   | 0.1   |

| 3.5    |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | EDT                                                        | WDT                                                                                                 | WDD                                                                                                                                 | CDI                                                                                                                                                                                          | CDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ERF    |                                                            |                                                                                                     | WRK                                                                                                                                 |                                                                                                                                                                                              | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ^      |                                                            |                                                                                                     | 0.4                                                                                                                                 |                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •      |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            | -                                                                                                   |                                                                                                                                     |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 0                                                          | 1                                                                                                   | 27                                                                                                                                  | 19                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Major1 | N                                                          | Major2                                                                                              |                                                                                                                                     | Minor2                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28     | 0                                                          | -                                                                                                   | 0                                                                                                                                   | 15                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _      | -                                                          | _                                                                                                   | -                                                                                                                                   |                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _      | _                                                          | _                                                                                                   | -                                                                                                                                   |                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.13   | _                                                          | _                                                                                                   | _                                                                                                                                   |                                                                                                                                                                                              | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -      | <u>-</u>                                                   | _                                                                                                   | -                                                                                                                                   |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _      | _                                                          | _                                                                                                   | _                                                                                                                                   |                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | _                                                          | _                                                                                                   |                                                                                                                                     |                                                                                                                                                                                              | 3.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | <u> </u>                                                   | _                                                                                                   | _                                                                                                                                   |                                                                                                                                                                                              | 1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1075   |                                                            | _                                                                                                   | _                                                                                                                                   |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _      |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _      |                                                            | -                                                                                                   | _                                                                                                                                   | -                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1570   |                                                            | -                                                                                                   | -                                                                                                                                   | 1001                                                                                                                                                                                         | 1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                            | -                                                                                                   | -                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                          | -                                                                                                   | -                                                                                                                                   |                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | -                                                          | -                                                                                                   | -                                                                                                                                   | 1005                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | -                                                          | -                                                                                                   | -                                                                                                                                   | -                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EB     |                                                            | WB                                                                                                  |                                                                                                                                     | SB                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0      |                                                            | 0                                                                                                   |                                                                                                                                     | 8.7                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                            |                                                                                                     |                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                            |                                                                                                     | MOT                                                                                                                                 | MES                                                                                                                                                                                          | ODL 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                            |                                                                                                     |                                                                                                                                     | WRR                                                                                                                                                                                          | SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt     | EBL                                                        | EBT                                                                                                 | WBT                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nt     | 1579                                                       | EBT<br>-                                                                                            | -                                                                                                                                   | -                                                                                                                                                                                            | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 1579<br>-                                                  | -                                                                                                   | -                                                                                                                                   | -                                                                                                                                                                                            | 1001<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nt     | 1579<br>-<br>0                                             | -<br>-<br>-                                                                                         | -<br>-<br>-                                                                                                                         | -<br>-<br>-                                                                                                                                                                                  | 1001<br>0.019<br>8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 1579<br>-                                                  | -                                                                                                   | -                                                                                                                                   | -                                                                                                                                                                                            | 1001<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | BBL  0 0 0 Free 90 3 0  Major1 28 4.13 2.227 1579 15779 EB | EBL EBT  0 0 0 0 0 0 Free Free - None - 0 90 90 3 3 3 0 0  Major1  28 0 4.13 2.227 - 1579 1579 1579 | EBL EBT WBT  0 0 1 0 0 1 0 0 0 Free Free Free - None 0 0 90 90 90 90 90 3 3 3 3 0 0 1  Major1 Major2 28 0 4.13 2.227 1579 1579 1579 | EBL EBT WBT WBR  0 0 1 24 0 0 0 1 24 0 0 0 0 0 Free Free Free Free - None - None - None - O 0 0 - O 0 90 90 90 90 3 3 3 3 3 0 0 1 27  Major1 Major2  28 0 - 0 4.13 2.227 1579 1579 1579 1579 | EBL         EBT         WBT         WBR         SBL           0         0         1         24         17           0         0         0         0         0           0         0         0         0         0           Free         Free         Free         Stop         -           None         -         None         -         0           -         0         0         -         0           -         0         0         -         0           90         90         90         90         90           3         3         3         3         3         3           0         0         1         27         19           Major1         Major2         Minor2         Minor2           28         0         -         0         15           -         -         -         0         4.43           -         -         -         0         4.43           -         -         -         5.43           2.227         -         -         3.527           1579         -         - |

| Intersection           |         |       |      |        |        |       |        |            |      |        |      |      |
|------------------------|---------|-------|------|--------|--------|-------|--------|------------|------|--------|------|------|
| Int Delay, s/veh       | 0.3     |       |      |        |        |       |        |            |      |        |      |      |
| Movement               | EBL     | EBT   | EBR  | WBL    | WBT    | WBR   | NBL    | NBT        | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |         | 4     |      |        | 4      |       | ሻ      | <b>∱</b> } |      | ሻ      | ħβ   |      |
| Traffic Vol, veh/h     | 4       | 0     | 4    | 0      | 1      | 2     | 10     | 441        | 5    | 3      | 533  | 5    |
| Future Vol, veh/h      | 4       | 0     | 4    | 0      | 1      | 2     | 10     | 441        | 5    | 3      | 533  | 5    |
| Conflicting Peds, #/hr | 1       | 0     | 3    | 3      | 0      | 1     | 6      | 0          | 3    | 6      | 0    | 3    |
| Sign Control           | Stop    | Stop  | Stop | Stop   | Stop   | Stop  | Free   | Free       | Free | Free   | Free | Free |
| RT Channelized         | _       | -     | None | -      | _      | None  | _      | _          | None | _      | _    | None |
| Storage Length         | _       | _     | -    | _      | _      | -     | 70     | _          | -    | 75     | _    | -    |
| Veh in Median Storage, | # -     | 0     | -    | _      | 0      | _     | _      | 0          | _    | _      | 0    | _    |
| Grade, %               | _       | 0     | _    | _      | 0      | _     | _      | 0          | _    | _      | 0    | _    |
| Peak Hour Factor       | 90      | 90    | 90   | 90     | 90     | 90    | 90     | 90         | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3       | 3     | 3    | 3      | 3      | 3     | 3      | 3          | 3    | 3      | 3    | 3    |
| Mymt Flow              | 4       | 0     | 4    | 0      | 1      | 2     | 11     | 490        | 6    | 3      | 592  | 6    |
|                        |         |       |      |        |        |       |        |            |      |        |      |      |
| Major/Minor N          | /linor2 |       | ľ    | Minor1 |        |       | Major1 |            | N    | Major2 |      |      |
| Conflicting Flow All   | 876     | 1131  | 308  | 826    | 1131   | 255   | 604    | 0          | 0    | 502    | 0    | 0    |
| Stage 1                | 607     | 607   | -    | 521    | 521    |       | -      | -          | -    | -      | -    | -    |
| Stage 2                | 269     | 524   | -    | 305    | 610    | _     | _      | -          | _    | _      | -    | -    |
| Critical Hdwy          | 7.56    | 6.56  | 6.96 | 7.56   | 6.56   | 6.96  | 4.16   | _          | -    | 4.16   | -    | -    |
| Critical Hdwy Stg 1    | 6.56    | 5.56  | -    | 6.56   | 5.56   | -     | -      | -          | _    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.56    | 5.56  | _    | 6.56   | 5.56   | -     | _      | _          | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.53    | 4.03  | 3.33 | 3.53   | 4.03   | 3.33  | 2.23   | _          | _    | 2.23   | _    | _    |
| Pot Cap-1 Maneuver     | 241     | 201   | 685  | 263    | 201    | 741   | 963    | _          | _    | 1052   | -    | -    |
| Stage 1                | 448     | 482   | -    | 504    | 527    | -     | -      | _          | _    | -      | -    | -    |
| Stage 2                | 711     | 526   | -    | 677    | 481    | -     | -      | _          | -    | -      | -    | -    |
| Platoon blocked, %     |         |       |      |        |        |       |        | _          | _    |        | -    | -    |
| Mov Cap-1 Maneuver     | 235     | 196   | 679  | 256    | 196    | 736   | 957    | _          | -    | 1046   | -    | -    |
| Mov Cap-2 Maneuver     | 235     | 196   | -    | 256    | 196    | -     | -      | _          | _    | -      | _    | _    |
| Stage 1                | 440     | 478   | _    | 495    | 518    | _     | -      | -          | -    | -      | _    | _    |
| Stage 2                | 699     | 517   | _    | 669    | 477    | _     | _      | _          | _    | _      | _    | _    |
| J. W. B. J. L.         | 300     | 317   |      | 300    | .,,    |       |        |            |      |        |      |      |
| Approach               | EB      |       |      | WB     |        |       | NB     |            |      | SB     |      |      |
| HCM Control Delay, s   | 15.6    |       |      | 14.5   |        |       | 0.2    |            |      | 0      |      |      |
| HCM LOS                | C       |       |      | В      |        |       |        |            |      |        |      |      |
|                        |         |       |      |        |        |       |        |            |      |        |      |      |
| Minor Lane/Major Mvm   | t       | NBL   | NBT  | NBR I  | EBLn1V | VBLn1 | SBL    | SBT        | SBR  |        |      |      |
| Capacity (veh/h)       |         | 957   | -    | -      | 349    | 384   | 1046   | -          | -    |        |      |      |
| HCM Lane V/C Ratio     |         | 0.012 | -    | _      |        | 0.009 |        | -          | _    |        |      |      |
| HCM Control Delay (s)  |         | 8.8   | _    | -      | 15.6   | 14.5  | 8.5    | _          | -    |        |      |      |
| HCM Lane LOS           |         | A     | -    | -      | С      | В     | A      | -          | -    |        |      |      |
| HCM 95th %tile Q(veh)  |         | 0     | _    | -      | 0.1    | 0     | 0      | -          | -    |        |      |      |
|                        |         |       |      |        |        |       |        |            |      |        |      |      |

| Intersection           |                                              |       |       |        |        |       |        |          |          |        |      |      |
|------------------------|----------------------------------------------|-------|-------|--------|--------|-------|--------|----------|----------|--------|------|------|
| Int Delay, s/veh       | 4.7                                          |       |       |        |        |       |        |          |          |        |      |      |
| Movement               | EBL                                          | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT      | NBR      | SBL    | SBT  | SBR  |
| Lane Configurations    |                                              | 4     |       |        | 4      |       |        | 4        |          |        | 4    |      |
| Traffic Vol, veh/h     | 1                                            | 4     | 2     | 3      | 6      | 0     | 1      | 9        | 2        | 3      | 4    | 2    |
| Future Vol, veh/h      | 1                                            | 4     | 2     | 3      | 6      | 0     | 1      | 9        | 2        | 3      | 4    | 2    |
| Conflicting Peds, #/hr | 2                                            | 0     | 0     | 0      | 0      | 2     | 3      | 0        | 1        | 3      | 0    | 1    |
| Sign Control           | Stop                                         | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free     | Free     | Free   | Free | Free |
| RT Channelized         | -                                            | -     | None  | -      | -      | None  | -      | -        | None     | -      | -    | None |
| Storage Length         | -                                            | -     | -     | -      | -      | -     | -      | -        | -        | -      | -    | -    |
| Veh in Median Storage  | ,# -                                         | 0     | -     | -      | 0      | -     | -      | 0        | -        | -      | 0    | -    |
| Grade, %               | -                                            | 0     | -     | -      | 0      | -     | -      | 0        | -        | -      | 0    | -    |
| Peak Hour Factor       | 90                                           | 90    | 90    | 90     | 90     | 90    | 90     | 90       | 90       | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3                                            | 3     | 3     | 3      | 3      | 3     | 3      | 3        | 3        | 3      | 3    | 3    |
| Mvmt Flow              | 1                                            | 4     | 2     | 3      | 7      | 0     | 1      | 10       | 2        | 3      | 4    | 2    |
|                        |                                              |       |       |        |        |       |        |          |          |        |      |      |
| Major/Minor N          | Minor2                                       |       |       | Minor1 |        |       | Major1 |          |          | Major2 |      |      |
| Conflicting Flow All   | 33                                           | 31    | 8     | 30     | 31     | 16    | 9      | 0        | 0        | 15     | 0    | 0    |
| Stage 1                | 14                                           | 14    | -     | 16     | 16     | -     | -      | -        | -        | -      | -    | -    |
| Stage 2                | 19                                           | 17    | -     | 14     | 15     | -     | -      | -        | -        | -      | -    | -    |
| Critical Hdwy          | 7.13                                         | 6.53  | 6.23  | 7.13   | 6.53   | 6.23  | 4.13   | -        | -        | 4.13   | -    | -    |
| Critical Hdwy Stg 1    | 6.13                                         | 5.53  | -     | 6.13   | 5.53   | -     | -      | -        | -        | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.13                                         | 5.53  | -     | 6.13   | 5.53   | -     | -      | -        | -        | -      | -    | -    |
| Follow-up Hdwy         | 3.527                                        | 4.027 | 3.327 | 3.527  | 4.027  | 3.327 | 2.227  | -        | -        | 2.227  | -    | -    |
| Pot Cap-1 Maneuver     | 972                                          | 860   | 1071  | 976    | 860    | 1060  | 1604   | -        | -        | 1596   | -    | -    |
| Stage 1                | 1004                                         | 882   | -     | 1001   | 880    | -     | -      | -        | -        | -      | -    | -    |
| Stage 2                | 997                                          | 879   | -     | 1004   | 881    | -     | -      | -        | -        | -      | -    | -    |
| Platoon blocked, %     |                                              |       |       |        |        |       |        | -        | -        |        | -    | -    |
| Mov Cap-1 Maneuver     | 959                                          | 852   | 1068  | 965    | 852    | 1055  | 1599   | -        | -        | 1591   | -    | -    |
| Mov Cap-2 Maneuver     | 959                                          | 852   | -     | 965    | 852    | -     | -      | -        | -        | -      | -    | -    |
| Stage 1                | 1000                                         | 878   | -     | 997    | 876    | -     | -      | -        | -        | -      | -    | -    |
| Stage 2                | 987                                          | 875   | -     | 995    | 877    | -     | -      | -        | -        | -      | -    | -    |
|                        |                                              |       |       |        |        |       |        |          |          |        |      |      |
| Approach               | EB                                           |       |       | WB     |        |       | NB     |          |          | SB     |      |      |
| HCM Control Delay, s   | 8.9                                          |       |       | 9.1    |        |       | 0.6    |          |          | 2.4    |      |      |
| HCM LOS                | A                                            |       |       | А      |        |       | 0.0    |          |          | =      |      |      |
|                        |                                              |       |       |        |        |       |        |          |          |        |      |      |
| Minor Lane/Major Mvm   | t                                            | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT      | SBR      |        |      |      |
| Capacity (veh/h)       | <u>.                                    </u> | 1599  |       | -      |        | 887   | 1591   | -        | -        |        |      |      |
| HCM Lane V/C Ratio     |                                              | 0.001 | _     |        | 0.008  |       | 0.002  | <u>-</u> | <u>-</u> |        |      |      |
| HCM Control Delay (s)  |                                              | 7.3   | 0     | _      | 8.9    | 9.1   | 7.3    | 0        | _        |        |      |      |
| HCM Lane LOS           |                                              | Α.    | A     | _      | Α      | Α     | Α.     | A        | _        |        |      |      |
| HCM 95th %tile Q(veh)  |                                              | 0     | -     | _      | 0      | 0     | 0      | -        | _        |        |      |      |
|                        |                                              |       |       |        |        |       |        |          |          |        |      |      |

| Intersection           |        |       |      |        |      |      |        |       |       |        |       |       |
|------------------------|--------|-------|------|--------|------|------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.7    |       |      |        |      |      |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR  | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |      |        | 4    |      |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 0      | 1     | 0    | 0      | 4    | 0    | 0      | 11    | 2     | 1      | 13    | 1     |
| Future Vol, veh/h      | 0      | 1     | 0    | 0      | 4    | 0    | 0      | 11    | 2     | 1      | 13    | 1     |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0    | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None | -      | -     | None  | -      | -     | None  |
| Storage Length         | -      | -     | -    | -      | -    | -    | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -    | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90   | 90   | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3    | 3      | 3    | 3    | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 0      | 1     | 0    | 0      | 4    | 0    | 0      | 12    | 2     | 1      | 14    | 1     |
|                        |        |       |      |        |      |      |        |       |       |        |       |       |
| Major/Minor N          | Major1 |       | ı    | Major2 |      |      | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 4      | 0     | 0    | 1      | 0    | 0    | 13     | 5     | 1     | 12     | 5     | 4     |
| Stage 1                | -      | -     | -    | -      | -    | -    | 1      | 1     | -     | 4      | 4     | -     |
| Stage 2                | -      | -     | -    | -      | -    | -    | 12     | 4     | -     | 8      | 1     | -     |
| Critical Hdwy          | 4.13   | -     | -    | 4.13   | -    | -    | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -    | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -    | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227  | -     | -    | 2.227  | -    | -    | 3.527  | 4.027 | 3.327 | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1611   | -     | -    | 1615   | -    | -    | 1001   | 888   | 1081  | 1003   | 888   | 1077  |
| Stage 1                | -      | -     | -    | -      | -    | -    | 1019   | 893   | -     | 1016   | 890   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -    | 1006   | 890   | -     | 1011   | 893   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -    |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1611   | -     | -    | 1615   | -    | -    | 988    | 888   | 1081  | 990    | 888   | 1077  |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -    | 988    | 888   | -     | 990    | 888   | -     |
| Stage 1                | -      | -     | -    | -      | -    | -    | 1019   | 893   | -     | 1016   | 890   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -    | 989    | 890   | -     | 995    | 893   | -     |
|                        |        |       |      |        |      |      |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |      | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0      |       |      | 0      |      |      | 9      |       |       | 9.1    |       |       |
| HCM LOS                |        |       |      |        |      |      | Α      |       |       | Α      |       |       |
|                        |        |       |      |        |      |      |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | t N    | NBLn1 | EBL  | EBT    | EBR  | WBL  | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 913   | 1611 | -      |      | 1615 | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.016 | -    | _      | _    | -    | _      | _     | 0.018 |        |       |       |
| HCM Control Delay (s)  |        | 9     | 0    | _      | _    | 0    | _      | -     | 9.1   |        |       |       |
| HCM Lane LOS           |        | A     | A    | -      | -    | A    | -      | -     | Α     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 0     | 0    | -      | -    | 0    | -      | -     | 0.1   |        |       |       |
|                        |        |       |      |        |      |      |        |       |       |        |       |       |

|                                         | •    | 4     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        |      |
|-----------------------------------------|------|-------|----------|----------|----------|----------|------|
| Movement                                | WBL  | WBR   | NBT      | NBR      | SBL      | SBT      |      |
| Lane Configurations                     | ሻሻ   | 7     | <b>^</b> | 7        | ሻ        | <b>^</b> |      |
| Traffic Volume (veh/h)                  | 114  | 141   | 316      | 65       | 191      | 357      |      |
| Future Volume (veh/h)                   | 114  | 141   | 316      | 65       | 191      | 357      |      |
| Initial Q (Qb), veh                     | 0    | 0     | 0        | 0        | 0        | 0        |      |
| Ped-Bike Adj(A_pbT)                     | 1.00 | 1.00  |          | 0.98     | 1.00     |          |      |
| Parking Bus, Adj                        | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Work Zone On Approach                   | No   |       | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln                  | 1856 | 1856  | 1856     | 1856     | 1856     | 1856     |      |
| Adj Flow Rate, veh/h                    | 127  | 13    | 351      | 18       | 212      | 397      |      |
| Peak Hour Factor                        | 0.90 | 0.90  | 0.90     | 0.90     | 0.90     | 0.90     |      |
| Percent Heavy Veh, %                    | 3    | 3     | 3        | 3        | 3        | 3        |      |
| Cap, veh/h                              | 507  | 505   | 850      | 370      | 306      | 1958     |      |
| Arrive On Green                         | 0.15 | 0.15  | 0.24     | 0.24     | 0.17     | 0.56     |      |
| Sat Flow, veh/h                         | 3428 | 1572  | 3618     | 1535     | 1767     | 3618     |      |
| Grp Volume(v), veh/h                    | 127  | 13    | 351      | 18       | 212      | 397      |      |
| Grp Sat Flow(s), veh/h/ln               | 1714 | 1572  | 1763     | 1535     | 1767     | 1763     |      |
| , , , , , , , , , , , , , , , , , , , , | 1.2  | 0.2   | 3.0      | 0.3      | 4.0      | 2.0      |      |
| Q Serve(g_s), s                         | 1.2  |       |          |          |          |          |      |
| Cycle Q Clear(g_c), s                   |      | 0.2   | 3.0      | 0.3      | 4.0      | 2.0      |      |
| Prop In Lane                            | 1.00 | 1.00  | 050      | 1.00     | 1.00     | 4050     |      |
| Lane Grp Cap(c), veh/h                  | 507  | 505   | 850      | 370      | 306      | 1958     |      |
| V/C Ratio(X)                            | 0.25 | 0.03  | 0.41     | 0.05     | 0.69     | 0.20     |      |
| Avail Cap(c_a), veh/h                   | 1937 | 1161  | 4483     | 1952     | 1248     | 3487     |      |
| HCM Platoon Ratio                       | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Upstream Filter(I)                      | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Uniform Delay (d), s/veh                | 13.3 | 8.2   | 11.3     | 10.3     | 13.7     | 3.9      |      |
| Incr Delay (d2), s/veh                  | 0.1  | 0.0   | 0.5      | 0.1      | 2.8      | 0.1      |      |
| Initial Q Delay(d3),s/veh               | 0.0  | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      |      |
| %ile BackOfQ(50%),veh/ln                | 0.4  | 0.1   | 0.9      | 0.1      | 1.5      | 0.3      |      |
| Unsig. Movement Delay, s/veh            | 1    |       |          |          |          |          |      |
| LnGrp Delay(d),s/veh                    | 13.4 | 8.2   | 11.8     | 10.4     | 16.6     | 4.0      |      |
| LnGrp LOS                               | В    | Α     | В        | В        | В        | Α        |      |
| Approach Vol, veh/h                     | 140  |       | 369      |          |          | 609      |      |
| Approach Delay, s/veh                   | 13.0 |       | 11.7     |          |          | 8.4      |      |
| Approach LOS                            | В    |       | В        |          |          | A        |      |
|                                         |      | 2     |          |          | 5        | 6        | 8    |
| Timer - Assigned Phs                    |      | 2     |          |          |          |          |      |
| Phs Duration (G+Y+Rc), s                |      | 25.2  |          |          | 11.1     | 14.0     | 10.2 |
| Change Period (Y+Rc), s                 |      | * 5.5 |          |          | 5.0      | 5.5      | 5.0  |
| Max Green Setting (Gmax), s             |      | * 35  |          |          | 25.0     | 45.0     | 20.0 |
| Max Q Clear Time (g_c+l1), s            |      | 4.0   |          |          | 6.0      | 5.0      | 3.2  |
| Green Ext Time (p_c), s                 |      | 2.8   |          |          | 0.6      | 3.5      | 0.2  |
| Intersection Summary                    |      |       |          |          |          |          |      |
| HCM 6th Ctrl Delay                      |      |       | 10.0     |          |          |          |      |
| HCM 6th LOS                             |      |       | В        |          |          |          |      |
| Notes                                   |      |       |          |          |          |          |      |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Int Delay, s/veh  Movement  Lane Configurations  Traffic Vol, veh/h  Future Vol, veh/h  Conflicting Peds, #/hr  Sign Control  RT Channelized  Storage Length  Veh in Median Storage  Grade, % | 0.2<br>EBL<br>0<br>0 | EBR<br>7 | NBL    | NBT      | ODT    |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--------|----------|--------|----------|
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage                                              | 0                    | 7        | NBL    | NBT      | CDT    |          |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage                                              | 0                    | 7        |        |          | SBT    | SBR      |
| Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage                                                                  | 0                    |          |        | <b>^</b> | ħβ     |          |
| Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage                                                                      | 0                    |          | 0      | 381      | 460    | 11       |
| Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage                                                                                           |                      | 13       | 0      | 381      | 460    | 11       |
| Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage                                                                                                                     |                      | 0        | 0      | 0        | 0      | 0        |
| RT Channelized<br>Storage Length<br>Veh in Median Storage                                                                                                                                     | Stop                 | Stop     | Free   | Free     | Free   | Free     |
| Storage Length<br>Veh in Median Storage                                                                                                                                                       | -                    |          | -      |          | -      | None     |
| Veh in Median Storage                                                                                                                                                                         | _                    | 0        | _      | -        | _      | -        |
|                                                                                                                                                                                               | e,# 0                | -        | _      | 0        | 0      | _        |
| Olado, 70                                                                                                                                                                                     | 0                    | _        | _      | 0        | 0      | _        |
| Peak Hour Factor                                                                                                                                                                              | 90                   | 90       | 90     | 90       | 90     | 90       |
| Heavy Vehicles, %                                                                                                                                                                             | 3                    | 3        | 3      | 3        | 3      | 3        |
| Mymt Flow                                                                                                                                                                                     | 0                    | 14       | 0      | 423      | 511    | 12       |
| IVIVIIIL I IOW                                                                                                                                                                                | U                    | 17       | U      | 720      | 311    | 12       |
|                                                                                                                                                                                               |                      |          |        |          |        |          |
| Major/Minor                                                                                                                                                                                   | Minor2               | N        | Major1 | N        | Major2 |          |
| Conflicting Flow All                                                                                                                                                                          | -                    | 262      | -      | 0        | -      | 0        |
| Stage 1                                                                                                                                                                                       | -                    | -        | -      | -        | -      | -        |
| Stage 2                                                                                                                                                                                       | -                    | -        | -      | -        | -      | -        |
| Critical Hdwy                                                                                                                                                                                 | -                    | 6.96     | -      | -        | -      | _        |
| Critical Hdwy Stg 1                                                                                                                                                                           | _                    | -        | -      | -        | -      | -        |
| Critical Hdwy Stg 2                                                                                                                                                                           | _                    | -        | -      | -        | _      | _        |
| Follow-up Hdwy                                                                                                                                                                                | _                    | 3.33     | _      | _        | _      | _        |
| Pot Cap-1 Maneuver                                                                                                                                                                            | 0                    | 734      | 0      | -        | -      | _        |
| Stage 1                                                                                                                                                                                       | 0                    | -        | 0      | _        | _      | _        |
| Stage 2                                                                                                                                                                                       | 0                    | _        | 0      | _        | _      | _        |
| Platoon blocked, %                                                                                                                                                                            | U                    |          | U      | _        | _      | _        |
| Mov Cap-1 Maneuver                                                                                                                                                                            | _                    | 734      | _      |          | _      | _        |
| Mov Cap-1 Maneuver                                                                                                                                                                            | _                    | - 104    | _      | _        | _      | <u> </u> |
| Stage 1                                                                                                                                                                                       |                      |          | -      | _        |        | -        |
| •                                                                                                                                                                                             |                      |          |        | _        | _      | _        |
| Stage 2                                                                                                                                                                                       | -                    | -        | -      |          | -      | _        |
|                                                                                                                                                                                               |                      |          |        |          |        |          |
| Approach                                                                                                                                                                                      | EB                   |          | NB     |          | SB     |          |
| HCM Control Delay, s                                                                                                                                                                          | 10                   |          | 0      |          | 0      |          |
| HCM LOS                                                                                                                                                                                       | В                    |          |        |          |        |          |
|                                                                                                                                                                                               |                      |          |        |          |        |          |
| NA' I /NA - ' NA                                                                                                                                                                              | .1                   | NDT      | EDL .4 | ODT      | 000    |          |
| Minor Lane/Major Mvn                                                                                                                                                                          | nt                   |          | EBLn1  | SBT      | SBR    |          |
| Capacity (veh/h)                                                                                                                                                                              |                      | -        | 734    | -        | -      |          |
| HCM Lane V/C Ratio                                                                                                                                                                            |                      | -        | 0.02   | -        | -      |          |
| HCM Control Delay (s)                                                                                                                                                                         |                      | -        | 10     | -        | -      |          |
| HCM Lane LOS                                                                                                                                                                                  |                      | -        | В      | -        | -      |          |
| HCM 95th %tile Q(veh                                                                                                                                                                          |                      | -        | 0.1    | -        | -      |          |

| Intersection                |        |              |               |       |          |           |
|-----------------------------|--------|--------------|---------------|-------|----------|-----------|
| Int Delay, s/veh            | 1.8    |              |               |       |          |           |
| Movement                    | WBL    | WBR          | NBT           | NBR   | SBL      | SBT       |
| Lane Configurations         | ₩.     | VVDIX        |               | NOIN  | ODL      | <u>₀₀</u> |
| Traffic Vol, veh/h          |        | 3            | <b>♣</b><br>9 | 1     | 1        | <b>8</b>  |
| Future Vol, veh/h           | 1      | 3            | 9             | 1     | 1        | 8         |
| Conflicting Peds, #/hr      | 0      | 0            | 0             | 1     | 0        | 0         |
|                             | Stop   |              |               | Free  | Free     | Free      |
| Sign Control RT Channelized |        | Stop<br>None | Free          |       |          | None      |
|                             | -      |              | -             |       | -        | None      |
| Storage Length              | 0      | -            | -             | -     | -        | -         |
| Veh in Median Storage       |        | -            | 0             | -     | -        | 0         |
| Grade, %                    | 0      | -            | 0             | -     | -        | 0         |
| Peak Hour Factor            | 90     | 90           | 90            | 90    | 90       | 90        |
| Heavy Vehicles, %           | 3      | 3            | 3             | 3     | 3        | 3         |
| Mvmt Flow                   | 1      | 3            | 10            | 1     | 1        | 9         |
|                             |        |              |               |       |          |           |
| Major/Minor I               | Minor1 | N            | Major1        | ı     | Major2   |           |
| Conflicting Flow All        | 23     | 12           | 0             | 0     | 12       | 0         |
| Stage 1                     | 12     | -            | U             | U     | 12       | -         |
| Stage 2                     | 11     | _            | -             | _     | _        | _         |
|                             | 6.43   | 6.23         | -             | -     | 4.13     |           |
| Critical Hdwy               | 5.43   | 0.23         | -             | -     | 4.13     | -         |
| Critical Hdwy Stg 1         |        |              | -             | -     | -        | -         |
| Critical Hdwy Stg 2         | 5.43   | 2 227        | -             | -     |          | -         |
| Follow-up Hdwy              |        |              | -             | -     | 2.227    | -         |
| Pot Cap-1 Maneuver          | 991    | 1066         | -             | -     | 1600     | -         |
| Stage 1                     | 1008   | -            | -             | -     | -        | -         |
| Stage 2                     | 1009   | -            | -             | -     | -        | -         |
| Platoon blocked, %          |        |              | -             | -     |          | -         |
| Mov Cap-1 Maneuver          | 989    | 1065         | -             | -     | 1598     | -         |
| Mov Cap-2 Maneuver          | 989    | -            | -             | -     | -        | -         |
| Stage 1                     | 1007   | -            | -             | -     | -        | -         |
| Stage 2                     | 1008   | -            | -             | -     | -        | -         |
|                             |        |              |               |       |          |           |
| Annroach                    | WB     |              | NB            |       | SB       |           |
| Approach                    |        |              |               |       |          |           |
| HCM LOS                     | 8.5    |              | 0             |       | 8.0      |           |
| HCM LOS                     | Α      |              |               |       |          |           |
|                             |        |              |               |       |          |           |
| Minor Lane/Major Mvm        | nt     | NBT          | NBRV          | VBLn1 | SBL      | SBT       |
| Capacity (veh/h)            |        | -            |               | 1045  | 1598     | -         |
| HCM Lane V/C Ratio          |        | _            |               | 0.004 |          | _         |
| HCM Control Delay (s)       |        | -            | _             |       | 7.3      | 0         |
| HCM Lane LOS                |        | _            | _             | A     | A        | A         |
| HCM 95th %tile Q(veh)       | )      | _            | _             | 0     | 0        | -         |
|                             |        |              |               |       | <b>J</b> |           |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1    | <b>†</b> | /    | <b>/</b> | <b>+</b>   | ✓        |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR      |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>^</b> |      | ሻ        | <b>∱</b> ∱ |          |
| Traffic Volume (veh/h)       | 19   | 0        | 7    | 1    | 0        | 6    | 4    | 351      | 7    | 12       | 444        | 18       |
| Future Volume (veh/h)        | 19   | 0        | 7    | 1    | 0        | 6    | 4    | 351      | 7    | 12       | 444        | 18       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0          | 0        |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |            | 0.98     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No         |          |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856     | 1856       | 1856     |
| Adj Flow Rate, veh/h         | 21   | 0        | 0    | 1    | 0        | 0    | 4    | 390      | 7    | 13       | 493        | 18       |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90     |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3        | 3    | 3        | 3          | 3        |
| Cap, veh/h                   | 197  | 0        | 0    | 203  | 0        | 0    | 807  | 2746     | 49   | 888      | 2686       | 98       |
| Arrive On Green              | 0.03 | 0.00     | 0.00 | 0.03 | 0.00     | 0.00 | 0.78 | 0.78     | 0.78 | 0.78     | 0.78       | 0.78     |
| Sat Flow, veh/h              | 1399 | 0        | 0    | 1593 | 0        | 0    | 881  | 3543     | 64   | 979      | 3466       | 126      |
| Grp Volume(v), veh/h         | 21   | 0        | 0    | 1    | 0        | 0    | 4    | 194      | 203  | 13       | 250        | 261      |
| Grp Sat Flow(s),veh/h/ln     | 1399 | 0        | 0    | 1593 | 0        | 0    | 881  | 1763     | 1844 | 979      | 1763       | 1829     |
| Q Serve(g_s), s              | 0.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.1  | 1.3      | 1.3  | 0.2      | 1.7        | 1.7      |
| Cycle Q Clear(g_c), s        | 0.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 1.8  | 1.3      | 1.3  | 1.4      | 1.7        | 1.7      |
| Prop In Lane                 | 1.00 |          | 0.00 | 1.00 |          | 0.00 | 1.00 |          | 0.03 | 1.00     |            | 0.07     |
| Lane Grp Cap(c), veh/h       | 197  | 0        | 0    | 203  | 0        | 0    | 807  | 1366     | 1429 | 888      | 1366       | 1418     |
| V/C Ratio(X)                 | 0.11 | 0.00     | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.14     | 0.14 | 0.01     | 0.18       | 0.18     |
| Avail Cap(c_a), veh/h        | 628  | 0        | 0    | 638  | 0        | 0    | 807  | 1366     | 1429 | 888      | 1366       | 1418     |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00     |
| Uniform Delay (d), s/veh     | 21.9 | 0.0      | 0.0  | 21.6 | 0.0      | 0.0  | 1.6  | 1.3      | 1.3  | 1.5      | 1.4        | 1.4      |
| Incr Delay (d2), s/veh       | 0.2  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.2      | 0.2  | 0.0      | 0.3        | 0.3      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 0.2  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.1      | 0.1  | 0.0      | 0.1        | 0.1      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |            |          |
| LnGrp Delay(d),s/veh         | 22.2 | 0.0      | 0.0  | 21.6 | 0.0      | 0.0  | 1.6  | 1.5      | 1.5  | 1.5      | 1.6        | 1.6      |
| LnGrp LOS                    | С    | Α        | Α    | С    | Α        | Α    | Α    | Α        | Α    | Α        | Α          | <u>A</u> |
| Approach Vol, veh/h          |      | 21       |      |      | 1        |      |      | 401      |      |          | 524        |          |
| Approach Delay, s/veh        |      | 22.2     |      |      | 21.6     |      |      | 1.5      |      |          | 1.6        |          |
| Approach LOS                 |      | С        |      |      | С        |      |      | Α        |      |          | Α          |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |            |          |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |      | 5.8  |          | 40.0 |      | 5.8      |      |          |            |          |
| Change Period (Y+Rc), s      |      | 4.5      |      | 4.5  |          | 4.5  |      | 4.5      |      |          |            |          |
| Max Green Setting (Gmax), s  |      | 35.5     |      | 15.5 |          | 35.5 |      | 15.5     |      |          |            |          |
| Max Q Clear Time (g_c+l1), s |      | 3.8      |      | 2.7  |          | 3.7  |      | 2.0      |      |          |            |          |
| Green Ext Time (p_c), s      |      | 2.3      |      | 0.0  |          | 3.1  |      | 0.0      |      |          |            |          |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |            |          |
| HCM 6th Ctrl Delay           |      |          | 2.1  |      |          |      |      |          |      |          |            |          |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |          |      |          |            |          |

| Intersection           |        |          |          |       |        |          |
|------------------------|--------|----------|----------|-------|--------|----------|
| Int Delay, s/veh       | 2.5    |          |          |       |        |          |
| Movement               | WBL    | WBR      | NBT      | NBR   | SBL    | SBT      |
| Lane Configurations    | ¥      |          | <b>↑</b> |       |        | <u> </u> |
| Traffic Vol, veh/h     | 0      | 0        | 5        | 3     | 6      | 3        |
| Future Vol, veh/h      | 0      | 0        | 5        | 3     | 6      | 3        |
| Conflicting Peds, #/hr | 0      | 0        | 0        | 0     | 2      | 0        |
| Sign Control           | Stop   | Stop     | Free     | Free  | Free   | Free     |
| RT Channelized         | -      | None     | -        | None  | -      | None     |
| Storage Length         | 0      | -        | _        | -     | _      | -        |
| Veh in Median Storage  |        |          | 0        | _     | _      | 0        |
| Grade, %               | 0      | <u> </u> | 0        | -     | _      | 0        |
|                        |        |          |          |       |        |          |
| Peak Hour Factor       | 90     | 90       | 90       | 90    | 90     | 90       |
| Heavy Vehicles, %      | 3      | 3        | 3        | 3     | 3      | 3        |
| Mvmt Flow              | 0      | 0        | 6        | 3     | 7      | 3        |
|                        |        |          |          |       |        |          |
| Major/Minor            | Minor1 | N        | Major1   | ľ     | Major2 |          |
| Conflicting Flow All   | 27     | 10       | 0        | 0     | 11     | 0        |
| Stage 1                | 10     | -        | -        | -     | - ' '  | -        |
| Stage 2                | 17     | _        |          | _     | _      | _        |
| Critical Hdwy          | 6.43   | 6.23     |          | _     | 4.13   |          |
|                        |        |          | -        |       |        | -        |
| Critical Hdwy Stg 1    | 5.43   | -        | -        | -     | -      | -        |
| Critical Hdwy Stg 2    | 5.43   | -        | -        | -     | -      | -        |
| Follow-up Hdwy         | 3.527  |          | -        |       | 2.227  | -        |
| Pot Cap-1 Maneuver     | 986    | 1068     | -        | -     | 1602   | -        |
| Stage 1                | 1010   | -        | -        | -     | -      | -        |
| Stage 2                | 1003   | -        | -        | -     | -      | -        |
| Platoon blocked, %     |        |          | -        | -     |        | -        |
| Mov Cap-1 Maneuver     | 980    | 1066     | -        | -     | 1599   | -        |
| Mov Cap-2 Maneuver     | 980    | -        | -        | -     | -      | -        |
| Stage 1                | 1008   | -        | -        | -     | -      | -        |
| Stage 2                | 999    | _        | _        | _     | _      | -        |
| 5 III 95 =             |        |          |          |       |        |          |
|                        |        |          |          |       |        |          |
| Approach               | WB     |          | NB       |       | SB     |          |
| HCM Control Delay, s   | 0      |          | 0        |       | 4.8    |          |
| HCM LOS                | Α      |          |          |       |        |          |
|                        |        |          |          |       |        |          |
| Minor Lane/Major Mvm   | nt     | NBT      | NRRV     | VBLn1 | SBL    | SBT      |
|                        | IL     |          | INDIX    |       |        |          |
| Capacity (veh/h)       |        | -        | -        | -     | 1599   | -        |
| HCM Lane V/C Ratio     |        | -        | -        |       | 0.004  | -        |
| HCM Control Delay (s)  |        | -        | -        | 0     | 7.3    | -        |
| HCM Lane LOS           |        | -        | -        | Α     | Α      | -        |
| HCM 95th %tile Q(veh   | )      | -        | -        | -     | 0      | -        |
|                        |        |          |          |       |        |          |

|                                                    | ۶    | <b>→</b> | •    | •            | <b>←</b>  | •    | 1    | <b>†</b> | /    | <b>/</b>     | ļ           | -√   |
|----------------------------------------------------|------|----------|------|--------------|-----------|------|------|----------|------|--------------|-------------|------|
| Movement                                           | EBL  | EBT      | EBR  | WBL          | WBT       | WBR  | NBL  | NBT      | NBR  | SBL          | SBT         | SBR  |
| Lane Configurations                                |      | 4        |      | ሻ            | र्स       | 7    |      | 4        | 7    | ሻ            | 4           |      |
| Traffic Volume (veh/h)                             | 0    | 0        | 0    | 365          | 7         | 236  | 0    | 206      | 481  | 285          | 191         | 0    |
| Future Volume (veh/h)                              | 0    | 0        | 0    | 365          | 7         | 236  | 0    | 206      | 481  | 285          | 191         | 0    |
| Initial Q (Qb), veh                                | 0    | 0        | 0    | 0            | 0         | 0    | 0    | 0        | 0    | 0            | 0           | 0    |
| Ped-Bike Adj(A_pbT)                                | 1.00 |          | 1.00 | 1.00         |           | 1.00 | 1.00 |          | 1.00 | 1.00         |             | 1.00 |
| Parking Bus, Adj                                   | 1.00 | 1.00     | 1.00 | 1.00         | 1.00      | 1.00 | 1.00 | 1.00     | 1.00 | 1.00         | 1.00        | 1.00 |
| Work Zone On Approach                              |      | No       |      |              | No        |      |      | No       |      |              | No          |      |
| Adj Sat Flow, veh/h/ln                             | 1811 | 1811     | 1811 | 1811         | 1811      | 1811 | 1811 | 1811     | 1811 | 1811         | 1811        | 1811 |
| Adj Flow Rate, veh/h                               | 0    | 0        | 0    | 412          | 0         | 0    | 0    | 229      | 0    | 264          | 285         | 0    |
| Peak Hour Factor                                   | 0.90 | 0.90     | 0.90 | 0.90         | 0.90      | 0.90 | 0.90 | 0.90     | 0.90 | 0.90         | 0.90        | 0.90 |
| Percent Heavy Veh, %                               | 6    | 6        | 6    | 6            | 6         | 6    | 6    | 6        | 6    | 6            | 6           | 6    |
| Cap, veh/h                                         | 0    | 5        | 0    | 744          | 0         | 0.00 | 0    | 326      | 0.00 | 396          | 416         | 0    |
| Arrive On Green                                    | 0.00 | 0.00     | 0.00 | 0.22         | 0.00      | 0.00 | 0.00 | 0.18     | 0.00 | 0.23         | 0.23        | 0.00 |
| Sat Flow, veh/h                                    | 0    | 1811     | 0    | 3442         | 0         | 1535 | 0    | 1811     | 1535 | 1725         | 1811        | 0    |
| Grp Volume(v), veh/h                               | 0    | 0        | 0    | 412          | 0         | 0    | 0    | 229      | 0    | 264          | 285         | 0    |
| Grp Sat Flow(s),veh/h/ln                           | 0    | 1811     | 0    | 1721         | 0         | 1535 | 0    | 1811     | 1535 | 1725         | 1811        | 0    |
| Q Serve(g_s), s                                    | 0.0  | 0.0      | 0.0  | 4.2          | 0.0       | 0.0  | 0.0  | 4.6      | 0.0  | 5.4          | 5.6         | 0.0  |
| Cycle Q Clear(g_c), s                              | 0.0  | 0.0      | 0.0  | 4.2          | 0.0       | 0.0  | 0.0  | 4.6      | 0.0  | 5.4          | 5.6         | 0.0  |
| Prop In Lane                                       | 0.00 | _        | 0.00 | 1.00         | •         | 1.00 | 0.00 | 000      | 1.00 | 1.00         | 440         | 0.00 |
| Lane Grp Cap(c), veh/h                             | 0    | 5        | 0    | 744          | 0         |      | 0    | 326      |      | 396          | 416         | 0    |
| V/C Ratio(X)                                       | 0.00 | 0.00     | 0.00 | 0.55         | 0.00      |      | 0.00 | 0.70     |      | 0.67         | 0.69        | 0.00 |
| Avail Cap(c_a), veh/h                              | 1.00 | 882      | 1.00 | 3088         | 0         | 1.00 | 0    | 1625     | 1.00 | 1547         | 1625        | 1.00 |
| HCM Platoon Ratio                                  | 1.00 | 1.00     | 1.00 | 1.00         | 1.00      | 1.00 | 1.00 | 1.00     | 1.00 | 1.00         | 1.00        | 1.00 |
| Upstream Filter(I)                                 | 0.00 | 0.00     | 0.00 | 1.00<br>13.6 | 0.00      | 0.00 | 0.00 | 15.0     | 0.00 | 1.00<br>13.7 | 1.00        | 0.00 |
| Uniform Delay (d), s/veh                           | 0.0  | 0.0      | 0.0  | 0.9          | 0.0       | 0.0  | 0.0  | 2.1      | 0.0  | 0.7          | 13.7<br>0.8 | 0.0  |
| Incr Delay (d2), s/veh                             | 0.0  | 0.0      | 0.0  | 0.9          | 0.0       | 0.0  | 0.0  | 0.0      | 0.0  | 0.7          | 0.0         | 0.0  |
| Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln | 0.0  | 0.0      | 0.0  | 1.3          | 0.0       | 0.0  | 0.0  | 1.7      | 0.0  | 1.6          | 1.8         | 0.0  |
| Unsig. Movement Delay, s/veh                       |      | 0.0      | 0.0  | 1.3          | 0.0       | 0.0  | 0.0  | 1.7      | 0.0  | 1.0          | 1.0         | 0.0  |
| LnGrp Delay(d),s/veh                               | 0.0  | 0.0      | 0.0  | 14.5         | 0.0       | 0.0  | 0.0  | 17.1     | 0.0  | 14.4         | 14.5        | 0.0  |
| LnGrp LOS                                          | Α    | Α        | Α    | 14.3<br>B    | Α         | 0.0  | Α    | В        | 0.0  | В            | 14.3<br>B   | Α    |
| Approach Vol, veh/h                                |      | 0        |      | <u>D</u>     | 412       |      |      | 229      |      |              | 549         |      |
| Approach Delay, s/veh                              |      | 0.0      |      |              | 14.5      |      |      | 17.1     |      |              | 14.5        |      |
| Approach LOS                                       |      | 0.0      |      |              | 14.5<br>B |      |      | В        |      |              | 14.5<br>B   |      |
| Approach 203                                       |      |          |      |              | Ь         |      |      |          |      |              | Б           |      |
| Timer - Assigned Phs                               |      | 2        |      | 4            |           | 6    |      | 8        |      |              |             |      |
| Phs Duration (G+Y+Rc), s                           |      | 12.0     |      | 13.0         |           | 14.0 |      | 0.0      |      |              |             |      |
| Change Period (Y+Rc), s                            |      | 5.0      |      | 4.6          |           | 5.0  |      | 4.6      |      |              |             |      |
| Max Green Setting (Gmax), s                        |      | 35.0     |      | 35.0         |           | 35.0 |      | 19.0     |      |              |             |      |
| Max Q Clear Time (g_c+l1), s                       |      | 6.6      |      | 6.2          |           | 7.6  |      | 0.0      |      |              |             |      |
| Green Ext Time (p_c), s                            |      | 1.0      |      | 2.4          |           | 1.3  |      | 0.0      |      |              |             |      |
| Intersection Summary                               |      |          |      |              |           |      |      |          |      |              |             |      |
| HCM 6th Ctrl Delay                                 |      |          | 15.0 |              |           |      |      |          |      |              |             |      |
| HCM 6th LOS                                        |      |          | В    |              |           |      |      |          |      |              |             |      |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| 9                          | •   | <b>→</b> | *    | •     | <b>←</b> | •    | 4   | †   | <b>/</b> | /    | ļ    | 4    |
|----------------------------|-----|----------|------|-------|----------|------|-----|-----|----------|------|------|------|
| Movement EE                | BL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL | NBT | NBR      | SBL  | SBT  | SBR  |
| Lane Configurations        |     | <b>^</b> | 7    | 14.54 | <b>^</b> |      |     |     |          | 1    | सी   | 77   |
| Traffic Volume (veh/h)     | 0   | 484      | 39   | 79    | 346      | 0    | 0   | 0   | 0        | 491  | 1    | 330  |
| Future Volume (veh/h)      | 0   | 484      | 39   | 79    | 346      | 0    | 0   | 0   | 0        | 491  | 1    | 330  |
| Initial Q (Qb), veh        | 0   | 0        | 0    | 0     | 0        | 0    |     |     |          | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT) 1.0    | 00  |          | 0.99 | 1.00  |          | 1.00 |     |     |          | 1.00 |      | 1.00 |
| Parking Bus, Adj 1.0       | 00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 |     |     |          | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach      |     | No       |      |       | No       |      |     |     |          |      | No   |      |
| Adj Sat Flow, veh/h/ln     | 0   | 1841     | 1841 | 1841  | 1841     | 0    |     |     |          | 1841 | 1841 | 1841 |
| Adj Flow Rate, veh/h       | 0   | 538      | 9    | 88    | 384      | 0    |     |     |          | 547  | 0    | 86   |
| Peak Hour Factor 0.9       | 90  | 0.90     | 0.90 | 0.90  | 0.90     | 0.90 |     |     |          | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, %       | 0   | 4        | 4    | 4     | 4        | 0    |     |     |          | 4    | 4    | 4    |
| Cap, veh/h                 | 0   | 817      | 359  | 435   | 1730     | 0    |     |     |          | 745  | 0    | 663  |
| Arrive On Green 0.0        |     | 0.23     | 0.23 | 0.13  | 0.49     | 0.00 |     |     |          | 0.21 | 0.00 | 0.21 |
| Sat Flow, veh/h            | 0   | 3589     | 1538 | 3401  | 3589     | 0    |     |     |          | 3506 | 0    | 3120 |
| Grp Volume(v), veh/h       | 0   | 538      | 9    | 88    | 384      | 0    |     |     |          | 547  | 0    | 86   |
| Grp Sat Flow(s),veh/h/ln   | 0   | 1749     | 1538 | 1700  | 1749     | 0    |     |     |          | 1753 | 0    | 1560 |
|                            | 0.0 | 5.2      | 0.2  | 0.9   | 2.3      | 0.0  |     |     |          | 5.5  | 0.0  | 0.8  |
| (0- /-                     | 0.0 | 5.2      | 0.2  | 0.9   | 2.3      | 0.0  |     |     |          | 5.5  | 0.0  | 0.8  |
| Prop In Lane 0.0           |     | V        | 1.00 | 1.00  |          | 0.00 |     |     |          | 1.00 | 0.0  | 1.00 |
| Lane Grp Cap(c), veh/h     | 0   | 817      | 359  | 435   | 1730     | 0    |     |     |          | 745  | 0    | 663  |
| V/C Ratio(X) 0.0           |     | 0.66     | 0.03 | 0.20  | 0.22     | 0.00 |     |     |          | 0.73 | 0.00 | 0.13 |
| Avail Cap(c_a), veh/h      | 0   | 2699     | 1187 | 1810  | 5026     | 0.00 |     |     |          | 2333 | 0    | 2076 |
| HCM Platoon Ratio 1.0      |     | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 |     |     |          | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) 0.0     |     | 1.00     | 1.00 | 1.00  | 1.00     | 0.00 |     |     |          | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh 0 |     | 13.0     | 11.1 | 14.7  | 5.4      | 0.0  |     |     |          | 13.8 | 0.0  | 12.0 |
|                            | 0.0 | 0.3      | 0.0  | 0.1   | 0.0      | 0.0  |     |     |          | 0.5  | 0.0  | 0.0  |
|                            | 0.0 | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  |     |     |          | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/lr0  |     | 1.7      | 0.0  | 0.3   | 0.5      | 0.0  |     |     |          | 1.8  | 0.0  | 0.0  |
| Unsig. Movement Delay, s/  |     |          | 3.0  | 3.0   | 3.0      | 3.0  |     |     |          | 1.0  | 3.0  | J.L  |
|                            | ).0 | 13.4     | 11.1 | 14.8  | 5.4      | 0.0  |     |     |          | 14.3 | 0.0  | 12.0 |
| LnGrp LOS                  | Α.  | В        | В    | В     | A        | A    |     |     |          | В    | Α    | В    |
| Approach Vol, veh/h        |     | 547      |      |       | 472      |      |     |     |          |      | 633  |      |
| Approach Delay, s/veh      |     | 13.3     |      |       | 7.2      |      |     |     |          |      | 14.0 |      |
| Approach LOS               |     | В        |      |       | Α.Δ      |      |     |     |          |      | В    |      |
|                            | 1   | 2        |      | 4     | ,,       | 6    |     |     |          |      |      |      |
| Timer - Assigned Phs       | 1   |          |      |       |          |      |     |     |          |      |      |      |
| Phs Duration (G+Y+Rc), s9  |     | 14.8     |      | 13.0  |          | 24.6 |     |     |          |      |      |      |
| Change Period (Y+Rc), s 5  |     | * 6      |      | * 5   |          | * 6  |     |     |          |      |      |      |
| Max Green Setting (Gma20)  |     | * 29     |      | * 25  |          | * 54 |     |     |          |      |      |      |
| Max Q Clear Time (g_c+l12) |     | 7.2      |      | 7.5   |          | 4.3  |     |     |          |      |      |      |
| Green Ext Time (p_c), s 0  | J.U | 1.4      |      | 0.5   |          | 1.0  |     |     |          |      |      |      |
| Intersection Summary       |     |          |      |       |          |      |     |     |          |      |      |      |
| HCM 6th Ctrl Delay         |     |          | 11.8 |       |          |      |     |     |          |      |      |      |
| HCM 6th LOS                |     |          | В    |       |          |      |     |     |          |      |      |      |
| Notos                      |     |          |      |       |          |      |     |     |          |      |      |      |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶    | <b>→</b> | •                                             | •    | <b>←</b> | •    | 4    | †    | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4   |  |
|---------------------------|------|----------|-----------------------------------------------|------|----------|------|------|------|----------|-------------|----------|-----|--|
| Movement                  | EBL  | EBT      | EBR                                           | WBL  | WBT      | WBR  | NBL  | NBT  | NBR      | SBL         | SBT      | SBR |  |
| Lane Configurations       | 1,1  | <b>^</b> |                                               |      | <b>^</b> | 7    | Ť    | 4    | 7        |             |          |     |  |
| Traffic Volume (veh/h)    | 157  | 818      | 0                                             | 0    | 381      | 352  | 44   | 0    | 122      | 0           | 0        | 0   |  |
| Future Volume (veh/h)     | 157  | 818      | 0                                             | 0    | 381      | 352  | 44   | 0    | 122      | 0           | 0        | 0   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0                                             | 0    | 0        | 0    | 0    | 0    | 0        |             |          |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00                                          | 1.00 |          | 0.99 | 1.00 |      | 1.00     |             |          |     |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00                                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |             |          |     |  |
| Work Zone On Approac      | ch   | No       |                                               |      | No       |      |      | No   |          |             |          |     |  |
| Adj Sat Flow, veh/h/ln    | 1841 | 1841     | 0                                             | 0    | 1841     | 1841 | 1841 | 1841 | 1841     |             |          |     |  |
| Adj Flow Rate, veh/h      | 174  | 909      | 0                                             | 0    | 423      | 88   | 49   | 0    | 9        |             |          |     |  |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90                                          | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90     |             |          |     |  |
| Percent Heavy Veh, %      | 4    | 4        | 0                                             | 0    | 4        | 4    | 4    | 4    | 4        |             |          |     |  |
| Cap, veh/h                | 665  | 1958     | 0                                             | 0    | 734      | 323  | 352  | 0    | 157      |             |          |     |  |
| Arrive On Green           | 0.20 | 0.56     | 0.00                                          | 0.00 | 0.21     | 0.21 | 0.10 | 0.00 | 0.10     |             |          |     |  |
| Sat Flow, veh/h           | 3401 | 3589     | 0                                             | 0    | 3589     | 1537 | 3506 | 0    | 1560     |             |          |     |  |
| Grp Volume(v), veh/h      | 174  | 909      | 0                                             | 0    | 423      | 88   | 49   | 0    | 9        |             |          |     |  |
| Grp Sat Flow(s),veh/h/l   |      | 1749     | 0                                             | 0    | 1749     | 1537 | 1753 | 0    | 1560     |             |          |     |  |
| Q Serve(g_s), s           | 1.4  | 5.0      | 0.0                                           | 0.0  | 3.5      | 1.6  | 0.4  | 0.0  | 0.2      |             |          |     |  |
| Cycle Q Clear(g_c), s     | 1.4  | 5.0      | 0.0                                           | 0.0  | 3.5      | 1.6  | 0.4  | 0.0  | 0.2      |             |          |     |  |
| Prop In Lane              | 1.00 |          | 0.00                                          | 0.00 |          | 1.00 | 1.00 |      | 1.00     |             |          |     |  |
| Lane Grp Cap(c), veh/h    |      | 1958     | 0                                             | 0    | 734      | 323  | 352  | 0    | 157      |             |          |     |  |
| V/C Ratio(X)              | 0.26 | 0.46     | 0.00                                          | 0.00 | 0.58     | 0.27 | 0.14 | 0.00 | 0.06     |             |          |     |  |
| Avail Cap(c_a), veh/h     | 2101 | 5833     | 0                                             | 0    | 3133     | 1377 | 2707 | 0    | 1205     |             |          |     |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00                                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |             |          |     |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00                                          | 0.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00     |             |          |     |  |
| Uniform Delay (d), s/vel  |      | 4.2      | 0.0                                           | 0.0  | 11.5     | 10.7 | 13.3 | 0.0  | 13.2     |             |          |     |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.1      | 0.0                                           | 0.0  | 0.3      | 0.2  | 0.1  | 0.0  | 0.1      |             |          |     |  |
| Initial Q Delay(d3),s/vel |      | 0.0      | 0.0                                           | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |             |          |     |  |
| %ile BackOfQ(50%),vel     |      | 0.7      | 0.0                                           | 0.0  | 1.0      | 0.4  | 0.1  | 0.0  | 0.0      |             |          |     |  |
| Unsig. Movement Delay     |      |          | 0.0                                           | 0.0  | 1.0      | 0.1  | 0.1  | 0.0  | 0.0      |             |          |     |  |
| LnGrp Delay(d),s/veh      | 11.1 | 4.3      | 0.0                                           | 0.0  | 11.8     | 10.9 | 13.4 | 0.0  | 13.2     |             |          |     |  |
| LnGrp LOS                 | В    | Α.       | A                                             | Α    | В        | В    | В    | Α    | В        |             |          |     |  |
| Approach Vol, veh/h       |      | 1083     | , <u>, , , , , , , , , , , , , , , , , , </u> |      | 511      |      |      | 58   |          |             |          |     |  |
| Approach Delay, s/veh     |      | 5.4      |                                               |      | 11.6     |      |      | 13.3 |          |             |          |     |  |
| Approach LOS              |      | 3.4<br>A |                                               |      | В        |      |      | В    |          |             |          |     |  |
|                           |      |          |                                               |      |          |      |      |      |          |             |          |     |  |
| Timer - Assigned Phs      |      | 2        |                                               |      | 5        | 6    |      | 8    |          |             |          |     |  |
| Phs Duration (G+Y+Rc)     |      | 24.1     |                                               |      | 11.3     | 12.8 |      | 8.3  |          |             |          |     |  |
| Change Period (Y+Rc),     |      | * 6      |                                               |      | 5.0      | * 6  |      | 5.0  |          |             |          |     |  |
| Max Green Setting (Gm     | , ,  | * 54     |                                               |      | 20.0     | * 29 |      | 25.0 |          |             |          |     |  |
| Max Q Clear Time (g_c     |      | 7.0      |                                               |      | 3.4      | 5.5  |      | 2.4  |          |             |          |     |  |
| Green Ext Time (p_c), s   | S    | 2.7      |                                               |      | 0.3      | 1.1  |      | 0.1  |          |             |          |     |  |
| Intersection Summary      |      |          |                                               |      |          |      |      |      |          |             |          |     |  |
| HCM 6th Ctrl Delay        |      |          | 7.6                                           |      |          |      |      |      |          |             |          |     |  |
| HCM 6th LOS               |      |          | Α                                             |      |          |      |      |      |          |             |          |     |  |
| Notes                     |      |          |                                               |      |          |      |      |      |          |             |          |     |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                          |         |          |          |           |            |      |
|---------------------------------------|---------|----------|----------|-----------|------------|------|
| Int Delay, s/veh                      | 0.9     |          |          |           |            |      |
| Movement                              | EBL     | EBR      | NBL      | NBT       | SBT        | SBR  |
| Lane Configurations                   | ¥       |          | 1100     | <b>^</b>  | <b>↑</b> Ъ | USIN |
| Traffic Vol, veh/h                    | 8       | 61       | 43       | 746       | 741        | 27   |
| Future Vol, veh/h                     | 8       | 61       | 43       | 746       | 741        | 27   |
| Conflicting Peds, #/hr                | 0       | 0        | 0        | 0         | 0          | 0    |
| Sign Control                          | Stop    | Stop     | Free     | Free      | Free       | Free |
| RT Channelized                        | -       | None     | -        | None      | -          | None |
| Storage Length                        | 0       | -        | _        | -         | _          | -    |
| Veh in Median Storage,                |         | _        | _        | 0         | 0          | _    |
| Grade, %                              | 0       | <u>-</u> | <u>-</u> | 0         | 0          | _    |
| Peak Hour Factor                      | 90      | 90       | 90       | 90        | 90         | 90   |
| Heavy Vehicles, %                     | 2       | 2        | 2        | 2         | 2          | 2    |
| Mymt Flow                             | 9       | 68       | 48       | 829       | 823        | 30   |
| INIVITIL FIOW                         | 9       | 00       | 40       | 029       | 023        | 30   |
|                                       |         |          |          |           |            |      |
| Major/Minor M                         | /linor2 | N        | Major1   | N         | //ajor2    |      |
| Conflicting Flow All                  | 1349    | 427      | 853      | 0         | -          | 0    |
| Stage 1                               | 838     | -        | -        | -         | -          | -    |
| Stage 2                               | 511     | -        | -        | -         | -          | -    |
| Critical Hdwy                         | 6.84    | 6.94     | 4.14     | -         | -          | -    |
| Critical Hdwy Stg 1                   | 5.84    | -        | -        | -         | -          | -    |
| Critical Hdwy Stg 2                   | 5.84    | -        | -        | -         | -          | -    |
| Follow-up Hdwy                        | 3.52    | 3.32     | 2.22     | -         | -          | -    |
| Pot Cap-1 Maneuver                    | 142     | 576      | 782      | -         | -          | -    |
| Stage 1                               | 385     | -        | -        | _         | _          | _    |
| Stage 2                               | 567     | _        | _        | -         | _          | _    |
| Platoon blocked, %                    |         |          |          | _         | _          | _    |
| Mov Cap-1 Maneuver                    | 126     | 576      | 782      | _         | _          | _    |
| Mov Cap-2 Maneuver                    | 126     | -        | -        | _         | _          | _    |
| Stage 1                               | 341     | _        | _        | _         | _          | _    |
| Stage 2                               | 567     | <u>-</u> | _        | _         | _          | _    |
| Olage 2                               | 501     |          |          |           |            |      |
|                                       |         |          |          |           |            |      |
| Approach                              | EB      |          | NB       |           | SB         |      |
| HCM Control Delay, s                  | 15.9    |          | 0.5      |           | 0          |      |
| HCM LOS                               | С       |          |          |           |            |      |
|                                       |         |          |          |           |            |      |
| Minor Lane/Major Mvmt                 | 1       | NBL      | NRT      | EBLn1     | SBT        | SBR  |
| Capacity (veh/h)                      |         | 782      | -        |           | 051        | אופט |
| HCM Lane V/C Ratio                    |         | 0.061    |          | 0.188     | -          | -    |
|                                       |         | 9.9      | -        |           | -          | -    |
| HCM Control Delay (s)<br>HCM Lane LOS |         |          |          | 15.9<br>C | -          | -    |
| HCM 95th %tile Q(veh)                 |         | A<br>0.2 | -        | 0.7       | -          | -    |
|                                       |         | 11/      | -        | U /       | _          | _    |

| Intersection           |           |      |            |       |        |          |
|------------------------|-----------|------|------------|-------|--------|----------|
| Int Delay, s/veh       | 0.2       |      |            |       |        |          |
| Movement               | WBL       | WBR  | NBT        | NBR   | SBL    | SBT      |
| Lane Configurations    | W         |      | <b>↑</b> ↑ |       |        | <b>^</b> |
| Traffic Vol, veh/h     | 1         | 16   | 773        | 6     | 10     | 792      |
| Future Vol, veh/h      | 1         | 16   | 773        | 6     | 10     | 792      |
| Conflicting Peds, #/hr | 3         | 0    | 0          | 3     | 8      | 0        |
| Sign Control           | Stop      | Stop | Free       | Free  | Free   | Free     |
| RT Channelized         | -         | None | -          |       | -      | None     |
| Storage Length         | 0         | -    | _          | -     | _      | -        |
| Veh in Median Storage, |           | _    | 0          | _     | _      | 0        |
| Grade, %               | 0         | _    | 0          | _     | _      | 0        |
| Peak Hour Factor       | 90        | 90   | 90         | 90    | 90     | 90       |
| Heavy Vehicles, %      | 2         | 2    | 2          | 2     | 2      | 2        |
|                        | 1         | 18   |            | 7     |        | 880      |
| Mvmt Flow              | 1         | 18   | 859        | 1     | 11     | 880      |
|                        |           |      |            |       |        |          |
| Major/Minor N          | Minor1    | N    | Major1     | ľ     | Major2 |          |
| Conflicting Flow All   | 1336      | 441  | 0          | 0     | 874    | 0        |
| Stage 1                | 871       | -    | -          | -     | -      | -        |
| Stage 2                | 465       | _    | _          | _     | _      | -        |
| Critical Hdwy          | 6.84      | 6.94 | _          | _     | 4.14   | _        |
| Critical Hdwy Stg 1    | 5.84      | -    | _          | _     | -      | _        |
| Critical Hdwy Stg 2    | 5.84      | _    | _          | _     | _      | _        |
| Follow-up Hdwy         | 3.52      | 3.32 | _          | _     | 2.22   | _        |
| Pot Cap-1 Maneuver     | 145       | 564  | _          | _     | 768    | _        |
| Stage 1                | 370       | -    | _          | _     | -      | _        |
| Stage 2                | 599       | _    | -          | _     | _      | _        |
|                        | 599       | _    |            |       | _      |          |
| Platoon blocked, %     | 420       | FC0  | -          | -     | 700    | -        |
| Mov Cap-1 Maneuver     | 139       | 560  | -          | -     | 762    | -        |
| Mov Cap-2 Maneuver     | 264       | -    | -          | -     | -      | -        |
| Stage 1                | 367       | -    | -          | -     | -      | -        |
| Stage 2                | 580       | -    | -          | -     | -      | -        |
|                        |           |      |            |       |        |          |
| Approach               | WB        |      | NB         |       | SB     |          |
| HCM Control Delay, s   | 12.1      |      | 0          |       | 0.1    |          |
| HCM LOS                | 12.1<br>B |      | U          |       | 0.1    |          |
| HOW LOS                | D         |      |            |       |        |          |
|                        |           |      |            |       |        |          |
| Minor Lane/Major Mvm   | t         | NBT  | NBRV       | VBLn1 | SBL    | SBT      |
| Capacity (veh/h)       |           | -    | -          | 525   | 762    | -        |
| HCM Lane V/C Ratio     |           | _    | _          | 0.036 |        | _        |
| HCM Control Delay (s)  |           | _    | _          | 12.1  | 9.8    | _        |
| HCM Lane LOS           |           | _    | _          | В     | A      | _        |
| HCM 95th %tile Q(veh)  |           | _    | _          | 0.1   | 0      |          |
| HOW JOHN JOHN Q(VCH)   |           |      |            | 0.1   | U      |          |

|                              | ۶   | <b>→</b> | •   | •                                             | •        | •    | 4    | <b>†</b> | <b>/</b> | <b>/</b> | ļ        | 4    |
|------------------------------|-----|----------|-----|-----------------------------------------------|----------|------|------|----------|----------|----------|----------|------|
| Movement                     | EBL | EBT      | EBR | WBL                                           | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations          |     |          |     |                                               | <b>^</b> |      |      | ર્ન      |          |          | Դ        |      |
| Traffic Volume (veh/h)       | 0   | 0        | 0   | 83                                            | 806      | 93   | 27   | 73       | 0        | 0        | 206      | 9    |
| Future Volume (veh/h)        | 0   | 0        | 0   | 83                                            | 806      | 93   | 27   | 73       | 0        | 0        | 206      | 9    |
| Initial Q (Qb), veh          |     |          |     | 0                                             | 0        | 0    | 0    | 0        | 0        | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          |     |          |     | 1.00                                          |          | 1.00 | 1.00 |          | 1.00     | 1.00     |          | 0.97 |
| Parking Bus, Adj             |     |          |     | 1.00                                          | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |     |          |     |                                               | No       |      |      | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln       |     |          |     | 1856                                          | 1856     | 1856 | 1885 | 1885     | 0        | 0        | 1856     | 1856 |
| Adj Flow Rate, veh/h         |     |          |     | 92                                            | 896      | 85   | 30   | 81       | 0        | 0        | 229      | 10   |
| Peak Hour Factor             |     |          |     | 0.90                                          | 0.90     | 0.90 | 0.90 | 0.90     | 0.90     | 0.90     | 0.90     | 0.90 |
| Percent Heavy Veh, %         |     |          |     | 3                                             | 3        | 3    | 1    | 1        | 0        | 0        | 3        | 3    |
| Cap, veh/h                   |     |          |     | 123                                           | 1252     | 125  | 232  | 291      | 0        | 0        | 400      | 17   |
| Arrive On Green              |     |          |     | 0.41                                          | 0.41     | 0.41 | 0.23 | 0.23     | 0.00     | 0.00     | 0.23     | 0.23 |
| Sat Flow, veh/h              |     |          |     | 298                                           | 3039     | 303  | 214  | 1280     | 0        | 0        | 1762     | 77   |
| Grp Volume(v), veh/h         |     |          |     | 568                                           | 0        | 505  | 111  | 0        | 0        | 0        | 0        | 239  |
| Grp Sat Flow(s),veh/h/ln     |     |          |     | 1841                                          | 0        | 1800 | 1494 | 0        | 0        | 0        | 0        | 1839 |
| Q Serve(g_s), s              |     |          |     | 6.5                                           | 0.0      | 5.7  | 0.1  | 0.0      | 0.0      | 0.0      | 0.0      | 2.9  |
| Cycle Q Clear(g_c), s        |     |          |     | 6.5                                           | 0.0      | 5.7  | 2.9  | 0.0      | 0.0      | 0.0      | 0.0      | 2.9  |
| Prop In Lane                 |     |          |     | 0.16                                          | 0.0      | 0.17 | 0.27 | 0.0      | 0.00     | 0.00     | 0.0      | 0.04 |
| Lane Grp Cap(c), veh/h       |     |          |     | 758                                           | 0        | 741  | 523  | 0        | 0        | 0        | 0        | 418  |
| V/C Ratio(X)                 |     |          |     | 0.75                                          | 0.00     | 0.68 | 0.21 | 0.00     | 0.00     | 0.00     | 0.00     | 0.57 |
| Avail Cap(c_a), veh/h        |     |          |     | 1845                                          | 0        | 1804 | 1124 | 0        | 0        | 0        | 0        | 1106 |
| HCM Platoon Ratio            |     |          |     | 1.00                                          | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           |     |          |     | 1.00                                          | 0.00     | 1.00 | 1.00 | 0.00     | 0.00     | 0.00     | 0.00     | 1.00 |
| Uniform Delay (d), s/veh     |     |          |     | 6.2                                           | 0.0      | 6.0  | 7.9  | 0.0      | 0.0      | 0.0      | 0.0      | 8.6  |
| Incr Delay (d2), s/veh       |     |          |     | 0.6                                           | 0.0      | 0.4  | 0.1  | 0.0      | 0.0      | 0.0      | 0.0      | 0.5  |
| Initial Q Delay(d3),s/veh    |     |          |     | 0.0                                           | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     |     |          |     | 1.1                                           | 0.0      | 0.9  | 0.3  | 0.0      | 0.0      | 0.0      | 0.0      | 0.7  |
| Unsig. Movement Delay, s/veh |     |          |     | •••                                           | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.1  |
| LnGrp Delay(d),s/veh         |     |          |     | 6.8                                           | 0.0      | 6.4  | 8.0  | 0.0      | 0.0      | 0.0      | 0.0      | 9.0  |
| LnGrp LOS                    |     |          |     | A                                             | A        | A    | A    | A        | A        | A        | A        | A    |
| Approach Vol, veh/h          |     |          |     | , , <u>, , , , , , , , , , , , , , , , , </u> | 1073     |      |      | 111      |          |          | 239      |      |
| Approach Delay, s/veh        |     |          |     |                                               | 6.6      |      |      | 8.0      |          |          | 9.0      |      |
| Approach LOS                 |     |          |     |                                               | Α        |      |      | Α        |          |          | 9.0<br>A |      |
| Approach 200                 |     |          |     |                                               | ^        |      |      | А        |          |          | ٨        |      |
| Timer - Assigned Phs         |     | 2        |     | 4                                             |          |      |      | 8        |          |          |          |      |
| Phs Duration (G+Y+Rc), s     |     | 15.3     |     | 9.7                                           |          |      |      | 9.7      |          |          |          |      |
| Change Period (Y+Rc), s      |     | * 5      |     | * 4                                           |          |      |      | * 4      |          |          |          |      |
| Max Green Setting (Gmax), s  |     | * 25     |     | * 15                                          |          |      |      | * 15     |          |          |          |      |
| Max Q Clear Time (g_c+l1), s |     | 8.5      |     | 4.9                                           |          |      |      | 4.9      |          |          |          |      |
| Green Ext Time (p_c), s      |     | 1.6      |     | 0.4                                           |          |      |      | 0.1      |          |          |          |      |
| Intersection Summary         |     |          |     |                                               |          |      |      |          |          |          |          |      |
| HCM 6th Ctrl Delay           |     |          | 7.1 |                                               |          |      |      |          |          |          |          |      |
| HCM 6th LOS                  |     |          | Α   |                                               |          |      |      |          |          |          |          |      |
| Notes                        |     |          |     |                                               |          |      |      |          |          |          |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| •                             | <b>→</b> | $\searrow$ | •        | •   | •   | •    | <b>†</b> | /    | -    | ţ    | ✓    |  |
|-------------------------------|----------|------------|----------|-----|-----|------|----------|------|------|------|------|--|
| Movement EBL                  | EBT      | EBR        | WBL      | WBT | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations           | <b>^</b> |            |          |     |     |      | <b>1</b> |      |      | 4    |      |  |
| Traffic Volume (veh/h) 10     | 845      | 42         | 0        | 0   | 0   | 0    | 90       | 70   | 138  | 151  | 0    |  |
| Future Volume (veh/h) 10      | 845      | 42         | 0        | 0   | 0   | 0    | 90       | 70   | 138  | 151  | 0    |  |
| Initial Q (Qb), veh 0         | 0        | 0          | <u> </u> |     |     | 0    | 0        | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00      |          | 0.97       |          |     |     | 1.00 |          | 0.96 | 0.98 |      | 1.00 |  |
| Parking Bus, Adj 1.00         | 1.00     | 1.00       |          |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach         | No       | 1.00       |          |     |     | 1.00 | No       | 1.00 | 1.00 | No   | 1.00 |  |
| Adj Sat Flow, veh/h/ln 1885   | 1885     | 1885       |          |     |     | 0    | 1885     | 1885 | 1885 | 1885 | 0    |  |
| Adj Flow Rate, veh/h 11       | 939      | 37         |          |     |     | 0    | 100      | 78   | 153  | 168  | 0    |  |
| Peak Hour Factor 0.90         | 0.90     | 0.90       |          |     |     | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Percent Heavy Veh, % 1        | 1        | 1          |          |     |     | 0.50 | 1        | 1    | 1    | 1    | 0.50 |  |
| Cap, veh/h 15                 | 1295     | 54         |          |     |     | 0    | 313      | 244  | 357  | 290  | 0    |  |
| Arrive On Green 0.36          | 0.36     | 0.36       |          |     |     | 0.00 | 0.32     | 0.32 | 0.32 | 0.32 | 0.00 |  |
| Sat Flow, veh/h 40            | 3550     | 147        |          |     |     | 0.00 | 964      | 752  | 535  | 894  | 0.00 |  |
| ,                             | 0        | 466        |          |     |     |      |          | 178  | 321  |      | 0    |  |
| 1 ( ),                        |          |            |          |     |     | 0    | 0        |      |      | 0    |      |  |
| Grp Sat Flow(s),veh/h/ln1883  | 0        | 1854       |          |     |     | 0    | 0        | 1716 | 1429 | 0    | 0    |  |
| Q Serve(g_s), s 7.0           | 0.0      | 6.2        |          |     |     | 0.0  | 0.0      | 2.3  | 3.6  | 0.0  | 0.0  |  |
| Cycle Q Clear(g_c), s 7.0     | 0.0      | 6.2        |          |     |     | 0.0  | 0.0      | 2.3  | 5.8  | 0.0  | 0.0  |  |
| Prop In Lane 0.02             | 0        | 0.08       |          |     |     | 0.00 | ^        | 0.44 | 0.48 | ^    | 0.00 |  |
| Lane Grp Cap(c), veh/h 687    | 0        | 676        |          |     |     | 0    | 0        | 556  | 647  | 0    | 0    |  |
| V/C Ratio(X) 0.76             | 0.00     | 0.69       |          |     |     | 0.00 | 0.00     | 0.32 | 0.50 | 0.00 | 0.00 |  |
| Avail Cap(c_a), veh/h 1627    | 0        | 1602       |          |     |     | 0    | 0        | 889  | 934  | 0    | 0    |  |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00       |          |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I) 1.00       | 0.00     | 1.00       |          |     |     | 0.00 | 0.00     | 1.00 | 1.00 | 0.00 | 0.00 |  |
| Uniform Delay (d), s/veh 8.1  | 0.0      | 7.8        |          |     |     | 0.0  | 0.0      | 7.4  | 8.6  | 0.0  | 0.0  |  |
| Incr Delay (d2), s/veh 0.7    | 0.0      | 0.5        |          |     |     | 0.0  | 0.0      | 0.1  | 0.2  | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0        |          |     |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/ln1.7   | 0.0      | 1.5        |          |     |     | 0.0  | 0.0      | 0.5  | 1.1  | 0.0  | 0.0  |  |
| Unsig. Movement Delay, s/vel  |          |            |          |     |     |      |          |      |      |      |      |  |
| LnGrp Delay(d),s/veh 8.7      | 0.0      | 8.3        |          |     |     | 0.0  | 0.0      | 7.5  | 8.8  | 0.0  | 0.0  |  |
| LnGrp LOS A                   | Α        | Α          |          |     |     | Α    | Α        | Α    | Α    | Α    | Α    |  |
| Approach Vol, veh/h           | 987      |            |          |     |     |      | 178      |      |      | 321  |      |  |
| Approach Delay, s/veh         | 8.5      |            |          |     |     |      | 7.5      |      |      | 8.8  |      |  |
| Approach LOS                  | Α        |            |          |     |     |      | Α        |      |      | Α    |      |  |
| Timer - Assigned Phs          | 2        |            | 4        |     |     |      | 8        |      |      |      |      |  |
| Phs Duration (G+Y+Rc), s      | 15.6     |            | 13.4     |     |     |      | 13.4     |      |      |      |      |  |
| Change Period (Y+Rc), s       | * 5      |            | * 4      |     |     |      | * 4      |      |      |      |      |  |
| Max Green Setting (Gmax), s   | * 25     |            | * 15     |     |     |      | * 15     |      |      |      |      |  |
| Max Q Clear Time (g_c+l1), s  | 9.0      |            | 7.8      |     |     |      | 4.3      |      |      |      |      |  |
| Green Ext Time (p_c), s       | 1.4      |            | 0.5      |     |     |      | 0.3      |      |      |      |      |  |
| Intersection Summary          |          |            |          |     |     |      |          |      |      |      |      |  |
| HCM 6th Ctrl Delay            |          | 8.4        |          |     |     |      |          |      |      |      |      |  |
| HCM 6th LOS                   |          | 0.4<br>A   |          |     |     |      |          |      |      |      |      |  |
| Notes                         |          |            |          |     |     |      |          |      |      |      |      |  |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |      |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 2.4    |       |      |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |      |        | 4      |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 40     | 1     | 1    | 3      | 5      | 10    | 1      | 68   | 2    | 8      | 77   | 70   |
| Future Vol, veh/h      | 40     | 1     | 1    | 3      | 5      | 10    | 1      | 68   | 2    | 8      | 77   | 70   |
| Conflicting Peds, #/hr | 3      | 0     | 5    | 5      | 0      | 3     | 2      | 0    | 0    | 0      | 0    | 2    |
| Sign Control           | Stop   | Stop  | Stop | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None | -      | -      | None  | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -    | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage, | # -    | 0     | -    | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -    | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 0      | 0     | 0    | 0      | 0      | 0     | 0      | 0    | 0    | 0      | 0    | 0    |
| Mvmt Flow              | 44     | 1     | 1    | 3      | 6      | 11    | 1      | 76   | 2    | 9      | 86   | 78   |
|                        |        |       |      |        |        |       |        |      |      |        |      |      |
| Major/Minor N          | 1inor2 |       | ı    | Minor1 |        |       | Major1 |      | N    | Major2 |      |      |
| Conflicting Flow All   | 236    | 225   | 132  | 228    | 263    | 80    | 166    | 0    | 0    | 78     | 0    | 0    |
| Stage 1                | 145    | 145   | -    | 79     | 79     | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 91     | 80    | -    | 149    | 184    | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.1    | 6.5   | 6.2  | 7.1    | 6.5    | 6.2   | 4.1    | -    | -    | 4.1    | -    | -    |
| Critical Hdwy Stg 1    | 6.1    | 5.5   | -    | 6.1    | 5.5    | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.1    | 5.5   | -    | 6.1    | 5.5    | -     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.5    | 4     | 3.3  | 3.5    | 4      | 3.3   | 2.2    | -    | -    | 2.2    | -    | -    |
| Pot Cap-1 Maneuver     | 723    | 678   | 923  | 731    | 646    | 986   | 1424   | -    | -    | 1533   | -    | -    |
| Stage 1                | 863    | 781   | -    | 935    | 833    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 921    | 832   | -    | 858    | 751    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |      |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 703    | 671   | 917  | 721    | 640    | 983   | 1421   | -    | -    | 1533   | -    | -    |
| Mov Cap-2 Maneuver     | 703    | 671   | -    | 721    | 640    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 860    | 774   | -    | 934    | 832    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 901    | 831   | -    | 846    | 744    | -     | -      | -    | -    | -      | -    | -    |
|                        |        |       |      |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |      | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 10.5   |       |      | 9.5    |        |       | 0.1    |      |      | 0.4    |      |      |
| HCM LOS                | В      |       |      | A      |        |       |        |      |      |        |      |      |
|                        |        |       |      |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvmt  |        | NBL   | NBT  | NBR I  | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1421  | -    | -      |        | 813   | 1533   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.001 | -    | _      |        | 0.025 |        | -    | _    |        |      |      |
| HCM Control Delay (s)  |        | 7.5   | 0    | _      | 4.0 -  | 9.5   | 7.4    | 0    | _    |        |      |      |
| HCM Lane LOS           |        | A     | A    | -      | В      | A     | Α      | A    | -    |        |      |      |
| HCM 95th %tile Q(veh)  |        | 0     | -    | -      | 0.2    | 0.1   | 0      | -    | -    |        |      |      |
| ( - )                  |        |       |      |        |        |       |        |      |      |        |      |      |

|                                                          | ۶         | <b>→</b> | •        | •         | <b>—</b> | •        | 1        | <b>†</b>    | ~           | <b>/</b> | <b>+</b>    | ✓           |
|----------------------------------------------------------|-----------|----------|----------|-----------|----------|----------|----------|-------------|-------------|----------|-------------|-------------|
| Movement                                                 | EBL       | EBT      | EBR      | WBL       | WBT      | WBR      | NBL      | NBT         | NBR         | SBL      | SBT         | SBR         |
| Lane Configurations                                      |           | 4        |          |           | 4        |          | ሻ        | <b>∱</b> β  |             | ሻ        | <b>ተ</b> ኈ  |             |
| Traffic Volume (veh/h)                                   | 20        | 26       | 12       | 14        | 16       | 19       | 11       | 710         | 16          | 5        | 727         | 7           |
| Future Volume (veh/h)                                    | 20        | 26       | 12       | 14        | 16       | 19       | 11       | 710         | 16          | 5        | 727         | 7           |
| Initial Q (Qb), veh                                      | 0         | 0        | 0        | 0         | 0        | 0        | 0        | 0           | 0           | 0        | 0           | 0           |
| Ped-Bike Adj(A_pbT)                                      | 0.99      |          | 0.98     | 0.99      |          | 0.98     | 1.00     |             | 0.97        | 1.00     |             | 0.97        |
| Parking Bus, Adj                                         | 1.00      | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00     | 1.00        | 1.00        | 1.00     | 1.00        | 1.00        |
| Work Zone On Approach                                    |           | No       |          |           | No       |          |          | No          |             |          | No          |             |
| Adj Sat Flow, veh/h/ln                                   | 1870      | 1870     | 1870     | 1870      | 1870     | 1870     | 1870     | 1870        | 1870        | 1870     | 1870        | 1870        |
| Adj Flow Rate, veh/h                                     | 22        | 29       | 1        | 16        | 18       | 2        | 12       | 789         | 16          | 6        | 808         | 8           |
| Peak Hour Factor                                         | 0.90      | 0.90     | 0.90     | 0.90      | 0.90     | 0.90     | 0.90     | 0.90        | 0.90        | 0.90     | 0.90        | 0.90        |
| Percent Heavy Veh, %                                     | 2         | 2        | 2        | 2         | 2        | 2        | 2        | 2           | 2           | 2        | 2           | 2           |
| Cap, veh/h                                               | 260       | 98       | 3        | 263       | 91       | 9        | 559      | 2002        | 41          | 564      | 2027        | 20          |
| Arrive On Green                                          | 0.10      | 0.10     | 0.10     | 0.10      | 0.10     | 0.10     | 0.56     | 0.56        | 0.56        | 0.56     | 0.56        | 0.56        |
| Sat Flow, veh/h                                          | 675       | 952      | 32       | 676       | 888      | 92       | 669      | 3560        | 72          | 675      | 3604        | 36          |
| Grp Volume(v), veh/h                                     | 52        | 0        | 0        | 36        | 0        | 0        | 12       | 394         | 411         | 6        | 398         | 418         |
| Grp Sat Flow(s),veh/h/ln                                 | 1658      | 0        | 0        | 1657      | 0        | 0        | 669      | 1777        | 1855        | 675      | 1777        | 1863        |
| Q Serve(g_s), s                                          | 0.3       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.3      | 3.3         | 3.3         | 0.1      | 3.4         | 3.4         |
| Cycle Q Clear(g_c), s                                    | 0.7       | 0.0      | 0.0      | 0.5       | 0.0      | 0.0      | 3.7      | 3.3         | 3.3         | 3.5      | 3.4         | 3.4         |
| Prop In Lane                                             | 0.42      |          | 0.02     | 0.44      |          | 0.06     | 1.00     |             | 0.04        | 1.00     |             | 0.02        |
| Lane Grp Cap(c), veh/h                                   | 361       | 0        | 0        | 364       | 0        | 0        | 559      | 999         | 1043        | 564      | 999         | 1048        |
| V/C Ratio(X)                                             | 0.14      | 0.00     | 0.00     | 0.10      | 0.00     | 0.00     | 0.02     | 0.39        | 0.39        | 0.01     | 0.40        | 0.40        |
| Avail Cap(c_a), veh/h                                    | 1703      | 0        | 0        | 1682      | 0        | 0        | 1427     | 3306        | 3451        | 1441     | 3306        | 3466        |
| HCM Platoon Ratio                                        | 1.00      | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00     | 1.00        | 1.00        | 1.00     | 1.00        | 1.00        |
| Upstream Filter(I)                                       | 1.00      | 0.00     | 0.00     | 1.00      | 0.00     | 0.00     | 1.00     | 1.00        | 1.00        | 1.00     | 1.00        | 1.00        |
| Uniform Delay (d), s/veh                                 | 11.1      | 0.0      | 0.0      | 11.0      | 0.0      | 0.0      | 4.4      | 3.3         | 3.3         | 4.3      | 3.3         | 3.3         |
| Incr Delay (d2), s/veh                                   | 0.1       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.0      | 0.4         | 0.3         | 0.0      | 0.4         | 0.4         |
| Initial Q Delay(d3),s/veh                                | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.0      | 0.0         | 0.0         | 0.0      | 0.0         | 0.0         |
| %ile BackOfQ(50%),veh/ln<br>Unsig. Movement Delay, s/veh |           | 0.0      | 0.0      | 0.2       | 0.0      | 0.0      | 0.0      | 0.3         | 0.3         | 0.0      | 0.3         | 0.3         |
|                                                          | 11.2      | 0.0      | 0.0      | 11.1      | 0.0      | 0.0      | 4.4      | 3.7         | 3.7         | 4.3      | 3.7         | 3.7         |
| LnGrp Delay(d),s/veh<br>LnGrp LOS                        | 11.Z<br>B | 0.0<br>A | 0.0<br>A | 11.1<br>B | 0.0<br>A | 0.0<br>A | 4.4<br>A | 3. <i>1</i> | 3. <i>1</i> | 4.3<br>A | 3. <i>1</i> | 3. <i>1</i> |
|                                                          | В         | 52       | ^        | В         | 36       | ^        | ^        | 817         | ^           | ^        | 822         |             |
| Approach Vol, veh/h Approach Delay, s/veh                |           | 11.2     |          |           | 11.1     |          |          | 3.7         |             |          | 3.7         |             |
| 11 7                                                     |           | _        |          |           | _        |          |          |             |             |          |             |             |
| Approach LOS                                             |           | В        |          |           | В        |          |          | A           |             |          | А           |             |
| Timer - Assigned Phs                                     |           | 2        |          | 4         |          | 6        |          | 8           |             |          |             |             |
| Phs Duration (G+Y+Rc), s                                 |           | 20.1     |          | 6.8       |          | 20.1     |          | 6.8         |             |          |             |             |
| Change Period (Y+Rc), s                                  |           | 5.0      |          | 4.0       |          | 5.0      |          | 4.0         |             |          |             |             |
| Max Green Setting (Gmax), s                              |           | 50.0     |          | 25.0      |          | 50.0     |          | 25.0        |             |          |             |             |
| Max Q Clear Time (g_c+I1), s                             |           | 5.7      |          | 2.7       |          | 5.5      |          | 2.5         |             |          |             |             |
| Green Ext Time (p_c), s                                  |           | 9.3      |          | 0.1       |          | 9.3      |          | 0.1         |             |          |             |             |
| Intersection Summary                                     |           |          |          |           |          |          |          |             |             |          |             |             |
| HCM 6th Ctrl Delay                                       |           |          | 4.1      |           |          |          |          |             |             |          |             |             |
| HCM 6th LOS                                              |           |          | А        |           |          |          |          |             |             |          |             |             |

| Intersection                       |         |          |        |          |          |      |
|------------------------------------|---------|----------|--------|----------|----------|------|
| Int Delay, s/veh                   | 3.4     |          |        |          |          |      |
| Movement                           | WBL     | WBR      | NBT    | NBR      | SBL      | SBT  |
| Lane Configurations                | W       |          | ĵ.     |          |          | 4    |
| Traffic Vol, veh/h                 | 8       | 18       | 26     | 7        | 16       | 27   |
| Future Vol, veh/h                  | 8       | 18       | 26     | 7        | 16       | 27   |
| Conflicting Peds, #/hr             | 7       | 0        | 0      | 8        | 8        | 0    |
| Sign Control                       | Stop    | Stop     | Free   | Free     | Free     | Free |
| RT Channelized                     | -       | None     | -      | None     | -        | None |
| Storage Length                     | 0       | -        | _      | -        | _        | -    |
| Veh in Median Storage,             |         | _        | 0      | _        | _        | 0    |
| Grade, %                           | 0       | <u>-</u> | 0      | <u>-</u> | <u>-</u> | 0    |
| Peak Hour Factor                   | 90      | 90       | 90     | 90       | 90       | 90   |
|                                    |         | 0        | 0      |          |          | 0    |
| Heavy Vehicles, %                  | 0       |          |        | 0        | 0        |      |
| Mvmt Flow                          | 9       | 20       | 29     | 8        | 18       | 30   |
|                                    |         |          |        |          |          |      |
| Major/Minor N                      | /linor1 | N        | Major1 | 1        | Major2   |      |
| Conflicting Flow All               | 114     | 41       | 0      | 0        | 45       | 0    |
| Stage 1                            | 41      | _        | _      | -        | -        | _    |
| Stage 2                            | 73      | _        | _      | _        | _        | _    |
| Critical Hdwy                      | 6.4     | 6.2      | _      | _        | 4.1      | _    |
| Critical Hdwy Stg 1                | 5.4     | U.Z      | _      | _        |          | _    |
| Critical Hdwy Stg 2                | 5.4     | _        | _      | _        | _        | _    |
| Follow-up Hdwy                     | 3.5     | 3.3      | -      | _        | 2.2      | -    |
| Pot Cap-1 Maneuver                 | 887     | 1036     | -      |          | 1576     | -    |
|                                    | 987     |          |        | _        |          |      |
| Stage 1                            |         | -        | -      |          | -        | -    |
| Stage 2                            | 955     | -        | -      | -        | -        | -    |
| Platoon blocked, %                 |         | 1000     | -      | -        | 1=01     | -    |
| Mov Cap-1 Maneuver                 | 863     | 1028     | -      | -        | 1564     | -    |
| Mov Cap-2 Maneuver                 | 863     | -        | -      | -        | -        | -    |
| Stage 1                            | 979     | -        | -      | -        | -        | -    |
| Stage 2                            | 937     | -        | -      | -        | -        | -    |
|                                    |         |          |        |          |          |      |
| Annroach                           | WB      |          | NB     |          | SB       |      |
| Approach                           |         |          |        |          |          |      |
| HCM Control Delay, s               | 8.8     |          | 0      |          | 2.7      |      |
| HCM LOS                            | Α       |          |        |          |          |      |
|                                    |         |          |        |          |          |      |
| Minor Lane/Major Mvm               | t       | NBT      | NBRV   | VBLn1    | SBL      | SBT  |
| Capacity (veh/h)                   |         | _        | _      | 971      | 1564     |      |
| HCM Lane V/C Ratio                 |         | _        | _      |          | 0.011    | _    |
| HCM Control Delay (s)              |         | _        | -      | 8.8      | 7.3      | 0    |
| LICIVI COLITO DEIAV (S)            |         | -        | -      | 0.0<br>A | 7.3<br>A | A    |
|                                    |         |          |        |          |          |      |
| HCM Lane LOS HCM 95th %tile Q(veh) |         | -        | -      | 0.1      | 0        |      |

| Intersection                |         |       |        |       |                 |      |
|-----------------------------|---------|-------|--------|-------|-----------------|------|
| Int Delay, s/veh            | 3.1     |       |        |       |                 |      |
| Movement                    | EBL     | EBR   | NBL    | NBT   | SBT             | SBR  |
| Lane Configurations         | ₩       | רטוע  | HUL    | 4     | - 1 <u>00</u> 1 | אופט |
| Traffic Vol, veh/h          | 4       | 17    | 18     | 26    | 26              | 10   |
| Future Vol, veh/h           | 4       | 17    | 18     | 26    | 26              | 10   |
| Conflicting Peds, #/hr      | 0       | 7     | 7      | 0     | 0               | 7    |
|                             |         |       | Free   | Free  | Free            | Free |
| Sign Control RT Channelized | Stop    | Stop  |        |       |                 |      |
|                             | -       | None  | -      | None  | -               | None |
| Storage Length              | 0       | -     | -      | -     | -               | -    |
| Veh in Median Storage,      |         | -     | -      | 0     | 0               | -    |
| Grade, %                    | 0       | -     | -      | 0     | 0               | -    |
| Peak Hour Factor            | 90      | 90    | 90     | 90    | 90              | 90   |
| Heavy Vehicles, %           | 0       | 0     | 0      | 0     | 0               | 0    |
| Mvmt Flow                   | 4       | 19    | 20     | 29    | 29              | 11   |
|                             |         |       |        |       |                 |      |
| Major/Minor N               | /linor2 | N     | Major1 | N     | /lajor2         |      |
| Conflicting Flow All        | 111     | 49    | 47     | 0     | najuiz<br>-     | 0    |
|                             |         |       |        | U     |                 |      |
| Stage 1                     | 42      | -     | -      | -     | -               | -    |
| Stage 2                     | 69      | -     | -      | -     | -               | -    |
| Critical Hdwy               | 6.4     | 6.2   | 4.1    | -     | -               | -    |
| Critical Hdwy Stg 1         | 5.4     | -     | -      | -     | -               | -    |
| Critical Hdwy Stg 2         | 5.4     | -     | -      | -     | -               | -    |
| Follow-up Hdwy              | 3.5     | 3.3   | 2.2    | -     | -               | -    |
| Pot Cap-1 Maneuver          | 891     | 1025  | 1573   | -     | -               | -    |
| Stage 1                     | 986     | -     | -      | -     | -               | -    |
| Stage 2                     | 959     | -     | -      | -     | -               | -    |
| Platoon blocked, %          |         |       |        | _     | _               | _    |
| Mov Cap-1 Maneuver          | 867     | 1011  | 1563   | _     | _               | _    |
| Mov Cap-2 Maneuver          | 867     | -     | -      | _     | _               | _    |
| Stage 1                     | 966     | _     |        | _     | _               | _    |
| Stage 2                     | 952     | _     | _      | _     | _               | _    |
| Staye 2                     | 332     | _     | -      | _     | -               | -    |
|                             |         |       |        |       |                 |      |
| Approach                    | EB      |       | NB     |       | SB              |      |
| HCM Control Delay, s        | 8.8     |       | 3      |       | 0               |      |
| HCM LOS                     | Α       |       |        |       |                 |      |
|                             |         |       |        |       |                 |      |
|                             |         |       |        |       |                 |      |
| Minor Lane/Major Mvmt       | t       | NBL   | NBT    | EBLn1 | SBT             | SBR  |
| Capacity (veh/h)            |         | 1563  | -      | 980   | -               | -    |
| HCM Lane V/C Ratio          |         | 0.013 | -      | 0.024 | -               | -    |
| HCM Control Delay (s)       |         | 7.3   | 0      | 8.8   | _               | -    |
| HCM Lane LOS                |         | Α     | Α      | Α     | -               | -    |
| HCM 95th %tile Q(veh)       |         | 0     | -      | 0.1   | -               | -    |
|                             |         |       |        |       |                 |      |

| Intersection           |        |      |      |        |        |        |        |      |          |        |      |      |
|------------------------|--------|------|------|--------|--------|--------|--------|------|----------|--------|------|------|
| Int Delay, s/veh       | 1.5    |      |      |        |        |        |        |      |          |        |      |      |
| Movement               | EBL    | EBT  | EBR  | WBL    | WBT    | WBR    | NBL    | NBT  | NBR      | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4    |      |        | 4      |        |        | 4    |          |        | 4    |      |
| Traffic Vol, veh/h     | 0      | 0    | 0    | 2      | 3      | 4      | 0      | 26   | 6        | 3      | 25   | 1    |
| Future Vol, veh/h      | 0      | 0    | 0    | 2      | 3      | 4      | 0      | 26   | 6        | 3      | 25   | 1    |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 1      | 0      | 0      | 0      | 0    | 2        | 2      | 0    | 0    |
| Sign Control           | Stop   | Stop | Stop | Stop   | Stop   | Stop   | Free   | Free | Free     | Free   | Free | Free |
| RT Channelized         | -      | -    | None | -      | -      | None   | -      | -    | None     | -      | -    | None |
| Storage Length         | -      | -    | -    | -      | -      | -      | -      | -    | -        | -      | -    | -    |
| Veh in Median Storage, | # -    | 0    | -    | -      | 0      | -      | -      | 0    | -        | -      | 0    | -    |
| Grade, %               | -      | 0    | -    | -      | 0      | -      | -      | 0    | -        | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90   | 90   | 90     | 90     | 90     | 90     | 90   | 90       | 90     | 90   | 90   |
| Heavy Vehicles, %      | 0      | 0    | 0    | 0      | 0      | 0      | 0      | 0    | 0        | 0      | 0    | 0    |
| Mvmt Flow              | 0      | 0    | 0    | 2      | 3      | 4      | 0      | 29   | 7        | 3      | 28   | 1    |
|                        |        |      |      |        |        |        |        |      |          |        |      |      |
| Major/Minor M          | linor2 |      |      | Minor1 |        |        | Major1 |      | N        | Major2 |      |      |
| Conflicting Flow All   | 71     | 73   | 30   | 71     | 70     | 35     | 29     | 0    | 0        | 38     | 0    | 0    |
| Stage 1                | 35     | 35   | -    | 35     | 35     | -      |        | -    | -        | -      | _    | -    |
| Stage 2                | 36     | 38   | -    | 36     | 35     | -      | _      | _    | _        | _      | -    | _    |
| Critical Hdwy          | 7.1    | 6.5  | 6.2  | 7.1    | 6.5    | 6.2    | 4.1    | _    | -        | 4.1    | _    | -    |
| Critical Hdwy Stg 1    | 6.1    | 5.5  | -    | 6.1    | 5.5    | -      | -      | -    | -        | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.1    | 5.5  | -    | 6.1    | 5.5    | -      | -      | -    | -        | -      | -    | -    |
| Follow-up Hdwy         | 3.5    | 4    | 3.3  | 3.5    | 4      | 3.3    | 2.2    | -    | -        | 2.2    | -    | -    |
| Pot Cap-1 Maneuver     | 925    | 821  | 1050 | 925    | 824    | 1044   | 1597   | -    | -        | 1585   | -    | -    |
| Stage 1                | 986    | 870  | -    | 986    | 870    | -      | -      | -    | -        | -      | -    | -    |
| Stage 2                | 985    | 867  | -    | 985    | 870    | -      | -      | -    | -        | -      | -    | -    |
| Platoon blocked, %     |        |      |      |        |        |        |        | -    | -        |        | -    | -    |
| Mov Cap-1 Maneuver     | 917    | 818  | 1049 | 921    | 821    | 1042   | 1597   | -    | -        | 1582   | -    | _    |
| Mov Cap-2 Maneuver     | 917    | 818  | -    | 921    | 821    | -      | -      | -    | -        | -      | -    | -    |
| Stage 1                | 986    | 868  | -    | 984    | 868    | -      | -      | -    | -        | -      | -    | _    |
| Stage 2                | 977    | 865  | -    | 982    | 868    | -      | -      | -    | -        | -      | -    | -    |
|                        |        |      |      |        |        |        |        |      |          |        |      |      |
| Approach               | EB     |      |      | WB     |        |        | NB     |      |          | SB     |      |      |
| HCM Control Delay, s   | 0      |      |      | 8.9    |        |        | 0      |      |          | 0.8    |      |      |
| HCM LOS                | A      |      |      | A      |        |        |        |      |          | 3.0    |      |      |
|                        | ,,     |      |      | , ,    |        |        |        |      |          |        |      |      |
| Minor Lane/Major Mvmt  |        | NBL  | NBT  | NBR    | EBLn1V | VBI n1 | SBL    | SBT  | SBR      |        |      |      |
| Capacity (veh/h)       |        | 1597 | -    |        | -      | 931    | 1582   | -    |          |        |      |      |
| HCM Lane V/C Ratio     |        | -    | _    | _      |        | 0.011  |        | _    | _        |        |      |      |
| HCM Control Delay (s)  |        | 0    | _    | _      | 0      | 8.9    | 7.3    | 0    | _        |        |      |      |
| HCM Lane LOS           |        | A    | _    | _      | A      | Α      | Α.5    | A    | <u>-</u> |        |      |      |
| HCM 95th %tile Q(veh)  |        | 0    | _    | _      | -      | 0      | 0      | -    | _        |        |      |      |
|                        |        |      |      |        |        |        |        |      |          |        |      |      |

|                                    | ۶           | <b>→</b> | •          | •           | <b>←</b> | •           | 1           | <b>†</b>   | <i>&gt;</i> | <b>/</b>    | <b>+</b>   | ✓                                       |
|------------------------------------|-------------|----------|------------|-------------|----------|-------------|-------------|------------|-------------|-------------|------------|-----------------------------------------|
| Movement                           | EBL         | EBT      | EBR        | WBL         | WBT      | WBR         | NBL         | NBT        | NBR         | SBL         | SBT        | SBR                                     |
| Lane Configurations                |             | 4        |            |             | 4        |             | ሻ           | <b>∱</b> ኈ |             |             | <b>∱</b> ኈ |                                         |
| Traffic Volume (veh/h)             | 16          | 28       | 28         | 16          | 32       | 20          | 19          | 717        | 20          | 10          | 723        | 9                                       |
| Future Volume (veh/h)              | 16          | 28       | 28         | 16          | 32       | 20          | 19          | 717        | 20          | 10          | 723        | 9                                       |
| Initial Q (Qb), veh                | 0           | 0        | 0          | 0           | 0        | 0           | 0           | 0          | 0           | 0           | 0          | 0                                       |
| Ped-Bike Adj(A_pbT)                | 0.99        |          | 0.97       | 0.98        |          | 0.99        | 1.00        |            | 0.97        | 1.00        |            | 0.99                                    |
| Parking Bus, Adj                   | 1.00        | 1.00     | 1.00       | 1.00        | 1.00     | 1.00        | 1.00        | 1.00       | 1.00        | 1.00        | 1.00       | 1.00                                    |
| Work Zone On Approach              | 4070        | No       | 4070       | 4070        | No       | 4070        | 4070        | No         | 4070        | 4070        | No         | 4070                                    |
| Adj Sat Flow, veh/h/ln             | 1870        | 1870     | 1870       | 1870        | 1870     | 1870        | 1870        | 1870       | 1870        | 1870        | 1870       | 1870                                    |
| Adj Flow Rate, veh/h               | 18          | 31       | 3          | 18          | 36       | 2           | 21          | 797        | 20          | 11          | 803        | 9                                       |
| Peak Hour Factor                   | 0.90        | 0.90     | 0.90       | 0.90        | 0.90     | 0.90        | 0.90        | 0.90       | 0.90        | 0.90        | 0.90       | 0.90                                    |
| Percent Heavy Veh, %               | 2           | 2        | 2          | 2           | 2        | 2           | 2           | 2          | 2           | 2           | 2          | 2                                       |
| Cap, veh/h                         | 224         | 153      | 13         | 218         | 164      | 8           | 537         | 1969       | 49          | 535         | 2003       | 22                                      |
| Arrive On Green                    | 0.13<br>426 | 0.13     | 0.13<br>97 | 0.13        | 0.13     | 0.13        | 0.56        | 0.56       | 0.56<br>89  | 0.56        | 0.56       | 0.56                                    |
| Sat Flow, veh/h                    |             | 1165     |            | 400         | 1243     | 61          | 670         | 3539       |             | 667         | 3599       | 40                                      |
| Grp Volume(v), veh/h               | 52          | 0        | 0          | 56          | 0        | 0           | 21          | 400        | 417         | 11          | 396        | 416                                     |
| Grp Sat Flow(s), veh/h/ln          | 1688        | 0        | 0          | 1704        | 0        | 0           | 670         | 1777       | 1851        | 667         | 1777       | 1863                                    |
| Q Serve(g_s), s                    | 0.0         | 0.0      | 0.0        | 0.0         | 0.0      | 0.0         | 0.5         | 3.7        | 3.7         | 0.3         | 3.7        | 3.7                                     |
| Cycle Q Clear(g_c), s Prop In Lane | 0.7<br>0.35 | 0.0      | 0.0        | 0.8<br>0.32 | 0.0      | 0.0<br>0.04 | 4.2<br>1.00 | 3.7        | 3.7<br>0.05 | 4.0<br>1.00 | 3.7        | 3.7<br>0.02                             |
| Lane Grp Cap(c), veh/h             | 390         | 0        | 0.06       | 389         | 0        | 0.04        | 537         | 989        | 1030        | 535         | 989        | 1036                                    |
| V/C Ratio(X)                       | 0.13        | 0.00     | 0.00       | 0.14        | 0.00     | 0.00        | 0.04        | 0.40       | 0.40        | 0.02        | 0.40       | 0.40                                    |
| Avail Cap(c_a), veh/h              | 1592        | 0.00     | 0.00       | 1605        | 0.00     | 0.00        | 1327        | 3081       | 3209        | 1321        | 3081       | 3230                                    |
| HCM Platoon Ratio                  | 1.00        | 1.00     | 1.00       | 1.00        | 1.00     | 1.00        | 1.00        | 1.00       | 1.00        | 1.00        | 1.00       | 1.00                                    |
| Upstream Filter(I)                 | 1.00        | 0.00     | 0.00       | 1.00        | 0.00     | 0.00        | 1.00        | 1.00       | 1.00        | 1.00        | 1.00       | 1.00                                    |
| Uniform Delay (d), s/veh           | 11.2        | 0.0      | 0.0        | 11.2        | 0.0      | 0.0         | 4.9         | 3.7        | 3.7         | 4.8         | 3.7        | 3.7                                     |
| Incr Delay (d2), s/veh             | 0.1         | 0.0      | 0.0        | 0.1         | 0.0      | 0.0         | 0.0         | 0.4        | 0.4         | 0.0         | 0.4        | 0.4                                     |
| Initial Q Delay(d3),s/veh          | 0.0         | 0.0      | 0.0        | 0.0         | 0.0      | 0.0         | 0.0         | 0.0        | 0.0         | 0.0         | 0.0        | 0.0                                     |
| %ile BackOfQ(50%),veh/ln           | 0.2         | 0.0      | 0.0        | 0.3         | 0.0      | 0.0         | 0.0         | 0.4        | 0.5         | 0.0         | 0.4        | 0.4                                     |
| Unsig. Movement Delay, s/veh       |             | 0.0      | 0.0        | 0.0         | 0.0      | 0.0         | 0.0         | •          | 0.0         | 0.0         | •          | • • • • • • • • • • • • • • • • • • • • |
| LnGrp Delay(d),s/veh               | 11.2        | 0.0      | 0.0        | 11.3        | 0.0      | 0.0         | 4.9         | 4.0        | 4.0         | 4.8         | 4.0        | 4.0                                     |
| LnGrp LOS                          | В           | Α        | A          | В           | A        | Α           | A           | A          | A           | A           | A          | Α                                       |
| Approach Vol, veh/h                |             | 52       |            |             | 56       |             |             | 838        |             |             | 823        |                                         |
| Approach Delay, s/veh              |             | 11.2     |            |             | 11.3     |             |             | 4.1        |             |             | 4.0        |                                         |
| Approach LOS                       |             | В        |            |             | В        |             |             | А          |             |             | A          |                                         |
| Timer - Assigned Phs               |             | 2        |            | 4           |          | 6           |             | 8          |             |             |            |                                         |
| Phs Duration (G+Y+Rc), s           |             | 21.0     |            | 7.8         |          | 21.0        |             | 7.8        |             |             |            |                                         |
| Change Period (Y+Rc), s            |             | 5.0      |            | 4.0         |          | 5.0         |             | 4.0        |             |             |            |                                         |
| Max Green Setting (Gmax), s        |             | 50.0     |            | 25.0        |          | 50.0        |             | 25.0       |             |             |            |                                         |
| Max Q Clear Time (g_c+l1), s       |             | 6.2      |            | 2.7         |          | 6.0         |             | 2.8        |             |             |            |                                         |
| Green Ext Time (p_c), s            |             | 9.6      |            | 0.1         |          | 9.3         |             | 0.1        |             |             |            |                                         |
| Intersection Summary               |             |          |            |             |          |             |             |            |             |             |            |                                         |
| HCM 6th Ctrl Delay                 |             |          | 4.5        |             |          |             |             |            |             |             |            |                                         |
| HCM 6th LOS                        |             |          | Α          |             |          |             |             |            |             |             |            |                                         |

| Intersection                                |         |  |  |  |  |
|---------------------------------------------|---------|--|--|--|--|
| Intersection Delay, s/v<br>Intersection LOS | /eh 7.2 |  |  |  |  |
| Intersection LOS                            | Α       |  |  |  |  |
|                                             |         |  |  |  |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 2              | 41   | 2    | 5    | 34   | 7    | 2    | 13   | 4    | 3    | 14   | 8    |  |
| Future Vol, veh/h       | 2              | 41   | 2    | 5    | 34   | 7    | 2    | 13   | 4    | 3    | 14   | 8    |  |
| Peak Hour Factor        | 0.90           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow               | 2              | 46   | 2    | 6    | 38   | 8    | 2    | 14   | 4    | 3    | 16   | 9    |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | ft SB          |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | gh <b>t</b> NB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 7.3            |      |      | 7.2  |      |      | 7.1  |      |      | 7.1  |      |      |  |
| HCM LOS                 | Α              |      |      | Α    |      |      | Α    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | NBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 11%   | 4%     | 11%   | 12%   |
| Vol Thru, %            | 68%   | 91%    | 74%   | 56%   |
| Vol Right, %           | 21%   | 4%     | 15%   | 32%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 19    | 45     | 46    | 25    |
| LT Vol                 | 2     | 2      | 5     | 3     |
| Through Vol            | 13    | 41     | 34    | 14    |
| RT Vol                 | 4     | 2      | 7     | 8     |
| Lane Flow Rate         | 21    | 50     | 51    | 28    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.023 | 0.056  | 0.056 | 0.03  |
| Departure Headway (Hd) | 3.989 | 4.006  | 3.954 | 3.921 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 892   | 893    | 905   | 908   |
| Service Time           | 2.038 | 2.034  | 1.982 | 1.969 |
| HCM Lane V/C Ratio     | 0.024 | 0.056  | 0.056 | 0.031 |
| HCM Control Delay      | 7.1   | 7.3    | 7.2   | 7.1   |
| HCM Lane LOS           | Α     | Α      | Α     | Α     |
| HCM 95th-tile Q        | 0.1   | 0.2    | 0.2   | 0.1   |

| Intersection             |                        |      |        |      |        |       |
|--------------------------|------------------------|------|--------|------|--------|-------|
| Int Delay, s/veh         | 3                      |      |        |      |        |       |
| Movement                 | EBL                    | EBT  | WBT    | WBR  | SBL    | SBR   |
| Lane Configurations      | LDL                    | 4    | 1>     | WDIX | ¥      | ODIT  |
| Traffic Vol, veh/h       | 0                      | 0    | 1      | 34   | 18     | 0     |
| Future Vol, veh/h        | 0                      | 0    | 1      | 34   | 18     | 0     |
| Conflicting Peds, #/hr   | 0                      | 0    | 0      | 0    | 0      | 0     |
| Sign Control             | Free                   | Free | Free   | Free | Stop   | Stop  |
| RT Channelized           | -                      | None | -      | None | -      | None  |
| Storage Length           | _                      | -    | _      | -    | 0      | -     |
| Veh in Median Storage    | e.# -                  | 0    | 0      | _    | 0      | _     |
| Grade, %                 | Σ, <del>π</del> -<br>- | 0    | 0      | _    | 0      | _     |
| Peak Hour Factor         | 90                     | 90   | 90     | 90   | 90     | 90    |
|                          |                        |      |        |      |        |       |
| Heavy Vehicles, %        | 2                      | 2    | 2      | 2    | 2      | 2     |
| Mvmt Flow                | 0                      | 0    | 1      | 38   | 20     | 0     |
|                          |                        |      |        |      |        |       |
| Major/Minor              | Major1                 | N    | Major2 | ľ    | Minor2 |       |
| Conflicting Flow All     | 39                     | 0    |        | 0    | 20     | 20    |
| Stage 1                  | -                      | _    | _      | _    | 20     |       |
| Stage 2                  | _                      | _    | _      | _    | 0      | _     |
| Critical Hdwy            | 4.12                   | _    | _      | _    | 6.42   | 6.22  |
| Critical Hdwy Stg 1      |                        | _    | _      | _    | 5.42   | -     |
| Critical Hdwy Stg 2      | _                      |      | _      | _    | 5.42   | _     |
|                          | 2.218                  | -    |        |      | 3.518  |       |
| Follow-up Hdwy           |                        | -    | -      |      |        |       |
| Pot Cap-1 Maneuver       | 1571                   | -    | -      | -    | 997    | 1058  |
| Stage 1                  | -                      | -    | -      | -    | 1003   | -     |
| Stage 2                  | -                      | -    | -      | -    | -      | -     |
| Platoon blocked, %       |                        | -    | -      | -    |        |       |
| Mov Cap-1 Maneuver       | 1571                   | -    | -      | -    | 997    | 1058  |
| Mov Cap-2 Maneuver       | -                      | -    | -      | -    | 997    | -     |
| Stage 1                  | -                      | -    | -      | -    | 1003   | -     |
| Stage 2                  | -                      | -    | -      | -    | -      | -     |
|                          |                        |      |        |      |        |       |
| Approach                 | EB                     |      | WB     |      | SB     |       |
|                          |                        |      | 0      |      | 8.7    |       |
| HCM Control Delay, s     | 0                      |      | U      |      |        |       |
| HCM LOS                  |                        |      |        |      | Α      |       |
|                          |                        |      |        |      |        |       |
| Minor Lane/Major Mvn     | nt                     | EBL  | EBT    | WBT  | WBR    | SBLn1 |
| Capacity (veh/h)         |                        | 1571 | _      | _    | _      | 997   |
| HCM Lane V/C Ratio       |                        | -    | _      | _    | _      | 0.02  |
| HCM Control Delay (s)    | ١                      | 0    | _      | _    | _      | 8.7   |
| HCM Lane LOS             |                        | A    | _      | _    | _      | A     |
| HCM 95th %tile Q(veh     | ١                      | 0    | _      | _    | _      | 0.1   |
| HOW JOHN JOHN GUILD WALE | 1                      | U    |        |      | _      | 0.1   |

| Intersection           |        |          |      |        |        |       |        |            |          |         |             |      |
|------------------------|--------|----------|------|--------|--------|-------|--------|------------|----------|---------|-------------|------|
| Int Delay, s/veh       | 0.5    |          |      |        |        |       |        |            |          |         |             |      |
| Movement               | EBL    | EBT      | EBR  | WBL    | WBT    | WBR   | NBL    | NBT        | NBR      | SBL     | SBT         | SBR  |
| Lane Configurations    |        | 4        |      |        | 4      |       | ች      | <b>†</b> } |          | *       | <b>†</b> 1> |      |
| Traffic Vol, veh/h     | 5      | 0        | 17   | 1      | 0      | 7     | 26     | 763        | 0        | 5       | 768         | 6    |
| Future Vol, veh/h      | 5      | 0        | 17   | 1      | 0      | 7     | 26     | 763        | 0        | 5       | 768         | 6    |
| Conflicting Peds, #/hr | 0      | 0        | 0    | 1      | 0      | 1     | 8      | 0          | 1        | 8       | 0           | 1    |
| Sign Control           | Stop   | Stop     | Stop | Stop   | Stop   | Stop  | Free   | Free       | Free     | Free    | Free        | Free |
| RT Channelized         | -      | <u>-</u> | None | -      | -      | None  | -      | -          | None     | -       | -           | None |
| Storage Length         | -      | -        | -    | -      | -      | -     | 70     | -          | -        | 75      | -           | -    |
| Veh in Median Storage  | , # -  | 0        | -    | -      | 0      | -     | -      | 0          | -        | -       | 0           | -    |
| Grade, %               | -      | 0        | -    | -      | 0      | -     | -      | 0          | -        | -       | 0           | -    |
| Peak Hour Factor       | 90     | 90       | 90   | 90     | 90     | 90    | 90     | 90         | 90       | 90      | 90          | 90   |
| Heavy Vehicles, %      | 2      | 2        | 2    | 2      | 2      | 2     | 2      | 2          | 2        | 2       | 2           | 2    |
| Mvmt Flow              | 6      | 0        | 19   | 1      | 0      | 8     | 29     | 848        | 0        | 6       | 853         | 7    |
|                        |        |          |      |        |        |       |        |            |          |         |             |      |
| Major/Minor N          | Minor2 |          |      | Minor1 |        | l     | Major1 |            | N        | //ajor2 |             |      |
| Conflicting Flow All   | 1360   | 1791     | 439  | 1354   | 1794   | 433   | 868    | 0          | 0        | 856     | 0           | 0    |
| Stage 1                | 877    | 877      | -    | 914    | 914    | -     | -      | -          | -        | -       | -           | -    |
| Stage 2                | 483    | 914      | -    | 440    | 880    | -     | -      | -          | -        | -       | -           | -    |
| Critical Hdwy          | 7.54   | 6.54     | 6.94 | 7.54   | 6.54   | 6.94  | 4.14   | -          | -        | 4.14    | -           | -    |
| Critical Hdwy Stg 1    | 6.54   | 5.54     | -    | 6.54   | 5.54   | -     | -      | -          | -        | -       | -           | -    |
| Critical Hdwy Stg 2    | 6.54   | 5.54     | -    | 6.54   | 5.54   | -     | -      | -          | -        | -       | -           | -    |
| Follow-up Hdwy         | 3.52   | 4.02     | 3.32 | 3.52   | 4.02   | 3.32  | 2.22   | -          | -        | 2.22    | -           | -    |
| Pot Cap-1 Maneuver     | 107    | 80       | 566  | 108    | 80     | 571   | 772    | -          | -        | 780     | -           | -    |
| Stage 1                | 310    | 364      | -    | 294    | 350    | -     | -      | -          | -        | -       | -           | -    |
| Stage 2                | 534    | 350      | -    | 566    | 363    | -     | -      | -          | -        | -       | -           | -    |
| Platoon blocked, %     |        |          |      |        |        |       |        | -          | -        |         | -           | -    |
| Mov Cap-1 Maneuver     | 101    | 75       | 561  | 100    | 75     | 566   | 766    | -          | -        | 774     | -           | -    |
| Mov Cap-2 Maneuver     | 101    | 75       | -    | 100    | 75     | -     | -      | -          | -        | -       | -           | -    |
| Stage 1                | 296    | 358      | -    | 281    | 334    | -     | -      | -          | -        | -       | -           | -    |
| Stage 2                | 506    | 334      | -    | 542    | 357    | -     | -      | -          | -        | -       | -           | -    |
|                        |        |          |      |        |        |       |        |            |          |         |             |      |
| Approach               | EB     |          |      | WB     |        |       | NB     |            |          | SB      |             |      |
| HCM Control Delay, s   | 19.3   |          |      | 15.3   |        |       | 0.3    |            |          | 0.1     |             |      |
| HCM LOS                | С      |          |      | С      |        |       |        |            |          |         |             |      |
|                        |        |          |      |        |        |       |        |            |          |         |             |      |
| Minor Lane/Major Mvm   | t      | NBL      | NBT  | NBR I  | EBLn1V | VBLn1 | SBL    | SBT        | SBR      |         |             |      |
| Capacity (veh/h)       |        | 766      | -    | _      |        | 358   | 774    | _          | _        |         |             |      |
| HCM Lane V/C Ratio     |        | 0.038    | _    | _      |        | 0.025 |        | _          | _        |         |             |      |
| HCM Control Delay (s)  |        | 9.9      | -    | -      | 400    | 15.3  | 9.7    | -          | -        |         |             |      |
| HCM Lane LOS           |        | A        | _    | _      | С      | С     | A      | _          | <u>-</u> |         |             |      |
| HCM 95th %tile Q(veh)  |        | 0.1      | -    | -      | 0.3    | 0.1   | 0      | -          | -        |         |             |      |
|                        |        |          |      |        |        |       |        |            |          |         |             |      |

| Intersection           |        |          |       |          |          |          |          |       |               |        |      |      |
|------------------------|--------|----------|-------|----------|----------|----------|----------|-------|---------------|--------|------|------|
| Int Delay, s/veh       | 4.2    |          |       |          |          |          |          |       |               |        |      |      |
| Movement               | EBL    | EBT      | EBR   | WBL      | WBT      | WBR      | NBL      | NBT   | NBR           | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4        |       |          | 4        |          |          | 4     |               |        | 4    |      |
| Traffic Vol, veh/h     | 2      | 5        | 0     | 4        | 9        | 3        | 1        | 13    | 3             | 2      | 12   | 1    |
| Future Vol, veh/h      | 2      | 5        | 0     | 4        | 9        | 3        | 1        | 13    | 3             | 2      | 12   | 1    |
| Conflicting Peds, #/hr | 1      | 0        | 0     | 0        | 0        | 1        | 7        | 0     | 3             | 7      | 0    | 3    |
| Sign Control           | Stop   | Stop     | Stop  | Stop     | Stop     | Stop     | Free     | Free  | Free          | Free   | Free | Free |
| RT Channelized         | -      | -        | None  | -        | -        | None     | -        | -     | None          | -      | -    | None |
| Storage Length         | -      | -        | -     | -        | -        | -        | -        | -     | -             | -      | -    | -    |
| Veh in Median Storage  | ,# -   | 0        | -     | -        | 0        | -        | -        | 0     | -             | -      | 0    | -    |
| Grade, %               | -      | 0        | -     | -        | 0        | -        | -        | 0     | -             | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90       | 90    | 90       | 90       | 90       | 90       | 90    | 90            | 90     | 90   | 90   |
| Heavy Vehicles, %      | 4      | 4        | 4     | 4        | 4        | 4        | 4        | 4     | 4             | 4      | 4    | 4    |
| Mvmt Flow              | 2      | 6        | 0     | 4        | 10       | 3        | 1        | 14    | 3             | 2      | 13   | 1    |
|                        |        |          |       |          |          |          |          |       |               |        |      |      |
| Major/Minor N          | Minor2 |          |       | Minor1   |          |          | Major1   |       | N             | Major2 |      |      |
| Conflicting Flow All   | 50     | 51       | 21    | 46       | 50       | 24       | 21       | 0     | 0             | 24     | 0    | 0    |
| Stage 1                | 25     | 25       | -     | 25       | 25       | -        | -        | -     | -             | -      | -    | -    |
| Stage 2                | 25     | 26       | -     | 21       | 25       | -        | -        | -     | -             | -      | -    | -    |
| Critical Hdwy          | 7.14   | 6.54     | 6.24  | 7.14     | 6.54     | 6.24     | 4.14     | -     | -             | 4.14   | -    | -    |
| Critical Hdwy Stg 1    | 6.14   | 5.54     | -     | 6.14     | 5.54     | -        | -        | -     | -             | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.14   | 5.54     | -     | 6.14     | 5.54     | -        | -        | -     | -             | -      | -    | -    |
| Follow-up Hdwy         | 3.536  | 4.036    | 3.336 | 3.536    | 4.036    | 3.336    | 2.236    | -     | -             | 2.236  | -    | -    |
| Pot Cap-1 Maneuver     | 945    | 837      | 1051  | 950      | 838      | 1047     | 1582     | -     | -             | 1578   | -    | -    |
| Stage 1                | 988    | 870      | -     | 988      | 870      | -        | -        | -     | -             | -      | -    | -    |
| Stage 2                | 988    | 870      | -     | 992      | 870      | -        | -        | -     | -             | -      | -    | -    |
| Platoon blocked, %     |        |          |       |          |          |          |          | -     | -             |        | -    | -    |
| Mov Cap-1 Maneuver     | 925    | 824      | 1044  | 938      | 825      | 1039     | 1571     | -     | -             | 1567   | -    | -    |
| Mov Cap-2 Maneuver     | 925    | 824      | -     | 938      | 825      | -        | -        | -     | -             | -      | -    | -    |
| Stage 1                | 980    | 863      | -     | 980      | 863      | -        | -        | -     | -             | -      | -    | -    |
| Stage 2                | 972    | 863      | -     | 985      | 863      | -        | -        | -     | -             | -      | -    | -    |
|                        |        |          |       |          |          |          |          |       |               |        |      |      |
| Approach               | EB     |          |       | WB       |          |          | NB       |       |               | SB     |      |      |
| HCM Control Delay, s   | 9.3    |          |       | 9.1      |          |          | 0.4      |       |               | 1      |      |      |
| HCM LOS                | Α      |          |       | Α        |          |          |          |       |               |        |      |      |
|                        |        |          |       |          |          |          |          |       |               |        |      |      |
| Minor Lane/Major Mvm   | ıt     | NBL      | NBT   | NRP      | EBLn1V   | VRI n1   | SBL      | SBT   | SBR           |        |      |      |
| Capacity (veh/h)       |        | 1571     | -     | NDIN -   | 851      | 886      | 1567     | - 301 | אמט           |        |      |      |
| HCM Lane V/C Ratio     |        | 0.001    | -     |          | 0.009    |          | 0.001    | -     | -             |        |      |      |
| HCM Control Delay (s)  |        | 7.3      | 0     | -        | 9.3      | 9.1      | 7.3      | 0     |               |        |      |      |
| HCM Lane LOS           |        | 7.3<br>A | A     | <u>-</u> | 9.3<br>A | 9.1<br>A | 7.3<br>A | A     | -             |        |      |      |
| HCM 95th %tile Q(veh)  |        | 0        | -     | -        | 0        | 0.1      | 0        | -     | <u>-</u><br>- |        |      |      |
| TOW Jour Julie Q(Veri) |        |          |       |          | U        | 0.1      | U        |       |               |        |      |      |

| Intersection           |         |       |              |          |      |       |        |       |       |        |       |       |
|------------------------|---------|-------|--------------|----------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.5     |       |              |          |      |       |        |       |       |        |       |       |
| Movement               | EBL     | EBT   | EBR          | WBL      | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |         | 4     |              |          | 4    |       |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 0       | 0     | 0            | 2        | 5    | 1     | 0      | 12    | 3     | 3      | 15    | 0     |
| Future Vol, veh/h      | 0       | 0     | 0            | 2        | 5    | 1     | 0      | 12    | 3     | 3      | 15    | 0     |
| Conflicting Peds, #/hr | 0       | 0     | 1            | 1        | 0    | 0     | 4      | 0     | 2     | 4      | 0     | 2     |
| Sign Control           | Free    | Free  | Free         | Free     | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -       | -     | None         | -        | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | -       | -     | -            | -        | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -    | 0     | -            | -        | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -       | 0     | -            | -        | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90      | 90    | 90           | 90       | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 2       | 2     | 2            | 2        | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 0       | 0     | 0            | 2        | 6    | 1     | 0      | 13    | 3     | 3      | 17    | 0     |
|                        |         |       |              |          |      |       |        |       |       |        |       |       |
| Major/Minor N          | //ajor1 |       | ı            | Major2   |      | _     | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 7       | 0     | 0            | 2        | 0    | 0     | 25     | 13    | 6     | 24     | 13    | 11    |
| Stage 1                | -       | -     | <u> </u>     | -        | -    | -     | 23     | 2     | -     | 11     | 11    | - 11  |
| Stage 2                | _       | -     | _            | _        | _    | _     | 23     | 11    | _     | 13     | 2     | _     |
| Critical Hdwy          | 4.12    |       | <del>-</del> | 4.12     | -    |       | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | 7.12    | -     | _            | 7.12     | _    | -     | 6.12   | 5.52  | 0.22  | 6.12   | 5.52  | 0.22  |
| Critical Hdwy Stg 2    | -       | -     | <u>-</u>     | <u>-</u> | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218   | _     | _            | 2.218    | _    | -     | 3.518  |       | 3.318 |        | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1614    | -     | <u>-</u>     | 1620     | _    | -     | 986    | 881   | 1077  | 987    | 881   | 1070  |
| Stage 1                | 1014    | -     | _            | 1020     | -    | -     | 1021   | 894   | 1077  | 1010   | 886   | 1070  |
| Stage 2                | -       | -     | <u>-</u>     | <u>-</u> | -    | -     | 995    | 886   | -     | 1010   | 894   | -     |
| Platoon blocked, %     | _       | _     | _            | _        | _    | _     | 333    | 000   | _     | 1007   | 034   |       |
| Mov Cap-1 Maneuver     | 1614    | _     | _            | 1618     | _    | -     | 966    | 879   | 1072  | 968    | 879   | 1066  |
| Mov Cap-1 Maneuver     | -       | _     | <u> </u>     | -        | _    | _     | 966    | 879   | 1072  | 968    | 879   | -     |
| Stage 1                |         | _     | _            |          |      | -     | 1020   | 893   | -     | 1010   | 885   | _     |
| Stage 2                | _       | _     | _            | _        | _    | _     | 972    | 885   | _     | 985    | 893   | _     |
| Olugo Z                |         |       |              |          |      |       | 512    | 505   |       | 500    | 555   |       |
|                        |         |       |              |          |      |       |        |       |       |        |       |       |
| Approach               | EB      |       |              | WB       |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0       |       |              | 1.8      |      |       | 9      |       |       | 9.1    |       |       |
| HCM LOS                |         |       |              |          |      |       | Α      |       |       | Α      |       |       |
|                        |         |       |              |          |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | t N     | NBLn1 | EBL          | EBT      | EBR  | WBL   | WBT    | WBR S | SBLn1 |        |       |       |
| Capacity (veh/h)       |         | 912   | 1614         | -        | -    |       | -      | -     | 893   |        |       |       |
| HCM Lane V/C Ratio     |         | 0.018 | _            | _        |      | 0.001 | _      |       | 0.022 |        |       |       |
| HCM Control Delay (s)  |         | 9     | 0            | -        | _    | 7.2   | 0      | _     | 9.1   |        |       |       |
| HCM Lane LOS           |         | A     | A            | _        | _    | Α     | A      | _     | A     |        |       |       |
| HCM 95th %tile Q(veh)  |         | 0.1   | 0            | -        | _    | 0     | -      | -     | 0.1   |        |       |       |
|                        |         |       |              |          |      |       |        |       |       |        |       |       |

|                              | •    | •     | <b>†</b> | <i>&gt;</i> | <b>\</b> | ļ        |      |  |
|------------------------------|------|-------|----------|-------------|----------|----------|------|--|
| Movement                     | WBL  | WBR   | NBT      | NBR         | SBL      | SBT      |      |  |
| Lane Configurations          | ሻሻ   | 7     | <b>^</b> | 7           | ሻ        | <b>^</b> |      |  |
| Traffic Volume (veh/h)       | 123  | 317   | 471      | 141         | 346      | 442      |      |  |
| Future Volume (veh/h)        | 123  | 317   | 471      | 141         | 346      | 442      |      |  |
| Initial Q (Qb), veh          | 0    | 0     | 0        | 0           | 0        | 0        |      |  |
| Ped-Bike Adj(A pbT)          | 1.00 | 1.00  |          | 0.97        | 1.00     |          |      |  |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     |      |  |
| Work Zone On Approach        | No   |       | No       |             |          | No       |      |  |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870  | 1870     | 1870        | 1870     | 1870     |      |  |
| Adj Flow Rate, veh/h         | 137  | 65    | 523      | 157         | 384      | 491      |      |  |
| Peak Hour Factor             | 0.90 | 0.90  | 0.90     | 0.90        | 0.90     | 0.90     |      |  |
| Percent Heavy Veh, %         | 2    | 2     | 2        | 2           | 2        | 2        |      |  |
| Cap, veh/h                   | 457  | 624   | 1047     | 455         | 465      | 2333     |      |  |
| Arrive On Green              | 0.13 | 0.13  | 0.29     | 0.29        | 0.26     | 0.66     |      |  |
| Sat Flow, veh/h              | 3456 | 1585  | 3647     | 1543        | 1781     | 3647     |      |  |
| Grp Volume(v), veh/h         | 137  | 65    | 523      | 157         | 384      | 491      |      |  |
| Grp Sat Flow(s), veh/h/ln    | 1728 | 1585  | 1777     | 1543        | 1781     | 1777     |      |  |
| Q Serve(g_s), s              | 1.8  | 1.3   | 6.0      | 4.0         | 10.1     | 2.7      |      |  |
| Cycle Q Clear(g_c), s        | 1.8  | 1.3   | 6.0      | 4.0         | 10.1     | 2.7      |      |  |
| Prop In Lane                 | 1.00 | 1.00  | 0.0      | 1.00        | 1.00     | 2.1      |      |  |
| Lane Grp Cap(c), veh/h       | 457  | 624   | 1047     | 455         | 465      | 2333     |      |  |
|                              | 0.30 | 0.10  | 0.50     | 0.35        | 0.83     | 0.21     |      |  |
| V/C Ratio(X)                 |      |       | 3219     |             |          |          |      |  |
| Avail Cap(c_a), veh/h        | 1391 | 1052  |          | 1398        | 896      | 2503     |      |  |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     |      |  |
| Upstream Filter(I)           | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     |      |  |
| Uniform Delay (d), s/veh     | 19.5 | 9.5   | 14.5     | 13.8        | 17.3     | 3.4      |      |  |
| ncr Delay (d2), s/veh        | 0.1  | 0.0   | 0.5      | 0.6         | 3.8      | 0.0      |      |  |
| nitial Q Delay(d3),s/veh     | 0.0  | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      |      |  |
| %ile BackOfQ(50%),veh/ln     | 0.7  | 0.4   | 2.0      | 1.3         | 3.9      | 0.4      |      |  |
| Unsig. Movement Delay, s/veh |      |       | 45.0     |             | 0.1.0    |          |      |  |
| _nGrp Delay(d),s/veh         | 19.6 | 9.6   | 15.0     | 14.4        | 21.0     | 3.4      |      |  |
| _nGrp LOS                    | В    | A     | В        | В           | С        | A        |      |  |
| Approach Vol, veh/h          | 202  |       | 680      |             |          | 875      |      |  |
| Approach Delay, s/veh        | 16.4 |       | 14.9     |             |          | 11.2     |      |  |
| Approach LOS                 | В    |       | В        |             |          | В        |      |  |
| Timer - Assigned Phs         |      | 2     |          |             | 5        | 6        | 8    |  |
| Phs Duration (G+Y+Rc), s     |      | 38.1  |          |             | 18.0     | 20.1     | 11.6 |  |
| Change Period (Y+Rc), s      |      | * 5.5 |          |             | 5.0      | 5.5      | 5.0  |  |
| Max Green Setting (Gmax), s  |      | * 35  |          |             | 25.0     | 45.0     | 20.0 |  |
| Max Q Clear Time (g_c+l1), s |      | 4.7   |          |             | 12.1     | 8.0      | 3.8  |  |
| Green Ext Time (p_c), s      |      | 3.2   |          |             | 1.0      | 6.3      | 0.3  |  |
| (1 — 7:                      |      | J.Z   |          |             | 1.0      | 0.5      | 0.3  |  |
| Intersection Summary         |      |       | 40.0     |             |          |          |      |  |
| HCM 6th Ctrl Delay           |      |       | 13.2     |             |          |          |      |  |
| HCM 6th LOS                  |      |       | В        |             |          |          |      |  |
| Notes                        |      |       |          |             |          |          |      |  |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |         |       |         |          |            |      |
|------------------------|---------|-------|---------|----------|------------|------|
| Int Delay, s/veh       | 0.2     |       |         |          |            |      |
|                        |         | EDD   | ND      | NET      | ODT        | 000  |
| Movement               | EBL     | EBR   | NBL     | NBT      | SBT        | SBR  |
| Lane Configurations    | _       | 7     | _       | <b>^</b> | <b>↑</b> } |      |
| Traffic Vol, veh/h     | 0       | 21    | 0       | 612      | 543        | 22   |
| Future Vol, veh/h      | 0       | 21    | 0       | 612      | 543        | 22   |
| Conflicting Peds, #/hr | 0       | 0     | _ 0     | _ 0      | _ 0        | _ 0  |
| Sign Control           | Stop    | Stop  | Free    | Free     | Free       | Free |
| RT Channelized         | -       | None  | -       |          | -          | None |
| Storage Length         | -       | 0     | -       | -        | -          | -    |
| Veh in Median Storage  |         | -     | -       | 0        | 0          | -    |
| Grade, %               | 0       | -     | -       | 0        | 0          | -    |
| Peak Hour Factor       | 90      | 90    | 90      | 90       | 90         | 90   |
| Heavy Vehicles, %      | 2       | 2     | 2       | 2        | 2          | 2    |
| Mvmt Flow              | 0       | 23    | 0       | 680      | 603        | 24   |
|                        |         |       |         |          |            |      |
| Major/Minor N          | /linor2 | N     | /lajor1 | N        | /lajor2    |      |
| Conflicting Flow All   | -       | 314   | -<br>-  | 0        | -          | 0    |
| Stage 1                | _       | -     | _       | -        | _          | -    |
| Stage 2                | _       | _     | _       | _        | _          | _    |
| Critical Hdwy          |         | 6.94  | _       | -        | _          | -    |
| Critical Hdwy Stg 1    | _       | 0.34  | _       | _        | _          | _    |
| Critical Hdwy Stg 2    | -       | _     | -       | -        | _          | -    |
| Follow-up Hdwy         | -       | 3.32  | _       | _        | _          | _    |
| Pot Cap-1 Maneuver     | 0       | 682   | 0       | -        | -          |      |
|                        | 0       | - 002 | 0       |          |            | _    |
| Stage 1                |         | -     |         | -        | -          |      |
| Stage 2                | 0       | -     | 0       | -        | -          | -    |
| Platoon blocked, %     |         | 000   |         | -        | -          | -    |
| Mov Cap-1 Maneuver     | -       | 682   | -       | -        | -          | -    |
| Mov Cap-2 Maneuver     | -       | -     | -       | -        | -          | -    |
| Stage 1                | -       | -     | -       | -        | -          | -    |
| Stage 2                | -       | -     | -       | -        | -          | -    |
|                        |         |       |         |          |            |      |
| Approach               | EB      |       | NB      |          | SB         |      |
| HCM Control Delay, s   | 10.5    |       | 0       |          | 0          |      |
| HCM LOS                | В       |       | •       |          | •          |      |
| 110M 200               |         |       |         |          |            |      |
|                        |         |       |         |          |            |      |
| Minor Lane/Major Mvm   | t       | NBT E |         | SBT      | SBR        |      |
| Capacity (veh/h)       |         | -     | 682     | -        | -          |      |
| HCM Lane V/C Ratio     |         | -     | 0.034   | -        | -          |      |
| HCM Control Delay (s)  |         | -     | 10.5    | -        | -          |      |
| HCM Lane LOS           |         | -     | В       | -        | -          |      |
| HCM 95th %tile Q(veh)  |         | -     | 0.1     | -        | -          |      |
|                        |         |       |         |          |            |      |

| Intersection           |        |          |        |       |          |          |
|------------------------|--------|----------|--------|-------|----------|----------|
| Int Delay, s/veh       | 1.4    |          |        |       |          |          |
|                        |        | WED      | NET    | NDD   | 051      | ODT      |
| Movement               | WBL    | WBR      | NBT    | NBR   | SBL      | SBT      |
| Lane Configurations    | ¥      |          | ĵ.     |       |          | ની       |
| Traffic Vol, veh/h     | 3      | 1        | 12     | 4     | 1        | 8        |
| Future Vol, veh/h      | 3      | 1        | 12     | 4     | 1        | 8        |
| Conflicting Peds, #/hr | 2      | 2        | 0      | 0     | 2        | 0        |
| Sign Control           | Stop   | Stop     | Free   | Free  | Free     | Free     |
| RT Channelized         | -      | None     | -      | None  | -        | None     |
| Storage Length         | 0      | -        | -      | -     | -        | -        |
| Veh in Median Storage  |        | -        | 0      | -     | -        | 0        |
| Grade, %               | 0      | -        | 0      | -     | -        | 0        |
| Peak Hour Factor       | 90     | 90       | 90     | 90    | 90       | 90       |
| Heavy Vehicles, %      | 3      | 3        | 3      | 3     | 3        | 3        |
| Mvmt Flow              | 3      | 1        | 13     | 4     | 1        | 9        |
|                        |        |          |        |       |          |          |
| Major/Minor N          | Minor1 | N        | Major1 |       | Major?   |          |
|                        |        |          |        |       | Major2   | ^        |
| Conflicting Flow All   | 30     | 19       | 0      | 0     | 19       | 0        |
| Stage 1                | 17     | -        | -      | -     | -        | -        |
| Stage 2                | 13     | -        | -      | -     | 1.40     | -        |
| Critical Hdwy          | 6.43   | 6.23     | -      | -     | 4.13     | -        |
| Critical Hdwy Stg 1    | 5.43   | -        | -      | -     | -        | -        |
| Critical Hdwy Stg 2    | 5.43   | -        | -      | -     | -        | -        |
|                        | 3.527  | 3.327    | -      | -     |          | -        |
| Pot Cap-1 Maneuver     | 982    | 1056     | -      | -     | 1591     | -        |
| Stage 1                | 1003   | -        | -      | -     | -        | -        |
| Stage 2                | 1007   | -        | -      | -     | -        | -        |
| Platoon blocked, %     |        |          | -      | -     |          | -        |
| Mov Cap-1 Maneuver     | 977    | 1052     | -      | -     | 1588     | -        |
| Mov Cap-2 Maneuver     | 977    | -        | -      | -     | -        | -        |
| Stage 1                | 1001   | -        | -      | -     | -        | -        |
| Stage 2                | 1004   | -        | -      | -     | -        | -        |
| ,                      |        |          |        |       |          |          |
| Annesah                | WD     |          | ND     |       | CD       |          |
| Approach               | WB     |          | NB     |       | SB       |          |
| HCM Control Delay, s   | 8.6    |          | 0      |       | 8.0      |          |
| HCM LOS                | Α      |          |        |       |          |          |
|                        |        |          |        |       |          |          |
| Minor Lane/Major Mvm   | t      | NBT      | NBRV   | VBLn1 | SBL      | SBT      |
| Capacity (veh/h)       |        | -        |        |       | 1588     | -        |
| HCM Lane V/C Ratio     |        | <u>-</u> |        | 0.004 |          | <u>-</u> |
| HCM Control Delay (s)  |        | _        | _      | 8.6   | 7.3      | 0        |
| HCM Lane LOS           |        | <u>-</u> | _      | Α     | 7.5<br>A | A        |
| HCM 95th %tile Q(veh)  |        |          | _      | 0     | 0        | -        |
| HOW JOHN JUHIE Q(VEII) |        |          |        | U     | U        |          |

|                              | ۶    | <b>→</b> | •     | ✓    | <b>←</b> | •    | •    | †        | ~    | <b>/</b> | <b>+</b>   | ✓    |
|------------------------------|------|----------|-------|------|----------|------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR   | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |       |      | 4        |      | 7    | <b>^</b> |      | 7        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 26   | 0        | 3     | 7    | 0        | 10   | 17   | 546      | 6    | 20       | 504        | 22   |
| Future Volume (veh/h)        | 26   | 0        | 3     | 7    | 0        | 10   | 17   | 546      | 6    | 20       | 504        | 22   |
| Initial Q (Qb), veh          | 0    | 0        | 0     | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 1.00  | 0.99 |          | 1.00 | 1.00 |          | 0.97 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |       |      | No       |      |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870  | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 29   | 0        | -5    | 8    | 0        | 3    | 19   | 607      | 6    | 22       | 560        | 21   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90  | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2     | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 443  | 78       | 0     | 176  | 0        | 15   | 745  | 2724     | 27   | 726      | 2637       | 99   |
| Arrive On Green              | 0.04 | 0.00     | 0.00  | 0.04 | 0.00     | 0.04 | 0.76 | 0.76     | 0.76 | 0.76     | 0.76       | 0.76 |
| Sat Flow, veh/h              | 1743 | 0        | -300  | 1055 | 0        | 395  | 831  | 3604     | 36   | 807      | 3489       | 131  |
| Grp Volume(v), veh/h         | 0    | 0        | 0     | 11   | 0        | 0    | 19   | 299      | 314  | 22       | 285        | 296  |
| Grp Sat Flow(s),veh/h/ln     | 0    | 0        | 0     | 1450 | 0        | 0    | 831  | 1777     | 1863 | 807      | 1777       | 1843 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0   | 0.3  | 0.0      | 0.0  | 0.3  | 2.3      | 2.3  | 0.4      | 2.2        | 2.2  |
| Cycle Q Clear(g_c), s        | 0.0  | 0.0      | 0.0   | 0.3  | 0.0      | 0.0  | 2.5  | 2.3      | 2.3  | 2.7      | 2.2        | 2.2  |
| Prop In Lane                 | 1.21 |          | -0.21 | 0.73 |          | 0.27 | 1.00 |          | 0.02 | 1.00     |            | 0.07 |
| Lane Grp Cap(c), veh/h       | 0    | 0        | 0     | 191  | 0        | 0    | 745  | 1343     | 1408 | 726      | 1343       | 1393 |
| V/C Ratio(X)                 | 0.00 | 0.00     | 0.00  | 0.06 | 0.00     | 0.00 | 0.03 | 0.22     | 0.22 | 0.03     | 0.21       | 0.21 |
| Avail Cap(c_a), veh/h        | 0    | 0        | 0     | 620  | 0        | 0    | 745  | 1343     | 1408 | 726      | 1343       | 1393 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 0.00 | 0.00     | 0.00  | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 0.0  | 0.0      | 0.0   | 21.5 | 0.0      | 0.0  | 2.0  | 1.7      | 1.7  | 2.1      | 1.6        | 1.6  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0   | 0.1  | 0.0      | 0.0  | 0.1  | 0.4      | 0.4  | 0.1      | 0.4        | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 0.0      | 0.0   | 0.1  | 0.0      | 0.0  | 0.0  | 0.1      | 0.1  | 0.0      | 0.1        | 0.1  |
| Unsig. Movement Delay, s/veh |      |          |       |      |          |      |      |          |      |          |            |      |
| LnGrp Delay(d),s/veh         | 0.0  | 0.0      | 0.0   | 21.7 | 0.0      | 0.0  | 2.1  | 2.0      | 2.0  | 2.1      | 2.0        | 2.0  |
| LnGrp LOS                    | Α    | Α        | Α     | С    | Α        | Α    | Α    | Α        | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 0        |       |      | 11       |      |      | 632      |      |          | 603        |      |
| Approach Delay, s/veh        |      | 0.0      |       |      | 21.7     |      |      | 2.0      |      |          | 2.0        |      |
| Approach LOS                 |      |          |       |      | С        |      |      | А        |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |       | 4    |          | 6    |      | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |       | 6.3  |          | 40.0 |      | 6.3      |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |       | 4.5  |          | 5.0  |      | 4.5      |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 35.0     |       | 15.5 |          | 35.0 |      | 15.5     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 4.5      |       | 0.0  |          | 4.7  |      | 2.3      |      |          |            |      |
| Green Ext Time (p_c), s      |      | 5.6      |       | 0.0  |          | 5.4  |      | 0.0      |      |          |            |      |
| Intersection Summary         |      |          |       |      |          |      |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 2.2   |      |          |      |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | Α     |      |          |      |      |          |      |          |            |      |

| Intersection           |        |          |          |          |        |          |
|------------------------|--------|----------|----------|----------|--------|----------|
| Int Delay, s/veh       | 1.6    |          |          |          |        |          |
| Movement               | WBL    | WBR      | NBT      | NBR      | SBL    | SBT      |
| Lane Configurations    | N/     |          | <b>↑</b> |          |        | <b>↑</b> |
| Traffic Vol, veh/h     | 0      | 0        | 7        | 5        | 5      | 5        |
| Future Vol, veh/h      | 0      | 0        | 7        | 5        | 5      | 5        |
| Conflicting Peds, #/hr | 0      | 4        | 0        | 0        | 0      | 0        |
| Sign Control           | Stop   | Stop     | Free     | Free     | Free   | Free     |
| RT Channelized         | -      | None     | -        | None     | -      | None     |
| Storage Length         | 0      | -        | _        | -        | _      | -        |
| Veh in Median Storage  |        | _        | 0        | _        | _      | 0        |
| Grade, %               | 0      | <u>-</u> | 0        | <u>-</u> | _      | 0        |
| Peak Hour Factor       | 90     | 90       | 90       | 90       | 90     | 90       |
|                        | 3      | 3        | 3        | 3        | 3      | 3        |
| Heavy Vehicles, %      |        |          |          |          |        |          |
| Mvmt Flow              | 0      | 0        | 8        | 6        | 6      | 6        |
|                        |        |          |          |          |        |          |
| Major/Minor            | Minor1 | N        | Major1   | N        | Major2 |          |
| Conflicting Flow All   | 29     | 15       | 0        | 0        | 14     | 0        |
| Stage 1                | 11     | -        | _        | _        | _      | _        |
| Stage 2                | 18     | _        | -        | _        | _      | _        |
| Critical Hdwy          | 6.43   | 6.23     | -        | _        | 4.13   | _        |
| Critical Hdwy Stg 1    | 5.43   | -        | _        | _        | -      | _        |
| Critical Hdwy Stg 2    | 5.43   | _        | _        | _        | _      | _        |
| Follow-up Hdwy         | 3.527  |          | _        | _        | 2.227  | _        |
| Pot Cap-1 Maneuver     | 983    | 1062     | _        | _        | 1598   | _        |
| Stage 1                | 1009   | -        | _        | _        | 1000   | _        |
| Stage 2                | 1003   | _        |          |          | _      | _        |
| Platoon blocked, %     | 1002   | _        | _        | _        | _      | _        |
|                        | 070    | 1058     |          |          | 1598   |          |
| Mov Cap-1 Maneuver     | 979    |          | -        | -        |        | -        |
| Mov Cap-2 Maneuver     | 979    | -        | -        | -        | -      | -        |
| Stage 1                | 1009   | -        | -        | -        | -      | -        |
| Stage 2                | 998    | -        | -        | -        | -      | -        |
|                        |        |          |          |          |        |          |
| Approach               | WB     |          | NB       |          | SB     |          |
| HCM Control Delay, s   | 0      |          | 0        |          | 3.6    |          |
| HCM LOS                | A      |          | U        |          | 0.0    |          |
| TIOW LOO               |        |          |          |          |        |          |
|                        |        |          |          |          |        |          |
| Minor Lane/Major Mvm   | nt     | NBT      | NBRV     | VBLn1    | SBL    | SBT      |
| Capacity (veh/h)       |        | -        | -        | -        | 1598   | -        |
| HCM Lane V/C Ratio     |        | -        | -        | -        | 0.003  | -        |
| HCM Control Delay (s)  |        | -        | -        | 0        | 7.3    | -        |
| HCM Lane LOS           |        | -        | -        | Α        | Α      | -        |
| HCM 95th %tile Q(veh   | )      | -        | -        | -        | 0      | -        |
|                        |        |          |          |          |        |          |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1    | <b>†</b> | ~    | /    | ţ    | 1    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          |      | 4        |      | ሻ    | र्स      | 7    |      | ર્ન      | 7    | *    | 4    |      |
| Traffic Volume (veh/h)       | 0    | 0        | 0    | 429  | 9        | 239  | 0    | 187      | 562  | 363  | 199  | 0    |
| Future Volume (veh/h)        | 0    | 0        | 0    | 429  | 9        | 239  | 0    | 187      | 562  | 363  | 199  | 0    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856 | 1856 |
| Adj Flow Rate, veh/h         | 0    | 0        | 0    | 484  | 0        | 0    | 0    | 208      | 0    | 312  | 348  | 0    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3    | 3    |
| Cap, veh/h                   | 0    | 4        | 0    | 833  | 0        |      | 0    | 300      |      | 454  | 477  | 0    |
| Arrive On Green              | 0.00 | 0.00     | 0.00 | 0.24 | 0.00     | 0.00 | 0.00 | 0.16     | 0.00 | 0.26 | 0.26 | 0.00 |
| Sat Flow, veh/h              | 0    | 1856     | 0    | 3527 | 0        | 1572 | 0    | 1856     | 1572 | 1767 | 1856 | 0    |
| Grp Volume(v), veh/h         | 0    | 0        | 0    | 484  | 0        | 0    | 0    | 208      | 0    | 312  | 348  | 0    |
| Grp Sat Flow(s),veh/h/ln     | 0    | 1856     | 0    | 1763 | 0        | 1572 | 0    | 1856     | 1572 | 1767 | 1856 | 0    |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 5.1  | 0.0      | 0.0  | 0.0  | 4.5      | 0.0  | 6.7  | 7.3  | 0.0  |
| Cycle Q Clear(g_c), s        | 0.0  | 0.0      | 0.0  | 5.1  | 0.0      | 0.0  | 0.0  | 4.5      | 0.0  | 6.7  | 7.3  | 0.0  |
| Prop In Lane                 | 0.00 |          | 0.00 | 1.00 |          | 1.00 | 0.00 |          | 1.00 | 1.00 |      | 0.00 |
| Lane Grp Cap(c), veh/h       | 0    | 4        | 0    | 833  | 0        |      | 0    | 300      |      | 454  | 477  | 0    |
| V/C Ratio(X)                 | 0.00 | 0.00     | 0.00 | 0.58 | 0.00     |      | 0.00 | 0.69     |      | 0.69 | 0.73 | 0.00 |
| Avail Cap(c_a), veh/h        | 0    | 834      | 0    | 2920 | 0        |      | 0    | 1536     |      | 1463 | 1536 | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 0.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 0.00 | 1.00     | 0.00 | 1.00 | 1.00 | 0.00 |
| Uniform Delay (d), s/veh     | 0.0  | 0.0      | 0.0  | 14.3 | 0.0      | 0.0  | 0.0  | 16.7     | 0.0  | 14.2 | 14.4 | 0.0  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0  | 0.9  | 0.0      | 0.0  | 0.0  | 2.2      | 0.0  | 0.7  | 0.8  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 0.0      | 0.0  | 1.7  | 0.0      | 0.0  | 0.0  | 1.8      | 0.0  | 2.1  | 2.4  | 0.0  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 45.0 | 0.0      | 0.0  | 0.0  | 40.0     | 0.0  | 440  | 45.0 | 0.0  |
| LnGrp Delay(d),s/veh         | 0.0  | 0.0      | 0.0  | 15.2 | 0.0      | 0.0  | 0.0  | 18.9     | 0.0  | 14.9 | 15.2 | 0.0  |
| LnGrp LOS                    | Α    | A        | A    | В    | Α        |      | A    | В        |      | В    | В    | A    |
| Approach Vol, veh/h          |      | 0        |      |      | 484      |      |      | 208      |      |      | 660  |      |
| Approach Delay, s/veh        |      | 0.0      |      |      | 15.2     |      |      | 18.9     |      |      | 15.0 |      |
| Approach LOS                 |      |          |      |      | В        |      |      | В        |      |      | В    |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |      |      |      |
| Phs Duration (G+Y+Rc), s     |      | 11.8     |      | 14.6 |          | 15.9 |      | 0.0      |      |      |      |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.6  |          | 5.0  |      | 4.6      |      |      |      |      |
| Max Green Setting (Gmax), s  |      | 35.0     |      | 35.0 |          | 35.0 |      | 19.0     |      |      |      |      |
| Max Q Clear Time (g_c+l1), s |      | 6.5      |      | 7.1  |          | 9.3  |      | 0.0      |      |      |      |      |
| Green Ext Time (p_c), s      |      | 0.9      |      | 2.8  |          | 1.6  |      | 0.0      |      |      |      |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |      |      |      |
| HCM 6th Ctrl Delay           |      |          | 15.7 |      |          |      |      |          |      |      |      |      |
| HCM 6th LOS                  |      |          | В    |      |          |      |      |          |      |      |      |      |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| ٦                                    | <b>→</b> | •    | •    | <b>←</b> | •    | 4   | †   | <b>/</b> | <b>\</b> | ļ    | 4    |  |
|--------------------------------------|----------|------|------|----------|------|-----|-----|----------|----------|------|------|--|
| Movement EBL                         | EBT      | EBR  | WBL  | WBT      | WBR  | NBL | NBT | NBR      | SBL      | SBT  | SBR  |  |
| Lane Configurations                  | <b>^</b> | 7    | ሻሻ   | <b>^</b> |      |     |     |          | ሻ        | र्स  | 77   |  |
| Traffic Volume (veh/h) 0             |          | 68   | 159  | 571      | 0    | 0   | 0   | 0        | 819      | 1    | 492  |  |
| Future Volume (veh/h) 0              | 1019     | 68   | 159  | 571      | 0    | 0   | 0   | 0        | 819      | 1    | 492  |  |
| nitial Q (Qb), veh 0                 | 0        | 0    | 0    | 0        | 0    |     |     |          | 0        | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00             |          | 1.00 | 1.00 |          | 1.00 |     |     |          | 1.00     |      | 1.00 |  |
| Parking Bus, Adj 1.00                | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00     | 1.00 | 1.00 |  |
| Work Zone On Approach                | No       |      |      | No       |      |     |     |          |          | No   |      |  |
| Adj Sat Flow, veh/h/ln 0             | 1885     | 1885 | 1885 | 1885     | 0    |     |     |          | 1885     | 1885 | 1885 |  |
| Adj Flow Rate, veh/h 0               | 1073     | 25   | 167  | 601      | 0    |     |     |          | 863      | 0    | 518  |  |
| Peak Hour Factor 0.95                | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 |     |     |          | 0.95     | 0.95 | 0.95 |  |
| Percent Heavy Veh, % 0               | 1        | 1    | 1    | 1        | 0    |     |     |          | 1        | 1    | 1    |  |
| Cap, veh/h 0                         | 1252     | 558  | 418  | 1965     | 0    |     |     |          | 996      | 0    | 886  |  |
| Arrive On Green 0.00                 | 0.35     | 0.35 | 0.12 | 0.55     | 0.00 |     |     |          | 0.28     | 0.00 | 0.28 |  |
| Sat Flow, veh/h 0                    |          | 1598 | 3483 | 3676     | 0    |     |     |          | 3591     | 0    | 3195 |  |
| Grp Volume(v), veh/h 0               |          | 25   | 167  | 601      | 0    |     |     |          | 863      | 0    | 518  |  |
| Grp Sat Flow(s),veh/h/ln 0           |          | 1598 | 1742 | 1791     | 0    |     |     |          | 1795     | 0    | 1598 |  |
| Q Serve(g_s), s 0.0                  | 17.6     | 0.7  | 2.8  | 5.8      | 0.0  |     |     |          | 14.4     | 0.0  | 8.8  |  |
| Cycle Q Clear(g_c), s 0.0            | 17.6     | 0.7  | 2.8  | 5.8      | 0.0  |     |     |          | 14.4     | 0.0  | 8.8  |  |
| Prop In Lane 0.00                    |          | 1.00 | 1.00 |          | 0.00 |     |     |          | 1.00     |      | 1.00 |  |
| Lane Grp Cap(c), veh/h 0             | 1252     | 558  | 418  | 1965     | 0    |     |     |          | 996      | 0    | 886  |  |
| V/C Ratio(X) 0.00                    | 0.86     | 0.04 | 0.40 | 0.31     | 0.00 |     |     |          | 0.87     | 0.00 | 0.58 |  |
| Avail Cap(c_a), veh/h 0              |          | 733  | 1103 | 3062     | 0    |     |     |          | 1421     | 0    | 1264 |  |
| HCM Platoon Ratio 1.00               | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00     | 1.00 | 1.00 |  |
| Upstream Filter(I) 0.00              | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 |     |     |          | 1.00     | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh 0.0         | 19.1     | 13.6 | 25.7 | 7.7      | 0.0  |     |     |          | 21.7     | 0.0  | 19.7 |  |
| Incr Delay (d2), s/veh 0.0           | 3.0      | 0.0  | 0.2  | 0.0      | 0.0  |     |     |          | 3.1      | 0.0  | 0.2  |  |
| Initial Q Delay(d3),s/veh 0.0        | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |     |     |          | 0.0      | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/lr0.0          | 7.0      | 0.2  | 1.1  | 1.8      | 0.0  |     |     |          | 6.0      | 0.0  | 3.1  |  |
| Unsig. Movement Delay, s/ve          |          |      |      |          |      |     |     |          |          |      |      |  |
| LnGrp Delay(d),s/veh 0.0             | 22.1     | 13.6 | 25.9 | 7.8      | 0.0  |     |     |          | 24.8     | 0.0  | 19.9 |  |
| LnGrp LOS A                          | С        | В    | С    | A        | A    |     |     |          | С        | A    | В    |  |
| Approach Vol, veh/h                  | 1098     |      |      | 768      |      |     |     |          |          | 1381 |      |  |
| Approach Delay, s/veh                | 21.9     |      |      | 11.7     |      |     |     |          |          | 23.0 |      |  |
| Approach LOS                         | C        |      |      | В        |      |     |     |          |          | C    |      |  |
| Timer - Assigned Phs 1               | 2        |      | 4    |          | 6    |     |     |          |          |      |      |  |
| Phs Duration (G+Y+Rc), \$2.6         | 28.1     |      | 22.5 |          | 40.7 |     |     |          |          |      |      |  |
| Change Period (Y+Rc), s 5.0          | * 6      |      | * 5  |          | * 6  |     |     |          |          |      |      |  |
| Max Green Setting (Gma <b>20), 3</b> |          |      | * 25 |          | * 54 |     |     |          |          |      |      |  |
| Max Q Clear Time (g_c+l14),&         |          |      | 16.4 |          | 7.8  |     |     |          |          |      |      |  |
| Green Ext Time (p_c), s 0.1          | 2.5      |      | 1.1  |          | 1.7  |     |     |          |          |      |      |  |
| · /                                  | 2.0      |      | 1.1  |          | 1.7  |     |     |          |          |      |      |  |
| ntersection Summary                  |          | 40.0 |      |          |      |     |     |          |          |      |      |  |
| HCM 6th Ctrl Delay                   |          | 19.9 |      |          |      |     |     |          |          |      |      |  |
| HCM 6th LOS                          |          | В    |      |          |      |     |     |          |          |      |      |  |
| Votes                                |          |      |      |          |      |     |     |          |          |      |      |  |

|                           | ۶         | <b>→</b> | •         | •    | <b>←</b>  | •         | 4         | <b>†</b> | <u> </u>  | <b>\</b> | ţ   | 4   |  |
|---------------------------|-----------|----------|-----------|------|-----------|-----------|-----------|----------|-----------|----------|-----|-----|--|
| Movement                  | EBL       | EBT      | EBR       | WBL  | WBT       | WBR       | NBL       | NBT      | NBR       | SBL      | SBT | SBR |  |
| Lane Configurations       | ሻሻ        | <b>^</b> |           |      | <b>^</b>  | 7         | ሻ         | 4        | 7         |          |     |     |  |
| Traffic Volume (veh/h)    | 437       | 1401     | 0         | 0    | 650       | 778       | 80        | 0        | 200       | 0        | 0   | 0   |  |
| Future Volume (veh/h)     | 437       | 1401     | 0         | 0    | 650       | 778       | 80        | 0        | 200       | 0        | 0   | 0   |  |
| Initial Q (Qb), veh       | 0         | 0        | 0         | 0    | 0         | 0         | 0         | 0        | 0         |          |     |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00      |          | 1.00      | 1.00 |           | 0.99      | 1.00      |          | 1.00      |          |     |     |  |
| Parking Bus, Adj          | 1.00      | 1.00     | 1.00      | 1.00 | 1.00      | 1.00      | 1.00      | 1.00     | 1.00      |          |     |     |  |
| Work Zone On Approac      |           | No       |           |      | No        |           |           | No       |           |          |     |     |  |
| Adj Sat Flow, veh/h/ln    | 1885      | 1885     | 0         | 0    | 1885      | 1885      | 1885      | 1885     | 1885      |          |     |     |  |
| Adj Flow Rate, veh/h      | 460       | 1475     | 0         | 0    | 684       | 364       | 84        | 0        | 128       |          |     |     |  |
| Peak Hour Factor          | 0.95      | 0.95     | 0.95      | 0.95 | 0.95      | 0.95      | 0.95      | 0.95     | 0.95      |          |     |     |  |
| Percent Heavy Veh, %      | 1         | 1        | 0         | 0    | 1         | 1         | 1         | 1        | 1         |          |     |     |  |
| Cap, veh/h                | 643       | 2125     | 0         | 0    | 1068      | 469       | 590       | 0        | 262       |          |     |     |  |
| Arrive On Green           | 0.18      | 0.59     | 0.00      | 0.00 | 0.30      | 0.30      | 0.16      | 0.00     | 0.16      |          |     |     |  |
| Sat Flow, veh/h           | 3483      | 3676     | 0         | 0    | 3676      | 1574      | 3591      | 0.00     | 1598      |          |     |     |  |
| Grp Volume(v), veh/h      | 460       | 1475     | 0         | 0    | 684       | 364       | 84        | 0        | 128       |          |     |     |  |
| Grp Sat Flow(s), veh/h/l  |           | 1791     | 0         | 0    | 1791      | 1574      | 1795      | 0        | 1598      |          |     |     |  |
| Q Serve(g_s), s           | 5.6       | 12.9     | 0.0       | 0.0  | 7.5       | 9.6       | 0.9       | 0.0      | 3.3       |          |     |     |  |
| Cycle Q Clear(g_c), s     | 5.6       | 12.9     | 0.0       | 0.0  | 7.5       | 9.6       | 0.9       | 0.0      | 3.3       |          |     |     |  |
| Prop In Lane              | 1.00      | 12.5     | 0.00      | 0.00 | 7.5       | 1.00      | 1.00      | 0.0      | 1.00      |          |     |     |  |
| Lane Grp Cap(c), veh/h    |           | 2125     | 0.00      | 0.00 | 1068      | 469       | 590       | 0        | 262       |          |     |     |  |
| V/C Ratio(X)              | 0.72      | 0.69     | 0.00      | 0.00 | 0.64      | 0.78      | 0.14      | 0.00     | 0.49      |          |     |     |  |
| Avail Cap(c_a), veh/h     | 1537      | 4266     | 0.00      | 0.00 | 2291      | 1007      | 1980      | 0.00     | 881       |          |     |     |  |
| HCM Platoon Ratio         | 1.00      | 1.00     | 1.00      | 1.00 | 1.00      | 1.00      | 1.00      | 1.00     | 1.00      |          |     |     |  |
| Upstream Filter(I)        | 1.00      | 1.00     | 0.00      | 0.00 | 1.00      | 1.00      | 1.00      | 0.00     | 1.00      |          |     |     |  |
| Uniform Delay (d), s/ve   |           | 6.4      | 0.0       | 0.0  | 13.8      | 14.5      | 16.2      | 0.00     | 17.2      |          |     |     |  |
| Incr Delay (d2), s/veh    | 0.6       | 0.4      | 0.0       | 0.0  | 0.2       | 1.1       | 0.0       | 0.0      | 0.5       |          |     |     |  |
| Initial Q Delay(d3),s/vel |           | 0.2      | 0.0       | 0.0  | 0.0       | 0.0       | 0.0       | 0.0      | 0.0       |          |     |     |  |
| %ile BackOfQ(50%),ve      |           | 2.9      | 0.0       | 0.0  | 2.6       | 3.0       | 0.0       | 0.0      | 1.1       |          |     |     |  |
| Unsig. Movement Dela      |           |          | 0.0       | 0.0  | 2.0       | 3.0       | 0.5       | 0.0      | 1.1       |          |     |     |  |
| LnGrp Delay(d),s/veh      | 17.9      | 6.5      | 0.0       | 0.0  | 14.0      | 15.6      | 16.3      | 0.0      | 17.7      |          |     |     |  |
| LnGrp LOS                 | 17.9<br>B | 0.5<br>A | Α         | Α    | 14.0<br>B | 13.0<br>B | 10.3<br>B | 0.0<br>A | 17.7<br>B |          |     |     |  |
|                           | D         |          |           |      |           | ь         | D         |          | ь         |          |     |     |  |
| Approach Vol, veh/h       |           | 1935     |           |      | 1048      |           |           | 212      |           |          |     |     |  |
| Approach Delay, s/veh     |           | 9.2      |           |      | 14.6      |           |           | 17.1     |           |          |     |     |  |
| Approach LOS              |           | Α        |           |      | В         |           |           | В        |           |          |     |     |  |
| Timer - Assigned Phs      |           | 2        |           |      | 5         | 6         |           | 8        |           |          |     |     |  |
| Phs Duration (G+Y+Rc      | ), s      | 32.9     |           |      | 13.4      | 19.5      |           | 12.4     |           |          |     |     |  |
| Change Period (Y+Rc)      |           | * 6      |           |      | 5.0       | * 6       |           | 5.0      |           |          |     |     |  |
| Max Green Setting (Gn     |           | * 54     |           |      | 20.0      | * 29      |           | 25.0     |           |          |     |     |  |
| Max Q Clear Time (g_c     |           | 14.9     |           |      | 7.6       | 11.6      |           | 5.3      |           |          |     |     |  |
| Green Ext Time (p_c),     |           | 5.3      |           |      | 0.8       | 1.9       |           | 0.3      |           |          |     |     |  |
| Intersection Summary      |           |          |           |      |           |           |           |          |           |          |     |     |  |
| HCM 6th Ctrl Delay        |           |          | 11.5      |      |           |           |           |          |           |          |     |     |  |
| HCM 6th LOS               |           |          | 11.5<br>B |      |           |           |           |          |           |          |     |     |  |
|                           |           |          | D         |      |           |           |           |          |           |          |     |     |  |
| Notes                     |           |          |           |      |           |           |           |          |           |          |     |     |  |

Appendix B – Existing Plus Project Conditions

Peak Hour Traffic Volume Forecasts, Lane Configurations, and Technical Calculations

| 1.4     |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL     | EBR                                                                                                                          | NBL                                                                                                                                                                    | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 35                                                                                                                           | 40                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | -                                                                                                                            | _                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              | _                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39      | 39                                                                                                                           | 44                                                                                                                                                                     | 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /linor2 | N                                                                                                                            | Major1                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | //ajor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1218    | 424                                                                                                                          | 840                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 735     | -                                                                                                                            | -                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 483     | -                                                                                                                            | -                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.86    | 6.96                                                                                                                         | 4.16                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.86    | -                                                                                                                            | -                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.86    | -                                                                                                                            | -                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 3.33                                                                                                                         | 2.23                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 576                                                                                                                          | 784                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | -                                                                                                                            | -                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | _                                                                                                                            | _                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 152     | 572                                                                                                                          | 779                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              | -                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | _                                                                                                                            | _                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | _                                                                                                                            | _                                                                                                                                                                      | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 010     |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27      |                                                                                                                              | 0.5                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D       |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | NDI                                                                                                                          | NDT                                                                                                                                                                    | EDI n1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                              |                                                                                                                                                                        | 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              | _                                                                                                                                                                      | 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 0.057                                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 9.9                                                                                                                          | -                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                              |                                                                                                                                                                        | 27<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | EBL 35 35 0 Stop - 0 # 0 90 3 39  Minor2 1218 735 483 6.86 5.86 5.86 5.86 3.53 172 433 583 152 433 583 152 152 387 579 EB 27 | EBL EBR  35 35 35 35 0 0 0 Stop Stop - None 0 # 0 90 90 3 3 39 39  Minor2 N 1218 424 735 483 6.86 6.96 5.86 5.86 3.53 3.33 172 576 433 583 152 572 152 387 579 EB 27 D | EBL         EBR         NBL           35         35         40           35         35         40           0         0         7           Stop         Free           None         -           0         -         -           # 0         -         -           90         90         90           3         3         3           39         39         44           Major1         1218         424         840           735         -         -           483         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           583         -         -         -           152         572         779           152         -         -           387         -         -           579         -         -           588 | EBL         EBR         NBL         NBT           35         35         40         710           35         35         40         710           0         0         7         0           Stop         Stop         Free         Free           - None         - None         - None           0         0         0           90         90         90         90           3         3         3         3           39         39         44         789           Minor2         Major1         Major1         Major1           1218         424         840         0           735 | EBL         EBR         NBL         NBT         SBT           35         35         40         710         560           35         35         40         710         560           0         0         7         0         0           Stop         Free         Free         Free         Free           - None         -         None         -           0         -         -         0         0           0         -         -         0         0           90         90         90         90         90           33         3         3         3         3           39         39         44         789         622           Minor2         Major1         Major2           1218         424         840         0         -           735         -         -         -         -           483         -         -         -         -           5.86         -         -         -         -           5.86         -         -         -         -           433         -         - |

| Intersection                                                   |             |       |          |          |          |          |
|----------------------------------------------------------------|-------------|-------|----------|----------|----------|----------|
| Int Delay, s/veh                                               | 0.5         |       |          |          |          |          |
| Movement                                                       | WBL         | WBR   | NBT      | NBR      | SBL      | SBT      |
| Lane Configurations                                            | ¥           | 11511 | <b>†</b> | HEIL     | 001      | <b>^</b> |
| Traffic Vol, veh/h                                             | 10          | 30    | 720      | 10       | 15       | 580      |
| Future Vol, veh/h                                              | 10          | 30    | 720      | 10       | 15       | 580      |
| Conflicting Peds, #/hr                                         | 0           | 0     | 0        | 7        | 0        | 0        |
| Sign Control                                                   | Stop        | Stop  | Free     | Free     | Free     | Free     |
| RT Channelized                                                 | -           | None  | -        |          | -        | None     |
| Storage Length                                                 | 0           | -     | -        | -        | _        | -        |
| Veh in Median Storage,                                         |             | _     | 0        | _        | -        | 0        |
| Grade, %                                                       | 0           | _     | 0        | _        | _        | 0        |
| Peak Hour Factor                                               | 90          | 90    | 90       | 90       | 90       | 90       |
| Heavy Vehicles, %                                              | 3           | 3     | 3        | 3        | 3        | 3        |
| Mvmt Flow                                                      | 11          | 33    | 800      | 11       | 17       | 644      |
| IVIVIII( I IOW                                                 | - 11        | 55    | 000      | 11       | 17       | 044      |
|                                                                |             |       |          |          |          |          |
|                                                                | /linor1     |       | Major1   |          | Major2   |          |
| Conflicting Flow All                                           | 1169        | 413   | 0        | 0        | 818      | 0        |
| Stage 1                                                        | 813         | _     | -        | -        | -        | -        |
| Stage 2                                                        | 356         | -     | -        | -        | -        | -        |
| Critical Hdwy                                                  | 6.86        | 6.96  | -        | -        | 4.16     | -        |
| Critical Hdwy Stg 1                                            | 5.86        | -     | -        | -        | -        | -        |
| Critical Hdwy Stg 2                                            | 5.86        | -     | _        | -        | _        | -        |
| Follow-up Hdwy                                                 | 3.53        | 3.33  | -        | _        | 2.23     | _        |
| Pot Cap-1 Maneuver                                             | 185         | 585   | _        | -        | 800      | -        |
| Stage 1                                                        | 394         | _     | -        | _        | _        | _        |
| Stage 2                                                        | 677         | _     | _        | _        | _        | _        |
| Platoon blocked, %                                             | <b>V</b> 11 |       | _        | _        |          | _        |
| Mov Cap-1 Maneuver                                             | 178         | 581   | _        | _        | 795      | _        |
| Mov Cap-2 Maneuver                                             | 297         | -     | _        | _        | -        | _        |
| Stage 1                                                        | 391         | _     | _        | _        | _        | _        |
| Stage 2                                                        | 655         | _     | _        | _        | _        | _        |
| Stage 2                                                        | 000         | _     | -        | -        | -        | -        |
|                                                                |             |       |          |          |          |          |
| Approach                                                       | WB          |       | NB       |          | SB       |          |
| HCM Control Delay, s                                           | 13.5        |       | 0        |          | 0.2      |          |
| HCM LOS                                                        | В           |       |          |          |          |          |
|                                                                |             |       |          |          |          |          |
| Minor Long/Major Mym                                           | ı           | NDT   | NDDV     | MDI 51   | SBL      | SBT      |
| Minor Lane/Major Mvm                                           | l           | NBT   |          | VBLn1    |          |          |
| Capacity (veh/h)                                               |             | -     | -        |          | 795      | -        |
| HCM Lane V/C Ratio                                             |             | -     |          | 0.095    |          | -        |
| LIONA O LA LO LA CA                                            |             |       | -        | 13.5     | 9.6      | -        |
| HCM Control Delay (s)                                          |             | _     |          |          |          |          |
| HCM Control Delay (s)<br>HCM Lane LOS<br>HCM 95th %tile Q(veh) |             | -     | -        | B<br>0.3 | A<br>0.1 | -        |

|                              | ٠   | <b>→</b> | •   | •    | •        | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|------------------------------|-----|----------|-----|------|----------|------|------|----------|------|-------------|------|------|
| Movement                     | EBL | EBT      | EBR | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations          |     |          |     |      | <b>^</b> |      |      | र्स      |      |             | f)   |      |
| Traffic Volume (veh/h)       | 0   | 0        | 0   | 105  | 540      | 120  | 90   | 230      | 0    | 0           | 105  | 5    |
| Future Volume (veh/h)        | 0   | 0        | 0   | 105  | 540      | 120  | 90   | 230      | 0    | 0           | 105  | 5    |
| Initial Q (Qb), veh          |     |          |     | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)          |     |          |     | 1.00 |          | 1.00 | 0.98 |          | 1.00 | 1.00        |      | 0.95 |
| Parking Bus, Adj             |     |          |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Work Zone On Approach        |     |          |     |      | No       |      |      | No       |      |             | No   |      |
| Adj Sat Flow, veh/h/ln       |     |          |     | 1856 | 1856     | 1856 | 1856 | 1856     | 0    | 0           | 1856 | 1856 |
| Adj Flow Rate, veh/h         |     |          |     | 117  | 600      | 91   | 100  | 256      | 0    | 0           | 117  | 6    |
| Peak Hour Factor             |     |          |     | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90        | 0.90 | 0.90 |
| Percent Heavy Veh, %         |     |          |     | 3    | 3        | 3    | 3    | 3        | 0    | 0           | 3    | 3    |
| Cap, veh/h                   |     |          |     | 167  | 894      | 142  | 288  | 419      | 0    | 0           | 546  | 28   |
| Arrive On Green              |     |          |     | 0.33 | 0.33     | 0.33 | 0.31 | 0.31     | 0.00 | 0.00        | 0.31 | 0.31 |
| Sat Flow, veh/h              |     |          |     | 499  | 2681     | 426  | 343  | 1341     | 0.00 | 0.00        | 1744 | 89   |
| Grp Volume(v), veh/h         |     |          |     | 429  | 0        | 379  | 356  | 0        | 0    | 0           | 0    | 123  |
| Grp Sat Flow(s), veh/h/ln    |     |          |     | 1831 | 0        | 1777 | 1683 | 0        | 0    | 0           | 0    | 1833 |
|                              |     |          |     | 5.2  | 0.0      | 4.6  | 2.6  | 0.0      | 0.0  | 0.0         | 0.0  | 1.3  |
| Q Serve(g_s), s              |     |          |     | 5.2  | 0.0      | 4.6  | 4.5  |          | 0.0  | 0.0         |      | 1.3  |
| Cycle Q Clear(g_c), s        |     |          |     |      | 0.0      |      |      | 0.0      |      |             | 0.0  |      |
| Prop In Lane                 |     |          |     | 0.27 | ^        | 0.24 | 0.28 | 0        | 0.00 | 0.00        | ^    | 0.05 |
| Lane Grp Cap(c), veh/h       |     |          |     | 610  | 0        | 592  | 708  | 0        | 0    | 0           | 0    | 574  |
| V/C Ratio(X)                 |     |          |     | 0.70 | 0.00     | 0.64 | 0.50 | 0.00     | 0.00 | 0.00        | 0.00 | 0.21 |
| Avail Cap(c_a), veh/h        |     |          |     | 1798 | 0        | 1745 | 1158 | 0        | 0    | 0           | 0    | 1081 |
| HCM Platoon Ratio            |     |          |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)           |     |          |     | 1.00 | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 | 0.00        | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     |     |          |     | 7.4  | 0.0      | 7.2  | 7.5  | 0.0      | 0.0  | 0.0         | 0.0  | 6.4  |
| Incr Delay (d2), s/veh       |     |          |     | 0.6  | 0.0      | 0.4  | 0.2  | 0.0      | 0.0  | 0.0         | 0.0  | 0.1  |
| Initial Q Delay(d3),s/veh    |     |          |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(95%),veh/ln     |     |          |     | 2.0  | 0.0      | 1.7  | 1.6  | 0.0      | 0.0  | 0.0         | 0.0  | 0.5  |
| Unsig. Movement Delay, s/veh |     |          |     |      |          |      |      |          |      |             |      |      |
| LnGrp Delay(d),s/veh         |     |          |     | 7.9  | 0.0      | 7.6  | 7.7  | 0.0      | 0.0  | 0.0         | 0.0  | 6.5  |
| LnGrp LOS                    |     |          |     | Α    | Α        | Α    | Α    | Α        | Α    | Α           | Α    | Α    |
| Approach Vol, veh/h          |     |          |     |      | 808      |      |      | 356      |      |             | 123  |      |
| Approach Delay, s/veh        |     |          |     |      | 7.8      |      |      | 7.7      |      |             | 6.5  |      |
| Approach LOS                 |     |          |     |      | Α        |      |      | Α        |      |             | Α    |      |
| Timer - Assigned Phs         |     | 2        |     | 4    |          |      |      | 8        |      |             |      |      |
| Phs Duration (G+Y+Rc), s     |     | 13.5     |     | 12.0 |          |      |      | 12.0     |      |             |      |      |
| Change Period (Y+Rc), s      |     | * 5      |     | * 4  |          |      |      | * 4      |      |             |      |      |
| Max Green Setting (Gmax), s  |     | * 25     |     | * 15 |          |      |      | * 15     |      |             |      |      |
| Max Q Clear Time (g_c+l1), s |     | 7.2      |     | 3.3  |          |      |      | 6.5      |      |             |      |      |
| Green Ext Time (p_c), s      |     | 1.2      |     | 0.2  |          |      |      | 0.6      |      |             |      |      |
| Intersection Summary         |     |          |     |      |          |      |      |          |      |             |      |      |
| ·                            |     |          | 7.6 |      |          |      |      |          |      |             |      |      |
| HCM 6th Ctrl Delay           |     |          |     |      |          |      |      |          |      |             |      |      |
| HCM 6th LOS                  |     |          | Α   |      |          |      |      |          |      |             |      |      |
| Notes                        |     |          |     |      |          |      |      |          |      |             |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Movement   EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       | <b>→</b> | •    | •   | •   | •   | •    | <b>†</b> | /    | /    | <b>↓</b> | ✓    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|------|-----|-----|-----|------|----------|------|------|----------|------|--|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Movement EBL                            | EBT      | EBR  | WBL | WBT | WBR | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Traffic Volume (veh/h) 5 725 110 0 0 0 0 310 90 65 150 0   Petr-Bike Adj(A_pbT) 1.00 0 0 0 0 310 90 65 150 0   Initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |      |     |     |     |      |          |      |      |          | 02.1 |  |
| Future Volume (veh/h) 5 725 110 0 0 0 310 90 65 150 0 1nitial Q (Db), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | 110  | 0   | 0   | 0   | 0    |          | 90   | 65   |          | 0    |  |
| Initial Q (Qb), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Ped-Bike Adj(A_pbT) 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ` ,                                     |          |      |     | , , |     |      |          |      |      |          |      |  |
| Parking Bus, Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , ,   | U        |      |     |     |     |      | U        |      |      | U        |      |  |
| Work Zöne On Ápproach         No         No         No         No           Adj Stal Flow, veh/h/h         1856         1856         1856         0         1856         1856         0         0         Adj Flow Rate, veh/h         6         806         88         0         344         72         72         167         0         0         0         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 1 00     |      |     |     |     |      | 1 00     |      |      | 1 00     |      |  |
| Adj Sat Flow, veh/h/ln 1856 1856 1856 0 0 1856 1856 1856 1856 1856 0 0 Adj Flow Rate, veh/h 6 806 88 0 344 72 72 167 0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                |          | 1.00 |     |     |     | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Adj Flow Rate, veh/h 6 806 88 0 344 72 72 167 0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • • |          | 1856 |     |     |     | Λ    |          | 1856 | 1856 |          | Λ    |  |
| Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Percent Heavy Veh, % 3 3 3 3 0 0 3 3 3 3 3 0 Cap, veh/h 8 1136 131 0 500 105 222 354 0 Arrive On Green 0.35 0.35 0.35 0.00 0.34 0.34 0.34 0.00 O.34 0.34 0.00 O.34 0.34 0.34 0.00 O.34 0.34 0.34 0.00 O.34 0.34 0.34 0.00 O.34 0.34 0.34 0.34 0.30 O.35 0.35 0.00 0.34 0.34 0.34 0.34 0.30 O.35 0.35 O.00 0.34 0.34 0.34 0.34 0.30 O.35 O.35 O.00 0.34 0.34 0.34 0.34 0.30 O.34 O.34 0.34 0.34 0.30 O.34 O.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Cap, veh/h  8 1136 131  0 500 105 222 354 0  Arrive On Green 0.35 0.35 0.35 0.00 0.34 0.34 0.34 0.34 0.00  Sat Flow, veh/h  23 3241 374  0 1473 308 177 1041 0  Grp Volume(v), veh/h  480 0 420  0 0 0 416 239 0 0  Grp Sat Flow(s), veh/h/lin1854 0 1783 0 0 1781 1218 0  Q Serve(g_s), s 6.6 0.0 5.8 0.0 0.0 5.8 0.5 0.0 0.0  Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 6.3 0.0 0.0  Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 6.3 0.0 0.0  V/C Ratio(X)  0 0 605 575 0 0  V/C Ratio(X)  0 0 0 605 575 0 0  V/C Ratio(X)  0 0 0 605 575 0 0  V/C Ratio(X)  0 0 0 605 575 0 0  V/C Ratio(X)  0 0 0 0.00 0.00 0.00 0.00  Avail Cap(c_a), veh/h 1597 0 1536 0 0 920 831 0 0  Upstream Filter(I)  1 0 0 0.00 1.00 1.00 1.00 1.00  Upstream Filter(I)  1 0 0 0.00 1.00 0.00 0.00 0.00  Uniform Delay (d), s/veh 8.3 0.0 8.0 0.0 0.0 8.3 7.4 0.0 0.0  Wile BackOfQ(95%), veh/li2.9 0.0 0.5 0.0 0.0  Wile BackOfQ(95%), veh/li2.9 0.0 2.5 0.0 0.0  Unsig. Movement Delay, s/veh  LnGrp Delay(d), s/veh  8.7 8.8 7.6  Approach Delay, s/veh  A A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A A A A  A A A A |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Arrive On Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Sat Flow, veh/h         23         3241         374         0         1473         308         177         1041         0           Grp Volume(v), veh/h         480         0         420         0         0         416         239         0         0           Grp Sat Flow(s), veh/h/ln1854         0         1783         0         0         1781         1218         0         0           Q Serve(g_s), s         6.6         0.0         5.8         0.0         0.0         5.8         0.0         0.0         5.8         0.0         0.0         5.8         0.0         0.0         5.8         0.0         0.0         5.8         6.3         0.0         0.0           Cycle Q Clear(g_c), s         6.6         0.0         5.8         0.0         0.0         5.8         6.3         0.0         0.0           Prop In Lane         0.01         0.21         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 /                                     |          |      |     |     |     |      |          |      |      |          |      |  |
| Grp Volume(v), veh/h 480 0 420 0 0 0 416 239 0 0 Grp Sat Flow(s), veh/h/ln1854 0 1783 0 0 1781 1218 0 0 Q Serve(g_s), s 6.6 0.0 5.8 0.0 0.0 5.8 0.5 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 0.5 5.8 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 0.6 0.0 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 0.6 0.0 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 0.6 0.0 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Grp Sat Flow(s),veh/h/ln1854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Q Serve(g_s), s 6.6 0.0 5.8 0.0 0.0 5.8 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 5.8 0.0 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 0.0 5.8 6.3 0.0 0.0 Cycle Q Clear(g_c), s 6.6 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Cycle Q Clear(g_c), s         6.6         0.0         5.8         0.0         0.0         5.8         6.3         0.0         0.0           Prop In Lane         0.01         0.21         0.00         0.17         0.30         0.00           Lane Grp Cap(c), veh/h         650         0         625         0         0         605         575         0         0           V/C Ratio(X)         0.74         0.00         0.67         0.00         0.00         0.69         0.42         0.00         0.00           V/C Ratio(X)         0.74         0.00         0.67         0.00         0.00         0.69         0.42         0.00         0.00           V/C Ratio(X)         0.74         0.00         0.67         0.00         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . ,                                     |          |      |     |     |     |      |          |      |      |          |      |  |
| Prop In Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0- //                                  |          |      |     |     |     |      |          |      |      |          |      |  |
| Lane Grp Cap(c), veh/h 650 0 625 0 0 0 605 575 0 0 0  V/C Ratio(X) 0.74 0.00 0.67 0.00 0.00 0.69 0.42 0.00 0.00  Avail Cap(c_a), veh/h 1597 0 1536 0 0 0 920 831 0 0  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , (0- ):                                | 0.0      |      |     |     |     |      | 0.0      |      |      | 0.0      |      |  |
| V/C Ratio(X)       0.74       0.00       0.67       0.00       0.00       0.69       0.42       0.00       0.00         Avail Cap(c_a), veh/h       1597       0       1536       0       0       920       831       0       0         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                       |          |      |     |     |     |      |          |      |      |          |      |  |
| Avail Cap(c_a), veh/h 1597 0 1536 0 0 920 831 0 0  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lane Grp Cap(c), veh/h 650              | 0        |      |     |     |     |      |          |      |      |          |      |  |
| HCM Platoon Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V/C Ratio(X) 0.74                       |          |      |     |     |     | 0.00 | 0.00     |      |      | 0.00     | 0.00 |  |
| Upstream Filter(I)       1.00       0.00       1.00       0.00       0.00       1.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avail Cap(c_a), veh/h 1597              | 0        | 1536 |     |     |     | 0    | 0        | 920  | 831  | 0        |      |  |
| Uniform Delay (d), s/veh 8.3 0.0 8.0 0.0 0.0 8.3 7.4 0.0 0.0 lncr Delay (d2), s/veh 0.6 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 lnitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCM Platoon Ratio 1.00                  | 1.00     | 1.00 |     |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Incr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Upstream Filter(I) 1.00                 | 0.00     | 1.00 |     |     |     | 0.00 | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 |  |
| Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uniform Delay (d), s/veh 8.3            | 0.0      | 8.0  |     |     |     | 0.0  | 0.0      | 8.3  | 7.4  | 0.0      | 0.0  |  |
| %ile BackOfQ(95%), veh/lr2.9       0.0       2.5       0.0       0.0       2.5       1.3       0.0       0.0         Unsig. Movement Delay, s/veh       8.9       0.0       8.5       0.0       0.0       8.8       7.6       0.0       0.0         LnGrp Delay(d),s/veh       8.9       0.0       8.5       0.0       0.0       8.8       7.6       0.0       0.0         LnGrp LOS       A       A       A       A       A       A       A       A         Approach Vol, veh/h       900       416       239       239       239       239       239       24       239       24       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Incr Delay (d2), s/veh 0.6              | 0.0      | 0.5  |     |     |     | 0.0  | 0.0      | 0.5  | 0.2  | 0.0      | 0.0  |  |
| %ile BackOfQ(95%),veh/lr2.9       0.0       2.5       0.0       0.0       2.5       1.3       0.0       0.0         Unsig. Movement Delay, s/veh       0.0       0.0       8.8       7.6       0.0       0.0         LnGrp Delay(d),s/veh       8.9       0.0       8.5       0.0       0.0       8.8       7.6       0.0       0.0         LnGrp LOS       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initial Q Delay(d3),s/veh 0.0           | 0.0      | 0.0  |     |     |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| Unsig. Movement Delay, s/veh  _nGrp Delay(d),s/veh 8.9 0.0 8.5 0.0 0.0 8.8 7.6 0.0 0.0  _nGrp LOS A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0.0      | 2.5  |     |     |     | 0.0  | 0.0      | 2.5  | 1.3  | 0.0      | 0.0  |  |
| Approach Vol, veh/h 900 416 239 Approach LOS A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 1        |      |     |     |     |      |          |      |      |          |      |  |
| LnGrp LOS         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                |          | 8.5  |     |     |     | 0.0  | 0.0      | 8.8  | 7.6  | 0.0      | 0.0  |  |
| Approach Vol, veh/h 900 416 239 Approach Delay, s/veh 8.7 8.8 7.6 Approach LOS A A A A  Timer - Assigned Phs 2 4 8 Phs Duration (G+Y+Rc), s 15.2 13.9 13.9 Change Period (Y+Rc), s *5 *4 *4 Max Green Setting (Gmax), s *25 *15 *15 Max Q Clear Time (g_c+l1), s 8.6 8.3 7.8 Green Ext Time (p_c), s 1.3 0.3 0.6  Intersection Summary HCM 6th Ctrl Delay 8.5 HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Approach Delay, s/veh 8.7  Approach LOS A A A A  Timer - Assigned Phs 2 4 8  Phs Duration (G+Y+Rc), s 15.2 13.9 13.9  Change Period (Y+Rc), s *5 *4 *4  Max Green Setting (Gmax), s *25 *15 *15  Max Q Clear Time (g_c+l1), s 8.6 8.3 7.8  Green Ext Time (p_c), s 1.3 0.3 0.6  Intersection Summary  HCM 6th Ctrl Delay 8.5  HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Approach LOS A A A  Timer - Assigned Phs 2 4 8  Phs Duration (G+Y+Rc), s 15.2 13.9 13.9  Change Period (Y+Rc), s *5 *4 *4  Max Green Setting (Gmax), s *25 *15 *15  Max Q Clear Time (g_c+I1), s 8.6 8.3 7.8  Green Ext Time (p_c), s 1.3 0.3 0.6  Intersection Summary  HCM 6th Ctrl Delay 8.5  HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Timer - Assigned Phs       2       4       8         Phs Duration (G+Y+Rc), s       15.2       13.9       13.9         Change Period (Y+Rc), s       * 5       * 4       * 4         Max Green Setting (Gmax), s       * 25       * 15       * 15         Max Q Clear Time (g_c+l1), s       8.6       8.3       7.8         Green Ext Time (p_c), s       1.3       0.3       0.6         Intersection Summary         HCM 6th Ctrl Delay       8.5         HCM 6th LOS       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                     |          |      |     |     |     |      |          |      |      |          |      |  |
| Phs Duration (G+Y+Rc), s 15.2 13.9 13.9  Change Period (Y+Rc), s *5 *4 *4  Max Green Setting (Gmax), s *25 *15 *15  Max Q Clear Time (g_c+l1), s 8.6 8.3 7.8  Green Ext Time (p_c), s 1.3 0.3 0.6  Intersection Summary  HCM 6th Ctrl Delay 8.5  HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |      |     |     |     |      |          |      |      | ,,,      |      |  |
| Change Period (Y+Rc), s       * 5       * 4       * 4         Max Green Setting (Gmax), s       * 25       * 15       * 15         Max Q Clear Time (g_c+l1), s       8.6       8.3       7.8         Green Ext Time (p_c), s       1.3       0.3       0.6         Intersection Summary         HCM 6th Ctrl Delay       8.5         HCM 6th LOS       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                       |          |      |     |     |     |      |          |      |      |          |      |  |
| Max Green Setting (Gmax), s       * 25       * 15       * 15         Max Q Clear Time (g_c+l1), s       8.6       8.3       7.8         Green Ext Time (p_c), s       1.3       0.3       0.6         Intersection Summary         HCM 6th Ctrl Delay       8.5         HCM 6th LOS       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Max Q Clear Time (g_c+l1), s       8.6       8.3       7.8         Green Ext Time (p_c), s       1.3       0.3       0.6         Intersection Summary         HCM 6th Ctrl Delay       8.5         HCM 6th LOS       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ` ,                                     |          |      |     |     |     |      | -        |      |      |          |      |  |
| Green Ext Time (p_c), s         1.3         0.3         0.6           Intersection Summary         HCM 6th Ctrl Delay         8.5           HCM 6th LOS         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | * 25     |      |     |     |     |      | * 15     |      |      |          |      |  |
| Green Ext Time (p_c), s         1.3         0.3         0.6           Intersection Summary         HCM 6th Ctrl Delay         8.5           HCM 6th LOS         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max Q Clear Time (g_c+I1), s            | 8.6      |      | 8.3 |     |     |      | 7.8      |      |      |          |      |  |
| HCM 6th Ctrl Delay 8.5<br>HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1.3      |      | 0.3 |     |     |      | 0.6      |      |      |          |      |  |
| HCM 6th Ctrl Delay 8.5<br>HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection Summary                    |          |      |     |     |     |      |          |      |      |          |      |  |
| HCM 6th LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          | 8.5  |     |     |     |      |          |      |      |          |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |      |     |     |     |      |          |      |      |          |      |  |
| Notos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                   |          | , ,  |     |     |     |      |          |      |      |          |      |  |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |                                                |       |       |        |        |        |        |      |      |        |      |      |
|------------------------|------------------------------------------------|-------|-------|--------|--------|--------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 1.7                                            |       |       |        |        |        |        |      |      |        |      |      |
| Movement               | EBL                                            | EBT   | EBR   | WBL    | WBT    | WBR    | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |                                                | 4     |       |        | 4      |        |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 40                                             | 5     | 0     | 5      | 5      | 10     | 0      | 345  | 5    | 5      | 215  | 25   |
| Future Vol, veh/h      | 40                                             | 5     | 0     | 5      | 5      | 10     | 0      | 345  | 5    | 5      | 215  | 25   |
| Conflicting Peds, #/hr | 7                                              | 0     | 2     | 2      | 0      | 7      | 23     | 0    | 24   | 14     | 0    | 13   |
| Sign Control           | Stop                                           | Stop  | Stop  | Stop   | Stop   | Stop   | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -                                              | -     | None  | -      | -      | None   | -      | -    | None | -      | -    | None |
| Storage Length         | -                                              | -     | -     | -      | -      | -      | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e, # -                                         | 0     | -     | -      | 0      | -      | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -                                              | 0     | -     | -      | 0      | -      | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90                                             | 90    | 90    | 90     | 90     | 90     | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3                                              | 3     | 3     | 3      | 3      | 3      | 3      | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow              | 44                                             | 6     | 0     | 6      | 6      | 11     | 0      | 383  | 6    | 6      | 239  | 28   |
|                        |                                                |       |       |        |        |        |        |      |      |        |      |      |
| Major/Minor I          | Minor2                                         |       |       | Minor1 |        |        | Major1 |      | N    | Major2 |      |      |
| Conflicting Flow All   | 690                                            | 701   | 278   | 680    | 712    | 417    | 290    | 0    | 0    | 413    | 0    | 0    |
| Stage 1                | 288                                            | 288   | -     | 410    | 410    | -      | -      | -    | -    | -      | -    | -    |
| Stage 2                | 402                                            | 413   | -     | 270    | 302    | -      | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.13                                           | 6.53  | 6.23  | 7.13   | 6.53   | 6.23   | 4.13   | -    | -    | 4.13   | -    | -    |
| Critical Hdwy Stg 1    | 6.13                                           | 5.53  | -     | 6.13   | 5.53   | -      | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.13                                           | 5.53  | -     | 6.13   | 5.53   | -      | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.527                                          | 4.027 | 3.327 | 3.527  | 4.027  | 3.327  | 2.227  | -    | -    | 2.227  | -    | -    |
| Pot Cap-1 Maneuver     | 358                                            | 362   | 758   | 364    | 356    | 634    | 1266   | -    | -    | 1141   | -    | -    |
| Stage 1                | 717                                            | 672   | -     | 617    | 594    | -      | -      | -    | -    | -      | -    | -    |
| Stage 2                | 623                                            | 592   | -     | 734    | 662    | -      | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |                                                |       |       |        |        |        |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 336                                            | 344   | 740   | 349    | 338    | 615    | 1238   | -    | -    | 1115   | -    | -    |
| Mov Cap-2 Maneuver     | 336                                            | 344   | -     | 349    | 338    | -      | -      | -    | -    | -      | -    | -    |
| Stage 1                | 701                                            | 653   | -     | 603    | 580    | -      | -      | -    | -    | -      | -    | -    |
| Stage 2                | 602                                            | 578   | -     | 722    | 643    | -      | -      | -    | -    | -      | -    | -    |
|                        |                                                |       |       |        |        |        |        |      |      |        |      |      |
| Approach               | EB                                             |       |       | WB     |        |        | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 17.5                                           |       |       | 13.6   |        |        | 0      |      |      | 0.2    |      |      |
| HCM LOS                | С                                              |       |       | В      |        |        |        |      |      |        |      |      |
|                        |                                                |       |       |        |        |        |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt                                             | NBL   | NBT   | NBR    | EBLn1V | VBL n1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       | <u>.                                      </u> | 1238  |       | -      |        | 441    | 1115   |      |      |        |      |      |
| HCM Lane V/C Ratio     |                                                |       | _     |        | 0.148  |        | 0.005  | _    | _    |        |      |      |
| HCM Control Delay (s)  |                                                | 0     | _     | _      |        | 13.6   | 8.2    | 0    | _    |        |      |      |
| HCM Lane LOS           |                                                | A     | _     | _      | C      | В      | A      | A    | _    |        |      |      |
| HCM 95th %tile Q(veh)  | )                                              | 0     | -     | -      | 0.5    | 0.2    | 0      | -    | -    |        |      |      |
|                        |                                                |       |       |        |        |        |        |      |      |        |      |      |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | 4    | 1    | <b>†</b>   | ~    | <b>/</b> | <del> </del> | 4    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|--------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT          | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>∱</b> β |      | ሻ        | <b>ተ</b> ኈ   |      |
| Traffic Volume (veh/h)       | 10   | 40       | 70   | 5    | 60       | 10   | 50   | 535        | 5    | 10       | 525          | 5    |
| Future Volume (veh/h)        | 10   | 40       | 70   | 5    | 60       | 10   | 50   | 535        | 5    | 10       | 525          | 5    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0            | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.98 | 0.99 |          | 0.98 | 1.00 |            | 0.98 | 1.00     |              | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No           |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856         | 1856 |
| Adj Flow Rate, veh/h         | 11   | 44       | 8    | 6    | 67       | 1    | 56   | 594        | 5    | 11       | 583          | 5    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90         | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3            | 3    |
| Cap, veh/h                   | 199  | 177      | 30   | 170  | 232      | 3    | 621  | 1797       | 15   | 615      | 1797         | 15   |
| Arrive On Green              | 0.14 | 0.14     | 0.14 | 0.14 | 0.14     | 0.14 | 0.50 | 0.50       | 0.50 | 0.50     | 0.50         | 0.50 |
| Sat Flow, veh/h              | 218  | 1285     | 219  | 101  | 1686     | 24   | 820  | 3582       | 30   | 812      | 3582         | 31   |
| Grp Volume(v), veh/h         | 63   | 0        | 0    | 74   | 0        | 0    | 56   | 292        | 307  | 11       | 287          | 301  |
| Grp Sat Flow(s),veh/h/ln     | 1722 | 0        | 0    | 1811 | 0        | 0    | 820  | 1763       | 1849 | 812      | 1763         | 1850 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 1.1  | 2.5        | 2.5  | 0.2      | 2.4          | 2.4  |
| Cycle Q Clear(g_c), s        | 8.0  | 0.0      | 0.0  | 0.9  | 0.0      | 0.0  | 3.5  | 2.5        | 2.5  | 2.7      | 2.4          | 2.4  |
| Prop In Lane                 | 0.17 |          | 0.13 | 0.08 |          | 0.01 | 1.00 |            | 0.02 | 1.00     |              | 0.02 |
| Lane Grp Cap(c), veh/h       | 406  | 0        | 0    | 405  | 0        | 0    | 621  | 885        | 928  | 615      | 885          | 928  |
| V/C Ratio(X)                 | 0.16 | 0.00     | 0.00 | 0.18 | 0.00     | 0.00 | 0.09 | 0.33       | 0.33 | 0.02     | 0.32         | 0.32 |
| Avail Cap(c_a), veh/h        | 1868 | 0        | 0    | 1955 | 0        | 0    | 1852 | 3532       | 3706 | 1835     | 3532         | 3707 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Uniform Delay (d), s/veh     | 9.6  | 0.0      | 0.0  | 9.7  | 0.0      | 0.0  | 4.7  | 3.7        | 3.7  | 4.5      | 3.7          | 3.7  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.1  | 0.3        | 0.3  | 0.0      | 0.3          | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0          | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 0.4  | 0.0      | 0.0  | 0.5  | 0.0      | 0.0  | 0.2  | 0.5        | 0.5  | 0.0      | 0.5          | 0.5  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |              |      |
| LnGrp Delay(d),s/veh         | 9.7  | 0.0      | 0.0  | 9.7  | 0.0      | 0.0  | 4.8  | 4.0        | 4.0  | 4.5      | 4.0          | 4.0  |
| LnGrp LOS                    | Α    | Α        | Α    | Α    | Α        | Α    | Α    | Α          | Α    | Α        | Α            | A    |
| Approach Vol, veh/h          |      | 63       |      |      | 74       |      |      | 655        |      |          | 599          |      |
| Approach Delay, s/veh        |      | 9.7      |      |      | 9.7      |      |      | 4.1        |      |          | 4.0          |      |
| Approach LOS                 |      | Α        |      |      | Α        |      |      | Α          |      |          | Α            |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |              |      |
| Phs Duration (G+Y+Rc), s     |      | 17.5     |      | 7.4  |          | 17.5 |      | 7.4        |      |          |              |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |              |      |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |      | 25.0       |      |          |              |      |
| Max Q Clear Time (g_c+I1), s |      | 5.5      |      | 2.8  |          | 4.7  |      | 2.9        |      |          |              |      |
| Green Ext Time (p_c), s      |      | 6.8      |      | 0.2  |          | 6.2  |      | 0.2        |      |          |              |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |              |      |
| HCM 6th Ctrl Delay           |      |          | 4.6  |      |          |      |      |            |      |          |              |      |
| HCM 6th LOS                  |      |          | A    |      |          |      |      |            |      |          |              |      |

| Intersection             |        |      |        |       |        |      |
|--------------------------|--------|------|--------|-------|--------|------|
| Int Delay, s/veh         | 6.5    |      |        |       |        |      |
| Movement                 | WBL    | WBR  | NBT    | NBR   | SBL    | SBT  |
| Lane Configurations      | ¥      |      | ĵ.     |       |        | 4    |
| Traffic Vol, veh/h       | 5      | 110  | 35     | 5     | 110    | 25   |
| Future Vol, veh/h        | 5      | 110  | 35     | 5     | 110    | 25   |
| Conflicting Peds, #/hr   | 0      | 1    | 0      | 4     | 4      | 0    |
| Sign Control             | Stop   | Stop | Free   | Free  | Free   | Free |
| RT Channelized           | -      | None | -      | None  | -      | None |
| Storage Length           | 0      | -    | _      | -     | _      | -    |
| Veh in Median Storage    |        | _    | 0      | _     | _      | 0    |
| Grade, %                 | 0      | _    | 0      | _     | _      | 0    |
| Peak Hour Factor         | 90     | 90   | 90     | 90    | 90     | 90   |
| Heavy Vehicles, %        | 3      | 3    | 3      | 3     | 3      | 3    |
| Mymt Flow                | 6      | 122  | 39     | 6     | 122    | 28   |
| IVIVIIIL FIOW            | O      | 122  | 39     | O     | 122    | 20   |
|                          |        |      |        |       |        |      |
| Major/Minor I            | Minor1 | N    | Major1 | ı     | Major2 |      |
| Conflicting Flow All     | 318    | 47   | 0      | 0     | 49     | 0    |
| Stage 1                  | 46     | _    | _      | _     | _      | _    |
| Stage 2                  | 272    | _    | _      | _     | _      | _    |
| Critical Hdwy            | 6.43   | 6.23 | _      | _     | 4.13   | _    |
| Critical Hdwy Stg 1      | 5.43   | 0.20 | _      | _     | T. 10  | _    |
| Critical Hdwy Stg 2      | 5.43   | _    |        | _     | _      | _    |
| Follow-up Hdwy           | 3.527  |      | _      | _     | 2.227  | _    |
| Pot Cap-1 Maneuver       | 673    | 1019 |        | _     | 1551   |      |
|                          | 974    | 1019 | _      | _     | 1001   | _    |
| Stage 1                  | 771    |      |        | _     |        |      |
| Stage 2                  | 771    | -    | -      | -     | -      | -    |
| Platoon blocked, %       | 040    | 4044 | -      | -     | 4545   | -    |
| Mov Cap-1 Maneuver       | 616    | 1014 | -      | -     | 1545   | -    |
| Mov Cap-2 Maneuver       | 616    | -    | -      | -     | -      | -    |
| Stage 1                  | 970    | -    | -      | -     | -      | -    |
| Stage 2                  | 709    | -    | -      | -     | -      | -    |
|                          |        |      |        |       |        |      |
| Approach                 | WB     |      | NB     |       | SB     |      |
| HCM Control Delay, s     | 9.2    |      | 0      |       | 6.1    |      |
| HCM LOS                  |        |      | U      |       | 0.1    |      |
| HCWI LOS                 | Α      |      |        |       |        |      |
|                          |        |      |        |       |        |      |
| Minor Lane/Major Mvm     | nt     | NBT  | NBRV   | VBLn1 | SBL    | SBT  |
| Capacity (veh/h)         |        | _    | _      | 986   | 1545   | _    |
| HCM Lane V/C Ratio       |        | _    | _      |       | 0.079  | _    |
| HCM Control Delay (s)    |        | _    | _      | 9.2   | 7.5    | 0    |
| HCM Lane LOS             |        | _    | _      | A     | Α.     | A    |
| HCM 95th %tile Q(veh)    | ١      | _    |        | 0.4   | 0.3    |      |
| HOW JOHN JOHN WIVE WIVEH | )      |      |        | 0.4   | 0.5    |      |

| Intersection                                              |           |              |                 |              |             |      |
|-----------------------------------------------------------|-----------|--------------|-----------------|--------------|-------------|------|
| Int Delay, s/veh                                          | 6.6       |              |                 |              |             |      |
| Movement                                                  | EBL       | EBR          | NBL             | NBT          | SBT         | SBR  |
| Lane Configurations                                       | ¥         | LDIK         | TIDE            | <u>↑</u>     | <b>1</b> 30 | ODIN |
| Traffic Vol, veh/h                                        | 25        | 105          | 110             | 35           | 30          | 15   |
| Future Vol, veh/h                                         | 25        | 105          | 110             | 35           | 30          | 15   |
| Conflicting Peds, #/hr                                    | 1         | 2            | 2               | 0            | 0           | 4    |
| Sign Control                                              | Stop      | Stop         | Free            | Free         | Free        | Free |
| RT Channelized                                            | Stop<br>- | None         | -               |              | -           | None |
| Storage Length                                            | 0         | -            | _               | NOHE         | _           | None |
|                                                           |           |              |                 | 0            | 0           | -    |
| Veh in Median Storage,                                    |           | -            | -               |              |             | -    |
| Grade, %                                                  | 0         | -            | -               | 0            | 0           | -    |
| Peak Hour Factor                                          | 90        | 90           | 90              | 90           | 90          | 90   |
| Heavy Vehicles, %                                         | 3         | 3            | 3               | 3            | 3           | 3    |
| Mvmt Flow                                                 | 28        | 117          | 122             | 39           | 33          | 17   |
|                                                           |           |              |                 |              |             |      |
| Major/Minor N                                             | Minor2    | ı            | Major1          | N            | /lajor2     |      |
| Conflicting Flow All                                      | 330       | 48           | 54              | 0            | -<br>-      | 0    |
| Stage 1                                                   | 46        | -            | J <del>-1</del> | U            | _           | -    |
| Stage 2                                                   | 284       | _            | _               | -            | -           | _    |
|                                                           |           | 6.23         | 4.13            | <del>-</del> | -           |      |
| Critical Hdwy                                             | 6.43      |              | 4.13            | -            | -           |      |
| Critical Hdwy Stg 1                                       | 5.43      | -            | -               | -            | -           | -    |
| Critical Hdwy Stg 2                                       | 5.43      | -            | -               | -            | -           | -    |
|                                                           | 3.527     |              |                 | -            | -           | -    |
| Pot Cap-1 Maneuver                                        | 663       | 1018         | 1545            | -            | -           | -    |
| Stage 1                                                   | 974       | -            | -               | -            | -           | -    |
| Stage 2                                                   | 762       | -            | -               | -            | -           | -    |
| Platoon blocked, %                                        |           |              |                 | -            | -           | -    |
| Mov Cap-1 Maneuver                                        | 605       | 1012         | 1539            | -            | -           | -    |
| Mov Cap-2 Maneuver                                        | 605       | -            | -               | -            | -           | -    |
| Stage 1                                                   | 891       | -            | -               | -            | -           | -    |
| Stage 2                                                   | 759       | -            | -               | _            | -           | -    |
| J                                                         |           |              |                 |              |             |      |
|                                                           |           |              | ND              |              | 0.0         |      |
| Approach                                                  | EB        |              | NB              |              | SB          |      |
| HCM Control Delay, s                                      | 9.8       |              | 5.7             |              | 0           |      |
| HCM LOS                                                   | Α         |              |                 |              |             |      |
|                                                           |           |              |                 |              |             |      |
|                                                           | +         | NBL          | NRTI            | EBLn1        | SBT         | SBR  |
| Minor Lang/Major Mum                                      | l .       |              |                 |              | 301         | SDIX |
| Minor Lane/Major Mvm                                      |           |              |                 | XUh          | -           | -    |
| Capacity (veh/h)                                          |           | 1539         | -               |              |             |      |
| Capacity (veh/h) HCM Lane V/C Ratio                       |           | 0.079        | -               | 0.161        | -           | -    |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) |           | 0.079<br>7.5 | -               | 0.161<br>9.8 | -           | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                       |           | 0.079        | -               | 0.161        |             |      |

| Intersection           |         |       |          |        |      |          |        |       |        |        |       |       |
|------------------------|---------|-------|----------|--------|------|----------|--------|-------|--------|--------|-------|-------|
| Int Delay, s/veh       | 3.4     |       |          |        |      |          |        |       |        |        |       |       |
| Movement               | EBL     | EBT   | EBR      | WBL    | WBT  | WBR      | NBL    | NBT   | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations    |         | 4     |          |        | 4    |          |        | 4     |        |        | 4     |       |
| Traffic Vol, veh/h     | 5       | 110   | 5        | 5      | 100  | 5        | 5      | 25    | 5      | 5      | 35    | 25    |
| Future Vol, veh/h      | 5       | 110   | 5        | 5      | 100  | 5        | 5      | 25    | 5      | 5      | 35    | 25    |
| Conflicting Peds, #/hr | 1       | 0     | 1        | 0      | 0    | 0        | 0      | 0     | 0      | 0      | 0     | 0     |
| Sign Control           | Free    | Free  | Free     | Free   | Free | Free     | Stop   | Stop  | Stop   | Stop   | Stop  | Stop  |
| RT Channelized         | -       | -     | None     | -      | -    | None     | -      | -     | None   | -      | -     | None  |
| Storage Length         | -       | -     | -        | -      | -    | -        | -      | -     | -      | -      | -     | -     |
| Veh in Median Storage, | ,# -    | 0     | -        | -      | 0    | -        | -      | 0     | -      | -      | 0     | -     |
| Grade, %               | -       | 0     | -        | -      | 0    | -        | -      | 0     | -      | -      | 0     | -     |
| Peak Hour Factor       | 90      | 90    | 90       | 90     | 90   | 90       | 90     | 90    | 90     | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3       | 3     | 3        | 3      | 3    | 3        | 3      | 3     | 3      | 3      | 3     | 3     |
| Mvmt Flow              | 6       | 122   | 6        | 6      | 111  | 6        | 6      | 28    | 6      | 6      | 39    | 28    |
|                        |         |       |          |        |      |          |        |       |        |        |       |       |
| Major/Minor N          | /lajor1 |       | 1        | Major2 |      | 1        | Minor1 |       | 1      | Minor2 |       |       |
| Conflicting Flow All   | 118     | 0     | 0        | 129    | 0    | 0        | 298    | 268   | 126    | 281    | 268   | 115   |
| Stage 1                | -       | _     | -        |        | -    | -        | 138    | 138   | -      | 127    | 127   | -     |
| Stage 2                | -       | -     | -        | -      | -    | -        | 160    | 130   | -      | 154    | 141   | -     |
| Critical Hdwy          | 4.13    | -     | -        | 4.13   | -    | -        | 7.13   | 6.53  | 6.23   | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -       | -     | -        | -      | -    | -        | 6.13   | 5.53  | -      | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -       | -     | -        | -      | -    | -        | 6.13   | 5.53  | _      | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227   | -     | -        | 2.227  | -    | -        | 3.527  | 4.027 | 3.327  | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1464    | -     | -        | 1451   | -    | -        | 652    | 636   | 922    | 669    | 636   | 935   |
| Stage 1                | -       | -     | -        | -      | -    | -        | 863    | 780   | -      | 874    | 789   | -     |
| Stage 2                | -       | -     | -        | -      | -    | -        | 840    | 787   | -      | 846    | 778   | -     |
| Platoon blocked, %     |         | -     | -        |        | -    | -        |        |       |        |        |       |       |
| Mov Cap-1 Maneuver     | 1463    | -     | -        | 1450   | -    | -        | 599    | 630   | 921    | 638    | 630   | 934   |
| Mov Cap-2 Maneuver     | -       | -     | -        | -      | -    | -        | 599    | 630   | -      | 638    | 630   | -     |
| Stage 1                | -       | -     | -        | -      | -    | -        | 859    | 776   | -      | 870    | 785   | -     |
| Stage 2                | -       | -     | -        | -      | -    | -        | 772    | 783   | -      | 808    | 774   | -     |
|                        |         |       |          |        |      |          |        |       |        |        |       |       |
| Approach               | EB      |       |          | WB     |      |          | NB     |       |        | SB     |       |       |
| HCM Control Delay, s   | 0.3     |       |          | 0.3    |      |          | 10.8   |       |        | 10.5   |       |       |
| HCM LOS                | 3.0     |       |          | 3.0    |      |          | В      |       |        | В      |       |       |
|                        |         |       |          |        |      |          |        |       |        |        |       |       |
| Minor Lane/Major Mvm   | t N     | NBLn1 | EBL      | EBT    | EBR  | WBL      | WBT    | WBR : | SRI n1 |        |       |       |
| Capacity (veh/h)       |         | 655   | 1463     | -      |      | 1450     | -      | -     | 721    |        |       |       |
| HCM Lane V/C Ratio     |         | 0.059 |          | _      |      | 0.004    | _      | _     | 0.1    |        |       |       |
| HCM Control Delay (s)  |         | 10.8  | 7.5      | 0      |      | 7.5      | 0      | _     | 10.5   |        |       |       |
| HCM Lane LOS           |         | В     | 7.5<br>A | A      | _    | 7.5<br>A | A      | _     | В      |        |       |       |
| HCM 95th %tile Q(veh)  |         | 0.2   | 0        | -      | _    | 0        |        | _     | 0.3    |        |       |       |
|                        |         |       |          |        |      |          |        |       |        |        |       |       |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | <b>+</b>   | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>ተ</b> ኈ |      | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 115  | 115      | 195  | 25   | 135      | 30   | 125  | 440        | 55   | 15       | 530        | 15   |
| Future Volume (veh/h)        | 115  | 115      | 195  | 25   | 135      | 30   | 125  | 440        | 55   | 15       | 530        | 15   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.98 | 1.00 |          | 1.00 | 1.00 |            | 0.97 | 1.00     |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 128  | 128      | 158  | 28   | 150      | 22   | 139  | 489        | 48   | 17       | 589        | 16   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 237  | 191      | 196  | 136  | 482      | 64   | 451  | 1481       | 145  | 480      | 1605       | 44   |
| Arrive On Green              | 0.33 | 0.33     | 0.33 | 0.33 | 0.33     | 0.33 | 0.46 | 0.46       | 0.46 | 0.46     | 0.46       | 0.46 |
| Sat Flow, veh/h              | 382  | 580      | 594  | 119  | 1464     | 196  | 807  | 3235       | 316  | 859      | 3505       | 95   |
| Grp Volume(v), veh/h         | 414  | 0        | 0    | 200  | 0        | 0    | 139  | 266        | 271  | 17       | 296        | 309  |
| Grp Sat Flow(s),veh/h/ln     | 1555 | 0        | 0    | 1779 | 0        | 0    | 807  | 1763       | 1788 | 859      | 1763       | 1838 |
| Q Serve(g_s), s              | 6.6  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 5.7  | 4.1        | 4.1  | 0.5      | 4.6        | 4.6  |
| Cycle Q Clear(g_c), s        | 10.1 | 0.0      | 0.0  | 3.5  | 0.0      | 0.0  | 10.4 | 4.1        | 4.1  | 4.7      | 4.6        | 4.6  |
| Prop In Lane                 | 0.31 |          | 0.38 | 0.14 |          | 0.11 | 1.00 |            | 0.18 | 1.00     |            | 0.05 |
| Lane Grp Cap(c), veh/h       | 624  | 0        | 0    | 683  | 0        | 0    | 451  | 807        | 819  | 480      | 807        | 842  |
| V/C Ratio(X)                 | 0.66 | 0.00     | 0.00 | 0.29 | 0.00     | 0.00 | 0.31 | 0.33       | 0.33 | 0.04     | 0.37       | 0.37 |
| Avail Cap(c_a), veh/h        | 1012 | 0        | 0    | 1115 | 0        | 0    | 1034 | 2081       | 2111 | 1100     | 2081       | 2169 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 12.7 | 0.0      | 0.0  | 10.7 | 0.0      | 0.0  | 10.9 | 7.3        | 7.3  | 8.8      | 7.5        | 7.5  |
| Incr Delay (d2), s/veh       | 0.5  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.5  | 0.3        | 0.3  | 0.0      | 0.4        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 5.3  | 0.0      | 0.0  | 2.1  | 0.0      | 0.0  | 1.6  | 2.1        | 2.1  | 0.2      | 2.4        | 2.5  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 40.0 | 0.0      | 0.0  | 44.4 |            |      | 0.0      |            | 7.0  |
| LnGrp Delay(d),s/veh         | 13.2 | 0.0      | 0.0  | 10.8 | 0.0      | 0.0  | 11.4 | 7.7        | 7.7  | 8.9      | 7.9        | 7.9  |
| LnGrp LOS                    | В    | Α        | A    | В    | A        | A    | В    | Α          | A    | A        | A          | A    |
| Approach Vol, veh/h          |      | 414      |      |      | 200      |      |      | 676        |      |          | 622        |      |
| Approach Delay, s/veh        |      | 13.2     |      |      | 10.8     |      |      | 8.4        |      |          | 7.9        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | Α          |      |          | А          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 24.4     |      | 18.0 |          | 24.4 |      | 18.0       |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |      | 25.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 12.4     |      | 12.1 |          | 6.7  |      | 5.5        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 7.0      |      | 1.7  |          | 6.4  |      | 8.0        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 9.5  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |            |      |

| Intersection             |        |  |  |  |  |  |
|--------------------------|--------|--|--|--|--|--|
| Intersection Delay, s/ve | eh11.6 |  |  |  |  |  |
| Intersection LOS         | В      |  |  |  |  |  |
|                          |        |  |  |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 5      | 395  | 5    | 5    | 255  | 10   | 5    | 10   | 15   | 10   | 5    | 5    |  |
| Future Vol, veh/h       | 5      | 395  | 5    | 5    | 255  | 10   | 5    | 10   | 15   | 10   | 5    | 5    |  |
| Peak Hour Factor        | 0.90   | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 3      | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |  |
| Mvmt Flow               | 6      | 439  | 6    | 6    | 283  | 11   | 6    | 11   | 17   | 11   | 6    | 6    |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach L  | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | ighNB  |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | t 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 12.8   |      |      | 10.3 |      |      | 8.7  |      |      | 8.9  |      |      |  |
| HCM LOS                 | В      |      |      | В    |      |      | Α    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 17%   | 1%     | 2%    | 50%   |
| Vol Thru, %            | 33%   | 98%    | 94%   | 25%   |
| Vol Right, %           | 50%   | 1%     | 4%    | 25%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 30    | 405    | 270   | 20    |
| LT Vol                 | 5     | 5      | 5     | 10    |
| Through Vol            | 10    | 395    | 255   | 5     |
| RT Vol                 | 15    | 5      | 10    | 5     |
| Lane Flow Rate         | 33    | 450    | 300   | 22    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.05  | 0.552  | 0.379 | 0.035 |
| Departure Headway (Hd) | 5.352 | 4.414  | 4.548 | 5.592 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 666   | 819    | 792   | 637   |
| Service Time           | 3.412 | 2.442  | 2.579 | 3.653 |
| HCM Lane V/C Ratio     | 0.05  | 0.549  | 0.379 | 0.035 |
| HCM Control Delay      | 8.7   | 12.8   | 10.3  | 8.9   |
| HCM Lane LOS           | Α     | В      | В     | Α     |
| HCM 95th-tile Q        | 0.2   | 3.4    | 1.8   | 0.1   |

| Int Delay, s/veh  Movement  Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow | -                                                       | EBT  340 340 0 Free None - 0 90 3 378                     | WBT 230 230 0 Free - 0 0 90 3 256                 | 90                                                      | SBL 20 20 0 Stop - 0 0 90                 | SBR  5 5 0 Stop None -           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------|----------------------------------|
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, %                                       | 5<br>5<br>3<br>Free<br>-<br>-<br>e, # -<br>90<br>3<br>6 | 340<br>340<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3 | 230<br>230<br>0<br>Free<br>-<br>0<br>0<br>90<br>3 | 25<br>25<br>3<br>Free<br>None<br>-<br>-<br>-<br>90<br>3 | 20<br>20<br>0<br>Stop<br>-<br>0<br>0<br>0 | 5<br>5<br>0<br>Stop<br>None<br>- |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, %                                       | 5<br>5<br>3<br>Free<br>-<br>-<br>e, # -<br>90<br>3<br>6 | 340<br>340<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3 | 230<br>230<br>0<br>Free<br>-<br>0<br>0<br>90<br>3 | 25<br>25<br>3<br>Free<br>None<br>-<br>-<br>-<br>90<br>3 | 20<br>20<br>0<br>Stop<br>-<br>0<br>0<br>0 | 5<br>5<br>0<br>Stop<br>None<br>- |
| Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, %                                                           | 5<br>3<br>Free<br>-<br>-<br>e, # -<br>90<br>3<br>6      | 340<br>340<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3 | 230<br>0<br>Free<br>-<br>0<br>0<br>90<br>3        | 25<br>3<br>Free<br>None<br>-<br>-<br>-<br>90<br>3       | 20<br>20<br>0<br>Stop<br>-<br>0<br>0<br>0 | 5<br>0<br>Stop<br>None<br>-<br>- |
| Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                      | 5<br>3<br>Free<br>-<br>-<br>e, # -<br>90<br>3<br>6      | 340<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3        | 230<br>0<br>Free<br>-<br>0<br>0<br>90<br>3        | 25<br>3<br>Free<br>None<br>-<br>-<br>-<br>90<br>3       | 20<br>0<br>Stop<br>-<br>0<br>0<br>0       | 5<br>0<br>Stop<br>None<br>-<br>- |
| Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                                           | 3<br>Free<br>-<br>-<br>-<br>e, # -<br>-<br>90<br>3<br>6 | 0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3               | 0<br>Free<br>-<br>0<br>0<br>90<br>3               | 3<br>Free<br>None<br>-<br>-<br>-<br>90<br>3             | 0<br>Stop<br>-<br>0<br>0<br>0             | 0<br>Stop<br>None<br>-<br>-      |
| Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                                                                     | Free 90 3 6                                             | Free None - 0 0 90 3                                      | Free - 0 0 90 3                                   | Free<br>None<br>-<br>-<br>-<br>90<br>3                  | Stop<br>0<br>0<br>0<br>0<br>90            | Stop<br>None<br>-<br>-           |
| RT Channelized<br>Storage Length<br>Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                                                                                     | -<br>e, # -<br>90<br>3                                  | None<br>-<br>0<br>0<br>90<br>3                            | 0<br>0<br>0<br>90<br>3                            | None<br>-<br>-<br>-<br>90<br>3                          | 0<br>0<br>0<br>0                          | None<br>-<br>-                   |
| Storage Length<br>Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                                                                                                       | e, # -<br>-<br>90<br>3                                  | 0<br>0<br>90<br>3                                         | 0<br>0<br>0<br>90<br>3                            | -<br>-<br>90<br>3                                       | 0<br>0<br>0<br>90                         | -<br>-<br>-                      |
| Veh in Median Storag<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %                                                                                                                                                         | e,# -<br>-<br>90<br>3<br>6                              | 0<br>0<br>90<br>3                                         | 90<br>3                                           | -<br>-<br>90<br>3                                       | 0<br>0<br>90                              | -                                |
| Grade, % Peak Hour Factor Heavy Vehicles, %                                                                                                                                                                                       | 90<br>3<br>6                                            | 90<br>3                                                   | 90<br>3                                           | 90                                                      | 0<br>90                                   | -                                |
| Peak Hour Factor<br>Heavy Vehicles, %                                                                                                                                                                                             | 3<br>6                                                  | 90                                                        | 90                                                | 90                                                      | 90                                        |                                  |
| Heavy Vehicles, %                                                                                                                                                                                                                 | 3<br>6                                                  | 3                                                         | 3                                                 | 3                                                       |                                           | 00                               |
|                                                                                                                                                                                                                                   | 6                                                       |                                                           |                                                   |                                                         | 2                                         | 90                               |
| Mvmt Flow                                                                                                                                                                                                                         |                                                         | 378                                                       | 256                                               |                                                         | 3                                         | 3                                |
|                                                                                                                                                                                                                                   | Major1                                                  |                                                           |                                                   | 28                                                      | 22                                        | 6                                |
|                                                                                                                                                                                                                                   | Major1                                                  |                                                           |                                                   |                                                         |                                           |                                  |
| Major/Minor                                                                                                                                                                                                                       | IVICIUI                                                 | N                                                         | Major2                                            | ı                                                       | Minor2                                    |                                  |
| Conflicting Flow All                                                                                                                                                                                                              | 287                                                     | 0                                                         | -                                                 | 0                                                       | 663                                       | 273                              |
| Stage 1                                                                                                                                                                                                                           |                                                         | _                                                         | _                                                 | -                                                       | 273                                       |                                  |
| Stage 2                                                                                                                                                                                                                           | _                                                       | _                                                         | _                                                 | _                                                       | 390                                       | <u>-</u>                         |
| Critical Hdwy                                                                                                                                                                                                                     | 4.13                                                    |                                                           |                                                   | _                                                       | 6.43                                      | 6.23                             |
| Critical Hdwy Stg 1                                                                                                                                                                                                               | 4.13                                                    | _                                                         | _                                                 | _                                                       | 5.43                                      | 0.23                             |
|                                                                                                                                                                                                                                   |                                                         | -                                                         | -                                                 | -                                                       |                                           |                                  |
| Critical Hdwy Stg 2                                                                                                                                                                                                               | -                                                       | -                                                         | -                                                 | -                                                       | 5.43                                      | -                                |
| Follow-up Hdwy                                                                                                                                                                                                                    | 2.227                                                   | -                                                         | -                                                 | -                                                       | 3.527                                     |                                  |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                | 1269                                                    | -                                                         | -                                                 | -                                                       | 425                                       | 763                              |
| Stage 1                                                                                                                                                                                                                           | -                                                       | -                                                         | -                                                 | -                                                       | 771                                       | -                                |
| Stage 2                                                                                                                                                                                                                           | -                                                       | -                                                         | -                                                 | -                                                       | 682                                       | -                                |
| Platoon blocked, %                                                                                                                                                                                                                |                                                         | -                                                         | -                                                 | -                                                       |                                           |                                  |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                | 1265                                                    | -                                                         | -                                                 | -                                                       | 420                                       | 761                              |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                | -                                                       | -                                                         | -                                                 | -                                                       | 420                                       | -                                |
| Stage 1                                                                                                                                                                                                                           | -                                                       | -                                                         | -                                                 | -                                                       | 764                                       | -                                |
| Stage 2                                                                                                                                                                                                                           | _                                                       | _                                                         | -                                                 | _                                                       | 680                                       | _                                |
| 5 195 =                                                                                                                                                                                                                           |                                                         |                                                           |                                                   |                                                         |                                           |                                  |
|                                                                                                                                                                                                                                   |                                                         |                                                           | 14/5                                              |                                                         | 0.5                                       |                                  |
| Approach                                                                                                                                                                                                                          | EB                                                      |                                                           | WB                                                |                                                         | SB                                        |                                  |
| HCM Control Delay, s                                                                                                                                                                                                              | 0.1                                                     |                                                           | 0                                                 |                                                         | 13.3                                      |                                  |
| HCM LOS                                                                                                                                                                                                                           |                                                         |                                                           |                                                   |                                                         | В                                         |                                  |
|                                                                                                                                                                                                                                   |                                                         |                                                           |                                                   |                                                         |                                           |                                  |
| Minor Lane/Major Mvr                                                                                                                                                                                                              | nt                                                      | EBL                                                       | EBT                                               | WBT                                                     | WBR :                                     | SRI n1                           |
|                                                                                                                                                                                                                                   | 111                                                     | 1265                                                      |                                                   | וטייי                                                   |                                           | 101                              |
| Capacity (veh/h)                                                                                                                                                                                                                  |                                                         |                                                           | -                                                 | -                                                       | -                                         |                                  |
| HCM Lane V/C Ratio                                                                                                                                                                                                                | `                                                       | 0.004                                                     | -                                                 | -                                                       | -                                         | 0.06                             |
| HCM Control Delay (s                                                                                                                                                                                                              | )                                                       | 7.9                                                       | 0                                                 | -                                                       | -                                         |                                  |
| HCM Lane LOS                                                                                                                                                                                                                      | ,                                                       | Α                                                         | Α                                                 | -                                                       | -                                         | В                                |
| HCM 95th %tile Q(veh                                                                                                                                                                                                              | 1)                                                      | 0                                                         | -                                                 | -                                                       | -                                         | 0.2                              |

| Intersection           |        |          |          |        |           |           |        |      |      |         |      |      |
|------------------------|--------|----------|----------|--------|-----------|-----------|--------|------|------|---------|------|------|
| Int Delay, s/veh       | 3.2    |          |          |        |           |           |        |      |      |         |      |      |
| Movement               | EBL    | EBT      | EBR      | WBL    | WBT       | WBR       | NBL    | NBT  | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    |        | 4        |          |        | 4         |           | ሻ      | ħβ   |      | ሻ       | ħβ   |      |
| Traffic Vol, veh/h     | 20     | 5        | 135      | 5      | 5         | 5         | 40     | 580  | 5    | 5       | 710  | 25   |
| Future Vol, veh/h      | 20     | 5        | 135      | 5      | 5         | 5         | 40     | 580  | 5    | 5       | 710  | 25   |
| Conflicting Peds, #/hr | 2      | 0        | 4        | 3      | 0         | 1         | 6      | 0    | 3    | 6       | 0    | 3    |
| Sign Control           | Stop   | Stop     | Stop     | Stop   | Stop      | Stop      | Free   | Free | Free | Free    | Free | Free |
| RT Channelized         | -      | -        | None     | -      | -         | None      | -      | -    | None | -       | -    | None |
| Storage Length         | -      | -        | -        | -      | -         | -         | 70     | -    | -    | 75      | -    | -    |
| Veh in Median Storage  | ,# -   | 0        | -        | -      | 0         | -         | -      | 0    | -    | -       | 0    | -    |
| Grade, %               | -      | 0        | -        | -      | 0         | -         | -      | 0    | -    | -       | 0    | -    |
| Peak Hour Factor       | 90     | 90       | 90       | 90     | 90        | 90        | 90     | 90   | 90   | 90      | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3        | 3        | 3      | 3         | 3         | 3      | 3    | 3    | 3       | 3    | 3    |
| Mvmt Flow              | 22     | 6        | 150      | 6      | 6         | 6         | 44     | 644  | 6    | 6       | 789  | 28   |
|                        |        |          |          |        |           |           |        |      |      |         |      |      |
| Major/Minor N          | Minor2 |          | I        | Minor1 |           |           | Major1 |      | N    | //ajor2 |      |      |
| Conflicting Flow All   | 1236   | 1565     | 419      | 1155   | 1576      | 333       | 823    | 0    | 0    | 656     | 0    | 0    |
| Stage 1                | 821    | 821      | -        | 741    | 741       | -         | -      | -    | -    | -       | -    | -    |
| Stage 2                | 415    | 744      | _        | 414    | 835       | _         | _      | _    | -    | -       | -    | -    |
| Critical Hdwy          | 7.56   | 6.56     | 6.96     | 7.56   | 6.56      | 6.96      | 4.16   | -    | -    | 4.16    | -    | -    |
| Critical Hdwy Stg 1    | 6.56   | 5.56     | -        | 6.56   | 5.56      | -         | -      | -    | -    | -       | -    | -    |
| Critical Hdwy Stg 2    | 6.56   | 5.56     | -        | 6.56   | 5.56      | -         | -      | -    | -    | -       | -    | -    |
| Follow-up Hdwy         | 3.53   | 4.03     | 3.33     | 3.53   | 4.03      | 3.33      | 2.23   | -    | -    | 2.23    | -    | -    |
| Pot Cap-1 Maneuver     | 131    | 109      | 580      | 151    | 108       | 660       | 796    | -    | -    | 921     | -    | -    |
| Stage 1                | 333    | 384      | -        | 372    | 419       | -         | -      | -    | -    | -       | -    | -    |
| Stage 2                | 583    | 417      | -        | 584    | 379       | -         | -      | -    | -    | -       | -    | -    |
| Platoon blocked, %     |        |          |          |        |           |           |        | -    | -    |         | -    | -    |
| Mov Cap-1 Maneuver     | 118    | 101      | 574      | 101    | 100       | 655       | 791    | -    | -    | 916     | -    | -    |
| Mov Cap-2 Maneuver     | 118    | 101      | -        | 101    | 100       | -         | -      | -    | -    | -       | -    | -    |
| Stage 1                | 313    | 379      | -        | 349    | 393       | -         | -      | -    | -    | -       | -    | -    |
| Stage 2                | 537    | 391      | -        | 421    | 374       | -         | -      | -    | -    | -       | -    | -    |
|                        |        |          |          |        |           |           |        |      |      |         |      |      |
| Approach               | EB     |          |          | WB     |           |           | NB     |      |      | SB      |      |      |
| HCM Control Delay, s   | 25.2   |          |          | 34.2   |           |           | 0.6    |      |      | 0.1     |      |      |
| HCM LOS                | D      |          |          | D      |           |           |        |      |      |         |      |      |
|                        |        |          |          |        |           |           |        |      |      |         |      |      |
| Minor Lane/Major Mvm   | t      | NBL      | NBT      | NRRI   | EBLn1V    | WRI n1    | SBL    | SBT  | SBR  |         |      |      |
| Capacity (veh/h)       |        | 791      | -        | -      | 352       | 140       | 916    | -    | ODIT |         |      |      |
| HCM Lane V/C Ratio     |        | 0.056    | _        |        |           | 0.119     |        | _    |      |         |      |      |
| HCM Control Delay (s)  |        | 9.8      | -        |        | 25.2      | 34.2      | 9      | _    |      |         |      |      |
| HCM Lane LOS           |        | 9.0<br>A | <u>-</u> | _      | 23.2<br>D | 34.2<br>D | A      | _    |      |         |      |      |
| HCM 95th %tile Q(veh)  |        | 0.2      |          | _      | 2.7       | 0.4       | 0      | _    | _    |         |      |      |
| TOW JOHN JOHN Q(VEII)  |        | 0.2      |          |        | ۷.۱       | 0.7       |        |      |      |         |      |      |

| Intersection           |        |       |       |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 9.6    |       |       |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 25     | 155   | 20    | 5      | 55     | 5     | 5      | 10   | 5    | 5      | 5    | 5    |
| Future Vol, veh/h      | 25     | 155   | 20    | 5      | 55     | 5     | 5      | 10   | 5    | 5      | 5    | 5    |
| Conflicting Peds, #/hr | 3      | 0     | 1     | 0      | 0      | 2     | 3      | 0    | 1    | 3      | 0    | 1    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e, # - | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3      | 3     | 3      | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow              | 28     | 172   | 22    | 6      | 61     | 6     | 6      | 11   | 6    | 6      | 6    | 6    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor N          | Minor2 |       |       | Minor1 |        |       | Major1 |      | 1    | Major2 |      |      |
| Conflicting Flow All   | 87     | 56    | 13    | 148    | 56     | 20    | 15     | 0    | 0    | 20     | 0    | 0    |
| Stage 1                | 24     | 24    | -     | 29     | 29     | -     | -      | -    | -    | -      | -    | _    |
| Stage 2                | 63     | 32    | -     | 119    | 27     | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23  | 4.13   | -    | -    | 4.13   | -    | -    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.527  | 4.027 | 3.327 | 3.527  | 4.027  | 3.327 | 2.227  | -    | -    | 2.227  | -    | -    |
| Pot Cap-1 Maneuver     | 896    | 833   | 1064  | 818    | 833    | 1055  | 1596   | -    | -    | 1590   | -    | -    |
| Stage 1                | 991    | 873   | -     | 985    | 869    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 945    | 866   | -     | 883    | 871    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 831    | 821   | 1060  | 665    | 821    | 1049  | 1591   | -    | -    | 1585   | -    | -    |
| Mov Cap-2 Maneuver     | 831    | 821   | -     | 665    | 821    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 984    | 867   | -     | 978    | 863    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 867    | 860   | -     | 689    | 865    | -     | -      | -    | -    | -      | -    | -    |
| Ü                      |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 10.8   |       |       | 9.8    |        |       | 1.8    |      |      | 2.4    |      |      |
| HCM LOS                | В      |       |       | A      |        |       |        |      |      |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | WBLn1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1591  | -     | -      | 841    | 820   | 1585   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.003 | _     |        |        | 0.088 |        | _    | _    |        |      |      |
| HCM Control Delay (s)  |        | 7.3   | 0     | -      | 10.8   | 9.8   | 7.3    | 0    | _    |        |      |      |
| HCM Lane LOS           |        | Α     | A     | _      | В      | A     | A      | A    | _    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 1.1    | 0.3   | 0      | -    | _    |        |      |      |
|                        |        |       |       |        |        | 0.0   |        |      |      |        |      |      |

| Intersection           |        |       |       |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|-------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 2.3    |       |       |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |       |        | 4    |       |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 30     | 205   | 20    | 5      | 80   | 5     | 0      | 20    | 5     | 5      | 15    | 15    |
| Future Vol, veh/h      | 30     | 205   | 20    | 5      | 80   | 5     | 0      | 20    | 5     | 5      | 15    | 15    |
| Conflicting Peds, #/hr | 1      | 0     | 1     | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None  | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | -      | -     | -     | -      | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -     | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -     | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3    | 3     | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 33     | 228   | 22    | 6      | 89   | 6     | 0      | 22    | 6     | 6      | 17    | 17    |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Major/Minor N          | Major1 |       |       | Major2 |      | 1     | Minor1 |       | 1     | Minor2 |       |       |
| Conflicting Flow All   | 96     | 0     | 0     | 251    | 0    | 0     | 427    | 414   | 240   | 424    | 422   | 93    |
| Stage 1                | -      | -     | -     | -      | -    | -     | 306    | 306   | -     | 105    | 105   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 121    | 108   | -     | 319    | 317   | -     |
| Critical Hdwy          | 4.13   | -     | _     | 4.13   | -    | -     | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -      | -     | -     | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | -     | -     | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227  | -     | -     | 2.227  | -    | -     | 3.527  | 4.027 | 3.327 | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1491   | -     | -     | 1309   | -    | -     | 536    | 527   | 796   | 539    | 522   | 961   |
| Stage 1                | -      | -     | -     | -      | -    | -     | 702    | 660   | -     | 898    | 806   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 881    | 804   | -     | 690    | 652   | -     |
| Platoon blocked, %     |        | -     | -     |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1490   | -     | -     | 1308   | -    | -     | 501    | 510   | 795   | 505    | 505   | 960   |
| Mov Cap-2 Maneuver     | -      | -     | -     | -      | -    | -     | 501    | 510   | -     | 505    | 505   | -     |
| Stage 1                | -      | -     | -     | -      | -    | -     | 683    | 642   | -     | 874    | 801   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 843    | 799   | -     | 644    | 634   | -     |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |       | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.9    |       |       | 0.4    |      |       | 11.9   |       |       | 11     |       |       |
| HCM LOS                |        |       |       |        |      |       | В      |       |       | В      |       |       |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL   | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        |       | 1490  |        |      | 1308  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        |       | 0.022 | _      |      | 0.004 | _      |       | 0.061 |        |       |       |
| HCM Control Delay (s)  |        | 11.9  | 7.5   | 0      | -    | 7.8   | 0      | -     | 11    |        |       |       |
| HCM Lane LOS           |        | В     | A     | A      | _    | A     | A      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 0.2   | 0.1   | -      | -    | 0     | -      | -     | 0.2   |        |       |       |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |

|                              | •    | •     | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ        |      |
|------------------------------|------|-------|----------|----------|-------------|----------|------|
| Movement                     | WBL  | WBR   | NBT      | NBR      | SBL         | SBT      |      |
| Lane Configurations          | ሻሻ   | 7     | <b>^</b> | 7        | 7           | <b>^</b> |      |
| Traffic Volume (veh/h)       | 115  | 190   | 425      | 80       | 275         | 610      |      |
| Future Volume (veh/h)        | 115  | 190   | 425      | 80       | 275         | 610      |      |
| Initial Q (Qb), veh          | 0    | 0     | 0        | 0        | 0           | 0        |      |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00  |          | 0.98     | 1.00        |          |      |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     |      |
| Work Zone On Approach        | No   |       | No       |          |             | No       |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856  | 1856     | 1856     | 1856        | 1856     |      |
| Adj Flow Rate, veh/h         | 128  | 14    | 472      | 35       | 306         | 678      |      |
| Peak Hour Factor             | 0.90 | 0.90  | 0.90     | 0.90     | 0.90        | 0.90     |      |
| Percent Heavy Veh, %         | 3    | 3     | 3        | 3        | 3           | 3        |      |
| Cap, veh/h                   | 460  | 562   | 975      | 425      | 394         | 2178     |      |
| Arrive On Green              | 0.13 | 0.13  | 0.28     | 0.28     | 0.22        | 0.62     |      |
| Sat Flow, veh/h              | 3428 | 1572  | 3618     | 1536     | 1767        | 3618     |      |
| Grp Volume(v), veh/h         | 128  | 14    | 472      | 35       | 306         | 678      |      |
| Grp Sat Flow(s),veh/h/ln     | 1714 | 1572  | 1763     | 1536     | 1767        | 1763     |      |
| Q Serve(g_s), s              | 1.4  | 0.2   | 4.7      | 0.7      | 6.9         | 3.9      |      |
| Cycle Q Clear(g_c), s        | 1.4  | 0.2   | 4.7      | 0.7      | 6.9         | 3.9      |      |
| Prop In Lane                 | 1.00 | 1.00  |          | 1.00     | 1.00        |          |      |
| Lane Grp Cap(c), veh/h       | 460  | 562   | 975      | 425      | 394         | 2178     |      |
| V/C Ratio(X)                 | 0.28 | 0.02  | 0.48     | 0.08     | 0.78        | 0.31     |      |
| Avail Cap(c_a), veh/h        | 1619 | 1094  | 3747     | 1633     | 1043        | 2914     |      |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     |      |
| Upstream Filter(I)           | 1.00 | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     |      |
| Uniform Delay (d), s/veh     | 16.5 | 8.8   | 12.8     | 11.3     | 15.5        | 3.8      |      |
| Incr Delay (d2), s/veh       | 0.1  | 0.0   | 0.5      | 0.1      | 3.3         | 0.1      |      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0   | 0.0      | 0.0      | 0.0         | 0.0      |      |
| %ile BackOfQ(95%),veh/ln     | 0.9  | 0.1   | 2.7      | 0.4      | 4.8         | 1.2      |      |
| Unsig. Movement Delay, s/veh |      |       |          |          |             |          |      |
| LnGrp Delay(d),s/veh         | 16.6 | 8.8   | 13.3     | 11.5     | 18.8        | 3.9      |      |
| LnGrp LOS                    | В    | Α     | В        | В        | В           | Α        |      |
| Approach Vol, veh/h          | 142  |       | 507      |          |             | 984      |      |
| Approach Delay, s/veh        | 15.8 |       | 13.2     |          |             | 8.5      |      |
| Approach LOS                 | В    |       | В        |          |             | Α        |      |
| Timer - Assigned Phs         |      | 2     |          |          | 5           | 6        | 8    |
| Phs Duration (G+Y+Rc), s     |      | 31.7  |          |          | 14.4        | 17.2     | 10.7 |
| Change Period (Y+Rc), s      |      | * 5.5 |          |          | 5.0         | 5.5      | 5.0  |
| Max Green Setting (Gmax), s  |      | * 35  |          |          | 25.0        | 45.0     | 20.0 |
| Max Q Clear Time (g_c+l1), s |      | 5.9   |          |          | 8.9         | 6.7      | 3.4  |
| Green Ext Time (p_c), s      |      | 5.2   |          |          | 0.8         | 4.9      | 0.2  |
| Intersection Summary         |      |       |          |          |             |          |      |
| HCM 6th Ctrl Delay           |      |       | 10.6     |          |             |          |      |
| HCM 6th LOS                  |      |       | В        |          |             |          |      |
|                              |      |       |          |          |             |          |      |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                |          |      |        |          |            |      |
|-----------------------------|----------|------|--------|----------|------------|------|
| Int Delay, s/veh            | 2.1      |      |        |          |            |      |
|                             |          | EDD  | NDI    | NDT      | CDT        | CDD  |
| Movement                    | EBL      | EBR  | NBL    | NBT      | SBT        | SBR  |
| Lane Configurations         | ^        | 7000 | ^      | <b>^</b> | <b>↑</b> ↑ | 40   |
| Traffic Vol, veh/h          | 0        | 200  | 0      | 505      | 685        | 40   |
| Future Vol, veh/h           | 0        | 200  | 0      | 505      | 685        | 40   |
| Conflicting Peds, #/hr      | 1        | 1    | _ 0    | _ 0      | _ 0        | _ 0  |
| Sign Control                | Stop     | Stop | Free   | Free     | Free       | Free |
| RT Channelized              | -        | None | -      | None     | -          | None |
| Storage Length              | -        | 0    | -      | -        | -          | -    |
| Veh in Median Storage,      |          | -    | -      | 0        | 0          | -    |
| Grade, %                    | 0        | -    | -      | 0        | 0          | -    |
| Peak Hour Factor            | 90       | 90   | 90     | 90       | 90         | 90   |
| Heavy Vehicles, %           | 3        | 3    | 3      | 3        | 3          | 3    |
| Mvmt Flow                   | 0        | 222  | 0      | 561      | 761        | 44   |
|                             |          |      |        |          |            |      |
| Majar/Minar                 | lin a rO |      | 10:04  |          | 4=i==0     |      |
|                             | linor2   |      | Major1 |          | Major2     |      |
| Conflicting Flow All        | -        | 404  | -      | 0        | -          | 0    |
| Stage 1                     | -        | -    | -      | -        | -          | -    |
| Stage 2                     | -        | -    | -      | -        | -          | -    |
| Critical Hdwy               | -        | 6.96 | -      | -        | -          | -    |
| Critical Hdwy Stg 1         | -        | -    | -      | -        | -          | -    |
| Critical Hdwy Stg 2         | -        | -    | -      | -        | -          | -    |
| Follow-up Hdwy              | -        | 3.33 | -      | -        | -          | -    |
| Pot Cap-1 Maneuver          | 0        | 593  | 0      | -        | -          | -    |
| Stage 1                     | 0        | -    | 0      | -        | -          | -    |
| Stage 2                     | 0        | -    | 0      | -        | -          | -    |
| Platoon blocked, %          |          |      |        | -        | -          | -    |
| Mov Cap-1 Maneuver          | _        | 592  | _      | -        | -          | -    |
| Mov Cap-2 Maneuver          | _        | -    | _      | _        | _          | -    |
| Stage 1                     | _        | _    | _      | _        | _          | _    |
| Stage 2                     | _        | _    | _      | _        | _          | _    |
| Olugo Z                     |          |      |        |          |            |      |
|                             |          |      |        |          |            |      |
| Approach                    | EB       |      | NB     |          | SB         |      |
| HCM Control Delay, s        | 14.7     |      | 0      |          | 0          |      |
| HCM LOS                     | В        |      |        |          |            |      |
|                             |          |      |        |          |            |      |
| Mineral anno /Maria a Maria |          | NET  | -DL -  | ODT      | ODB        |      |
| Minor Lane/Major Mvmt       |          |      | EBLn1  | SBT      | SBR        |      |
| Capacity (veh/h)            |          | -    | 592    | -        | -          |      |
| HCM Lane V/C Ratio          |          | -    | 0.375  | -        | -          |      |
| HCM Control Delay (s)       |          | -    |        | -        | -          |      |
| HCM Lane LOS                |          | -    | В      | -        | -          |      |
| HCM 95th %tile Q(veh)       |          | -    | 1.7    | -        | -          |      |

| Intersection           |        |       |       |        |        |          |          |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|----------|----------|------|------|--------|------|------|
| Int Delay, s/veh       | 9.7    |       |       |        |        |          |          |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR      | NBL      | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |          |          | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 15     | 210   | 0     | 5      | 30     | 5        | 0        | 10   | 5    | 15     | 15   | 5    |
| Future Vol, veh/h      | 15     | 210   | 0     | 5      | 30     | 5        | 0        | 10   | 5    | 15     | 15   | 5    |
| Conflicting Peds, #/hr | 1      | 0     | 1     | 0      | 0      | 0        | 0        | 0    | 1    | 0      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop     | Free     | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None     | -        | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -        | -        | -    | -    | -      | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -     | -      | 0      | -        | -        | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -        | -        | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90       | 90       | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3      | 3        | 3        | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow              | 17     | 233   | 0     | 6      | 33     | 6        | 0        | 11   | 6    | 17     | 17   | 6    |
|                        |        |       |       |        |        |          |          |      |      |        |      |      |
| Major/Minor N          | Minor2 |       |       | Minor1 |        |          | Major1   |      |      | Major2 |      |      |
| Conflicting Flow All   | 89     | 72    | 21    | 187    | 72     | 16       | 23       | 0    | 0    | 18     | 0    | 0    |
| Stage 1                | 54     | 54    | -     | 15     | 15     | -        | -        | -    | -    | -      | -    | -    |
| Stage 2                | 35     | 18    | -     | 172    | 57     | -        | -        | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23     | 4.13     | -    | -    | 4.13   | -    | -    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -        | -        | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -        | -        | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.527  | 4.027 | 3.327 | 3.527  | 4.027  | 3.327    | 2.227    | -    | -    | 2.227  | -    | -    |
| Pot Cap-1 Maneuver     | 894    | 817   | 1054  | 771    | 817    | 1060     | 1586     | -    | -    | 1592   | -    | -    |
| Stage 1                | 956    | 848   | -     | 1002   | 881    | -        | -        | -    | -    | -      | -    | -    |
| Stage 2                | 978    | 878   | -     | 828    | 845    | _        | -        | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |          |          | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 853    | 807   | 1053  | 593    | 807    | 1058     | 1586     | -    | -    | 1590   | -    | -    |
| Mov Cap-2 Maneuver     | 853    | 807   | -     | 593    | 807    | -        | -        | -    | -    | -      | -    | -    |
| Stage 1                | 956    | 839   | -     | 1001   | 880    | -        | -        | -    | -    | -      | -    | -    |
| Stage 2                | 935    | 877   | -     | 591    | 836    | -        | -        | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |          |          |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |          | NB       |      |      | SB     |      |      |
| HCM Control Delay, s   | 11.4   |       |       | 9.8    |        |          | 0        |      |      | 3.1    |      |      |
| HCM LOS                | В      |       |       | A      |        |          |          |      |      |        |      |      |
|                        |        |       |       |        |        |          |          |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBI n1   | SBL      | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1586  |       | -      |        | 795      | 1590     | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 1300  | _     |        | 0.309  |          | 0.01     | _    | _    |        |      |      |
| HCM Control Delay (s)  |        | 0     |       | _      |        | 9.8      | 7.3      | 0    | _    |        |      |      |
| HCM Lane LOS           |        | A     | -     | _      | В      | 9.0<br>A | 7.5<br>A | A    | _    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | _     | _      | 1.3    | 0.2      | 0        | -    | _    |        |      |      |
| TOM COUT TOUTO Q(VOIT) |        |       |       |        | 1.0    | 0.2      |          |      |      |        |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1    | <b>†</b> | ~    | <b>/</b> | <b>+</b>   | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>^</b> |      | ሻ        | <b>ተ</b> ኈ |      |
| Traffic Volume (veh/h)       | 35   | 5        | 105  | 5    | 5        | 10   | 120  | 455      | 10   | 20       | 810        | 20   |
| Future Volume (veh/h)        | 35   | 5        | 105  | 5    | 5        | 10   | 120  | 455      | 10   | 20       | 810        | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |            | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 39   | 6        | 31   | 6    | 6        | 0    | 133  | 506      | 9    | 22       | 900        | 20   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3        | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 171  | 9        | 45   | 158  | 82       | 0    | 541  | 2620     | 47   | 761      | 2605       | 58   |
| Arrive On Green              | 0.07 | 0.07     | 0.07 | 0.07 | 0.07     | 0.00 | 0.74 | 0.74     | 0.74 | 0.74     | 0.74       | 0.74 |
| Sat Flow, veh/h              | 779  | 120      | 619  | 618  | 1122     | 0    | 602  | 3544     | 63   | 878      | 3524       | 78   |
| Grp Volume(v), veh/h         | 76   | 0        | 0    | 12   | 0        | 0    | 133  | 252      | 263  | 22       | 450        | 470  |
| Grp Sat Flow(s),veh/h/ln     | 1518 | 0        | 0    | 1741 | 0        | 0    | 602  | 1763     | 1844 | 878      | 1763       | 1839 |
| Q Serve(g_s), s              | 2.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 4.8  | 2.1      | 2.1  | 0.4      | 4.3        | 4.3  |
| Cycle Q Clear(g_c), s        | 2.3  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 9.1  | 2.1      | 2.1  | 2.5      | 4.3        | 4.3  |
| Prop In Lane                 | 0.51 |          | 0.41 | 0.50 |          | 0.00 | 1.00 |          | 0.03 | 1.00     |            | 0.04 |
| Lane Grp Cap(c), veh/h       | 225  | 0        | 0    | 240  | 0        | 0    | 541  | 1303     | 1363 | 761      | 1303       | 1360 |
| V/C Ratio(X)                 | 0.34 | 0.00     | 0.00 | 0.05 | 0.00     | 0.00 | 0.25 | 0.19     | 0.19 | 0.03     | 0.35       | 0.35 |
| Avail Cap(c_a), veh/h        | 597  | 0        | 0    | 632  | 0        | 0    | 541  | 1303     | 1363 | 761      | 1303       | 1360 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 21.7 | 0.0      | 0.0  | 20.8 | 0.0      | 0.0  | 3.8  | 1.9      | 1.9  | 2.3      | 2.2        | 2.2  |
| Incr Delay (d2), s/veh       | 0.9  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 1.1  | 0.3      | 0.3  | 0.1      | 0.7        | 0.7  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 1.5  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 0.7  | 0.3      | 0.3  | 0.1      | 0.6        | 0.6  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 00.0 | 0.0      | 0.0  | 4.0  | 0.0      | 0.0  | 0.4      | 0.0        | 0.0  |
| LnGrp Delay(d),s/veh         | 22.5 | 0.0      | 0.0  | 20.8 | 0.0      | 0.0  | 4.9  | 2.2      | 2.2  | 2.4      | 2.9        | 2.9  |
| LnGrp LOS                    | С    | A        | A    | С    | Α        | A    | A    | A        | A    | A        | A          | A    |
| Approach Vol, veh/h          |      | 76       |      |      | 12       |      |      | 648      |      |          | 942        |      |
| Approach Delay, s/veh        |      | 22.5     |      |      | 20.8     |      |      | 2.8      |      |          | 2.9        |      |
| Approach LOS                 |      | С        |      |      | С        |      |      | Α        |      |          | А          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |      | 8.0  |          | 40.0 |      | 8.0      |      |          |            |      |
| Change Period (Y+Rc), s      |      | 4.5      |      | 4.5  |          | 4.5  |      | 4.5      |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 35.5     |      | 15.5 |          | 35.5 |      | 15.5     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 11.1     |      | 4.3  |          | 6.3  |      | 2.3      |      |          |            |      |
| Green Ext Time (p_c), s      |      | 4.3      |      | 0.2  |          | 6.3  |      | 0.0      |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 3.9  |      |          |      |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |          |      |          |            |      |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |       |          |       |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|-------|--------|----------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3    |       |          |       |        |          |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WBL    | WBR   | NBT      | NBR   | SBL    | SBT      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¥      |       | <u> </u> |       |        | <u> </u> |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95     | 0     | 5        | 115   | 10     | 5        |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95     | 0     | 5        | 115   | 10     | 5        |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      | 0     | 0        | 0     | 2      | 0        |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop   | Stop  | Free     | Free  | Free   | Free     |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | None  | -        |       | -      | None     |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | -     | _        | -     | -      | -        |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -     | 0        | -     | _      | 0        |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      | _     | 0        | _     | -      | 0        |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90     | 90    | 90       | 90    | 90     | 90       |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 3     | 3        | 3     | 3      | 3        |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106    | 0     | 6        | 128   | 11     | 6        |
| WWW.CT IOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100    | •     |          | 0     | • •    | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | _     |          |       |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minor1 |       | Major1   |       | Major2 |          |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100    | 72    | 0        | 0     | 136    | 0        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72     | -     | -        | -     | -      | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28     | -     | -        | -     | -      | -        |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.43   | 6.23  | -        | -     | 4.13   | -        |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.43   | -     | -        | -     | -      | -        |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.43   | -     | -        | -     | -      | -        |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.527  | 3.327 | -        | -     | 2.227  | -        |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 896    | 987   | -        | -     | 1442   | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 948    | -     | -        | -     | -      | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 992    | _     | -        | -     | -      | _        |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |       | -        | -     |        | -        |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 887    | 985   | -        | -     | 1439   | -        |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 887    | -     | -        | -     | -      | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 946    | -     | -        | -     | -      | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 984    | -     | -        | -     | -      | -        |
| , and the second |        |       |          |       |        |          |
| Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MD     |       | ND       |       | 00     |          |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WB     |       | NB       |       | SB     |          |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6    |       | 0        |       | 5      |          |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Α      |       |          |       |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |          |       |        |          |
| Minor Lane/Major Mvm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt     | NBT   | NBRV     | VBLn1 | SBL    | SBT      |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | _     | -        | 887   | 1439   | -        |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -     | -        | 0.119 |        | -        |
| HCM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _     | -        | 9.6   | 7.5    | _        |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -     | -        | Α     | Α      | -        |
| HCM 95th %tile Q(veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )      | -     | -        | 0.4   | 0      | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |          |       |        |          |

|                              | ۶    | <b>→</b> | •    | •     | <b>←</b> | •    | 1    | <b>†</b> | <i>&gt;</i> | /    | ţ    | 1    |
|------------------------------|------|----------|------|-------|----------|------|------|----------|-------------|------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL  | NBT      | NBR         | SBL  | SBT  | SBR  |
| Lane Configurations          |      | 4        |      |       | र्स      | 7    |      | ર્ન      | 7           | *    | 4    |      |
| Traffic Volume (veh/h)       | 0    | 0        | 0    | 365   | 10       | 485  | 0    | 230      | 485         | 655  | 325  | 0    |
| Future Volume (veh/h)        | 0    | 0        | 0    | 365   | 10       | 485  | 0    | 230      | 485         | 655  | 325  | 0    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0        | 0           | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00  |          | 1.00 | 1.00 |          | 1.00        | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |       | No       |      |      | No       |             |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1811 | 1811     | 1811 | 1811  | 1811     | 1811 | 1811 | 1811     | 1811        | 1811 | 1811 | 1811 |
| Adj Flow Rate, veh/h         | 0    | 0        | 0    | 414   | 0        | 0    | 0    | 256      | 0           | 544  | 618  | 0    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90  | 0.90     | 0.90 | 0.90 | 0.90     | 0.90        | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, %         | 6    | 6        | 6    | 6     | 6        | 6    | 6    | 6        | 6           | 6    | 6    | 6    |
| Cap, veh/h                   | 0    | 3        | 0    | 629   | 0        |      | 0    | 332      |             | 681  | 715  | 0    |
| Arrive On Green              | 0.00 | 0.00     | 0.00 | 0.18  | 0.00     | 0.00 | 0.00 | 0.18     | 0.00        | 0.39 | 0.39 | 0.00 |
| Sat Flow, veh/h              | 0    | 1811     | 0    | 3440  | 0        | 1535 | 0    | 1811     | 1535        | 1725 | 1811 | 0    |
| Grp Volume(v), veh/h         | 0    | 0        | 0    | 414   | 0        | 0    | 0    | 256      | 0           | 544  | 618  | 0    |
| Grp Sat Flow(s),veh/h/ln     | 0    | 1811     | 0    | 1720  | 0        | 1535 | 0    | 1811     | 1535        | 1725 | 1811 | 0    |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 6.8   | 0.0      | 0.0  | 0.0  | 8.2      | 0.0         | 17.0 | 19.1 | 0.0  |
| Cycle Q Clear(g_c), s        | 0.0  | 0.0      | 0.0  | 6.8   | 0.0      | 0.0  | 0.0  | 8.2      | 0.0         | 17.0 | 19.1 | 0.0  |
| Prop In Lane                 | 0.00 |          | 0.00 | 1.00  |          | 1.00 | 0.00 |          | 1.00        | 1.00 |      | 0.00 |
| Lane Grp Cap(c), veh/h       | 0    | 3        | 0    | 629   | 0        |      | 0    | 332      |             | 681  | 715  | 0    |
| V/C Ratio(X)                 | 0.00 | 0.00     | 0.00 | 0.66  | 0.00     |      | 0.00 | 0.77     |             | 0.80 | 0.86 | 0.00 |
| Avail Cap(c_a), veh/h        | 0    | 564      | 0    | 1972  | 0        |      | 0    | 1038     |             | 989  | 1038 | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 0.00 | 0.00     | 0.00 | 1.00  | 0.00     | 0.00 | 0.00 | 1.00     | 0.00        | 1.00 | 1.00 | 0.00 |
| Uniform Delay (d), s/veh     | 0.0  | 0.0      | 0.0  | 23.2  | 0.0      | 0.0  | 0.0  | 23.7     | 0.0         | 16.3 | 17.0 | 0.0  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0  | 1.7   | 0.0      | 0.0  | 0.0  | 2.8      | 0.0         | 1.8  | 3.9  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0         | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 0.0  | 0.0      | 0.0  | 4.7   | 0.0      | 0.0  | 0.0  | 6.2      | 0.0         | 9.8  | 11.7 | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |      | 0.1.0 |          |      |      |          |             | 10.1 | 22.0 |      |
| LnGrp Delay(d),s/veh         | 0.0  | 0.0      | 0.0  | 24.8  | 0.0      | 0.0  | 0.0  | 26.5     | 0.0         | 18.1 | 20.9 | 0.0  |
| LnGrp LOS                    | A    | A        | Α    | С     | Α        |      | Α    | С        |             | В    | С    | A    |
| Approach Vol, veh/h          |      | 0        |      |       | 414      |      |      | 256      |             |      | 1162 |      |
| Approach Delay, s/veh        |      | 0.0      |      |       | 24.8     |      |      | 26.5     |             |      | 19.6 |      |
| Approach LOS                 |      |          |      |       | С        |      |      | С        |             |      | В    |      |
| Timer - Assigned Phs         |      | 2        |      | 4     |          | 6    |      | 8        |             |      |      |      |
| Phs Duration (G+Y+Rc), s     |      | 16.2     |      | 15.8  |          | 29.1 |      | 0.0      |             |      |      |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.6   |          | 5.0  |      | 4.6      |             |      |      |      |
| Max Green Setting (Gmax), s  |      | 35.0     |      | 35.0  |          | 35.0 |      | 19.0     |             |      |      |      |
| Max Q Clear Time (g_c+l1), s |      | 10.2     |      | 8.8   |          | 21.1 |      | 0.0      |             |      |      |      |
| Green Ext Time (p_c), s      |      | 1.1      |      | 2.4   |          | 2.9  |      | 0.0      |             |      |      |      |
| Intersection Summary         |      |          |      |       |          |      |      |          |             |      |      |      |
| HCM 6th Ctrl Delay           |      |          | 21.7 |       |          |      |      |          |             |      |      |      |
| HCM 6th LOS                  |      |          | С    |       |          |      |      |          |             |      |      |      |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| ,                        | ٠    | <b>→</b> | •    | •    | <b>←</b> | •    | •   | †   | <b>/</b> | <b>&gt;</b> | ļ    | ✓    |  |
|--------------------------|------|----------|------|------|----------|------|-----|-----|----------|-------------|------|------|--|
| Movement E               | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL | NBT | NBR      | SBL         | SBT  | SBR  |  |
| Lane Configurations      |      | <b>^</b> | 7    | 16   | <b>^</b> |      |     |     |          | ሻ           | र्स  | 77   |  |
| Traffic Volume (veh/h)   | 0    | 545      | 40   | 80   | 380      | 0    | 0   | 0   | 0        | 495         | 0    | 330  |  |
| Future Volume (veh/h)    | 0    | 545      | 40   | 80   | 380      | 0    | 0   | 0   | 0        | 495         | 0    | 330  |  |
| Initial Q (Qb), veh      | 0    | 0        | 0    | 0    | 0        | 0    |     |     |          | 0           | 0    | 0    |  |
|                          | 1.00 |          | 0.99 | 1.00 |          | 1.00 |     |     |          | 1.00        |      | 1.00 |  |
|                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00        | 1.00 | 1.00 |  |
| Work Zone On Approach    |      | No       |      |      | No       |      |     |     |          |             | No   |      |  |
| Adj Sat Flow, veh/h/ln   | 0    | 1841     | 1841 | 1841 | 1841     | 0    |     |     |          | 1841        | 1841 | 1841 |  |
| Adj Flow Rate, veh/h     | 0    | 606      | 10   | 89   | 422      | 0    |     |     |          | 550         | 0    | 86   |  |
|                          | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |     |     |          | 0.90        | 0.90 | 0.90 |  |
| Percent Heavy Veh, %     | 0    | 4        | 4    | 4    | 4        | 0    |     |     |          | 4           | 4    | 4    |  |
| Cap, veh/h               | 0    | 883      | 388  | 432  | 1775     | 0    |     |     |          | 737         | 0    | 656  |  |
|                          | 0.00 | 0.25     | 0.25 | 0.13 | 0.51     | 0.00 |     |     |          | 0.21        | 0.00 | 0.21 |  |
| Sat Flow, veh/h          | 0    | 3589     | 1538 | 3401 | 3589     | 0    |     |     |          | 3506        | 0    | 3120 |  |
| Grp Volume(v), veh/h     | 0    | 606      | 10   | 89   | 422      | 0    |     |     |          | 550         | 0    | 86   |  |
| Grp Sat Flow(s),veh/h/ln | 0    | 1749     | 1538 | 1700 | 1749     | 0    |     |     |          | 1753        | 0    | 1560 |  |
| νο— γ                    | 0.0  | 6.1      | 0.2  | 0.9  | 2.6      | 0.0  |     |     |          | 5.7         | 0.0  | 0.9  |  |
| , (5– ):                 | 0.0  | 6.1      | 0.2  | 0.9  | 2.6      | 0.0  |     |     |          | 5.7         | 0.0  | 0.9  |  |
|                          | 0.00 |          | 1.00 | 1.00 |          | 0.00 |     |     |          | 1.00        |      | 1.00 |  |
| Lane Grp Cap(c), veh/h   | 0    | 883      | 388  | 432  | 1775     | 0    |     |     |          | 737         | 0    | 656  |  |
|                          | 0.00 | 0.69     | 0.03 | 0.21 | 0.24     | 0.00 |     |     |          | 0.75        | 0.00 | 0.13 |  |
| Avail Cap(c_a), veh/h    | 0    | 2601     | 1144 | 1744 | 4843     | 0    |     |     |          | 2248        | 0    | 2000 |  |
|                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00        | 1.00 | 1.00 |  |
|                          | 0.00 | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 |     |     |          | 1.00        | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh |      | 13.2     | 11.0 | 15.3 | 5.4      | 0.0  |     |     |          | 14.4        | 0.0  | 12.5 |  |
| 3 \ //                   | 0.0  | 0.4      | 0.0  | 0.1  | 0.0      | 0.0  |     |     |          | 0.6         | 0.0  | 0.0  |  |
| 3 \ /.                   | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |     |     |          | 0.0         | 0.0  | 0.0  |  |
| %ile BackOfQ(95%),veh/l  |      | 3.5      | 0.1  | 0.6  | 1.1      | 0.0  |     |     |          | 3.4         | 0.0  | 0.5  |  |
| Unsig. Movement Delay, s |      |          |      |      |          |      |     |     |          |             |      |      |  |
|                          | 0.0  | 13.5     | 11.0 | 15.3 | 5.4      | 0.0  |     |     |          | 15.0        | 0.0  | 12.5 |  |
| LnGrp LOS                | Α    | В        | В    | В    | Α        | Α    |     |     |          | В           | Α    | B    |  |
| Approach Vol, veh/h      |      | 616      |      |      | 511      |      |     |     |          |             | 636  |      |  |
| Approach Delay, s/veh    |      | 13.5     |      |      | 7.1      |      |     |     |          |             | 14.7 |      |  |
| Approach LOS             |      | В        |      |      | Α        |      |     |     |          |             | В    |      |  |
| Timer - Assigned Phs     | 1    | 2        |      | 4    |          | 6    |     |     |          |             |      |      |  |
| Phs Duration (G+Y+Rc), s | s9.9 | 15.8     |      | 13.2 |          | 25.8 |     |     |          |             |      |      |  |
| Change Period (Y+Rc), s  |      | * 6      |      | * 5  |          | * 6  |     |     |          |             |      |      |  |
| Max Green Setting (Gma2  |      | * 29     |      | * 25 |          | * 54 |     |     |          |             |      |      |  |
| Max Q Clear Time (g_c+l  |      | 8.1      |      | 7.7  |          | 4.6  |     |     |          |             |      |      |  |
| Green Ext Time (p_c), s  |      | 1.6      |      | 0.5  |          | 1.1  |     |     |          |             |      |      |  |
| Intersection Summary     |      |          |      |      |          |      |     |     |          |             |      |      |  |
| HCM 6th Ctrl Delay       |      |          | 12.1 |      |          |      |     |     |          |             |      |      |  |
| HCM 6th LOS              |      |          | В    |      |          |      |     |     |          |             |      |      |  |
| -                        |      |          |      |      |          |      |     |     |          |             |      |      |  |

|                           | ۶    | <b>→</b> | •                                             | •    | <b>←</b> | •    | 4    | †    | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4   |  |
|---------------------------|------|----------|-----------------------------------------------|------|----------|------|------|------|----------|-------------|----------|-----|--|
| Movement                  | EBL  | EBT      | EBR                                           | WBL  | WBT      | WBR  | NBL  | NBT  | NBR      | SBL         | SBT      | SBR |  |
| Lane Configurations       | 1    | 44       |                                               |      | <b>^</b> | 7    | Ĭ    | 4    | 7        |             |          |     |  |
| Traffic Volume (veh/h)    | 175  | 865      | 0                                             | 0    | 415      | 355  | 45   | 0    | 125      | 0           | 0        | 0   |  |
| Future Volume (veh/h)     | 175  | 865      | 0                                             | 0    | 415      | 355  | 45   | 0    | 125      | 0           | 0        | 0   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0                                             | 0    | 0        | 0    | 0    | 0    | 0        |             |          |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00                                          | 1.00 |          | 0.99 | 1.00 |      | 1.00     |             |          |     |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00                                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |             |          |     |  |
| Work Zone On Approac      | ch   | No       |                                               |      | No       |      |      | No   |          |             |          |     |  |
| Adj Sat Flow, veh/h/ln    | 1841 | 1841     | 0                                             | 0    | 1841     | 1841 | 1841 | 1841 | 1841     |             |          |     |  |
| Adj Flow Rate, veh/h      | 194  | 961      | 0                                             | 0    | 461      | 66   | 50   | 0    | 12       |             |          |     |  |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90                                          | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90     |             |          |     |  |
| Percent Heavy Veh, %      | 4    | 4        | 0                                             | 0    | 4        | 4    | 4    | 4    | 4        |             |          |     |  |
| Cap, veh/h                | 678  | 1985     | 0                                             | 0    | 767      | 337  | 367  | 0    | 163      |             |          |     |  |
| Arrive On Green           | 0.20 | 0.57     | 0.00                                          | 0.00 | 0.22     | 0.22 | 0.10 | 0.00 | 0.10     |             |          |     |  |
| Sat Flow, veh/h           | 3401 | 3589     | 0                                             | 0    | 3589     | 1538 | 3506 | 0    | 1560     |             |          |     |  |
| Grp Volume(v), veh/h      | 194  | 961      | 0                                             | 0    | 461      | 66   | 50   | 0    | 12       |             |          |     |  |
| Grp Sat Flow(s),veh/h/l   |      | 1749     | 0                                             | 0    | 1749     | 1538 | 1753 | 0    | 1560     |             |          |     |  |
| Q Serve(g_s), s           | 1.6  | 5.5      | 0.0                                           | 0.0  | 4.0      | 1.2  | 0.4  | 0.0  | 0.2      |             |          |     |  |
| Cycle Q Clear(g_c), s     | 1.6  | 5.5      | 0.0                                           | 0.0  | 4.0      | 1.2  | 0.4  | 0.0  | 0.2      |             |          |     |  |
| Prop In Lane              | 1.00 |          | 0.00                                          | 0.00 |          | 1.00 | 1.00 |      | 1.00     |             |          |     |  |
| Lane Grp Cap(c), veh/h    |      | 1985     | 0                                             | 0    | 767      | 337  | 367  | 0    | 163      |             |          |     |  |
| V/C Ratio(X)              | 0.29 | 0.48     | 0.00                                          | 0.00 | 0.60     | 0.20 | 0.14 | 0.00 | 0.07     |             |          |     |  |
| Avail Cap(c_a), veh/h     | 2027 | 5628     | 0                                             | 0    | 3022     | 1329 | 2612 | 0    | 1162     |             |          |     |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00                                          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |             |          |     |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00                                          | 0.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00     |             |          |     |  |
| Uniform Delay (d), s/ve   |      | 4.3      | 0.0                                           | 0.0  | 11.8     | 10.7 | 13.6 | 0.0  | 13.6     |             |          |     |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.1      | 0.0                                           | 0.0  | 0.3      | 0.1  | 0.1  | 0.0  | 0.1      |             |          |     |  |
| Initial Q Delay(d3),s/vel |      | 0.0      | 0.0                                           | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |             |          |     |  |
| %ile BackOfQ(95%),vel     |      | 1.4      | 0.0                                           | 0.0  | 2.2      | 0.6  | 0.3  | 0.0  | 0.1      |             |          |     |  |
| Unsig. Movement Delay     |      |          | 0.0                                           | 0.0  |          | 0.0  | 0.0  | 0.0  | 0.1      |             |          |     |  |
| LnGrp Delay(d),s/veh      | 11.5 | 4.4      | 0.0                                           | 0.0  | 12.1     | 10.8 | 13.7 | 0.0  | 13.6     |             |          |     |  |
| LnGrp LOS                 | В    | A        | A                                             | Α    | В        | В    | В    | Α    | В        |             |          |     |  |
| Approach Vol, veh/h       |      | 1155     | , <u>, , , , , , , , , , , , , , , , , , </u> |      | 527      |      |      | 62   |          |             |          |     |  |
| Approach Delay, s/veh     |      | 5.6      |                                               |      | 11.9     |      |      | 13.7 |          |             |          |     |  |
| Approach LOS              |      | J.0      |                                               |      | В        |      |      | В    |          |             |          |     |  |
|                           |      |          |                                               |      |          |      |      |      |          |             |          |     |  |
| Timer - Assigned Phs      |      | 2        |                                               |      | 5        | 6    |      | 8    |          |             |          |     |  |
| Phs Duration (G+Y+Rc)     | , .  | 25.0     |                                               |      | 11.7     | 13.4 |      | 8.5  |          |             |          |     |  |
| Change Period (Y+Rc),     |      | * 6      |                                               |      | 5.0      | * 6  |      | 5.0  |          |             |          |     |  |
| Max Green Setting (Gm     | , ,  | * 54     |                                               |      | 20.0     | * 29 |      | 25.0 |          |             |          |     |  |
| Max Q Clear Time (g_c     |      | 7.5      |                                               |      | 3.6      | 6.0  |      | 2.4  |          |             |          |     |  |
| Green Ext Time (p_c), s   | S    | 2.9      |                                               |      | 0.3      | 1.2  |      | 0.1  |          |             |          |     |  |
| Intersection Summary      |      |          |                                               |      |          |      |      |      |          |             |          |     |  |
| HCM 6th Ctrl Delay        |      |          | 7.8                                           |      |          |      |      |      |          |             |          |     |  |
| HCM 6th LOS               |      |          | Α                                             |      |          |      |      |      |          |             |          |     |  |
| Notes                     |      |          |                                               |      |          |      |      |      |          |             |          |     |  |

| Intersection           |         |       |        |          |            |      |
|------------------------|---------|-------|--------|----------|------------|------|
| Int Delay, s/veh       | 1       |       |        |          |            |      |
| Movement               | EBL     | EBR   | NBL    | NBT      | SBT        | SBR  |
|                        |         | LDIX  | NDL    |          |            | ODIX |
| Lane Configurations    | 10      | C.E.  | AE     | <b>^</b> | <b>↑</b> } | 20   |
| Traffic Vol, veh/h     | 10      | 65    | 45     | 855      | 750        | 30   |
| Future Vol, veh/h      | 10      | 65    | 45     | 855      | 750        | 30   |
| Conflicting Peds, #/hr | 0       | 0     | _ 0    | _ 0      | _ 0        | _ 0  |
| Sign Control           | Stop    | Stop  | Free   | Free     | Free       | Free |
| RT Channelized         | -       | None  | -      | None     | -          | None |
| Storage Length         | 0       | -     | -      | -        | -          | -    |
| Veh in Median Storage, | , # 0   | -     | -      | 0        | 0          | -    |
| Grade, %               | 0       | -     | -      | 0        | 0          | -    |
| Peak Hour Factor       | 90      | 90    | 90     | 90       | 90         | 90   |
| Heavy Vehicles, %      | 2       | 2     | 2      | 2        | 2          | 2    |
| Mvmt Flow              | 11      | 72    | 50     | 950      | 833        | 33   |
|                        | • •     |       |        |          |            |      |
|                        |         |       |        |          |            |      |
|                        | /linor2 |       | Major1 |          | //ajor2    |      |
| Conflicting Flow All   | 1425    | 433   | 866    | 0        | -          | 0    |
| Stage 1                | 850     | -     | -      | -        | -          | -    |
| Stage 2                | 575     | -     | -      | -        | -          | -    |
| Critical Hdwy          | 6.84    | 6.94  | 4.14   | -        | -          | -    |
| Critical Hdwy Stg 1    | 5.84    | _     | _      | _        | -          | _    |
| Critical Hdwy Stg 2    | 5.84    | _     | _      | _        | _          | _    |
| Follow-up Hdwy         | 3.52    | 3.32  | 2.22   | _        | _          | _    |
| Pot Cap-1 Maneuver     | 126     | 571   | 773    | _        | _          | _    |
| Stage 1                | 379     | -     | 110    |          | _          |      |
|                        | 526     | _     | _      | _        |            | _    |
| Stage 2                | 520     | -     | -      | -        | -          | -    |
| Platoon blocked, %     | 400     | F74   | 770    | -        | -          | -    |
| Mov Cap-1 Maneuver     | 109     | 571   | 773    | -        | -          | -    |
| Mov Cap-2 Maneuver     | 109     | -     | -      | -        | -          | -    |
| Stage 1                | 327     | -     | -      | -        | -          | -    |
| Stage 2                | 526     | -     | -      | -        | -          | -    |
|                        |         |       |        |          |            |      |
| A a a la               | ED      |       | ND     |          | OD.        |      |
| Approach               | EB      |       | NB     |          | SB         |      |
| HCM Control Delay, s   | 17.8    |       | 0.5    |          | 0          |      |
| HCM LOS                | С       |       |        |          |            |      |
|                        |         |       |        |          |            |      |
| Minor Lane/Major Mvm   | t       | NBL   | NRT    | EBLn1    | SBT        | SBR  |
|                        |         |       |        |          |            | אומט |
| Capacity (veh/h)       |         | 773   | -      |          | -          | -    |
| HCM Lane V/C Ratio     |         | 0.065 | -      | 0.228    | -          | -    |
| HCM Control Delay (s)  |         | 10    | -      | 17.8     | -          | -    |
| HCM Lane LOS           |         | Α     | -      | С        | -          | -    |
| HCM 95th %tile Q(veh)  |         | 0.2   | -      | 0.9      | -          | -    |
|                        |         |       |        |          |            |      |

| Intersection           |        |          |            |              |          |          |
|------------------------|--------|----------|------------|--------------|----------|----------|
| Int Delay, s/veh       | 0.3    |          |            |              |          |          |
| Movement               | WBL    | WBR      | NBT        | NBR          | SBL      | SBT      |
| Lane Configurations    | ¥      | 11511    | <b>↑</b> ↑ | TTDIT.       | 052      | <b>^</b> |
| Traffic Vol, veh/h     | 5      | 20       | 880        | 5            | 10       | 805      |
| Future Vol, veh/h      | 5      | 20       | 880        | 5            | 10       | 805      |
| Conflicting Peds, #/hr | 3      | 0        | 0          | 3            | 8        | 0        |
| Sign Control           | Stop   | Stop     | Free       | Free         | Free     | Free     |
| RT Channelized         | -      | None     | -          |              | -        | None     |
| Storage Length         | 0      | -        | _          | -            | _        | -        |
| Veh in Median Storage  |        | _        | 0          | _            | _        | 0        |
| Grade, %               | 0      | <u>-</u> | 0          | <u>-</u>     | <u>-</u> | 0        |
| Peak Hour Factor       | 90     | 90       | 90         | 90           | 90       | 90       |
| Heavy Vehicles, %      | 2      | 2        | 2          | 2            | 2        | 2        |
|                        | 6      | 22       | 978        | 6            | 11       | 894      |
| Mvmt Flow              | Ö      | 22       | 910        | 0            | 11       | 094      |
|                        |        |          |            |              |          |          |
| Major/Minor            | Minor1 | N        | Major1     | l            | Major2   |          |
| Conflicting Flow All   | 1461   | 500      | 0          | 0            | 992      | 0        |
| Stage 1                | 989    | -        | -          | -            | -        | -        |
| Stage 2                | 472    | _        | _          | _            | _        | _        |
| Critical Hdwy          | 6.84   | 6.94     | -          | _            | 4.14     | _        |
| Critical Hdwy Stg 1    | 5.84   | -        | -          | _            | -        | _        |
| Critical Hdwy Stg 2    | 5.84   | _        | _          | _            | _        | _        |
| Follow-up Hdwy         | 3.52   | 3.32     | _          | _            | 2.22     | _        |
| Pot Cap-1 Maneuver     | 120    | 516      | _          | _            | 693      | _        |
| Stage 1                | 321    | -        | _          | _            | -        | _        |
| Stage 2                | 594    | _        | _          | <del>-</del> |          |          |
| Platoon blocked, %     | 334    | -        | _          | _            | -        | _        |
|                        | 115    | 512      |            | _            | 688      |          |
| Mov Cap-1 Maneuver     |        |          |            | -            |          | -        |
| Mov Cap-2 Maneuver     | 233    | -        | -          | -            | -        | -        |
| Stage 1                | 318    | -        | -          | -            | -        | -        |
| Stage 2                | 573    | -        | -          | -            | -        | -        |
|                        |        |          |            |              |          |          |
| Approach               | WB     |          | NB         |              | SB       |          |
| HCM Control Delay, s   | 14.3   |          | 0          |              | 0.1      |          |
| HCM LOS                | В      |          | U          |              | 0.1      |          |
| TIOW LOO               |        |          |            |              |          |          |
|                        |        |          |            |              |          |          |
| Minor Lane/Major Mvm   | nt     | NBT      | NBRV       | VBLn1        | SBL      | SBT      |
| Capacity (veh/h)       |        | -        | -          | 413          | 688      | -        |
| HCM Lane V/C Ratio     |        | -        | -          | 0.067        | 0.016    | -        |
| HCM Control Delay (s)  |        | -        | -          | 14.3         | 10.3     | -        |
| HCM Lane LOS           |        | -        | -          | В            | В        | -        |
| HCM 95th %tile Q(veh   | )      | -        | -          | 0.2          | 0        | -        |
|                        |        |          |            |              |          |          |

|                              | ۶   | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | •        | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|------------------------------|-----|----------|---------------|------|----------|------|----------|----------|-------------|-------------|------|------|
| Movement                     | EBL | EBT      | EBR           | WBL  | WBT      | WBR  | NBL      | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations          |     |          |               |      | <b>^</b> |      |          | 4        |             |             | 1→   |      |
| Traffic Volume (veh/h)       | 0   | 0        | 0             | 200  | 810      | 95   | 175      | 135      | 0           | 0           | 315  | 10   |
| Future Volume (veh/h)        | 0   | 0        | 0             | 200  | 810      | 95   | 175      | 135      | 0           | 0           | 315  | 10   |
| Initial Q (Qb), veh          |     |          |               | 0    | 0        | 0    | 0        | 0        | 0           | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)          |     |          |               | 1.00 |          | 1.00 | 0.98     |          | 1.00        | 1.00        |      | 0.90 |
| Parking Bus, Adj             |     |          |               | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00        | 1.00 | 1.00 |
| Work Zone On Approach        |     |          |               |      | No       |      |          | No       |             |             | No   |      |
| Adj Sat Flow, veh/h/ln       |     |          |               | 1870 | 1870     | 1870 | 1870     | 1870     | 0           | 0           | 1870 | 1870 |
| Adj Flow Rate, veh/h         |     |          |               | 222  | 900      | 86   | 194      | 150      | 0           | 0           | 350  | 11   |
| Peak Hour Factor             |     |          |               | 0.90 | 0.90     | 0.90 | 0.90     | 0.90     | 0.90        | 0.90        | 0.90 | 0.90 |
| Percent Heavy Veh, %         |     |          |               | 2    | 2        | 2    | 2        | 2        | 0           | 0           | 2    | 2    |
| Cap, veh/h                   |     |          |               | 261  | 1115     | 111  | 293      | 191      | 0           | 0           | 666  | 21   |
| Arrive On Green              |     |          |               | 0.41 | 0.41     | 0.41 | 0.37     | 0.37     | 0.00        | 0.00        | 0.37 | 0.37 |
| Sat Flow, veh/h              |     |          |               | 642  | 2743     | 273  | 416      | 514      | 0           | 0           | 1796 | 56   |
| Grp Volume(v), veh/h         |     |          |               | 635  | 0        | 573  | 344      | 0        | 0           | 0           | 0    | 361  |
| Grp Sat Flow(s), veh/h/ln    |     |          |               | 1838 | 0        | 1820 | 930      | 0        | 0           | 0           | 0    | 1853 |
| Q Serve(g_s), s              |     |          |               | 12.7 | 0.0      | 11.0 | 8.8      | 0.0      | 0.0         | 0.0         | 0.0  | 6.2  |
| Cycle Q Clear(g_c), s        |     |          |               | 12.7 | 0.0      | 11.0 | 15.0     | 0.0      | 0.0         | 0.0         | 0.0  | 6.2  |
| Prop In Lane                 |     |          |               | 0.35 | 0.0      | 0.15 | 0.56     | 0.0      | 0.00        | 0.00        | 0.0  | 0.03 |
| Lane Grp Cap(c), veh/h       |     |          |               | 747  | 0        | 740  | 484      | 0        | 0.00        | 0.00        | 0    | 687  |
| V/C Ratio(X)                 |     |          |               | 0.85 | 0.00     | 0.77 | 0.71     | 0.00     | 0.00        | 0.00        | 0.00 | 0.53 |
| Avail Cap(c_a), veh/h        |     |          |               | 1136 | 0.00     | 1125 | 484      | 0.00     | 0.00        | 0.00        | 0.00 | 687  |
| HCM Platoon Ratio            |     |          |               | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)           |     |          |               | 1.00 | 0.00     | 1.00 | 1.00     | 0.00     | 0.00        | 0.00        | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     |     |          |               | 10.9 | 0.0      | 10.4 | 13.8     | 0.0      | 0.0         | 0.0         | 0.0  | 9.9  |
| Incr Delay (d2), s/veh       |     |          |               | 2.5  | 0.0      | 0.8  | 4.1      | 0.0      | 0.0         | 0.0         | 0.0  | 0.4  |
| Initial Q Delay(d3),s/veh    |     |          |               | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0         | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(95%),veh/ln     |     |          |               | 7.5  | 0.0      | 6.0  | 5.5      | 0.0      | 0.0         | 0.0         | 0.0  | 3.5  |
| Unsig. Movement Delay, s/veh |     |          |               | 7.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0         | 0.0         | 0.0  | 0.0  |
| LnGrp Delay(d),s/veh         |     |          |               | 13.4 | 0.0      | 11.2 | 17.9     | 0.0      | 0.0         | 0.0         | 0.0  | 10.3 |
| LnGrp LOS                    |     |          |               | В    | Α        | В    | В        | Α        | Α           | Α           | Α    | В    |
| Approach Vol, veh/h          |     |          |               |      | 1208     |      | <u> </u> | 344      |             |             | 361  |      |
| Approach Delay, s/veh        |     |          |               |      | 12.3     |      |          | 17.9     |             |             | 10.3 |      |
| 11 21                        |     |          |               |      | _        |      |          | _        |             |             | _    |      |
| Approach LOS                 |     |          |               |      | В        |      |          | В        |             |             | В    |      |
| Timer - Assigned Phs         |     | 2        |               | 4    |          |      |          | 8        |             |             |      |      |
| Phs Duration (G+Y+Rc), s     |     | 21.4     |               | 19.0 |          |      |          | 19.0     |             |             |      |      |
| Change Period (Y+Rc), s      |     | * 5      |               | * 4  |          |      |          | * 4      |             |             |      |      |
| Max Green Setting (Gmax), s  |     | * 25     |               | * 15 |          |      |          | * 15     |             |             |      |      |
| Max Q Clear Time (g_c+l1), s |     | 14.7     |               | 8.2  |          |      |          | 17.0     |             |             |      |      |
| Green Ext Time (p_c), s      |     | 1.7      |               | 0.5  |          |      |          | 0.0      |             |             |      |      |
| Intersection Summary         |     |          |               |      |          |      |          |          |             |             |      |      |
| HCM 6th Ctrl Delay           |     |          | 13.0          |      |          |      |          |          |             |             |      |      |
| HCM 6th LOS                  |     |          | В             |      |          |      |          |          |             |             |      |      |
| Notes                        |     |          |               |      |          |      |          |          |             |             |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ᄼ    | -        | •    | •    | •   | •        | •    | <b>†</b> | /    | -        | <b>↓</b> | 4                                             |
|---------------------------|------|----------|------|------|-----|----------|------|----------|------|----------|----------|-----------------------------------------------|
| Movement                  | EBL  | EBT      | EBR  | WBL  | WBT | WBR      | NBL  | NBT      | NBR  | SBL      | SBT      | SBR                                           |
| Lane Configurations       |      | <b>^</b> |      |      |     |          |      | 4        |      |          | 4        | 02.1                                          |
| Traffic Volume (veh/h)    | 10   | 845      | 220  | 0    | 0   | 0        | 0    | 295      | 100  | 140      | 380      | 0                                             |
| Future Volume (veh/h)     | 10   | 845      | 220  | 0    | 0   | 0        | 0    | 295      | 100  | 140      | 380      | 0                                             |
| Initial Q (Qb), veh       | 0    | 0        | 0    |      |     | <u> </u> | 0    | 0        | 0    | 0        | 0        | 0                                             |
| Ped-Bike Adj(A_pbT)       | 1.00 | •        | 0.97 |      |     |          | 1.00 | -        | 0.94 | 0.99     |          | 1.00                                          |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 |      |     |          | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00                                          |
| Work Zone On Approac      |      | No       |      |      |     |          |      | No       |      |          | No       |                                               |
| Adj Sat Flow, veh/h/ln    | 1870 | 1870     | 1870 |      |     |          | 0    | 1870     | 1870 | 1870     | 1870     | 0                                             |
| Adj Flow Rate, veh/h      | 11   | 939      | 181  |      |     |          | 0    | 328      | 111  | 156      | 422      | 0                                             |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90 |      |     |          | 0.90 | 0.90     | 0.90 | 0.90     | 0.90     | 0.90                                          |
| Percent Heavy Veh, %      | 2    | 2        | 2    |      |     |          | 0    | 2        | 2    | 2        | 2        | 0                                             |
| Cap, veh/h                | 13   | 1161     | 237  |      |     |          | 0    | 500      | 169  | 186      | 307      | 0                                             |
| Arrive On Green           | 0.39 | 0.39     | 0.39 |      |     |          | 0.00 | 0.38     | 0.38 | 0.38     | 0.38     | 0.00                                          |
| Sat Flow, veh/h           | 34   | 2970     | 607  |      |     |          | 0.00 | 1313     | 444  | 182      | 805      | 0                                             |
| Grp Volume(v), veh/h      | 611  | 0        | 520  |      |     |          | 0    | 0        | 439  | 578      | 0        | 0                                             |
| Grp Sat Flow(s), veh/h/lr |      | 0        | 1742 |      |     |          | 0    | 0        | 1757 | 988      | 0        | 0                                             |
| Q Serve(g_s), s           | 11.7 | 0.0      | 10.2 |      |     |          | 0.0  | 0.0      | 8.1  | 6.9      | 0.0      | 0.0                                           |
| Cycle Q Clear(g_c), s     | 11.7 | 0.0      | 10.2 |      |     |          | 0.0  | 0.0      | 8.1  | 15.0     | 0.0      | 0.0                                           |
| Prop In Lane              | 0.02 | 0.0      | 0.35 |      |     |          | 0.00 | 0.0      | 0.25 | 0.27     | 0.0      | 0.00                                          |
| Lane Grp Cap(c), veh/h    |      | 0        | 681  |      |     |          | 0.00 | 0        | 669  | 492      | 0        | 0.00                                          |
| V/C Ratio(X)              | 0.84 | 0.00     | 0.76 |      |     |          | 0.00 | 0.00     | 0.66 | 1.17     | 0.00     | 0.00                                          |
| Avail Cap(c_a), veh/h     | 1186 | 0.00     | 1106 |      |     |          | 0.00 | 0.00     | 669  | 492      | 0.00     | 0.00                                          |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 |      |     |          | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00                                          |
| Upstream Filter(I)        | 1.00 | 0.00     | 1.00 |      |     |          | 0.00 | 0.00     | 1.00 | 1.00     | 0.00     | 0.00                                          |
| Uniform Delay (d), s/vel  |      | 0.0      | 10.4 |      |     |          | 0.0  | 0.0      | 10.1 | 14.6     | 0.0      | 0.0                                           |
| Incr Delay (d2), s/veh    | 1.4  | 0.0      | 0.7  |      |     |          | 0.0  | 0.0      | 1.9  | 98.2     | 0.0      | 0.0                                           |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  |      |     |          | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0                                           |
| %ile BackOfQ(95%),vel     |      | 0.0      | 5.2  |      |     |          | 0.0  | 0.0      | 4.7  | 26.7     | 0.0      | 0.0                                           |
| Unsig. Movement Delay     |      |          | 0.2  |      |     |          | 0.0  | 0.0      | 1.7  | 20.1     | 0.0      | 0.0                                           |
| LnGrp Delay(d),s/veh      | 12.2 | 0.0      | 11.1 |      |     |          | 0.0  | 0.0      | 11 9 | 112.8    | 0.0      | 0.0                                           |
| LnGrp LOS                 | В    | A        | В    |      |     |          | A    | A        | В    | F        | A        | Α                                             |
| Approach Vol, veh/h       |      | 1131     |      |      |     |          | , ·  | 439      |      | <u>'</u> | 578      | , , <u>, , , , , , , , , , , , , , , , , </u> |
| Approach Delay, s/veh     |      | 11.7     |      |      |     |          |      | 11.9     |      |          | 112.8    |                                               |
| Approach LOS              |      | В        |      |      |     |          |      | В        |      |          | F        |                                               |
|                           |      |          |      |      |     |          |      |          |      |          | '        |                                               |
| Timer - Assigned Phs      |      | 2        |      | 4    |     |          |      | 8        |      |          |          |                                               |
| Phs Duration (G+Y+Rc)     |      | 20.4     |      | 19.0 |     |          |      | 19.0     |      |          |          |                                               |
| Change Period (Y+Rc),     |      | * 5      |      | * 4  |     |          |      | * 4      |      |          |          |                                               |
| Max Green Setting (Gm     | , ,  | * 25     |      | * 15 |     |          |      | * 15     |      |          |          |                                               |
| Max Q Clear Time (g_c-    |      | 13.7     |      | 17.0 |     |          |      | 10.1     |      |          |          |                                               |
| Green Ext Time (p_c), s   | 3    | 1.7      |      | 0.0  |     |          |      | 0.5      |      |          |          |                                               |
| Intersection Summary      |      |          |      |      |     |          |      |          |      |          |          |                                               |
| HCM 6th Ctrl Delay        |      |          | 39.0 |      |     |          |      |          |      |          |          |                                               |
| HCM 6th LOS               |      |          | D    |      |     |          |      |          |      |          |          |                                               |
| Notes                     |      |          |      |      |     |          |      |          |      |          |          |                                               |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |       |        |        |       |        |      |      |         |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|---------|------|------|
| Int Delay, s/veh       | 1.9    |       |       |        |        |       |        |      |      |         |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |         | 4    |      |
| Traffic Vol, veh/h     | 40     | 5     | 5     | 5      | 5      | 10    | 5      | 305  | 5    | 10      | 490  | 70   |
| Future Vol, veh/h      | 40     | 5     | 5     | 5      | 5      | 10    | 5      | 305  | 5    | 10      | 490  | 70   |
| Conflicting Peds, #/hr | 3      | 0     | 5     | 5      | 0      | 3     | 24     | 0    | 22   | 35      | 0    | 37   |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free    | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None | -       | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -       | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -     | -      | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90      | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2     | 2      | 2    | 2    | 2       | 2    | 2    |
| Mvmt Flow              | 44     | 6     | 6     | 6      | 6      | 11    | 6      | 339  | 6    | 11      | 544  | 78   |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Major/Minor I          | Minor2 |       |       | Minor1 |        |       | Major1 |      | N    | /lajor2 |      |      |
| Conflicting Flow All   | 1008   | 1034  | 625   | 1005   | 1070   | 380   | 659    | 0    | 0    | 380     | 0    | 0    |
| Stage 1                | 642    | 642   | -     | 389    | 389    | -     | -      | -    | -    |         | -    | -    |
| Stage 2                | 366    | 392   | _     | 616    | 681    | -     | _      | _    | _    | _       | -    | _    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22  | 4.12   | _    | -    | 4.12    | -    | _    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | _      | _    | -    | _       | -    | _    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -       | -    | -    |
| Follow-up Hdwy         | 3.518  |       | 3.318 | 3.518  | 4.018  | 3.318 | 2.218  | -    | -    | 2.218   | -    | -    |
| Pot Cap-1 Maneuver     | 219    | 232   | 485   | 220    | 221    | 667   | 929    | -    | -    | 1178    | -    | -    |
| Stage 1                | 463    | 469   | -     | 635    | 608    | -     | -      | -    | -    | -       | -    | -    |
| Stage 2                | 653    | 606   | -     | 478    | 450    | -     | -      | -    | -    | -       | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |         | -    | -    |
| Mov Cap-1 Maneuver     | 199    | 212   | 466   | 201    | 202    | 643   | 896    | -    | -    | 1139    | -    | -    |
| Mov Cap-2 Maneuver     | 199    | 212   | -     | 201    | 202    | -     | -      | -    | -    | -       | -    | -    |
| Stage 1                | 443    | 446   | -     | 609    | 583    | -     | -      | -    | -    | _       | -    | -    |
| Stage 2                | 629    | 581   | -     | 457    | 428    | -     | -      | -    | -    | -       | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB      |      |      |
| HCM Control Delay, s   | 27.9   |       |       | 17.6   |        |       | 0.1    |      |      | 0.1     |      |      |
| HCM LOS                | D      |       |       | С      |        |       |        |      |      |         |      |      |
|                        |        |       |       |        |        |       |        |      |      |         |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |         |      |      |
| Capacity (veh/h)       |        | 896   | -     | -      | 0.10   | 307   | 1139   | -    | _    |         |      |      |
| HCM Lane V/C Ratio     |        | 0.006 | -     | _      | 0.262  |       | 0.01   | _    | _    |         |      |      |
| HCM Control Delay (s)  |        | 9     | 0     | -      |        | 17.6  | 8.2    | 0    | -    |         |      |      |
| HCM Lane LOS           |        | A     | A     | -      | D      | С     | A      | A    | _    |         |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 1      | 0.2   | 0      | -    | -    |         |      |      |
| 2000 2000 2000         |        |       |       |        | •      |       |        |      |      |         |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | ţ          | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>∱</b> β |      | ሻ        | <b>ተ</b> ኈ |      |
| Traffic Volume (veh/h)       | 20   | 130      | 115  | 20   | 165      | 20   | 165  | 770        | 20   | 5        | 735        | 10   |
| Future Volume (veh/h)        | 20   | 130      | 115  | 20   | 165      | 20   | 165  | 770        | 20   | 5        | 735        | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.98 | 1.00 |          | 0.98 | 1.00 |            | 0.97 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870       | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 22   | 144      | 77   | 22   | 183      | 15   | 183  | 856        | 20   | 6        | 817        | 11   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2          | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 99   | 217      | 108  | 102  | 316      | 24   | 481  | 2172       | 51   | 461      | 2198       | 30   |
| Arrive On Green              | 0.20 | 0.20     | 0.20 | 0.20 | 0.20     | 0.20 | 0.61 | 0.61       | 0.61 | 0.61     | 0.61       | 0.61 |
| Sat Flow, veh/h              | 83   | 1097     | 547  | 96   | 1591     | 123  | 661  | 3547       | 83   | 632      | 3589       | 48   |
| Grp Volume(v), veh/h         | 243  | 0        | 0    | 220  | 0        | 0    | 183  | 429        | 447  | 6        | 404        | 424  |
| Grp Sat Flow(s),veh/h/ln     | 1727 | 0        | 0    | 1811 | 0        | 0    | 661  | 1777       | 1853 | 632      | 1777       | 1860 |
| Q Serve(g_s), s              | 1.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 9.1  | 5.9        | 5.9  | 0.2      | 5.4        | 5.4  |
| Cycle Q Clear(g_c), s        | 6.1  | 0.0      | 0.0  | 5.2  | 0.0      | 0.0  | 14.6 | 5.9        | 5.9  | 6.1      | 5.4        | 5.4  |
| Prop In Lane                 | 0.09 |          | 0.32 | 0.10 |          | 0.07 | 1.00 |            | 0.04 | 1.00     |            | 0.03 |
| Lane Grp Cap(c), veh/h       | 425  | 0        | 0    | 442  | 0        | 0    | 481  | 1088       | 1135 | 461      | 1088       | 1139 |
| V/C Ratio(X)                 | 0.57 | 0.00     | 0.00 | 0.50 | 0.00     | 0.00 | 0.38 | 0.39       | 0.39 | 0.01     | 0.37       | 0.37 |
| Avail Cap(c_a), veh/h        | 972  | 0        | 0    | 1012 | 0        | 0    | 771  | 1868       | 1948 | 738      | 1868       | 1956 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 17.7 | 0.0      | 0.0  | 17.4 | 0.0      | 0.0  | 8.3  | 4.7        | 4.7  | 6.3      | 4.6        | 4.6  |
| Incr Delay (d2), s/veh       | 0.5  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 0.7  | 0.3        | 0.3  | 0.0      | 0.3        | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 4.1  | 0.0      | 0.0  | 3.6  | 0.0      | 0.0  | 1.9  | 2.5        | 2.6  | 0.0      | 2.3        | 2.4  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 18.2 | 0.0      | 0.0  | 17.7 | 0.0      | 0.0  | 9.0  | 5.0        | 5.0  | 6.3      | 4.9        | 4.9  |
| LnGrp LOS                    | В    | Α        | Α    | В    | Α        | Α    | Α    | Α          | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 243      |      |      | 220      |      |      | 1059       |      |          | 834        |      |
| Approach Delay, s/veh        |      | 18.2     |      |      | 17.7     |      |      | 5.7        |      |          | 4.9        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | Α          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 34.1     |      | 13.4 |          | 34.1 |      | 13.4       |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |      | 25.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 16.6     |      | 8.1  |          | 8.1  |      | 7.2        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 12.6     |      | 0.9  |          | 9.4  |      | 0.8        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 7.8  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | А    |      |          |      |      |            |      |          |            |      |

| Intersection           |        |          |          |       |        |      |
|------------------------|--------|----------|----------|-------|--------|------|
| Int Delay, s/veh       | 8.6    |          |          |       |        |      |
| Movement               | WBL    | WBR      | NBT      | NBR   | SBL    | SBT  |
| Lane Configurations    | W      |          | <b>1</b> |       |        | 4    |
| Traffic Vol, veh/h     | 10     | 315      | 30       | 10    | 225    | 30   |
| Future Vol, veh/h      | 10     | 315      | 30       | 10    | 225    | 30   |
| Conflicting Peds, #/hr | 10     | 3        | 0        | 8     | 8      | 0    |
| Sign Control           | Stop   | Stop     | Free     | Free  | Free   | Free |
| RT Channelized         | - Olop | None     | -        |       | -      | None |
| Storage Length         | 0      | -        | _        | -     | _      | -    |
| Veh in Median Storage  |        | _        | 0        | _     | _      | 0    |
| Grade, %               | 0      | <u>-</u> | 0        | _     | _      | 0    |
| Peak Hour Factor       | 90     | 90       | 90       | 90    | 90     | 90   |
|                        | 2      | 2        | 2        | 2     | 2      | 2    |
| Heavy Vehicles, %      |        |          |          |       |        |      |
| Mvmt Flow              | 11     | 350      | 33       | 11    | 250    | 33   |
|                        |        |          |          |       |        |      |
| Major/Minor            | Minor1 | N        | Major1   |       | Major2 |      |
| Conflicting Flow All   | 590    | 50       | 0        | 0     | 52     | 0    |
| Stage 1                | 47     | -        | -        | -     | -      | -    |
| Stage 2                | 543    | -        | -        | -     | -      | -    |
| Critical Hdwy          | 6.42   | 6.22     | -        | _     | 4.12   | -    |
| Critical Hdwy Stg 1    | 5.42   | -        | _        | _     | -      | _    |
| Critical Hdwy Stg 2    | 5.42   | _        | _        | _     | _      | _    |
| Follow-up Hdwy         | 3.518  | 3 318    | _        | _     | 2.218  | _    |
| Pot Cap-1 Maneuver     | 470    | 1018     | _        | _     | 1554   | _    |
| Stage 1                | 975    | -        | _        | _     | -      | _    |
| Stage 2                | 582    | _        | _        | _     | _      | _    |
| Platoon blocked, %     | 302    |          | _        | _     |        | _    |
| Mov Cap-1 Maneuver     | 385    | 1007     | _        | -     | 1542   |      |
| Mov Cap-1 Maneuver     | 385    | -        | _        | -     | 1342   | _    |
|                        | 967    | -        | -        | -     | -      |      |
| Stage 1                |        | -        | -        | -     | -      | -    |
| Stage 2                | 481    | -        | -        | -     | -      | -    |
|                        |        |          |          |       |        |      |
| Approach               | WB     |          | NB       |       | SB     |      |
| HCM Control Delay, s   | 11     |          | 0        |       | 6.9    |      |
| HCM LOS                | В      |          |          |       |        |      |
|                        |        |          |          |       |        |      |
|                        |        |          |          |       |        |      |
| Minor Lane/Major Mvm   | nt     | NBT      | NBRV     | VBLn1 | SBL    | SBT  |
| Capacity (veh/h)       |        | -        | -        |       | 1542   | -    |
| HCM Lane V/C Ratio     |        | -        | -        | 0.377 |        | -    |
| HCM Control Delay (s)  | )      | -        | -        |       | 7.8    | 0    |
| HCM Lane LOS           |        | -        | -        | В     | Α      | Α    |
| HCM 95th %tile Q(veh   | 1)     | -        | -        | 1.8   | 0.6    | -    |
|                        |        |          |          |       |        |      |

| Intersection           |        |       |        |           |         |        |
|------------------------|--------|-------|--------|-----------|---------|--------|
| Int Delay, s/veh       | 10.5   |       |        |           |         |        |
| Movement               | EBL    | EBR   | NBL    | NBT       | SBT     | SBR    |
| Lane Configurations    | ¥      |       |        | <u> </u>  | \$      |        |
| Traffic Vol, veh/h     | 60     | 225   | 315    | 30        | 30      | 20     |
| Future Vol, veh/h      | 60     | 225   | 315    | 30        | 30      | 20     |
| Conflicting Peds, #/hr | 1      | 8     | 7      | 0         | 0       | 7      |
| Sign Control           | Stop   | Stop  | Free   | Free      | Free    | Free   |
| RT Channelized         | -      | None  | -      | None      | -       | None   |
| Storage Length         | 0      | -     | _      | -         | _       | -      |
| Veh in Median Storage  |        | _     | _      | 0         | 0       | _      |
| Grade, %               | 0      | _     | _      | 0         | 0       | _      |
| Peak Hour Factor       | 90     | 90    | 90     | 90        | 90      | 90     |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2         | 2       | 2      |
| Mvmt Flow              | 67     | 250   | 350    | 33        | 33      | 22     |
| INIVITIL FIOW          | 07     | 250   | 330    | აა        | აა      | 22     |
|                        |        |       |        |           |         |        |
|                        | Minor2 |       | Major1 | ١         | /lajor2 |        |
| Conflicting Flow All   | 785    | 59    | 62     | 0         | -       | 0      |
| Stage 1                | 51     | -     | -      | -         | -       | -      |
| Stage 2                | 734    | -     | -      | -         | -       | -      |
| Critical Hdwy          | 6.42   | 6.22  | 4.12   | -         | -       | -      |
| Critical Hdwy Stg 1    | 5.42   | -     | -      | -         | -       | -      |
| Critical Hdwy Stg 2    | 5.42   | -     | -      | -         | -       | -      |
| Follow-up Hdwy         | 3.518  | 3.318 | 2.218  | -         | -       | -      |
| Pot Cap-1 Maneuver     | 361    | 1007  | 1541   | -         | -       | -      |
| Stage 1                | 971    | -     | -      | -         | -       | -      |
| Stage 2                | 475    | _     | -      | -         | -       | -      |
| Platoon blocked, %     |        |       |        | _         | _       | _      |
| Mov Cap-1 Maneuver     | 273    | 993   | 1531   | _         | -       | _      |
| Mov Cap-2 Maneuver     | 273    | -     | -      | _         | _       | _      |
| Stage 1                | 740    | _     | _      | _         | _       | _      |
| Stage 2                | 472    | _     | _      | _         | _       | _      |
| Olago Z                | ","    |       |        |           |         |        |
|                        |        |       |        |           |         |        |
| Approach               | EB     |       | NB     |           | SB      |        |
| HCM Control Delay, s   | 16.1   |       | 7.3    |           | 0       |        |
| HCM LOS                | С      |       |        |           |         |        |
|                        |        |       |        |           |         |        |
| Minor Lane/Major Mvm   | ıt     | NBL   | NRT    | EBLn1     | SBT     | SBR    |
| Capacity (veh/h)       |        | 1531  | -      |           | -       | - ODIT |
| HCM Lane V/C Ratio     |        | 0.229 |        | 0.496     | _       | _      |
| HCM Control Delay (s)  |        | 0.229 | -      |           | -       | _      |
| HCM Lane LOS           |        | A     | -      | 16.1<br>C | -       | -      |
| HCM 95th %tile Q(veh)  |        | 0.9   | _      | 2.8       |         | -      |
|                        |        | 0.9   | -      | 2.0       | -       | _      |

| Intersection           |        |       |       |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 11.5   |       |       |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |        | 4    | 02.1 |
| Traffic Vol, veh/h     | 5      | 265   | 5     | 5      | 305    | 5     | 5      | 30   | 5    | 5      | 30   | 60   |
| Future Vol, veh/h      | 5      | 265   | 5     | 5      | 305    | 5     | 5      | 30   | 5    | 5      | 30   | 60   |
| Conflicting Peds, #/hr | 1      | 0     | 1     | 4      | 0      | 3     | 0      | 0    | 2    | 2      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e, # - | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2     | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 6      | 294   | 6     | 6      | 339    | 6     | 6      | 33   | 6    | 6      | 33   | 67   |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor N          | Minor2 |       |       | Minor1 |        |       | Major1 |      | - 1  | Major2 |      |      |
| Conflicting Flow All   | 303    | 132   | 71    | 283    | 162    | 41    | 100    | 0    | 0    | 41     | 0    | 0    |
| Stage 1                | 79     | 79    | -     | 50     | 50     | -     | -      | -    | _    | -      | -    | _    |
| Stage 2                | 224    | 53    | -     | 233    | 112    | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22  | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | _     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018  | 3.318 | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 649    | 759   | 991   | 669    | 730    | 1030  | 1493   | -    | -    | 1568   | -    | -    |
| Stage 1                | 930    | 829   | -     | 963    | 853    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 779    | 851   | -     | 770    | 803    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 405    | 751   | 987   | 457    | 723    | 1025  | 1493   | -    | -    | 1565   | -    | -    |
| Mov Cap-2 Maneuver     | 405    | 751   | -     | 457    | 723    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 926    | 826   | -     | 957    | 848    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 462    | 846   | -     | 489    | 800    | -     | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 13.2   |       |       | 14.6   |        |       | 0.9    |      |      | 0.4    |      |      |
| HCM LOS                | В      |       |       | В      |        |       |        |      |      |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1493  | _     | -      |        | 720   | 1565   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.004 | -     | _      |        | 0.486 |        | _    | _    |        |      |      |
| HCM Control Delay (s)  |        | 7.4   | 0     | -      | 13.2   | 14.6  | 7.3    | 0    | -    |        |      |      |
| HCM Lane LOS           |        | Α     | A     | -      | В      | В     | A      | A    | -    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 2      | 2.7   | 0      | -    | -    |        |      |      |
| A(1011)                |        |       |       |        |        |       |        |      |      |        |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1     | <b>†</b>   | ~    | <b>/</b> | <b>+</b>   | ✓    |
|------------------------------|------|----------|------|------|----------|------|-------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ     | <b>ተ</b> ኈ |      | ሻ        | <b>ተ</b> ኈ |      |
| Traffic Volume (veh/h)       | 110  | 165      | 160  | 55   | 215      | 20   | 355   | 835        | 40   | 10       | 815        | 30   |
| Future Volume (veh/h)        | 110  | 165      | 160  | 55   | 215      | 20   | 355   | 835        | 40   | 10       | 815        | 30   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0     | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.97 | 1.00 |          | 0.99 | 1.00  |            | 0.97 | 1.00     |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |       | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870  | 1870       | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 122  | 183      | 141  | 61   | 239      | 18   | 394   | 928        | 40   | 11       | 906        | 29   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90  | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2     | 2          | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 155  | 189      | 134  | 108  | 361      | 25   | 358   | 2063       | 89   | 345      | 2091       | 67   |
| Arrive On Green              | 0.30 | 0.30     | 0.30 | 0.30 | 0.30     | 0.30 | 0.60  | 0.60       | 0.60 | 0.60     | 0.60       | 0.60 |
| Sat Flow, veh/h              | 336  | 635      | 449  | 193  | 1213     | 84   | 598   | 3465       | 149  | 580      | 3513       | 112  |
| Grp Volume(v), veh/h         | 446  | 0        | 0    | 318  | 0        | 0    | 394   | 476        | 492  | 11       | 458        | 477  |
| Grp Sat Flow(s),veh/h/ln     | 1420 | 0        | 0    | 1490 | 0        | 0    | 598   | 1777       | 1838 | 580      | 1777       | 1849 |
| Q Serve(g_s), s              | 10.1 | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 38.2  | 12.4       | 12.4 | 0.9      | 11.8       | 11.8 |
| Cycle Q Clear(g_c), s        | 25.0 | 0.0      | 0.0  | 14.9 | 0.0      | 0.0  | 50.0  | 12.4       | 12.4 | 13.3     | 11.8       | 11.8 |
| Prop In Lane                 | 0.27 |          | 0.32 | 0.19 |          | 0.06 | 1.00  |            | 0.08 | 1.00     |            | 0.06 |
| Lane Grp Cap(c), veh/h       | 477  | 0        | 0    | 495  | 0        | 0    | 358   | 1058       | 1094 | 345      | 1058       | 1101 |
| V/C Ratio(X)                 | 0.93 | 0.00     | 0.00 | 0.64 | 0.00     | 0.00 | 1.10  | 0.45       | 0.45 | 0.03     | 0.43       | 0.43 |
| Avail Cap(c_a), veh/h        | 477  | 0        | 0    | 495  | 0        | 0    | 358   | 1058       | 1094 | 345      | 1058       | 1101 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 30.2 | 0.0      | 0.0  | 25.5 | 0.0      | 0.0  | 27.5  | 9.4        | 9.4  | 13.1     | 9.3        | 9.3  |
| Incr Delay (d2), s/veh       | 25.4 | 0.0      | 0.0  | 2.2  | 0.0      | 0.0  | 77.7  | 0.4        | 0.4  | 0.1      | 0.4        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 18.1 | 0.0      | 0.0  | 9.6  | 0.0      | 0.0  | 23.0  | 7.8        | 8.0  | 0.2      | 7.5        | 7.7  |
| Unsig. Movement Delay, s/veh |      |          |      | _    |          |      |       |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 55.6 | 0.0      | 0.0  | 27.7 | 0.0      | 0.0  | 105.2 | 9.8        | 9.8  | 13.1     | 9.7        | 9.7  |
| LnGrp LOS                    | E    | Α        | Α    | С    | Α        | Α    | F     | Α          | Α    | В        | Α          | A    |
| Approach Vol, veh/h          |      | 446      |      |      | 318      |      |       | 1362       |      |          | 946        |      |
| Approach Delay, s/veh        |      | 55.6     |      |      | 27.7     |      |       | 37.4       |      |          | 9.7        |      |
| Approach LOS                 |      | Е        |      |      | С        |      |       | D          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |       | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 55.0     |      | 29.0 |          | 55.0 |       | 29.0       |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |       | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 50.0     |      | 25.0 |          | 50.0 |       | 25.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 52.0     |      | 27.0 |          | 15.3 |       | 16.9       |      |          |            |      |
| Green Ext Time (p_c), s      |      | 0.0      |      | 0.0  |          | 10.7 |       | 0.9        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |       |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 30.5 |      |          |      |       |            |      |          |            |      |
| HCM 6th LOS                  |      |          | С    |      |          |      |       |            |      |          |            |      |

| Intersection      |               |  |  |
|-------------------|---------------|--|--|
| Intersection Dela | ay, s/veh21.5 |  |  |
| Intersection LOS  | C             |  |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 5              | 400  | 5    | 5    | 575  | 10   | 5    | 15   | 5    | 5    | 15   | 10   |  |
| Future Vol, veh/h       | 5              | 400  | 5    | 5    | 575  | 10   | 5    | 15   | 5    | 5    | 15   | 10   |  |
| Peak Hour Factor        | 0.90           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 2              | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 6              | 444  | 6    | 6    | 639  | 11   | 6    | 17   | 6    | 6    | 17   | 11   |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB         |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | igh <b>N</b> B |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | : 1            |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 15.2           |      |      | 27   |      |      | 9.8  |      |      | 9.7  |      |      |  |
| HCM LOS                 | С              |      |      | D    |      |      | Α    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1V | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 20%   | 1%     | 1%    | 17%   |
| Vol Thru, %            | 60%   | 98%    | 97%   | 50%   |
| Vol Right, %           | 20%   | 1%     | 2%    | 33%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 25    | 410    | 590   | 30    |
| LT Vol                 | 5     | 5      | 5     | 5     |
| Through Vol            | 15    | 400    | 575   | 15    |
| RT Vol                 | 5     | 5      | 10    | 10    |
| Lane Flow Rate         | 28    | 456    | 656   | 33    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.05  | 0.609  | 0.84  | 0.059 |
| Departure Headway (Hd) | 6.453 | 4.815  | 4.615 | 6.347 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 558   | 743    | 780   | 568   |
| Service Time           | 4.455 | 2.883  | 2.675 | 4.349 |
| HCM Lane V/C Ratio     | 0.05  | 0.614  | 0.841 | 0.058 |
| HCM Control Delay      | 9.8   | 15.2   | 27    | 9.7   |
| HCM Lane LOS           | Α     | С      | D     | Α     |
| HCM 95th-tile Q        | 0.2   | 4.2    | 9.7   | 0.2   |

| Intersection           |           |       |           |          |        |       |
|------------------------|-----------|-------|-----------|----------|--------|-------|
| Int Delay, s/veh       | 0.6       |       |           |          |        |       |
|                        |           | FDT   | MOT       | ME       | 051    | 000   |
| Movement               | EBL       | EBT   | WBT       | WBR      | SBL    | SBR   |
| Lane Configurations    | 4.0       | ની    | ĵ,        |          | ¥      | _     |
| Traffic Vol, veh/h     | 10        | 350   | 545       | 35       | 20     | 5     |
| Future Vol, veh/h      | 10        | 350   | 545       | 35       | 20     | 5     |
| Conflicting Peds, #/hr | _ 3       | _ 0   | _ 0       | _ 4      | 0      | 0     |
| Sign Control           | Free      | Free  | Free      | Free     | Stop   | Stop  |
| RT Channelized         | -         | None  | -         | None     | -      | None  |
| Storage Length         | -         | -     | -         | -        | 0      | -     |
| Veh in Median Storage  | e, # -    | 0     | 0         | -        | 0      | -     |
| Grade, %               | -         | 0     | 0         | -        | 0      | -     |
| Peak Hour Factor       | 90        | 90    | 90        | 90       | 90     | 90    |
| Heavy Vehicles, %      | 2         | 2     | 2         | 2        | 2      | 2     |
| Mvmt Flow              | 11        | 389   | 606       | 39       | 22     | 6     |
|                        |           |       |           |          |        |       |
| Major/Minor I          | Major1    | N     | Major2    |          | Minor2 |       |
| Conflicting Flow All   | 649       | 0     | - viajoiz | 0        | 1041   | 630   |
| Stage 1                | 043       | -     | _         | -        | 630    | -     |
| Stage 2                | _         | _     | _         | <u>-</u> | 411    | _     |
| Critical Hdwy          | 4.12      | _     | _         | _        | 6.42   | 6.22  |
| Critical Hdwy Stg 1    | 4.12      | _     | _         | _        | 5.42   | 0.22  |
| Critical Hdwy Stg 1    | -         |       | _         | _        | 5.42   | _     |
| Follow-up Hdwy         | 2.218     | _     | _         | _        | 3.518  |       |
|                        | 937       | _     |           |          | 255    | 482   |
| Pot Cap-1 Maneuver     | 931       | -     | -         | -        | 531    |       |
| Stage 1                | -         | -     |           | -        |        | -     |
| Stage 2                | -         | -     | -         | -        | 669    | -     |
| Platoon blocked, %     | 000       | -     | -         | -        | 040    | 400   |
| Mov Cap-1 Maneuver     | 933       | -     | -         | -        | 249    | 480   |
| Mov Cap-2 Maneuver     | -         | -     | -         | -        | 249    | -     |
| Stage 1                | -         | -     | -         | -        | 521    | -     |
| Stage 2                | -         | -     | -         | -        | 666    | -     |
|                        |           |       |           |          |        |       |
| Approach               | EB        |       | WB        |          | SB     |       |
| HCM Control Delay, s   | 0.2       |       | 0         |          | 19.5   |       |
| HCM LOS                | 0.2       |       | •         |          | С      |       |
| 110111 200             |           |       |           |          |        |       |
|                        |           |       |           |          |        |       |
| Minor Lane/Major Mvm   | <u>it</u> | EBL   | EBT       | WBT      | WBR:   |       |
| Capacity (veh/h)       |           | 933   | -         | -        | -      | 210   |
| HCM Lane V/C Ratio     |           | 0.012 | -         | -        | -      | 0.101 |
| HCM Control Delay (s)  |           | 8.9   | 0         | -        | -      |       |
| HCM Lane LOS           |           | Α     | Α         | -        | -      | С     |
| HCM 95th %tile Q(veh   | )         | 0     | -         | -        | -      | 0.3   |
|                        |           |       |           |          |        |       |

| Intersection           |        |       |      |        |        |        |           |          |      |        |          |      |
|------------------------|--------|-------|------|--------|--------|--------|-----------|----------|------|--------|----------|------|
| Int Delay, s/veh       | 9.7    |       |      |        |        |        |           |          |      |        |          |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT    | WBR    | NBL       | NBT      | NBR  | SBL    | SBT      | SBR  |
| Lane Configurations    |        | 4     |      |        | 4      |        | ሻ         | <b>†</b> |      | ኘ      | <b>†</b> |      |
| Traffic Vol, veh/h     | 15     | 5     | 100  | 5      | 5      | 10     | 45        | 1215     | 5    | 5      | 945      | 85   |
| Future Vol, veh/h      | 15     | 5     | 100  | 5      | 5      | 10     | 45        | 1215     | 5    | 5      | 945      | 85   |
| Conflicting Peds, #/hr | 1      | 0     | 1    | 1      | 0      | 1      | 8         | 0        | 1    | 8      | 0        | 1    |
| Sign Control           | Stop   | Stop  | Stop | Stop   | Stop   | Stop   | Free      | Free     | Free | Free   | Free     | Free |
| RT Channelized         | -      | -     | None | -      | -      | None   | -         | -        | None | -      | _        | None |
| Storage Length         | -      | _     | -    | -      | -      | -      | 70        | -        | _    | 75     | -        | -    |
| Veh in Median Storage  | , # -  | 0     | -    | -      | 0      | -      | -         | 0        | -    | -      | 0        | -    |
| Grade, %               | -      | 0     | -    | -      | 0      | -      | -         | 0        | -    | -      | 0        | -    |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90     | 90     | 90        | 90       | 90   | 90     | 90       | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2      | 2      | 2         | 2        | 2    | 2      | 2        | 2    |
| Mvmt Flow              | 17     | 6     | 111  | 6      | 6      | 11     | 50        | 1350     | 6    | 6      | 1050     | 94   |
|                        |        |       |      |        |        |        |           |          |      |        |          |      |
| Major/Minor I          | Minor2 |       | ı    | Minor1 |        |        | Major1    |          | N    | Major2 |          |      |
| Conflicting Flow All   | 1896   | 2581  | 581  | 2002   | 2625   | 687    | 1152      | 0        | 0    | 1364   | 0        | 0    |
| Stage 1                | 1117   | 1117  | -    | 1461   | 1461   | -      | -         | -        | -    | -      | -        | -    |
| Stage 2                | 779    | 1464  | -    | 541    | 1164   | -      | -         | -        | -    | -      | -        | -    |
| Critical Hdwy          | 7.54   | 6.54  | 6.94 | 7.54   | 6.54   | 6.94   | 4.14      | -        | -    | 4.14   | -        | -    |
| Critical Hdwy Stg 1    | 6.54   | 5.54  | -    | 6.54   | 5.54   | -      | -         | -        | -    | -      | -        | -    |
| Critical Hdwy Stg 2    | 6.54   | 5.54  | -    | 6.54   | 5.54   | -      | -         | -        | -    | -      | -        | -    |
| Follow-up Hdwy         | 3.52   | 4.02  | 3.32 | 3.52   | 4.02   | 3.32   | 2.22      | -        | -    | 2.22   | -        | -    |
| Pot Cap-1 Maneuver     | 42     | 25    | 457  | 35     | 24     | 389    | 602       | -        | -    | 500    | -        | -    |
| Stage 1                | 221    | 281   | -    | 135    | 192    | -      | -         | -        | -    | -      | -        | -    |
| Stage 2                | 355    | 191   | -    | 493    | 267    | _      | -         | -        |      | -      | -        | -    |
| Platoon blocked, %     |        |       |      |        |        |        |           | -        | -    |        | -        | -    |
| Mov Cap-1 Maneuver     | 30     | 22    | 453  | 20     | 21     | 386    | 597       | -        | -    | 496    | -        | -    |
| Mov Cap-2 Maneuver     | 30     | 22    | -    | 20     | 21     | -      | -         | -        | -    | -      | -        | -    |
| Stage 1                | 201    | 275   | -    | 123    | 175    | -      | -         | -        | -    | -      | -        | -    |
| Stage 2                | 306    | 174   | -    | 360    | 262    | -      | -         | -        | -    | -      | -        | -    |
|                        |        |       |      |        |        |        |           |          |      |        |          |      |
| Approach               | EB     |       |      | WB     |        |        | NB        |          |      | SB     |          |      |
| HCM Control Delay, s   | 160.8  |       |      | 182.3  |        |        | 0.4       |          |      | 0.1    |          |      |
| HCM LOS                | F      |       |      | F      |        |        |           |          |      |        |          |      |
|                        |        |       |      |        |        |        |           |          |      |        |          |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT  | NBR I  | EBLn1V | VBL n1 | SBL       | SBT      | SBR  |        |          |      |
| Capacity (veh/h)       |        | 597   | -    | -      |        | 39     | 496       |          |      |        |          |      |
| HCM Lane V/C Ratio     |        | 0.084 | _    | _      | 1.05   |        | 0.011     | <u>-</u> | _    |        |          |      |
| HCM Control Delay (s)  |        | 11.6  | _    |        | 160.8  |        | 12.3      | _        | _    |        |          |      |
| HCM Lane LOS           |        | В     | _    | _      | F      | F      | 12.0<br>B | _        | _    |        |          |      |
| HCM 95th %tile Q(veh)  | )      | 0.3   | -    | -      | 7.5    | 2      | 0         | -        | -    |        |          |      |
|                        |        |       |      |        |        |        |           |          |      |        |          |      |

| Intersection           |        |       |        |        |        |       |        |          |          |         |      |      |
|------------------------|--------|-------|--------|--------|--------|-------|--------|----------|----------|---------|------|------|
| Int Delay, s/veh       | 8.9    |       |        |        |        |       |        |          |          |         |      |      |
| Movement               | EBL    | EBT   | EBR    | WBL    | WBT    | WBR   | NBL    | NBT      | NBR      | SBL     | SBT  | SBR  |
| Lane Configurations    |        | 4     |        |        | 4      |       |        | 4        |          |         | 4    |      |
| Traffic Vol, veh/h     | 15     | 100   | 20     | 5      | 110    | 5     | 5      | 15       | 5        | 5       | 15   | 5    |
| Future Vol, veh/h      | 15     | 100   | 20     | 5      | 110    | 5     | 5      | 15       | 5        | 5       | 15   | 5    |
| Conflicting Peds, #/hr | 2      | 0     | 1      | 1      | 0      | 2     | 7      | 0        | 3        | 7       | 0    | 3    |
| Sign Control           | Stop   | Stop  | Stop   | Stop   | Stop   | Stop  | Free   | Free     | Free     | Free    | Free | Free |
| RT Channelized         | -      | -     | None   | -      | -      | None  | -      | -        | None     | -       | -    | None |
| Storage Length         | -      | -     | -      | -      | -      | -     | -      | -        | -        | -       | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -      | -      | 0      | -     | -      | 0        | -        | -       | 0    | -    |
| Grade, %               | -      | 0     | -      | -      | 0      | -     | -      | 0        | -        | -       | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90     | 90     | 90     | 90    | 90     | 90       | 90       | 90      | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2      | 2      | 2     | 2      | 2        | 2        | 2       | 2    | 2    |
| Mvmt Flow              | 17     | 111   | 22     | 6      | 122    | 6     | 6      | 17       | 6        | 6       | 17   | 6    |
|                        |        |       |        |        |        |       |        |          |          |         |      |      |
| Major/Minor N          | Minor2 |       |        | Minor1 |        |       | Major1 |          | N        | //ajor2 |      |      |
| Conflicting Flow All   | 137    | 81    | 28     | 139    | 81     | 29    | 30     | 0        | 0        | 30      | 0    | 0    |
| Stage 1                | 39     | 39    | -      | 39     | 39     | -     | -      | -        | -        | -       | -    | -    |
| Stage 2                | 98     | 42    | _      | 100    | 42     | _     | _      | <u>-</u> | <u>-</u> | _       | _    | _    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22   | 7.12   | 6.52   | 6.22  | 4.12   | _        | _        | 4.12    | _    | _    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | - 0.22 | 6.12   | 5.52   | -     |        | _        | _        |         | _    | _    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | _      | 6.12   | 5.52   | _     | _      | _        | _        | _       | _    | _    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318  |        | 4.018  | 3.318 | 2.218  | _        | _        | 2.218   | _    | _    |
| Pot Cap-1 Maneuver     | 834    | 809   | 1047   | 831    | 809    | 1046  | 1583   | _        | _        | 1583    | _    | _    |
| Stage 1                | 976    | 862   | -      | 976    | 862    |       | -      | _        | _        | -       | _    | _    |
| Stage 2                | 908    | 860   | _      | 906    | 860    | _     | _      | _        | _        | _       | _    | _    |
| Platoon blocked, %     | 300    | 000   |        | 300    | 000    |       |        | _        | _        |         | _    | _    |
| Mov Cap-1 Maneuver     | 721    | 791   | 1039   | 715    | 791    | 1037  | 1572   | _        | _        | 1572    | _    | _    |
| Mov Cap-2 Maneuver     | 721    | 791   | -      | 715    | 791    | -     | -      | _        | _        | -       | _    | _    |
| Stage 1                | 965    | 853   | _      | 965    | 853    | _     | _      |          | _        | _       |      |      |
| Stage 2                | 769    | 851   | _      | 767    | 851    | _     | _      | _        | _        | _       | _    | _    |
| Olugo Z                | , 03   | 551   |        | , 01   | 551    |       |        |          |          |         |      |      |
| A                      |        |       |        | MA     |        |       | ND     |          |          | 0.0     |      |      |
| Approach               | EB     |       |        | WB     |        |       | NB     |          |          | SB      |      |      |
| HCM Control Delay, s   | 10.4   |       |        | 10.4   |        |       | 1.5    |          |          | 1.5     |      |      |
| HCM LOS                | В      |       |        | В      |        |       |        |          |          |         |      |      |
|                        |        |       |        |        |        |       |        |          |          |         |      |      |
| Minor Lane/Major Mvm   | ıt     | NBL   | NBT    | NBR    | EBLn1V | VBLn1 | SBL    | SBT      | SBR      |         |      |      |
| Capacity (veh/h)       |        | 1572  | -      | -      | 811    | 795   | 1572   | -        | -        |         |      |      |
| HCM Lane V/C Ratio     |        | 0.004 | -      | -      | 0.185  | 0.168 | 0.004  | -        | -        |         |      |      |
| HCM Control Delay (s)  |        | 7.3   | 0      | -      | 10.4   | 10.4  | 7.3    | 0        | -        |         |      |      |
| HCM Lane LOS           |        | Α     | Α      | -      | В      | В     | Α      | Α        | -        |         |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -      | -      | 0.7    | 0.6   | 0      | -        | -        |         |      |      |
|                        |        |       |        |        |        |       |        |          |          |         |      |      |

| Intersection           |         |           |          |          |      |          |        |        |        |        |       |       |
|------------------------|---------|-----------|----------|----------|------|----------|--------|--------|--------|--------|-------|-------|
| Int Delay, s/veh       | 2.5     |           |          |          |      |          |        |        |        |        |       |       |
| Movement               | EBL     | EBT       | EBR      | WBL      | WBT  | WBR      | NBL    | NBT    | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations    |         | 4         |          |          | 4    |          |        | 4      |        |        | 4     |       |
| Traffic Vol, veh/h     | 25      | 130       | 20       | 5        | 130  | 5        | 0      | 20     | 5      | 5      | 25    | 5     |
| Future Vol, veh/h      | 25      | 130       | 20       | 5        | 130  | 5        | 0      | 20     | 5      | 5      | 25    | 5     |
| Conflicting Peds, #/hr | 1       | 0         | 2        | 2        | 0    | 1        | 4      | 0      | 2      | 4      | 0     | 2     |
| Sign Control           | Free    | Free      | Free     | Free     | Free | Free     | Stop   | Stop   | Stop   | Stop   | Stop  | Stop  |
| RT Channelized         | -       | -         | None     | -        | -    | None     | -      | -      | None   | -      | -     | None  |
| Storage Length         | -       | -         | -        | -        | -    | -        | -      | -      | -      | -      | -     | -     |
| Veh in Median Storage  | ,# -    | 0         | -        | -        | 0    | -        | -      | 0      | -      | -      | 0     | -     |
| Grade, %               | -       | 0         | -        | -        | 0    | -        | -      | 0      | -      | -      | 0     | -     |
| Peak Hour Factor       | 90      | 90        | 90       | 90       | 90   | 90       | 90     | 90     | 90     | 90     | 90    | 90    |
| Heavy Vehicles, %      | 2       | 2         | 2        | 2        | 2    | 2        | 2      | 2      | 2      | 2      | 2     | 2     |
| Mvmt Flow              | 28      | 144       | 22       | 6        | 144  | 6        | 0      | 22     | 6      | 6      | 28    | 6     |
|                        |         |           |          |          |      |          |        |        |        |        |       |       |
| Major/Minor N          | //ajor1 |           |          | Major2   |      |          | Minor1 |        |        | Minor2 |       |       |
| Conflicting Flow All   | 151     | 0         | 0        | 168      | 0    | 0        | 393    | 376    | 161    | 389    | 384   | 152   |
| Stage 1                | -       | -         | -        | -        | _    | -        | 213    | 213    | -      | 160    | 160   | -     |
| Stage 2                | _       | _         | _        | _        | _    | _        | 180    | 163    | _      | 229    | 224   | _     |
| Critical Hdwy          | 4.12    | -         | _        | 4.12     | -    | -        | 7.12   | 6.52   | 6.22   | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -       | -         | -        | -        | _    | -        | 6.12   | 5.52   | -      | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -       | -         | -        | -        | -    | -        | 6.12   | 5.52   | -      | 6.12   | 5.52  | -     |
|                        | 2.218   | -         | -        | 2.218    | -    | -        | 3.518  | 4.018  | 3.318  | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1430    | -         | -        | 1410     | -    | -        | 566    | 555    | 884    | 570    | 550   | 894   |
| Stage 1                | -       | -         | -        | -        | -    | -        | 789    | 726    | -      | 842    | 766   | -     |
| Stage 2                | -       | -         | -        | -        | -    | -        | 822    | 763    | -      | 774    | 718   | -     |
| Platoon blocked, %     |         | -         | -        |          | -    | -        |        |        |        |        |       |       |
| Mov Cap-1 Maneuver     | 1429    | -         | -        | 1407     | -    | -        | 526    | 538    | 879    | 535    | 534   | 890   |
| Mov Cap-2 Maneuver     | -       | -         | -        | -        | -    | -        | 526    | 538    | -      | 535    | 534   | -     |
| Stage 1                | -       | -         | -        | -        | -    | -        | 770    | 709    | -      | 823    | 761   | -     |
| Stage 2                | -       | -         | -        | -        | -    | -        | 780    | 758    | -      | 726    | 701   | -     |
|                        |         |           |          |          |      |          |        |        |        |        |       |       |
| Approach               | EB      |           |          | WB       |      |          | NB     |        |        | SB     |       |       |
| HCM Control Delay, s   | 1.1     |           |          | 0.3      |      |          | 11.5   |        |        | 11.8   |       |       |
| HCM LOS                |         |           |          | 3.0      |      |          | В      |        |        | В      |       |       |
|                        |         |           |          |          |      |          |        |        |        |        |       |       |
| Minor Lane/Major Mvm   | † †     | NBLn1     | EBL      | EBT      | EBR  | WBL      | WBT    | WBR:   | SRI n1 |        |       |       |
| Capacity (veh/h)       |         | 583       | 1429     | -        |      | 1407     | -      | - 1001 |        |        |       |       |
| HCM Lane V/C Ratio     |         |           | 0.019    | <u>-</u> |      | 0.004    | _      |        | 0.069  |        |       |       |
| HCM Control Delay (s)  |         | 11.5      | 7.6      | 0        | _    | 7.6      | 0      |        | 11.8   |        |       |       |
| HCM Lane LOS           |         | 11.3<br>B | 7.0<br>A | A        | _    | 7.0<br>A | A      | _      | В      |        |       |       |
| HCM 95th %tile Q(veh)  |         | 0.1       | 0.1      | -        | _    | 0        | -      | _      | 0.2    |        |       |       |
| HOW JOHN JOHN Q(VEH)   |         | 0.1       | 0.1      |          |      | J        |        |        | 0.2    |        |       |       |

|                              | •    | 4     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        |      |
|------------------------------|------|-------|----------|----------|----------|----------|------|
| Movement                     | WBL  | WBR   | NBT      | NBR      | SBL      | SBT      |      |
| Lane Configurations          | 1,1  | 7     | <b>^</b> | 7        | ሻ        | <b>^</b> |      |
| Traffic Volume (veh/h)       | 215  | 460   | 785      | 150      | 465      | 605      |      |
| Future Volume (veh/h)        | 215  | 460   | 785      | 150      | 465      | 605      |      |
| Initial Q (Qb), veh          | 0    | 0     | 0        | 0        | 0        | 0        |      |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00  |          | 0.97     | 1.00     |          |      |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Work Zone On Approach        | No   |       | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870  | 1870     | 1870     | 1870     | 1870     |      |
| Adj Flow Rate, veh/h         | 239  | 227   | 872      | 167      | 517      | 672      |      |
| Peak Hour Factor             | 0.90 | 0.90  | 0.90     | 0.90     | 0.90     | 0.90     |      |
| Percent Heavy Veh, %         | 2    | 2     | 2        | 2        | 2        | 2        |      |
| Cap, veh/h                   | 444  | 696   | 1287     | 560      | 553      | 2618     |      |
| Arrive On Green              | 0.13 | 0.13  | 0.36     | 0.36     | 0.31     | 0.74     |      |
| Sat Flow, veh/h              | 3456 | 1585  | 3647     | 1545     | 1781     | 3647     |      |
| Grp Volume(v), veh/h         | 239  | 227   | 872      | 167      | 517      | 672      |      |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 1585  | 1777     | 1545     | 1781     | 1777     |      |
| Q Serve(g_s), s              | 5.0  | 7.3   | 16.2     | 6.0      | 22.0     | 4.8      |      |
| Cycle Q Clear(g_c), s        | 5.0  | 7.3   | 16.2     | 6.0      | 22.0     | 4.8      |      |
| Prop In Lane                 | 1.00 | 1.00  |          | 1.00     | 1.00     |          |      |
| Lane Grp Cap(c), veh/h       | 444  | 696   | 1287     | 560      | 553      | 2618     |      |
| V/C Ratio(X)                 | 0.54 | 0.33  | 0.68     | 0.30     | 0.93     | 0.26     |      |
| Avail Cap(c_a), veh/h        | 887  | 899   | 2052     | 892      | 571      | 2618     |      |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Upstream Filter(I)           | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Uniform Delay (d), s/veh     | 31.8 | 14.3  | 21.0     | 17.8     | 26.1     | 3.3      |      |
| Incr Delay (d2), s/veh       | 0.4  | 0.1   | 0.9      | 0.4      | 22.5     | 0.1      |      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      |      |
| %ile BackOfQ(95%),veh/ln     | 3.7  | 4.4   | 10.3     | 3.8      | 17.5     | 1.8      |      |
| Unsig. Movement Delay, s/veh | 1    |       |          |          |          |          |      |
| LnGrp Delay(d),s/veh         | 32.2 | 14.4  | 21.9     | 18.2     | 48.6     | 3.4      |      |
| LnGrp LOS                    | С    | В     | С        | В        | D        | Α        |      |
| Approach Vol, veh/h          | 466  |       | 1039     |          |          | 1189     |      |
| Approach Delay, s/veh        | 23.5 |       | 21.3     |          |          | 23.0     |      |
| Approach LOS                 | С    |       | С        |          |          | С        |      |
| Timer - Assigned Phs         |      | 2     |          |          | 5        | 6        | 8    |
| Phs Duration (G+Y+Rc), s     |      | 62.9  |          |          | 29.2     | 33.7     | 15.0 |
| Change Period (Y+Rc), s      |      | * 5.5 |          |          | 5.0      | 5.5      | 5.0  |
| Max Green Setting (Gmax), s  |      | * 35  |          |          | 25.0     | 45.0     | 20.0 |
| Max Q Clear Time (g_c+l1), s |      | 6.8   |          |          | 24.0     | 18.2     | 9.3  |
| Green Ext Time (p_c), s      |      | 4.6   |          |          | 0.2      | 10.0     | 0.7  |
| Intersection Summary         |      |       |          |          |          |          |      |
| HCM 6th Ctrl Delay           |      |       | 22.5     |          |          |          |      |
| HCM 6th LOS                  |      |       | С        |          |          |          |      |
| Notes                        |      |       |          |          |          |          |      |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection              |         |        |           |          |            |      |
|---------------------------|---------|--------|-----------|----------|------------|------|
| Int Delay, s/veh          | 0.7     |        |           |          |            |      |
|                           |         | ED.5   | NE        | NET      | 057        | 000  |
| Movement                  | EBL     | EBR    | NBL       | NBT      | SBT        | SBR  |
| Lane Configurations       |         | 7      |           | <b>^</b> | <b>↑</b> ↑ |      |
| Traffic Vol, veh/h        | 0       | 100    | 0         | 935      | 675        | 145  |
| Future Vol, veh/h         | 0       | 100    | 0         | 935      | 675        | 145  |
| Conflicting Peds, #/hr    | 1       | 1      | 0         | 0        | 0          | 0    |
| Sign Control              | Stop    | Stop   | Free      | Free     | Free       | Free |
| RT Channelized            | -       | None   | -         | None     | -          | None |
| Storage Length            | -       | 0      | -         | -        | -          | -    |
| Veh in Median Storage,    |         | -      | -         | 0        | 0          | -    |
| Grade, %                  | 0       | -      | -         | 0        | 0          | -    |
| Peak Hour Factor          | 90      | 90     | 90        | 90       | 90         | 90   |
| Heavy Vehicles, %         | 2       | 2      | 2         | 2        | 2          | 2    |
| Mvmt Flow                 | 0       | 111    | 0         | 1039     | 750        | 161  |
|                           |         |        |           |          |            |      |
| Major/Minor N             | /linor2 |        | /lajor1   | N        | Major2     |      |
|                           |         |        |           |          |            |      |
| Conflicting Flow All      | -       | 457    | -         | 0        | -          | 0    |
| Stage 1                   | -       | -      | -         | -        | -          | -    |
| Stage 2                   | -       | -      | -         | -        | -          | -    |
| Critical Hdwy             | -       | 6.94   | -         | -        | -          | -    |
| Critical Hdwy Stg 1       | -       | -      | -         | -        | -          | -    |
| Critical Hdwy Stg 2       | -       | -      | -         | -        | -          | -    |
| Follow-up Hdwy            | -       | 3.32   | -         | -        | -          | -    |
| Pot Cap-1 Maneuver        | 0       | 551    | 0         | -        | -          | -    |
| Stage 1                   | 0       | -      | 0         | -        | -          | -    |
| Stage 2                   | 0       | -      | 0         | -        | -          | _    |
| Platoon blocked, %        |         |        |           | -        | -          | -    |
| Mov Cap-1 Maneuver        | -       | 550    | -         | -        | -          | -    |
| Mov Cap-2 Maneuver        | -       | -      | -         | -        | -          | -    |
| Stage 1                   | -       | -      | -         | -        | -          | -    |
| Stage 2                   | _       | _      | -         | -        | _          | _    |
| 5 mg 5 =                  |         |        |           |          |            |      |
| A nava a a b              | ED      |        | ND        |          | CD         |      |
| Approach                  | EB      |        | NB        |          | SB         |      |
| HCM Control Delay, s      | 13.2    |        | 0         |          | 0          |      |
| HCM LOS                   | В       |        |           |          |            |      |
|                           |         |        |           |          |            |      |
| Minor Lane/Major Mvmt     | t       | NBT E  | -BLn1     | SBT      | SBR        |      |
| Capacity (veh/h)          |         | - 1012 | 550       | -        | -          |      |
| HCM Lane V/C Ratio        |         |        | 0.202     | -        | _          |      |
| HCM Control Delay (s)     |         | _      | 13.2      |          | _          |      |
| HCM Lane LOS              |         | -      | 13.2<br>B |          |            |      |
| HCM 95th %tile Q(veh)     |         | -      | 0.7       | -        | -          |      |
| HOIVI 95(II) %tile Q(ven) |         | -      | 0.7       | -        | -          |      |

| Intersection           |        |       |       |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 8.8    |       |       |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 5      | 105   | 0     | 5      | 125    | 5     | 0      | 15   | 5    | 15     | 15   | 10   |
| Future Vol, veh/h      | 5      | 105   | 0     | 5      | 125    | 5     | 0      | 15   | 5    | 15     | 15   | 10   |
| Conflicting Peds, #/hr | 1      | 0     | 1     | 3      | 0      | 3     | 0      | 0    | 0    | 2      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e, # - | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2     | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 6      | 117   | 0     | 6      | 139    | 6     | 0      | 17   | 6    | 17     | 17   | 11   |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor I          | Minor2 |       |       | Minor1 |        |       | Major1 |      | N    | Major2 |      |      |
| Conflicting Flow All   | 153    | 82    | 26    | 140    | 84     | 25    | 28     | 0    | 0    | 25     | 0    | 0    |
| Stage 1                | 57     | 57    |       | 22     | 22     |       | -      | -    | -    |        | _    | -    |
| Stage 2                | 96     | 25    | _     | 118    | 62     | _     | _      | _    | _    | _      | _    | _    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22  | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018  | 3.318 | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 814    | 808   | 1050  | 830    | 806    | 1051  | 1585   | -    | -    | 1589   | -    | -    |
| Stage 1                | 955    | 847   | -     | 996    | 877    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 911    | 874   | -     | 887    | 843    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 694    | 797   | 1047  | 727    | 796    | 1046  | 1585   | -    | -    | 1586   | -    | -    |
| Mov Cap-2 Maneuver     | 694    | 797   | -     | 727    | 796    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 955    | 838   | -     | 994    | 875    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 760    | 872   | -     | 753    | 834    | -     | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 10.4   |       |       | 10.5   |        |       | 0      |      |      | 2.7    |      |      |
| HCM LOS                | В      |       |       | В      |        |       |        |      |      |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1585  | -     | -      |        | 800   | 1586   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | -     | -     | _      |        | 0.187 |        | -    | _    |        |      |      |
| HCM Control Delay (s)  |        | 0     | -     | -      | 10.4   | 10.5  | 7.3    | 0    | _    |        |      |      |
| HCM Lane LOS           |        | A     | -     | -      | В      | В     | Α      | A    | _    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 0.5    | 0.7   | 0      | -    | -    |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •     | 1    | <b>†</b> | ~    | <b>/</b> | Ţ          | ✓    |
|------------------------------|------|----------|------|------|----------|-------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR   | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |       | ሻ    | <b>^</b> |      | ሻ        | <b>ተ</b> ኈ |      |
| Traffic Volume (veh/h)       | 45   | 5        | 65   | 10   | 5        | 15    | 300  | 850      | 5    | 25       | 740        | 25   |
| Future Volume (veh/h)        | 45   | 5        | 65   | 10   | 5        | 15    | 300  | 850      | 5    | 25       | 740        | 25   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0     | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00  | 1.00 |          | 0.97 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |       |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870  | 1870 | 1870     | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 50   | 6        | 29   | 11   | 6        | -4    | 333  | 944      | 5    | 28       | 822        | 26   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90  | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2     | 2    | 2        | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 187  | 8        | 40   | 370  | 178      | 0     | 565  | 2626     | 14   | 520      | 2545       | 81   |
| Arrive On Green              | 0.08 | 0.08     | 0.08 | 0.08 | 0.08     | 0.00  | 0.72 | 0.72     | 0.72 | 0.72     | 0.72       | 0.72 |
| Sat Flow, veh/h              | 877  | 105      | 509  | 1301 | 950      | -530  | 649  | 3624     | 19   | 590      | 3512       | 111  |
| Grp Volume(v), veh/h         | 85   | 0        | 0    | 0    | 0        | 0     | 333  | 463      | 486  | 28       | 416        | 432  |
| Grp Sat Flow(s),veh/h/ln     | 1490 | 0        | 0    | 0    | 0        | 0     | 649  | 1777     | 1866 | 590      | 1777       | 1847 |
| Q Serve(g_s), s              | 2.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 18.3 | 4.7      | 4.7  | 0.9      | 4.1        | 4.1  |
| Cycle Q Clear(g_c), s        | 2.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 22.4 | 4.7      | 4.7  | 5.6      | 4.1        | 4.1  |
| Prop In Lane                 | 0.59 |          | 0.34 | 0.85 |          | -0.31 | 1.00 |          | 0.01 | 1.00     |            | 0.06 |
| Lane Grp Cap(c), veh/h       | 236  | 0        | 0    | 0    | 0        | 0     | 565  | 1288     | 1352 | 520      | 1288       | 1338 |
| V/C Ratio(X)                 | 0.36 | 0.00     | 0.00 | 0.00 | 0.00     | 0.00  | 0.59 | 0.36     | 0.36 | 0.05     | 0.32       | 0.32 |
| Avail Cap(c_a), veh/h        | 597  | 0        | 0    | 0    | 0        | 0     | 565  | 1288     | 1352 | 520      | 1288       | 1338 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 0.00 | 0.00     | 0.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 21.7 | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 6.4  | 2.5      | 2.5  | 3.5      | 2.4        | 2.4  |
| Incr Delay (d2), s/veh       | 0.9  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 4.5  | 0.8      | 0.7  | 0.2      | 0.7        | 0.6  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(95%),veh/ln     | 1.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 3.1  | 0.9      | 0.9  | 0.1      | 0.8        | 0.8  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |       | 40.0 |          |      |          | 0.4        |      |
| LnGrp Delay(d),s/veh         | 22.7 | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 10.9 | 3.3      | 3.2  | 3.7      | 3.1        | 3.0  |
| LnGrp LOS                    | С    | Α        | Α    | Α    | A        | Α     | В    | Α        | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 85       |      |      | 0        |       |      | 1282     |      |          | 876        |      |
| Approach Delay, s/veh        |      | 22.7     |      |      | 0.0      |       |      | 5.2      |      |          | 3.1        |      |
| Approach LOS                 |      | С        |      |      |          |       |      | Α        |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6     |      | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |      | 8.3  |          | 40.0  |      | 8.3      |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.5  |          | 5.0   |      | 4.5      |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 35.0     |      | 15.5 |          | 35.0  |      | 15.5     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 24.4     |      | 4.7  |          | 7.6   |      | 0.0      |      |          |            |      |
| Green Ext Time (p_c), s      |      | 7.3      |      | 0.3  |          | 8.4   |      | 0.0      |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |       |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 5.0  |      |          |       |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |       |      |          |      |          |            |      |

| Intersection                                                                                                 |           |              |                 |                            |                      |             |
|--------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------------|----------------------------|----------------------|-------------|
| Int Delay, s/veh                                                                                             | 8.3       |              |                 |                            |                      |             |
| Movement                                                                                                     | WBL       | WBR          | NB <sup>-</sup> | NBR                        | SBL                  | SBT         |
| Lane Configurations                                                                                          | ¥         |              | 112             |                            |                      | <u> </u>    |
| Traffic Vol, veh/h                                                                                           | 290       | 0            |                 |                            | 10                   | 5           |
| Future Vol, veh/h                                                                                            | 290       | 0            |                 |                            | 10                   | 5           |
| Conflicting Peds, #/hr                                                                                       | 0         | 4            |                 |                            | 0                    | 0           |
| Sign Control                                                                                                 | Stop      | Stop         |                 |                            | Free                 | Free        |
| RT Channelized                                                                                               | -         | None         |                 | - None                     | -                    |             |
| Storage Length                                                                                               | 0         | -            |                 |                            | _                    | -           |
| Veh in Median Storage                                                                                        |           | _            |                 | ) -                        | _                    | 0           |
| Grade, %                                                                                                     | 0         | _            |                 |                            | _                    | 0           |
| Peak Hour Factor                                                                                             | 90        | 90           |                 |                            | 90                   | 90          |
| Heavy Vehicles, %                                                                                            | 2         | 2            |                 |                            | 2                    | 2           |
| Mymt Flow                                                                                                    | 322       | 0            |                 |                            | 11                   | 6           |
| WWITCH IOW                                                                                                   | JLL       | U            |                 | 00                         | - ''                 | U           |
|                                                                                                              |           |              |                 |                            |                      |             |
| Major/Minor I                                                                                                | Minor1    | N            | Major           |                            | Major2               |             |
| Conflicting Flow All                                                                                         | 84        | 60           | (               | 0                          | 100                  | 0           |
| Stage 1                                                                                                      | 56        | -            |                 |                            | -                    | -           |
| Stage 2                                                                                                      | 28        | -            |                 |                            | -                    | -           |
| Critical Hdwy                                                                                                | 6.42      | 6.22         |                 |                            | 4.12                 | -           |
| Critical Hdwy Stg 1                                                                                          | 5.42      | -            |                 |                            | -                    | -           |
| Critical Hdwy Stg 2                                                                                          | 5.42      | -            |                 |                            | -                    | -           |
| Follow-up Hdwy                                                                                               | 3.518     | 3.318        |                 |                            | 2.218                | -           |
| Pot Cap-1 Maneuver                                                                                           | 918       | 1005         |                 |                            | 1493                 | -           |
| Stage 1                                                                                                      | 967       | -            |                 |                            | _                    | -           |
| Stage 2                                                                                                      | 995       | -            |                 |                            | _                    | -           |
| Platoon blocked, %                                                                                           |           |              |                 |                            |                      | _           |
| Mov Cap-1 Maneuver                                                                                           | 912       | 1001         |                 |                            | 1493                 | _           |
| Mov Cap-2 Maneuver                                                                                           | 912       | -            |                 |                            | - 100                | _           |
| Stage 1                                                                                                      | 967       | -            |                 |                            | _                    | _           |
| Stage 2                                                                                                      | 988       | _            |                 | _                          | <u>-</u>             | _           |
| Olage 2                                                                                                      | 300       | <del>-</del> |                 | <u> </u>                   | _                    | _           |
|                                                                                                              |           |              |                 |                            |                      |             |
| Approach                                                                                                     | WB        |              | NE              | 3                          | SB                   |             |
| Approach                                                                                                     | 444       |              |                 | )                          | 5                    |             |
| HCM Control Delay, s                                                                                         | 11.1      |              |                 |                            |                      |             |
|                                                                                                              | 11.1<br>B |              |                 |                            |                      |             |
| HCM Control Delay, s                                                                                         |           |              |                 |                            |                      |             |
| HCM Control Delay, s<br>HCM LOS                                                                              | В         | NDT          |                 | 0\\/DI n1                  | CDI                  | CDT         |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvm                                                      | В         | NBT          | NBF             | RWBLn1                     | SBL                  | SBT         |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvm<br>Capacity (veh/h)                                  | В         | -            | NBF             | - 912                      | 1493                 | -           |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio                       | B<br>nt   | -            | NBF             | - 912<br>- 0.353           | 1493<br>0.007        | -           |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) | B<br>nt   | -<br>-       | NBF             | - 912<br>- 0.353<br>- 11.1 | 1493<br>0.007<br>7.4 | -<br>-<br>- |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio                       | B<br>nt   | -            | NBF             | - 912<br>- 0.353           | 1493<br>0.007        | -           |

|                                                    | ۶    | <b>→</b> | •    | •            | <b>←</b>  | •    | 1        | <b>†</b>     | /    | <b>/</b>     | ţ            | 4    |
|----------------------------------------------------|------|----------|------|--------------|-----------|------|----------|--------------|------|--------------|--------------|------|
| Movement                                           | EBL  | EBT      | EBR  | WBL          | WBT       | WBR  | NBL      | NBT          | NBR  | SBL          | SBT          | SBR  |
| Lane Configurations                                |      | 4        |      | ሻ            | र्स       | 7    |          | 4            | 7    | ሻ            | 4            |      |
| Traffic Volume (veh/h)                             | 0    | 0        | 0    | 430          | 10        | 700  | 0        | 285          | 565  | 625          | 225          | 0    |
| Future Volume (veh/h)                              | 0    | 0        | 0    | 430          | 10        | 700  | 0        | 285          | 565  | 625          | 225          | 0    |
| Initial Q (Qb), veh                                | 0    | 0        | 0    | 0            | 0         | 0    | 0        | 0            | 0    | 0            | 0            | 0    |
| Ped-Bike Adj(A_pbT)                                | 1.00 |          | 1.00 | 1.00         |           | 1.00 | 1.00     |              | 1.00 | 1.00         |              | 1.00 |
| Parking Bus, Adj                                   | 1.00 | 1.00     | 1.00 | 1.00         | 1.00      | 1.00 | 1.00     | 1.00         | 1.00 | 1.00         | 1.00         | 1.00 |
| Work Zone On Approach                              |      | No       |      |              | No        |      |          | No           |      |              | No           |      |
| Adj Sat Flow, veh/h/ln                             | 1856 | 1856     | 1856 | 1856         | 1856      | 1856 | 1856     | 1856         | 1856 | 1856         | 1856         | 1856 |
| Adj Flow Rate, veh/h                               | 0    | 0        | 0    | 486          | 0         | 0    | 0        | 317          | 0    | 472          | 561          | 0    |
| Peak Hour Factor                                   | 0.90 | 0.90     | 0.90 | 0.90         | 0.90      | 0.90 | 0.90     | 0.90         | 0.90 | 0.90         | 0.90         | 0.90 |
| Percent Heavy Veh, %                               | 3    | 3        | 3    | 3            | 3         | 3    | 3        | 3            | 3    | 3            | 3            | 3    |
| Cap, veh/h                                         | 0    | 3        | 0    | 716          | 0         | 0.00 | 0        | 400          | 0.00 | 623          | 654          | 0    |
| Arrive On Green                                    | 0.00 | 0.00     | 0.00 | 0.20         | 0.00      | 0.00 | 0.00     | 0.22         | 0.00 | 0.35         | 0.35         | 0.00 |
| Sat Flow, veh/h                                    | 0    | 1856     | 0    | 3526         | 0         | 1572 | 0        | 1856         | 1572 | 1767         | 1856         | 0    |
| Grp Volume(v), veh/h                               | 0    | 0        | 0    | 486          | 0         | 0    | 0        | 317          | 0    | 472          | 561          | 0    |
| Grp Sat Flow(s),veh/h/ln                           | 0    | 1856     | 0    | 1763         | 0         | 1572 | 0        | 1856         | 1572 | 1767         | 1856         | 0    |
| Q Serve(g_s), s                                    | 0.0  | 0.0      | 0.0  | 8.1          | 0.0       | 0.0  | 0.0      | 10.3         | 0.0  | 15.1         | 17.9         | 0.0  |
| Cycle Q Clear(g_c), s                              | 0.0  | 0.0      | 0.0  | 8.1          | 0.0       | 0.0  | 0.0      | 10.3         | 0.0  | 15.1         | 17.9         | 0.0  |
| Prop In Lane                                       | 0.00 | •        | 0.00 | 1.00         | •         | 1.00 | 0.00     | 400          | 1.00 | 1.00         | 054          | 0.00 |
| Lane Grp Cap(c), veh/h                             | 0    | 3        | 0    | 716          | 0         |      | 0        | 400          |      | 623          | 654          | 0    |
| V/C Ratio(X)                                       | 0.00 | 0.00     | 0.00 | 0.68         | 0.00      |      | 0.00     | 0.79         |      | 0.76         | 0.86         | 0.00 |
| Avail Cap(c_a), veh/h                              | 1.00 | 553      | 1.00 | 1934         | 0         | 1.00 | 0        | 1018         | 1.00 | 969          | 1018         | 1.00 |
| HCM Platoon Ratio                                  | 1.00 | 1.00     | 1.00 | 1.00         | 1.00      | 1.00 | 1.00     | 1.00<br>1.00 | 1.00 | 1.00         | 1.00         | 1.00 |
| Upstream Filter(I)                                 | 0.00 | 0.00     | 0.00 | 1.00<br>23.5 | 0.00      | 0.00 | 0.00     | 23.7         | 0.00 | 1.00<br>18.2 | 1.00<br>19.2 | 0.00 |
| Uniform Delay (d), s/veh                           | 0.0  | 0.0      | 0.0  | 1.6          | 0.0       | 0.0  | 0.0      | 23.7         | 0.0  | 0.7          | 2.8          | 0.0  |
| Incr Delay (d2), s/veh                             | 0.0  | 0.0      | 0.0  | 0.0          | 0.0       | 0.0  | 0.0      | 0.0          | 0.0  | 0.7          | 0.0          | 0.0  |
| Initial Q Delay(d3),s/veh %ile BackOfQ(95%),veh/ln | 0.0  | 0.0      | 0.0  | 5.8          | 0.0       | 0.0  | 0.0      | 7.9          | 0.0  | 9.2          | 11.4         | 0.0  |
| Unsig. Movement Delay, s/veh                       |      | 0.0      | 0.0  | 5.0          | 0.0       | 0.0  | 0.0      | 1.9          | 0.0  | 3.2          | 11.4         | 0.0  |
| LnGrp Delay(d),s/veh                               | 0.0  | 0.0      | 0.0  | 25.1         | 0.0       | 0.0  | 0.0      | 26.4         | 0.0  | 19.0         | 21.9         | 0.0  |
| LnGrp LOS                                          | Α    | Α        | Α    | C C          | Α         | 0.0  | 0.0<br>A | 20.4<br>C    | 0.0  | 13.0<br>B    | C C          | Α    |
| Approach Vol, veh/h                                |      | 0        |      |              | 486       |      |          | 317          |      | <u> </u>     | 1033         |      |
| Approach Delay, s/veh                              |      | 0.0      |      |              | 25.1      |      |          | 26.4         |      |              | 20.6         |      |
| Approach LOS                                       |      | 0.0      |      |              | 23.1<br>C |      |          | 20.4<br>C    |      |              | 20.0<br>C    |      |
|                                                    |      |          |      |              | U         |      |          |              |      |              | U            |      |
| Timer - Assigned Phs                               |      | 2        |      | 4            |           | 6    |          | 8            |      |              |              |      |
| Phs Duration (G+Y+Rc), s                           |      | 18.7     |      | 17.6         |           | 27.5 |          | 0.0          |      |              |              |      |
| Change Period (Y+Rc), s                            |      | 5.0      |      | 4.6          |           | 5.0  |          | 4.6          |      |              |              |      |
| Max Green Setting (Gmax), s                        |      | 35.0     |      | 35.0         |           | 35.0 |          | 19.0         |      |              |              |      |
| Max Q Clear Time (g_c+l1), s                       |      | 12.3     |      | 10.1         |           | 19.9 |          | 0.0          |      |              |              |      |
| Green Ext Time (p_c), s                            |      | 1.4      |      | 2.8          |           | 2.6  |          | 0.0          |      |              |              |      |
| Intersection Summary                               |      |          |      |              |           |      |          |              |      |              |              |      |
| HCM 6th Ctrl Delay                                 |      |          | 22.8 |              |           |      |          |              |      |              |              |      |
| HCM 6th LOS                                        |      |          | С    |              |           |      |          |              |      |              |              |      |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| •                                            | <b>→</b>  | •         | •         | <b>←</b>  | •        | 4   | <b>†</b> | /   | <b>&gt;</b> | ļ         | ✓         |  |
|----------------------------------------------|-----------|-----------|-----------|-----------|----------|-----|----------|-----|-------------|-----------|-----------|--|
| Movement EBL                                 | EBT       | EBR       | WBL       | WBT       | WBR      | NBL | NBT      | NBR | SBL         | SBT       | SBR       |  |
| Lane Configurations                          | <b>^</b>  | 1         | ሻሻ        | <b>^</b>  |          |     |          |     | ች           | 4         | 77        |  |
| Traffic Volume (veh/h) 0                     | 1115      | 70        | 160       | 720       | 0        | 0   | 0        | 0   | 820         | 0         | 540       |  |
| Future Volume (veh/h) 0                      | 1115      | 70        | 160       | 720       | 0        | 0   | 0        | 0   | 820         | 0         | 540       |  |
| Initial Q (Qb), veh 0                        | 0         | 0         | 0         | 0         | 0        |     |          |     | 0           | 0         | 0         |  |
| Ped-Bike Adj(A_pbT) 1.00                     |           | 1.00      | 1.00      |           | 1.00     |     |          |     | 1.00        |           | 1.00      |  |
| Parking Bus, Adj 1.00                        | 1.00      | 1.00      | 1.00      | 1.00      | 1.00     |     |          |     | 1.00        | 1.00      | 1.00      |  |
| Work Zone On Approach                        | No        |           |           | No        |          |     |          |     |             | No        |           |  |
| Adj Sat Flow, veh/h/ln 0                     | 1870      | 1870      | 1870      | 1870      | 0        |     |          |     | 1870        | 1870      | 1870      |  |
| Adj Flow Rate, veh/h 0                       | 1174      | 27        | 168       | 758       | 0        |     |          |     | 863         | 0         | 568       |  |
| Peak Hour Factor 0.95                        | 0.95      | 0.95      | 0.95      | 0.95      | 0.95     |     |          |     | 0.95        | 0.95      | 0.95      |  |
| Percent Heavy Veh, % 0                       | 2         | 2         | 2         | 2         | 0        |     |          |     | 2           | 2         | 2         |  |
| Cap, veh/h 0                                 | 1322      | 590       | 393       | 1989      | 0        |     |          |     | 987         | 0         | 878       |  |
| Arrive On Green 0.00                         | 0.37      | 0.37      | 0.11      | 0.56      | 0.00     |     |          |     | 0.28        | 0.00      | 0.28      |  |
| Sat Flow, veh/h 0                            | 3647      | 1585      | 3456      | 3647      | 0        |     |          |     | 3563        | 0         | 3170      |  |
| Grp Volume(v), veh/h 0                       | 1174      | 27        | 168       | 758       | 0        |     |          |     | 863         | 0         | 568       |  |
| Grp Sat Flow(s), veh/h/ln 0                  | 1777      | 1585      | 1728      | 1777      | 0        |     |          |     | 1781        | 0         | 1585      |  |
| Q Serve( $g_s$ ), s 0.0                      | 20.9      | 0.7       | 3.1       | 8.0       | 0.0      |     |          |     | 15.6        | 0.0       | 10.6      |  |
| Cycle Q Clear(g_c), s 0.0                    | 20.9      | 0.7       | 3.1       | 8.0       | 0.0      |     |          |     | 15.6        | 0.0       | 10.6      |  |
| Prop In Lane 0.00                            | 20.3      | 1.00      | 1.00      | 0.0       | 0.00     |     |          |     | 1.00        | 0.0       | 1.00      |  |
| ane Grp Cap(c), veh/h 0                      | 1322      | 590       | 393       | 1989      | 0.00     |     |          |     | 987         | 0         | 878       |  |
| //C Ratio(X) 0.00                            | 0.89      | 0.05      | 0.43      | 0.38      | 0.00     |     |          |     | 0.87        | 0.00      | 0.65      |  |
| Avail Cap(c_a), veh/h 0                      | 1529      | 682       | 1026      | 2848      | 0.00     |     |          |     | 1322        | 0.00      | 1176      |  |
| HCM Platoon Ratio 1.00                       | 1.00      | 1.00      | 1.00      | 1.00      | 1.00     |     |          |     | 1.00        | 1.00      | 1.00      |  |
| Jpstream Filter(I) 0.00                      | 1.00      | 1.00      | 1.00      | 1.00      | 0.00     |     |          |     | 1.00        | 0.00      | 1.00      |  |
| Uniform Delay (d), s/veh 0.0                 | 19.8      | 13.5      | 27.8      | 8.3       | 0.00     |     |          |     | 23.2        | 0.00      | 21.5      |  |
| ncr Delay (d2), s/veh 0.0                    | 5.6       | 0.0       | 0.3       | 0.0       | 0.0      |     |          |     | 4.3         | 0.0       | 0.3       |  |
| nitial Q Delay(d3),s/veh 0.0                 | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      |     |          |     | 0.0         | 0.0       | 0.0       |  |
| %ile BackOfQ(95%),veh/lr0.0                  | 13.7      | 0.4       | 2.2       | 4.7       | 0.0      |     |          |     | 10.9        | 0.0       | 6.7       |  |
| Jnsig. Movement Delay, s/ve                  |           | 0.4       | ۷.۷       | 4.7       | 0.0      |     |          |     | 10.9        | 0.0       | 0.1       |  |
| _nGrp Delay(d),s/veh 0.0                     | 25.4      | 13.5      | 28.1      | 8.3       | 0.0      |     |          |     | 27.5        | 0.0       | 21.8      |  |
| LnGrp LOS A                                  | 25.4<br>C | 13.5<br>B | 20.1<br>C | 6.5<br>A  | 0.0<br>A |     |          |     | 27.5<br>C   | Ο.0       | 21.0<br>C |  |
| Approach Vol, veh/h                          | 1201      | D         | U         | 926       | A        |     |          |     | U           | 1431      | U         |  |
| Approach Vol, ven/n<br>Approach Delay, s/veh | 25.1      |           |           | 11.9      |          |     |          |     |             | 25.2      |           |  |
| Approach LOS                                 | 25.1<br>C |           |           | 11.9<br>B |          |     |          |     |             | 25.2<br>C |           |  |
| • •                                          |           |           |           | D         |          |     |          |     |             | C         |           |  |
| Timer - Assigned Phs 1                       | 2         |           | 4         |           | 6        |     |          |     |             |           |           |  |
| Phs Duration (G+Y+Rc), \$2.7                 | 31.1      |           | 23.7      |           | 43.7     |     |          |     |             |           |           |  |
| Change Period (Y+Rc), s 5.0                  | * 6       |           | * 5       |           | * 6      |     |          |     |             |           |           |  |
| Max Green Setting (Gma24), &                 | * 29      |           | * 25      |           | * 54     |     |          |     |             |           |           |  |
| Max Q Clear Time (g_c+l15,1s                 |           |           | 17.6      |           | 10.0     |     |          |     |             |           |           |  |
| Green Ext Time (p_c), s 0.1                  | 2.2       |           | 1.1       |           | 2.2      |     |          |     |             |           |           |  |
| ntersection Summary                          |           |           |           |           |          |     |          |     |             |           |           |  |
| HCM 6th Ctrl Delay                           |           | 21.7      |           |           |          |     |          |     |             |           |           |  |
| HCM 6th LOS                                  |           | С         |           |           |          |     |          |     |             |           |           |  |
| Notos                                        |           |           |           |           |          |     |          |     |             |           |           |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶       | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | †    | <b>/</b> | <b>/</b> | <b>↓</b> | 4   |  |
|---------------------------|---------|----------|------|------|----------|------|------|------|----------|----------|----------|-----|--|
| Movement                  | EBL     | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR      | SBL      | SBT      | SBR |  |
| Lane Configurations       | ሻሻ      | <b>^</b> |      |      | 44       | 7    |      | 4    | 7        |          |          |     |  |
| Traffic Volume (veh/h)    | 470     | 1465     | 0    | 0    | 750      | 780  | 130  | 0    | 200      | 0        | 0        | 0   |  |
| Future Volume (veh/h)     | 470     | 1465     | 0    | 0    | 750      | 780  | 130  | 0    | 200      | 0        | 0        | 0   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0        |          |          |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00 | 1.00 |          | 0.99 | 1.00 |      | 1.00     |          |          |     |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Work Zone On Approac      |         | No       |      |      | No       |      |      | No   |          |          |          |     |  |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870     | 0    | 0    | 1870     | 1870 | 1870 | 1870 | 1870     |          |          |     |  |
| Adj Flow Rate, veh/h      | 495     | 1542     | 0    | 0    | 789      | 383  | 137  | 0    | 128      |          |          |     |  |
| Peak Hour Factor          | 0.95    | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95 | 0.95     |          |          |     |  |
| Percent Heavy Veh, %      | 2       | 2        | 0    | 0    | 2        | 2    | 2    | 2    | 2        |          |          |     |  |
| Cap, veh/h                | 668     | 2166     | 0    | 0    | 1110     | 488  | 576  | 0    | 256      |          |          |     |  |
| Arrive On Green           | 0.19    | 0.61     | 0.00 | 0.00 | 0.31     | 0.31 | 0.16 | 0.00 | 0.16     |          |          |     |  |
| Sat Flow, veh/h           | 3456    | 3647     | 0    | 0    | 3647     | 1562 | 3563 | 0    | 1585     |          |          |     |  |
| Grp Volume(v), veh/h      | 495     | 1542     | 0    | 0    | 789      | 383  | 137  | 0    | 128      |          |          |     |  |
| Grp Sat Flow(s), veh/h/li |         | 1777     | 0    | 0    | 1777     | 1562 | 1781 | 0    | 1585     |          |          |     |  |
| Q Serve(g_s), s           | 6.5     | 14.4     | 0.0  | 0.0  | 9.4      | 10.7 | 1.6  | 0.0  | 3.5      |          |          |     |  |
| Cycle Q Clear(g_c), s     | 6.5     | 14.4     | 0.0  | 0.0  | 9.4      | 10.7 | 1.6  | 0.0  | 3.5      |          |          |     |  |
| Prop In Lane              | 1.00    |          | 0.00 | 0.00 |          | 1.00 | 1.00 |      | 1.00     |          |          |     |  |
| Lane Grp Cap(c), veh/h    |         | 2166     | 0    | 0    | 1110     | 488  | 576  | 0    | 256      |          |          |     |  |
| V/C Ratio(X)              | 0.74    | 0.71     | 0.00 | 0.00 | 0.71     | 0.79 | 0.24 | 0.00 | 0.50     |          |          |     |  |
| Avail Cap(c_a), veh/h     | 1438    | 3992     | 0    | 0    | 2144     | 942  | 1853 | 0    | 824      |          |          |     |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 0.00 | 0.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00     |          |          |     |  |
| Uniform Delay (d), s/vel  |         | 6.5      | 0.0  | 0.0  | 14.6     | 15.1 | 17.6 | 0.0  | 18.4     |          |          |     |  |
| Incr Delay (d2), s/veh    | 0.6     | 0.2      | 0.0  | 0.0  | 0.3      | 1.1  | 0.1  | 0.0  | 0.6      |          |          |     |  |
| Initial Q Delay(d3),s/veh |         | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |          |          |     |  |
| %ile BackOfQ(95%),vel     |         | 5.8      | 0.0  | 0.0  | 5.8      | 6.0  | 1.1  | 0.0  | 2.2      |          |          |     |  |
| Unsig. Movement Delay     |         |          | 0.0  |      | 440      | 40.4 | 4    | 0.0  | 40.0     |          |          |     |  |
| LnGrp Delay(d),s/veh      | 18.9    | 6.6      | 0.0  | 0.0  | 14.9     | 16.1 | 17.7 | 0.0  | 18.9     |          |          |     |  |
| LnGrp LOS                 | В       | Α        | A    | A    | В        | В    | В    | Α    | В        |          |          |     |  |
| Approach Vol, veh/h       |         | 2037     |      |      | 1172     |      |      | 265  |          |          |          |     |  |
| Approach Delay, s/veh     |         | 9.6      |      |      | 15.3     |      |      | 18.3 |          |          |          |     |  |
| Approach LOS              |         | Α        |      |      | В        |      |      | В    |          |          |          |     |  |
| Timer - Assigned Phs      |         | 2        |      |      | 5        | 6    |      | 8    |          |          |          |     |  |
| Phs Duration (G+Y+Rc)     |         | 35.3     |      |      | 14.3     | 21.0 |      | 12.8 |          |          |          |     |  |
| Change Period (Y+Rc),     |         | * 6      |      |      | 5.0      | * 6  |      | 5.0  |          |          |          |     |  |
| Max Green Setting (Gm     | nax), s | * 54     |      |      | 20.0     | * 29 |      | 25.0 |          |          |          |     |  |
| Max Q Clear Time (g_c     | +l1), s | 16.4     |      |      | 8.5      | 12.7 |      | 5.5  |          |          |          |     |  |
| Green Ext Time (p_c), s   | 3       | 5.7      |      |      | 8.0      | 2.3  |      | 0.4  |          |          |          |     |  |
| Intersection Summary      |         |          |      |      |          |      |      |      |          |          |          |     |  |
| HCM 6th Ctrl Delay        |         |          | 12.2 |      |          |      |      |      |          |          |          |     |  |
| HCM 6th LOS               |         |          | В    |      |          |      |      |      |          |          |          |     |  |
|                           |         |          |      |      |          |      |      |      |          |          |          |     |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Appendix C – MUTCD Signal Warrants

### Warrant 3, Peak Hour

# FEHR PEERS

Major Street Minor Street Park Ave 18th St Project Chic Scenario Exis Peak Hour AM

Chico Barber Yard Specific Plan
Existing Plus Project Conditions
AM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 40  | 5   | 20  | 5  |
| Through | 580 | 710 | 5   | 5  |
| Right   | 5   | 25  | 135 | 5  |
| Total   | 625 | 740 | 160 | 15 |

**Major Street Direction** 

| X | North/South |
|---|-------------|
|   | East/West   |

**Intersection Geometry** 

Number of Approach Lanes for Minor Street Total Approaches

1 4

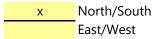
Worst Case Delay for Minor Street

Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

| 35 |
|----|
| WB |
| 15 |

|                                  | Warrant 3A, Peak                                        | Hour                                           |                                                |
|----------------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                  | Peak Hour Delay on<br>Minor Approach<br>(vehicle-hours) | Peak Hour Volume<br>on Minor Approach<br>(vph) | Peak Hour Entering<br>Volume Serviced<br>(vph) |
| Existing Plus Project Conditions | 0.1                                                     | 160                                            | 1,540                                          |
| Limiting Value                   | 4                                                       | 100                                            | 800                                            |
| Condition Satisfied?             | Not Met                                                 | Met                                            | Met                                            |
| Warrant Met                      |                                                         | <u>NO</u>                                      |                                                |

## FEHR PEERS


Major Street Minor Street Park Ave 18th St Project Scenario Chico Barber Yard Specific Plan
Existing Plus Project Conditions


Peak Hour AM

Turn Movement Volumes

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 40  | 5   | 20  | 5  |
| Through | 580 | 710 | 5   | 5  |
| Right   | 5   | 25  | 135 | 5  |
| Total   | 625 | 740 | 160 | 15 |

**Major Street Direction** 





|                          | Major Street | Minor Street | Marrant Mat |
|--------------------------|--------------|--------------|-------------|
|                          | Park Ave     | 18th St      | Warrant Met |
| Number of Approach Lanes | 2            | 1            | NO          |
| Traffic Volume (VPH) *   | 1,365        | 160          | 110         |

\* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

# FEHR PEERS

Major Street Minor Street Park Ave 18th St Project Chic Scenario Exis Peak Hour PM

Chico Barber Yard Specific Plan
Existing Plus Project Conditions
PM

**Turn Movement Volumes** 

|         | NB    | SB    | EB  | WB |
|---------|-------|-------|-----|----|
| Left    | 45    | 5     | 15  | 5  |
| Through | 1,215 | 945   | 5   | 5  |
| Right   | 5     | 85    | 100 | 10 |
| Total   | 1,265 | 1,035 | 120 | 20 |

**Major Street Direction** 

| X | North/South |
|---|-------------|
|   | East/West   |

**Intersection Geometry** 

Number of Approach Lanes for Minor Street Total Approaches

1 4

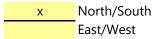
Worst Case Delay for Minor Street

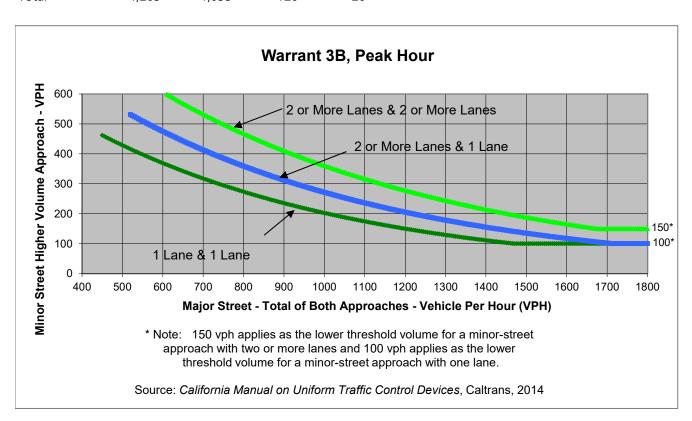
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

| 306 |
|-----|
| EB  |
| 120 |

|                                  | Warrant 3A, Peak                                        | Hour                                           |                                                |
|----------------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                  | Peak Hour Delay on<br>Minor Approach<br>(vehicle-hours) | Peak Hour Volume<br>on Minor Approach<br>(vph) | Peak Hour Entering<br>Volume Serviced<br>(vph) |
| Existing Plus Project Conditions | 10.2                                                    | 120                                            | 2,440                                          |
| Limiting Value                   | 4                                                       | 100                                            | 800                                            |
| Condition Satisfied?             | Met                                                     | Met                                            | Met                                            |
| Warrant Met                      |                                                         | YES                                            |                                                |

## FEHR PEERS


Major Street Minor Street Park Ave 18th St Project Chie
Scenario Exis
Peak Hour PM


Chico Barber Yard Specific Plan
Existing Plus Project Conditions

**Turn Movement Volumes** 

|         | NB    | SB    | EB  | WB |
|---------|-------|-------|-----|----|
| Left    | 45    | 5     | 15  | 5  |
| Through | 1,215 | 945   | 5   | 5  |
| Right   | 5     | 85    | 100 | 10 |
| Total   | 1.265 | 1.035 | 120 | 20 |

**Major Street Direction** 





|                          | Major Street | Minor Street | Warrant Met    |
|--------------------------|--------------|--------------|----------------|
|                          | Park Ave     | 18th St      | vvarrant iviet |
| Number of Approach Lanes | 2            | 1            | VEC            |
| Traffic Volume (VPH) *   | 2,300        | 120          | <u>YES</u>     |

\* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

### Section 4C.09 Warrant 8, Roadway Network

#### Support

of Installing a traffic control signal at some intersections might be justified to encourage concentration and organization of traffic flow on a roadway network.

#### Standard:

- 02 The need for a traffic control signal shall be considered if an engineering study finds that the common intersection of two or more major routes meets one or both of the following criteria:
  - A. The intersection has a total existing, or immediately projected, entering volume of at least 1,000 vehicles per hour during the peak hour of a typical weekday and has 5-year projected traffic volumes, based on an engineering study, that meet one or more of Warrants 1, 2, and 3 during an average weekday; or
  - B. The intersection has a total existing or immediately projected entering volume of at least 1,000 vehicles per hour for each of any 5 hours of a non-normal business day (Saturday or Sunday).
  - 03 A major route as used in this signal warrant shall have at least one of the following characteristics:
  - A. It is part of the street or highway system that serves as the principal roadway network for through traffic flow.
  - B. It includes rural or suburban highways outside, entering, or traversing a city.
  - C. It appears as a major route on an official plan, such as a major street plan in an urban area traffic and transportation study.

California Manual on Uniform Traffic Control Devices, Chapter 4C - Traffic Control Signal Needs Studies

Appendix D – Cumulative No Project Conditions

Peak Hour Traffic Volume Forecasts, Lane Configurations, and Technical Calculations

| Intersection           |          |       |        |          |            |      |
|------------------------|----------|-------|--------|----------|------------|------|
| Int Delay, s/veh       | 2.1      |       |        |          |            |      |
| Movement               | EBL      | EBR   | NBL    | NBT      | SBT        | SBR  |
|                        |          | EDK   | INDL   |          |            | SDK  |
| Lane Configurations    | <b>Y</b> | 40    | Ε0     | <b>^</b> | <b>↑</b> } | 040  |
| Traffic Vol, veh/h     | 40       | 40    | 50     | 910      | 560        | 210  |
| Future Vol, veh/h      | 40       | 40    | 50     | 910      | 560        | 210  |
| Conflicting Peds, #/hr |          | 0     | _ 10   | _ 0      | _ 0        | _ 0  |
| Sign Control           | Stop     | Stop  | Free   | Free     | Free       | Free |
| RT Channelized         | -        | None  | -      | None     | -          | None |
| Storage Length         | 0        | -     | -      | -        | -          | -    |
| Veh in Median Storag   | e, # 0   | -     | -      | 0        | 0          | -    |
| Grade, %               | 0        | -     | -      | 0        | 0          | -    |
| Peak Hour Factor       | 90       | 90    | 90     | 90       | 90         | 90   |
| Heavy Vehicles, %      | 3        | 3     | 3      | 3        | 3          | 3    |
| Mvmt Flow              | 44       | 44    | 56     | 1011     | 622        | 233  |
|                        |          |       |        |          |            |      |
| Major/Miner            | Minaro   |       | Ania 1 |          | /oic-0     |      |
| Major/Minor            | Minor2   |       | Major1 |          | /lajor2    |      |
| Conflicting Flow All   | 1367     | 438   | 865    | 0        | -          | 0    |
| Stage 1                | 749      | -     | -      | -        | -          | -    |
| Stage 2                | 618      | -     | -      | -        | -          | -    |
| Critical Hdwy          | 6.86     | 6.96  | 4.16   | -        | -          | -    |
| Critical Hdwy Stg 1    | 5.86     | -     | -      | -        | -          | -    |
| Critical Hdwy Stg 2    | 5.86     | -     | -      | -        | -          | -    |
| Follow-up Hdwy         | 3.53     | 3.33  | 2.23   |          | -          |      |
| Pot Cap-1 Maneuver     | 137      | 564   | 767    | -        | -          | -    |
| Stage 1                | 425      | -     | -      | -        | -          | -    |
| Stage 2                | 497      | -     | -      | -        | -          | -    |
| Platoon blocked, %     |          |       |        | -        | -          | -    |
| Mov Cap-1 Maneuver     | 112      | 559   | 760    | -        | -          | -    |
| Mov Cap-2 Maneuver     |          | -     |        | _        | _          | _    |
| Stage 1                | 350      | -     | -      | -        | _          | -    |
| Stage 2                | 492      | _     | _      | _        | _          | _    |
| Oldgo Z                | 102      |       |        |          |            |      |
|                        |          |       |        |          |            |      |
| Approach               | EB       |       | NB     |          | SB         |      |
| HCM Control Delay, s   | 40.6     |       | 0.5    |          | 0          |      |
| HCM LOS                | Е        |       |        |          |            |      |
|                        |          |       |        |          |            |      |
| Minor Lang/Major Mur   | nt       | NDI   | NDT    | EBLn1    | SBT        | SBR  |
| Minor Lane/Major Mvr   | IIL      | NBL   |        |          |            | SBK  |
| Capacity (veh/h)       |          | 760   | -      |          | -          | -    |
| HCM Lane V/C Ratio     | ,        | 0.073 | -      | 0.475    | -          | -    |
| HCM Control Delay (s   | 5)       | 10.1  | -      | 40.6     | -          | -    |
| HCM Lane LOS           |          | В     | -      | Е        | -          | -    |
| HCM 95th %tile Q(veh   | 1)       | 0.2   | -      | 2.3      | -          | -    |

| Intersection                |        |      |            |       |        |          |
|-----------------------------|--------|------|------------|-------|--------|----------|
| Int Delay, s/veh            | 0.6    |      |            |       |        |          |
|                             | WDL    | WDD  | NDT        | NDD   | CDI    | CDT      |
| Movement                    | WBL    | WBR  | NBT        | NBR   | SBL    | SBT      |
| Lane Configurations         | ¥      | 00   | <b>↑</b> ↑ | 40    | 00     | <b>^</b> |
| Traffic Vol, veh/h          | 10     | 30   | 930        | 10    | 20     | 580      |
| Future Vol, veh/h           | 10     | 30   | 930        | 10    | 20     | 580      |
| Conflicting Peds, #/hr      |        | 0    | 0          | 10    | 0      | 0        |
| Sign Control                | Stop   | Stop | Free       | Free  | Free   | Free     |
| RT Channelized              | -      | None | -          | None  | -      | None     |
| Storage Length              | 0      | -    | -          | -     | -      | -        |
| Veh in Median Storag        | e, # 0 | -    | 0          | -     | -      | 0        |
| Grade, %                    | 0      | -    | 0          | -     | -      | 0        |
| Peak Hour Factor            | 90     | 90   | 90         | 90    | 90     | 90       |
| Heavy Vehicles, %           | 3      | 3    | 3          | 3     | 3      | 3        |
| Mvmt Flow                   | 11     | 33   | 1033       | 11    | 22     | 644      |
|                             |        |      |            |       |        |          |
|                             |        | _    |            |       |        |          |
| Major/Minor                 | Minor1 |      | //ajor1    |       | Major2 |          |
| Conflicting Flow All        | 1415   | 532  | 0          | 0     | 1054   | 0        |
| Stage 1                     | 1049   | -    | -          | -     | -      | -        |
| Stage 2                     | 366    | -    | -          | -     | -      | -        |
| Critical Hdwy               | 6.86   | 6.96 | -          | -     | 4.16   | -        |
| Critical Hdwy Stg 1         | 5.86   | -    | -          | -     | -      | -        |
| Critical Hdwy Stg 2         | 5.86   | -    | -          | -     | -      | -        |
| Follow-up Hdwy              | 3.53   | 3.33 | -          | -     | 2.23   | -        |
| Pot Cap-1 Maneuver          | 127    | 489  | -          | _     | 650    | -        |
| Stage 1                     | 296    | _    | -          | _     | _      | _        |
| Stage 2                     | 669    | _    | _          | _     | _      | _        |
| Platoon blocked, %          | 000    |      | _          | _     |        | _        |
| Mov Cap-1 Maneuver          | 119    | 484  |            | _     | 644    | _        |
| Mov Cap-1 Maneuver          |        | -    | _          | _     |        | _        |
|                             |        |      | -          | _     | -      | _        |
| Stage 1                     | 293    | -    | -          | -     | -      | -        |
| Stage 2                     | 634    | -    | -          | -     | -      | -        |
|                             |        |      |            |       |        |          |
| Approach                    | WB     |      | NB         |       | SB     |          |
| HCM Control Delay, s        |        |      | 0          |       | 0.4    |          |
| HCM LOS                     | C      |      | v          |       | 0.1    |          |
| TIOW EGG                    | - U    |      |            |       |        |          |
|                             |        |      |            |       |        |          |
| Minor Lane/Major Mvi        | mt     | NBT  | NBRV       | VBLn1 | SBL    | SBT      |
| Capacity (veh/h)            |        | -    | _          | 377   | 644    | -        |
| HCM Lane V/C Ratio          |        | -    | -          | 0.118 | 0.035  | -        |
| HCM Control Delay (s        | s)     | -    | -          | 15.8  | 10.8   | -        |
| HCM Lane LOS                | ,      | -    | _          | С     | В      | -        |
| HCM 95th %tile Q(vel        | ո)     | _    | _          | 0.4   | 0.1    | _        |
| 1 10 W 30 til 70 tile Q(Vel | 1)     |      |            | 0.4   | 0.1    |          |

|                              | ۶   | <b>→</b> | $\rightarrow$ | •    | •    | •    | •    | <b>†</b> | <b>/</b> | -    | ļ    | 4    |
|------------------------------|-----|----------|---------------|------|------|------|------|----------|----------|------|------|------|
| Movement                     | EBL | EBT      | EBR           | WBL  | WBT  | WBR  | NBL  | NBT      | NBR      | SBL  | SBT  | SBR  |
| Lane Configurations          |     |          |               |      | ^↑   |      |      | र्स      |          |      | ₽    |      |
| Traffic Volume (veh/h)       | 0   | 0        | 0             | 50   | 570  | 180  | 20   | 60       | 0        | 0    | 90   | 5    |
| Future Volume (veh/h)        | 0   | 0        | 0             | 50   | 570  | 180  | 20   | 60       | 0        | 0    | 90   | 5    |
| Initial Q (Qb), veh          |     |          |               | 0    | 0    | 0    | 0    | 0        | 0        | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          |     |          |               | 1.00 |      | 0.99 | 0.99 |          | 1.00     | 1.00 |      | 1.00 |
| Parking Bus, Adj             |     |          |               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |     |          |               |      | No   |      |      | No       |          |      | No   |      |
| Adj Sat Flow, veh/h/ln       |     |          |               | 1856 | 1856 | 1856 | 1856 | 1856     | 0        | 0    | 1856 | 1856 |
| Adj Flow Rate, veh/h         |     |          |               | 56   | 633  | 160  | 22   | 67       | 0        | 0    | 100  | 0    |
| Peak Hour Factor             |     |          |               | 0.90 | 0.90 | 0.90 | 0.90 | 0.90     | 0.90     | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, %         |     |          |               | 3    | 3    | 3    | 3    | 3        | 0        | 0    | 3    | 3    |
| Cap, veh/h                   |     |          |               | 83   | 977  | 262  | 268  | 298      | 0        | 0    | 381  | 0    |
| Arrive On Green              |     |          |               | 0.37 | 0.37 | 0.37 | 0.21 | 0.21     | 0.00     | 0.00 | 0.21 | 0.00 |
| Sat Flow, veh/h              |     |          |               | 225  | 2636 | 706  | 276  | 1452     | 0        | 0    | 1856 | 0    |
| Grp Volume(v), veh/h         |     |          |               | 459  | 0    | 390  | 89   | 0        | 0        | 0    | 100  | 0    |
| Grp Sat Flow(s),veh/h/ln     |     |          |               | 1844 | 0    | 1723 | 1729 | 0        | 0        | 0    | 1856 | 0    |
| Q Serve(g_s), s              |     |          |               | 4.4  | 0.0  | 3.9  | 0.0  | 0.0      | 0.0      | 0.0  | 1.0  | 0.0  |
| Cycle Q Clear(g_c), s        |     |          |               | 4.4  | 0.0  | 3.9  | 0.8  | 0.0      | 0.0      | 0.0  | 1.0  | 0.0  |
| Prop In Lane                 |     |          |               | 0.12 | 0.0  | 0.41 | 0.25 | 0.0      | 0.00     | 0.00 |      | 0.00 |
| Lane Grp Cap(c), veh/h       |     |          |               | 684  | 0    | 639  | 566  | 0        | 0        | 0    | 381  | 0    |
| V/C Ratio(X)                 |     |          |               | 0.67 | 0.00 | 0.61 | 0.16 | 0.00     | 0.00     | 0.00 | 0.26 | 0.00 |
| Avail Cap(c_a), veh/h        |     |          |               | 2172 | 0    | 2029 | 1402 | 0        | 0        | 0    | 1311 | 0    |
| HCM Platoon Ratio            |     |          |               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           |     |          |               | 1.00 | 0.00 | 1.00 | 1.00 | 0.00     | 0.00     | 0.00 | 1.00 | 0.00 |
| Uniform Delay (d), s/veh     |     |          |               | 5.6  | 0.0  | 5.4  | 7.0  | 0.0      | 0.0      | 0.0  | 7.1  | 0.0  |
| Incr Delay (d2), s/veh       |     |          |               | 0.4  | 0.0  | 0.4  | 0.0  | 0.0      | 0.0      | 0.0  | 0.1  | 0.0  |
| Initial Q Delay(d3),s/veh    |     |          |               | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     |     |          |               | 0.6  | 0.0  | 0.5  | 0.2  | 0.0      | 0.0      | 0.0  | 0.2  | 0.0  |
| Unsig. Movement Delay, s/veh |     |          |               | 0.0  | 0.0  | 0.0  | 0.2  | 0.0      | 0.0      | 0.0  | 0.2  | 0.0  |
| LnGrp Delay(d),s/veh         |     |          |               | 6.0  | 0.0  | 5.8  | 7.1  | 0.0      | 0.0      | 0.0  | 7.2  | 0.0  |
| LnGrp LOS                    |     |          |               | A    | A    | A    | A    | A        | A        | A    | Α    | A    |
| Approach Vol, veh/h          |     |          |               |      | 849  |      |      | 89       |          |      | 100  |      |
| Approach Delay, s/veh        |     |          |               |      | 5.9  |      |      | 7.1      |          |      | 7.2  |      |
| Approach LOS                 |     |          |               |      | Α    |      |      | Α        |          |      | Α.Δ  |      |
|                              |     |          |               |      |      |      |      |          |          |      |      |      |
| Timer - Assigned Phs         |     | 2        |               | 4    |      |      |      | 8        |          |      |      |      |
| Phs Duration (G+Y+Rc), s     |     | 12.9     |               | 8.4  |      |      |      | 8.4      |          |      |      |      |
| Change Period (Y+Rc), s      |     | * 5      |               | * 4  |      |      |      | * 4      |          |      |      |      |
| Max Green Setting (Gmax), s  |     | * 25     |               | * 15 |      |      |      | * 15     |          |      |      |      |
| Max Q Clear Time (g_c+l1), s |     | 6.4      |               | 3.0  |      |      |      | 2.8      |          |      |      |      |
| Green Ext Time (p_c), s      |     | 1.3      |               | 0.1  |      |      |      | 0.1      |          |      |      |      |
| Intersection Summary         |     |          |               |      |      |      |      |          |          |      |      |      |
| HCM 6th Ctrl Delay           |     |          | 6.1           |      |      |      |      |          |          |      |      |      |
| HCM 6th LOS                  |     |          | Α             |      |      |      |      |          |          |      |      |      |
| Notes                        |     |          |               |      |      |      |      |          |          |      |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| •                             | <b>→</b>     | •    | •    | <b>←</b> | •   | •    | †    | <b>/</b> | /    | <b>↓</b> | 4    |
|-------------------------------|--------------|------|------|----------|-----|------|------|----------|------|----------|------|
| Movement EBL                  | . EBT        | EBR  | WBL  | WBT      | WBR | NBL  | NBT  | NBR      | SBL  | SBT      | SBR  |
| Lane Configurations           | <b>^</b>     | ı    |      |          |     |      | ĥ    |          |      | 4        |      |
| Traffic Volume (veh/h) 20     |              |      | 0    | 0        | 0   | 0    | 60   | 50       | 80   | 60       | 0    |
| Future Volume (veh/h) 20      | 730          | 20   | 0    | 0        | 0   | 0    | 60   | 50       | 80   | 60       | 0    |
| Initial Q (Qb), veh           | 0            | 0    |      |          |     | 0    | 0    | 0        | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT) 1.00      | )            | 0.99 |      |          |     | 1.00 |      | 0.97     | 0.99 |          | 1.00 |
| Parking Bus, Adj 1.00         | 1.00         | 1.00 |      |          |     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach         | No           |      |      |          |     |      | No   |          |      | No       |      |
| Adj Sat Flow, veh/h/ln 1856   | 1856         | 1856 |      |          |     | 0    | 1856 | 1856     | 1856 | 1856     | 0    |
| Adj Flow Rate, veh/h 22       | 811          | 18   |      |          |     | 0    | 67   | 4        | 89   | 67       | 0    |
| Peak Hour Factor 0.90         | 0.90         | 0.90 |      |          |     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90 |
| Percent Heavy Veh, %          | 3            | 3    |      |          |     | 0    | 3    | 3        | 3    | 3        | 0    |
| Cap, veh/h 33                 | 1284         | 30   |      |          |     | 0    | 382  | 23       | 422  | 180      | 0    |
| Arrive On Green 0.36          | 0.36         | 0.36 |      |          |     | 0.00 | 0.22 | 0.22     | 0.22 | 0.22     | 0.00 |
| Sat Flow, veh/h 91            | 3517         | 82   |      |          |     | 0    | 1730 | 103      | 731  | 814      | 0    |
| Grp Volume(v), veh/h 447      |              |      |      |          |     | 0    | 0    | 71       | 156  | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln1851 |              |      |      |          |     | 0    | 0    | 1834     | 1545 | 0        | 0    |
| Q Serve(g_s), s 4.4           |              |      |      |          |     | 0.0  | 0.0  | 0.7      | 1.1  | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s 4.4     |              |      |      |          |     | 0.0  | 0.0  | 0.7      | 1.8  | 0.0      | 0.0  |
| Prop In Lane 0.05             |              | 0.04 |      |          |     | 0.00 |      | 0.06     | 0.57 |          | 0.00 |
| Lane Grp Cap(c), veh/h 676    |              |      |      |          |     | 0    | 0    | 405      | 601  | 0        | 0    |
| V/C Ratio(X) 0.66             |              |      |      |          |     | 0.00 | 0.00 | 0.18     | 0.26 | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h 2130    |              |      |      |          |     | 0    | 0    | 1266     | 1304 | 0        | 0    |
| HCM Platoon Ratio 1.00        |              |      |      |          |     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I) 1.00       |              |      |      |          |     | 0.00 | 0.00 | 1.00     | 1.00 | 0.00     | 0.00 |
| Uniform Delay (d), s/veh 5.8  |              |      |      |          |     | 0.0  | 0.0  | 6.9      | 7.3  | 0.0      | 0.0  |
| Incr Delay (d2), s/veh 0.4    |              |      |      |          |     | 0.0  | 0.0  | 0.1      | 0.1  | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh 0.0 |              |      |      |          |     | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/lr0.6   |              |      |      |          |     | 0.0  | 0.0  | 0.1      | 0.3  | 0.0      | 0.0  |
| Unsig. Movement Delay, s/ve   |              |      |      |          |     |      |      |          |      |          |      |
| LnGrp Delay(d),s/veh 6.2      |              | 5.9  |      |          |     | 0.0  | 0.0  | 6.9      | 7.3  | 0.0      | 0.0  |
| LnGrp LOS A                   |              |      |      |          |     | Α    | Α    | Α        | A    | Α        | Α    |
| Approach Vol, veh/h           | 851          |      |      |          |     |      | 71   |          |      | 156      |      |
| Approach Delay, s/veh         | 6.1          |      |      |          |     |      | 6.9  |          |      | 7.3      |      |
| Approach LOS                  | Α            |      |      |          |     |      | Α    |          |      | Α        |      |
| Timer - Assigned Phs          | 2            |      | 4    |          |     |      | 8    |          |      |          |      |
| Phs Duration (G+Y+Rc), s      | 12.9         |      | 8.8  |          |     |      | 8.8  |          |      |          |      |
| Change Period (Y+Rc), s       | * 5          |      | * 4  |          |     |      | * 4  |          |      |          |      |
| Max Green Setting (Gmax),     |              |      | * 15 |          |     |      | * 15 |          |      |          |      |
| Max Q Clear Time (g_c+l1),    |              |      | 3.8  |          |     |      | 2.7  |          |      |          |      |
|                               | s 6.4<br>1.2 |      | 0.2  |          |     |      | 0.1  |          |      |          |      |
| Green Ext Time (p_c), s       | 1.2          |      | 0.2  |          |     |      | 0.1  |          |      |          |      |
| Intersection Summary          |              | 0.0  |      |          |     |      |      |          |      |          |      |
| HCM 6th Ctrl Delay            |              | 6.3  |      |          |     |      |      |          |      |          |      |
| HCM 6th LOS                   |              | Α    |      |          |     |      |      |          |      |          |      |
| Notes                         |              |      |      |          |     |      |      |          |      |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |       |        |        |              |        |      |              |        |      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|--------|--------|--------------|--------|------|--------------|--------|------|----------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.6        |       |       |        |        |              |        |      |              |        |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | EDT   | EDD   | WDI    | WDT    | WDD          | NDI    | NDT  | NDD          | CDI    | CDT  | CDD      |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL        | EBT   | EBR   | WBL    | WBT    | WBR          | NBL    | NBT  | NBR          | SBL    | SBT  | SBR      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40         | 4     | •     | _      | 4      | 40           |        | 4    | _            | _      | 4    | 00       |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40         | 5     | 0     | 5      | 5      | 10           | 0      | 50   | 5            | 5      | 30   | 30       |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40         | 5     | 0     | 5      | 5      | 10           | 0      | 50   | 5            | 5      | 30   | 30       |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10         | 0     | 5     | 5      | 0      | 10           | 0      | _ 0  | _ 5          | _ 5    | _ 0  | _ 0      |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop       | Stop  | Stop  | Stop   | Stop   | Stop         | Free   | Free | Free         | Free   | Free | Free     |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          | -     | None  | -      | -      | None         | -      | -    | None         | -      | -    | None     |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          | -     | -     | -      | -      | -            | -      | -    | -            | -      | -    | -        |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e,# -      | 0     | -     | -      | 0      | -            | -      | 0    | -            | -      | 0    | -        |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -          | 0     | -     | -      | 0      | -            | -      | 0    | -            | -      | 0    | -        |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90         | 90    | 90    | 90     | 90     | 90           | 90     | 90   | 90           | 90     | 90   | 90       |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3          | 3     | 3     | 3      | 3      | 3            | 3      | 3    | 3            | 3      | 3    | 3        |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44         | 6     | 0     | 6      | 6      | 11           | 0      | 56   | 6            | 6      | 33   | 33       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |       |        |        |              |        |      |              |        |      |          |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minor2     |       |       | Minor1 |        |              | Major1 |      |              | Major2 |      |          |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140        | 129   | 55    | 134    | 142    | 74           | 66     | 0    | 0            | 67     | 0    | 0        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62         | 62    | -     | 64     | 64     | -            | -      | -    | -            | -      | -    | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78         | 67    | -     | 70     | 78     | _            |        | _    | _            |        | _    | _        |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.13       | 6.53  | 6.23  | 7.13   | 6.53   | 6.23         | 4.13   | -    | <u>-</u>     | 4.13   |      | <u>-</u> |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.13       | 5.53  | 0.23  | 6.13   | 5.53   | 0.23         | 4.13   | _    | _            | 4.13   | _    | _        |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.13       | 5.53  | _     | 6.13   | 5.53   | -            | -      | -    | -            | -      | -    | -        |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.527      | 4.027 | 3.327 | 3.527  | 4.027  | 2 227        | 2.227  | -    | -            | 2.227  | -    | -        |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |       |        |        | 3.327<br>985 |        | -    | <del>-</del> |        | -    | -        |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 828        | 760   | 1009  | 835    | 747    | 900          | 1529   | -    | -            | 1528   | -    | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 947        | 841   | -     | 944    | 840    | -            | -      | -    | -            | -      | -    | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 928        | 837   | -     | 937    | 828    | -            | -      | -    | -            | -      | -    | -        |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 004        | 750   | 1004  | 000    | 740    | 074          | 4500   | -    | -            | 4504   | -    | -        |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 804        | 753   | 1004  | 820    | 740    | 971          | 1529   | -    | -            | 1521   | -    | -        |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 804        | 753   | -     | 820    | 740    | -            | -      | -    | -            | -      | -    | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 947        | 838   | -     | 939    | 836    | -            | -      | -    | -            | -      | -    | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 903        | 833   | -     | 923    | 825    | -            | -      | -    | -            | -      | -    | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |       |        |        |              |        |      |              |        |      |          |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB         |       |       | WB     |        |              | NB     |      |              | SB     |      |          |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.8        |       |       | 9.3    |        |              | 0      |      |              | 0.6    |      |          |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Α.         |       |       | Α.     |        |              |        |      |              | 0.0    |      |          |
| TOW LOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>r</i> \ |       |       | Α.     |        |              |        |      |              |        |      |          |
| Name and the state of the state | -1         | ND    | NDT   | NDD    |        | MDL 4        | ODI    | ODT  | ODD          |        |      |          |
| Minor Lane/Major Mvn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt         | NBL   | NBT   |        | EBLn1V |              | SBL    | SBT  | SBR          |        |      |          |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 1529  | -     | -      |        | 864          | 1521   | -    | -            |        |      |          |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -     | -     | -      | 0.063  |              |        | -    | -            |        |      |          |
| HCM Control Delay (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )          | 0     | -     | -      | 9.8    | 9.3          | 7.4    | 0    | -            |        |      |          |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Α     | -     | -      | Α      | Α            | Α      | Α    | -            |        |      |          |
| HCM 95th %tile Q(veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1)         | 0     | -     | -      | 0.2    | 0.1          | 0      | -    | -            |        |      |          |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | <del> </del> | 1    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|--------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT          | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>∱</b> β |      | ሻ        | <b>ተ</b> ኈ   |      |
| Traffic Volume (veh/h)       | 10   | 10       | 10   | 10   | 10       | 10   | 5    | 790        | 10   | 10       | 530          | 5    |
| Future Volume (veh/h)        | 10   | 10       | 10   | 10   | 10       | 10   | 5    | 790        | 10   | 10       | 530          | 5    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0            | 0    |
| Ped-Bike Adj(A_pbT)          | 0.98 |          | 1.00 | 0.98 |          | 1.00 | 1.00 |            | 0.97 | 1.00     |              | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No           |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856         | 1856 |
| Adj Flow Rate, veh/h         | 11   | 11       | 0    | 11   | 11       | 0    | 6    | 878        | 11   | 11       | 589          | 6    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90         | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3            | 3    |
| Cap, veh/h                   | 287  | 61       | 0    | 287  | 61       | 0    | 674  | 1953       | 24   | 549      | 1959         | 20   |
| Arrive On Green              | 0.08 | 0.08     | 0.00 | 0.08 | 0.08     | 0.00 | 0.55 | 0.55       | 0.55 | 0.55     | 0.55         | 0.55 |
| Sat Flow, veh/h              | 804  | 804      | 0    | 804  | 804      | 0    | 815  | 3564       | 45   | 620      | 3575         | 36   |
| Grp Volume(v), veh/h         | 22   | 0        | 0    | 22   | 0        | 0    | 6    | 434        | 455  | 11       | 290          | 305  |
| Grp Sat Flow(s),veh/h/ln     | 1607 | 0        | 0    | 1607 | 0        | 0    | 815  | 1763       | 1846 | 620      | 1763         | 1849 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.1  | 3.5        | 3.5  | 0.3      | 2.1          | 2.1  |
| Cycle Q Clear(g_c), s        | 0.3  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 2.2  | 3.5        | 3.5  | 3.8      | 2.1          | 2.1  |
| Prop In Lane                 | 0.50 | _        | 0.00 | 0.50 | _        | 0.00 | 1.00 |            | 0.02 | 1.00     |              | 0.02 |
| Lane Grp Cap(c), veh/h       | 348  | 0        | 0    | 348  | 0        | 0    | 674  | 966        | 1012 | 549      | 966          | 1013 |
| V/C Ratio(X)                 | 0.06 | 0.00     | 0.00 | 0.06 | 0.00     | 0.00 | 0.01 | 0.45       | 0.45 | 0.02     | 0.30         | 0.30 |
| Avail Cap(c_a), veh/h        | 1411 | 0        | 0    | 1411 | 0        | 0    | 1010 | 1693       | 1773 | 804      | 1693         | 1775 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00         | 1.00 |
| Uniform Delay (d), s/veh     | 10.3 | 0.0      | 0.0  | 10.3 | 0.0      | 0.0  | 3.5  | 3.2        | 3.2  | 4.4      | 2.9          | 2.9  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.5        | 0.4  | 0.0      | 0.2          | 0.2  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0          | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.0  | 0.2        | 0.2  | 0.0      | 0.1          | 0.1  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 10.4 | 0.0      | 0.0  | 2.5  | 2.7        | 2.7  | 4.4      | 2.0          | 2.0  |
| LnGrp Delay(d),s/veh         | 10.4 | 0.0      | 0.0  | 10.4 | 0.0      | 0.0  | 3.5  | 3.7        | 3.7  | 4.4      | 3.2          | 3.2  |
| LnGrp LOS                    | В    | A        | A    | В    | A        | A    | A    | A          | A    | A        | A            | A    |
| Approach Vol, veh/h          |      | 22       |      |      | 22       |      |      | 895        |      |          | 606          |      |
| Approach Delay, s/veh        |      | 10.4     |      |      | 10.4     |      |      | 3.7        |      |          | 3.2          |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | А          |      |          | А            |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |              |      |
| Phs Duration (G+Y+Rc), s     |      | 18.1     |      | 5.8  |          | 18.1 |      | 5.8        |      |          |              |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |              |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0       |      |          |              |      |
| Max Q Clear Time (g_c+l1), s |      | 5.5      |      | 2.3  |          | 5.8  |      | 2.3        |      |          |              |      |
| Green Ext Time (p_c), s      |      | 7.4      |      | 0.0  |          | 4.8  |      | 0.0        |      |          |              |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |              |      |
| HCM 6th Ctrl Delay           |      |          | 3.7  |      |          |      |      |            |      |          |              |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |              |      |

| Intersection           |        |          |            |          |        |      |
|------------------------|--------|----------|------------|----------|--------|------|
| Int Delay, s/veh       | 3.7    |          |            |          |        |      |
| Movement               | WBL    | WBR      | NBT        | NBR      | SBL    | SBT  |
| Lane Configurations    | W      |          | <b>f</b> ə |          |        | 4    |
| Traffic Vol, veh/h     | 5      | 20       | 30         | 5        | 20     | 20   |
| Future Vol, veh/h      | 5      | 20       | 30         | 5        | 20     | 20   |
| Conflicting Peds, #/hr | 0      | 5        | 0          | 5        | 5      | 0    |
| Sign Control           | Stop   | Stop     | Free       | Free     | Free   | Free |
| RT Channelized         | - Clop | None     | -          | None     | -      | None |
| Storage Length         | 0      | -        | _          | -        | _      | -    |
| Veh in Median Storage  |        |          | 0          | _        | _      | 0    |
| Grade, %               | 0      | _        | 0          | _        | _      | 0    |
|                        | 90     |          |            |          |        |      |
| Peak Hour Factor       |        | 90       | 90         | 90       | 90     | 90   |
| Heavy Vehicles, %      | 3      | 3        | 3          | 3        | 3      | 3    |
| Mvmt Flow              | 6      | 22       | 33         | 6        | 22     | 22   |
|                        |        |          |            |          |        |      |
| Major/Minor            | Minor1 | N        | //ajor1    |          | Major2 |      |
| Conflicting Flow All   | 107    | 46       | 0          | 0        | 44     | 0    |
| Stage 1                | 41     | -        | -          | _        |        | -    |
| Stage 2                | 66     | <u>-</u> | _          | <u>-</u> | _      | _    |
| Critical Hdwy          | 6.43   | 6.23     | _          | _        | 4.13   | _    |
| Critical Hdwy Stg 1    | 5.43   | 0.23     | _          | _        | 4.13   |      |
|                        | 5.43   |          | -          | _        | _      | -    |
| Critical Hdwy Stg 2    |        | -        | -          | -        | 0.007  | -    |
| Follow-up Hdwy         | 3.527  |          | -          | -        | 2.227  | -    |
| Pot Cap-1 Maneuver     | 888    | 1021     | -          | -        | 1558   | -    |
| Stage 1                | 979    | -        | -          | -        | -      | -    |
| Stage 2                | 954    | -        | -          | -        | -      | -    |
| Platoon blocked, %     |        |          | -          | -        |        | -    |
| Mov Cap-1 Maneuver     | 871    | 1011     | -          | -        | 1551   | -    |
| Mov Cap-2 Maneuver     | 871    | -        | -          | -        | -      | -    |
| Stage 1                | 974    | -        | -          | -        | -      | -    |
| Stage 2                | 941    | -        | -          | -        | -      | -    |
|                        |        |          |            |          |        |      |
| Annroach               | MD     |          | ND         |          | CD     |      |
| Approach               | WB     |          | NB         |          | SB     |      |
| HCM Control Delay, s   | 8.8    |          | 0          |          | 3.7    |      |
| HCM LOS                | Α      |          |            |          |        |      |
|                        |        |          |            |          |        |      |
| Minor Lane/Major Mvm   | nt     | NBT      | NRRV       | VBLn1    | SBL    | SBT  |
| Capacity (veh/h)       |        | -        | -          | 980      | 1551   | 051  |
| HCM Lane V/C Ratio     |        |          |            | 0.028    |        |      |
|                        |        | -        |            | 8.8      |        | -    |
| HCM Control Delay (s)  |        | -        | -          |          | 7.4    | 0    |
| HCM Lane LOS           | \      | -        | -          | A        | A      | Α    |
| HCM 95th %tile Q(veh   | )      | -        | -          | 0.1      | 0      | -    |

| Intersection                                                  |            |       |        |             |                 |          |
|---------------------------------------------------------------|------------|-------|--------|-------------|-----------------|----------|
| Int Delay, s/veh                                              | 3.5        |       |        |             |                 |          |
| Movement                                                      | EBL        | EBR   | NBL    | NBT         | SBT             | SBR      |
| Lane Configurations                                           | W          | LDIN  | NDL    | <u>ND1</u>  | - 1 <u>00</u> 1 | ODIN     |
| Traffic Vol, veh/h                                            | <b>T</b> 5 | 20    | 20     | <b>T</b> 30 | 20              | 10       |
| Future Vol, veh/h                                             | 5          | 20    | 20     | 30          | 20              | 10       |
| <u> </u>                                                      |            |       |        |             |                 |          |
| Conflicting Peds, #/hr                                        | 0          | 5     | 5      | 0           | 0               | 5        |
| Sign Control                                                  | Stop       | Stop  | Free   | Free        | Free            | Free     |
| RT Channelized                                                | -          | None  | -      | None        | -               | None     |
| Storage Length                                                | 0          | -     | -      | -           | -               | -        |
| Veh in Median Storage                                         |            | -     | -      | 0           | 0               | -        |
| Grade, %                                                      | 0          | -     | -      | 0           | 0               | -        |
| Peak Hour Factor                                              | 90         | 90    | 90     | 90          | 90              | 90       |
| Heavy Vehicles, %                                             | 3          | 3     | 3      | 3           | 3               | 3        |
| Mvmt Flow                                                     | 6          | 22    | 22     | 33          | 22              | 11       |
|                                                               |            |       |        |             |                 |          |
| Major/Minor                                                   | Minor2     |       | Major1 |             | /loior?         |          |
|                                                               |            |       |        |             | Major2          |          |
| Conflicting Flow All                                          | 110        | 38    | 38     | 0           | -               | 0        |
| Stage 1                                                       | 33         | -     | -      | -           | -               | -        |
| Stage 2                                                       | 77         | -     | -      | -           | -               | -        |
| Critical Hdwy                                                 | 6.43       | 6.23  | 4.13   | -           | -               | -        |
| Critical Hdwy Stg 1                                           | 5.43       | -     | -      | -           | -               | -        |
| Critical Hdwy Stg 2                                           | 5.43       | -     | -      | -           | -               | -        |
| Follow-up Hdwy                                                | 3.527      | 3.327 | 2.227  | -           | -               | -        |
| Pot Cap-1 Maneuver                                            | 885        | 1031  | 1566   | -           | -               | -        |
| Stage 1                                                       | 987        | -     | -      | -           | -               | -        |
| Stage 2                                                       | 943        | -     | -      | -           | -               | -        |
| Platoon blocked, %                                            |            |       |        | -           | -               | -        |
| Mov Cap-1 Maneuver                                            | 864        | 1021  | 1559   | -           | -               | -        |
| Mov Cap-2 Maneuver                                            | 864        | -     | -      | -           | -               | -        |
| Stage 1                                                       | 968        | _     | -      | -           | -               | -        |
| Stage 2                                                       | 938        | _     | _      | _           | _               | _        |
| - 13-3 -                                                      | 300        |       |        |             |                 |          |
|                                                               |            |       |        |             |                 |          |
| Approach                                                      | EB         |       | NB     |             | SB              |          |
| HCM Control Delay, s                                          | 8.8        |       | 2.9    |             | 0               |          |
| HCM LOS                                                       | Α          |       |        |             |                 |          |
|                                                               |            |       |        |             |                 |          |
| Minor Lane/Major Mvm                                          | nt         | NBL   | NBT    | EBLn1       | SBT             | SBR      |
| Capacity (veh/h)                                              |            | 1559  |        | 985         | 05,             | <u> </u> |
| HCM Lane V/C Ratio                                            |            | 0.014 | -      | 0.028       | -               | _        |
| HOW LAND VIO NAME                                             |            | 7.3   | -      | 8.8         | -               | -        |
| HCM Control Dolay (a)                                         |            |       | _      | 0.0         | -               | -        |
| HCM Long LOS                                                  |            |       |        |             |                 |          |
| HCM Control Delay (s)<br>HCM Lane LOS<br>HCM 95th %tile Q(veh |            | A 0   | -      | A<br>0.1    | -               | -        |

| Intersection           |        |       |      |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.6    |       |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |      |        | 4    |       |        | 4     |       |        | 44    |       |
| Traffic Vol, veh/h     | 0      | 5     | 5    | 5      | 5    | 5     | 5      | 30    | 5     | 5      | 40    | 0     |
| Future Vol, veh/h      | 0      | 5     | 5    | 5      | 5    | 5     | 5      | 30    | 5     | 5      | 40    | 0     |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | -      | -     | -    | -      | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | e, # - | 0     | -    | -      | 0    | -     | _      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3    | 3      | 3    | 3     | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 0      | 6     | 6    | 6      | 6    | 6     | 6      | 33    | 6     | 6      | 44    | 0     |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       | ľ    | Major2 |      | l     | Minor1 |       | l     | Minor2 |       |       |
| Conflicting Flow All   | 12     | 0     | 0    | 12     | 0    | 0     | 52     | 33    | 9     | 50     | 33    | 9     |
| Stage 1                | -      | -     | -    | -      | -    | -     | 9      | 9     | -     | 21     | 21    | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 43     | 24    | -     | 29     | 12    | -     |
| Critical Hdwy          | 4.13   | -     | -    | 4.13   | -    | -     | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227  | -     | -    | 2.227  | -    | -     | 3.527  | 4.027 |       | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1600   | -     | -    | 1600   | -    | -     | 944    | 858   | 1070  | 947    | 858   | 1070  |
| Stage 1                | -      | -     | -    | -      | -    | -     | 1010   | 886   | -     | 995    | 876   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 969    | 873   | -     | 985    | 884   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1600   | -     | -    | 1600   | -    | -     | 903    | 855   | 1070  | 911    | 855   | 1070  |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 903    | 855   | -     | 911    | 855   | -     |
| Stage 1                | -      | -     | -    | -      | -    | -     | 1010   | 886   | -     | 995    | 872   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 916    | 870   | -     | 943    | 884   | -     |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0      |       |      | 2.4    |      |       | 9.3    |       |       | 9.4    |       |       |
| HCM LOS                |        |       |      |        |      |       | Α      |       |       | Α      |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR:  |       |        |       |       |
| Capacity (veh/h)       |        | 883   | 1600 | -      | -    | 1600  | -      | -     | 861   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.05  | -    | -      | -    | 0.003 | -      | -     | 0.058 |        |       |       |
| HCM Control Delay (s)  |        | 9.3   | 0    | -      | -    | 7.3   | 0      | -     | 9.4   |        |       |       |
| HCM Lane LOS           |        | Α     | Α    | -      | -    | Α     | Α      | -     | Α     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 0.2   | 0    | -      | -    | 0     | -      | -     | 0.2   |        |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | 4    | 1    | <b>†</b>   | ~    | <b>/</b>   | ţ          | 4    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|------------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL        | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | 7    | <b>ተ</b> ኈ |      | 7          | <b>∱</b> β |      |
| Traffic Volume (veh/h)       | 20   | 30       | 30   | 20   | 30       | 30   | 30   | 750        | 5    | 20         | 520        | 10   |
| Future Volume (veh/h)        | 20   | 30       | 30   | 20   | 30       | 30   | 30   | 750        | 5    | 20         | 520        | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0          | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 0.99 |          | 0.99 | 1.00 |            | 0.97 | 1.00       |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00       | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |            | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856       | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 22   | 33       | 3    | 22   | 33       | 3    | 33   | 833        | 5    | 22         | 578        | 11   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90       | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3          | 3          | 3    |
| Cap, veh/h                   | 261  | 139      | 11   | 261  | 139      | 11   | 627  | 1859       | 11   | 523        | 1831       | 35   |
| Arrive On Green              | 0.13 | 0.13     | 0.13 | 0.13 | 0.13     | 0.13 | 0.52 | 0.52       | 0.52 | 0.52       | 0.52       | 0.52 |
| Sat Flow, veh/h              | 512  | 1061     | 86   | 512  | 1061     | 86   | 817  | 3592       | 22   | 649        | 3538       | 67   |
| Grp Volume(v), veh/h         | 58   | 0        | 0    | 58   | 0        | 0    | 33   | 409        | 429  | 22         | 288        | 301  |
| Grp Sat Flow(s),veh/h/ln     | 1658 | 0        | 0    | 1658 | 0        | 0    | 817  | 1763       | 1851 | 649        | 1763       | 1843 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.6  | 3.7        | 3.7  | 0.6        | 2.4        | 2.4  |
| Cycle Q Clear(g_c), s        | 0.7  | 0.0      | 0.0  | 0.7  | 0.0      | 0.0  | 3.0  | 3.7        | 3.7  | 4.3        | 2.4        | 2.4  |
| Prop In Lane                 | 0.38 |          | 0.05 | 0.38 |          | 0.05 | 1.00 |            | 0.01 | 1.00       |            | 0.04 |
| Lane Grp Cap(c), veh/h       | 411  | 0        | 0    | 411  | 0        | 0    | 627  | 912        | 958  | 523        | 912        | 954  |
| V/C Ratio(X)                 | 0.14 | 0.00     | 0.00 | 0.14 | 0.00     | 0.00 | 0.05 | 0.45       | 0.45 | 0.04       | 0.32       | 0.32 |
| Avail Cap(c_a), veh/h        | 1332 | 0        | 0    | 1332 | 0        | 0    | 939  | 1584       | 1663 | 770        | 1584       | 1656 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00       | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00       | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 10.0 | 0.0      | 0.0  | 10.0 | 0.0      | 0.0  | 4.4  | 3.9        | 3.9  | 5.2        | 3.6        | 3.6  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.0  | 0.5        | 0.5  | 0.0        | 0.3        | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0        | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.2  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 0.0  | 0.4        | 0.4  | 0.0        | 0.3        | 0.3  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 40.0 | 0.0      | 0.0  | 4.5  | 4.4        | 4.0  | <b>-</b> 0 | 2.0        | 2.0  |
| LnGrp Delay(d),s/veh         | 10.0 | 0.0      | 0.0  | 10.0 | 0.0      | 0.0  | 4.5  | 4.4        | 4.3  | 5.3        | 3.8        | 3.8  |
| LnGrp LOS                    | В    | A        | A    | В    | A        | A    | A    | A 074      | A    | A          | A 244      | A    |
| Approach Vol, veh/h          |      | 58       |      |      | 58       |      |      | 871        |      |            | 611        |      |
| Approach Delay, s/veh        |      | 10.0     |      |      | 10.0     |      |      | 4.4        |      |            | 3.9        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | А          |      |            | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |            |            |      |
| Phs Duration (G+Y+Rc), s     |      | 18.2     |      | 7.3  |          | 18.2 |      | 7.3        |      |            |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |            |            |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0       |      |            |            |      |
| Max Q Clear Time (g_c+l1), s |      | 5.7      |      | 2.7  |          | 6.3  |      | 2.7        |      |            |            |      |
| Green Ext Time (p_c), s      |      | 7.1      |      | 0.1  |          | 4.8  |      | 0.1        |      |            |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |            |            |      |
| HCM 6th Ctrl Delay           |      |          | 4.6  |      |          |      |      |            |      |            |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |            |            |      |

| Intersection Delay, s/veh 7.3 |  |
|-------------------------------|--|
|                               |  |
| Intersection LOS A            |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 5              | 50   | 5    | 5    | 30   | 10   | 5    | 10   | 10   | 10   | 5    | 5    |  |
| Future Vol, veh/h       | 5              | 50   | 5    | 5    | 30   | 10   | 5    | 10   | 10   | 10   | 5    | 5    |  |
| Peak Hour Factor        | 0.90           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 3              | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |  |
| Mvmt Flow               | 6              | 56   | 6    | 6    | 33   | 11   | 6    | 11   | 11   | 11   | 6    | 6    |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB         |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | igh <b>N</b> B |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | : 1            |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 7.4            |      |      | 7.2  |      |      | 7.2  |      |      | 7.3  |      |      |  |
| HCM LOS                 | Α              |      |      | Α    |      |      | Α    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 20%   | 8%     | 11%   | 50%   |
| Vol Thru, %            | 40%   | 83%    | 67%   | 25%   |
| Vol Right, %           | 40%   | 8%     | 22%   | 25%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 25    | 60     | 45    | 20    |
| LT Vol                 | 5     | 5      | 5     | 10    |
| Through Vol            | 10    | 50     | 30    | 5     |
| RT Vol                 | 10    | 5      | 10    | 5     |
| Lane Flow Rate         | 28    | 67     | 50    | 22    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.031 | 0.075  | 0.055 | 0.025 |
| Departure Headway (Hd) | 3.968 | 4.043  | 3.978 | 4.123 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 895   | 885    | 898   | 861   |
| Service Time           | 2.025 | 2.074  | 2.013 | 2.181 |
| HCM Lane V/C Ratio     | 0.031 | 0.076  | 0.056 | 0.026 |
| HCM Control Delay      | 7.2   | 7.4    | 7.2   | 7.3   |
| HCM Lane LOS           | Α     | Α      | Α     | Α     |
| HCM 95th-tile Q        | 0.1   | 0.2    | 0.2   | 0.1   |

| Intersection           |        |              |         |      |        |       |
|------------------------|--------|--------------|---------|------|--------|-------|
| Int Delay, s/veh       | 3.2    |              |         |      |        |       |
| Movement               | EBL    | EBT          | WBT     | WBR  | SBL    | SBR   |
|                        | LDL    |              |         | WDIX | ₩.     | אומט  |
| Lane Configurations    | Λ      | <del>વ</del> | ĵ.      | 20   |        | ٥     |
| Traffic Vol, veh/h     | 0      | 0            | 5       | 30   | 20     | 0     |
| Future Vol, veh/h      | 0      | 0            | 5       | 30   | 20     | 0     |
| Conflicting Peds, #/hr | _ 0    | _ 0          | _ 0     | _ 0  | 0      | 0     |
| Sign Control           | Free   | Free         | Free    | Free | Stop   | Stop  |
| RT Channelized         | -      | None         | -       | None | -      | None  |
| Storage Length         | -      | -            | -       | -    | 0      | -     |
| Veh in Median Storage  | e,# -  | 0            | 0       | -    | 0      | -     |
| Grade, %               | -      | 0            | 0       | -    | 0      | -     |
| Peak Hour Factor       | 90     | 90           | 90      | 90   | 90     | 90    |
| Heavy Vehicles, %      | 3      | 3            | 3       | 3    | 3      | 3     |
| Mvmt Flow              | 0      | 0            | 6       | 33   | 22     | 0     |
|                        |        |              |         |      |        |       |
|                        |        |              |         |      |        |       |
|                        | Major1 |              | //ajor2 |      | Minor2 |       |
| Conflicting Flow All   | 39     | 0            | -       | 0    | 23     | 23    |
| Stage 1                | -      | -            | -       | -    | 23     | -     |
| Stage 2                | -      | -            | -       | -    | 0      | -     |
| Critical Hdwy          | 4.13   | -            | -       | -    | 6.43   | 6.23  |
| Critical Hdwy Stg 1    | -      | -            | -       | -    | 5.43   | -     |
| Critical Hdwy Stg 2    | _      | -            | _       | -    | 5.43   | _     |
| Follow-up Hdwy         | 2.227  | _            | -       | _    | 3.527  | 3.327 |
| Pot Cap-1 Maneuver     | 1565   | _            | _       | _    | 991    | 1051  |
| Stage 1                | -      | _            | _       | _    | 997    | -     |
| Stage 2                | _      | _            | _       | _    | -      | _     |
| Platoon blocked, %     | _      | _            | _       | _    | _      | _     |
|                        | 1565   | <del>-</del> | -       |      | 001    | 1051  |
| Mov Cap-1 Maneuver     | 1565   | -            | -       | -    | 991    | 1051  |
| Mov Cap-2 Maneuver     | -      | -            | -       | -    | 991    | -     |
| Stage 1                | -      | -            | -       | -    | 997    | -     |
| Stage 2                | -      | -            | -       | -    | -      | -     |
|                        |        |              |         |      |        |       |
| Approach               | EB     |              | WB      |      | SB     |       |
| HCM Control Delay, s   | 0      |              | 0       |      | 8.7    |       |
| HCM LOS                | U      |              | U       |      | Α      |       |
| TICIVI LOS             |        |              |         |      | Α      |       |
|                        |        |              |         |      |        |       |
| Minor Lane/Major Mvn   | nt     | EBL          | EBT     | WBT  | WBR:   | SBLn1 |
| Capacity (veh/h)       |        | 1565         | _       | -    | _      | 991   |
| HCM Lane V/C Ratio     |        | -            | _       | _    | _      | 0.022 |
| HCM Control Delay (s)  |        | 0            | _       | _    | _      | 8.7   |
| HCM Lane LOS           |        | A            | _       | _    | _      | A     |
| HCM 95th %tile Q(veh   | 1      | 0            |         | _    |        | 0.1   |
| HOW JOHN /OHIE Q(VEH   | 1      | U            | _       |      | _      | U. I  |

| Intersection           |        |       |      |        |        |        |        |      |          |             |      |      |
|------------------------|--------|-------|------|--------|--------|--------|--------|------|----------|-------------|------|------|
| Int Delay, s/veh       | 1      |       |      |        |        |        |        |      |          |             |      |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT    | WBR    | NBL    | NBT  | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations    |        | 4     |      |        | 4      |        | *      | ħβ   |          | ሻ           | ħβ   |      |
| Traffic Vol, veh/h     | 5      | 10    | 5    | 5      | 5      | 5      | 20     | 780  | 5        | 5           | 540  | 5    |
| Future Vol, veh/h      | 5      | 10    | 5    | 5      | 5      | 5      | 20     | 780  | 5        | 5           | 540  | 5    |
| Conflicting Peds, #/hr | 5      | 0     | 5    | 5      | 0      | 5      | 10     | 0    | 5        | 10          | 0    | 5    |
| Sign Control           | Stop   | Stop  | Stop | Stop   | Stop   | Stop   | Free   | Free | Free     | Free        | Free | Free |
| RT Channelized         | -      | -     | None | -      | -      | None   | -      | -    | None     | -           | -    | None |
| Storage Length         | -      | -     | -    | -      | -      | -      | 70     | -    | -        | 75          | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -    | -      | 0      | -      | -      | 0    | -        | -           | 0    | -    |
| Grade, %               | -      | 0     | -    | -      | 0      | -      | -      | 0    | -        | -           | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90     | 90     | 90     | 90   | 90       | 90          | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3    | 3      | 3      | 3      | 3      | 3    | 3        | 3           | 3    | 3    |
| Mvmt Flow              | 6      | 11    | 6    | 6      | 6      | 6      | 22     | 867  | 6        | 6           | 600  | 6    |
|                        |        |       |      |        |        |        |        |      |          |             |      |      |
| Major/Minor N          | Minor2 |       | N    | Minor1 |        |        | Major1 |      | N        | /lajor2     |      |      |
| Conflicting Flow All   | 1111   | 1552  | 318  | 1247   | 1552   | 452    | 616    | 0    | 0        | 883         | 0    | 0    |
| Stage 1                | 625    | 625   | -    | 924    | 924    | -      | -      | -    | -        | -           | -    | -    |
| Stage 2                | 486    | 927   | _    | 323    | 628    | _      | _      | _    | _        | _           | _    | _    |
| Critical Hdwy          | 7.56   | 6.56  | 6.96 | 7.56   | 6.56   | 6.96   | 4.16   | -    | -        | 4.16        | -    | -    |
| Critical Hdwy Stg 1    | 6.56   | 5.56  | -    | 6.56   | 5.56   | -      | -      | _    | _        | -           | _    | _    |
| Critical Hdwy Stg 2    | 6.56   | 5.56  | -    | 6.56   | 5.56   | -      | -      | -    | -        | _           | -    | -    |
| Follow-up Hdwy         | 3.53   | 4.03  | 3.33 | 3.53   | 4.03   | 3.33   | 2.23   | -    | -        | 2.23        | -    | -    |
| Pot Cap-1 Maneuver     | 162    | 111   | 675  | 129    | 111    | 552    | 953    | -    | -        | 756         | -    | -    |
| Stage 1                | 437    | 473   | -    | 288    | 344    | -      | -      | -    | -        | -           | -    | -    |
| Stage 2                | 529    | 343   | -    | 660    | 472    | -      | -      | -    | -        | -           | -    | -    |
| Platoon blocked, %     |        |       |      |        |        |        |        | -    | -        |             | -    | -    |
| Mov Cap-1 Maneuver     | 148    | 105   | 665  | 113    | 105    | 544    | 944    | -    | -        | 749         | -    | -    |
| Mov Cap-2 Maneuver     | 148    | 105   | -    | 113    | 105    | -      | -      | -    | -        | -           | -    | -    |
| Stage 1                | 423    | 464   | -    | 278    | 333    | -      | -      | -    | -        | -           | -    | -    |
| Stage 2                | 500    | 332   | -    | 631    | 464    | -      | -      | -    | -        | -           | -    | -    |
|                        |        |       |      |        |        |        |        |      |          |             |      |      |
| Approach               | EB     |       |      | WB     |        |        | NB     |      |          | SB          |      |      |
| HCM Control Delay, s   | 34     |       |      | 32.4   |        |        | 0.2    |      |          | 0.1         |      |      |
| HCM LOS                | D      |       |      | D      |        |        | 7.2    |      |          | <b>J</b> ., |      |      |
|                        |        |       |      |        |        |        |        |      |          |             |      |      |
| Minor Lane/Major Mvm   | ıt     | NBL   | NBT  | NBR    | EBLn1V | VBI n1 | SBL    | SBT  | SBR      |             |      |      |
| Capacity (veh/h)       |        | 944   | -    |        | 146    | 148    | 749    |      |          |             |      |      |
| HCM Lane V/C Ratio     |        | 0.024 | _    | _      |        | 0.113  |        | _    | _        |             |      |      |
| HCM Control Delay (s)  |        | 8.9   | _    | _      | 34     | 32.4   | 9.8    | _    | _        |             |      |      |
| HCM Lane LOS           |        | Α     | _    | _      | D      | D D    | Α      | _    | <u>-</u> |             |      |      |
| HCM 95th %tile Q(veh)  |        | 0.1   | _    | _      | 0.5    | 0.4    | 0      | _    | _        |             |      |      |
|                        |        | J. 1  |      |        | 0.0    | J.7    | U      |      |          |             |      |      |

| Interception                  |        |       |       |        |        |       |        |      |      |        |      |      |
|-------------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Intersection Int Delay, s/veh | 6.3    |       |       |        |        |       |        |      |      |        |      |      |
| •                             |        |       |       |        |        |       |        |      |      |        |      |      |
| Movement                      | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations           |        | 4     |       |        | 4      |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h            | 5      | 10    | 5     | 5      | 20     | 5     | 5      | 10   | 5    | 5      | 5    | 5    |
| Future Vol, veh/h             | 5      | 10    | 5     | 5      | 20     | 5     | 5      | 10   | 5    | 5      | 5    | 5    |
| Conflicting Peds, #/hr        | 5      | 0     | 0     | 0      | 0      | 5     | 5      | 0    | 5    | 5      | 0    | 5    |
| Sign Control                  | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized                | -      | -     | None  | -      | -      | None  | -      | -    | None | -      | -    | None |
| Storage Length                | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage         | e,# -  | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %                      | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor              | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %             | 3      | 3     | 3     | 3      | 3      | 3     | 3      | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                     | 6      | 11    | 6     | 6      | 22     | 6     | 6      | 11   | 6    | 6      | 6    | 6    |
|                               |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor                   | Minor2 |       |       | Minor1 |        |       | Major1 |      |      | Major2 |      |      |
| Conflicting Flow All          | 71     | 60    | 14    | 61     | 60     | 24    | 17     | 0    | 0    | 22     | 0    | 0    |
| Stage 1                       | 26     | 26    | -     | 31     | 31     |       | -      | -    | -    |        | -    | -    |
| Stage 2                       | 45     | 34    | -     | 30     | 29     | -     | _      | -    | -    | -      | -    | -    |
| Critical Hdwy                 | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23  | 4.13   | -    | -    | 4.13   | _    | -    |
| Critical Hdwy Stg 1           | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | _    | -      | _    | _    |
| Critical Hdwy Stg 2           | 6.13   | 5.53  | _     | 6.13   | 5.53   | -     | _      | _    | _    | -      | _    | -    |
| Follow-up Hdwy                | 3.527  | 4.027 | 3.327 | 3.527  | 4.027  | 3.327 | 2.227  | -    | _    | 2.227  | -    | -    |
| Pot Cap-1 Maneuver            | 918    | 829   | 1063  | 932    | 829    | 1050  | 1594   | -    | -    | 1587   | -    | -    |
| Stage 1                       | 989    | 872   | -     | 983    | 867    | -     | -      | -    | _    | -      | -    | -    |
| Stage 2                       | 966    | 865   | -     | 984    | 869    | -     | -      | -    | -    | _      | _    | -    |
| Platoon blocked, %            |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver            | 880    | 814   | 1058  | 908    | 814    | 1040  | 1586   | -    | -    | 1579   | -    | -    |
| Mov Cap-2 Maneuver            | 880    | 814   | -     | 908    | 814    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                       | 980    | 864   | -     | 974    | 859    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                       | 928    | 857   | -     | 962    | 861    | -     | -      | -    | -    | -      | -    | -    |
|                               |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach                      | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
|                               |        |       |       |        |        |       | 1.8    |      |      | 2.4    |      |      |
| HCM LOS                       | 9.2    |       |       | 9.4    |        |       | 1.0    |      |      | 2.4    |      |      |
| HCM LOS                       | A      |       |       | А      |        |       |        |      |      |        |      |      |
|                               |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvn          | nt     | NBL   | NBT   | NBR    | EBLn1\ |       | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)              |        | 1586  | -     | -      | 881    | 860   | 1579   | -    | -    |        |      |      |
| HCM Lane V/C Ratio            |        | 0.004 | -     | -      |        | 0.039 |        | -    | -    |        |      |      |
| HCM Control Delay (s)         | )      | 7.3   | 0     | -      | 9.2    | 9.4   | 7.3    | 0    | -    |        |      |      |
| HCM Lane LOS                  |        |       |       |        |        | Λ.    | Λ      | ۸    |      |        |      |      |
| HCM 95th %tile Q(veh          |        | Α     | Α     | -      | 0.1    | 0.1   | A<br>0 | Α    | -    |        |      |      |

| Intersection                           |           |           |          |           |           |        |           |           |        |           |           |        |
|----------------------------------------|-----------|-----------|----------|-----------|-----------|--------|-----------|-----------|--------|-----------|-----------|--------|
| Int Delay, s/veh                       | 6.3       |           |          |           |           |        |           |           |        |           |           |        |
|                                        |           | EDT       | EDD      | WDI       | WDT       | WDD    | NDI       | NDT       | NDD    | CDI       | CDT       | CDD    |
| Movement                               | EBL       | EBT       | EBR      | WBL       | WBT       | WBR    | NBL       | NBT       | NBR    | SBL       | SBT       | SBR    |
| Lane Configurations                    | 40        | 4         | ٥        | _         | 4         | -      | ^         | ♣         | -      | _         | 4         | -      |
| Traffic Vol, veh/h                     | 10        | 5         | 0        | 5         | 20        | 5      | 0         | 20        | 5      | 5         | 20        | 5      |
| Future Vol, veh/h                      | 10        | 5         | 0        | 5         | 20        | 5      | 0         | 20        | 5      | 5<br>0    | 20        | 5      |
| Conflicting Peds, #/hr<br>Sign Control | Free      | Free      | Free     | Free      | 0<br>Free | Free   | Stop      | Stop      | Stop   | Stop      | Stop      | Stop   |
| RT Channelized                         | riee<br>- | riee<br>- | None     | riee<br>- | riee<br>- | None   | Stop<br>- | Slop<br>- | None   | Stop<br>- | Stop<br>- | None   |
| Storage Length                         | _         | _         | INUITE   | _         | _         | 110116 | _         | _         | 110116 | _         |           | INUITE |
| Veh in Median Storage                  |           | 0         | _        | _         | 0         | _      | _         | 0         | _      | _         | 0         | _      |
| Grade, %                               | -, π      | 0         | <u>-</u> | <u>-</u>  | 0         | _      | _         | 0         | _      | _         | 0         | _      |
| Peak Hour Factor                       | 90        | 90        | 90       | 90        | 90        | 90     | 90        | 90        | 90     | 90        | 90        | 90     |
| Heavy Vehicles, %                      | 3         | 3         | 3        | 3         | 3         | 3      | 3         | 3         | 3      | 3         | 3         | 3      |
| Mvmt Flow                              | 11        | 6         | 0        | 6         | 22        | 6      | 0         | 22        | 6      | 6         | 22        | 6      |
|                                        |           |           |          |           |           |        |           |           |        |           |           |        |
| Major/Minor N                          | Major1    |           | ı        | Major2    |           | ı      | Minor1    |           | ı      | Minor2    |           |        |
| Conflicting Flow All                   | 28        | 0         | 0        | 6         | 0         | 0      | 79        | 68        | 6      | 79        | 65        | 25     |
| Stage 1                                |           | -         | -        | -         | -         | -      | 28        | 28        | -      | 37        | 37        | -      |
| Stage 2                                | -         | _         | -        | -         | -         | -      | 51        | 40        | _      | 42        | 28        | _      |
| Critical Hdwy                          | 4.13      | -         | _        | 4.13      | _         | _      | 7.13      | 6.53      | 6.23   | 7.13      | 6.53      | 6.23   |
| Critical Hdwy Stg 1                    | -         | -         | -        | -         | -         | -      | 6.13      | 5.53      | -      | 6.13      | 5.53      | -      |
| Critical Hdwy Stg 2                    | -         | -         | -        | -         | -         | -      | 6.13      | 5.53      | -      | 6.13      | 5.53      | -      |
| Follow-up Hdwy                         | 2.227     | -         | -        | 2.227     | -         | -      | 3.527     | 4.027     | 3.327  | 3.527     | 4.027     | 3.327  |
| Pot Cap-1 Maneuver                     | 1579      | -         | -        | 1608      | -         | -      | 907       | 821       | 1074   | 907       | 824       | 1048   |
| Stage 1                                | -         | -         | -        | -         | -         | -      | 987       | 870       | -      | 976       | 862       | -      |
| Stage 2                                | -         | -         | -        | -         | -         | -      | 959       | 860       | -      | 970       | 870       | -      |
| Platoon blocked, %                     |           | -         | -        |           | -         | -      |           |           |        |           |           |        |
| Mov Cap-1 Maneuver                     | 1579      | -         | -        | 1608      | -         | -      | 876       | 812       | 1074   | 876       | 815       | 1048   |
| Mov Cap-2 Maneuver                     | -         | -         | -        | -         | -         | -      | 876       | 812       | -      | 876       | 815       | -      |
| Stage 1                                | -         | -         | -        | -         | -         | -      | 980       | 864       | -      | 969       | 859       | -      |
| Stage 2                                | -         | -         | -        | -         | -         | -      | 926       | 857       | -      | 934       | 864       | -      |
|                                        |           |           |          |           |           |        |           |           |        |           |           |        |
| Approach                               | EB        |           |          | WB        |           |        | NB        |           |        | SB        |           |        |
| HCM Control Delay, s                   | 4.9       |           |          | 1.2       |           |        | 9.4       |           |        | 9.4       |           |        |
| HCM LOS                                |           |           |          |           |           |        | Α         |           |        | Α         |           |        |
|                                        |           |           |          |           |           |        |           |           |        |           |           |        |
| Minor Lane/Major Mvm                   | nt N      | NBLn1     | EBL      | EBT       | EBR       | WBL    | WBT       | WBR       | SBLn1  |           |           |        |
| Capacity (veh/h)                       |           | 854       | 1579     | -         | -         | 1608   | -         | -         | 857    |           |           |        |
| HCM Lane V/C Ratio                     |           | 0.033     | 0.007    | -         |           | 0.003  | -         | -         | 0.039  |           |           |        |
| HCM Control Delay (s)                  |           | 9.4       | 7.3      | 0         | -         | 7.2    | 0         | -         | 9.4    |           |           |        |
| HCM Lane LOS                           |           | Α         | Α        | Α         | -         | Α      | Α         | -         | Α      |           |           |        |
| HCM 95th %tile Q(veh)                  |           | 0.1       | 0        | -         | -         | 0      | -         | -         | 0.1    |           |           |        |
|                                        |           |           |          |           |           |        |           |           |        |           |           |        |

|                              | •    | 4     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        |      |
|------------------------------|------|-------|----------|----------|----------|----------|------|
| Movement                     | WBL  | WBR   | NBT      | NBR      | SBL      | SBT      |      |
| Lane Configurations          | 44   | 7     | <b>^</b> | 7        | 7        | <b>^</b> |      |
| Traffic Volume (veh/h)       | 120  | 290   | 510      | 70       | 200      | 360      |      |
| Future Volume (veh/h)        | 120  | 290   | 510      | 70       | 200      | 360      |      |
| nitial Q (Qb), veh           | 0    | 0     | 0        | 0        | 0        | 0        |      |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00  |          | 0.97     | 1.00     |          |      |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Nork Zone On Approach        | No   |       | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856  | 1856     | 1856     | 1856     | 1856     |      |
| Adj Flow Rate, veh/h         | 133  | 120   | 567      | 24       | 222      | 400      |      |
| Peak Hour Factor             | 0.90 | 0.90  | 0.90     | 0.90     | 0.90     | 0.90     |      |
| Percent Heavy Veh, %         | 3    | 3     | 3        | 3        | 3        | 3        |      |
| Cap, veh/h                   | 533  | 507   | 1111     | 479      | 295      | 2112     |      |
| Arrive On Green              | 0.16 | 0.16  | 0.32     | 0.32     | 0.17     | 0.60     |      |
| Sat Flow, veh/h              | 3428 | 1572  | 3618     | 1520     | 1767     | 3618     |      |
| Grp Volume(v), veh/h         | 133  | 120   | 567      | 24       | 222      | 400      |      |
| Grp Sat Flow(s), veh/h/ln    | 1714 | 1572  | 1763     | 1520     | 1767     | 1763     |      |
| Q Serve(g_s), s              | 1.5  | 2.4   | 5.6      | 0.5      | 5.1      | 2.2      |      |
| Cycle Q Clear(g_c), s        | 1.5  | 2.4   | 5.6      | 0.5      | 5.1      | 2.2      |      |
| Prop In Lane                 | 1.00 | 1.00  | 0.0      | 1.00     | 1.00     | ۷.۷      |      |
| _ane Grp Cap(c), veh/h       | 533  | 507   | 1111     | 479      | 295      | 2112     |      |
| V/C Ratio(X)                 | 0.25 | 0.24  | 0.51     | 0.05     | 0.75     | 0.19     |      |
| Avail Cap(c_a), veh/h        | 2083 | 1219  | 2678     | 1154     | 1074     | 5274     |      |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Jpstream Filter(I)           | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Jniform Delay (d), s/veh     | 15.9 | 10.6  | 12.0     | 10.2     | 17.0     | 3.9      |      |
| ncr Delay (d2), s/veh        | 0.1  | 0.1   | 0.5      | 0.1      | 3.8      | 0.0      |      |
| nitial Q Delay(d3),s/veh     | 0.0  | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      |      |
| %ile BackOfQ(50%),veh/ln     | 0.5  | 0.0   | 1.7      | 0.0      | 2.1      | 0.0      |      |
| ` ,                          |      | 0.7   | 1.7      | 0.1      | Z. I     | 0.4      |      |
| Jnsig. Movement Delay, s/veh |      | 10.7  | 10 E     | 10.3     | 20.8     | 3.9      |      |
| _nGrp Delay(d),s/veh         | 16.0 |       | 12.5     |          |          |          |      |
| _nGrp LOS                    | В    | В     | B        | В        | С        | A        |      |
| Approach Vol, veh/h          | 253  |       | 591      |          |          | 622      |      |
| Approach Delay, s/veh        | 13.5 |       | 12.4     |          |          | 10.0     |      |
| Approach LOS                 | В    |       | В        |          |          | Α        |      |
| Fimer - Assigned Phs         |      | 2     |          |          | 5        | 6        | 8    |
| Phs Duration (G+Y+Rc), s     |      | 31.1  |          |          | 12.2     | 19.0     | 11.7 |
| Change Period (Y+Rc), s      |      | * 5.5 |          |          | 5.0      | 5.5      | 5.0  |
| Max Green Setting (Gmax), s  |      | * 64  |          |          | 26.0     | 32.5     | 26.0 |
| Max Q Clear Time (g_c+l1), s |      | 4.2   |          |          | 7.1      | 7.6      | 4.4  |
| Green Ext Time (p_c), s      |      | 3.0   |          |          | 0.6      | 5.4      | 0.4  |
| ntersection Summary          |      |       |          |          |          |          |      |
| HCM 6th Ctrl Delay           |      |       | 11.5     |          |          |          |      |
| HCM 6th LOS                  |      |       | В        |          |          |          |      |
| Vintas                       |      |       |          |          |          |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |                   |               |                |      |
|------------------------|--------|-------|-------------------|---------------|----------------|------|
| Int Delay, s/veh       | 0.2    |       |                   |               |                |      |
| Movement               | EBL    | EBR   | NBL               | NBT           | SBT            | SBR  |
| Lane Configurations    | LDL    | ZDK.  | NDL               | <b>↑</b> ↑    | <b>↑</b> ↑     | ODIN |
| Traffic Vol, veh/h     | 0      | 20    | 0                 | <b>TT</b> 580 | <b>T №</b> 460 | 20   |
| Future Vol, veh/h      | 0      | 20    | 0                 | 580           | 460            | 20   |
|                        | 0      | 0     | 0                 | 0 0           | 460            | 0    |
| Conflicting Peds, #/hr |        |       |                   |               |                |      |
| Sign Control           | Stop   | Stop  | Free              | Free          | Free           | Free |
| RT Channelized         | -      | None  | -                 | None          | -              | None |
| Storage Length         | -      | 0     | -                 | -             | -              | -    |
| Veh in Median Storage  |        | -     | -                 | 0             | 0              | -    |
| Grade, %               | 0      | -     | -                 | 0             | 0              | -    |
| Peak Hour Factor       | 90     | 90    | 90                | 90            | 90             | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3                 | 3             | 3              | 3    |
| Mvmt Flow              | 0      | 22    | 0                 | 644           | 511            | 22   |
|                        |        |       |                   |               |                |      |
| Major/Minor            | Minor2 | N     | /lajor1           | N             | /lajor2        |      |
| Conflicting Flow All   | -      | 267   |                   | 0             | -<br>-         | 0    |
| Stage 1                | _      | 201   | _                 | -             | _              | -    |
| Stage 2                | _      | _     | -                 | -             | _              | _    |
|                        | _      |       |                   |               |                |      |
| Critical Hdwy          | -      | 6.96  | -                 | -             | -              | -    |
| Critical Hdwy Stg 1    | -      | -     | -                 | -             | -              | -    |
| Critical Hdwy Stg 2    | -      | -     | -                 | -             | -              | -    |
| Follow-up Hdwy         | -      | 3.33  | -                 | -             | -              | -    |
| Pot Cap-1 Maneuver     | 0      | 728   | 0                 | -             | -              | -    |
| Stage 1                | 0      | -     | 0                 | -             | -              | -    |
| Stage 2                | 0      | -     | 0                 | -             | -              | -    |
| Platoon blocked, %     |        |       |                   | -             | -              | -    |
| Mov Cap-1 Maneuver     | -      | 728   | -                 | -             | -              | -    |
| Mov Cap-2 Maneuver     | -      | -     | -                 | -             | -              | -    |
| Stage 1                | -      | -     | -                 | -             | -              | -    |
| Stage 2                | _      | -     | -                 | -             | -              | -    |
| <b>J</b>               |        |       |                   |               |                |      |
| Approach               | EB     |       | NB                |               | SB             |      |
| HCM Control Delay, s   | 10.1   |       | 0                 |               | 0              |      |
| HCM LOS                |        |       | U                 |               | U              |      |
| HOIVI LUS              | В      |       |                   |               |                |      |
|                        |        |       |                   |               |                |      |
| Minor Lane/Major Mvm   | nt     | NBT E | EBL <sub>n1</sub> | SBT           | SBR            |      |
| Capacity (veh/h)       |        | -     | 728               | -             | -              |      |
| HCM Lane V/C Ratio     |        | -     | 0.031             | -             | -              |      |
| HCM Control Delay (s)  |        | -     | 10.1              | _             | -              |      |
| HCM Lane LOS           |        | _     | В                 | _             | _              |      |
| HCM 95th %tile Q(veh   | )      | -     | 0.1               | _             | _              |      |
| Jivi Jour Jourg Wille  | 1      |       | J. 1              |               |                |      |

| Intersection           |        |       |          |       |          |      |
|------------------------|--------|-------|----------|-------|----------|------|
| Int Delay, s/veh       | 3.1    |       |          |       |          |      |
| -                      |        | MDD   | NET      | NDD   | 051      | ODT  |
| Movement               | WBL    | WBR   | NBT      | NBR   | SBL      | SBT  |
| Lane Configurations    | Y      | _     | <b>^</b> | _     | _        | 4    |
| Traffic Vol, veh/h     | 5      | 5     | 10       | 5     | 5        | 10   |
| Future Vol, veh/h      | 5      | 5     | 10       | 5     | 5        | 10   |
| Conflicting Peds, #/hr | 0      | 0     | 0        | 5     | 0        | 0    |
| Sign Control           | Stop   | Stop  | Free     | Free  | Free     | Free |
| RT Channelized         | -      | None  | -        | None  | -        | None |
| Storage Length         | 0      | -     | -        | -     | -        | -    |
| Veh in Median Storage  | e, # 0 | -     | 0        | -     | -        | 0    |
| Grade, %               | 0      | -     | 0        | -     | -        | 0    |
| Peak Hour Factor       | 90     | 90    | 90       | 90    | 90       | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3        | 3     | 3        | 3    |
| Mvmt Flow              | 6      | 6     | 11       | 6     | 6        | 11   |
|                        |        |       |          |       |          |      |
|                        |        | _     |          | _     |          |      |
|                        | Minor1 |       | //ajor1  |       | Major2   |      |
| Conflicting Flow All   | 42     | 19    | 0        | 0     | 22       | 0    |
| Stage 1                | 19     | -     | -        | -     | -        | -    |
| Stage 2                | 23     | -     | -        | -     | -        | -    |
| Critical Hdwy          | 6.43   | 6.23  | -        | -     | 4.13     | -    |
| Critical Hdwy Stg 1    | 5.43   | -     | -        | -     | -        | -    |
| Critical Hdwy Stg 2    | 5.43   | -     | -        | -     | -        | -    |
| Follow-up Hdwy         | 3.527  | 3.327 | -        | -     | 2.227    | -    |
| Pot Cap-1 Maneuver     | 967    | 1056  | _        | -     | 1587     | -    |
| Stage 1                | 1001   | -     | _        | _     | -        | -    |
| Stage 2                | 997    | _     | _        | _     | _        | _    |
| Platoon blocked, %     | 301    |       | _        | _     |          | _    |
| Mov Cap-1 Maneuver     | 958    | 1051  | _        | _     | 1579     | _    |
| Mov Cap-1 Maneuver     | 958    | 1001  |          | _     | 1019     | -    |
| Stage 1                | 996    | -     | -        | -     | <u>-</u> | -    |
| _                      |        |       | -        | •     | -        | •    |
| Stage 2                | 993    | -     | -        | -     | -        | -    |
|                        |        |       |          |       |          |      |
| Approach               | WB     |       | NB       |       | SB       |      |
| HCM Control Delay, s   | 8.6    |       | 0        |       | 2.4      |      |
| HCM LOS                | A      |       |          |       |          |      |
| 3 = 0 0                |        |       |          |       |          |      |
|                        |        |       |          |       |          |      |
| Minor Lane/Major Mvn   | nt     | NBT   |          | VBLn1 | SBL      | SBT  |
| Capacity (veh/h)       |        | -     |          |       | 1579     | -    |
| HCM Lane V/C Ratio     |        | -     | -        | 0.011 | 0.004    | -    |
| HCM Control Delay (s)  |        | -     | -        | 8.6   | 7.3      | 0    |
| HCM Lane LOS           |        | -     | -        | Α     | Α        | Α    |
| HCM 95th %tile Q(veh   | )      | -     | -        | 0     | 0        | -    |
|                        | ,      |       |          |       |          |      |

|                              | •    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b> | ~    | <b>/</b> | <b>†</b>   | 1    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>^</b> |      | <b>ነ</b> | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 20   | 5        | 10   | 5    | 5        | 10   | 5    | 540      | 10   | 20       | 450        | 20   |
| Future Volume (veh/h)        | 20   | 5        | 10   | 5    | 5        | 10   | 5    | 540      | 10   | 20       | 450        | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.98 |          | 1.00 | 1.00 |          | 0.99 | 1.00 |          | 1.00 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 22   | 6        | 0    | 6    | 6        | 4    | 6    | 600      | 0    | 22       | 500        | 19   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3        | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 201  | 17       | 0    | 137  | 36       | 23   | 776  | 2659     | 0    | 724      | 2609       | 99   |
| Arrive On Green              | 0.05 | 0.05     | 0.00 | 0.05 | 0.05     | 0.05 | 0.75 | 0.75     | 0.00 | 0.75     | 0.75       | 0.75 |
| Sat Flow, veh/h              | 1170 | 319      | 0    | 578  | 663      | 413  | 874  | 3618     | 0    | 811      | 3459       | 131  |
| Grp Volume(v), veh/h         | 28   | 0        | 0    | 16   | 0        | 0    | 6    | 600      | 0    | 22       | 254        | 265  |
| Grp Sat Flow(s),veh/h/ln     | 1489 | 0        | 0    | 1654 | 0        | 0    | 874  | 1763     | 0    | 811      | 1763       | 1828 |
| Q Serve(g_s), s              | 0.4  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.1  | 2.4      | 0.0  | 0.4      | 2.0        | 2.0  |
| Cycle Q Clear(g_c), s        | 8.0  | 0.0      | 0.0  | 0.4  | 0.0      | 0.0  | 2.1  | 2.4      | 0.0  | 2.8      | 2.0        | 2.0  |
| Prop In Lane                 | 0.79 |          | 0.00 | 0.37 |          | 0.25 | 1.00 |          | 0.00 | 1.00     |            | 0.07 |
| Lane Grp Cap(c), veh/h       | 218  | 0        | 0    | 196  | 0        | 0    | 776  | 2659     | 0    | 724      | 1329       | 1378 |
| V/C Ratio(X)                 | 0.13 | 0.00     | 0.00 | 0.08 | 0.00     | 0.00 | 0.01 | 0.23     | 0.00 | 0.03     | 0.19       | 0.19 |
| Avail Cap(c_a), veh/h        | 614  | 0        | 0    | 630  | 0        | 0    | 776  | 2659     | 0    | 724      | 1329       | 1378 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 0.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 21.4 | 0.0      | 0.0  | 21.2 | 0.0      | 0.0  | 2.0  | 1.7      | 0.0  | 2.1      | 1.7        | 1.7  |
| Incr Delay (d2), s/veh       | 0.3  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 0.0  | 0.2      | 0.0  | 0.1      | 0.3        | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.3  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 0.0  | 0.1      | 0.0  | 0.0      | 0.1        | 0.1  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |            |      |
| LnGrp Delay(d),s/veh         | 21.7 | 0.0      | 0.0  | 21.4 | 0.0      | 0.0  | 2.0  | 1.9      | 0.0  | 2.2      | 2.0        | 2.0  |
| LnGrp LOS                    | С    | Α        | Α    | С    | Α        | Α    | Α    | Α        | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 28       |      |      | 16       |      |      | 606      |      |          | 541        |      |
| Approach Delay, s/veh        |      | 21.7     |      |      | 21.4     |      |      | 1.9      |      |          | 2.0        |      |
| Approach LOS                 |      | С        |      |      | С        |      |      | А        |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |      | 7.1  |          | 40.0 |      | 7.1      |      |          |            |      |
| Change Period (Y+Rc), s      |      | 4.5      |      | 4.5  |          | 4.5  |      | 4.5      |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 35.5     |      | 15.5 |          | 35.5 |      | 15.5     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 4.4      |      | 2.8  |          | 4.8  |      | 2.4      |      |          |            |      |
| Green Ext Time (p_c), s      |      | 4.2      |      | 0.1  |          | 3.2  |      | 0.0      |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 2.7  |      |          |      |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |          |      |          |            |      |

HCM 6th TWSC

| Intersection           |        |      |         |       |        |         |
|------------------------|--------|------|---------|-------|--------|---------|
| Int Delay, s/veh       | 2.9    |      |         |       |        |         |
| Movement               | WBL    | WBR  | NBT     | NBR   | SBL    | SBT     |
|                        |        | MOL  |         | NDK   | ODL    |         |
| Lane Configurations    | 7      | 0    | <u></u> |       | 10     | <u></u> |
| Traffic Vol, veh/h     | 0      | 0    | 5       | 5     | 10     | 5       |
| Future Vol, veh/h      | 0      | 0    | 5       | 5     | 10     | 5       |
| Conflicting Peds, #/hr | 0      | 0    | 0       | _ 0   | _ 5    | _ 0     |
| Sign Control           | Stop   | Stop | Free    | Free  | Free   | Free    |
| RT Channelized         | -      | None | -       | None  | -      | None    |
| Storage Length         | 0      | -    | -       | -     | -      | -       |
| Veh in Median Storage  | e, # 0 | -    | 0       | -     | -      | 0       |
| Grade, %               | 0      | -    | 0       | -     | -      | 0       |
| Peak Hour Factor       | 90     | 90   | 90      | 90    | 90     | 90      |
| Heavy Vehicles, %      | 3      | 3    | 3       | 3     | 3      | 3       |
| Mvmt Flow              | 0      | 0    | 6       | 6     | 11     | 6       |
|                        | •      | •    |         | •     | • •    |         |
|                        |        |      |         |       |        |         |
| Major/Minor            | Minor1 | N    | Major1  |       | Major2 |         |
| Conflicting Flow All   | 42     | 14   | 0       | 0     | 17     | 0       |
| Stage 1                | 14     | _    | -       | -     | -      | -       |
| Stage 2                | 28     | -    | -       | -     | -      | -       |
| Critical Hdwy          | 6.43   | 6.23 | _       | _     | 4.13   | _       |
| Critical Hdwy Stg 1    | 5.43   | -    | _       | _     | -      | _       |
| Critical Hdwy Stg 2    | 5.43   | _    | _       | _     | _      | _       |
| Follow-up Hdwy         | 3.527  |      | _       | _     | 2.227  | _       |
|                        |        |      |         |       |        |         |
| Pot Cap-1 Maneuver     | 967    | 1063 | -       | -     | 1594   | -       |
| Stage 1                | 1006   | -    | -       | -     | -      | -       |
| Stage 2                | 992    | -    | -       | -     | -      | -       |
| Platoon blocked, %     |        |      | -       | -     |        | -       |
| Mov Cap-1 Maneuver     | 955    | 1058 | -       | -     | 1586   | -       |
| Mov Cap-2 Maneuver     | 955    | -    | -       | -     | -      | -       |
| Stage 1                | 1001   | -    | _       | _     | -      | -       |
| Stage 2                | 985    | _    | _       | _     | _      | _       |
| Olago 2                | 000    |      |         |       |        |         |
|                        |        |      |         |       |        |         |
| Approach               | WB     |      | NB      |       | SB     |         |
| HCM Control Delay, s   | 0      |      | 0       |       | 4.9    |         |
| HCM LOS                | Α      |      |         |       |        |         |
|                        |        |      |         |       |        |         |
| NAT 1 /NA              |        | NET  | MDD     | VDI 4 | 051    | OPT     |
| Minor Lane/Major Mvn   | nt     | NBT  | NRKA    | VBLn1 | SBL    | SBT     |
| Capacity (veh/h)       |        | -    | -       | -     | 1586   | -       |
| HCM Lane V/C Ratio     |        | -    | -       | -     | 0.007  | -       |
| HCM Control Delay (s   | )      | -    | -       | 0     | 7.3    | -       |
| HCM Lane LOS           |        | -    | -       | Α     | Α      | -       |
| HCM 95th %tile Q(veh   | 1)     | -    | -       | -     | 0      | -       |
| , , , ( v o i          | ,      |      |         |       |        |         |

Synchro 11 Report Fehr & Peers

| 10: Wildway/i dikt/tve       |      | ant 7 t  |      |      |      |      |      |          |      |      |      |          |
|------------------------------|------|----------|------|------|------|------|------|----------|------|------|------|----------|
|                              | •    | <b>→</b> | •    | •    | ←    | •    | 1    | <b>†</b> | ~    | -    | ţ    | 4        |
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          |      | 4        |      | *    | 4    | 7    |      | ની       | 7    | ሻ    | 4    |          |
| Traffic Volume (veh/h)       | 30   | 20       | 0    | 370  | 90   | 350  | 0    | 260      | 490  | 290  | 200  | 70       |
| Future Volume (veh/h)        | 30   | 20       | 0    | 370  | 90   | 350  | 0    | 260      | 490  | 290  | 200  | 70       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No   |      |      | No       |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1841 | 1841     | 1841 | 1841 | 1841 | 1841 | 1841 | 1841     | 1841 | 1841 | 1841 | 1841     |
| Adj Flow Rate, veh/h         | 33   | 22       | 0    | 256  | 318  | 0    | 0    | 289      | 0    | 306  | 244  | 68       |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90     |
| Percent Heavy Veh, %         | 4    | 4        | 4    | 4    | 4    | 4    | 4    | 4        | 4    | 4    | 4    | 4        |
| Cap, veh/h                   | 71   | 48       | 0    | 370  | 389  |      | 0    | 361      |      | 408  | 321  | 90       |
| Arrive On Green              | 0.07 | 0.07     | 0.00 | 0.21 | 0.21 | 0.00 | 0.00 | 0.20     | 0.00 | 0.23 | 0.23 | 0.23     |
| Sat Flow, veh/h              | 1072 | 715      | 0    | 1753 | 1841 | 1560 | 0    | 1841     | 1560 | 1753 | 1383 | 385      |
| Grp Volume(v), veh/h         | 55   | 0        | 0    | 256  | 318  | 0    | 0    | 289      | 0    | 306  | 0    | 312      |
| Grp Sat Flow(s),veh/h/ln     | 1787 | 0        | 0    | 1753 | 1841 | 1560 | 0    | 1841     | 1560 | 1753 | 0    | 1768     |
| Q Serve(g_s), s              | 2.0  | 0.0      | 0.0  | 9.2  | 11.2 | 0.0  | 0.0  | 10.2     | 0.0  | 11.0 | 0.0  | 11.2     |
| Cycle Q Clear(g_c), s        | 2.0  | 0.0      | 0.0  | 9.2  | 11.2 | 0.0  | 0.0  | 10.2     | 0.0  | 11.0 | 0.0  | 11.2     |
| Prop In Lane                 | 0.60 |          | 0.00 | 1.00 |      | 1.00 | 0.00 |          | 1.00 | 1.00 |      | 0.22     |
| Lane Grp Cap(c), veh/h       | 119  | 0        | 0    | 370  | 389  |      | 0    | 361      |      | 408  | 0    | 411      |
| V/C Ratio(X)                 | 0.46 | 0.00     | 0.00 | 0.69 | 0.82 |      | 0.00 | 0.80     |      | 0.75 | 0.00 | 0.76     |
| Avail Cap(c_a), veh/h        | 315  | 0        | 0    | 464  | 487  |      | 0    | 649      |      | 798  | 0    | 805      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00     | 0.00 | 1.00 | 0.00 | 1.00     |
| Uniform Delay (d), s/veh     | 30.6 | 0.0      | 0.0  | 24.8 | 25.6 | 0.0  | 0.0  | 26.1     | 0.0  | 24.3 | 0.0  | 24.3     |
| Incr Delay (d2), s/veh       | 2.8  | 0.0      | 0.0  | 3.2  | 8.6  | 0.0  | 0.0  | 4.1      | 0.0  | 2.8  | 0.0  | 2.9      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 0.9  | 0.0      | 0.0  | 3.8  | 5.4  | 0.0  | 0.0  | 4.6      | 0.0  | 4.5  | 0.0  | 4.6      |
| Unsig. Movement Delay, s/veh |      |          |      |      |      |      |      |          |      |      |      |          |
| LnGrp Delay(d),s/veh         | 33.4 | 0.0      | 0.0  | 28.0 | 34.2 | 0.0  | 0.0  | 30.2     | 0.0  | 27.1 | 0.0  | 27.2     |
| LnGrp LOS                    | С    | Α        | Α    | С    | С    |      | Α    | С        |      | С    | Α    | <u>C</u> |
| Approach Vol, veh/h          |      | 55       |      |      | 574  |      |      | 289      |      |      | 618  |          |
| Approach Delay, s/veh        |      | 33.4     |      |      | 31.4 |      |      | 30.2     |      |      | 27.2 |          |
| Approach LOS                 |      | С        |      |      | С    |      |      | С        |      |      | С    |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |      | 6    |      | 8        |      |      |      |          |
| Phs Duration (G+Y+Rc), s     |      | 18.3     |      | 19.4 |      | 20.8 |      | 9.5      |      |      |      |          |
| Change Period (Y+Rc), s      |      | 5.0      |      | 5.0  |      | 5.0  |      | 5.0      |      |      |      |          |
| Max Green Setting (Gmax), s  |      | 24.0     |      | 18.0 |      | 31.0 |      | 12.0     |      |      |      |          |
| Max Q Clear Time (g_c+l1), s |      | 12.2     |      | 13.2 |      | 13.2 |      | 4.0      |      |      |      |          |
| Green Ext Time (p_c), s      |      | 1.2      |      | 1.2  |      | 2.5  |      | 0.1      |      |      |      |          |
| Intersection Summary         |      |          |      |      |      |      |      |          |      |      |      |          |
| HCM 6th Ctrl Delay           |      |          | 29.6 |      |      |      |      |          |      |      |      |          |
| HCM 6th LOS                  |      |          | С    |      |      |      |      |          |      |      |      |          |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| Boundary   Bell   Bel |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rireffic Volume (veh/h) 0 510 50 180 580 0 0 0 0 590 0 330 initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rireffic Volume (veh/h) 0 510 50 180 580 0 0 0 0 590 0 330 initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nitial Q (Qb), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ped-Bike Adji(A_pbT) 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parking Bus, Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nork Zone On Approach  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Adj Sat Flow, veh/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adj Flow Rate, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Percent Heavy Veh, % 0 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cap, veh/h  Cap, veh/h  O  846  369  567  1828  O  822  O  731  Arrive On Green  O  0.00  O  0.24  O  0.24  O  0.17  O  0.52  O  0.00  O  0.23  O  0.00  O  0.24  O  0.14  O  0.56  O  77  O  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arrive On Green 0.00 0.24 0.24 0.17 0.52 0.00 0.23 0.00 0.23 0.00 0.23 and Flow, veh/h 0 3618 1537 3428 3618 0 3534 0 3145 and Flow, veh/h 0 567 9 200 644 0 656 0 77 and Flow(s), veh/h/ln 0 1763 1537 1714 1763 0 1767 0 1572 and Flow(s), veh/h/ln 0 1763 1537 1714 1763 0 1767 0 1572 and Flow(s), veh/h/ln 0 1763 1537 1714 1763 0 1767 0 1572 and Flow(s), veh/h/ln 0 1763 1537 1714 1763 0 1767 0 1572 and Flow(s), veh/h/ln 0 1763 1537 1714 1763 0 1767 0 1572 and Flow(s), veh/h/ln 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sat Flow, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gry Volume(v), veh/h         0         567         9         200         644         0         656         0         77           Gry Sat Flow(s), veh/h/In         0         1763         1537         1714         1763         0         1767         0         1572           Q Serve(g_s), s         0.0         6.4         0.2         2.3         4.8         0.0         7.7         0.0         0.9           Prop In Lane         0.00         1.00         1.00         0.00         1.00         1.00         1.00           Jorn Ball         0         826         369         567         1828         0         822         0         731           Jr/C Ratio(X)         0.00         0.67         0.02         0.35         0.35         0.00         0.80         0.00         0.11           Avail Cap(c_a), veh/h         0         2314         1009         1552         4309         0         2000         0         1779           4 CMP Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gry Sat Flow(s),veh/h/ln       0       1763       1537       1714       1763       0       1767       0       1572         Q Serve(g_s), s       0.0       6.4       0.2       2.3       4.8       0.0       7.7       0.0       0.9         Cycle Q Clear(g_c), s       0.0       6.4       0.2       2.3       4.8       0.0       7.7       0.0       0.9         Prop In Lane       0.00       1.00       1.00       0.00       1.00       1.00       1.00         Jane Gry Cap(c), veh/h       0       846       369       567       1828       0       822       0       731         J/C Ratio(X)       0.00       0.67       0.02       0.35       0.35       0.00       0.80       0.00       0.11         Avail Cap(c_a), veh/h       0       2314       1009       1552       4309       0       2000       0       1779         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A Serve(g_s), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.0 0.1  Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 0.3 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cycle Q Clear(g_c), s 0.0 6.4 0.2 2.3 4.8 0.0 7.7 0.0 0.9  Prop In Lane 0.00 1.00 1.00 0.00 1.00 1.00 1.00  Prop In Lane 0.00 1.00 1.00 0.00 1.00 1.00 1.00  Prop In Lane 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Prop In Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cane Grp Cap(c), veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Avail Cap(c_a), veh/h       0.00       0.67       0.02       0.35       0.35       0.00       0.80       0.00       0.11         Avail Cap(c_a), veh/h       0       2314       1009       1552       4309       0       2000       0       1779         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00         Jpstream Filter(I)       0.00       1.00       1.00       1.00       0.00       1.00       1.00       1.00         Jniform Delay (d), s/veh       0.0       15.2       12.8       16.3       6.3       0.0       16.0       0.0       13.3         ncr Delay (d2), s/veh       0.0       0.3       0.0       0.1       0.0       0.0       0.0       0.0       0.0         Mile BackOfQ(50%), veh/ln0.0       2.2       0.1       0.8       1.2       0.0       2.7       0.0       0.3         Jnsig. Movement Delay, s/veh       0.0       15.6       12.9       16.5       6.3       0.0       16.7       0.0       13.4         Angroach Vol, veh/h       576       844       733       733       733       733       733       733       733       733 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Avail Cap(c_a), veh/h 0 2314 1009 1552 4309 0 2000 0 1779  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Upstream Filter(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Jniform Delay (d), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ncr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6/ile BackOfQ(50%),veh/lr0.0       2.2       0.1       0.8       1.2       0.0       2.7       0.0       0.3         Jnsig. Movement Delay, s/veh       2.7       0.0       16.7       0.0       13.4         LnGrp Delay(d),s/veh       0.0       15.6       12.9       16.5       6.3       0.0       16.7       0.0       13.4         Approach LOS       A       B       B       A       A       B       A       B         Approach LOS       B       A       B       A       B       B         Timer - Assigned Phs       1       2       4       6       6         Phs Duration (G+Y+Rc), \$2.3       16.6       15.3       28.9       28.9         Change Period (Y+Rc), \$ 5.0       * 6       * 5       * 6         Max Green Setting (Gmax0), \$6       * 29       * 25       * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unsig. Movement Delay, s/veh  unGrp Delay(d),s/veh 0.0 15.6 12.9 16.5 6.3 0.0 16.7 0.0 13.4  unGrp LOS A B B B A A B  Approach Vol, veh/h 576 844 733  Approach Delay, s/veh 15.5 8.7 16.3  Approach LOS B A B  Eimer - Assigned Phs 1 2 4 6  Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9  Change Period (Y+Rc), \$ 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), \$ * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Angrp Delay(d),s/veh 0.0 15.6 12.9 16.5 6.3 0.0 16.7 0.0 13.4 B B B A A B B B A A B B A B B A A B B B A A B B A B B A B A B B B A A B B A B A B B B A A B B A B B B A A B B A B B B A B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B A B B B B A B B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A B B B A A B B A B B A A B B A B B A B B A B B A B B A B B A B B A B A B A B B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B B A B B A B B B A B B B A B B B B A B B B B A B B B B B A B B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach Vol, veh/h 576 844 733 Approach Delay, s/veh 15.5 8.7 16.3 Approach LOS B A B  Timer - Assigned Phs 1 2 4 6  Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9 Change Period (Y+Rc), s 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), \$2.9 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approach Delay, s/veh 15.5 8.7 16.3 Approach LOS B A B  Timer - Assigned Phs 1 2 4 6  Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9 Change Period (Y+Rc), \$ 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), \$ * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approach LOS B A B  Timer - Assigned Phs 1 2 4 6  Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9  Change Period (Y+Rc), \$ 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), \$ * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9 Change Period (Y+Rc), \$ 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), & * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phs Duration (G+Y+Rc), \$2.3 16.6 15.3 28.9 Change Period (Y+Rc), \$ 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), & * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Change Period (Y+Rc), s 5.0 * 6 * 5 * 6  Max Green Setting (Gmax), s * 29 * 25 * 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Max Green Setting (Gmax), & *29 *25 *54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10V ( ) ( 100 m 1 mo ( a a ) 11 h b V ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Max Q Clear Time (g_c+l1),3s 8.4 9.7 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Green Ext Time (p_c), s 0.1 1.5 0.5 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCM 6th Ctrl Delay 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HCM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | •    | †    | <b>/</b> | <b>/</b> | ţ   | <b>√</b> |  |
|---------------------------|------|----------|------|------|----------|------|------|------|----------|----------|-----|----------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR      | SBL      | SBT | SBR      |  |
| Lane Configurations       | ሻሻ   | <b>^</b> |      |      | <b>^</b> | 7    | 1    | 4    | 7        |          |     |          |  |
| Traffic Volume (veh/h)    | 160  | 940      | 0    | 0    | 710      | 380  | 50   | 0    | 200      | 0        | 0   | 0        |  |
| Future Volume (veh/h)     | 160  | 940      | 0    | 0    | 710      | 380  | 50   | 0    | 200      | 0        | 0   | 0        |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0        |          |     |          |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00 |          | 0.98 | 1.00 |      | 1.00     |          |     |          |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |     |          |  |
| Work Zone On Approac      |      | No       |      |      | No       |      |      | No   |          |          |     |          |  |
| Adj Sat Flow, veh/h/ln    | 1856 | 1856     | 0    | 0    | 1856     | 1856 | 1856 | 1856 | 1856     |          |     |          |  |
| Adj Flow Rate, veh/h      | 178  | 1044     | 0    | 0    | 789      | 8    | 56   | 0    | 128      |          |     |          |  |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90     |          |     |          |  |
| Percent Heavy Veh, %      | 3    | 3        | 0    | 0    | 3        | 3    | 3    | 3    | 3        |          |     |          |  |
| Cap, veh/h                | 554  | 2066     | 0    | 0    | 1094     | 478  | 576  | 0    | 256      |          |     |          |  |
| Arrive On Green           | 0.16 | 0.59     | 0.00 | 0.00 | 0.31     | 0.31 | 0.16 | 0.00 | 0.16     |          |     |          |  |
| Sat Flow, veh/h           | 3428 | 3618     | 0    | 0    | 3618     | 1541 | 3534 | 0    | 1572     |          |     |          |  |
| Grp Volume(v), veh/h      | 178  | 1044     | 0    | 0    | 789      | 8    | 56   | 0    | 128      |          |     |          |  |
| Grp Sat Flow(s),veh/h/li  |      | 1763     | 0    | 0    | 1763     | 1541 | 1767 | 0    | 1572     |          |     |          |  |
| Q Serve(g_s), s           | 2.0  | 7.6      | 0.0  | 0.0  | 8.7      | 0.2  | 0.6  | 0.0  | 3.3      |          |     |          |  |
| Cycle Q Clear(g_c), s     | 2.0  | 7.6      | 0.0  | 0.0  | 8.7      | 0.2  | 0.6  | 0.0  | 3.3      |          |     |          |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00 |          | 1.00 | 1.00 |      | 1.00     |          |     |          |  |
| Lane Grp Cap(c), veh/h    |      | 2066     | 0    | 0    | 1094     | 478  | 576  | 0    | 256      |          |     |          |  |
| V/C Ratio(X)              | 0.32 | 0.51     | 0.00 | 0.00 | 0.72     | 0.02 | 0.10 | 0.00 | 0.50     |          |     |          |  |
| Avail Cap(c_a), veh/h     | 1564 | 4344     | 0    | 0    | 2333     | 1019 | 2016 | 0    | 897      |          |     |          |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |     |          |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00     |          |     |          |  |
| Uniform Delay (d), s/vel  |      | 5.3      | 0.0  | 0.0  | 13.4     | 10.5 | 15.6 | 0.0  | 16.7     |          |     |          |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.1      | 0.0  | 0.0  | 0.3      | 0.0  | 0.0  | 0.0  | 0.6      |          |     |          |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |          |     |          |  |
| %ile BackOfQ(50%),vel     |      | 1.6      | 0.0  | 0.0  | 2.9      | 0.0  | 0.2  | 0.0  | 1.1      |          |     |          |  |
| Unsig. Movement Delay     |      |          |      |      | 40.0     | 40 = | 1-0  |      | 4= 0     |          |     |          |  |
| LnGrp Delay(d),s/veh      | 16.4 | 5.4      | 0.0  | 0.0  | 13.8     | 10.5 | 15.6 | 0.0  | 17.3     |          |     |          |  |
| LnGrp LOS                 | В    | Α        | A    | A    | В        | В    | В    | Α    | В        |          |     |          |  |
| Approach Vol, veh/h       |      | 1222     |      |      | 797      |      |      | 184  |          |          |     |          |  |
| Approach Delay, s/veh     |      | 7.0      |      |      | 13.7     |      |      | 16.8 |          |          |     |          |  |
| Approach LOS              |      | Α        |      |      | В        |      |      | В    |          |          |     |          |  |
| Timer - Assigned Phs      |      | 2        |      |      | 5        | 6    |      | 8    |          |          |     |          |  |
| Phs Duration (G+Y+Rc)     | ), s | 31.7     |      |      | 12.1     | 19.6 |      | 12.1 |          |          |     |          |  |
| Change Period (Y+Rc),     |      | * 6      |      |      | 5.0      | * 6  |      | 5.0  |          |          |     |          |  |
| Max Green Setting (Gm     |      | * 54     |      |      | 20.0     | * 29 |      | 25.0 |          |          |     |          |  |
| Max Q Clear Time (g_c     |      | 9.6      |      |      | 4.0      | 10.7 |      | 5.3  |          |          |     |          |  |
| Green Ext Time (p_c), s   |      | 3.3      |      |      | 0.3      | 2.1  |      | 0.3  |          |          |     |          |  |
| Intersection Summary      |      |          |      |      |          |      |      |      |          |          |     |          |  |
| HCM 6th Ctrl Delay        |      |          | 10.3 |      |          |      |      |      |          |          |     |          |  |
| HCM 6th LOS               |      |          | В    |      |          |      |      |      |          |          |     |          |  |
|                           |      |          |      |      |          |      |      |      |          |          |     |          |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                    |           |       |         |              |         |      |
|---------------------------------|-----------|-------|---------|--------------|---------|------|
| Int Delay, s/veh                | 1.5       |       |         |              |         |      |
| Movement                        | EBL       | EBR   | NBL     | NBT          | SBT     | SBR  |
| Lane Configurations             | ¥         |       |         | <b>^</b>     | ΦÞ      |      |
| Traffic Vol, veh/h              | 20        | 70    | 50      | 750          | 750     | 30   |
| Future Vol, veh/h               | 20        | 70    | 50      | 750          | 750     | 30   |
| Conflicting Peds, #/hr          | 0         | 0     | 0       | 0            | 0       | 0    |
| Sign Control                    | Stop      | Stop  | Free    | Free         | Free    | Free |
| RT Channelized                  | -         | None  | -       | None         | -       | None |
| Storage Length                  | 0         | -     | _       | -            | _       | -    |
| Veh in Median Storage           |           | _     | _       | 0            | 0       | _    |
| Grade, %                        | 0         | _     | _       | 0            | 0       | _    |
| Peak Hour Factor                | 90        | 90    | 90      | 90           | 90      | 90   |
|                                 | 2         | 2     | 2       | 2            | 2       | 2    |
| Heavy Vehicles, %               | 22        |       |         |              |         |      |
| Mvmt Flow                       | 22        | 78    | 56      | 833          | 833     | 33   |
|                                 |           |       |         |              |         |      |
| Major/Minor I                   | Minor2    | N     | //ajor1 | N            | /lajor2 |      |
| Conflicting Flow All            | 1379      | 433   | 866     | 0            | _       | 0    |
| Stage 1                         | 850       | -     | _       | -            | _       | _    |
| Stage 2                         | 529       | _     | _       | _            | _       | _    |
| Critical Hdwy                   | 6.84      | 6.94  | 4.14    | _            | _       | _    |
| Critical Hdwy Stg 1             | 5.84      | -     |         | _            | _       | _    |
| Critical Hdwy Stg 2             | 5.84      | _     | _       | _            | _       | _    |
| Follow-up Hdwy                  | 3.52      | 3.32  | 2.22    | _            | _       | _    |
| Pot Cap-1 Maneuver              | 136       | 571   | 773     |              | _       | _    |
| •                               | 379       | J/ I  | 113     | _            | _       | _    |
| Stage 1                         |           | -     | -       | <del>-</del> |         | _    |
| Stage 2                         | 555       | -     | -       | -            | -       | -    |
| Platoon blocked, %              | 440       | F74   | 770     | -            | -       | -    |
| Mov Cap-1 Maneuver              | 118       | 571   | 773     | -            | -       | -    |
| Mov Cap-2 Maneuver              | 118       | -     | -       | -            | -       | -    |
| Stage 1                         | 328       | -     | -       | -            | -       | -    |
| Stage 2                         | 555       | -     | -       | -            | -       | -    |
|                                 |           |       |         |              |         |      |
| Approach                        | EB        |       | NB      |              | SB      |      |
|                                 | 22.2      |       | 0.6     |              | 0.0     |      |
| HCM Control Delay, s<br>HCM LOS | 22.2<br>C |       | 0.0     |              | U       |      |
| HOW LOS                         | U         |       |         |              |         |      |
|                                 |           |       |         |              |         |      |
| Minor Lane/Major Mvm            | nt        | NBL   | NBT     | EBLn1        | SBT     | SBR  |
| Capacity (veh/h)                |           | 773   | _       |              | -       | -    |
| HCM Lane V/C Ratio              |           | 0.072 |         | 0.325        | _       | _    |
| HCM Control Delay (s)           |           | 10    | _       | 22.2         | _       | _    |
| HCM Lane LOS                    |           | В     | _       | C            | _       | _    |
| HCM 95th %tile Q(veh)           | )         | 0.2   | _       | 1.4          | _       | _    |
| HOW JOHN JOHN GUVEN             | )         | 0.2   |         | 1.7          |         | _    |

| Intersection           |        |      |         |        |        |          |
|------------------------|--------|------|---------|--------|--------|----------|
| Int Delay, s/veh       | 0.3    |      |         |        |        |          |
| •                      |        |      |         |        |        |          |
| Movement               | WBL    | WBR  | NBT     | NBR    | SBL    | SBT      |
| Lane Configurations    | ¥      |      | ΦÞ      |        |        | <b>^</b> |
| Traffic Vol, veh/h     | 5      | 20   | 780     | 5      | 10     | 810      |
| Future Vol, veh/h      | 5      | 20   | 780     | 5      | 10     | 810      |
| Conflicting Peds, #/hr | 5      | 0    | 0       | 5      | 10     | 0        |
| Sign Control           | Stop   | Stop | Free    | Free   | Free   | Free     |
| RT Channelized         | -      | None | -       | None   | -      | None     |
| Storage Length         | 0      | -    | -       | -      | -      | -        |
| Veh in Median Storage  | , # 0  | -    | 0       | -      | -      | 0        |
| Grade, %               | 0      | -    | 0       | -      | -      | 0        |
| Peak Hour Factor       | 90     | 90   | 90      | 90     | 90     | 90       |
| Heavy Vehicles, %      | 2      | 2    | 2       | 2      | 2      | 2        |
| Mvmt Flow              | 6      | 22   | 867     | 6      | 11     | 900      |
|                        |        |      |         |        |        |          |
|                        |        |      |         | _      |        |          |
|                        | Minor1 |      | //ajor1 |        | Major2 |          |
| Conflicting Flow All   | 1357   | 447  | 0       | 0      | 883    | 0        |
| Stage 1                | 880    | -    | -       | -      | -      | -        |
| Stage 2                | 477    | -    | -       | -      | -      | -        |
| Critical Hdwy          | 6.84   | 6.94 | -       | -      | 4.14   | -        |
| Critical Hdwy Stg 1    | 5.84   | -    | -       | -      | -      | -        |
| Critical Hdwy Stg 2    | 5.84   | -    | -       | -      | -      | -        |
| Follow-up Hdwy         | 3.52   | 3.32 | -       | -      | 2.22   | -        |
| Pot Cap-1 Maneuver     | 140    | 559  | -       | -      | 762    | -        |
| Stage 1                | 366    | -    | -       | -      | -      | -        |
| Stage 2                | 590    | -    | _       | _      | -      | -        |
| Platoon blocked, %     |        |      | -       | _      |        | _        |
| Mov Cap-1 Maneuver     | 134    | 554  | -       | _      | 755    | -        |
| Mov Cap-2 Maneuver     | 259    | -    | _       | _      | -      | _        |
| Stage 1                | 362    | _    | _       | _      | _      | _        |
| Stage 2                | 570    | _    | _       | _      | _      | _        |
| Olaye Z                | 310    | _    |         |        |        |          |
|                        |        |      |         |        |        |          |
| Approach               | WB     |      | NB      |        | SB     |          |
| HCM Control Delay, s   | 13.5   |      | 0       |        | 0.1    |          |
| HCM LOS                | В      |      |         |        |        |          |
|                        |        |      |         |        |        |          |
| Minor Long/Major Maria | .+     | NDT  | NDDV    | MDI 51 | CDI    | CDT      |
| Minor Lane/Major Mvm   | IL     | NBT  |         | VBLn1  | SBL    | SBT      |
| Capacity (veh/h)       |        | -    | -       | 451    | 755    | -        |
| HCM Lane V/C Ratio     |        | -    |         | 0.062  |        | -        |
| HCM Control Delay (s)  |        | -    | -       | 13.5   | 9.8    | -        |
| HCM Lane LOS           |        | -    | -       | В      | Α      | -        |
| HCM 95th %tile Q(veh)  | )      | -    | -       | 0.2    | 0      | -        |

|                              | ۶   | <b>→</b>    | $\rightarrow$ | •           | <b>←</b> | •    | •    | <b>†</b>    | /    | <b>&gt;</b> | ļ    | 4    |
|------------------------------|-----|-------------|---------------|-------------|----------|------|------|-------------|------|-------------|------|------|
| Movement                     | EBL | EBT         | EBR           | WBL         | WBT      | WBR  | NBL  | NBT         | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations          |     |             |               |             | ^↑       |      |      | र्स         |      |             | ₽    |      |
| Traffic Volume (veh/h)       | 0   | 0           | 0             | 90          | 810      | 110  | 30   | 80          | 0    | 0           | 240  | 20   |
| Future Volume (veh/h)        | 0   | 0           | 0             | 90          | 810      | 110  | 30   | 80          | 0    | 0           | 240  | 20   |
| Initial Q (Qb), veh          |     |             |               | 0           | 0        | 0    | 0    | 0           | 0    | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)          |     |             |               | 1.00        |          | 0.99 | 0.99 |             | 1.00 | 1.00        |      | 0.96 |
| Parking Bus, Adj             |     |             |               | 1.00        | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 1.00        | 1.00 | 1.00 |
| Work Zone On Approach        |     |             |               |             | No       |      |      | No          |      |             | No   |      |
| Adj Sat Flow, veh/h/ln       |     |             |               | 1856        | 1856     | 1856 | 1885 | 1885        | 0    | 0           | 1856 | 1856 |
| Adj Flow Rate, veh/h         |     |             |               | 100         | 900      | 100  | 33   | 89          | 0    | 0           | 267  | 14   |
| Peak Hour Factor             |     |             |               | 0.90        | 0.90     | 0.90 | 0.90 | 0.90        | 0.90 | 0.90        | 0.90 | 0.90 |
| Percent Heavy Veh, %         |     |             |               | 3           | 3        | 3    | 1    | 1           | 0    | 0           | 3    | 3    |
| Cap, veh/h                   |     |             |               | 132         | 1242     | 145  | 217  | 272         | 0    | 0           | 406  | 21   |
| Arrive On Green              |     |             |               | 0.42        | 0.42     | 0.42 | 0.23 | 0.23        | 0.00 | 0.00        | 0.23 | 0.23 |
| Sat Flow, veh/h              |     |             |               | 315         | 2969     | 347  | 172  | 1169        | 0    | 0           | 1743 | 91   |
| Grp Volume(v), veh/h         |     |             |               | 583         | 0        | 517  | 122  | 0           | 0    | 0           | 0    | 281  |
| Grp Sat Flow(s),veh/h/ln     |     |             |               | 1840        | 0        | 1791 | 1342 | 0           | 0    | 0           | 0    | 1835 |
| Q Serve(g_s), s              |     |             |               | 7.0         | 0.0      | 6.1  | 0.1  | 0.0         | 0.0  | 0.0         | 0.0  | 3.6  |
| Cycle Q Clear(g_c), s        |     |             |               | 7.0         | 0.0      | 6.1  | 3.7  | 0.0         | 0.0  | 0.0         | 0.0  | 3.6  |
| Prop In Lane                 |     |             |               | 0.17        |          | 0.19 | 0.27 |             | 0.00 | 0.00        |      | 0.05 |
| Lane Grp Cap(c), veh/h       |     |             |               | 770         | 0        | 749  | 489  | 0           | 0    | 0           | 0    | 427  |
| V/C Ratio(X)                 |     |             |               | 0.76        | 0.00     | 0.69 | 0.25 | 0.00        | 0.00 | 0.00        | 0.00 | 0.66 |
| Avail Cap(c_a), veh/h        |     |             |               | 1783        | 0        | 1735 | 1041 | 0           | 0    | 0           | 0    | 1067 |
| HCM Platoon Ratio            |     |             |               | 1.00        | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)           |     |             |               | 1.00        | 0.00     | 1.00 | 1.00 | 0.00        | 0.00 | 0.00        | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     |     |             |               | 6.4         | 0.0      | 6.1  | 8.2  | 0.0         | 0.0  | 0.0         | 0.0  | 9.0  |
| Incr Delay (d2), s/veh       |     |             |               | 0.6         | 0.0      | 0.4  | 0.1  | 0.0         | 0.0  | 0.0         | 0.0  | 0.6  |
| Initial Q Delay(d3),s/veh    |     |             |               | 0.0         | 0.0      | 0.0  | 0.0  | 0.0         | 0.0  | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     |     |             |               | 1.2         | 0.0      | 1.0  | 0.4  | 0.0         | 0.0  | 0.0         | 0.0  | 0.9  |
| Unsig. Movement Delay, s/veh |     |             |               |             |          |      |      |             |      |             |      |      |
| LnGrp Delay(d),s/veh         |     |             |               | 7.0         | 0.0      | 6.6  | 8.3  | 0.0         | 0.0  | 0.0         | 0.0  | 9.6  |
| LnGrp LOS                    |     |             |               | Α           | Α        | Α    | Α    | Α           | Α    | Α           | Α    | А    |
| Approach Vol, veh/h          |     |             |               |             | 1100     |      |      | 122         |      |             | 281  |      |
| Approach Delay, s/veh        |     |             |               |             | 6.8      |      |      | 8.3         |      |             | 9.6  |      |
| Approach LOS                 |     |             |               |             | A        |      |      | A           |      |             | A    |      |
| Timer - Assigned Phs         |     | 2           |               | 4           |          |      |      | 8           |      |             |      |      |
| ·                            |     |             |               |             |          |      |      |             |      |             |      |      |
| Phs Duration (G+Y+Rc), s     |     | 15.8<br>* 5 |               | 10.0<br>* 4 |          |      |      | 10.0<br>* 4 |      |             |      |      |
| Change Period (Y+Rc), s      |     | -           |               |             |          |      |      | * 15        |      |             |      |      |
| Max Green Setting (Gmax), s  |     | * 25        |               | * 15        |          |      |      |             |      |             |      |      |
| Max Q Clear Time (g_c+l1), s |     | 9.0         |               | 5.6         |          |      |      | 5.7         |      |             |      |      |
| Green Ext Time (p_c), s      |     | 1.7         |               | 0.4         |          |      |      | 0.1         |      |             |      |      |
| Intersection Summary         |     |             | - 1           |             |          |      |      |             |      |             |      |      |
| HCM 6th Ctrl Delay           |     |             | 7.4           |             |          |      |      |             |      |             |      |      |
| HCM 6th LOS                  |     |             | Α             |             |          |      |      |             |      |             |      |      |
| Notes                        |     |             |               |             |          |      |      |             |      |             |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶                                             | <b>→</b> | •                                             | •    | <b>←</b> | •   | •    | †    | <b>/</b>                                      | <b>\</b>                                      | ļ        | 4    |
|---------------------------|-----------------------------------------------|----------|-----------------------------------------------|------|----------|-----|------|------|-----------------------------------------------|-----------------------------------------------|----------|------|
| Movement                  | EBL                                           | EBT      | EBR                                           | WBL  | WBT      | WBR | NBL  | NBT  | NBR                                           | SBL                                           | SBT      | SBR  |
| Lane Configurations       |                                               | <b>^</b> |                                               |      |          |     |      | ĵ.   |                                               |                                               | 4        |      |
| Traffic Volume (veh/h)    | 20                                            | 870      | 50                                            | 0    | 0        | 0   | 0    | 90   | 70                                            | 180                                           | 160      | 0    |
| Future Volume (veh/h)     | 20                                            | 870      | 50                                            | 0    | 0        | 0   | 0    | 90   | 70                                            | 180                                           | 160      | 0    |
| Initial Q (Qb), veh       | 0                                             | 0        | 0                                             |      |          |     | 0    | 0    | 0                                             | 0                                             | 0        | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00                                          |          | 0.97                                          |      |          |     | 1.00 |      | 0.96                                          | 0.99                                          |          | 1.00 |
| Parking Bus, Adj          | 1.00                                          | 1.00     | 1.00                                          |      |          |     | 1.00 | 1.00 | 1.00                                          | 1.00                                          | 1.00     | 1.00 |
| Work Zone On Approac      |                                               | No       |                                               |      |          |     |      | No   |                                               |                                               | No       |      |
|                           | 1885                                          | 1885     | 1885                                          |      |          |     | 0    | 1885 | 1885                                          | 1885                                          | 1885     | 0    |
| Adj Flow Rate, veh/h      | 22                                            | 967      | 45                                            |      |          |     | 0    | 100  | 78                                            | 200                                           | 178      | 0    |
| Peak Hour Factor          | 0.90                                          | 0.90     | 0.90                                          |      |          |     | 0.90 | 0.90 | 0.90                                          | 0.90                                          | 0.90     | 0.90 |
| Percent Heavy Veh, %      | 1                                             | 1        | 1                                             |      |          |     | 0    | 1    | 1                                             | 1                                             | 1        | 0    |
| Cap, veh/h                | 28                                            | 1286     | 63                                            |      |          |     | 0    | 344  | 268                                           | 384                                           | 269      | 0    |
| Arrive On Green           | 0.37                                          | 0.37     | 0.37                                          |      |          |     | 0.00 | 0.36 | 0.36                                          | 0.36                                          | 0.36     | 0.00 |
| Sat Flow, veh/h           | 76                                            | 3483     | 170                                           |      |          |     | 0    | 965  | 752                                           | 605                                           | 754      | 0    |
| Grp Volume(v), veh/h      | 546                                           | 0        | 488                                           |      |          |     | 0    | 0    | 178                                           | 378                                           | 0        | 0    |
| Grp Sat Flow(s), veh/h/lr |                                               | 0        | 1848                                          |      |          |     | 0    | 0    | 1717                                          | 1359                                          | 0        | 0    |
| Q Serve(g_s), s           | 8.5                                           | 0.0      | 7.4                                           |      |          |     | 0.0  | 0.0  | 2.4                                           | 6.0                                           | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s     | 8.5                                           | 0.0      | 7.4                                           |      |          |     | 0.0  | 0.0  | 2.4                                           | 8.4                                           | 0.0      | 0.0  |
| Prop In Lane              | 0.04                                          | 3.0      | 0.09                                          |      |          |     | 0.00 | 3.0  | 0.44                                          | 0.53                                          | 3.0      | 0.00 |
| Lane Grp Cap(c), veh/h    |                                               | 0        | 682                                           |      |          |     | 0.00 | 0    | 612                                           | 652                                           | 0        | 0.00 |
| V/C Ratio(X)              | 0.79                                          | 0.00     | 0.72                                          |      |          |     | 0.00 | 0.00 | 0.29                                          | 0.58                                          | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h     | 1435                                          | 0.00     | 1409                                          |      |          |     | 0.00 | 0.00 | 786                                           | 799                                           | 0.00     | 0.00 |
| HCM Platoon Ratio         | 1.00                                          | 1.00     | 1.00                                          |      |          |     | 1.00 | 1.00 | 1.00                                          | 1.00                                          | 1.00     | 1.00 |
| Upstream Filter(I)        | 1.00                                          | 0.00     | 1.00                                          |      |          |     | 0.00 | 0.00 | 1.00                                          | 1.00                                          | 0.00     | 0.00 |
| Uniform Delay (d), s/vel  |                                               | 0.0      | 8.9                                           |      |          |     | 0.0  | 0.0  | 7.6                                           | 9.6                                           | 0.0      | 0.0  |
| Incr Delay (d2), s/veh    | 0.8                                           | 0.0      | 0.5                                           |      |          |     | 0.0  | 0.0  | 0.1                                           | 0.3                                           | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh |                                               | 0.0      | 0.0                                           |      |          |     | 0.0  | 0.0  | 0.0                                           | 0.0                                           | 0.0      | 0.0  |
| %ile BackOfQ(50%),vel     |                                               | 0.0      | 2.0                                           |      |          |     | 0.0  | 0.0  | 0.6                                           | 1.7                                           | 0.0      | 0.0  |
| Unsig. Movement Delay     |                                               |          | 2.0                                           |      |          |     | 0.0  | 0.0  | 3.0                                           | 1.1                                           | 0.0      | 0.0  |
| LnGrp Delay(d),s/veh      | 9.9                                           | 0.0      | 9.4                                           |      |          |     | 0.0  | 0.0  | 7.7                                           | 9.9                                           | 0.0      | 0.0  |
| LnGrp LOS                 | J.5                                           | Α        | Α.                                            |      |          |     | Α    | Α    | Α                                             | Α                                             | Α        | Α    |
| Approach Vol, veh/h       | , <u>, ,                                 </u> | 1034     | , <u>, , , , , , , , , , , , , , , , , , </u> |      |          |     | , ·  | 178  | , <u>, ,                                 </u> | , <u>, ,                                 </u> | 378      | , ·  |
| Approach Delay, s/veh     |                                               | 9.7      |                                               |      |          |     |      | 7.7  |                                               |                                               | 9.9      |      |
| Approach LOS              |                                               | 9.1<br>A |                                               |      |          |     |      | Α.   |                                               |                                               | 9.9<br>A |      |
|                           |                                               |          |                                               |      |          |     |      |      |                                               |                                               |          |      |
| Timer - Assigned Phs      |                                               | 2        |                                               | 4    |          |     |      | 8    |                                               |                                               |          |      |
| Phs Duration (G+Y+Rc)     |                                               | 17.1     |                                               | 15.7 |          |     |      | 15.7 |                                               |                                               |          |      |
| Change Period (Y+Rc),     |                                               | * 5      |                                               | * 4  |          |     |      | * 4  |                                               |                                               |          |      |
| Max Green Setting (Gm     |                                               | * 25     |                                               | * 15 |          |     |      | * 15 |                                               |                                               |          |      |
| Max Q Clear Time (g_c     | +l1), s                                       | 10.5     |                                               | 10.4 |          |     |      | 4.4  |                                               |                                               |          |      |
| Green Ext Time (p_c), s   |                                               | 1.5      |                                               | 0.5  |          |     |      | 0.3  |                                               |                                               |          |      |
| Intersection Summary      |                                               |          |                                               |      |          |     |      |      |                                               |                                               |          |      |
| HCM 6th Ctrl Delay        |                                               |          | 9.5                                           |      |          |     |      |      |                                               |                                               |          |      |
| HCM 6th LOS               |                                               |          | Α                                             |      |          |     |      |      |                                               |                                               |          |      |
| Notes                     |                                               |          |                                               |      |          |     |      |      |                                               |                                               |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection            |         |       |      |        |        |          |                 |      |          |                 |      |          |
|-------------------------|---------|-------|------|--------|--------|----------|-----------------|------|----------|-----------------|------|----------|
| Int Delay, s/veh        | 2.7     |       |      |        |        |          |                 |      |          |                 |      |          |
| • •                     |         |       |      |        |        |          |                 |      |          |                 |      |          |
| Movement                | EBL     | EBT   | EBR  | WBL    | WBT    | WBR      | NBL             | NBT  | NBR      | SBL             | SBT  | SBR      |
| Lane Configurations     |         | 4     |      |        | 4      |          |                 | 4    |          |                 | 4    |          |
| Traffic Vol, veh/h      | 40      | 5     | 5    | 5      | 5      | 10       | 5               | 70   | 5        | 10              | 80   | 70       |
| Future Vol, veh/h       | 40      | 5     | 5    | 5      | 5      | 10       | 5               | 70   | 5        | 10              | 80   | 70       |
| Conflicting Peds, #/hr  | 5       | 0     | 5    | 5      | 0      | 5        | 5               | 0    | 0        | 0               | 0    | 5        |
| Sign Control            | Stop    | Stop  | Stop | Stop   | Stop   | Stop     | Free            | Free | Free     | Free            | Free | Free     |
| RT Channelized          | -       | -     | None | -      | -      | None     | -               | -    | None     | -               | -    | None     |
| Storage Length          | -       | -     | -    | -      | -      | -        | -               | -    | -        | -               | -    | -        |
| Veh in Median Storage,  | ,# -    | 0     | -    | -      | 0      | -        | -               | 0    | -        | -               | 0    | -        |
| Grade, %                | -       | 0     | -    | -      | 0      | -        | -               | 0    | -        | -               | 0    | -        |
| Peak Hour Factor        | 90      | 90    | 90   | 90     | 90     | 90       | 90              | 90   | 90       | 90              | 90   | 90       |
| Heavy Vehicles, %       | 0       | 0     | 0    | 0      | 0      | 0        | 0               | 0    | 0        | 0               | 0    | 0        |
| Mvmt Flow               | 44      | 6     | 6    | 6      | 6      | 11       | 6               | 78   | 6        | 11              | 89   | 78       |
|                         |         |       |      |        |        |          |                 |      |          |                 |      |          |
| Major/Minor N           | /linor2 |       | ı    | Minor1 |        |          | Major1          |      | N        | Major2          |      |          |
| Conflicting Flow All    | 262     | 251   | 138  | 254    | 287    | 86       | 172             | 0    | 0        | 84              | 0    | 0        |
| Stage 1                 | 155     | 155   | 130  | 93     | 93     | 00       | 112             | -    | <u> </u> | U <del>-1</del> | -    | -        |
| Stage 2                 | 107     | 96    | _    | 161    | 194    | -        | _               | _    | _        | _               | _    | _        |
| Critical Hdwy           | 7.1     | 6.5   | 6.2  | 7.1    | 6.5    | 6.2      | 4.1             | -    | <u>-</u> | 4.1             |      | <u>-</u> |
| Critical Hdwy Stg 1     | 6.1     | 5.5   | 0.2  | 6.1    | 5.5    | 0.2      | <del>4</del> .1 | _    | _        | 4.1             | _    | _        |
| Critical Hdwy Stg 2     | 6.1     | 5.5   | _    | 6.1    | 5.5    |          |                 | -    | <u>-</u> | -               |      | <u>-</u> |
| Follow-up Hdwy          | 3.5     | 4     | 3.3  | 3.5    | 4      | 3.3      | 2.2             | _    | _        | 2.2             | _    | _        |
| Pot Cap-1 Maneuver      | 695     | 656   | 916  | 703    | 626    | 978      | 1417            | -    | <u>-</u> | 1526            | -    | <u>-</u> |
| Stage 1                 | 852     | 773   | 910  | 919    | 822    | 310      | 1711            | _    | _        | 1020            | _    | _        |
| Stage 2                 | 903     | 819   | _    | 846    | 744    | _        | <u>-</u>        | _    | <u>-</u> | -               | _    |          |
| Platoon blocked, %      | 300     | 010   |      | 070    | 777    |          |                 | _    | _        |                 | _    | _        |
| Mov Cap-1 Maneuver      | 670     | 645   | 907  | 685    | 615    | 973      | 1410            | -    |          | 1526            |      |          |
| Mov Cap-1 Maneuver      | 670     | 645   | -    | 685    | 615    | -        | -               | _    | _        | 1020            | _    | _        |
| Stage 1                 | 844     | 763   | _    | 915    | 819    |          | _               | -    |          | _               |      |          |
| Stage 2                 | 879     | 816   | _    | 824    | 734    |          | _               | _    | _        | _               |      | _        |
| Olugo Z                 | 010     | 510   |      | 527    | 7 0 -  |          |                 |      |          |                 |      |          |
|                         |         |       |      |        |        |          |                 |      |          |                 |      |          |
| Approach                | EB      |       |      | WB     |        |          | NB              |      |          | SB              |      |          |
| HCM Control Delay, s    | 10.7    |       |      | 9.8    |        |          | 0.5             |      |          | 0.5             |      |          |
| HCM LOS                 | В       |       |      | Α      |        |          |                 |      |          |                 |      |          |
|                         |         |       |      |        |        |          |                 |      |          |                 |      |          |
| Minor Lane/Major Mvm    | t       | NBL   | NBT  | NBR E  | EBLn1V | VBLn1    | SBL             | SBT  | SBR      |                 |      |          |
| Capacity (veh/h)        |         | 1410  |      | -      |        | 778      | 1526            |      |          |                 |      |          |
| HCM Lane V/C Ratio      |         | 0.004 | _    |        | 0.081  | 0.029    | 0.007           | _    | <u>-</u> |                 |      |          |
| HCM Control Delay (s)   |         | 7.6   | 0    | _      | 10.7   | 9.8      | 7.4             | 0    | _        |                 |      |          |
| HCM Lane LOS            |         | Α.    | A    | _      | В      | 3.0<br>A | Α               | A    | _        |                 |      |          |
| HCM 95th %tile Q(veh)   |         | 0     | -    | _      | 0.3    | 0.1      | 0               | -    | _        |                 |      |          |
| TION JOHN JUHIC Q(VOII) |         | U     |      |        | 0.0    | 0.1      | U               |      |          |                 |      |          |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | 4    | 1    | <b>†</b> | ~    | <b>&gt;</b> | <b>↓</b>   | 1    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|-------------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | 7    | ħβ       |      | ሻ           | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 20   | 30       | 20   | 20   | 20       | 20   | 20   | 710      | 20   | 5           | 750        | 10   |
| Future Volume (veh/h)        | 20   | 30       | 20   | 20   | 20       | 20   | 20   | 710      | 20   | 5           | 750        | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.97 | 0.99 |          | 0.97 | 1.00 |          | 0.97 | 1.00        |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 22   | 33       | 1    | 22   | 22       | 1    | 22   | 789      | 22   | 6           | 833        | 10   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90        | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2          | 2    |
| Cap, veh/h                   | 266  | 131      | 4    | 295  | 111      | 4    | 531  | 1849     | 52   | 543         | 1885       | 23   |
| Arrive On Green              | 0.12 | 0.12     | 0.12 | 0.12 | 0.12     | 0.12 | 0.52 | 0.52     | 0.52 | 0.52        | 0.52       | 0.52 |
| Sat Flow, veh/h              | 569  | 1073     | 30   | 690  | 909      | 36   | 651  | 3527     | 98   | 671         | 3595       | 43   |
| Grp Volume(v), veh/h         | 56   | 0        | 0    | 45   | 0        | 0    | 22   | 397      | 414  | 6           | 412        | 431  |
| Grp Sat Flow(s),veh/h/ln     | 1672 | 0        | 0    | 1636 | 0        | 0    | 651  | 1777     | 1849 | 671         | 1777       | 1861 |
| Q Serve(g_s), s              | 0.2  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.6  | 3.5      | 3.5  | 0.1         | 3.6        | 3.6  |
| Cycle Q Clear(g_c), s        | 0.7  | 0.0      | 0.0  | 0.6  | 0.0      | 0.0  | 4.2  | 3.5      | 3.5  | 3.6         | 3.6        | 3.6  |
| Prop In Lane                 | 0.39 |          | 0.02 | 0.49 |          | 0.02 | 1.00 |          | 0.05 | 1.00        |            | 0.02 |
| Lane Grp Cap(c), veh/h       | 401  | 0        | 0    | 410  | 0        | 0    | 531  | 932      | 969  | 543         | 932        | 976  |
| V/C Ratio(X)                 | 0.14 | 0.00     | 0.00 | 0.11 | 0.00     | 0.00 | 0.04 | 0.43     | 0.43 | 0.01        | 0.44       | 0.44 |
| Avail Cap(c_a), veh/h        | 1357 | 0        | 0    | 1333 | 0        | 0    | 779  | 1607     | 1672 | 798         | 1607       | 1683 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 10.1 | 0.0      | 0.0  | 10.1 | 0.0      | 0.0  | 5.0  | 3.7      | 3.7  | 4.8         | 3.7        | 3.7  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.4      | 0.4  | 0.0         | 0.5        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.2  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 0.0  | 0.3      | 0.4  | 0.0         | 0.4        | 0.4  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  | 40.4 | 0.0      | 0.0  | F 4  | 1.4      | 4.4  | 4.0         | 4.0        | 4.0  |
| LnGrp Delay(d),s/veh         | 10.2 | 0.0      | 0.0  | 10.1 | 0.0      | 0.0  | 5.1  | 4.1      | 4.1  | 4.8         | 4.2        | 4.2  |
| LnGrp LOS                    | В    | A        | A    | В    | A        | A    | A    | A        | Α    | A           | A          | A    |
| Approach Vol, veh/h          |      | 56       |      |      | 45       |      |      | 833      |      |             | 849        |      |
| Approach Delay, s/veh        |      | 10.2     |      |      | 10.1     |      |      | 4.2      |      |             | 4.2        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | А        |      |             | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |             |            |      |
| Phs Duration (G+Y+Rc), s     |      | 18.3     |      | 7.1  |          | 18.3 |      | 7.1      |      |             |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0      |      |             |            |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0     |      |             |            |      |
| Max Q Clear Time (g_c+l1), s |      | 6.2      |      | 2.7  |          | 5.6  |      | 2.6      |      |             |            |      |
| Green Ext Time (p_c), s      |      | 6.7      |      | 0.1  |          | 6.9  |      | 0.1      |      |             |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |             |            |      |
| HCM 6th Ctrl Delay           |      |          | 4.5  |      |          |      |      |          |      |             |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |          |      |             |            |      |

| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection          |        |      |         |       |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------|---------|-------|--------|------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 3.4    |      |         |       |        |      |
| Cane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |        | WED  | NDT     | NDD   | ODI    | OPT  |
| Traffic Vol, veh/h Future Vol, |                       |        | WBR  |         | NBK   | SBL    |      |
| Future Vol, veh/h Conflicting Peds, #/hr Conflicting Flow All C |                       |        | 00   |         | 40    | 00     |      |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |      |         |       |        |      |
| Sign Control         Stop RT Channelized         Stop None         Free         Free Free         Free RT Channelized         None         No         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |      |         |       |        |      |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |      |         |       |        |      |
| Storage Length   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |      |         |       |        |      |
| Weh in Median Storage, #         0         -         0         -         -         0           Grade, %         0         -         0         -         -         0           Peak Hour Factor         90         90         90         90         90         90           Heavy Vehicles, %         0         0         0         0         0         0           Mwnt Flow         11         22         33         11         22         33           Major/Minor         Minor         1         Major/Minor         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        | None | -       | None  | -      | None |
| Carade, %   0   - 0   - 0   - 0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        | -    |         | -     | -      | -    |
| Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        | -    |         | -     | -      |      |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grade, %              |        |      |         |       |        |      |
| Mymit Flow         11         22         33         11         22         33           Major/Minor         Minor1         Major1         Major2           Conflicting Flow All         136         49         0         0         54         0           Stage 1         49         -         -         -         -         -         -           Stage 2         87         -         -         -         -         -         -           Critical Hdwy         6.4         6.2         -         -         4.1         -           Critical Hdwy Stg 1         5.4         -         -         -         -         -           Critical Hdwy Stg 2         5.4         -         -         -         -         -         -           Critical Hdwy Stg 2         5.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak Hour Factor      | 90     | 90   | 90      | 90    | 90     | 90   |
| Major/Minor   Minor1   Major1   Major2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heavy Vehicles, %     | 0      | 0    | 0       | 0     | 0      | 0    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mvmt Flow             | 11     | 22   | 33      | 11    | 22     | 33   |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |        |      |         |       |        |      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Major/Minor           | lina-1 |      | Anic -1 |       | Mais-2 |      |
| Stage 1       49       -       -       -       -         Stage 2       87       -       -       -       -         Critical Hdwy       6.4       6.2       -       -       4.1       -         Critical Hdwy Stg 1       5.4       -       -       -       -       -         Critical Hdwy Stg 2       5.4       -       -       -       -       -       -         Follow-up Hdwy       3.5       3.3       -       -       2.2       -         Stage 1       979       -       -       -       -       -         Stage 2       941       -       -       -       -       -       -         Mov Cap-1 Maneuver       833       1015       -       1549       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |      |         |       |        |      |
| Stage 2       87       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |      | 0       | 0     |        | 0    |
| Critical Hdwy       6.4       6.2       -       -       4.1       -         Critical Hdwy Stg 1       5.4       -       -       -       -       -         Critical Hdwy Stg 2       5.4       -       -       -       -       -       -         Follow-up Hdwy       3.5       3.3       -       -       2.2       -       -         Follow-up Hdwy       3.5       3.3       -       -       2.2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        | -    | -       | -     | -      | -    |
| Critical Hdwy Stg 1       5.4       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |      | -       | -     |        | -    |
| Critical Hdwy Stg 2       5.4       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                     |        | 6.2  | -       | -     | 4.1    | -    |
| Follow-up Hdwy 3.5 3.3 - 2.2 - Pot Cap-1 Maneuver 862 1025 - 1564 - Stage 1 979 Stage 2 941 Platoon blocked, % 1549 - Mov Cap-1 Maneuver 833 1015 - 1549 - Mov Cap-2 Maneuver 833 Stage 1 969 Stage 2 919  Approach WB NB SB HCM Control Delay, s 8.9 0 2.9 HCM LOS A  Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 946 1549 - HCM Lane V/C Ratio - 0.035 0.014 - HCM Control Delay (s) - 8.9 7.4 0 HCM Control Delay (s) - 8.9 7.4 0 HCM Lane LOS - A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical Hdwy Stg 1   |        | -    | -       | -     | -      | -    |
| Pot Cap-1 Maneuver 862 1025 - 1564 - Stage 1 979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Critical Hdwy Stg 2   |        | -    | -       | -     |        | -    |
| Stage 1         979         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Follow-up Hdwy        | 3.5    | 3.3  | -       | -     | 2.2    | -    |
| Stage 2         941         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pot Cap-1 Maneuver    | 862    | 1025 | -       | -     | 1564   | -    |
| Stage 2         941         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1               | 979    | -    | -       | -     | -      | -    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 941    | -    | -       | -     | -      | -    |
| Mov Cap-1 Maneuver         833         1015         -         - 1549         -           Mov Cap-2 Maneuver         833         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |        |      | -       | _     |        | -    |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 833    | 1015 | _       | _     | 1549   | _    |
| Stage 1         969         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |      | _       | _     |        | _    |
| Stage 2         919         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        | _    | _       | _     | _      | _    |
| Approach WB NB SB  HCM Control Delay, s 8.9 0 2.9  HCM LOS A  Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT  Capacity (veh/h) 946 1549 -  HCM Lane V/C Ratio - 0.035 0.014 -  HCM Control Delay (s) - 8.9 7.4 0  HCM Lane LOS - A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        | _    | _       | _     | _      | _    |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Olage 2               | 313    |      | _       |       | _      |      |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |      |         |       |        |      |
| Minor Lane/Major Mvmt   NBT   NBRWBLn1   SBL   SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach              | WB     |      | NB      |       | SB     |      |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCM Control Delay, s  | 8.9    |      | 0       |       | 2.9    |      |
| Capacity (veh/h)       -       -       946       1549       -         HCM Lane V/C Ratio       -       -       0.035       0.014       -         HCM Control Delay (s)       -       -       8.9       7.4       0         HCM Lane LOS       -       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HCM LOS               | Α      |      |         |       |        |      |
| Capacity (veh/h)       -       -       946       1549       -         HCM Lane V/C Ratio       -       -       0.035       0.014       -         HCM Control Delay (s)       -       -       8.9       7.4       0         HCM Lane LOS       -       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |        |      |         |       |        |      |
| Capacity (veh/h)       -       -       946       1549       -         HCM Lane V/C Ratio       -       -       0.035       0.014       -         HCM Control Delay (s)       -       -       8.9       7.4       0         HCM Lane LOS       -       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min I /M - i M        |        | NDT  | NDDV    | VDI 4 | CDI    | CDT  |
| HCM Lane V/C Ratio       -       -       0.035       0.014       -         HCM Control Delay (s)       -       -       8.9       7.4       0         HCM Lane LOS       -       -       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |        | NRI  |         |       |        | 281  |
| HCM Control Delay (s)         -         -         8.9         7.4         0           HCM Lane LOS         -         -         A         A         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        | -    |         |       |        | -    |
| HCM Lane LOS A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        | -    | -       |       |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        | -    | -       |       |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM Lane LOS          |        | -    | -       |       |        | Α    |
| 10W 00W 70W Q(V0H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HCM 95th %tile Q(veh) |        | -    | -       | 0.1   | 0      | -    |

| Intersection           |        |       |         |          |          |      |
|------------------------|--------|-------|---------|----------|----------|------|
| Int Delay, s/veh       | 3.2    |       |         |          |          |      |
|                        | EDI    | EDD   | NDI     | NDT      | CDT      | CDD  |
| Movement               | EBL    | EBR   | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    | Y      | •     |         | <b>↑</b> | <b>∱</b> |      |
| Traffic Vol, veh/h     | 5      | 20    | 20      | 30       | 30       | 10   |
| Future Vol, veh/h      | 5      | 20    | 20      | 30       | 30       | 10   |
| Conflicting Peds, #/hr | 0      | 10    | 10      | 0        | 0        | 10   |
| Sign Control           | Stop   | Stop  | Free    | Free     | Free     | Free |
| RT Channelized         | -      | None  | -       | None     | -        | None |
| Storage Length         | 0      | -     | -       | _        | -        | -    |
| Veh in Median Storage, | # 0    | -     | -       | 0        | 0        | -    |
| Grade, %               | 0      | -     | -       | 0        | 0        | -    |
| Peak Hour Factor       | 90     | 90    | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %      | 0      | 0     | 0       | 0        | 0        | 0    |
| Mvmt Flow              | 6      | 22    | 22      | 33       | 33       | 11   |
|                        |        |       |         |          |          |      |
|                        |        | _     |         | _        |          |      |
|                        | linor2 |       | //ajor1 | Λ        | /lajor2  |      |
| Conflicting Flow All   | 126    | 59    | 54      | 0        | -        | 0    |
| Stage 1                | 49     | -     | -       | -        | -        | -    |
| Stage 2                | 77     | -     | -       | -        | -        | -    |
| Critical Hdwy          | 6.4    | 6.2   | 4.1     | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.4    | -     | _       | -        | _        | -    |
| Critical Hdwy Stg 2    | 5.4    | _     | -       | -        | _        | -    |
| Follow-up Hdwy         | 3.5    | 3.3   | 2.2     | _        | _        | _    |
| Pot Cap-1 Maneuver     | 874    | 1012  | 1564    | _        | _        | _    |
| Stage 1                | 979    | 1012  |         | _        | _        | _    |
| Stage 2                | 951    |       | _       | _        | -        | -    |
|                        | 301    | -     | -       |          |          |      |
| Platoon blocked, %     | 044    | 000   | 1510    | -        | -        | -    |
| Mov Cap-1 Maneuver     | 844    | 993   | 1549    | -        | -        | -    |
| Mov Cap-2 Maneuver     | 844    | -     | -       | -        | -        | -    |
| Stage 1                | 956    | -     | -       | -        | -        | -    |
| Stage 2                | 941    | -     | -       | -        | -        | -    |
|                        |        |       |         |          |          |      |
| Annroach               | EB     |       | NB      |          | SB       |      |
| Approach               |        |       |         |          |          |      |
| HCM Control Delay, s   | 8.9    |       | 2.9     |          | 0        |      |
| HCM LOS                | Α      |       |         |          |          |      |
|                        |        |       |         |          |          |      |
| Minor Lane/Major Mvmt  |        | NBL   | NRT     | EBLn1    | SBT      | SBR  |
| Capacity (veh/h)       |        | 1549  | -       |          | -        | אופט |
|                        |        |       |         |          |          | -    |
| HCM Cantral Dalay (a)  |        | 0.014 |         | 0.029    | -        | -    |
| HCM Control Delay (s)  |        | 7.4   | -       | 8.9      | -        | -    |
| HCM Lane LOS           |        | A     | -       | A        | -        | -    |
| HCM 95th %tile Q(veh)  |        | 0     | -       | 0.1      | -        | -    |
|                        |        |       |         |          |          |      |

| Intersection           |        |      |            |          |        |       |        |      |      |         |      |      |
|------------------------|--------|------|------------|----------|--------|-------|--------|------|------|---------|------|------|
| Int Delay, s/veh       | 1.8    |      |            |          |        |       |        |      |      |         |      |      |
|                        |        | EDT  | <b>EDD</b> | MOL      | MOT    | WDD   | NDI    | NDT  | NDD  | ODI     | ODT  | 000  |
| Movement               | EBL    | EBT  | EBR        | WBL      | WBT    | WBR   | NBL    | NBT  | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    | •      | 4    | •          | _        | 4      | -     | ^      | 4    | 40   | _       | 4    | _    |
| Traffic Vol, veh/h     | 0      | 0    | 0          | 5        | 5      | 5     | 0      | 30   | 10   | 5       | 30   | 5    |
| Future Vol, veh/h      | 0      | 0    | 0          | 5        | 5      | 5     | 0      | 30   | 10   | 5       | 30   | 5    |
| Conflicting Peds, #/hr | 0      | 0    | 0          | 5        | 0      | 0     | _ 0    | _ 0  | _ 5  | _ 5     | _ 0  | _ 0  |
| Sign Control           | Stop   | Stop | Stop       | Stop     | Stop   | Stop  | Free   | Free | Free | Free    | Free | Free |
| RT Channelized         | -      | -    | None       | -        | -      | None  | -      | -    | None | -       | -    | None |
| Storage Length         | -      | -    | -          | -        | -      | -     | -      | -    | -    | -       | -    | -    |
| Veh in Median Storage, | # -    | 0    | -          | -        | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Grade, %               | -      | 0    | -          | -        | 0      | -     | -      | 0    | -    | -       | 0    | -    |
| Peak Hour Factor       | 90     | 90   | 90         | 90       | 90     | 90    | 90     | 90   | 90   | 90      | 90   | 90   |
| Heavy Vehicles, %      | 0      | 0    | 0          | 0        | 0      | 0     | 0      | 0    | 0    | 0       | 0    | 0    |
| Mvmt Flow              | 0      | 0    | 0          | 6        | 6      | 6     | 0      | 33   | 11   | 6       | 33   | 6    |
|                        |        |      |            |          |        |       |        |      |      |         |      |      |
| Major/Minor N          | 1inor2 |      | _          | Minor1   |        | _     | Major1 |      | N    | //ajor2 |      |      |
| Conflicting Flow All   | 93     | 97   | 41         | 97       | 95     | 44    | 39     | 0    | 0    | 49      | 0    | 0    |
| Stage 1                | 48     | 48   | -          | 44       | 44     | -     | -      | -    | _    | _       | -    | -    |
| Stage 2                | 45     | 49   | -          | 53       | 51     | -     | -      | -    | -    | -       | -    | -    |
| Critical Hdwy          | 7.1    | 6.5  | 6.2        | 7.1      | 6.5    | 6.2   | 4.1    | -    | _    | 4.1     | -    | -    |
| Critical Hdwy Stg 1    | 6.1    | 5.5  | -          | 6.1      | 5.5    | -     | -      | -    | -    | -       | -    | -    |
| Critical Hdwy Stg 2    | 6.1    | 5.5  | -          | 6.1      | 5.5    | -     | -      | -    | _    | -       | -    | -    |
| Follow-up Hdwy         | 3.5    | 4    | 3.3        | 3.5      | 4      | 3.3   | 2.2    | -    | -    | 2.2     | -    | -    |
| Pot Cap-1 Maneuver     | 895    | 797  | 1036       | 890      | 799    | 1032  | 1584   | -    | _    | 1571    | -    | -    |
| Stage 1                | 971    | 859  | -          | 975      | 862    | -     | -      | -    | -    | -       | -    | -    |
| Stage 2                | 974    | 858  | -          | 965      | 856    | -     | -      | -    | -    | -       | -    | -    |
| Platoon blocked, %     |        |      |            |          |        |       |        | -    | -    |         | -    | -    |
| Mov Cap-1 Maneuver     | 882    | 790  | 1031       | 878      | 792    | 1027  | 1584   | -    | -    | 1564    | -    | -    |
| Mov Cap-2 Maneuver     | 882    | 790  | -          | 878      | 792    | -     | -      | -    | -    | -       | -    | -    |
| Stage 1                | 971    | 856  | -          | 970      | 858    | -     | -      | -    | -    | -       | -    | -    |
| Stage 2                | 962    | 854  | -          | 957      | 853    | -     | -      | -    | -    | -       | -    | -    |
|                        |        |      |            |          |        |       |        |      |      |         |      |      |
| Approach               | EB     |      |            | WB       |        |       | NB     |      |      | SB      |      |      |
| HCM Control Delay, s   | 0      |      |            | 9.1      |        |       | 0      |      |      | 0.9     |      |      |
| HCM LOS                | A      |      |            | 9.1<br>A |        |       | U      |      |      | 0.9     |      |      |
| I IOIVI LOS            | A      |      |            | А        |        |       |        |      |      |         |      |      |
|                        |        |      |            |          |        |       |        |      |      |         |      |      |
| Minor Lane/Major Mvmt  |        | NBL  | NBT        | NBR E    | EBLn1V |       | SBL    | SBT  | SBR  |         |      |      |
| Capacity (veh/h)       |        | 1584 | -          | -        | -      | 889   | 1564   | -    | -    |         |      |      |
| HCM Lane V/C Ratio     |        | -    | -          | -        |        | 0.019 |        | -    | -    |         |      |      |
| HCM Control Delay (s)  |        | 0    | -          | -        | 0      | 9.1   | 7.3    | 0    | -    |         |      |      |
| HCM Lane LOS           |        | Α    | -          | -        | Α      | Α     | Α      | Α    | -    |         |      |      |
| HCM 95th %tile Q(veh)  |        | 0    | -          | -        | -      | 0.1   | 0      | -    | -    |         |      |      |
|                        |        |      |            |          |        |       |        |      |      |         |      |      |

|                              |      | <b>→</b> | `    | •    | <b>←</b> | •    | •    | <b>†</b>    | <i>&gt;</i> | <b>\</b> | <b>↓</b>    | <b>→</b> |
|------------------------------|------|----------|------|------|----------|------|------|-------------|-------------|----------|-------------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT         | NBR         | SBL      | SBT         | SBR      |
| Lane Configurations          |      | 4        |      |      | 4        |      | ች    | <b>†</b> \$ |             | ች        | <b>†</b> \$ |          |
| Traffic Volume (veh/h)       | 35   | 30       | 40   | 20   | 40       | 20   | 30   | 705         | 30          | 10       | 740         | 10       |
| Future Volume (veh/h)        | 35   | 30       | 40   | 20   | 40       | 20   | 30   | 705         | 30          | 10       | 740         | 10       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0           | 0           | 0        | 0           | 0        |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.97 | 0.98 |          | 0.99 | 1.00 |             | 0.97        | 1.00     |             | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00        | 1.00     | 1.00        | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No          |             |          | No          |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870        | 1870        | 1870     | 1870        | 1870     |
| Adj Flow Rate, veh/h         | 39   | 33       | 4    | 22   | 44       | 2    | 33   | 783         | 33          | 11       | 822         | 10       |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90        | 0.90        | 0.90     | 0.90        | 0.90     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2           | 2           | 2        | 2           | 2        |
| Cap, veh/h                   | 300  | 134      | 13   | 235  | 194      | 8    | 510  | 1786        | 75          | 515      | 1851        | 23       |
| Arrive On Green              | 0.15 | 0.15     | 0.15 | 0.15 | 0.15     | 0.15 | 0.51 | 0.51        | 0.51        | 0.51     | 0.51        | 0.51     |
| Sat Flow, veh/h              | 648  | 876      | 85   | 389  | 1271     | 50   | 658  | 3469        | 146         | 668      | 3595        | 44       |
| Grp Volume(v), veh/h         | 76   | 0        | 0    | 68   | 0        | 0    | 33   | 401         | 415         | 11       | 406         | 426      |
| Grp Sat Flow(s),veh/h/ln     | 1609 | 0        | 0    | 1710 | 0        | 0    | 658  | 1777        | 1838        | 668      | 1777        | 1862     |
| Q Serve(g_s), s              | 0.1  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.9  | 3.8         | 3.8         | 0.3      | 3.9         | 3.9      |
| Cycle Q Clear(g_c), s        | 1.0  | 0.0      | 0.0  | 0.9  | 0.0      | 0.0  | 4.8  | 3.8         | 3.8         | 4.1      | 3.9         | 3.9      |
| Prop In Lane                 | 0.51 |          | 0.05 | 0.32 |          | 0.03 | 1.00 |             | 80.0        | 1.00     |             | 0.02     |
| Lane Grp Cap(c), veh/h       | 447  | 0        | 0    | 437  | 0        | 0    | 510  | 915         | 946         | 515      | 915         | 958      |
| V/C Ratio(X)                 | 0.17 | 0.00     | 0.00 | 0.16 | 0.00     | 0.00 | 0.06 | 0.44        | 0.44        | 0.02     | 0.44        | 0.44     |
| Avail Cap(c_a), veh/h        | 1239 | 0        | 0    | 1285 | 0        | 0    | 731  | 1511        | 1563        | 739      | 1511        | 1583     |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00        | 1.00     | 1.00        | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00        | 1.00        | 1.00     | 1.00        | 1.00     |
| Uniform Delay (d), s/veh     | 10.1 | 0.0      | 0.0  | 10.1 | 0.0      | 0.0  | 5.6  | 4.1         | 4.1         | 5.4      | 4.1         | 4.1      |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.1  | 0.5         | 0.5         | 0.0      | 0.5         | 0.5      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0         | 0.0         | 0.0      | 0.0         | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 0.3  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 0.1  | 0.5         | 0.5         | 0.0      | 0.5         | 0.5      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |             |             |          |             |          |
| LnGrp Delay(d),s/veh         | 10.2 | 0.0      | 0.0  | 10.1 | 0.0      | 0.0  | 5.7  | 4.6         | 4.6         | 5.4      | 4.6         | 4.6      |
| LnGrp LOS                    | В    | Α        | Α    | В    | Α        | Α    | Α    | Α           | A           | Α        | Α           | A        |
| Approach Vol, veh/h          |      | 76       |      |      | 68       |      |      | 849         |             |          | 843         |          |
| Approach Delay, s/veh        |      | 10.2     |      |      | 10.1     |      |      | 4.6         |             |          | 4.6         |          |
| Approach LOS                 |      | В        |      |      | В        |      |      | Α           |             |          | Α           |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8           |             |          |             |          |
| Phs Duration (G+Y+Rc), s     |      | 18.9     |      | 8.1  |          | 18.9 |      | 8.1         |             |          |             |          |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0         |             |          |             |          |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0        |             |          |             |          |
| Max Q Clear Time (g_c+l1), s |      | 6.8      |      | 3.0  |          | 6.1  |      | 2.9         |             |          |             |          |
| Green Ext Time (p_c), s      |      | 6.7      |      | 0.2  |          | 6.8  |      | 0.2         |             |          |             |          |
| Intersection Summary         |      |          |      |      |          |      |      |             |             |          |             |          |
| HCM 6th Ctrl Delay           |      |          | 5.1  |      |          |      |      |             |             |          |             |          |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |             |             |          |             |          |

| Intersection            |         |  |  |  |  |  |
|-------------------------|---------|--|--|--|--|--|
| Intersection Delay, s/v | /eh 7.3 |  |  |  |  |  |
| Intersection LOS        | Α       |  |  |  |  |  |
|                         |         |  |  |  |  |  |

| Movement                | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |       | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 5     | 50   | 5    | 5    | 40   | 10   | 5    | 20   | 15   | 5    | 20   | 10   |  |
| Future Vol, veh/h       | 5     | 50   | 5    | 5    | 40   | 10   | 5    | 20   | 15   | 5    | 20   | 10   |  |
| Peak Hour Factor        | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow               | 6     | 56   | 6    | 6    | 44   | 11   | 6    | 22   | 17   | 6    | 22   | 11   |  |
| Number of Lanes         | 0     | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB    |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB    |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1     |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | ft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1     |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri |       |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1     |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 7.4   |      |      | 7.3  |      |      | 7.2  |      |      | 7.3  |      |      |  |
| HCM LOS                 | Δ     |      |      | Δ    |      |      | Δ    |      |      | Δ    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 12%   | 8%     | 9%    | 14%   |
| Vol Thru, %            | 50%   | 83%    | 73%   | 57%   |
| Vol Right, %           | 38%   | 8%     | 18%   | 29%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 40    | 60     | 55    | 35    |
| LT Vol                 | 5     | 5      | 5     | 5     |
| Through Vol            | 20    | 50     | 40    | 20    |
| RT Vol                 | 15    | 5      | 10    | 10    |
| Lane Flow Rate         | 44    | 67     | 61    | 39    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.049 | 0.075  | 0.068 | 0.043 |
| Departure Headway (Hd) | 3.95  | 4.059  | 4.006 | 4.011 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 897   | 878    | 889   | 884   |
| Service Time           | 2.015 | 2.105  | 2.053 | 2.078 |
| HCM Lane V/C Ratio     | 0.049 | 0.076  | 0.069 | 0.044 |
| HCM Control Delay      | 7.2   | 7.4    | 7.3   | 7.3   |
| HCM Lane LOS           | Α     | Α      | Α     | Α     |
| HCM 95th-tile Q        | 0.2   | 0.2    | 0.2   | 0.1   |

| Intersection           |          |          |        |      |           |        |
|------------------------|----------|----------|--------|------|-----------|--------|
| Int Delay, s/veh       | 2.7      |          |        |      |           |        |
| Movement               | EBL      | EBT      | WBT    | WBR  | SBL       | SBR    |
|                        | EDL      |          |        | WDN  |           | SDR    |
| Lane Configurations    | 0        | <u>ન</u> | î•     | 40   | <b>**</b> | 0      |
| Traffic Vol, veh/h     | 0        | 0        | 5      | 40   | 20        | 0      |
| Future Vol, veh/h      | 0        | 0        | 5      | 40   | 20        | 0      |
| Conflicting Peds, #/hr | _ 0      | _ 0      | _ 0    | _ 0  | 0         | 0      |
| Sign Control           | Free     | Free     | Free   | Free | Stop      | Stop   |
| RT Channelized         | -        | None     | -      | None | -         | None   |
| Storage Length         | -        | -        | -      | -    | 0         | -      |
| Veh in Median Storage  | e, # -   | 0        | 0      | -    | 0         | -      |
| Grade, %               | -        | 0        | 0      | -    | 0         | -      |
| Peak Hour Factor       | 90       | 90       | 90     | 90   | 90        | 90     |
| Heavy Vehicles, %      | 2        | 2        | 2      | 2    | 2         | 2      |
| Mvmt Flow              | 0        | 0        | 6      | 44   | 22        | 0      |
| WWW.CT IOW             | •        |          |        | • •  |           | •      |
|                        |          |          |        |      |           |        |
| Major/Minor            | Major1   | N        | Major2 |      | Minor2    |        |
| Conflicting Flow All   | 50       | 0        | -      | 0    | 28        | 28     |
| Stage 1                | _        | -        | -      | -    | 28        | -      |
| Stage 2                | -        | -        | -      | _    | 0         | -      |
| Critical Hdwy          | 4.12     | _        | -      | _    | 6.42      | 6.22   |
| Critical Hdwy Stg 1    | _        | _        | _      | _    | 5.42      | -      |
| Critical Hdwy Stg 2    | -        | _        | _      | _    | 5.42      | -      |
| Follow-up Hdwy         | 2.218    | <u>-</u> | _      |      | 3.518     |        |
| Pot Cap-1 Maneuver     | 1557     | _        | _      | _    | 987       | 1047   |
|                        |          |          | _      |      | 995       | 1041   |
| Stage 1                | -        | -        | -      | -    |           | -      |
| Stage 2                | -        | -        | -      | -    | -         | -      |
| Platoon blocked, %     |          | -        | -      | -    |           |        |
| Mov Cap-1 Maneuver     | 1557     | -        | -      | -    | 987       | 1047   |
| Mov Cap-2 Maneuver     | -        | -        | -      | -    | 987       | -      |
| Stage 1                | -        | -        | -      | -    | 995       | -      |
| Stage 2                | -        | -        | -      | -    | -         | -      |
|                        |          |          |        |      |           |        |
| A                      | ED       |          | \A/D   |      | 0.0       |        |
| Approach               | EB       |          | WB     |      | SB        |        |
| HCM Control Delay, s   | 0        |          | 0      |      | 8.7       |        |
| HCM LOS                |          |          |        |      | Α         |        |
|                        |          |          |        |      |           |        |
| Minor Lane/Major Mvm   | <b>\</b> | EBL      | EBT    | WBT  | WBR       | CDI n1 |
|                        | IL       |          | LDI    | VVDI |           |        |
| Capacity (veh/h)       |          | 1557     | -      | -    | -         | 987    |
| HCM Lane V/C Ratio     |          | -        | -      | -    |           | 0.023  |
| HCM Control Delay (s)  |          | 0        | -      | -    | -         | 8.7    |
| HCM Lane LOS           |          | Α        | -      | -    | -         | Α      |
| HCM 95th %tile Q(veh   |          | 0        | -      | -    | -         | 0.1    |
| ·                      |          |          |        |      |           |        |

| Intersection            |         |      |      |        |        |       |          |            |          |         |            |      |
|-------------------------|---------|------|------|--------|--------|-------|----------|------------|----------|---------|------------|------|
| Int Delay, s/veh        | 1.6     |      |      |        |        |       |          |            |          |         |            |      |
|                         | EBL     | EDT  | EDD  | \\/DI  | WDT    | WDD   | NDI      | NDT        | NDD      | CDI     | CDT        | SBR  |
| Movement Configurations | CDL     | EBT  | EBR  | WBL    | WBT    | WBR   | NBL      | NBT        | NBR      | SBL     | SBT        | SBK  |
| Lane Configurations     | 40      | ↔    | 00   | _      | 4      | 40    | <b>ነ</b> | <b>↑</b> ↑ | _        | Ţ       | <b>↑</b> ↑ | 40   |
| Traffic Vol, veh/h      | 10      | 5    | 20   | 5      | 5      | 10    | 40       | 775        | 5        | 5       | 790        | 10   |
| Future Vol, veh/h       | 10      | 5    | 20   | 5      | 5      | 10    | 40       | 775        | 5        | 5       | 790        | 10   |
| Conflicting Peds, #/hr  | 0       | 0    | 0    | 5      | 0      | 5     | 10       | 0          | 5        | 10      | 0          | 5    |
| Sign Control            | Stop    | Stop | Stop | Stop   | Stop   | Stop  | Free     | Free       | Free     | Free    | Free       | Free |
| RT Channelized          | -       | -    | None | -      | -      | None  | -        | -          | None     | -<br>75 | -          | None |
| Storage Length          | -       | -    | -    | -      | -      | -     | 70       | -          | -        | 75      | -          | -    |
| Veh in Median Storage,  | , # -   | 0    | -    | -      | 0      | -     | -        | 0          | -        | -       | 0          | -    |
| Grade, %                | -       | 0    | -    | -      | 0      | -     | -        | 0          | -        | -       | 0          | -    |
| Peak Hour Factor        | 90      | 90   | 90   | 90     | 90     | 90    | 90       | 90         | 90       | 90      | 90         | 90   |
| Heavy Vehicles, %       | 2       | 2    | 2    | 2      | 2      | 2     | 2        | 2          | 2        | 2       | 2          | 2    |
| Mvmt Flow               | 11      | 6    | 22   | 6      | 6      | 11    | 44       | 861        | 6        | 6       | 878        | 11   |
|                         |         |      |      |        |        |       |          |            |          |         |            |      |
| Major/Minor N           | /linor2 |      | 1    | Minor1 |        |       | Major1   |            | <u> </u> | /lajor2 |            |      |
| Conflicting Flow All    | 1433    | 1871 | 460  | 1421   | 1873   | 449   | 899      | 0          | 0        | 877     | 0          | 0    |
| Stage 1                 | 906     | 906  | -    | 962    | 962    | -     | -        | -          | -        | -       | -          | -    |
| Stage 2                 | 527     | 965  | -    | 459    | 911    | -     | -        | -          | -        | -       | -          | -    |
| Critical Hdwy           | 7.54    | 6.54 | 6.94 | 7.54   | 6.54   | 6.94  | 4.14     | -          | -        | 4.14    | -          | -    |
| Critical Hdwy Stg 1     | 6.54    | 5.54 | -    | 6.54   | 5.54   | -     | -        | -          | -        | -       | -          | -    |
| Critical Hdwy Stg 2     | 6.54    | 5.54 | -    | 6.54   | 5.54   | -     | -        | -          | -        | -       | -          | -    |
| Follow-up Hdwy          | 3.52    | 4.02 | 3.32 | 3.52   | 4.02   | 3.32  | 2.22     | -          | -        | 2.22    | -          | -    |
| Pot Cap-1 Maneuver      | 95      | 71   | 548  | 97     | 71     | 557   | 751      | -          | -        | 766     | -          | -    |
| Stage 1                 | 297     | 353  | -    | 275    | 332    | -     | -        | -          | -        | -       | -          | -    |
| Stage 2                 | 502     | 331  | -    | 551    | 351    | -     | -        | -          | -        | -       | -          | -    |
| Platoon blocked, %      |         |      |      |        |        |       |          | -          | -        |         | -          | -    |
| Mov Cap-1 Maneuver      | 81      | 65   | 540  | 81     | 65     | 549   | 744      | -          | -        | 759     | -          | -    |
| Mov Cap-2 Maneuver      | 81      | 65   | -    | 81     | 65     | -     | -        | -          | -        | -       | -          | -    |
| Stage 1                 | 277     | 347  | -    | 256    | 309    | -     | -        | -          | -        | -       | -          | -    |
| Stage 2                 | 452     | 308  | -    | 513    | 345    | -     | -        | -          | -        | -       | -          | -    |
|                         |         |      |      |        |        |       |          |            |          |         |            |      |
| Approach                | EB      |      |      | WB     |        |       | NB       |            |          | SB      |            |      |
| HCM Control Delay, s    | 38.1    |      |      | 39.3   |        |       | 0.5      |            |          | 0.1     |            |      |
| HCM LOS                 | E       |      |      | E      |        |       | 3.0      |            |          | J. 1    |            |      |
|                         | _       |      |      | _      |        |       |          |            |          |         |            |      |
| Minor Long/Maior NA     |         | NDI  | NDT  | NDD !  | TDL 41 | MDL 4 | CDI      | CDT        | CDD      |         |            |      |
| Minor Lane/Major Mvmt   | τ       | NBL  | NBT  |        | EBLn1V |       | SBL      | SBT        | SBR      |         |            |      |
| Capacity (veh/h)        |         | 744  | -    | -      |        | 127   | 759      | -          | -        |         |            |      |
| HCM Lane V/C Ratio      |         | 0.06 | -    |        |        | 0.175 |          | -          | -        |         |            |      |
| HCM Control Delay (s)   |         | 10.1 | -    | -      |        | 39.3  | 9.8      | -          | -        |         |            |      |
| HCM Lane LOS            |         | В    | -    | -      | E      | E     | A        | -          | -        |         |            |      |
| HCM 95th %tile Q(veh)   |         | 0.2  | -    | -      | 1      | 0.6   | 0        | -          | -        |         |            |      |

| Intersection           |            |          |        |        |          |          |          |        |      |        |      |      |
|------------------------|------------|----------|--------|--------|----------|----------|----------|--------|------|--------|------|------|
| Int Delay, s/veh       | 6          |          |        |        |          |          |          |        |      |        |      |      |
| • •                    |            |          |        |        |          |          |          |        |      |        |      |      |
| Movement               | EBL        | EBT      | EBR    | WBL    | WBT      | WBR      | NBL      | NBT    | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |            | 4        |        |        | 4        |          |          | 4      |      |        | 4    |      |
| Traffic Vol, veh/h     | 10         | 15       | 15     | 5      | 30       | 5        | 5        | 20     | 5    | 5      | 20   | 5    |
| Future Vol, veh/h      | 10         | 15       | 15     | 5      | 30       | 5        | 5        | 20     | 5    | 5      | 20   | 5    |
| Conflicting Peds, #/hr | 5          | 0        | 0      | 0      | 0        | 5        | 10       | 0      | 5    | 10     | 0    | 5    |
| Sign Control           | Stop       | Stop     | Stop   | Stop   | Stop     | Stop     | Free     | Free   | Free | Free   | Free | Free |
| RT Channelized         | -          | -        | None   | -      | -        | None     | -        | -      | None | -      | -    | None |
| Storage Length         | -          | -        | -      | -      | -        | -        | -        | -      | -    | -      | -    | -    |
| Veh in Median Storage  | e,# -      | 0        | -      | -      | 0        | -        | -        | 0      | -    | -      | 0    | -    |
| Grade, %               | -          | 0        | -      | -      | 0        | -        | -        | 0      | -    | -      | 0    | -    |
| Peak Hour Factor       | 90         | 90       | 90     | 90     | 90       | 90       | 90       | 90     | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 4          | 4        | 4      | 4      | 4        | 4        | 4        | 4      | 4    | 4      | 4    | 4    |
| Mvmt Flow              | 11         | 17       | 17     | 6      | 33       | 6        | 6        | 22     | 6    | 6      | 22   | 6    |
|                        |            |          |        |        |          |          |          |        |      |        |      |      |
| Major/Minor            | Minor2     |          |        | Minor1 |          |          | Major1   |        |      | Major2 |      |      |
| Conflicting Flow All   | 109        | 97       | 35     | 101    | 97       | 40       | 38       | 0      | 0    | 38     | 0    | 0    |
| Stage 1                | 47         | 47       | ათ     | 47     | 47       | 40       | 30       | U      | U    | J0     | -    |      |
| Stage 1<br>Stage 2     | 62         | 50       | -      | 54     | 50       | -        | -        | -      |      | -      | -    | -    |
| Critical Hdwy          | 7.14       | 6.54     | 6.24   | 7.14   | 6.54     | 6.24     | 4.14     | _      | -    | 4.14   | -    | -    |
| Critical Hdwy Stg 1    | 6.14       | 5.54     | 0.24   | 6.14   | 5.54     | 0.24     | 4.14     | -      | -    | 4.14   | -    | -    |
| Critical Hdwy Stg 2    | 6.14       | 5.54     | -      | 6.14   | 5.54     | -        | -        | _      | -    | -      | _    | -    |
| , ,                    | 3.536      | 4.036    | 3.336  | 3.536  | 4.036    | 3.336    | 2.236    | -      |      | 2.236  | -    | -    |
| Follow-up Hdwy         |            | 789      | 1032   | 875    | 789      | 1026     | 1559     | _      | -    | 1559   | _    | -    |
| Pot Cap-1 Maneuver     | 865<br>962 | 852      |        | 962    | 852      | 1020     | 1009     | -      |      | 1009   | _    | -    |
| Stage 1                | 962        | 849      | -      | 952    | 849      | -        | -        | -      | -    | -      | -    | -    |
| Stage 2                | 344        | 049      | -      | 903    | 049      | -        | -        | -      |      | -      | -    | -    |
| Platoon blocked, %     | 815        | 767      | 1022   | 833    | 767      | 1011     | 1544     | _      | -    | 1544   | _    | -    |
| Mov Cap-1 Maneuver     |            | 767      |        | 833    | 767      | 1011     | 1344     | -      |      | 1044   | -    | -    |
| Mov Cap-2 Maneuver     | 949        | 840      | -      | 949    | 840      | -        | -        | _      | -    | -      | _    | -    |
| Stage 1                | 894        | 837      | -      | 949    | 837      | -        | -        | -      | -    | -      | -    | -    |
| Stage 2                | 094        | 03/      | -      | 915    | 03/      | -        | -        | -      | -    | -      | -    | -    |
|                        |            |          |        |        |          |          |          |        |      |        |      |      |
| Approach               | EB         |          |        | WB     |          |          | NB       |        |      | SB     |      |      |
| HCM Control Delay, s   | 9.4        |          |        | 9.8    |          |          | 1.2      |        |      | 1.2    |      |      |
| HCM LOS                | Α          |          |        | Α      |          |          |          |        |      |        |      |      |
|                        |            |          |        |        |          |          |          |        |      |        |      |      |
| Minor Lane/Major Mvn   | nt         | NBL      | NBT    | NBR    | EBLn1\   | VBI n1   | SBL      | SBT    | SBR  |        |      |      |
| Capacity (veh/h)       |            | 1544     |        | -      |          | 799      | 1544     |        |      |        |      |      |
| HCM Lane V/C Ratio     |            | 0.004    | _      |        | 0.052    |          |          | _      | _    |        |      |      |
| HCM Control Delay (s   | )          | 7.3      | 0      |        | 9.4      | 9.8      | 7.3      | 0      | _    |        |      |      |
| HCM Lane LOS           | 7          | 7.3<br>A | A      |        | 9.4<br>A | 9.0<br>A | 7.3<br>A | A      |      |        |      |      |
| HCM 95th %tile Q(veh   | ١,         | 0        | -<br>- | -      | 0.2      | 0.2      | 0        | -<br>- | -    |        |      |      |
| HOW South with Q(ver   | 1)         | U        | -      | -      | 0.2      | 0.2      | U        | -      | -    |        |      |      |

| Int Delay, s/veh   4.6   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement         EBL         EBT         EBR         WBL         WBR         WBL         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lane Configurations         Image: Configuration of the proof of                                 |
| Traffic Vol, veh/h         5         30         0         5         30         5         0         20         5         5         20         5           Future Vol, veh/h         5         30         0         5         30         5         0         20         5         5         20         5           Conflicting Peds, #/hr         0         0         5         5         0         0         5         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Future Vol, veh/h         5         30         0         5         30         5         0         20         5         5         20         5           Conflicting Peds, #/hr         0         0         5         5         0         0         5         0         5         5         0         5           Sign Control         Free         Free         Free         Free         Free         Free         Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conflicting Peds, #/hr         0         0         5         5         0         5         0         5         5         0         5           Sign Control         Free         Free         Free         Free         Free         Free         Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sign Control         Free         Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RT Channelized         -         -         None         -         -         None         -         -         None           Storage Length         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Storage Length       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Veh in Median Storage, # -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       -       0 -       0 -       0 -       0 -       0 -       0 -       -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -       0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Grade, % - 0 0 0 0 0 - Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mymt Flow 6 33 0 6 33 6 0 22 6 6 22 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MININET ION 0 00 0 0 22 0 0 22 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Major/Minor Major/ Major/ Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Major/Minor Major1 Major2 Minor1 Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conflicting Flow All 39 0 0 38 0 0 117 101 43 112 98 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stage 1 50 50 - 48 48 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stage 2 67 51 - 64 50 - Critical Hdwy 4.12 4.12 7.12 6.52 6.22 7.12 6.52 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Follow-up Hdwy 2.218 2.218 3.518 4.018 3.318 3.518 4.018 3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pot Cap-1 Maneuver 1571 1572 859 789 1027 866 792 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage 1 963 853 - 965 855 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stage 2 943 852 - 947 853 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mov Cap-1 Maneuver 1571 1565 823 779 1017 833 782 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mov Cap-2 Maneuver 823 779 - 833 782 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage 1 954 845 - 961 852 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stage 2 905 849 - 909 845 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HCM LOS A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| March and March March Application of the Control of |
| Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Capacity (veh/h) 817 1571 1565 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HCM Lane V/C Ratio 0.034 0.004 0.004 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HCM Control Delay (s) 9.6 7.3 0 - 7.3 0 - 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCM Lane LOS A A A - A A - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCM 95th %tile Q(veh) 0.1 0 0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                              | •    | •     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        |      |
|------------------------------|------|-------|----------|----------|----------|----------|------|
| Movement                     | WBL  | WBR   | NBT      | NBR      | SBL      | SBT      |      |
| Lane Configurations          | 1,1  | 7     | <b>^</b> | 7        | ሻ        | <b>^</b> |      |
| Traffic Volume (veh/h)       | 130  | 320   | 480      | 150      | 390      | 450      |      |
| Future Volume (veh/h)        | 130  | 320   | 480      | 150      | 390      | 450      |      |
| Initial Q (Qb), veh          | 0    | 0     | 0        | 0        | 0        | 0        |      |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00  |          | 0.96     | 1.00     |          |      |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Work Zone On Approach        | No   |       | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870  | 1870     | 1870     | 1870     | 1870     |      |
| Adj Flow Rate, veh/h         | 144  | 60    | 533      | 167      | 433      | 500      |      |
| Peak Hour Factor             | 0.90 | 0.90  | 0.90     | 0.90     | 0.90     | 0.90     |      |
| Percent Heavy Veh, %         | 2    | 2     | 2        | 2        | 2        | 2        |      |
| Cap, veh/h                   | 441  | 663   | 1007     | 433      | 517      | 2381     |      |
| Arrive On Green              | 0.13 | 0.13  | 0.28     | 0.28     | 0.29     | 0.67     |      |
| Sat Flow, veh/h              | 3456 | 1585  | 3647     | 1529     | 1781     | 3647     |      |
| Grp Volume(v), veh/h         | 144  | 60    | 533      | 167      | 433      | 500      |      |
| Grp Sat Flow(s), veh/h/ln    | 1728 | 1585  | 1777     | 1529     | 1781     | 1777     |      |
| Q Serve(g_s), s              | 2.0  | 1.2   | 6.6      | 4.6      | 11.8     | 2.8      |      |
| Cycle Q Clear(g_c), s        | 2.0  | 1.2   | 6.6      | 4.6      | 11.8     | 2.8      |      |
| Prop In Lane                 | 1.00 | 1.00  |          | 1.00     | 1.00     |          |      |
| Lane Grp Cap(c), veh/h       | 441  | 663   | 1007     | 433      | 517      | 2381     |      |
| V/C Ratio(X)                 | 0.33 | 0.09  | 0.53     | 0.39     | 0.84     | 0.21     |      |
| Avail Cap(c_a), veh/h        | 1731 | 1254  | 2053     | 884      | 1166     | 4757     |      |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Upstream Filter(I)           | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Uniform Delay (d), s/veh     | 20.6 | 9.1   | 15.7     | 15.0     | 17.3     | 3.3      |      |
| Incr Delay (d2), s/veh       | 0.2  | 0.0   | 0.6      | 0.8      | 3.7      | 0.0      |      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      |      |
| %ile BackOfQ(50%),veh/ln     | 0.7  | 0.3   | 2.3      | 1.5      | 4.5      | 0.4      |      |
| Unsig. Movement Delay, s/veh |      |       |          |          |          |          |      |
| _nGrp Delay(d),s/veh         | 20.8 | 9.2   | 16.3     | 15.8     | 21.0     | 3.3      |      |
| _nGrp LOS                    | C    | A     | В        | В        | C        | A        |      |
| Approach Vol, veh/h          | 204  | •     | 700      |          |          | 933      |      |
| Approach Delay, s/veh        | 17.4 |       | 16.2     |          |          | 11.5     |      |
| Approach LOS                 | В    |       | В        |          |          | В        |      |
|                              |      | 2     |          |          | 5        |          | 0    |
| Timer - Assigned Phs         |      | 2     |          |          | 5        | 6        | 8    |
| Phs Duration (G+Y+Rc), s     |      | 40.3  |          |          | 20.1     | 20.2     | 11.6 |
| Change Period (Y+Rc), s      |      | * 5.5 |          |          | 5.0      | 5.5      | 5.0  |
| Max Green Setting (Gmax), s  |      | * 70  |          |          | 34.0     | 30.0     | 26.0 |
| Max Q Clear Time (g_c+l1), s |      | 4.8   |          |          | 13.8     | 8.6      | 4.0  |
| Green Ext Time (p_c), s      |      | 3.5   |          |          | 1.3      | 5.6      | 0.3  |
| ntersection Summary          |      |       |          |          |          |          |      |
| HCM 6th Ctrl Delay           |      |       | 13.9     |          |          |          |      |
| HCM 6th LOS                  |      |       | В        |          |          |          |      |
| Notes                        |      |       |          |          |          |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection            |         |          |         |          |            |      |
|-------------------------|---------|----------|---------|----------|------------|------|
| Int Delay, s/veh        | 0.3     |          |         |          |            |      |
| Movement                | EBL     | EBR      | NBL     | NBT      | SBT        | SBR  |
|                         | EDL     |          | INDL    |          |            | SBN  |
| Lane Configurations     | ٥       | <b>7</b> | ٥       | <b>^</b> | <b>↑</b> } | 20   |
| Traffic Vol, veh/h      | 0       | 30       | 0       | 630      | 550        | 30   |
| Future Vol, veh/h       | 0       | 30       | 0       | 630      | 550        | 30   |
| Conflicting Peds, #/hr  | 0       | 0        | 0       | _ 0      | 0          | _ 0  |
| Sign Control            | Stop    | Stop     | Free    | Free     | Free       | Free |
| RT Channelized          | -       | None     | -       | None     | -          | None |
| Storage Length          | -       | 0        | -       | -        | -          | -    |
| Veh in Median Storage,  |         | -        | -       | 0        | 0          | -    |
| Grade, %                | 0       | -        | -       | 0        | 0          | -    |
| Peak Hour Factor        | 90      | 90       | 90      | 90       | 90         | 90   |
| Heavy Vehicles, %       | 2       | 2        | 2       | 2        | 2          | 2    |
| Mvmt Flow               | 0       | 33       | 0       | 700      | 611        | 33   |
|                         |         |          |         |          |            |      |
| NA ' 18 A'              |         |          |         |          |            |      |
|                         | /linor2 |          | //ajor1 |          | //ajor2    |      |
| Conflicting Flow All    | -       | 322      | -       | 0        | -          | 0    |
| Stage 1                 | -       | -        | -       | -        | -          | -    |
| Stage 2                 | -       | -        | -       | -        | -          | -    |
| Critical Hdwy           | -       | 6.94     | -       | -        | -          | -    |
| Critical Hdwy Stg 1     | -       | -        | -       | -        | -          | -    |
| Critical Hdwy Stg 2     | -       | -        | -       | -        | -          | -    |
| Follow-up Hdwy          | -       | 3.32     | _       | -        | _          | -    |
| Pot Cap-1 Maneuver      | 0       | 674      | 0       | _        | -          | -    |
| Stage 1                 | 0       | -        | 0       | _        | _          | _    |
| Stage 2                 | 0       | _        | 0       | _        | _          | _    |
| Platoon blocked, %      |         |          | U       |          | _          |      |
| •                       |         | 674      |         | -        |            | -    |
| Mov Cap-1 Maneuver      | -       |          | -       | -        | -          | -    |
| Mov Cap-2 Maneuver      | -       | -        | -       | -        | -          | -    |
| Stage 1                 | -       | -        | -       | -        | -          | -    |
| Stage 2                 | -       | -        | -       | -        | -          | -    |
|                         |         |          |         |          |            |      |
| Approach                | EB      |          | NB      |          | SB         |      |
| HCM Control Delay, s    | 10.6    |          | 0       |          | 0          |      |
| HCM LOS                 | В       |          | U       |          | U          |      |
| I IOIVI LOO             | D       |          |         |          |            |      |
|                         |         |          |         |          |            |      |
| Minor Lane/Major Mvmt   | l       | NBT E    | EBLn1   | SBT      | SBR        |      |
| Capacity (veh/h)        |         | _        | 674     | -        | _          |      |
| HCM Lane V/C Ratio      |         | _        | 0.049   | _        | _          |      |
| HCM Control Delay (s)   |         | _        | 10.6    | _        | _          |      |
| HCM Lane LOS            |         | _        | В       | _        | _          |      |
| HCM 95th %tile Q(veh)   |         | -        | 0.2     | -        |            |      |
| Holvi sour wille Q(ven) |         | -        | 0.2     | -        | -          |      |

| Intersection           |        |       |           |       |        |             |
|------------------------|--------|-------|-----------|-------|--------|-------------|
| Int Delay, s/veh       | 2.5    |       |           |       |        |             |
| Movement               | WDI    | \A/DD | NDT       | NIDD  | SBL    | CDT         |
| Movement               | WBL    | WBR   | NBT       | NBR   | ODL    | SBT         |
| Lane Configurations    | ¥      | -     | <b>\$</b> | _     | -      | <u>ર્</u> ન |
| Traffic Vol, veh/h     | 5      | 5     | 20        | 5     | 5      | 10          |
| Future Vol, veh/h      | 5      | 5     | 20        | 5     | 5      | 10          |
| Conflicting Peds, #/hr | 5      | 5     | 0         | 0     | 5      | 0           |
| Sign Control           | Stop   | Stop  | Free      | Free  | Free   | Free        |
| RT Channelized         | -      | None  | -         | None  | -      | None        |
| Storage Length         | 0      | -     | -         | -     | -      | -           |
| Veh in Median Storage  | e, # 0 | -     | 0         | -     | -      | 0           |
| Grade, %               | 0      | -     | 0         | -     | -      | 0           |
| Peak Hour Factor       | 90     | 90    | 90        | 90    | 90     | 90          |
| Heavy Vehicles, %      | 3      | 3     | 3         | 3     | 3      | 3           |
| Mvmt Flow              | 6      | 6     | 22        | 6     | 6      | 11          |
|                        |        |       |           | •     | Ū      |             |
|                        |        |       |           |       |        |             |
| Major/Minor            | Minor1 | N     | Major1    |       | Major2 |             |
| Conflicting Flow All   | 58     | 35    | 0         | 0     | 33     | 0           |
| Stage 1                | 30     | _     | -         | -     | -      | -           |
| Stage 2                | 28     | -     | -         | -     | -      | -           |
| Critical Hdwy          | 6.43   | 6.23  | -         | _     | 4.13   | _           |
| Critical Hdwy Stg 1    | 5.43   | -     | _         | _     | -      | _           |
| Critical Hdwy Stg 2    | 5.43   | _     | _         | _     | _      | _           |
| Follow-up Hdwy         | 3.527  |       | _         | _     | 2.227  | _           |
| Pot Cap-1 Maneuver     | 947    | 1035  | _         | _     | 1572   | _           |
|                        | 990    |       |           | -     | 1372   |             |
| Stage 1                |        | -     | -         | _     | -      | -           |
| Stage 2                | 992    | -     | -         | -     | -      | -           |
| Platoon blocked, %     |        |       | -         | -     |        | -           |
| Mov Cap-1 Maneuver     | 934    | 1025  | -         | -     | 1565   | -           |
| Mov Cap-2 Maneuver     | 934    | -     | -         | -     | -      | -           |
| Stage 1                | 985    | -     | -         | -     | -      | -           |
| Stage 2                | 983    | -     | -         | -     | -      | -           |
|                        |        |       |           |       |        |             |
|                        |        |       |           |       |        |             |
| Approach               | WB     |       | NB        |       | SB     |             |
| HCM Control Delay, s   | 8.7    |       | 0         |       | 2.4    |             |
| HCM LOS                | Α      |       |           |       |        |             |
|                        |        |       |           |       |        |             |
| Minor Lang/Major Myn   | nt.    | NBT   | NIDDV     | VBLn1 | SBL    | SBT         |
| Minor Lane/Major Mvn   | IL     |       |           |       |        |             |
| Capacity (veh/h)       |        | -     | -         | 977   | 1565   | -           |
| HCM Lane V/C Ratio     |        | -     |           | 0.011 |        | -           |
| HCM Control Delay (s)  |        | -     | -         | 8.7   | 7.3    | 0           |
| HCM Lane LOS           |        | -     | -         | Α     | Α      | Α           |
| HCM 95th %tile Q(veh   | )      | -     | -         | 0     | 0      | -           |
| <u> </u>               |        |       |           |       |        |             |

|                              | ᄼ    | <b>→</b> | •     | •    | <b>←</b> | •    | 4    | <b>†</b> | ~    | <b>/</b> | <b>+</b>   | 4    |
|------------------------------|------|----------|-------|------|----------|------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR   | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |       |      | - ↔      |      | 7    | <b>^</b> |      | 7        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 30   | 5        | 5     | 20   | 5        | 10   | 20   | 550      | 20   | 20       | 510        | 30   |
| Future Volume (veh/h)        | 30   | 5        | 5     | 20   | 5        | 10   | 20   | 550      | 20   | 20       | 510        | 30   |
| Initial Q (Qb), veh          | 0    | 0        | 0     | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.98 |          | 1.00  | 0.97 |          | 1.00 | 1.00 |          | 0.97 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |       |      | No       |      |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870  | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 33   | 6        | -5    | 22   | 6        | 0    | 22   | 611      | 20   | 22       | 567        | 30   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90  | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2     | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 423  | 66       | 0     | 204  | 18       | 0    | 716  | 2596     | 85   | 696      | 2537       | 134  |
| Arrive On Green              | 0.06 | 0.06     | 0.00  | 0.06 | 0.06     | 0.00 | 0.74 | 0.74     | 0.74 | 0.74     | 0.74       | 0.74 |
| Sat Flow, veh/h              | 1476 | 268      | -224  | 1149 | 313      | 0    | 819  | 3508     | 115  | 793      | 3427       | 181  |
| Grp Volume(v), veh/h         | 0    | 0        | 0     | 28   | 0        | 0    | 22   | 309      | 322  | 22       | 294        | 303  |
| Grp Sat Flow(s),veh/h/ln     | 0    | 0        | 0     | 1462 | 0        | 0    | 819  | 1777     | 1846 | 793      | 1777       | 1831 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0   | 0.9  | 0.0      | 0.0  | 0.4  | 2.6      | 2.6  | 0.4      | 2.4        | 2.4  |
| Cycle Q Clear(g_c), s        | 0.0  | 0.0      | 0.0   | 0.9  | 0.0      | 0.0  | 2.8  | 2.6      | 2.6  | 3.0      | 2.4        | 2.4  |
| Prop In Lane                 | 0.97 |          | -0.15 | 0.79 |          | 0.00 | 1.00 |          | 0.06 | 1.00     |            | 0.10 |
| Lane Grp Cap(c), veh/h       | 0    | 0        | 0     | 222  | 0        | 0    | 716  | 1315     | 1366 | 696      | 1315       | 1356 |
| V/C Ratio(X)                 | 0.00 | 0.00     | 0.00  | 0.13 | 0.00     | 0.00 | 0.03 | 0.24     | 0.24 | 0.03     | 0.22       | 0.22 |
| Avail Cap(c_a), veh/h        | 0    | 0        | 0     | 615  | 0        | 0    | 716  | 1315     | 1366 | 696      | 1315       | 1356 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 0.00 | 0.00     | 0.00  | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 0.0  | 0.0      | 0.0   | 21.3 | 0.0      | 0.0  | 2.4  | 1.9      | 1.9  | 2.4      | 1.9        | 1.9  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0   | 0.3  | 0.0      | 0.0  | 0.1  | 0.4      | 0.4  | 0.1      | 0.4        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 0.0      | 0.0   | 0.3  | 0.0      | 0.0  | 0.0  | 0.2      | 0.2  | 0.0      | 0.2        | 0.2  |
| Unsig. Movement Delay, s/veh |      |          |       |      |          |      |      |          |      |          |            |      |
| LnGrp Delay(d),s/veh         | 0.0  | 0.0      | 0.0   | 21.6 | 0.0      | 0.0  | 2.4  | 2.4      | 2.3  | 2.5      | 2.3        | 2.3  |
| LnGrp LOS                    | Α    | Α        | Α     | С    | Α        | Α    | Α    | Α        | Α    | Α        | Α          | A    |
| Approach Vol, veh/h          |      | 0        |       |      | 28       |      |      | 653      |      |          | 619        |      |
| Approach Delay, s/veh        |      | 0.0      |       |      | 21.6     |      |      | 2.3      |      |          | 2.3        |      |
| Approach LOS                 |      |          |       |      | С        |      |      | Α        |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |       | 4    |          | 6    |      | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 40.0     |       | 7.3  |          | 40.0 |      | 7.3      |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |       | 4.5  |          | 5.0  |      | 4.5      |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 35.0     |       | 15.5 |          | 35.0 |      | 15.5     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 4.8      |       | 0.0  |          | 5.0  |      | 2.9      |      |          |            |      |
| Green Ext Time (p_c), s      |      | 5.9      |       | 0.0  |          | 5.5  |      | 0.0      |      |          |            |      |
| Intersection Summary         |      |          |       |      |          |      |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 2.7   |      |          |      |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | Α     |      |          |      |      |          |      |          |            |      |

| Intersection                         |         |       |          |       |          |      |
|--------------------------------------|---------|-------|----------|-------|----------|------|
| Int Delay, s/veh                     | 1.4     |       |          |       |          |      |
|                                      |         | \A/DD | NOT      | NDD   | 051      | ODT  |
| Movement                             | WBL     | WBR   | NBT      | NBR   | SBL      | SBT  |
| Lane Configurations                  | ¥       | •     | <b>↑</b> | -     | -        |      |
| Traffic Vol, veh/h                   | 0       | 0     | 10       | 5     | 5        | 5    |
| Future Vol, veh/h                    | 0       | 0     | 10       | 5     | 5        | 5    |
| Conflicting Peds, #/hr               | 0       | 5     | 0        | 0     | 0        | 0    |
| Sign Control                         | Stop    | Stop  | Free     | Free  | Free     | Free |
| RT Channelized                       | -       | None  | -        | None  | -        | None |
| Storage Length                       | 0       | -     | -        | -     | -        | -    |
| Veh in Median Storage                |         | -     | 0        | -     | -        | 0    |
| Grade, %                             | 0       | -     | 0        | -     | -        | 0    |
| Peak Hour Factor                     | 90      | 90    | 90       | 90    | 90       | 90   |
| Heavy Vehicles, %                    | 3       | 3     | 3        | 3     | 3        | 3    |
| Mvmt Flow                            | 0       | 0     | 11       | 6     | 6        | 6    |
|                                      |         |       |          |       |          |      |
| Maiay/Mina                           | Minaria |       | Anic at  |       | Maia - 0 |      |
|                                      | Minor1  |       | Major1   |       | Major2   |      |
| Conflicting Flow All                 | 32      | 19    | 0        | 0     | 17       | 0    |
| Stage 1                              | 14      | -     | -        | -     | -        | -    |
| Stage 2                              | 18      | -     | -        | -     | -        | -    |
| Critical Hdwy                        | 6.43    | 6.23  | -        | -     | 4.13     | -    |
| Critical Hdwy Stg 1                  | 5.43    | -     | -        | -     | -        | -    |
| Critical Hdwy Stg 2                  | 5.43    | -     | -        | -     | -        | -    |
| Follow-up Hdwy                       | 3.527   |       | -        | -     | 2.227    | -    |
| Pot Cap-1 Maneuver                   | 979     | 1056  | -        | -     | 1594     | -    |
| Stage 1                              | 1006    | -     | -        | -     | -        | -    |
| Stage 2                              | 1002    | -     | -        | -     | -        | -    |
| Platoon blocked, %                   |         |       | -        | -     |          | -    |
| Mov Cap-1 Maneuver                   | 975     | 1051  | -        | -     | 1594     | _    |
| Mov Cap-2 Maneuver                   |         | -     | _        | _     | -        | _    |
| Stage 1                              | 1006    | -     | -        | _     | _        | _    |
| Stage 2                              | 998     | _     | _        | -     | _        | _    |
| J                                    | 300     |       |          |       |          |      |
|                                      |         |       |          |       |          |      |
| Approach                             | WB      |       | NB       |       | SB       |      |
| HCM Control Delay, s                 | 0       |       | 0        |       | 3.6      |      |
| HCM LOS                              | Α       |       |          |       |          |      |
|                                      |         |       |          |       |          |      |
| Minor Lane/Major Mvr                 | nt      | NBT   | NIDDV    | WBLn1 | SBL      | SBT  |
|                                      | IIL     | INDI  | INDKV    |       |          |      |
| Capacity (veh/h)                     |         | -     | -        |       | 1594     | -    |
| HCM Lane V/C Ratio                   | ,       | -     | -        |       | 0.003    | -    |
| HCM Control Delay (s                 | )       | -     | -        | 0     | 7.3      | -    |
| 110111 100                           |         |       |          |       |          |      |
| HCM Lane LOS<br>HCM 95th %tile Q(veh | ,       | -     | -        | A -   | A<br>0   | -    |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | 4    | 1    | <b>†</b> | ~    | <b>/</b> | <b></b> | 4        |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|---------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT     | SBR      |
| Lane Configurations          |      | 4        |      | 7    | ર્ન      | 7    |      | ર્ન      | 7    | 7        | 4       |          |
| Traffic Volume (veh/h)       | 60   | 70       | 0    | 430  | 40       | 240  | 0    | 200      | 570  | 400      | 220     | 40       |
| Future Volume (veh/h)        | 60   | 70       | 0    | 430  | 40       | 240  | 0    | 200      | 570  | 400      | 220     | 40       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0       | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |         | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00    | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No      |          |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856     | 1856    | 1856     |
| Adj Flow Rate, veh/h         | 67   | 78       | 0    | 509  | 0        | 0    | 0    | 222      | 0    | 366      | 353     | 44       |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90    | 0.90     |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3        | 3    | 3        | 3       | 3        |
| Cap, veh/h                   | 87   | 101      | 0    | 649  | 0        |      | 0    | 294      |      | 483      | 442     | 55       |
| Arrive On Green              | 0.10 | 0.10     | 0.00 | 0.18 | 0.00     | 0.00 | 0.00 | 0.16     | 0.00 | 0.27     | 0.27    | 0.27     |
| Sat Flow, veh/h              | 838  | 976      | 0    | 3534 | 0        | 1572 | 0    | 1856     | 1572 | 1767     | 1616    | 201      |
| Grp Volume(v), veh/h         | 145  | 0        | 0    | 509  | 0        | 0    | 0    | 222      | 0    | 366      | 0       | 397      |
| Grp Sat Flow(s),veh/h/ln     | 1814 | 0        | 0    | 1767 | 0        | 1572 | 0    | 1856     | 1572 | 1767     | 0       | 1818     |
| Q Serve(g_s), s              | 5.5  | 0.0      | 0.0  | 9.8  | 0.0      | 0.0  | 0.0  | 8.1      | 0.0  | 13.5     | 0.0     | 14.5     |
| Cycle Q Clear(g_c), s        | 5.5  | 0.0      | 0.0  | 9.8  | 0.0      | 0.0  | 0.0  | 8.1      | 0.0  | 13.5     | 0.0     | 14.5     |
| Prop In Lane                 | 0.46 |          | 0.00 | 1.00 |          | 1.00 | 0.00 |          | 1.00 | 1.00     |         | 0.11     |
| Lane Grp Cap(c), veh/h       | 188  | 0        | 0    | 649  | 0        |      | 0    | 294      |      | 483      | 0       | 497      |
| V/C Ratio(X)                 | 0.77 | 0.00     | 0.00 | 0.78 | 0.00     |      | 0.00 | 0.75     |      | 0.76     | 0.00    | 0.80     |
| Avail Cap(c_a), veh/h        | 306  | 0        | 0    | 893  | 0        |      | 0    | 625      |      | 769      | 0       | 791      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00    | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 0.00 | 1.00     | 0.00 | 1.00     | 0.00    | 1.00     |
| Uniform Delay (d), s/veh     | 31.1 | 0.0      | 0.0  | 27.7 | 0.0      | 0.0  | 0.0  | 28.6     | 0.0  | 23.7     | 0.0     | 24.0     |
| Incr Delay (d2), s/veh       | 6.6  | 0.0      | 0.0  | 3.2  | 0.0      | 0.0  | 0.0  | 3.9      | 0.0  | 2.5      | 0.0     | 3.0      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0     | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 2.7  | 0.0      | 0.0  | 4.1  | 0.0      | 0.0  | 0.0  | 3.7      | 0.0  | 5.4      | 0.0     | 6.0      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |         |          |
| LnGrp Delay(d),s/veh         | 37.7 | 0.0      | 0.0  | 30.9 | 0.0      | 0.0  | 0.0  | 32.6     | 0.0  | 26.2     | 0.0     | 27.1     |
| LnGrp LOS                    | D    | A        | Α    | С    | A        |      | A    | С        |      | С        | A       | <u>C</u> |
| Approach Vol, veh/h          |      | 145      |      |      | 509      |      |      | 222      |      |          | 763     |          |
| Approach Delay, s/veh        |      | 37.7     |      |      | 30.9     |      |      | 32.6     |      |          | 26.6    |          |
| Approach LOS                 |      | D        |      |      | С        |      |      | С        |      |          | С       |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |         |          |
| Phs Duration (G+Y+Rc), s     |      | 16.3     |      | 18.1 |          | 24.5 |      | 12.4     |      |          |         |          |
| Change Period (Y+Rc), s      |      | 5.0      |      | 5.0  |          | 5.0  |      | 5.0      |      |          |         |          |
| Max Green Setting (Gmax), s  |      | 24.0     |      | 18.0 |          | 31.0 |      | 12.0     |      |          |         |          |
| Max Q Clear Time (g_c+l1), s |      | 10.1     |      | 11.8 |          | 16.5 |      | 7.5      |      |          |         |          |
| Green Ext Time (p_c), s      |      | 0.9      |      | 1.0  |          | 3.0  |      | 0.3      |      |          |         |          |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |         |          |
| HCM 6th Ctrl Delay           |      |          | 29.7 |      |          |      |      |          |      |          |         |          |
| HCM 6th LOS                  |      |          | С    |      |          |      |      |          |      |          |         |          |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

|                           | ၨ             | <b>→</b> | •    | •    | <b>←</b> | •    | •   | <b>†</b> | <b>/</b> | /    | ļ    | ✓     |  |
|---------------------------|---------------|----------|------|------|----------|------|-----|----------|----------|------|------|-------|--|
| Movement                  | EBL           | EBT      | EBR  | WBL  | WBT      | WBR  | NBL | NBT      | NBR      | SBL  | SBT  | SBR   |  |
| Lane Configurations       |               | <b>^</b> | 7    | 44   | <b>^</b> |      |     |          |          | Ť    | ર્ન  | 77    |  |
| Traffic Volume (veh/h)    | 0             | 1140     | 90   | 330  | 610      | 0    | 0   | 0        | 0        | 960  | 0    | 500   |  |
| Future Volume (veh/h)     | 0             | 1140     | 90   | 330  | 610      | 0    | 0   | 0        | 0        | 960  | 0    | 500   |  |
| Initial Q (Qb), veh       | 0             | 0        | 0    | 0    | 0        | 0    |     |          |          | 0    | 0    | 0     |  |
|                           | 1.00          |          | 1.00 | 1.00 |          | 1.00 |     |          |          | 1.00 |      | 1.00  |  |
|                           | 1.00          | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |          |          | 1.00 | 1.00 | 1.00  |  |
| Work Zone On Approach     | 1             | No       |      |      | No       |      |     |          |          |      | No   |       |  |
| Adj Sat Flow, veh/h/ln    | 0             | 1870     | 1870 | 1870 | 1870     | 0    |     |          |          | 1870 | 1870 | 1870  |  |
| Adj Flow Rate, veh/h      | 0             | 1200     | 37   | 347  | 642      | 0    |     |          |          | 1011 | 0    | 526   |  |
|                           | 0.95          | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 |     |          |          | 0.95 | 0.95 | 0.95  |  |
| Percent Heavy Veh, %      | 0             | 2        | 2    | 2    | 2        | 0    |     |          |          | 2    | 2    | 2     |  |
| Cap, veh/h                | 0             | 1285     | 573  | 435  | 1961     | 0    |     |          |          | 1093 | 0    | 972   |  |
|                           | 0.00          | 0.36     | 0.36 | 0.13 | 0.55     | 0.00 |     |          |          | 0.31 | 0.00 | 0.31  |  |
| Sat Flow, veh/h           | 0             | 3647     | 1585 | 3456 | 3647     | 0    |     |          |          | 3563 | 0    | 3170  |  |
| Grp Volume(v), veh/h      | 0             | 1200     | 37   | 347  | 642      | 0    |     |          |          | 1011 | 0    | 526   |  |
| Grp Sat Flow(s),veh/h/ln  | 0             | 1777     | 1585 | 1728 | 1777     | 0    |     |          |          | 1781 | 0    | 1585  |  |
| Q Serve(g_s), s           | 0.0           | 25.3     | 1.2  | 7.6  | 7.7      | 0.0  |     |          |          | 21.4 | 0.0  | 10.7  |  |
| Cycle Q Clear(g_c), s     | 0.0           | 25.3     | 1.2  | 7.6  | 7.7      | 0.0  |     |          |          | 21.4 | 0.0  | 10.7  |  |
|                           | 0.00          |          | 1.00 | 1.00 |          | 0.00 |     |          |          | 1.00 |      | 1.00  |  |
| Lane Grp Cap(c), veh/h    | 0             | 1285     | 573  | 435  | 1961     | 0    |     |          |          | 1093 | 0    | 972   |  |
| . ,                       | 0.00          | 0.93     | 0.06 | 0.80 | 0.33     | 0.00 |     |          |          | 0.93 | 0.00 | 0.54  |  |
| Avail Cap(c_a), veh/h     | 0             | 1325     | 591  | 889  | 2467     | 0    |     |          |          | 1145 | 0    | 1019  |  |
|                           | 1.00          | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |          |          | 1.00 | 1.00 | 1.00  |  |
| ,                         | 0.00          | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 |     |          |          | 1.00 | 0.00 | 1.00  |  |
| Uniform Delay (d), s/veh  |               | 23.9     | 16.2 | 33.0 | 9.5      | 0.0  |     |          |          | 26.1 | 0.0  | 22.4  |  |
| Incr Delay (d2), s/veh    | 0.0           | 11.7     | 0.0  | 1.3  | 0.0      | 0.0  |     |          |          | 11.8 | 0.0  | 0.2   |  |
| Initial Q Delay(d3),s/veh |               | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |     |          |          | 0.0  | 0.0  | 0.0   |  |
| %ile BackOfQ(50%),veh     |               | 12.0     | 0.4  | 3.2  | 2.7      | 0.0  |     |          |          | 10.3 | 0.0  | 3.8   |  |
| Unsig. Movement Delay,    |               |          | 46.5 |      |          |      |     |          |          | 05.5 |      | 0.5 = |  |
| LnGrp Delay(d),s/veh      | 0.0           | 35.6     | 16.2 | 34.3 | 9.6      | 0.0  |     |          |          | 37.9 | 0.0  | 22.7  |  |
| LnGrp LOS                 | Α             | D        | В    | С    | Α        | Α    |     |          |          | D    | Α    | С     |  |
| Approach Vol, veh/h       |               | 1237     |      |      | 989      |      |     |          |          |      | 1537 |       |  |
| Approach Delay, s/veh     |               | 35.0     |      |      | 18.3     |      |     |          |          |      | 32.7 |       |  |
| Approach LOS              |               | D        |      |      | В        |      |     |          |          |      | С    |       |  |
| Timer - Assigned Phs      | 1             | 2        |      | 4    |          | 6    |     |          |          |      |      |       |  |
| Phs Duration (G+Y+Rc),    | <b>\$</b> 4.8 | 34.1     |      | 28.9 |          | 48.9 |     |          |          |      |      |       |  |
| Change Period (Y+Rc), s   | s 5.0         | * 6      |      | * 5  |          | * 6  |     |          |          |      |      |       |  |
| Max Green Setting (Gma    | 22(I), (S     | * 29     |      | * 25 |          | * 54 |     |          |          |      |      |       |  |
| Max Q Clear Time (g_c+    | 119,6s        | 27.3     |      | 23.4 |          | 9.7  |     |          |          |      |      |       |  |
| Green Ext Time (p_c), s   | 0.2           | 0.8      |      | 0.5  |          | 1.8  |     |          |          |      |      |       |  |
| Intersection Summary      |               |          |      |      |          |      |     |          |          |      |      |       |  |
| HCM 6th Ctrl Delay        |               |          | 29.7 |      |          |      |     |          |          |      |      |       |  |
| HCM 6th LOS               |               |          | С    |      |          |      |     |          |          |      |      |       |  |
|                           |               |          |      |      |          |      |     |          |          |      |      |       |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶       | <b>→</b> | •    | •        | <b>←</b> | •        | 4    | †    | <b>/</b> | <b>/</b> | <b>↓</b> | 4   |  |
|---------------------------|---------|----------|------|----------|----------|----------|------|------|----------|----------|----------|-----|--|
| Movement                  | EBL     | EBT      | EBR  | WBL      | WBT      | WBR      | NBL  | NBT  | NBR      | SBL      | SBT      | SBR |  |
| Lane Configurations       | ሻሻ      | <b>^</b> |      |          | 44       | 7        |      | 4    | 7        |          |          |     |  |
| Traffic Volume (veh/h)    | 440     | 1680     | 0    | 0        | 850      | 1000     | 90   | 0    | 350      | 0        | 0        | 0   |  |
| Future Volume (veh/h)     | 440     | 1680     | 0    | 0        | 850      | 1000     | 90   | 0    | 350      | 0        | 0        | 0   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0        | 0        | 0        | 0    | 0    | 0        |          |          |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00 | 1.00     |          | 0.99     | 1.00 |      | 1.00     |          |          |     |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Work Zone On Approac      |         | No       |      |          | No       |          |      | No   |          |          |          |     |  |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870     | 0    | 0        | 1870     | 1870     | 1870 | 1870 | 1870     |          |          |     |  |
| Adj Flow Rate, veh/h      | 463     | 1768     | 0    | 0        | 895      | 633      | 95   | 0    | 285      |          |          |     |  |
| Peak Hour Factor          | 0.95    | 0.95     | 0.95 | 0.95     | 0.95     | 0.95     | 0.95 | 0.95 | 0.95     |          |          |     |  |
| Percent Heavy Veh, %      | 2       | 2        | 0    | 0        | 2        | 2        | 2    | 2    | 2        |          |          |     |  |
| Cap, veh/h                | 574     | 2269     | 0    | 0        | 1431     | 629      | 744  | 0    | 331      |          |          |     |  |
| Arrive On Green           | 0.17    | 0.64     | 0.00 | 0.00     | 0.40     | 0.40     | 0.21 | 0.00 | 0.21     |          |          |     |  |
| Sat Flow, veh/h           | 3456    | 3647     | 0    | 0        | 3647     | 1562     | 3563 | 0    | 1585     |          |          |     |  |
| Grp Volume(v), veh/h      | 463     | 1768     | 0    | 0        | 895      | 633      | 95   | 0    | 285      |          |          |     |  |
| Grp Sat Flow(s),veh/h/li  |         | 1777     | 0    | 0        | 1777     | 1562     | 1781 | 0    | 1585     |          |          |     |  |
| Q Serve(g_s), s           | 9.3     | 25.8     | 0.0  | 0.0      | 14.5     | 29.0     | 1.6  | 0.0  | 12.5     |          |          |     |  |
| Cycle Q Clear(g_c), s     | 9.3     | 25.8     | 0.0  | 0.0      | 14.5     | 29.0     | 1.6  | 0.0  | 12.5     |          |          |     |  |
| Prop In Lane              | 1.00    |          | 0.00 | 0.00     |          | 1.00     | 1.00 |      | 1.00     |          |          |     |  |
| Lane Grp Cap(c), veh/h    |         | 2269     | 0    | 0        | 1431     | 629      | 744  | 0    | 331      |          |          |     |  |
| V/C Ratio(X)              | 0.81    | 0.78     | 0.00 | 0.00     | 0.63     | 1.01     | 0.13 | 0.00 | 0.86     |          |          |     |  |
| Avail Cap(c_a), veh/h     | 960     | 2665     | 0    | 0        | 1431     | 629      | 1237 | 0    | 550      |          |          |     |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 0.00 | 0.00     | 1.00     | 1.00     | 1.00 | 0.00 | 1.00     |          |          |     |  |
| Uniform Delay (d), s/vel  |         | 9.4      | 0.0  | 0.0      | 17.2     | 21.5     | 23.2 | 0.0  | 27.5     |          |          |     |  |
| Incr Delay (d2), s/veh    | 1.0     | 1.1      | 0.0  | 0.0      | 0.6      | 37.5     | 0.0  | 0.0  | 3.6      |          |          |     |  |
| Initial Q Delay(d3),s/vel |         | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      | 0.0  | 0.0  | 0.0      |          |          |     |  |
| %ile BackOfQ(50%),vel     |         | 8.0      | 0.0  | 0.0      | 5.5      | 16.1     | 0.6  | 0.0  | 4.8      |          |          |     |  |
| Unsig. Movement Delay     |         |          |      |          |          |          |      |      |          |          |          |     |  |
| LnGrp Delay(d),s/veh      | 29.9    | 10.4     | 0.0  | 0.0      | 17.8     | 59.0     | 23.2 | 0.0  | 31.1     |          |          |     |  |
| LnGrp LOS                 | С       | В        | A    | <u> </u> | В        | <u> </u> | С    | A    | С        |          |          |     |  |
| Approach Vol, veh/h       |         | 2231     |      |          | 1528     |          |      | 380  |          |          |          |     |  |
| Approach Delay, s/veh     |         | 14.5     |      |          | 34.9     |          |      | 29.1 |          |          |          |     |  |
| Approach LOS              |         | В        |      |          | С        |          |      | С    |          |          |          |     |  |
| Timer - Assigned Phs      |         | 2        |      |          | 5        | 6        |      | 8    |          |          |          |     |  |
| Phs Duration (G+Y+Rc)     | ), s    | 52.0     |      |          | 17.0     | 35.0     |      | 20.0 |          |          |          |     |  |
| Change Period (Y+Rc),     | S       | * 6      |      |          | 5.0      | * 6      |      | 5.0  |          |          |          |     |  |
| Max Green Setting (Gm     | nax), s | * 54     |      |          | 20.0     | * 29     |      | 25.0 |          |          |          |     |  |
| Max Q Clear Time (g_c     |         | 27.8     |      |          | 11.3     | 31.0     |      | 14.5 |          |          |          |     |  |
| Green Ext Time (p_c), s   | 3       | 6.9      |      |          | 0.7      | 0.0      |      | 0.6  |          |          |          |     |  |
| Intersection Summary      |         |          |      |          |          |          |      |      |          |          |          |     |  |
| HCM 6th Ctrl Delay        |         |          | 23.3 |          |          |          |      |      |          |          |          |     |  |
| HCM 6th LOS               |         |          | С    |          |          |          |      |      |          |          |          |     |  |
|                           |         |          |      |          |          |          |      |      |          |          |          |     |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

# Appendix E – Cumulative Plus Project Conditions

Peak Hour Traffic Volume Forecasts, Lane Configurations, and Technical Calculations

| Intersection           |        |          |         |          |            |      |
|------------------------|--------|----------|---------|----------|------------|------|
| Int Delay, s/veh       | 2.3    |          |         |          |            |      |
|                        |        | EDD      | NDI     | NET      | ODT        | ODD  |
| Movement               | EBL    | EBR      | NBL     | NBT      | SBT        | SBR  |
| Lane Configurations    | ¥      | 40       |         | <b>^</b> | <b>↑</b> } | 040  |
| Traffic Vol, veh/h     | 40     | 40       | 50      | 1020     | 560        | 210  |
| Future Vol, veh/h      | 40     | 40       | 50      | 1020     | 560        | 210  |
| Conflicting Peds, #/hr | 0      | 0        | _ 10    | _ 0      | _ 0        | _ 0  |
| Sign Control           | Stop   | Stop     | Free    | Free     | Free       | Free |
| RT Channelized         | -      | None     | -       |          | -          | None |
| Storage Length         | 0      | -        | -       | -        | -          | -    |
| Veh in Median Storage  |        | -        | -       | 0        | 0          | -    |
| Grade, %               | 0      | -        | -       | 0        | 0          | -    |
| Peak Hour Factor       | 90     | 90       | 90      | 90       | 90         | 90   |
| Heavy Vehicles, %      | 3      | 3        | 3       | 3        | 3          | 3    |
| Mvmt Flow              | 44     | 44       | 56      | 1133     | 622        | 233  |
|                        |        |          |         |          |            |      |
| Major/Minor N          | Minor2 | N        | //ajor1 | N        | /lajor2    |      |
| Conflicting Flow All   | 1428   | 438      | 865     | 0        | -          | 0    |
| Stage 1                | 749    | -        | -       | -        | _          | -    |
| Stage 2                | 679    | <u>-</u> | _       | _        | _          | _    |
| Critical Hdwy          | 6.86   | 6.96     | 4.16    | _        | _          | _    |
| Critical Hdwy Stg 1    | 5.86   | 0.50     |         | _        | _          | _    |
| Critical Hdwy Stg 2    | 5.86   | _        | _       |          | _          |      |
| Follow-up Hdwy         | 3.53   | 3.33     | 2.23    | _        | _          | _    |
| Pot Cap-1 Maneuver     | 125    | 564      | 767     | _        | _          |      |
| Stage 1                | 425    | 504      | 101     | -        | _          | -    |
|                        | 462    | -        | -       | -        | -          | _    |
| Stage 2                | 402    | _        | -       | -        | -          | -    |
| Platoon blocked, %     | 00     | EEO      | 760     | -        | -          | -    |
| Mov Cap-1 Maneuver     | 98     | 559      | 760     | -        | -          | -    |
| Mov Cap-2 Maneuver     | 98     | -        | -       | -        | -          | -    |
| Stage 1                | 337    | -        | -       | -        | -          | -    |
| Stage 2                | 457    | -        | -       | -        | -          | -    |
|                        |        |          |         |          |            |      |
| Approach               | EB     |          | NB      |          | SB         |      |
| HCM Control Delay, s   | 48.7   |          | 0.5     |          | 0          |      |
| HCM LOS                | Е      |          |         |          |            |      |
|                        | _      |          |         |          |            |      |
| NA: 1 (0.0.1. h.)      |        | NE       | NET     | EDL 4    | 057        | 000  |
| Minor Lane/Major Mvm   | it     | NBL      |         | EBLn1    | SBT        | SBR  |
| Capacity (veh/h)       |        | 760      | -       |          | -          | -    |
| HCM Lane V/C Ratio     |        | 0.073    | -       | 0.532    | -          | -    |
| HCM Control Delay (s)  |        | 10.1     | -       |          | -          | -    |
| HCM Lane LOS           |        | В        | -       | E        | -          | -    |
| HCM 95th %tile Q(veh)  |        | 0.2      | -       | 2.7      | -          | -    |
|                        |        |          |         |          |            |      |

| 0.6                                  |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | WBR                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>^</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                          | 1040                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                    | 0                                                                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stop                                 | Stop                                                                     | Free                                                                                                                                                          | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                                    | None                                                                     | -                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                    | -                                                                        | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e, # 0                               | -                                                                        | 0                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                                    | -                                                                        | 0                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | 90                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                          | 1100                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      |                                                                          | Major1                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1538                                 | 594                                                                      | 0                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1172                                 | -                                                                        | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 366                                  | -                                                                        | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.86                                 | 6.96                                                                     | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.86                                 | -                                                                        | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | -                                                                        | _                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.53                                 | 3.33                                                                     | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | 446                                                                      | _                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | -                                                                        | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 669                                  |                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | _                                                                        | _                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | -                                                                        | -<br>-                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 98                                   |                                                                          | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 98<br>198                            | 442                                                                      | -                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198                                  | 442<br>-                                                                 | -<br>-<br>-                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 578<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 198<br>252                           | 442<br>-<br>-                                                            | -<br>-<br>-                                                                                                                                                   | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198                                  | 442<br>-                                                                 | -                                                                                                                                                             | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198<br>252                           | 442<br>-<br>-                                                            | -<br>-<br>-                                                                                                                                                   | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252                           | 442<br>-<br>-                                                            | -<br>-<br>-                                                                                                                                                   | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252<br>630<br>WB              | 442<br>-<br>-                                                            | -<br>-<br>-                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252<br>630                    | 442<br>-<br>-                                                            | -<br>-<br>-<br>NB                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-<br>SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252<br>630<br>WB<br>17.3      | 442<br>-<br>-                                                            | -<br>-<br>-<br>NB                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-<br>SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252<br>630<br>WB<br>17.3<br>C | 442<br>-<br>-<br>-                                                       | -<br>-<br>-<br>-<br>NB<br>0                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-<br>SB<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198<br>252<br>630<br>WB<br>17.3      | 442<br>-<br>-                                                            | -<br>-<br>-<br>-<br>NB<br>0                                                                                                                                   | -<br>-<br>-<br>-<br>WBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>SB<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198<br>252<br>630<br>WB<br>17.3<br>C | 442<br>-<br>-<br>-                                                       | NB<br>0                                                                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB 0.4  SBL 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198<br>252<br>630<br>WB<br>17.3<br>C | 442<br>-<br>-<br>-                                                       | NB<br>0                                                                                                                                                       | -<br>-<br>-<br>-<br>-<br>338<br>0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB 0.4  SBL 578 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198<br>252<br>630<br>WB<br>17.3<br>C | 442<br>-<br>-<br>-                                                       | NB<br>0                                                                                                                                                       | WBLn1<br>338<br>0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB 0.4  SBL 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>-<br>-<br>SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198<br>252<br>630<br>WB<br>17.3<br>C | 442<br>-<br>-<br>-                                                       | NB 0                                                                                                                                                          | -<br>-<br>-<br>-<br>-<br>338<br>0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB 0.4  SBL 578 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | Stop  0 e, # 0 90 3 11  Minor1 1538 1172 366 6.86 5.86 5.86 3.53 105 255 | WBL WBR  10 30 10 30 0 0 Stop Stop - None 0 - 9, # 0 - 90 90 3 3 11 33  Minor1   1538 594 1172 - 366 - 6.86 6.96 5.86 - 5.86 - 5.86 - 3.53 3.33 105 446 255 - | WBL         WBR         NBT           10         30         1040           10         30         1040           0         0         0         0           Stop         Stop         Free           None         -         -         0           90         -         0         0           90         90         90         90           3         3         3         1156           Minor1         Major1         Major1           1538         594         0           1172         -         -           366         -         -           6.86         6.96         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86         -         -           5.86 <td>WBL         WBR         NBT         NBR           10         30         1040         10           10         30         1040         10           0         0         0         10           Stop         Stop         Free         Free           -         None         -         None           0         -         -         -           90         90         90         90           3         3         3         3           11         33         1156         11           Minor1         Major1         I           1538         594         0         0           1172         -         -         -           6.86         6.96         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -</td> <td>WBL         WBR         NBT         NBR         SBL           10         30         1040         10         20           10         30         1040         10         20           0         0         0         10         0           Stop         Stop         Free         Free         Free           -         None         -         -         -           0         -         -         -         -           90         90         90         90         90           3         3         3         3         3           11         33         1156         11         22           Minor1         Major1         Major2           1538         594         0         0         1177           1172         -         -         -         -           6.86         6.96         -         -         4.16           5.86         -         -         -         -           3.53         3.33         -         -         2.23           105         446         -         -         584           255</td> | WBL         WBR         NBT         NBR           10         30         1040         10           10         30         1040         10           0         0         0         10           Stop         Stop         Free         Free           -         None         -         None           0         -         -         -           90         90         90         90           3         3         3         3           11         33         1156         11           Minor1         Major1         I           1538         594         0         0           1172         -         -         -           6.86         6.96         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         -         -           5.86         -         - | WBL         WBR         NBT         NBR         SBL           10         30         1040         10         20           10         30         1040         10         20           0         0         0         10         0           Stop         Stop         Free         Free         Free           -         None         -         -         -           0         -         -         -         -           90         90         90         90         90           3         3         3         3         3           11         33         1156         11         22           Minor1         Major1         Major2           1538         594         0         0         1177           1172         -         -         -         -           6.86         6.96         -         -         4.16           5.86         -         -         -         -           3.53         3.33         -         -         2.23           105         446         -         -         584           255 |

|                              | ۶   | <b>→</b> | •   | •    | <b>←</b> | •    | 1    | <b>†</b> | ~    | <b>&gt;</b> | ţ    | 4    |
|------------------------------|-----|----------|-----|------|----------|------|------|----------|------|-------------|------|------|
| Movement                     | EBL | EBT      | EBR | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations          |     |          |     |      | <b>^</b> |      |      | ર્ન      |      |             | ₽    |      |
| Traffic Volume (veh/h)       | 0   | 0        | 0   | 90   | 540      | 150  | 90   | 260      | 0    | 0           | 120  | 5    |
| Future Volume (veh/h)        | 0   | 0        | 0   | 90   | 540      | 150  | 90   | 260      | 0    | 0           | 120  | 5    |
| Initial Q (Qb), veh          |     |          |     | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)          |     |          |     | 1.00 |          | 0.99 | 0.98 |          | 1.00 | 1.00        |      | 1.00 |
| Parking Bus, Adj             |     |          |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Work Zone On Approach        |     |          |     |      | No       |      |      | No       |      |             | No   |      |
| Adj Sat Flow, veh/h/ln       |     |          |     | 1856 | 1856     | 1856 | 1856 | 1856     | 0    | 0           | 1856 | 1856 |
| Adj Flow Rate, veh/h         |     |          |     | 100  | 600      | 121  | 100  | 289      | 0    | 0           | 133  | 0    |
| Peak Hour Factor             |     |          |     | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90        | 0.90 | 0.90 |
| Percent Heavy Veh, %         |     |          |     | 3    | 3        | 3    | 3    | 3        | 0    | 0           | 3    | 3    |
| Cap, veh/h                   |     |          |     | 140  | 876      | 186  | 270  | 459      | 0    | 0           | 615  | 0    |
| Arrive On Green              |     |          |     | 0.34 | 0.34     | 0.34 | 0.33 | 0.33     | 0.00 | 0.00        | 0.33 | 0.00 |
| Sat Flow, veh/h              |     |          |     | 418  | 2613     | 555  | 309  | 1384     | 0    | 0           | 1856 | 0    |
| Grp Volume(v), veh/h         |     |          |     | 439  | 0        | 382  | 389  | 0        | 0    | 0           | 133  | 0    |
| Grp Sat Flow(s),veh/h/ln     |     |          |     | 1835 | 0        | 1751 | 1694 | 0        | 0    | 0           | 1856 | 0    |
| Q Serve(g_s), s              |     |          |     | 5.6  | 0.0      | 5.0  | 2.8  | 0.0      | 0.0  | 0.0         | 1.4  | 0.0  |
| Cycle Q Clear(g_c), s        |     |          |     | 5.6  | 0.0      | 5.0  | 5.2  | 0.0      | 0.0  | 0.0         | 1.4  | 0.0  |
| Prop In Lane                 |     |          |     | 0.23 |          | 0.32 | 0.26 |          | 0.00 | 0.00        |      | 0.00 |
| Lane Grp Cap(c), veh/h       |     |          |     | 615  | 0        | 587  | 729  | 0        | 0    | 0           | 615  | 0    |
| V/C Ratio(X)                 |     |          |     | 0.71 | 0.00     | 0.65 | 0.53 | 0.00     | 0.00 | 0.00        | 0.22 | 0.00 |
| Avail Cap(c_a), veh/h        |     |          |     | 1699 | 0        | 1622 | 1096 | 0        | 0    | 0           | 1031 | 0    |
| HCM Platoon Ratio            |     |          |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)           |     |          |     | 1.00 | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 | 0.00        | 1.00 | 0.00 |
| Uniform Delay (d), s/veh     |     |          |     | 7.8  | 0.0      | 7.6  | 7.7  | 0.0      | 0.0  | 0.0         | 6.5  | 0.0  |
| Incr Delay (d2), s/veh       |     |          |     | 0.6  | 0.0      | 0.5  | 0.2  | 0.0      | 0.0  | 0.0         | 0.1  | 0.0  |
| Initial Q Delay(d3),s/veh    |     |          |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     |     |          |     | 1.3  | 0.0      | 1.1  | 1.1  | 0.0      | 0.0  | 0.0         | 0.3  | 0.0  |
| Unsig. Movement Delay, s/veh |     |          |     |      |          |      |      |          |      |             |      |      |
| LnGrp Delay(d),s/veh         |     |          |     | 8.4  | 0.0      | 8.1  | 7.9  | 0.0      | 0.0  | 0.0         | 6.6  | 0.0  |
| LnGrp LOS                    |     |          |     | Α    | Α        | Α    | Α    | Α        | Α    | Α           | Α    | А    |
| Approach Vol, veh/h          |     |          |     |      | 821      |      |      | 389      |      |             | 133  |      |
| Approach Delay, s/veh        |     |          |     |      | 8.3      |      |      | 7.9      |      |             | 6.6  |      |
| Approach LOS                 |     |          |     |      | A        |      |      | A        |      |             | A    |      |
|                              |     | 0        |     |      | , ,      |      |      |          |      |             | , ,  |      |
| Timer - Assigned Phs         |     | 2        |     | 4    |          |      |      | 8        |      |             |      |      |
| Phs Duration (G+Y+Rc), s     |     | 14.0     |     | 12.9 |          |      |      | 12.9     |      |             |      |      |
| Change Period (Y+Rc), s      |     | * 5      |     | * 4  |          |      |      | * 4      |      |             |      |      |
| Max Green Setting (Gmax), s  |     | * 25     |     | * 15 |          |      |      | * 15     |      |             |      |      |
| Max Q Clear Time (g_c+l1), s |     | 7.6      |     | 3.4  |          |      |      | 7.2      |      |             |      |      |
| Green Ext Time (p_c), s      |     | 1.2      |     | 0.2  |          |      |      | 0.6      |      |             |      |      |
| Intersection Summary         |     |          |     |      |          |      |      |          |      |             |      |      |
| HCM 6th Ctrl Delay           |     |          | 8.0 |      |          |      |      |          |      |             |      |      |
| HCM 6th LOS                  |     |          | Α   |      |          |      |      |          |      |             |      |      |
| Notes                        |     |          |     |      |          |      |      |          |      |             |      |      |

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶    | <b>→</b> | •    | •    | <b>←</b> | •   | 4    | <b>†</b> | <u> </u> | <b>&gt;</b> | ļ    | ✓    |
|---------------------------|------|----------|------|------|----------|-----|------|----------|----------|-------------|------|------|
| Movement                  | EBL  | EBT      | EBR  | WBL  | WBT      | WBR | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       |      | <b>^</b> |      |      |          |     |      | f)       |          |             | 4    |      |
| Traffic Volume (veh/h)    | 20   | 730      | 100  | 0    | 0        | 0   | 0    | 330      | 90       | 80          | 140  | 0    |
| Future Volume (veh/h)     | 20   | 730      | 100  | 0    | 0        | 0   | 0    | 330      | 90       | 80          | 140  | 0    |
| Initial Q (Qb), veh       | 0    | 0        | 0    |      |          |     | 0    | 0        | 0        | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 0.99 |      |          |     | 1.00 |          | 0.94     | 0.99        |      | 1.00 |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 |      |          |     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00 | 1.00 |
| Work Zone On Approac      |      | No       |      |      |          |     |      | No       |          |             | No   |      |
| Adj Sat Flow, veh/h/ln    | 1856 | 1856     | 1856 |      |          |     | 0    | 1856     | 1856     | 1856        | 1856 | 0    |
| Adj Flow Rate, veh/h      | 22   | 811      | 81   |      |          |     | 0    | 367      | 48       | 89          | 156  | 0    |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90 |      |          |     | 0.90 | 0.90     | 0.90     | 0.90        | 0.90 | 0.90 |
| Percent Heavy Veh, %      | 3    | 3        | 3    |      |          |     | 0    | 3        | 3        | 3           | 3    | 0    |
| Cap, veh/h                | 30   | 1141     | 120  |      |          |     | 0    | 540      | 71       | 238         | 309  | 0    |
| Arrive On Green           | 0.35 | 0.35     | 0.35 |      |          |     | 0.00 | 0.34     | 0.34     | 0.34        | 0.34 | 0.00 |
| Sat Flow, veh/h           | 84   | 3218     | 339  |      |          |     | 0.00 | 1594     | 209      | 209         | 911  | 0.00 |
| Grp Volume(v), veh/h      | 486  | 0        | 428  |      |          |     | 0    | 0        | 415      | 245         | 0    | 0    |
| Grp Sat Flow(s), veh/h/lr |      | 0        | 1789 |      |          |     | 0    | 0        | 1803     | 1120        | 0    | 0    |
| Q Serve(g_s), s           | 6.8  | 0.0      | 6.0  |      |          |     | 0.0  | 0.0      | 5.8      | 0.7         | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s     | 6.8  | 0.0      | 6.0  |      |          |     | 0.0  | 0.0      | 5.8      | 6.5         | 0.0  | 0.0  |
| Prop In Lane              | 0.05 | 0.0      | 0.19 |      |          |     | 0.00 | 0.0      | 0.12     | 0.36        | 3.0  | 0.00 |
| Lane Grp Cap(c), veh/h    |      | 0        | 635  |      |          |     | 0.00 | 0        | 611      | 547         | 0    | 0.00 |
| V/C Ratio(X)              | 0.74 | 0.00     | 0.67 |      |          |     | 0.00 | 0.00     | 0.68     | 0.45        | 0.00 | 0.00 |
| Avail Cap(c_a), veh/h     | 1576 | 0.00     | 1523 |      |          |     | 0.00 | 0.00     | 921      | 784         | 0.00 | 0.00 |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 |      |          |     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)        | 1.00 | 0.00     | 1.00 |      |          |     | 0.00 | 0.00     | 1.00     | 1.00        | 0.00 | 0.00 |
| Uniform Delay (d), s/vel  |      | 0.0      | 8.0  |      |          |     | 0.0  | 0.0      | 8.3      | 7.6         | 0.0  | 0.0  |
| Incr Delay (d2), s/veh    | 0.6  | 0.0      | 0.5  |      |          |     | 0.0  | 0.0      | 0.5      | 0.2         | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  |      |          |     | 0.0  | 0.0      | 0.0      | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),vel     |      | 0.0      | 1.4  |      |          |     | 0.0  | 0.0      | 1.4      | 0.7         | 0.0  | 0.0  |
| Unsig. Movement Delay     |      |          | 1.1  |      |          |     | 3.0  | 3.0      | 1.1      | J.1         | 3.0  | 3.0  |
| LnGrp Delay(d),s/veh      | 8.9  | 0.0      | 8.5  |      |          |     | 0.0  | 0.0      | 8.8      | 7.8         | 0.0  | 0.0  |
| LnGrp LOS                 | Α    | A        | A    |      |          |     | A    | Α        | A        | Α.          | Α    | A    |
| Approach Vol, veh/h       |      | 914      |      |      |          |     |      | 415      |          |             | 245  |      |
| Approach Delay, s/veh     |      | 8.7      |      |      |          |     |      | 8.8      |          |             | 7.8  |      |
| Approach LOS              |      | Α        |      |      |          |     |      | Α        |          |             | Α.   |      |
|                           |      |          |      |      |          |     |      |          |          |             |      |      |
| Timer - Assigned Phs      |      | 2        |      | 4    |          |     |      | 8        |          |             |      |      |
| Phs Duration (G+Y+Rc)     |      | 15.4     |      | 14.0 |          |     |      | 14.0     |          |             |      |      |
| Change Period (Y+Rc),     |      | * 5      |      | * 4  |          |     |      | * 4      |          |             |      |      |
| Max Green Setting (Gm     |      | * 25     |      | * 15 |          |     |      | * 15     |          |             |      |      |
| Max Q Clear Time (g_c     |      | 8.8      |      | 8.5  |          |     |      | 7.8      |          |             |      |      |
| Green Ext Time (p_c), s   | 3    | 1.3      |      | 0.4  |          |     |      | 0.6      |          |             |      |      |
| Intersection Summary      |      |          |      |      |          |     |      |          |          |             |      |      |
| HCM 6th Ctrl Delay        |      |          | 8.6  |      |          |     |      |          |          |             |      |      |
| HCM 6th LOS               |      |          | Α    |      |          |     |      |          |          |             |      |      |
| Notes                     |      |          |      |      |          |     |      |          |          |             |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection   Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations         40         5         0         5         5         10         0         350         5         5         200         30           Future Vol, veh/h         40         5         0         5         5         10         0         350         5         5         200         30           Conflicting Peds, #/hr         10         0         5         5         0         10         25         0         30         20         0         15           Sign Control         Stop         Stop         Stop         Stop         Stop         Stop         Stop         Free                                                            |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Traffic Vol, veh/h         40         5         0         5         5         10         0         350         5         5         200         30           Future Vol, veh/h         40         5         0         5         5         10         0         350         5         5         200         30           Conflicting Peds, #/hr         10         0         5         5         0         10         25         0         30         20         0         15           Sign Control         Stop         Stop         Stop         Stop         Stop         Stop         Stop         Free         Free <td< td=""></td<>                                     |
| Future Vol, veh/h         40         5         0         5         5         10         0         350         5         5         200         30           Conflicting Peds, #/hr         10         0         5         5         0         10         25         0         30         20         0         15           Sign Control         Stop         Stop         Stop         Stop         Stop         Stop         Free         Fre                              |
| Conflicting Peds, #/hr         10         0         5         5         0         10         25         0         30         20         0         15           Sign Control         Stop         Stop         Stop         Stop         Stop         Stop         Free         Free </td          |
| Sign Control         Stop         Stop         Stop         Stop         Stop         Stop         Free         2         2         < |
| RT Channelized         -         None         -         None         -         None         -         None           Storage Length         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                 |
| Storage Length         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90 <th< td=""></th<>                                                                                                                |
| Veh in Median Storage, # - 0 0 0 0 0 - 0 0           Grade, % - 0 - 0 0 - 0 0 - 0 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grade, %         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         0         -         -         0         0         -         -         0         0         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                                                   |
| Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                    |
| Major/Minor         Minor2         Minor1         Major1         Major2           Conflicting Flow All         687         701         269         681         714         432         280         0         0         425         0         0           Stage 1         276         276         -         422         422         -         -         -         -         -         -         -           Critical Hdwy         7.13         6.53         6.23         7.13         6.53         6.23         7.13         6.53         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                            |
| Mymt Flow         44         6         0         6         6         11         0         389         6         6         222         33           Major/Minor         Minor2         Minor1         Major1         Major2           Conflicting Flow All         687         701         269         681         714         432         280         0         0         425         0         0           Stage 1         276         276         -         422         422         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                       |
| Major/Minor         Minor2         Minor1         Major1         Major2           Conflicting Flow All         687         701         269         681         714         432         280         0         0         425         0         0           Stage 1         276         276         -         422         422         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                    |
| Conflicting Flow All       687       701       269       681       714       432       280       0       0       425       0       0         Stage 1       276       276       -       422       422       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                            |
| Conflicting Flow All       687       701       269       681       714       432       280       0       0       425       0       0         Stage 1       276       276       -       422       422       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                            |
| Conflicting Flow All       687       701       269       681       714       432       280       0       0       425       0       0         Stage 1       276       276       -       422       422       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                            |
| Stage 1       276       276       -       422       422       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                         |
| Stage 2       411       425       -       259       292       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                         |
| Critical Hdwy Stg 1 6.53 6.23 7.13 6.53 6.23 4.13 4.13 Critical Hdwy Stg 1 6.13 5.53 - 6.13 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Critical Hdwy Stg 1 6.13 5.53 - 6.13 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Critical Hdwy Stg 2 6.13 5.53 - 6.13 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Follow-up Hdwy 3.527 4.027 3.327 3.527 4.027 3.327 2.227 2.227 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pot Cap-1 Maneuver 360 362 767 363 355 621 1277 1129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Stage 1 728 680 - 607 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 2 616 585 - 744 669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mov Cap-1 Maneuver 336 341 745 345 334 598 1247 1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mov Cap-1 Maneuver 336 341 - 345 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Stage 1 711 660 - 589 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 2 593 568 - 730 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.000 5.00 5.00 5.00 5.00 5.00 5.00 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approach ED WD ND CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCM Control Delay, s 17.5 13.8 0 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCM LOS C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minutes (Main Mark ANDL ANDL ANDL ANDL ANDL ANDL ANDL ANDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Capacity (veh/h) 1247 337 433 1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Capacity (veh/h) 1247 337 433 1097 HCM Lane V/C Ratio 0.148 0.051 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Capacity (veh/h) 1247 337 433 1097 HCM Lane V/C Ratio 0.148 0.051 0.005 HCM Control Delay (s) 0 - 17.5 13.8 8.3 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Capacity (veh/h) 1247 337 433 1097 HCM Lane V/C Ratio 0.148 0.051 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                              | ၨ    | <b>→</b> | *    | •    | <b>←</b> | 4    | 1    | <b>†</b>   | ~    | <b>\</b> | <b>+</b>   | 4    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>∱</b> β |      | ሻ        | <b>∱</b> ⊅ |      |
| Traffic Volume (veh/h)       | 10   | 40       | 70   | 10   | 60       | 10   | 60   | 860        | 10   | 10       | 530        | 5    |
| Future Volume (veh/h)        | 10   | 40       | 70   | 10   | 60       | 10   | 60   | 860        | 10   | 10       | 530        | 5    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.98 | 0.99 |          | 0.97 | 1.00 |            | 0.97 | 1.00     |            | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 11   | 44       | 6    | 11   | 67       | 1    | 67   | 956        | 10   | 11       | 589        | 6    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 180  | 194      | 24   | 169  | 228      | 3    | 619  | 1919       | 20   | 468      | 1920       | 20   |
| Arrive On Green              | 0.14 | 0.14     | 0.14 | 0.14 | 0.14     | 0.14 | 0.54 | 0.54       | 0.54 | 0.54     | 0.54       | 0.54 |
| Sat Flow, veh/h              | 204  | 1361     | 171  | 163  | 1601     | 23   | 815  | 3573       | 37   | 576      | 3575       | 36   |
| Grp Volume(v), veh/h         | 61   | 0        | 0    | 79   | 0        | 0    | 67   | 472        | 494  | 11       | 290        | 305  |
| Grp Sat Flow(s),veh/h/ln     | 1735 | 0        | 0    | 1786 | 0        | 0    | 815  | 1763       | 1848 | 576      | 1763       | 1849 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 1.4  | 4.8        | 4.8  | 0.3      | 2.6        | 2.6  |
| Cycle Q Clear(g_c), s        | 0.8  | 0.0      | 0.0  | 1.1  | 0.0      | 0.0  | 4.0  | 4.8        | 4.8  | 5.1      | 2.6        | 2.6  |
| Prop In Lane                 | 0.18 |          | 0.10 | 0.14 |          | 0.01 | 1.00 |            | 0.02 | 1.00     |            | 0.02 |
| Lane Grp Cap(c), veh/h       | 399  | 0        | 0    | 401  | 0        | 0    | 619  | 947        | 992  | 468      | 947        | 993  |
| V/C Ratio(X)                 | 0.15 | 0.00     | 0.00 | 0.20 | 0.00     | 0.00 | 0.11 | 0.50       | 0.50 | 0.02     | 0.31       | 0.31 |
| Avail Cap(c_a), veh/h        | 1242 | 0        | 0    | 1274 | 0        | 0    | 849  | 1443       | 1512 | 631      | 1443       | 1513 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 10.7 | 0.0      | 0.0  | 10.8 | 0.0      | 0.0  | 4.7  | 4.1        | 4.1  | 5.7      | 3.6        | 3.6  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.1  | 0.6        | 0.6  | 0.0      | 0.3        | 0.2  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.3  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 0.1  | 0.6        | 0.6  | 0.0      | 0.3        | 0.3  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 10.8 | 0.0      | 0.0  | 10.9 | 0.0      | 0.0  | 4.8  | 4.7        | 4.7  | 5.8      | 3.9        | 3.9  |
| LnGrp LOS                    | B    | Α        | A    | В    | A        | Α    | A    | A          | A    | A        | A          | A    |
| Approach Vol, veh/h          |      | 61       |      |      | 79       |      |      | 1033       |      |          | 606        |      |
| Approach Delay, s/veh        |      | 10.8     |      |      | 10.9     |      |      | 4.7        |      |          | 3.9        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | А          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 20.1     |      | 8.0  |          | 20.1 |      | 8.0        |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 6.8      |      | 2.8  |          | 7.1  |      | 3.1        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 8.2      |      | 0.1  |          | 4.6  |      | 0.2        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 4.9  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |            |      |

| Intersection           |        |       |        |       |        |      |
|------------------------|--------|-------|--------|-------|--------|------|
| Int Delay, s/veh       | 6.7    |       |        |       |        |      |
|                        |        |       |        |       |        |      |
| Movement               | WBL    | WBR   | NBT    | NBR   | SBL    | SBT  |
| Lane Configurations    | ¥      |       | f)     |       |        | र्स  |
| Traffic Vol, veh/h     | 5      | 120   | 40     | 5     | 120    | 20   |
| Future Vol, veh/h      | 5      | 120   | 40     | 5     | 120    | 20   |
| Conflicting Peds, #/hr | 1      | 6     | 0      | 5     | 5      | 0    |
| Sign Control           | Stop   | Stop  | Free   | Free  | Free   | Free |
| RT Channelized         | -      | None  | -      | None  | -      | None |
| Storage Length         | 0      | -     | -      | -     | -      | -    |
| Veh in Median Storage  |        | -     | 0      | -     | -      | 0    |
| Grade, %               | 0      | -     | 0      | -     | _      | 0    |
| Peak Hour Factor       | 90     | 90    | 90     | 90    | 90     | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3      | 3     | 3      | 3    |
| Mvmt Flow              | 6      | 133   | 44     | 6     | 133    | 22   |
| WWIIICT IOW            | U      | 100   | 77     | U     | 100    | LL   |
|                        |        |       |        |       |        |      |
|                        | Minor1 |       | Major1 |       | Major2 |      |
| Conflicting Flow All   | 341    | 58    | 0      | 0     | 55     | 0    |
| Stage 1                | 52     | -     | -      | -     | -      | -    |
| Stage 2                | 289    | -     | -      | -     | -      | -    |
| Critical Hdwy          | 6.43   | 6.23  | -      | -     | 4.13   | -    |
| Critical Hdwy Stg 1    | 5.43   | -     | _      | _     | -      | -    |
| Critical Hdwy Stg 2    | 5.43   | -     | -      | _     | _      | -    |
| Follow-up Hdwy         |        | 3.327 | _      | _     | 2.227  | _    |
| Pot Cap-1 Maneuver     | 653    | 1005  | _      | _     | 1544   | _    |
| Stage 1                | 968    | -     | _      | _     | -      | _    |
| Stage 2                | 758    |       |        | _     | _      | _    |
| Platoon blocked, %     | 7 30   |       |        |       |        | _    |
| Mov Cap-1 Maneuver     | 592    | 994   | _      | _     | 1537   | _    |
| Mov Cap-1 Maneuver     |        | 994   |        | -     | 1001   | -    |
|                        |        | -     | -      | -     | -      | -    |
| Stage 1                | 963    | -     | -      | -     | -      | -    |
| Stage 2                | 691    | -     | -      | -     | -      | -    |
|                        |        |       |        |       |        |      |
| Approach               | WB     |       | NB     |       | SB     |      |
| HCM Control Delay, s   |        |       | 0      |       | 6.5    |      |
| HCM LOS                | Α.     |       |        |       | 3.0    |      |
| 1 TOWN LOO             | ٨      |       |        |       |        |      |
|                        |        |       |        |       |        |      |
| Minor Lane/Major Mvr   | nt     | NBT   | NBRV   | VBLn1 | SBL    | SBT  |
| Capacity (veh/h)       |        | -     | -      | 968   | 1537   | -    |
| HCM Lane V/C Ratio     |        | -     | -      | 0.143 |        | -    |
| HCM Control Delay (s   | )      | -     | -      |       | 7.6    | 0    |
| HCM Lane LOS           |        | -     | _      | Α     | A      | A    |
| HCM 95th %tile Q(veh   | 1)     | -     | _      | 0.5   | 0.3    | _    |
|                        | .,     |       |        | 3.3   | 3.0    |      |

| Intersection           |        |       |        |          |          |      |
|------------------------|--------|-------|--------|----------|----------|------|
| Int Delay, s/veh       | 6.6    |       |        |          |          |      |
| Movement               | EBL    | EBR   | NBL    | NBT      | SBT      | SBR  |
|                        |        | EDK   | INDL   |          |          | SDR  |
| Lane Configurations    | **     | 440   | 400    | <b>†</b> | <b>♣</b> | 00   |
| Traffic Vol, veh/h     | 30     | 110   | 120    | 40       | 30       | 20   |
| Future Vol, veh/h      | 30     | 110   | 120    | 40       | 30       | 20   |
| Conflicting Peds, #/hr | 2      | 7     | 5      | 0        | 0        | 5    |
| Sign Control           | Stop   | Stop  | Free   | Free     | Free     | Free |
| RT Channelized         | -      | None  | -      | None     | -        | None |
| Storage Length         | 0      | -     | -      | -        | -        | -    |
| Veh in Median Storage  |        | -     | -      | 0        | 0        | -    |
| Grade, %               | 0      | -     | -      | 0        | 0        | -    |
| Peak Hour Factor       | 90     | 90    | 90     | 90       | 90       | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3      | 3        | 3        | 3    |
| Mvmt Flow              | 33     | 122   | 133    | 44       | 33       | 22   |
|                        |        |       |        |          |          |      |
| Major/Minor            | Minor2 | _     | Major1 | N        | /lajor2  |      |
| Conflicting Flow All   | 361    | 56    | 60     | 0        | - najoiz | 0    |
| Stage 1                | 49     |       |        | U        |          |      |
|                        | 312    | -     | -      | _        | -        | -    |
| Stage 2                |        |       | 4 4 2  | -        |          | -    |
| Critical Hdwy          | 6.43   | 6.23  | 4.13   | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.43   | -     | _      | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.43   | -     | -      | -        | -        | -    |
| Follow-up Hdwy         | 3.527  |       | 2.227  | -        | -        | -    |
| Pot Cap-1 Maneuver     | 636    | 1008  | 1537   | -        | -        | -    |
| Stage 1                | 971    | -     | -      | -        | -        | -    |
| Stage 2                | 740    | -     | -      | -        | -        | -    |
| Platoon blocked, %     |        |       |        | -        | -        | -    |
| Mov Cap-1 Maneuver     | 574    | 997   | 1530   | -        | -        | -    |
| Mov Cap-2 Maneuver     | 574    | -     | -      | -        | -        | -    |
| Stage 1                | 880    | -     | -      | -        | -        | -    |
| Stage 2                | 736    | -     | -      | -        | -        | -    |
|                        |        |       |        |          |          |      |
| Approach               | EB     |       | NB     |          | SB       |      |
|                        |        |       |        |          |          |      |
| HCM Control Delay, s   | 10.1   |       | 5.7    |          | 0        |      |
| HCM LOS                | В      |       |        |          |          |      |
|                        |        |       |        |          |          |      |
| Minor Lane/Major Mvn   | nt     | NBL   | NBTI   | EBLn1    | SBT      | SBR  |
| Capacity (veh/h)       |        | 1530  |        |          | _        | _    |
| HCM Lane V/C Ratio     |        | 0.087 |        | 0.181    | _        | -    |
| HCM Control Delay (s)  |        | 7.6   | _      |          | _        | _    |
| HCM Lane LOS           |        | A     | _      | В        | _        | _    |
|                        | \      | 0.3   |        | ^ =      |          |      |
| HCM 95th %tile Q(veh   |        | (1 ≺  | _      | 11/      | -        | _    |

| Intersection           |        |       |       |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|-------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3.5    |       |       |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |       |        | 4    |       |        | 4     |       |        | 44    |       |
| Traffic Vol, veh/h     | 5      | 120   | 5     | 5      | 110  | 5     | 5      | 30    | 5     | 5      | 40    | 20    |
| Future Vol, veh/h      | 5      | 120   | 5     | 5      | 110  | 5     | 5      | 30    | 5     | 5      | 40    | 20    |
| Conflicting Peds, #/hr | 2      | 0     | 2     | 1      | 0    | 1     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None  | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | -      | -     | -     | -      | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -     | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3    | 3     | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 6      | 133   | 6     | 6      | 122  | 6     | 6      | 33    | 6     | 6      | 44    | 22    |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       |       | Major2 |      | ı     | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 130    | 0     | 0     | 141    | 0    | 0     | 320    | 292   | 138   | 307    | 292   | 127   |
| Stage 1                | -      | -     | -     | -      | -    | -     | 150    | 150   | -     | 139    | 139   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 170    | 142   | -     | 168    | 153   | -     |
| Critical Hdwy          | 4.13   | -     | -     | 4.13   | -    | -     | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    | -      | -     | -     | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | -     | -     | -      | -    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Follow-up Hdwy         | 2.227  | -     | -     | 2.227  | -    | -     | 3.527  | 4.027 | 3.327 | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1449   | -     | -     | 1436   | -    | -     | 631    | 617   | 908   | 643    | 617   | 921   |
| Stage 1                | -      | -     | -     | -      | -    | -     | 850    | 771   | -     | 862    | 780   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 830    | 777   | -     | 832    | 769   | -     |
| Platoon blocked, %     |        | -     | -     |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1446   | -     | -     | 1433   | -    | -     | 576    | 609   | 906   | 607    | 609   | 919   |
| Mov Cap-2 Maneuver     | -      | -     | -     | -      | -    | -     | 576    | 609   | -     | 607    | 609   | -     |
| Stage 1                | -      | -     | -     | -      | -    | -     | 845    | 766   | -     | 857    | 775   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 760    | 772   | -     | 788    | 764   | -     |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |       | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.3    |       |       | 0.3    |      |       | 11.1   |       |       | 10.9   |       |       |
| HCM LOS                |        |       |       |        |      |       | В      |       |       | В      |       |       |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt 1   | NBLn1 | EBL   | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 630   | 1446  | -      | _    | 1433  | -      | _     | 679   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.071 | 0.004 | -      | _    | 0.004 | -      | -     | 0.106 |        |       |       |
| HCM Control Delay (s)  |        | 11.1  | 7.5   | 0      | -    | 7.5   | 0      | -     | 10.9  |        |       |       |
| HCM Lane LOS           |        | В     | Α     | A      | _    | Α     | A      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh   | )      | 0.2   | 0     | -      | -    | 0     | -      | -     | 0.4   |        |       |       |
|                        | ,      |       |       |        |      |       |        |       |       |        |       |       |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | <b>+</b>   | 4    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | ሻ    | <b>∱</b> β |      | ሻ        | <b>∱</b> ⊅ |      |
| Traffic Volume (veh/h)       | 110  | 110      | 180  | 30   | 130      | 30   | 130  | 780        | 60   | 20       | 520        | 20   |
| Future Volume (veh/h)        | 110  | 110      | 180  | 30   | 130      | 30   | 130  | 780        | 60   | 20       | 520        | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.98 | 1.00 |          | 1.00 | 1.00 |            | 0.97 | 1.00     |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856     | 1856 | 1856 | 1856       | 1856 | 1856     | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 122  | 122      | 170  | 33   | 144      | 3    | 144  | 867        | 66   | 22       | 578        | 22   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3        | 3    | 3    | 3          | 3    | 3        | 3          | 3    |
| Cap, veh/h                   | 230  | 181      | 207  | 158  | 519      | 10   | 455  | 1507       | 115  | 331      | 1576       | 60   |
| Arrive On Green              | 0.33 | 0.33     | 0.33 | 0.33 | 0.33     | 0.33 | 0.46 | 0.46       | 0.46 | 0.46     | 0.46       | 0.46 |
| Sat Flow, veh/h              | 358  | 557      | 637  | 166  | 1595     | 30   | 809  | 3310       | 252  | 594      | 3461       | 132  |
| Grp Volume(v), veh/h         | 414  | 0        | 0    | 180  | 0        | 0    | 144  | 462        | 471  | 22       | 294        | 306  |
| Grp Sat Flow(s),veh/h/ln     | 1552 | 0        | 0    | 1791 | 0        | 0    | 809  | 1763       | 1799 | 594      | 1763       | 1830 |
| Q Serve(g_s), s              | 6.9  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 5.8  | 7.9        | 7.9  | 1.2      | 4.5        | 4.5  |
| Cycle Q Clear(g_c), s        | 9.9  | 0.0      | 0.0  | 3.0  | 0.0      | 0.0  | 10.3 | 7.9        | 7.9  | 9.1      | 4.5        | 4.5  |
| Prop In Lane                 | 0.29 |          | 0.41 | 0.18 |          | 0.02 | 1.00 |            | 0.14 | 1.00     |            | 0.07 |
| Lane Grp Cap(c), veh/h       | 619  | 0        | 0    | 687  | 0        | 0    | 455  | 803        | 819  | 331      | 803        | 833  |
| V/C Ratio(X)                 | 0.67 | 0.00     | 0.00 | 0.26 | 0.00     | 0.00 | 0.32 | 0.58       | 0.58 | 0.07     | 0.37       | 0.37 |
| Avail Cap(c_a), veh/h        | 788  | 0        | 0    | 871  | 0        | 0    | 540  | 987        | 1008 | 393      | 987        | 1025 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 12.6 | 0.0      | 0.0  | 10.3 | 0.0      | 0.0  | 10.7 | 8.3        | 8.3  | 11.6     | 7.3        | 7.3  |
| Incr Delay (d2), s/veh       | 0.7  | 0.0      | 0.0  | 0.1  | 0.0      | 0.0  | 0.6  | 0.9        | 0.9  | 0.1      | 0.4        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.9  | 0.0      | 0.0  | 1.0  | 0.0      | 0.0  | 0.9  | 2.3        | 2.3  | 0.1      | 1.3        | 1.3  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 13.3 | 0.0      | 0.0  | 10.4 | 0.0      | 0.0  | 11.2 | 9.2        | 9.2  | 11.7     | 7.7        | 7.7  |
| LnGrp LOS                    | В    | Α        | Α    | В    | Α        | Α    | В    | Α          | Α    | В        | Α          | A    |
| Approach Vol, veh/h          |      | 414      |      |      | 180      |      |      | 1077       |      |          | 622        |      |
| Approach Delay, s/veh        |      | 13.3     |      |      | 10.4     |      |      | 9.5        |      |          | 7.8        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | Α          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 23.7     |      | 17.4 |          | 23.7 |      | 17.4       |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 12.3     |      | 11.9 |          | 11.1 |      | 5.0        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 6.4      |      | 1.1  |          | 4.0  |      | 0.5        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 9.8  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |            |      |

| Cumulative | Plue | Project | Conditions | _ <b>Δ</b> Μ | Peak | Hour |
|------------|------|---------|------------|--------------|------|------|
| Cumulative | rius | FIUJECL | Conditions | - AIVI       | reak | Hou  |

| Intersection           |         |  |  |  |  |  |
|------------------------|---------|--|--|--|--|--|
| Intersection Delay, s/ | veh11.5 |  |  |  |  |  |
| Intersection LOS       | В       |  |  |  |  |  |
|                        |         |  |  |  |  |  |

| Movement                | EBL           | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|---------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |               | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 5             | 390  | 5    | 5    | 250  | 10   | 5    | 10   | 20   | 10   | 5    | 5    |  |
| Future Vol, veh/h       | 5             | 390  | 5    | 5    | 250  | 10   | 5    | 10   | 20   | 10   | 5    | 5    |  |
| Peak Hour Factor        | 0.90          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |  |
| Heavy Vehicles, %       | 3             | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |  |
| Mvmt Flow               | 6             | 433  | 6    | 6    | 278  | 11   | 6    | 11   | 22   | 11   | 6    | 6    |  |
| Number of Lanes         | 0             | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB            |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB            |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1             |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB        |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1             |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | gh <b>N</b> B |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1             |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 12.7          |      |      | 10.3 |      |      | 8.7  |      |      | 8.8  |      |      |  |
| HCM LOS                 | В             |      |      | В    |      |      | Α    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | VBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 14%   | 1%     | 2%    | 50%   |
| Vol Thru, %            | 29%   | 97%    | 94%   | 25%   |
| Vol Right, %           | 57%   | 1%     | 4%    | 25%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 35    | 400    | 265   | 20    |
| LT Vol                 | 5     | 5      | 5     | 10    |
| Through Vol            | 10    | 390    | 250   | 5     |
| RT Vol                 | 20    | 5      | 10    | 5     |
| Lane Flow Rate         | 39    | 444    | 294   | 22    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.057 | 0.546  | 0.373 | 0.034 |
| Departure Headway (Hd) | 5.284 | 4.424  | 4.558 | 5.581 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 674   | 818    | 789   | 638   |
| Service Time           | 3.342 | 2.449  | 2.587 | 3.643 |
| HCM Lane V/C Ratio     | 0.058 | 0.543  | 0.373 | 0.034 |
| HCM Control Delay      | 8.7   | 12.7   | 10.3  | 8.8   |
| HCM Lane LOS           | Α     | В      | В     | Α     |
| HCM 95th-tile Q        | 0.2   | 3.4    | 1.7   | 0.1   |

| Intersection           |          |            |        |          |        |        |
|------------------------|----------|------------|--------|----------|--------|--------|
| Int Delay, s/veh       | 0.7      |            |        |          |        |        |
|                        | EDI      | <b>FDT</b> | WDT    | WDD      | CDI    | CDD    |
| Movement               | EBL      | EBT        | WBT    | WBR      | SBL    | SBR    |
| Lane Configurations    |          | 4          | 4      |          | ¥      |        |
| Traffic Vol, veh/h     | 10       | 330        | 230    | 30       | 20     | 10     |
| Future Vol, veh/h      | 10       | 330        | 230    | 30       | 20     | 10     |
| Conflicting Peds, #/hr | 4        | 0          | 0      | 2        | 0      | 0      |
| Sign Control           | Free     | Free       | Free   | Free     | Stop   | Stop   |
| RT Channelized         | -        | None       | -      | None     | -      | None   |
| Storage Length         | -        | -          | -      | -        | 0      | -      |
| Veh in Median Storage  | , # -    | 0          | 0      | -        | 0      | -      |
| Grade, %               | <u>-</u> | 0          | 0      | -        | 0      | -      |
| Peak Hour Factor       | 90       | 90         | 90     | 90       | 90     | 90     |
| Heavy Vehicles, %      | 3        | 3          | 3      | 3        | 3      | 3      |
| Mymt Flow              | 11       | 367        | 256    | 33       | 22     | 11     |
| IVIVIII I IOW          |          | 301        | 250    | 33       | 22     | 11     |
|                        |          |            |        |          |        |        |
| Major/Minor I          | Major1   | N          | Major2 |          | Minor2 |        |
| Conflicting Flow All   | 293      | 0          | -      | 0        | 666    | 277    |
| Stage 1                | _        | _          | _      | _        | 277    | _      |
| Stage 2                | _        | _          | _      | _        | 389    | _      |
| Critical Hdwy          | 4.13     | _          | _      | _        | 6.43   | 6.23   |
| Critical Hdwy Stg 1    | T. 10    | _          | _      | <u>-</u> | 5.43   | - 0.20 |
| Critical Hdwy Stg 1    | _        | -          |        | _        | 5.43   | _      |
|                        | 2.227    | _          | -      |          |        |        |
| Follow-up Hdwy         |          | -          | -      |          | 3.527  |        |
| Pot Cap-1 Maneuver     | 1263     | -          | -      | -        | 423    | 759    |
| Stage 1                | -        | -          | -      | -        | 767    | -      |
| Stage 2                | -        | -          | -      | -        | 683    | -      |
| Platoon blocked, %     |          | -          | -      | -        |        |        |
| Mov Cap-1 Maneuver     | 1258     | _          | -      | -        | 415    | 756    |
| Mov Cap-2 Maneuver     | -        | -          | -      | -        | 415    | -      |
| Stage 1                | -        | -          | -      | -        | 755    | -      |
| Stage 2                | _        | _          | -      | -        | 680    | _      |
| - 13.5/4 -             |          |            |        |          |        |        |
|                        |          |            |        |          |        |        |
| Approach               | EB       |            | WB     |          | SB     |        |
| HCM Control Delay, s   | 0.2      |            | 0      |          | 12.9   |        |
| HCM LOS                |          |            |        |          | В      |        |
|                        |          |            |        |          |        |        |
| NA* 1 /NA *            |          | E51        |        | \A/D.T   | MES    | ODL 4  |
| Minor Lane/Major Mvm   | ıt       | EBL        | EBT    | WBT      | WBR :  |        |
| Capacity (veh/h)       |          | 1258       | -      | -        | -      | 488    |
| HCM Lane V/C Ratio     |          | 0.009      |        | -        |        | 0.068  |
| HCM Control Delay (s)  |          | 7.9        | 0      | -        | _      | 12.9   |
| HCM Lane LOS           |          | Α          | Α      | -        | -      | В      |
| HCM 95th %tile Q(veh)  | )        | 0          | _      | -        | _      | 0.2    |
|                        |          | •          |        |          |        | 7.2    |

| Intersection   Int Delay, s/veh   3.9   SBC   SBC  | Later and Con-         |        |      |      |        |      |      |        |      |      |         |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|------|------|--------|------|------|--------|------|------|---------|------|------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 2.0    |      |      |        |      |      |        |      |      |         |      |      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | int Delay, s/veh       | 3.9    |      |      |        |      |      |        |      |      |         |      |      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Movement               | EBL    | EBT  | EBR  | WBL    | WBT  | WBR  | NBL    | NBT  | NBR  | SBL     | SBT  | SBR  |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Configurations    |        | 4    |      |        | 4    |      | *      | ħβ   |      | Ť       | ħβ   |      |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Traffic Vol, veh/h     | 20     |      | 130  | 5      |      | 5    | 65     | 930  | 5    | 5       |      | 30   |
| Sign Control   Stop   Stop | Future Vol, veh/h      | 20     | 5    | 130  | 5      | 5    | 5    | 65     | 930  | 5    | 5       | 620  | 30   |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conflicting Peds, #/hr | 7      | 0    | 7    | 5      | 0    | 5    | 10     | 0    | 5    | 10      | 0    | 5    |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sign Control           | Stop   | Stop | Stop | Stop   | Stop | Stop | Free   | Free | Free | Free    | Free | Free |
| Veh in Median Storage, #         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         0         -         0         0         -         0         0         -         0         0         9         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RT Channelized         | -      | -    | None | -      | -    | None | -      | -    | None | -       | -    | None |
| Grade, %         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         0         -         0         0         -         0         0         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         10         90         90         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Storage Length         | -      | -    | -    | -      | -    | -    | 75     | -    | -    | 75      | -    | -    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Veh in Median Storage  | , # -  | 0    | -    | -      | 0    | -    | -      | 0    | -    | -       | 0    | -    |
| Heavy Vehicles, %   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grade, %               |        |      |      |        |      |      |        |      |      |         |      |      |
| Mymt Flow         22         6         144         6         6         6         72         1033         6         6         689         33           Major/Minor         Minor2         Minor1         Major1         Major2           Conflicting Flow All         1399         1921         378         1557         1934         537         732         0         0         1049         0         0           Stage 1         728         728         -         1190         1190         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 90     | 90   | 90   | 90     | 90   | 90   |        |      | 90   | 90      |      |      |
| Major/Minor   Minor2   Minor1   Major1   Major2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heavy Vehicles, %      |        |      |      |        |      |      | -      |      |      |         |      |      |
| Conflicting Flow All 1399 1921 378 1557 1934 537 732 0 0 1049 0 0  Stage 1 728 728 - 1190 1190 Stage 2 671 1193 - 367 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mvmt Flow              | 22     | 6    | 144  | 6      | 6    | 6    | 72     | 1033 | 6    | 6       | 689  | 33   |
| Conflicting Flow All 1399 1921 378 1557 1934 537 732 0 0 1049 0 0  Stage 1 728 728 - 1190 1190 Stage 2 671 1193 - 367 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |        |      |      |        |      |      |        |      |      |         |      |      |
| Conflicting Flow All   1399   1921   378   1557   1934   537   732   0   0   1049   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major/Minor N          | Minor2 |      | N    | Minor1 |      |      | Maior1 |      | Λ    | /laior2 |      |      |
| Stage 1         728         728         -         1190         1190         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        | 1921 |      |        | 1934 |      |        | 0    |      |         | n    | 0    |
| Stage 2         671         1193         -         367         744         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |        |      |      |        |      |      |        |      |      | -       |      |      |
| Critical Hdwy         7.56         6.56         6.96         7.56         6.56         6.96         4.16         -         4.16         -         -         4.16         -         -         -         4.16         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>               |        |      |      |        |      |      |        |      | _    | _       |      |      |
| Critical Hdwy Stg 1         6.56         5.56         - 6.56         5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |        |      |      |        |      |      |        |      |      | 4 16    |      |      |
| Critical Hdwy Stg 2         6.56         5.56         - 6.56         5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |        |      |      |        |      | -    | - 1.10 |      |      |         |      |      |
| Follow-up Hdwy 3.53 4.03 3.33 3.53 4.03 3.33 2.23 - 2.23 - 2.23 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,                    |        |      |      |        |      | _    | _      |      |      | _       |      |      |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |        |      |      |        |      |      |        |      |      | 2.23    |      | _    |
| Stage 1         379         424         -         198         257         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |        |      |      |        |      |      |        |      | _    |         |      | -    |
| Stage 2         410         256         - 622         417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                      |        |      |      |        |      | -    | -      |      |      | -       |      | _    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |        |      | -    |        |      | _    | -      | -    | -    | -       | -    | -    |
| Mov Cap-1 Maneuver         83         59         607         49         57         478         854         -         -         647         -         -           Mov Cap-2 Maneuver         83         59         -         49         57         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                      |        |      |      |        |      |      |        | _    | _    |         | _    | _    |
| Mov Cap-2 Maneuver         83         59         -         49         57         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 83     | 59   | 607  | 49     | 57   | 478  | 854    | -    | -    | 647     | -    | -    |
| Stage 1         344         416         -         180         233         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                      |        |      |      |        |      | -    |        | _    | _    | _       | -    | _    |
| Stage 2         360         232         -         460         409         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |        |      | -    |        |      | _    | -      | -    | -    | -       | -    | -    |
| Approach         EB         WB         NB         SB           HCM Control Delay, s         34.7         66.2         0.6         0.1           HCM LOS         D         F             Minor Lane/Major Mvmt         NBL         NBT         NBR EBLn1WBLn1         SBL         SBT         SBR           Capacity (veh/h)         854         -         -         287         75         647         -         -           HCM Lane V/C Ratio         0.085         -         -         0.6         0.222         0.009         -         -           HCM Control Delay (s)         9.6         -         -         34.7         66.2         10.6         -         -           HCM Lane LOS         A         -         -         D         F         B         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                      |        |      | -    |        |      | -    | -      | -    | -    | -       | -    | -    |
| HCM Control Delay, s         34.7         66.2         0.6         0.1           HCM LOS         D         F           Minor Lane/Major Mvmt         NBL         NBT         NBR EBLn1WBLn1         SBL         SBT         SBR           Capacity (veh/h)         854         -         -         287         75         647         -         -           HCM Lane V/C Ratio         0.085         -         -         0.6         0.222         0.009         -         -           HCM Control Delay (s)         9.6         -         -         34.7         66.2         10.6         -         -           HCM Lane LOS         A         -         -         D         F         B         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |        |      |      |        |      |      |        |      |      |         |      |      |
| HCM Control Delay, s         34.7         66.2         0.6         0.1           HCM LOS         D         F         F             Minor Lane/Major Mvmt         NBL         NBT         NBR EBLn1WBLn1         SBL         SBT         SBR           Capacity (veh/h)         854         -         -         287         75         647         -         -           HCM Lane V/C Ratio         0.085         -         -         0.6         0.222         0.009         -         -           HCM Control Delay (s)         9.6         -         -         34.7         66.2         10.6         -         -           HCM Lane LOS         A         -         D         F         B         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Annroach               | FR     |      |      | WR     |      |      | NR     |      |      | SR      |      |      |
| Minor Lane/Major Mvmt         NBL         NBT         NBR EBLn1WBLn1         SBL         SBT         SBR           Capacity (veh/h)         854         -         -         287         75         647         -         -           HCM Lane V/C Ratio         0.085         -         -         0.6         0.222         0.009         -         -           HCM Control Delay (s)         9.6         -         -         34.7         66.2         10.6         -         -           HCM Lane LOS         A         -         -         D         F         B         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |      |      |        |      |      |        |      |      |         |      |      |
| Minor Lane/Major Mvmt         NBL         NBT         NBR EBLn1WBLn1         SBL         SBT         SBR           Capacity (veh/h)         854         -         -         287         75         647         -         -           HCM Lane V/C Ratio         0.085         -         -         0.6         0.222         0.009         -         -           HCM Control Delay (s)         9.6         -         -         34.7         66.2         10.6         -         -           HCM Lane LOS         A         -         -         D         F         B         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |      |      |        |      |      | 0.0    |      |      | 0.1     |      |      |
| Capacity (veh/h) 854 287 75 647 HCM Lane V/C Ratio 0.085 0.6 0.222 0.009 HCM Control Delay (s) 9.6 34.7 66.2 10.6 HCM Lane LOS A - D F B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I IOWI LOG             | U      |      |      | Г      |      |      |        |      |      |         |      |      |
| Capacity (veh/h) 854 287 75 647 HCM Lane V/C Ratio 0.085 0.6 0.222 0.009 HCM Control Delay (s) 9.6 34.7 66.2 10.6 HCM Lane LOS A - D F B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |        |      |      |        |      |      |        |      |      |         |      |      |
| HCM Lane V/C Ratio       0.085       -       -       0.6       0.222       0.009       -       -         HCM Control Delay (s)       9.6       -       -       34.7       66.2       10.6       -       -         HCM Lane LOS       A       -       -       D       F       B       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | it     |      | NBT  | NBR E  |      |      |        | SBT  | SBR  |         |      |      |
| HCM Control Delay (s) 9.6 34.7 66.2 10.6 HCM Lane LOS A D F B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |        |      | -    | -      |      |      |        | -    | -    |         |      |      |
| HCM Lane LOS A D F B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |        |      | -    | -      |      |      |        | -    | -    |         |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |        |      | -    | -      |      |      |        | -    | -    |         |      |      |
| HCM 95th %tile Q(veh) 0.3 3.6 0.8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |        |      | -    | -      |      |      |        | -    | -    |         |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCM 95th %tile Q(veh)  |        | 0.3  | -    | -      | 3.6  | 0.8  | 0      | -    | -    |         |      |      |

| Intersection           |        |       |       |        |        |         |        |          |          |        |      |      |
|------------------------|--------|-------|-------|--------|--------|---------|--------|----------|----------|--------|------|------|
| Int Delay, s/veh       | 9.8    |       |       |        |        |         |        |          |          |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR     | NBL    | NBT      | NBR      | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |         |        | 4        |          |        | 4    |      |
| Traffic Vol, veh/h     | 25     | 160   | 20    | 5      | 75     | 5       | 5      | 10       | 5        | 5      | 5    | 5    |
| Future Vol, veh/h      | 25     | 160   | 20    | 5      | 75     | 5       | 5      | 10       | 5        | 5      | 5    | 5    |
| Conflicting Peds, #/hr | 7      | 0     | 2     | 1      | 0      | 6       | 5      | 0        | 5        | 5      | 0    | 5    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop    | Free   | Free     | Free     | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None    | -      | -        | None     | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -       | -      | -        | -        | -      | -    | -    |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0      | -       | -      | 0        | -        | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -       | -      | 0        | -        | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90      | 90     | 90       | 90       | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3      | 3       | 3      | 3        | 3        | 3      | 3    | 3    |
| Mvmt Flow              | 28     | 178   | 22    | 6      | 83     | 6       | 6      | 11       | 6        | 6      | 6    | 6    |
|                        |        |       |       |        |        |         |        |          |          |        |      |      |
| Major/Minor            | Minor2 |       |       | Minor1 |        |         | Major1 |          |          | Major2 |      |      |
| Conflicting Flow All   | 104    | 60    | 16    | 154    | 60     | 26      | 17     | 0        | 0        | 22     | 0    | 0    |
| Stage 1                | 26     | 26    | -     | 31     | 31     | -       | - 17   | -        | -        | 22     | -    | -    |
| Stage 2                | 78     | 34    | _     | 123    | 29     | _       | _      | -        | _        | _      | _    | _    |
| Critical Hdwy          | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23    | 4.13   |          | <u>-</u> | 4.13   | _    | -    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | 0.23  | 6.13   | 5.53   | 0.23    | 7.10   | _        | _        | 7.10   | _    | _    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | -     | 6.13   | 5.53   | _       | _      |          | _        | _      | _    |      |
| Follow-up Hdwy         | 3.527  | 4.027 | 3.327 |        | 4.027  | 3.327   | 2.227  | <u> </u> | _        | 2.227  | _    | _    |
| Pot Cap-1 Maneuver     | 874    | 829   | 1060  | 811    | 829    | 1047    | 1594   | _        |          | 1587   | _    | _    |
| Stage 1                | 989    | 872   | -     | 983    | 867    | - 10-11 |        | _        | _        | -      | _    | _    |
| Stage 2                | 928    | 865   | _     | 879    | 869    | _       | _      | _        | _        | _      | _    | _    |
| Platoon blocked, %     | 323    | 500   |       | 310    | 500    |         |        | _        | _        |        | _    | _    |
| Mov Cap-1 Maneuver     | 787    | 814   | 1053  | 652    | 814    | 1035    | 1586   | -        | -        | 1579   | _    | -    |
| Mov Cap-2 Maneuver     | 787    | 814   | -     | 652    | 814    | -       | -      | _        | _        | -      | -    | _    |
| Stage 1                | 980    | 864   | -     | 974    | 859    | -       | _      | _        | _        | _      | _    | _    |
| Stage 2                | 825    | 857   | _     | 679    | 861    | _       | _      | _        | _        | _      | _    | _    |
| U                      |        |       |       |        | ·      |         |        |          |          |        |      |      |
| A                      |        |       |       | 14/5   |        |         | ND     |          |          | 0.0    |      |      |
| Approach               | EB     |       |       | WB     |        |         | NB     |          |          | SB     |      |      |
| HCM Control Delay, s   | 11     |       |       | 10     |        |         | 1.8    |          |          | 2.4    |      |      |
| HCM LOS                | В      |       |       | В      |        |         |        |          |          |        |      |      |
|                        |        |       |       |        |        |         |        |          |          |        |      |      |
| Minor Lane/Major Mvn   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1   | SBL    | SBT      | SBR      |        |      |      |
| Capacity (veh/h)       |        | 1586  | -     | -      | 829    | 812     | 1579   | -        | -        |        |      |      |
| HCM Lane V/C Ratio     |        | 0.004 | -     | -      |        | 0.116   |        | -        | _        |        |      |      |
| HCM Control Delay (s)  |        | 7.3   | 0     | -      | 11     | 10      | 7.3    | 0        | -        |        |      |      |
| HCM Lane LOS           |        | A     | A     | -      | В      | В       | A      | A        | -        |        |      |      |
| HCM 95th %tile Q(veh   | )      | 0     | -     | -      | 1.1    | 0.4     | 0      | -        | -        |        |      |      |
|                        | ,      |       |       |        |        |         |        |          |          |        |      |      |

| Intersection           |        |       |       |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|-------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 2.5    |       |       |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    |        | 4     |       |        | 4    |       |        | 44    |       |        | 44    |       |
| Traffic Vol, veh/h     | 30     | 185   | 20    | 5      | 75   | 5     | 0      | 20    | 5     | 5      | 20    | 5     |
| Future Vol, veh/h      | 30     | 185   | 20    | 5      | 75   | 5     | 0      | 20    | 5     | 5      | 20    | 5     |
| Conflicting Peds, #/hr | 2      | 0     | 2     | 1      | 0    | 1     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None  | -      | -    | None  | -      | -     | None  | -      | _     | None  |
| Storage Length         | -      | -     | -     | -      | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -     | -      | 0    | -     | _      | 0     | -     | -      | 0     | -     |
| Grade, %               | _      | 0     | -     | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90   | 90    | 90     | 90    | 90    | 90     | 90    | 90    |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3    | 3     | 3      | 3     | 3     | 3      | 3     | 3     |
| Mvmt Flow              | 33     | 206   | 22    | 6      | 83   | 6     | 0      | 22    | 6     | 6      | 22    | 6     |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       |       | Major2 |      | ı     | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 91     | 0     | 0     | 230    | 0    | 0     | 397    | 388   | 219   | 397    | 396   | 88    |
| Stage 1                | -      | -     | -     | -      | _    | -     | 285    | 285   |       | 100    | 100   | -     |
| Stage 2                | _      | _     | _     | _      | _    | -     | 112    | 103   | _     | 297    | 296   | _     |
| Critical Hdwy          | 4.13   | _     | _     | 4.13   | _    | _     | 7.13   | 6.53  | 6.23  | 7.13   | 6.53  | 6.23  |
| Critical Hdwy Stg 1    |        | _     | -     |        | _    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | -     |
| Critical Hdwy Stg 2    | -      | _     | _     | _      | _    | -     | 6.13   | 5.53  | -     | 6.13   | 5.53  | _     |
| Follow-up Hdwy         | 2.227  | _     | -     | 2.227  | _    | -     |        | 4.027 | 3.327 | 3.527  | 4.027 | 3.327 |
| Pot Cap-1 Maneuver     | 1498   | _     | _     | 1332   | _    | _     | 561    | 545   | 818   | 561    | 540   | 968   |
| Stage 1                | -      | -     | -     | _      | -    | -     | 720    | 674   | -     | 904    | 810   | -     |
| Stage 2                | _      | _     | -     | -      | -    | -     | 891    | 808   | -     | 709    | 666   | _     |
| Platoon blocked, %     |        | -     | -     |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1495   | -     | -     | 1329   | -    | -     | 526    | 526   | 816   | 526    | 522   | 966   |
| Mov Cap-2 Maneuver     | -      | -     | -     | -      | -    | -     | 526    | 526   | -     | 526    | 522   | -     |
| Stage 1                | -      | -     | -     | -      | -    | -     | 701    | 656   | -     | 880    | 804   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 857    | 802   | -     | 663    | 648   | -     |
| Ü                      |        |       |       |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |       | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 1      |       |       | 0.5    |      |       | 11.7   |       |       | 11.8   |       |       |
| HCM LOS                |        |       |       |        |      |       | В      |       |       | В      |       |       |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt l   | NBLn1 | EBL   | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 566   | 1495  | _      | -    | 1329  | -      | -     | 566   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.049 | 0.022 | -      | -    | 0.004 | -      | -     | 0.059 |        |       |       |
| HCM Control Delay (s)  |        | 11.7  | 7.5   | 0      | -    | 7.7   | 0      | -     | 11.8  |        |       |       |
| HCM Lane LOS           |        | В     | Α     | Α      | -    | Α     | Α      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 0.2   | 0.1   | -      | -    | 0     | -      | -     | 0.2   |        |       |       |
|                        |        |       |       |        |      |       |        |       |       |        |       |       |

|                              | •    | 4             | <b>†</b> | <b>/</b> | <b>/</b> | ļ        |      |
|------------------------------|------|---------------|----------|----------|----------|----------|------|
| Movement                     | WBL  | WBR           | NBT      | NBR      | SBL      | SBT      |      |
| Lane Configurations          | 1,1  | 7             | <b>^</b> | 7        | ሻ        | <b>^</b> |      |
| Traffic Volume (veh/h)       | 130  | 360           | 625      | 70       | 280      | 510      |      |
| Future Volume (veh/h)        | 130  | 360           | 625      | 70       | 280      | 510      |      |
| Initial Q (Qb), veh          | 0    | 0             | 0        | 0        | 0        | 0        |      |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00          |          | 0.97     | 1.00     |          |      |
| Parking Bus, Adj             | 1.00 | 1.00          | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Work Zone On Approach        | No   |               | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856          | 1856     | 1856     | 1856     | 1856     |      |
| Adj Flow Rate, veh/h         | 144  | 198           | 694      | 24       | 311      | 567      |      |
| Peak Hour Factor             | 0.90 | 0.90          | 0.90     | 0.90     | 0.90     | 0.90     |      |
| Percent Heavy Veh, %         | 3    | 3             | 3        | 3        | 3        | 3        |      |
| Cap, veh/h                   | 486  | 569           | 1176     | 507      | 389      | 2298     |      |
| Arrive On Green              | 0.14 | 0.14          | 0.33     | 0.33     | 0.22     | 0.65     |      |
| Sat Flow, veh/h              | 3428 | 1572          | 3618     | 1521     | 1767     | 3618     |      |
| Grp Volume(v), veh/h         | 144  | 198           | 694      | 24       | 311      | 567      |      |
| Grp Sat Flow(s),veh/h/ln     | 1714 | 1572          | 1763     | 1521     | 1767     | 1763     |      |
| Q Serve(g_s), s              | 1.9  | 4.7           | 8.3      | 0.5      | 8.5      | 3.4      |      |
| Cycle Q Clear(g_c), s        | 1.9  | 4.7           | 8.3      | 0.5      | 8.5      | 3.4      |      |
| Prop In Lane                 | 1.00 | 1.00          |          | 1.00     | 1.00     |          |      |
| Lane Grp Cap(c), veh/h       | 486  | 569           | 1176     | 507      | 389      | 2298     |      |
| V/C Ratio(X)                 | 0.30 | 0.35          | 0.59     | 0.05     | 0.80     | 0.25     |      |
| Avail Cap(c_a), veh/h        | 1751 | 1149          | 2112     | 911      | 972      | 4433     |      |
| HCM Platoon Ratio            | 1.00 | 1.00          | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Upstream Filter(I)           | 1.00 | 1.00          | 1.00     | 1.00     | 1.00     | 1.00     |      |
| Uniform Delay (d), s/veh     | 19.6 | 11.9          | 14.1     | 11.5     | 18.8     | 3.7      |      |
| Incr Delay (d2), s/veh       | 0.1  | 0.1           | 0.7      | 0.1      | 3.8      | 0.1      |      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0           | 0.0      | 0.0      | 0.0      | 0.0      |      |
| %ile BackOfQ(50%),veh/ln     | 0.7  | 1.5           | 2.7      | 0.2      | 3.5      | 0.7      |      |
| Jnsig. Movement Delay, s/veh |      |               |          |          |          |          |      |
| LnGrp Delay(d),s/veh         | 19.7 | 12.0          | 14.7     | 11.5     | 22.6     | 3.7      |      |
| _nGrp LOS                    | В    | В             | В        | В        | С        | Α        |      |
| Approach Vol, veh/h          | 342  |               | 718      |          |          | 878      |      |
| Approach Delay, s/veh        | 15.2 |               | 14.6     |          |          | 10.4     |      |
| Approach LOS                 | В    |               | В        |          |          | В        |      |
| Timer - Assigned Phs         |      | 2             |          |          | 5        | 6        | 8    |
| -                            |      |               |          |          |          |          |      |
| Phs Duration (G+Y+Rc), s     |      | 38.7          |          |          | 16.2     | 22.5     | 12.2 |
| Change Period (Y+Rc), s      |      | * 5.5<br>* 64 |          |          | 5.0      | 5.5      | 5.0  |
| Max Green Setting (Gmax), s  |      | * 64          |          |          | 28.0     | 30.5     | 26.0 |
| Max Q Clear Time (g_c+l1), s |      | 5.4           |          |          | 10.5     | 10.3     | 6.7  |
| Green Ext Time (p_c), s      |      | 4.5           |          |          | 0.9      | 6.2      | 0.6  |
| ntersection Summary          |      |               | 46.0     |          |          |          |      |
| HCM 6th Ctrl Delay           |      |               | 12.8     |          |          |          |      |
| HCM 6th LOS                  |      |               | В        |          |          |          |      |
| Votes                        |      |               |          |          |          |          |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                                                                                                  |           |       |                                    |               |               |      |
|---------------------------------------------------------------------------------------------------------------|-----------|-------|------------------------------------|---------------|---------------|------|
| Int Delay, s/veh                                                                                              | 1.9       |       |                                    |               |               |      |
| Movement                                                                                                      | EBL       | EBR   | NBL                                | NBT           | SBT           | SBR  |
| Lane Configurations                                                                                           | LUL       | T T   | NDL                                | <b>†</b> †    | <b>↑</b> ↑    | אנטט |
| Traffic Vol, veh/h                                                                                            | 0         | 210   | 0                                  | 695           | 600           | 40   |
| Future Vol, veh/h                                                                                             | 0         | 210   | 0                                  | 695           | 600           | 40   |
| Conflicting Peds, #/hr                                                                                        | 2         | 210   | 0                                  | 095           | 000           | 0    |
| Sign Control                                                                                                  | Stop      | Stop  | Free                               | Free          | Free          | Free |
| RT Channelized                                                                                                | Stop<br>- | None  | riee<br>-                          |               | riee<br>-     | None |
|                                                                                                               | -         | 0     | -                                  | None          | _             | None |
| Storage Length<br>Veh in Median Storage,                                                                      | # O       |       | -                                  | -             |               | -    |
|                                                                                                               |           | -     | -                                  | 0             | 0             | -    |
| Grade, %                                                                                                      | 90        | -     | -                                  | 0             | 0             | -    |
| Peak Hour Factor                                                                                              |           | 90    | 90                                 | 90            | 90            | 90   |
| Heavy Vehicles, %                                                                                             | 3         | 3     | 3                                  | 3             | 3             | 3    |
| Mvmt Flow                                                                                                     | 0         | 233   | 0                                  | 772           | 667           | 44   |
|                                                                                                               |           |       |                                    |               |               |      |
| Major/Minor N                                                                                                 | linor2    | N     | /lajor1                            | N             | //ajor2       |      |
| Conflicting Flow All                                                                                          | _         | 358   |                                    | 0             |               | 0    |
| Stage 1                                                                                                       | _         | -     | _                                  | -             | _             | -    |
| Stage 2                                                                                                       | _         | _     | _                                  | _             | _             | _    |
| Critical Hdwy                                                                                                 | _         | 6.96  | _                                  | _             | _             | _    |
| Critical Hdwy Stg 1                                                                                           | _         | -     | _                                  | _             | _             | _    |
| Critical Hdwy Stg 2                                                                                           | _         | _     | _                                  | _             | _             | _    |
| Follow-up Hdwy                                                                                                | _         | 3.33  | _                                  | <u>-</u>      | _             | _    |
| Pot Cap-1 Maneuver                                                                                            | 0         | 636   | 0                                  | _             | _             | _    |
| Stage 1                                                                                                       | 0         | -     | 0                                  | _             | _             | _    |
| Stage 2                                                                                                       | 0         | _     | 0                                  | _             | _             | _    |
| Platoon blocked, %                                                                                            | U         |       | U                                  | _             | _             | _    |
| Mov Cap-1 Maneuver                                                                                            | _         | 635   | _                                  | -             | _             | _    |
|                                                                                                               |           |       |                                    |               |               |      |
| Mov Cap-2 Maneuver                                                                                            | -         | -     | -                                  | -             | -             | -    |
| Stage 1                                                                                                       | -         | -     | -                                  | -             | -             | -    |
| Stage 2                                                                                                       | -         | -     | -                                  | -             | -             | -    |
|                                                                                                               |           |       |                                    |               |               |      |
|                                                                                                               |           |       |                                    |               | SB            |      |
| Approach                                                                                                      | EB        |       | NB                                 |               | OD            |      |
| Approach HCM Control Delay, s                                                                                 |           |       |                                    |               |               |      |
| HCM Control Delay, s                                                                                          | 13.9      |       | NB<br>0                            |               | 0             |      |
|                                                                                                               |           |       |                                    |               |               |      |
| HCM Control Delay, s<br>HCM LOS                                                                               | 13.9<br>B |       | 0                                  | 0             | 0             |      |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvmt                                                      | 13.9<br>B | NBT E | 0<br>EBLn1                         | SBT           |               |      |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h)                                          | 13.9<br>B | -     | 0<br>EBLn1<br>635                  | SBT_          | 0             |      |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio                       | 13.9<br>B | -     | 0<br>EBLn1<br>635<br>0.367         | SBT<br>-<br>- | 0             |      |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) | 13.9<br>B | -     | 0<br>EBLn1<br>635<br>0.367<br>13.9 | -             | 0<br>SBR      |      |
| HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio                       | 13.9<br>B | -     | 0<br>EBLn1<br>635<br>0.367         | -             | 0<br>SBR<br>- |      |

| Intersection           |        |       |       |        |        |       |        |      |          |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|----------|--------|------|------|
| Int Delay, s/veh       | 9.6    |       |       |        |        |       |        |      |          |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR      | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |          |        | 4    |      |
| Traffic Vol, veh/h     | 20     | 200   | 0     | 5      | 30     | 5     | 0      | 10   | 5        | 15     | 15   | 10   |
| Future Vol, veh/h      | 20     | 200   | 0     | 5      | 30     | 5     | 0      | 10   | 5        | 15     | 15   | 10   |
| Conflicting Peds, #/hr | 2      | 0     | 2     | 1      | 0      | 1     | 0      | 0    | 5        | 0      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free     | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None  | -      | -    | None     | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -        | -      | -    | -    |
| Veh in Median Storage  | e, # - | 0     | -     | -      | 0      | -     | -      | 0    | -        | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -        | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90       | 90     | 90   | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3      | 3      | 3     | 3      | 3    | 3        | 3      | 3    | 3    |
| Mvmt Flow              | 22     | 222   | 0     | 6      | 33     | 6     | 0      | 11   | 6        | 17     | 17   | 11   |
|                        |        |       |       |        |        |       |        |      |          |        |      |      |
| Major/Minor I          | Minor2 |       |       | Minor1 |        |       | Major1 |      | <u> </u> | Major2 |      |      |
| Conflicting Flow All   | 93     | 79    | 25    | 189    | 81     | 21    | 28     | 0    | 0        | 22     | 0    | 0    |
| Stage 1                | 57     | 57    | -     | 19     | 19     | -     | -      | -    | -        | -      | -    | -    |
| Stage 2                | 36     | 22    | -     | 170    | 62     | -     | -      | -    | -        | -      | -    | -    |
| Critical Hdwy          | 7.13   | 6.53  | 6.23  | 7.13   | 6.53   | 6.23  | 4.13   | -    | -        | 4.13   | -    | -    |
| Critical Hdwy Stg 1    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -        | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.13   | 5.53  | -     | 6.13   | 5.53   | -     | -      | -    | -        | -      | -    | -    |
| Follow-up Hdwy         | 3.527  | 4.027 | 3.327 | 3.527  | 4.027  | 3.327 | 2.227  | -    | -        | 2.227  | -    | -    |
| Pot Cap-1 Maneuver     | 888    | 809   | 1048  | 769    | 807    | 1054  | 1579   | -    | -        | 1587   | -    | -    |
| Stage 1                | 952    | 845   | -     | 997    | 878    | -     | -      | -    | -        | -      | -    | -    |
| Stage 2                | 977    | 875   | -     | 830    | 841    | _     | -      | -    | -        | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -        |        | -    | -    |
| Mov Cap-1 Maneuver     | 846    | 796   | 1046  | 594    | 794    | 1047  | 1579   | -    | -        | 1579   | -    | -    |
| Mov Cap-2 Maneuver     | 846    | 796   | -     | 594    | 794    | -     | -      | -    | -        | -      | -    | -    |
| Stage 1                | 952    | 836   | -     | 992    | 874    | -     | -      | -    | -        | -      | -    | -    |
| Stage 2                | 933    | 871   | -     | 602    | 832    | -     | -      | -    | -        | -      | -    | -    |
|                        |        |       |       |        |        |       |        |      |          |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |          | SB     |      |      |
| HCM Control Delay, s   | 11.5   |       |       | 9.9    |        |       | 0      |      |          | 2.7    |      |      |
| HCM LOS                | В      |       |       | Α      |        |       |        |      |          |        |      |      |
|                        |        |       |       |        |        |       |        |      |          |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR      |        |      |      |
| Capacity (veh/h)       |        | 1579  | -     | -      | 800    | 785   | 1579   | -    | -        |        |      |      |
| HCM Lane V/C Ratio     |        | -     | -     | -      | 0.306  | 0.057 | 0.011  | -    | -        |        |      |      |
| HCM Control Delay (s)  |        | 0     | -     | -      | 11.5   | 9.9   | 7.3    | 0    | -        |        |      |      |
| HCM Lane LOS           |        | Α     | -     | -      | В      | Α     | Α      | Α    | -        |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 1.3    | 0.2   | 0      | -    | -        |        |      |      |
|                        |        |       |       |        |        |       |        |      |          |        |      |      |

|                              | ۶        | <b>→</b> | •    | •    | ←    | 4    | 4    | <b>†</b> | ~    | <b>&gt;</b> | <b>↓</b>   | 1    |
|------------------------------|----------|----------|------|------|------|------|------|----------|------|-------------|------------|------|
| Movement                     | EBL      | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations          |          | 4        |      |      | 4    |      | ሻ    | <b>^</b> |      | ሻ           | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 40       | 5        | 100  | 5    | 5    | 10   | 115  | 645      | 10   | 20          | 780        | 20   |
| Future Volume (veh/h)        | 40       | 5        | 100  | 5    | 5    | 10   | 115  | 645      | 10   | 20          | 780        | 20   |
| Initial Q (Qb), veh          | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99     |          | 1.00 | 1.00 |      | 0.99 | 1.00 |          | 1.00 | 1.00        |            | 0.97 |
| Parking Bus, Adj             | 1.00     | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |          | No       |      |      | No   |      |      | No       |      |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1856     | 1856     | 1856 | 1856 | 1856 | 1856 | 1856 | 1856     | 1856 | 1856        | 1856       | 1856 |
| Adj Flow Rate, veh/h         | 44       | 6        | 100  | 6    | 6    | 4    | 128  | 717      | 0    | 22          | 867        | 19   |
| Peak Hour Factor             | 0.90     | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90     | 0.90 | 0.90        | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 3        | 3        | 3    | 3    | 3    | 3    | 3    | 3        | 3    | 3           | 3          | 3    |
| Cap, veh/h                   | 136      | 23       | 137  | 147  | 119  | 57   | 508  | 2439     | 0    | 587         | 2439       | 53   |
| Arrive On Green              | 0.13     | 0.13     | 0.13 | 0.13 | 0.13 | 0.13 | 0.69 | 0.69     | 0.00 | 0.69        | 0.69       | 0.69 |
| Sat Flow, veh/h              | 342      | 175      | 1034 | 382  | 901  | 427  | 622  | 3618     | 0    | 728         | 3525       | 77   |
| Grp Volume(v), veh/h         | 150      | 0        | 0    | 16   | 0    | 0    | 128  | 717      | 0    | 22          | 434        | 452  |
| Grp Sat Flow(s),veh/h/ln     | 1551     | 0        | 0    | 1710 | 0    | 0    | 622  | 1763     | 0    | 728         | 1763       | 1839 |
| Q Serve(g_s), s              | 3.1      | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 5.4  | 4.0      | 0.0  | 0.6         | 5.2        | 5.2  |
| Cycle Q Clear(g_c), s        | 4.7      | 0.0      | 0.0  | 0.4  | 0.0  | 0.0  | 10.6 | 4.0      | 0.0  | 4.7         | 5.2        | 5.2  |
| Prop In Lane                 | 0.29     |          | 0.67 | 0.37 |      | 0.25 | 1.00 |          | 0.00 | 1.00        |            | 0.04 |
| Lane Grp Cap(c), veh/h       | 296      | 0        | 0    | 323  | 0    | 0    | 508  | 2439     | 0    | 587         | 1220       | 1273 |
| V/C Ratio(X)                 | 0.51     | 0.00     | 0.00 | 0.05 | 0.00 | 0.00 | 0.25 | 0.29     | 0.00 | 0.04        | 0.36       | 0.36 |
| Avail Cap(c_a), veh/h        | 554      | 0        | 0    | 581  | 0    | 0    | 508  | 2439     | 0    | 587         | 1220       | 1273 |
| HCM Platoon Ratio            | 1.00     | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00     | 0.00     | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00     | 0.00 | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 21.3     | 0.0      | 0.0  | 19.5 | 0.0  | 0.0  | 5.4  | 3.1      | 0.0  | 4.0         | 3.2        | 3.2  |
| Incr Delay (d2), s/veh       | 1.3      | 0.0      | 0.0  | 0.1  | 0.0  | 0.0  | 1.2  | 0.3      | 0.0  | 0.1         | 8.0        | 0.8  |
| Initial Q Delay(d3),s/veh    | 0.0      | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.7      | 0.0      | 0.0  | 0.2  | 0.0  | 0.0  | 0.6  | 0.6      | 0.0  | 0.1         | 0.9        | 0.9  |
| Unsig. Movement Delay, s/veh |          |          |      |      |      |      |      |          |      |             |            |      |
| LnGrp Delay(d),s/veh         | 22.6     | 0.0      | 0.0  | 19.5 | 0.0  | 0.0  | 6.6  | 3.4      | 0.0  | 4.1         | 4.0        | 4.0  |
| LnGrp LOS                    | <u> </u> | A        | A    | В    | A    | Α    | A    | A        | A    | A           | A          | A    |
| Approach Vol, veh/h          |          | 150      |      |      | 16   |      |      | 845      |      |             | 908        |      |
| Approach Delay, s/veh        |          | 22.6     |      |      | 19.5 |      |      | 3.9      |      |             | 4.0        |      |
| Approach LOS                 |          | С        |      |      | В    |      |      | А        |      |             | Α          |      |
| Timer - Assigned Phs         |          | 2        |      | 4    |      | 6    |      | 8        |      |             |            |      |
| Phs Duration (G+Y+Rc), s     |          | 40.0     |      | 11.3 |      | 40.0 |      | 11.3     |      |             |            |      |
| Change Period (Y+Rc), s      |          | 4.5      |      | 4.5  |      | 4.5  |      | 4.5      |      |             |            |      |
| Max Green Setting (Gmax), s  |          | 35.5     |      | 15.5 |      | 35.5 |      | 15.5     |      |             |            |      |
| Max Q Clear Time (g_c+l1), s |          | 12.6     |      | 6.7  |      | 7.2  |      | 2.4      |      |             |            |      |
| Green Ext Time (p_c), s      |          | 6.1      |      | 0.5  |      | 6.0  |      | 0.0      |      |             |            |      |
| Intersection Summary         |          |          |      |      |      |      |      |          |      |             |            |      |
| HCM 6th Ctrl Delay           |          |          | 5.5  |      |      |      |      |          |      |             |            |      |
| HCM 6th LOS                  |          |          | Α    |      |      |      |      |          |      |             |            |      |

| Intersection           |        |       |          |       |        |      |
|------------------------|--------|-------|----------|-------|--------|------|
| Int Delay, s/veh       | 4.2    |       |          |       |        |      |
|                        |        |       |          |       |        |      |
| Movement               | WBL    | WBR   | NBT      | NBR   | SBL    | SBT  |
| Lane Configurations    | ¥      |       | <b>†</b> |       |        |      |
| Traffic Vol, veh/h     | 90     | 0     | 5        | 120   | 15     | 5    |
| Future Vol, veh/h      | 90     | 0     | 5        | 120   | 15     | 5    |
| Conflicting Peds, #/hr | 0      | 0     | 0        | 0     | 5      | 0    |
| Sign Control           | Stop   | Stop  | Free     | Free  | Free   | Free |
| RT Channelized         | -      | None  | -        | None  | -      | None |
| Storage Length         | 0      | -     | -        | -     | -      | _    |
| Veh in Median Storage  | e, # 0 | -     | 0        | -     | -      | 0    |
| Grade, %               | 0      | _     | 0        | _     | _      | 0    |
| Peak Hour Factor       | 90     | 90    | 90       | 90    | 90     | 90   |
| Heavy Vehicles, %      | 3      | 3     | 3        | 3     | 3      | 3    |
| Mvmt Flow              | 100    | 0     | 6        | 133   | 17     | 6    |
| WWW.CT IOW             | 100    | •     |          | 100   | • •    | Ū    |
|                        |        |       |          |       |        |      |
|                        | Minor1 |       | //ajor1  |       | Major2 |      |
| Conflicting Flow All   | 118    | 78    | 0        | 0     | 144    | 0    |
| Stage 1                | 78     | -     | -        | -     | -      | -    |
| Stage 2                | 40     | -     | -        | -     | -      | -    |
| Critical Hdwy          | 6.43   | 6.23  | -        | -     | 4.13   | -    |
| Critical Hdwy Stg 1    | 5.43   | -     | -        | -     | -      | _    |
| Critical Hdwy Stg 2    | 5.43   | -     | -        | -     | -      | _    |
| Follow-up Hdwy         | 3.527  | 3.327 | -        | _     | 2.227  | -    |
| Pot Cap-1 Maneuver     | 875    | 980   | _        | _     | 1432   | _    |
| Stage 1                | 943    | -     | _        | _     | - 102  | _    |
| Stage 2                | 980    | _     | _        | _     | -      | _    |
| Platoon blocked, %     | 300    |       | _        | _     |        | _    |
| Mov Cap-1 Maneuver     | 860    | 975   |          |       | 1425   |      |
| Mov Cap-1 Maneuver     | 860    | 915   |          |       | 1425   |      |
|                        | 938    | -     | -        | -     | -      | -    |
| Stage 1                |        | -     | -        | -     | -      | -    |
| Stage 2                | 968    | -     | -        | -     | -      | -    |
|                        |        |       |          |       |        |      |
| Approach               | WB     |       | NB       |       | SB     |      |
| HCM Control Delay, s   | 9.7    |       | 0        |       | 5.7    |      |
| HCM LOS                | Α      |       |          |       | J.1    |      |
| TIOWI LOO              |        |       |          |       |        |      |
|                        |        |       |          |       |        |      |
| Minor Lane/Major Mvr   | nt     | NBT   | NBRV     | VBLn1 | SBL    | SBT  |
| Capacity (veh/h)       |        | -     | -        | 860   | 1425   | -    |
| HCM Lane V/C Ratio     |        | -     | -        | 0.116 |        | -    |
| HCM Control Delay (s   | )      | -     | -        | 9.7   | 7.6    | -    |
| HCM Lane LOS           |        | -     | -        | Α     | A      | _    |
| HCM 95th %tile Q(veh   | 1)     | -     | _        | 0.4   | 0      | _    |
|                        | .,     |       |          | J. 1  |        |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          |      | 4        |      | 7    | 4        | 7    |      | ર્ન      | 7    | 7        | 4        |      |
| Traffic Volume (veh/h)       | 30   | 20       | 0    | 370  | 90       | 490  | 0    | 320      | 490  | 600      | 300      | 70   |
| Future Volume (veh/h)        | 30   | 20       | 0    | 370  | 90       | 490  | 0    | 320      | 490  | 600      | 300      | 70   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1841 | 1841     | 1841 | 1841 | 1841     | 1841 | 1841 | 1841     | 1841 | 1841     | 1841     | 1841 |
| Adj Flow Rate, veh/h         | 33   | 22       | 0    | 256  | 318      | 0    | 0    | 356      | 0    | 534      | 519      | 68   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90     | 0.90     | 0.90 |
| Percent Heavy Veh, %         | 4    | 4        | 4    | 4    | 4        | 4    | 4    | 4        | 4    | 4        | 4        | 4    |
| Cap, veh/h                   | 61   | 40       | 0    | 332  | 349      |      | 0    | 399      |      | 572      | 520      | 68   |
| Arrive On Green              | 0.06 | 0.06     | 0.00 | 0.19 | 0.19     | 0.00 | 0.00 | 0.22     | 0.00 | 0.33     | 0.33     | 0.33 |
| Sat Flow, veh/h              | 1072 | 715      | 0    | 1753 | 1841     | 1560 | 0    | 1841     | 1560 | 1753     | 1593     | 209  |
| Grp Volume(v), veh/h         | 55   | 0        | 0    | 256  | 318      | 0    | 0    | 356      | 0    | 534      | 0        | 587  |
| Grp Sat Flow(s),veh/h/ln     | 1787 | 0        | 0    | 1753 | 1841     | 1560 | 0    | 1841     | 1560 | 1753     | 0        | 1802 |
| Q Serve(g_s), s              | 2.8  | 0.0      | 0.0  | 13.2 | 16.1     | 0.0  | 0.0  | 17.8     | 0.0  | 28.0     | 0.0      | 30.9 |
| Cycle Q Clear(g_c), s        | 2.8  | 0.0      | 0.0  | 13.2 | 16.1     | 0.0  | 0.0  | 17.8     | 0.0  | 28.0     | 0.0      | 30.9 |
| Prop In Lane                 | 0.60 |          | 0.00 | 1.00 |          | 1.00 | 0.00 |          | 1.00 | 1.00     |          | 0.12 |
| Lane Grp Cap(c), veh/h       | 101  | 0        | 0    | 332  | 349      |      | 0    | 399      |      | 572      | 0        | 588  |
| V/C Ratio(X)                 | 0.55 | 0.00     | 0.00 | 0.77 | 0.91     |      | 0.00 | 0.89     |      | 0.93     | 0.00     | 1.00 |
| Avail Cap(c_a), veh/h        | 226  | 0        | 0    | 332  | 349      |      | 0    | 465      |      | 572      | 0        | 588  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 1.00     | 0.00 | 0.00 | 1.00     | 0.00 | 1.00     | 0.00     | 1.00 |
| Uniform Delay (d), s/veh     | 43.6 | 0.0      | 0.0  | 36.5 | 37.7     | 0.0  | 0.0  | 36.1     | 0.0  | 31.0     | 0.0      | 31.9 |
| Incr Delay (d2), s/veh       | 4.5  | 0.0      | 0.0  | 10.5 | 27.2     | 0.0  | 0.0  | 17.3     | 0.0  | 22.5     | 0.0      | 36.5 |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.4  | 0.0      | 0.0  | 6.4  | 9.6      | 0.0  | 0.0  | 9.7      | 0.0  | 14.6     | 0.0      | 18.5 |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |          |      |
| LnGrp Delay(d),s/veh         | 48.1 | 0.0      | 0.0  | 47.1 | 64.9     | 0.0  | 0.0  | 53.4     | 0.0  | 53.4     | 0.0      | 68.4 |
| LnGrp LOS                    | D    | A        | A    | D    | E        |      | Α    | D        |      | D        | Α        | E    |
| Approach Vol, veh/h          |      | 55       |      |      | 574      |      |      | 356      |      |          | 1121     |      |
| Approach Delay, s/veh        |      | 48.1     |      |      | 56.9     |      |      | 53.4     |      |          | 61.3     |      |
| Approach LOS                 |      | D        |      |      | Е        |      |      | D        |      |          | Е        |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |          |      |
| Phs Duration (G+Y+Rc), s     |      | 25.6     |      | 23.0 |          | 36.0 |      | 10.4     |      |          |          |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 5.0  |          | 5.0  |      | 5.0      |      |          |          |      |
| Max Green Setting (Gmax), s  |      | 24.0     |      | 18.0 |          | 31.0 |      | 12.0     |      |          |          |      |
| Max Q Clear Time (g_c+l1), s |      | 19.8     |      | 18.1 |          | 32.9 |      | 4.8      |      |          |          |      |
| Green Ext Time (p_c), s      |      | 0.8      |      | 0.0  |          | 0.0  |      | 0.1      |      |          |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |          |      |
| HCM 6th Ctrl Delay           |      |          | 58.4 |      |          |      |      |          |      |          |          |      |
| HCM 6th LOS                  |      |          | Ε    |      |          |      |      |          |      |          |          |      |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

|                           | ۶     | <b>→</b> | •    | •    | <b>←</b> | •    | •   | †   | <b>/</b> | <b>&gt;</b> | ļ    | ✓    |  |
|---------------------------|-------|----------|------|------|----------|------|-----|-----|----------|-------------|------|------|--|
| Movement                  | EBL   | EBT      | EBR  | WBL  | WBT      | WBR  | NBL | NBT | NBR      | SBL         | SBT  | SBR  |  |
| Lane Configurations       |       | <b>^</b> | 7    | 77   | <b>^</b> |      |     |     |          | ሻ           | र्स  | 77   |  |
| Traffic Volume (veh/h)    | 0     | 580      | 50   | 180  | 640      | 0    | 0   | 0   | 0        | 580         | 0    | 330  |  |
| Future Volume (veh/h)     | 0     | 580      | 50   | 180  | 640      | 0    | 0   | 0   | 0        | 580         | 0    | 330  |  |
| Initial Q (Qb), veh       | 0     | 0        | 0    | 0    | 0        | 0    |     |     |          | 0           | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00  |          | 0.98 | 1.00 |          | 1.00 |     |     |          | 1.00        |      | 1.00 |  |
| Parking Bus, Adj          | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00        | 1.00 | 1.00 |  |
| Work Zone On Approach     |       | No       |      |      | No       |      |     |     |          |             | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 0     | 1856     | 1856 | 1856 | 1856     | 0    |     |     |          | 1856        | 1856 | 1856 |  |
| Adj Flow Rate, veh/h      | 0     | 644      | 9    | 200  | 711      | 0    |     |     |          | 644         | 0    | 77   |  |
|                           | 0.90  | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |     |     |          | 0.90        | 0.90 | 0.90 |  |
| Percent Heavy Veh, %      | 0     | 3        | 3    | 3    | 3        | 0    |     |     |          | 3           | 3    | 3    |  |
| Cap, veh/h                | 0     | 917      | 400  | 554  | 1873     | 0    |     |     |          | 805         | 0    | 716  |  |
|                           | 0.00  | 0.26     | 0.26 | 0.16 | 0.53     | 0.00 |     |     |          | 0.23        | 0.00 | 0.23 |  |
| Sat Flow, veh/h           | 0     | 3618     | 1538 | 3428 | 3618     | 0    |     |     |          | 3534        | 0    | 3145 |  |
| Grp Volume(v), veh/h      | 0     | 644      | 9    | 200  | 711      | 0    |     |     |          | 644         | 0    | 77   |  |
| Grp Sat Flow(s), veh/h/ln |       | 1763     | 1538 | 1714 | 1763     | 0    |     |     |          | 1767        | 0    | 1572 |  |
| Q Serve(g_s), s           | 0.0   | 7.5      | 0.2  | 2.4  | 5.4      | 0.0  |     |     |          | 7.8         | 0.0  | 0.9  |  |
| Cycle Q Clear(g_c), s     | 0.0   | 7.5      | 0.2  | 2.4  | 5.4      | 0.0  |     |     |          | 7.8         | 0.0  | 0.9  |  |
|                           | 0.00  |          | 1.00 | 1.00 |          | 0.00 |     |     |          | 1.00        |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 0     | 917      | 400  | 554  | 1873     | 0    |     |     |          | 805         | 0    | 716  |  |
| . ,                       | 0.00  | 0.70     | 0.02 | 0.36 | 0.38     | 0.00 |     |     |          | 0.80        | 0.00 | 0.11 |  |
| Avail Cap(c_a), veh/h     | 0     | 2242     | 978  | 1503 | 4174     | 0    |     |     |          | 1937        | 0    | 1724 |  |
| HCM Platoon Ratio         | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |          | 1.00        | 1.00 | 1.00 |  |
|                           | 0.00  | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 |     |     |          | 1.00        | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh  |       | 15.3     | 12.6 | 17.0 | 6.3      | 0.0  |     |     |          | 16.6        | 0.0  | 13.9 |  |
| Incr Delay (d2), s/veh    | 0.0   | 0.4      | 0.0  | 0.1  | 0.0      | 0.0  |     |     |          | 0.7         | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/veh |       | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |     |     |          | 0.0         | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     |       | 2.6      | 0.1  | 0.8  | 1.4      | 0.0  |     |     |          | 2.8         | 0.0  | 0.3  |  |
| Unsig. Movement Delay,    |       |          |      |      |          |      |     |     |          |             |      |      |  |
| LnGrp Delay(d),s/veh      | 0.0   | 15.6     | 12.6 | 17.2 | 6.3      | 0.0  |     |     |          | 17.3        | 0.0  | 14.0 |  |
| LnGrp LOS                 | Α     | В        | В    | В    | Α        | Α    |     |     |          | В           | Α    | В    |  |
| Approach Vol, veh/h       |       | 653      |      |      | 911      |      |     |     |          |             | 721  |      |  |
| Approach Delay, s/veh     |       | 15.6     |      |      | 8.7      |      |     |     |          |             | 17.0 |      |  |
| Approach LOS              |       | В        |      |      | Α        |      |     |     |          |             | В    |      |  |
| Timer - Assigned Phs      | 1     | 2        |      | 4    |          | 6    |     |     |          |             |      |      |  |
| Phs Duration (G+Y+Rc),    | \$2.4 | 17.9     |      | 15.4 |          | 30.2 |     |     |          |             |      |      |  |
| Change Period (Y+Rc),     |       | * 6      |      | * 5  |          | * 6  |     |     |          |             |      |      |  |
| Max Green Setting (Gma    |       | * 29     |      | * 25 |          | * 54 |     |     |          |             |      |      |  |
| Max Q Clear Time (g_c+    |       | 9.5      |      | 9.8  |          | 7.4  |     |     |          |             |      |      |  |
| Green Ext Time (p_c), s   |       | 1.7      |      | 0.5  |          | 2.0  |     |     |          |             |      |      |  |
| Intersection Summary      |       |          |      |      |          |      |     |     |          |             |      |      |  |
| HCM 6th Ctrl Delay        |       |          | 13.3 |      |          |      |     |     |          |             |      |      |  |
| HCM 6th LOS               |       |          | В    |      |          |      |     |     |          |             |      |      |  |
|                           |       |          |      |      |          |      |     |     |          |             |      |      |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | ۶    | <b>→</b> | *    | •    | <b>←</b> | •    | 4    | †    | <b>/</b> | <b>/</b> | ţ   | <b>√</b> |  |
|---------------------------|------|----------|------|------|----------|------|------|------|----------|----------|-----|----------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR      | SBL      | SBT | SBR      |  |
| Lane Configurations       | ሻሻ   | <b>^</b> |      |      | <b>^</b> | 7    | 7    | र्स  | 7        |          |     |          |  |
| Traffic Volume (veh/h)    | 180  | 980      | 0    | 0    | 770      | 380  | 50   | 0    | 200      | 0        | 0   | 0        |  |
| Future Volume (veh/h)     | 180  | 980      | 0    | 0    | 770      | 380  | 50   | 0    | 200      | 0        | 0   | 0        |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0        |          |     |          |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00 |          | 0.98 | 1.00 |      | 1.00     |          |     |          |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |     |          |  |
| Work Zone On Approac      |      | No       |      |      | No       |      |      | No   |          |          |     |          |  |
| Adj Sat Flow, veh/h/ln    | 1856 | 1856     | 0    | 0    | 1856     | 1856 | 1856 | 1856 | 1856     |          |     |          |  |
| Adj Flow Rate, veh/h      | 200  | 1089     | 0    | 0    | 856      | 8    | 56   | 0    | 128      |          |     |          |  |
| Peak Hour Factor          | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90     |          |     |          |  |
| Percent Heavy Veh, %      | 3    | 3        | 0    | 0    | 3        | 3    | 3    | 3    | 3        |          |     |          |  |
| Cap, veh/h                | 556  | 2111     | 0    | 0    | 1151     | 503  | 562  | 0    | 250      |          |     |          |  |
| Arrive On Green           | 0.16 | 0.60     | 0.00 | 0.00 | 0.33     | 0.33 | 0.16 | 0.00 | 0.16     |          |     |          |  |
| Sat Flow, veh/h           | 3428 | 3618     | 0    | 0    | 3618     | 1541 | 3534 | 0    | 1572     |          |     |          |  |
| Grp Volume(v), veh/h      | 200  | 1089     | 0    | 0    | 856      | 8    | 56   | 0    | 128      |          |     |          |  |
| Grp Sat Flow(s), veh/h/lr |      | 1763     | 0    | 0    | 1763     | 1541 | 1767 | 0    | 1572     |          |     |          |  |
| Q Serve(g_s), s           | 2.4  | 8.1      | 0.0  | 0.0  | 9.8      | 0.2  | 0.6  | 0.0  | 3.4      |          |     |          |  |
| Cycle Q Clear(g_c), s     | 2.4  | 8.1      | 0.0  | 0.0  | 9.8      | 0.2  | 0.6  | 0.0  | 3.4      |          |     |          |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00 |          | 1.00 | 1.00 |      | 1.00     |          |     |          |  |
| Lane Grp Cap(c), veh/h    |      | 2111     | 0    | 0    | 1151     | 503  | 562  | 0    | 250      |          |     |          |  |
| V/C Ratio(X)              | 0.36 | 0.52     | 0.00 | 0.00 | 0.74     | 0.02 | 0.10 | 0.00 | 0.51     |          |     |          |  |
| Avail Cap(c_a), veh/h     | 1511 | 4194     | 0    | 0    | 2252     | 985  | 1947 | 0    | 866      |          |     |          |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     |          |     |          |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00     |          |     |          |  |
| Uniform Delay (d), s/vel  |      | 5.3      | 0.0  | 0.0  | 13.6     | 10.3 | 16.3 | 0.0  | 17.5     |          |     |          |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.1      | 0.0  | 0.0  | 0.4      | 0.0  | 0.0  | 0.0  | 0.6      |          |     |          |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      |          |     |          |  |
| %ile BackOfQ(50%),vel     |      | 1.7      | 0.0  | 0.0  | 3.2      | 0.0  | 0.2  | 0.0  | 1.1      |          |     |          |  |
| Unsig. Movement Delay     |      |          | 0.0  | 0.0  | 440      | 40.4 | 40.0 | 0.0  | 40.4     |          |     |          |  |
| LnGrp Delay(d),s/veh      | 17.1 | 5.4      | 0.0  | 0.0  | 14.0     | 10.4 | 16.3 | 0.0  | 18.1     |          |     |          |  |
| LnGrp LOS                 | В    | A        | Α    | Α    | В        | В    | В    | A    | В        |          |     |          |  |
| Approach Vol, veh/h       |      | 1289     |      |      | 864      |      |      | 184  |          |          |     |          |  |
| Approach Delay, s/veh     |      | 7.2      |      |      | 13.9     |      |      | 17.6 |          |          |     |          |  |
| Approach LOS              |      | Α        |      |      | В        |      |      | В    |          |          |     |          |  |
| Timer - Assigned Phs      |      | 2        |      |      | 5        | 6    |      | 8    |          |          |     |          |  |
| Phs Duration (G+Y+Rc)     |      | 33.2     |      |      | 12.4     | 20.8 |      | 12.2 |          |          |     |          |  |
| Change Period (Y+Rc),     |      | * 6      |      |      | 5.0      | * 6  |      | 5.0  |          |          |     |          |  |
| Max Green Setting (Gm     |      | * 54     |      |      | 20.0     | * 29 |      | 25.0 |          |          |     |          |  |
| Max Q Clear Time (g_c     | , .  | 10.1     |      |      | 4.4      | 11.8 |      | 5.4  |          |          |     |          |  |
| Green Ext Time (p_c), s   | 6    | 3.4      |      |      | 0.3      | 2.3  |      | 0.3  |          |          |     |          |  |
| Intersection Summary      |      |          |      |      |          |      |      |      |          |          |     |          |  |
| HCM 6th Ctrl Delay        |      |          | 10.5 |      |          |      |      |      |          |          |     |          |  |
| HCM 6th LOS               |      |          | В    |      |          |      |      |      |          |          |     |          |  |
| Notos                     |      |          |      |      |          |      |      |      |          |          |     |          |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                      |        |       |         |          |              |      |
|-----------------------------------|--------|-------|---------|----------|--------------|------|
| Int Delay, s/veh                  | 1.5    |       |         |          |              |      |
|                                   |        | ED.2  | ND      | NET      | 057          | 000  |
| Movement                          | EBL    | EBR   | NBL     | NBT      | SBT          | SBR  |
| Lane Configurations               | ¥      |       |         | <b>^</b> | ħβ           |      |
| Traffic Vol, veh/h                | 20     | 70    | 50      | 750      | 750          | 30   |
| Future Vol, veh/h                 | 20     | 70    | 50      | 750      | 750          | 30   |
| Conflicting Peds, #/hr            | 0      | 0     | 0       | _ 0      | 0            | _ 0  |
| Sign Control                      | Stop   | Stop  | Free    | Free     | Free         | Free |
| RT Channelized                    | -      | None  | -       | None     | -            | None |
| Storage Length                    | 0      | -     | -       | -        | -            | -    |
| Veh in Median Storage             |        | -     | -       | 0        | 0            | -    |
| Grade, %                          | 0      | -     | -       | 0        | 0            | -    |
| Peak Hour Factor                  | 90     | 90    | 90      | 90       | 90           | 90   |
| Heavy Vehicles, %                 | 2      | 2     | 2       | 2        | 2            | 2    |
| Mvmt Flow                         | 22     | 78    | 56      | 833      | 833          | 33   |
|                                   |        |       |         |          |              |      |
| Major/Minor I                     | Minor2 | N     | /lajor1 | N        | /lajor2      |      |
| Conflicting Flow All              | 1379   | 433   | 866     | 0        | - najoiz     | 0    |
| Stage 1                           | 850    | 433   | -       | -        | <u>-</u>     | -    |
| Stage 2                           | 529    |       | _       |          | _            |      |
| Critical Hdwy                     | 6.84   | 6.94  | 4.14    | -        | _            | -    |
| Critical Hdwy Stg 1               | 5.84   | 0.94  | 4.14    | _        | _            | _    |
| Critical Hdwy Stg 2               | 5.84   |       |         | -        | <u>-</u>     | -    |
|                                   | 3.52   | 3.32  | 2.22    | •        | -            | •    |
| Follow-up Hdwy Pot Cap-1 Maneuver | 136    | 571   | 773     | -        | -            | -    |
|                                   | 379    |       | 113     |          | -            | _    |
| Stage 1                           |        | -     | -       | -        | <del>-</del> | -    |
| Stage 2                           | 555    | -     | -       | -        | -            | -    |
| Platoon blocked, %                | 140    | E74   | 770     | -        | -            | -    |
| Mov Cap-1 Maneuver                | 118    | 571   | 773     | -        | -            | -    |
| Mov Cap-2 Maneuver                | 118    | -     | -       | -        | -            | -    |
| Stage 1                           | 328    | -     | -       | -        | -            | -    |
| Stage 2                           | 555    | -     | -       | -        | -            | -    |
|                                   |        |       |         |          |              |      |
| Approach                          | EB     |       | NB      |          | SB           |      |
| HCM Control Delay, s              | 22.2   |       | 0.6     |          | 0            |      |
| HCM LOS                           | C      |       | 3.0     |          |              |      |
| 1 TOWN LOO                        | J      |       |         |          |              |      |
|                                   |        |       |         |          |              |      |
| Minor Lane/Major Mvm              | nt     | NBL   | NBT     | EBLn1    | SBT          | SBR  |
| Capacity (veh/h)                  |        | 773   | -       |          | -            | -    |
| HCM Lane V/C Ratio                |        | 0.072 | -       | 0.325    | -            | -    |
| HCM Control Delay (s)             |        | 10    | -       | 22.2     | -            | -    |
| HCM Lane LOS                      |        | В     | -       | С        | -            | -    |
| HCM 95th %tile Q(veh)             | )      | 0.2   | -       | 1.4      | -            | -    |
|                                   |        |       |         |          |              |      |

| Intersection                 |                 |      |            |       |         |          |
|------------------------------|-----------------|------|------------|-------|---------|----------|
| Int Delay, s/veh             | 0.3             |      |            |       |         |          |
| Movement                     | WBL             | WBR  | NBT        | NBR   | SBL     | SBT      |
|                              |                 | WDIX |            | INDIX | ODL     |          |
| Lane Configurations          | ¥               | 00   | <b>↑</b> ↑ | 40    | 40      | <b>^</b> |
| Traffic Vol, veh/h           | 5               | 20   | 780        | 10    | 10      | 800      |
| Future Vol, veh/h            | 5               | 20   | 780        | 10    | 10      | 800      |
| Conflicting Peds, #/hr       |                 | 0    | _ 0        | _ 5   | _ 10    | _ 0      |
| Sign Control                 | Stop            | Stop | Free       | Free  | Free    | Free     |
| RT Channelized               | -               | None | -          | None  | -       | None     |
| Storage Length               | 0               | -    | -          | -     | -       | -        |
| Veh in Median Storag         | e, # 0          | -    | 0          | -     | -       | 0        |
| Grade, %                     | 0               | -    | 0          | -     | _       | 0        |
| Peak Hour Factor             | 90              | 90   | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %            | 2               | 2    | 2          | 2     | 2       | 2        |
| Mymt Flow                    | 6               | 22   | 867        | 11    | 11      | 889      |
| IVIVIII( I IOW               | U               | 22   | 007        | 11    | - 11    | 003      |
|                              |                 |      |            |       |         |          |
| Major/Minor                  | Minor1          | N    | //ajor1    | N     | //ajor2 |          |
| Conflicting Flow All         | 1355            | 449  | 0          | 0     | 888     | 0        |
| Stage 1                      | 883             | _    | _          | _     | _       | _        |
| Stage 2                      | 472             | _    | _          | _     | _       | _        |
| Critical Hdwy                | 6.84            | 6.94 | _          | _     | 4.14    | _        |
| Critical Hdwy Stg 1          | 5.84            | 0.34 |            | _     | 7.17    | _        |
|                              | 5.84            |      | -          | -     | _       |          |
| Critical Hdwy Stg 2          |                 | -    | -          | -     | -       | -        |
| Follow-up Hdwy               | 3.52            | 3.32 | -          | -     | 2.22    | -        |
| Pot Cap-1 Maneuver           | 141             | 557  | -          | -     | 758     | -        |
| Stage 1                      | 365             | -    | -          | -     | -       | -        |
| Stage 2                      | 594             | -    | -          | -     | -       | -        |
| Platoon blocked, %           |                 |      | -          | -     |         | -        |
| Mov Cap-1 Maneuver           | 135             | 552  | -          | -     | 751     | -        |
| Mov Cap-2 Maneuver           |                 | -    | -          | -     | -       | -        |
| Stage 1                      | 361             | -    | _          | -     | _       | _        |
| Stage 2                      | 574             | _    | _          | _     | _       | _        |
| Oldgo Z                      | J1 <del>1</del> |      |            |       |         |          |
|                              |                 |      |            |       |         |          |
| Approach                     | WB              |      | NB         |       | SB      |          |
| HCM Control Delay, s         | 13.5            |      | 0          |       | 0.1     |          |
| HCM LOS                      | В               |      |            |       |         |          |
|                              |                 |      |            |       |         |          |
| Min and an all Marian Marian | -4              | NET  | MDD        | MDL 4 | ODI     | ODT      |
| Minor Lane/Major Mvr         | nt              | NBT  |            | VBLn1 | SBL     | SBT      |
| Capacity (veh/h)             |                 | -    | -          | 450   | 751     | -        |
| HCM Lane V/C Ratio           |                 |      |            | 0.062 | 0.015   | -        |
| HCM Control Delay (s         | )               | -    | -          | 13.5  | 9.9     | -        |
| HCM Lane LOS                 |                 | -    | -          | В     | Α       | -        |
| HCM 95th %tile Q(veh         | 1)              | -    | -          | 0.2   | 0       | -        |
| 7 -                          | •               |      |            |       |         |          |

|                              | ۶   | <b>→</b> | $\rightarrow$ | •         | <b>←</b> | •         | •         | <b>†</b> | /    | <b>&gt;</b> | ļ        | 4         |
|------------------------------|-----|----------|---------------|-----------|----------|-----------|-----------|----------|------|-------------|----------|-----------|
| Movement                     | EBL | EBT      | EBR           | WBL       | WBT      | WBR       | NBL       | NBT      | NBR  | SBL         | SBT      | SBR       |
| Lane Configurations          |     |          |               |           | <b>^</b> |           |           | र्स      |      |             | <b>f</b> |           |
| Traffic Volume (veh/h)       | 0   | 0        | 0             | 180       | 810      | 100       | 160       | 140      | 0    | 0           | 360      | 20        |
| Future Volume (veh/h)        | 0   | 0        | 0             | 180       | 810      | 100       | 160       | 140      | 0    | 0           | 360      | 20        |
| Initial Q (Qb), veh          |     |          |               | 0         | 0        | 0         | 0         | 0        | 0    | 0           | 0        | 0         |
| Ped-Bike Adj(A_pbT)          |     |          |               | 1.00      |          | 0.99      | 0.98      |          | 1.00 | 1.00        |          | 0.90      |
| Parking Bus, Adj             |     |          |               | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00 | 1.00        | 1.00     | 1.00      |
| Work Zone On Approach        |     |          |               |           | No       |           |           | No       |      |             | No       |           |
| Adj Sat Flow, veh/h/ln       |     |          |               | 1870      | 1870     | 1870      | 1870      | 1870     | 0    | 0           | 1870     | 1870      |
| Adj Flow Rate, veh/h         |     |          |               | 200       | 900      | 89        | 178       | 156      | 0    | 0           | 400      | 14        |
| Peak Hour Factor             |     |          |               | 0.90      | 0.90     | 0.90      | 0.90      | 0.90     | 0.90 | 0.90        | 0.90     | 0.90      |
| Percent Heavy Veh, %         |     |          |               | 2         | 2        | 2         | 2         | 2        | 0    | 0           | 2        | 2         |
| Cap, veh/h                   |     |          |               | 236       | 1119     | 116       | 264       | 193      | 0    | 0           | 668      | 23        |
| Arrive On Green              |     |          |               | 0.40      | 0.40     | 0.40      | 0.37      | 0.37     | 0.00 | 0.00        | 0.37     | 0.37      |
| Sat Flow, veh/h              |     |          |               | 588       | 2782     | 287       | 340       | 516      | 0    | 0           | 1788     | 63        |
| Grp Volume(v), veh/h         |     |          |               | 626       | 0        | 563       | 334       | 0        | 0    | 0           | 0        | 414       |
| Grp Sat Flow(s), veh/h/ln    |     |          |               | 1841      | 0        | 1817      | 855       | 0        | 0    | 0           | 0        | 1851      |
| Q Serve(g_s), s              |     |          |               | 12.4      | 0.0      | 10.8      | 7.8       | 0.0      | 0.0  | 0.0         | 0.0      | 7.2       |
| Cycle Q Clear(g_c), s        |     |          |               | 12.4      | 0.0      | 10.8      | 15.0      | 0.0      | 0.0  | 0.0         | 0.0      | 7.2       |
| Prop In Lane                 |     |          |               | 0.32      | 0.0      | 0.16      | 0.53      | 0.0      | 0.00 | 0.00        | 0.0      | 0.03      |
| Lane Grp Cap(c), veh/h       |     |          |               | 741       | 0        | 731       | 457       | 0        | 0.00 | 0.00        | 0        | 691       |
| V/C Ratio(X)                 |     |          |               | 0.85      | 0.00     | 0.77      | 0.73      | 0.00     | 0.00 | 0.00        | 0.00     | 0.60      |
| Avail Cap(c_a), veh/h        |     |          |               | 1146      | 0.00     | 1131      | 457       | 0.00     | 0.00 | 0.00        | 0.00     | 691       |
| HCM Platoon Ratio            |     |          |               | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00 | 1.00        | 1.00     | 1.00      |
| Upstream Filter(I)           |     |          |               | 1.00      | 0.00     | 1.00      | 1.00      | 0.00     | 0.00 | 0.00        | 0.00     | 1.00      |
| Uniform Delay (d), s/veh     |     |          |               | 10.9      | 0.00     | 10.4      | 13.9      | 0.0      | 0.00 | 0.0         | 0.00     | 10.1      |
| Incr Delay (d2), s/veh       |     |          |               | 2.1       | 0.0      | 0.7       | 5.2       | 0.0      | 0.0  | 0.0         | 0.0      | 1.0       |
| Initial Q Delay(d3),s/veh    |     |          |               | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | 0.0  | 0.0         | 0.0      | 0.0       |
| %ile BackOfQ(50%),veh/ln     |     |          |               | 4.0       | 0.0      | 3.2       | 3.1       | 0.0      | 0.0  | 0.0         | 0.0      | 2.4       |
| Unsig. Movement Delay, s/veh |     |          |               | 4.0       | 0.0      | J.Z       | J. I      | 0.0      | 0.0  | 0.0         | 0.0      | 2.4       |
| LnGrp Delay(d),s/veh         |     |          |               | 13.0      | 0.0      | 11.0      | 19.0      | 0.0      | 0.0  | 0.0         | 0.0      | 11.2      |
| LnGrp LOS                    |     |          |               | 13.0<br>B | Α        | 11.0<br>B | 19.0<br>B | Α        | Α    |             | Α        | 11.2<br>B |
| •                            |     |          |               | В         |          | В         | ь         |          | ^    | A           |          | ь         |
| Approach Vol, veh/h          |     |          |               |           | 1189     |           |           | 334      |      |             | 414      |           |
| Approach Delay, s/veh        |     |          |               |           | 12.1     |           |           | 19.0     |      |             | 11.2     |           |
| Approach LOS                 |     |          |               |           | В        |           |           | В        |      |             | В        |           |
| Timer - Assigned Phs         |     | 2        |               | 4         |          |           |           | 8        |      |             |          |           |
| Phs Duration (G+Y+Rc), s     |     | 21.2     |               | 19.0      |          |           |           | 19.0     |      |             |          |           |
| Change Period (Y+Rc), s      |     | * 5      |               | * 4       |          |           |           | * 4      |      |             |          |           |
| Max Green Setting (Gmax), s  |     | * 25     |               | * 15      |          |           |           | * 15     |      |             |          |           |
| Max Q Clear Time (g_c+l1), s |     | 14.4     |               | 9.2       |          |           |           | 17.0     |      |             |          |           |
| Green Ext Time (p_c), s      |     | 1.7      |               | 0.5       |          |           |           | 0.0      |      |             |          |           |
| Intersection Summary         |     |          |               |           |          |           |           |          |      |             |          |           |
| HCM 6th Ctrl Delay           |     |          | 13.1          |           |          |           |           |          |      |             |          |           |
| HCM 6th LOS                  |     |          | В             |           |          |           |           |          |      |             |          |           |
| Notes                        |     |          |               |           |          |           |           |          |      |             |          |           |

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| •                             | <b>→</b> | •            | •    | <b>←</b> | •   | 4    | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | ✓    |  |
|-------------------------------|----------|--------------|------|----------|-----|------|----------|-------------|-------------|-------|------|--|
| Movement EBL                  | EBT      | EBR          | WBL  | WBT      | WBR | NBL  | NBT      | NBR         | SBL         | SBT   | SBR  |  |
| Lane Configurations           | <b>^</b> |              |      |          |     |      | f)       |             |             | 4     |      |  |
| Traffic Volume (veh/h) 20     | 850      | 200          | 0    | 0        | 0   | 0    | 280      | 100         | 170         | 380   | 0    |  |
| Future Volume (veh/h) 20      | 850      | 200          | 0    | 0        | 0   | 0    | 280      | 100         | 170         | 380   | 0    |  |
| Initial Q (Qb), veh 0         | 0        | 0            |      |          |     | 0    | 0        | 0           | 0           | 0     | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00      | U        | 0.97         |      |          |     | 1.00 | U        | 0.95        | 0.99        | U     | 1.00 |  |
| Parking Bus, Adj 1.00         | 1.00     | 1.00         |      |          |     | 1.00 | 1.00     | 1.00        | 1.00        | 1.00  | 1.00 |  |
| Work Zone On Approach         | No       | 1.00         |      |          |     | 1.00 | No       | 1.00        | 1.00        | No    | 1.00 |  |
| Adj Sat Flow, veh/h/ln 1870   | 1870     | 1870         |      |          |     | 0    | 1870     | 1870        | 1870        | 1870  | 0    |  |
| Adj Flow Rate, veh/h 22       | 944      | 211          |      |          |     | 0    | 311      | 111         | 189         | 422   | 0    |  |
| Peak Hour Factor 0.90         | 0.90     | 0.90         |      |          |     | 0.90 | 0.90     | 0.90        | 0.90        | 0.90  | 0.90 |  |
| Percent Heavy Veh, % 2        | 2        | 2            |      |          |     | 0.50 | 2        | 2           | 2           | 2     | 0.30 |  |
| Cap, veh/h 26                 | 1152     | 273          |      |          |     | 0    | 483      | 172         | 195         | 257   | 0    |  |
| Arrive On Green 0.40          | 0.40     | 0.40         |      |          |     | 0.00 | 0.37     | 0.37        | 0.37        | 0.37  | 0.00 |  |
| Sat Flow, veh/h 64            | 2851     | 676          |      |          |     | 0.00 | 1296     | 463         | 209         | 689   | 0.00 |  |
|                               |          | 538          |      |          |     | 0    | 0        | 422         | 611         | 009   | 0    |  |
|                               | 0        |              |      |          |     |      |          |             |             |       |      |  |
| Grp Sat Flow(s), veh/h/ln1867 | 0        | 1724<br>10.9 |      |          |     | 0.0  | 0.0      | 1758<br>8.0 | 898         | 0.0   | 0.0  |  |
| Q Serve(g_s), s 12.5          | 0.0      |              |      |          |     |      |          |             | 7.0         |       |      |  |
| Cycle Q Clear(g_c), s 12.5    | 0.0      | 10.9         |      |          |     | 0.0  | 0.0      | 8.0         | 15.0        | 0.0   | 0.0  |  |
| Prop In Lane 0.03             | 0        | 0.39         |      |          |     | 0.00 | 0        | 0.26        | 0.31        | 0     | 0.00 |  |
| Lane Grp Cap(c), veh/h 754    | 0        | 696          |      |          |     | 0    | 0        | 655         | 451         | 0     | 0    |  |
| V/C Ratio(X) 0.85             | 0.00     | 0.77         |      |          |     | 0.00 | 0.00     | 0.64        | 1.35        | 0.00  | 0.00 |  |
| Avail Cap(c_a), veh/h 1159    | 0        | 1070         |      |          |     | 0    | 0        | 655         | 451         | 0     | 0    |  |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00         |      |          |     | 1.00 | 1.00     | 1.00        | 1.00        | 1.00  | 1.00 |  |
| Upstream Filter(I) 1.00       | 0.00     | 1.00         |      |          |     | 0.00 | 0.00     | 1.00        | 1.00        | 0.00  | 0.00 |  |
| Uniform Delay (d), s/veh 10.9 | 0.0      | 10.4         |      |          |     | 0.0  | 0.0      | 10.4        | 15.6        | 0.0   | 0.0  |  |
| Incr Delay (d2), s/veh 2.2    | 0.0      | 0.7          |      |          |     | 0.0  | 0.0      | 1.7         | 173.2       | 0.0   | 0.0  |  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0          |      |          |     | 0.0  | 0.0      | 0.0         | 0.0         | 0.0   | 0.0  |  |
| %ile BackOfQ(50%),veh/lr4.2   | 0.0      | 3.1          |      |          |     | 0.0  | 0.0      | 2.6         | 25.4        | 0.0   | 0.0  |  |
| Unsig. Movement Delay, s/veh  |          |              |      |          |     |      |          | 46.         | 1000        |       |      |  |
| LnGrp Delay(d),s/veh 13.1     | 0.0      | 11.1         |      |          |     | 0.0  | 0.0      | 12.1        | 188.8       | 0.0   | 0.0  |  |
| LnGrp LOS B                   | Α        | В            |      |          |     | Α    | Α        | В           | F           | Α     | A    |  |
| Approach Vol, veh/h           | 1177     |              |      |          |     |      | 422      |             |             | 611   |      |  |
| Approach Delay, s/veh         | 12.2     |              |      |          |     |      | 12.1     |             |             | 188.8 |      |  |
| Approach LOS                  | В        |              |      |          |     |      | В        |             |             | F     |      |  |
| Timer - Assigned Phs          | 2        |              | 4    |          |     |      | 8        |             |             |       |      |  |
| Phs Duration (G+Y+Rc), s      | 21.3     |              | 19.0 |          |     |      | 19.0     |             |             |       |      |  |
| Change Period (Y+Rc), s       | * 5      |              | * 4  |          |     |      | * 4      |             |             |       |      |  |
| Max Green Setting (Gmax), s   | * 25     |              | * 15 |          |     |      | * 15     |             |             |       |      |  |
| • (                           |          |              |      |          |     |      | 10.0     |             |             |       |      |  |
| Max Q Clear Time (g_c+l1), s  | 14.5     |              | 17.0 |          |     |      |          |             |             |       |      |  |
| Green Ext Time (p_c), s       | 1.7      |              | 0.0  |          |     |      | 0.5      |             |             |       |      |  |
| Intersection Summary          |          |              |      |          |     |      |          |             |             |       |      |  |
| HCM 6th Ctrl Delay            |          | 61.0         |      |          |     |      |          |             |             |       |      |  |
| HCM 6th LOS                   |          | Е            |      |          |     |      |          |             |             |       |      |  |
| Notes                         |          |              |      |          |     |      |          |             |             |       |      |  |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |       |        |        |        |          |          |      |          |      |          |
|------------------------|--------|-------|-------|--------|--------|--------|----------|----------|------|----------|------|----------|
| Int Delay, s/veh       | 1.9    |       |       |        |        |        |          |          |      |          |      |          |
| • ·                    |        |       |       |        |        |        |          |          |      | 0.71     |      |          |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR    | NBL      | NBT      | NBR  | SBL      | SBT  | SBR      |
| Lane Configurations    |        | 4     |       |        | 4      |        |          | 4        |      |          | 4    |          |
| Traffic Vol, veh/h     | 40     | 5     | 5     | 5      | 5      | 10     | 5        | 280      | 5    | 10       | 470  | 70       |
| Future Vol, veh/h      | 40     | 5     | 5     | 5      | 5      | 10     | 5        | 280      | 5    | 10       | 470  | 70       |
| Conflicting Peds, #/hr | 5      | 0     | 5     | 5      | 0      | 5      | 30       | 0        | 25   | 35       | 0    | 40       |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop   | Free     | Free     | Free | Free     | Free | Free     |
| RT Channelized         | -      | -     | None  | -      | -      | None   | -        | -        | None | -        | -    | None     |
| Storage Length         | -      | -     | -     | -      | -      | -      | -        | -        | -    | -        | -    | -        |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0      | -      | -        | 0        | -    | -        | 0    | -        |
| Grade, %               | -      | 0     | -     | -      | 0      | -      | -        | 0        | -    | -        | 0    | -        |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90     | 90       | 90       | 90   | 90       | 90   | 90       |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2      | 2        | 2        | 2    | 2        | 2    | 2        |
| Mvmt Flow              | 44     | 6     | 6     | 6      | 6      | 11     | 6        | 311      | 6    | 11       | 522  | 78       |
|                        |        |       |       |        |        |        |          |          |      |          |      |          |
| Major/Minor            | Minor2 |       |       | Minor1 |        |        | Major1   |          |      | Major2   |      |          |
| Conflicting Flow All   | 963    | 987   | 606   | 955    | 1023   | 354    | 640      | 0        | 0    | 352      | 0    | 0        |
| Stage 1                | 623    | 623   | -     | 361    | 361    | JJ4    | 040      | U        | U    | JJZ      | U    | -        |
| Stage 2                | 340    | 364   | -     | 594    | 662    |        | _        | _        |      | _        | _    | _        |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22   | 4.12     | <u>-</u> | -    | 4.12     | -    | -        |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | 0.22  | 6.12   | 5.52   | 0.22   | 7.12     | _        |      | 7.12     | _    | _        |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | _     | 6.12   | 5.52   | _      | -        | -        | _    | -        | _    | -        |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018  | 3.318  | 2.218    | _        |      | 2.218    | _    | _        |
| Pot Cap-1 Maneuver     | 235    | 247   | 497   | 238    | 236    | 690    | 944      | _        | _    | 1207     | _    | <u>-</u> |
| Stage 1                | 474    | 478   | 431   | 657    | 626    | 090    | 344      | _        |      | 1201     | _    | _        |
| Stage 2                | 675    | 624   | -     | 491    | 459    | -      | <u>-</u> | _        | _    | <u>-</u> | -    | <u>-</u> |
| Platoon blocked, %     | 013    | 024   | -     | 431    | 403    | -      | _        | -        | -    | _        | _    | -        |
| Mov Cap-1 Maneuver     | 213    | 225   | 476   | 218    | 215    | 664    | 908      | _        | _    | 1167     | -    | <u>-</u> |
| Mov Cap-1 Maneuver     | 213    | 225   | 4/0   | 218    | 215    | 004    | 900      | -        | -    | 1107     | -    | -        |
| Stage 1                | 452    | 454   | _     | 630    | 600    | _      | -        | -        | -    | -        | -    | -        |
| Stage 2                | 649    | 598   | -     | 470    | 436    | -      | _        | -        | -    | _        | -    | _        |
| Staye 2                | 049    | 230   | -     | 410    | 430    | -      | -        | -        | -    | -        | -    | -        |
|                        |        |       |       |        |        |        |          |          |      |          |      |          |
| Approach               | EB     |       |       | WB     |        |        | NB       |          |      | SB       |      |          |
| HCM Control Delay, s   | 25.9   |       |       | 16.8   |        |        | 0.2      |          |      | 0.1      |      |          |
| HCM LOS                | D      |       |       | С      |        |        |          |          |      |          |      |          |
|                        |        |       |       |        |        |        |          |          |      |          |      |          |
| Minor Lane/Major Mvn   | nt     | NBL   | NBT   | NRP    | EBLn1\ | VRI n1 | SBL      | SBT      | SBR  |          |      |          |
|                        | π      |       | INDI  |        |        |        |          | ODT      | JDK  |          |      |          |
| Capacity (veh/h)       |        | 908   | -     | -      | 227    | 327    | 1167     | -        | -    |          |      |          |
| HCM Cantral Dalay (a)  |        | 0.006 | -     |        | 0.245  |        | 0.01     | -        | -    |          |      |          |
| HCM Control Delay (s)  |        | 9     | 0     | -      | 25.9   | 16.8   | 8.1      | 0        | -    |          |      |          |
| HCM Lane LOS           | \      | A     | Α     | -      | D      | С      | A        | Α        | -    |          |      |          |
| HCM 95th %tile Q(veh   | )      | 0     | -     | -      | 0.9    | 0.2    | 0        | -        | -    |          |      |          |

|                              | ၨ    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b>   | ~    | <b>/</b> | <b>†</b>   | 4    |
|------------------------------|------|----------|------|------|----------|------|------|------------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        |      | Ţ    | <b>∱</b> } |      | ħ        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 20   | 140      | 140  | 20   | 170      | 20   | 190  | 710        | 20   | 5        | 750        | 10   |
| Future Volume (veh/h)        | 20   | 140      | 140  | 20   | 170      | 20   | 190  | 710        | 20   | 5        | 750        | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.97 | 1.00 |          | 0.98 | 1.00 |            | 0.97 | 1.00     |            | 0.97 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No         |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870       | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 22   | 156      | 135  | 22   | 189      | 1    | 211  | 789        | 22   | 6        | 833        | 10   |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90 | 0.90       | 0.90 | 0.90     | 0.90       | 0.90 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2          | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 107  | 227      | 183  | 119  | 434      | 2    | 427  | 1876       | 52   | 439      | 1911       | 23   |
| Arrive On Green              | 0.25 | 0.25     | 0.25 | 0.25 | 0.25     | 0.25 | 0.53 | 0.53       | 0.53 | 0.53     | 0.53       | 0.53 |
| Sat Flow, veh/h              | 58   | 900      | 726  | 91   | 1724     | 9    | 651  | 3527       | 98   | 671      | 3595       | 43   |
| Grp Volume(v), veh/h         | 313  | 0        | 0    | 212  | 0        | 0    | 211  | 397        | 414  | 6        | 412        | 431  |
| Grp Sat Flow(s),veh/h/ln     | 1684 | 0        | 0    | 1824 | 0        | 0    | 651  | 1777       | 1849 | 671      | 1777       | 1861 |
| Q Serve(g_s), s              | 1.7  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 12.2 | 5.6        | 5.6  | 0.2      | 5.9        | 5.9  |
| Cycle Q Clear(g_c), s        | 7.0  | 0.0      | 0.0  | 4.0  | 0.0      | 0.0  | 18.0 | 5.6        | 5.6  | 5.8      | 5.9        | 5.9  |
| Prop In Lane                 | 0.07 |          | 0.43 | 0.10 |          | 0.00 | 1.00 |            | 0.05 | 1.00     |            | 0.02 |
| Lane Grp Cap(c), veh/h       | 517  | 0        | 0    | 555  | 0        | 0    | 427  | 945        | 983  | 439      | 945        | 990  |
| V/C Ratio(X)                 | 0.61 | 0.00     | 0.00 | 0.38 | 0.00     | 0.00 | 0.49 | 0.42       | 0.42 | 0.01     | 0.44       | 0.44 |
| Avail Cap(c_a), veh/h        | 816  | 0        | 0    | 869  | 0        | 0    | 441  | 982        | 1022 | 453      | 982        | 1029 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 14.2 | 0.0      | 0.0  | 13.1 | 0.0      | 0.0  | 11.4 | 5.9        | 5.9  | 7.6      | 5.9        | 5.9  |
| Incr Delay (d2), s/veh       | 0.4  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 1.3  | 0.4        | 0.4  | 0.0      | 0.5        | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.4  | 0.0      | 0.0  | 1.5  | 0.0      | 0.0  | 1.4  | 1.4        | 1.5  | 0.0      | 1.5        | 1.5  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |            |      |          |            |      |
| LnGrp Delay(d),s/veh         | 14.7 | 0.0      | 0.0  | 13.3 | 0.0      | 0.0  | 12.7 | 6.3        | 6.3  | 7.7      | 6.4        | 6.4  |
| LnGrp LOS                    | В    | A        | A    | В    | A        | A    | В    | A          | A    | A        | A          | A    |
| Approach Vol, veh/h          |      | 313      |      |      | 212      |      |      | 1022       |      |          | 849        |      |
| Approach Delay, s/veh        |      | 14.7     |      |      | 13.3     |      |      | 7.6        |      |          | 6.4        |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | Α          |      |          | Α          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s     |      | 27.1     |      | 14.5 |          | 27.1 |      | 14.5       |      |          |            |      |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |      | 4.0        |      |          |            |      |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |      | 18.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s |      | 20.0     |      | 9.0  |          | 7.9  |      | 6.0        |      |          |            |      |
| Green Ext Time (p_c), s      |      | 2.1      |      | 0.9  |          | 6.4  |      | 0.6        |      |          |            |      |
| Intersection Summary         |      |          |      |      |          |      |      |            |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 8.6  |      |          |      |      |            |      |          |            |      |
| HCM 6th LOS                  |      |          | Α    |      |          |      |      |            |      |          |            |      |

| Intersection           |            |       |           |       |        |      |
|------------------------|------------|-------|-----------|-------|--------|------|
| Int Delay, s/veh       | 9          |       |           |       |        |      |
|                        |            | WED   | NET       | NDD   | ODI    | ODT  |
| Movement               | WBL        | WBR   | NBT       | NBR   | SBL    | SBT  |
| Lane Configurations    | ¥          |       | <b>\$</b> | 4.0   |        | र्स  |
| Traffic Vol, veh/h     | 10         | 350   | 30        | 10    | 260    | 30   |
| Future Vol, veh/h      | 10         | 350   | 30        | 10    | 260    | 30   |
| Conflicting Peds, #/hr | 12         | 2     | _ 0       | _ 10  | _ 10   | _ 0  |
| Sign Control           | Stop       | Stop  | Free      | Free  | Free   | Free |
| RT Channelized         | -          | None  | -         | None  | -      | None |
| Storage Length         | 0          | -     | -         | -     | -      | -    |
| Veh in Median Storage  |            | -     | 0         | -     | -      | 0    |
| Grade, %               | 0          | -     | 0         | -     | -      | 0    |
| Peak Hour Factor       | 90         | 90    | 90        | 90    | 90     | 90   |
| Heavy Vehicles, %      | 2          | 2     | 2         | 2     | 2      | 2    |
| Mvmt Flow              | 11         | 389   | 33        | 11    | 289    | 33   |
|                        |            |       |           |       |        |      |
| Maiay/Mina             | Minaria    |       | Asia ::4  |       | Maisro |      |
|                        | Minor1     |       | Major1    |       | Major2 |      |
| Conflicting Flow All   | 672        | 51    | 0         | 0     | 54     | 0    |
| Stage 1                | 49         | -     | -         | -     | -      | -    |
| Stage 2                | 623        | -     | -         | -     | -      | -    |
| Critical Hdwy          | 6.42       | 6.22  | -         | -     | 4.12   | -    |
| Critical Hdwy Stg 1    | 5.42       | -     | -         | -     | -      | -    |
| Critical Hdwy Stg 2    | 5.42       | -     | -         | -     | -      | -    |
| Follow-up Hdwy         | 3.518      | 3.318 | -         | -     | 2.218  | -    |
| Pot Cap-1 Maneuver     | 421        | 1017  | -         | -     | 1551   | -    |
| Stage 1                | 973        | -     | -         | -     | -      | -    |
| Stage 2                | 535        | -     | -         | -     | -      | -    |
| Platoon blocked, %     |            |       | -         | -     |        | -    |
| Mov Cap-1 Maneuver     | 333        | 1005  | _         | _     | 1536   | _    |
| Mov Cap-2 Maneuver     |            | -     | _         | _     | -      | _    |
| Stage 1                | 963        | _     | _         | _     | _      | _    |
| Stage 2                | 427        | _     | _         | _     | _      | _    |
| Olaye Z                | 741        |       | •         |       |        |      |
|                        |            |       |           |       |        |      |
| Approach               | WB         |       | NB        |       | SB     |      |
| HCM Control Delay, s   | 11.5       |       | 0         |       | 7.1    |      |
| HCM LOS                | В          |       |           |       |        |      |
|                        |            |       |           |       |        |      |
| Minor Long/Major M.    | <b>~</b> 4 | NDT   | MDDV      | VDI 1 | CDI    | CDT  |
| Minor Lane/Major Mvr   | nt         | NBT   |           | VBLn1 | SBL    | SBT  |
| Capacity (veh/h)       |            | -     | -         |       | 1536   | -    |
| HCM Lane V/C Ratio     |            | -     | -         |       | 0.188  | -    |
| HCM Control Delay (s   | )          | -     | -         |       | 7.9    | 0    |
| HCM Lane LOS           |            | -     | -         | В     | Α      | Α    |
| HCM 95th %tile Q(veh   | 1)         | -     | -         | 2.1   | 0.7    | -    |
| •                      |            |       |           |       |        |      |

| Intersection                                                                           |           |                      |        |                      |          |               |
|----------------------------------------------------------------------------------------|-----------|----------------------|--------|----------------------|----------|---------------|
| Int Delay, s/veh                                                                       | 10.9      |                      |        |                      |          |               |
|                                                                                        |           |                      | NE     | NET                  | 00=      | 000           |
| Movement                                                                               | EBL       | EBR                  | NBL    | NBT                  | SBT      | SBR           |
| Lane Configurations                                                                    | Y         |                      |        | <b>^</b>             | ĵ.       |               |
| Traffic Vol, veh/h                                                                     | 50        | 260                  | 350    | 30                   | 30       | 20            |
| Future Vol, veh/h                                                                      | 50        | 260                  | 350    | 30                   | 30       | 20            |
| Conflicting Peds, #/hr                                                                 | 2         | 12                   | 10     | 0                    | 0        | 10            |
| Sign Control                                                                           | Stop      | Stop                 | Free   | Free                 | Free     | Free          |
| RT Channelized                                                                         | -         | None                 | -      | None                 | -        | None          |
| Storage Length                                                                         | 0         | -                    | -      | -                    | -        | _             |
| Veh in Median Storage                                                                  | e, # 0    | -                    | -      | 0                    | 0        | -             |
| Grade, %                                                                               | 0         | -                    | -      | 0                    | 0        | -             |
| Peak Hour Factor                                                                       | 90        | 90                   | 90     | 90                   | 90       | 90            |
| Heavy Vehicles, %                                                                      | 2         | 2                    | 2      | 2                    | 2        | 2             |
| Mvmt Flow                                                                              | 56        | 289                  | 389    | 33                   | 33       | 22            |
|                                                                                        |           |                      |        |                      |          |               |
|                                                                                        |           |                      |        |                      |          |               |
|                                                                                        | Minor2    |                      | Major1 |                      | /lajor2  |               |
| Conflicting Flow All                                                                   | 867       | 66                   | 65     | 0                    | -        | 0             |
| Stage 1                                                                                | 54        | -                    | -      | -                    | -        | -             |
| Stage 2                                                                                | 813       | -                    | -      | -                    | -        | -             |
| Critical Hdwy                                                                          | 6.42      | 6.22                 | 4.12   | -                    | -        | -             |
| Critical Hdwy Stg 1                                                                    | 5.42      | -                    | -      | -                    | -        | -             |
| Critical Hdwy Stg 2                                                                    | 5.42      | -                    | _      | -                    | -        | -             |
| Follow-up Hdwy                                                                         | 3.518     | 3.318                | 2.218  | -                    | -        | -             |
| Pot Cap-1 Maneuver                                                                     | 323       | 998                  | 1537   | -                    | -        | -             |
| Stage 1                                                                                | 969       | -                    | -      | -                    | -        | -             |
| Stage 2                                                                                | 436       | -                    | -      | -                    | -        | -             |
| Platoon blocked, %                                                                     |           |                      |        | _                    | _        | _             |
| Mov Cap-1 Maneuver                                                                     | 234       | 977                  | 1522   | _                    | -        | -             |
| Mov Cap-1 Maneuver                                                                     | 234       | -                    | -      | <u>-</u>             | <u>-</u> | _             |
| Stage 1                                                                                | 710       |                      | _      | -                    | _        |               |
| _                                                                                      | 432       | -                    | _      | _                    | _        | _             |
| Stage 2                                                                                | 432       | -                    | -      | -                    | -        | -             |
|                                                                                        |           |                      |        |                      |          |               |
| Approach                                                                               | EB        |                      | NB     |                      | SB       |               |
|                                                                                        | 16.8      |                      | 7.5    |                      | 0        |               |
| HCM Control Delay, s                                                                   |           |                      |        |                      |          |               |
| HCM Control Delay, s<br>HCM LOS                                                        | С         |                      |        |                      |          |               |
| HCM Control Delay, s<br>HCM LOS                                                        | С         |                      |        |                      |          |               |
| HCM LOS                                                                                |           | NDI                  | NDT    | ⊏DI4                 | CDT      | CDD           |
| HCM LOS  Minor Lane/Major Mvr                                                          |           | NBL                  | NBT    | EBLn1                | SBT      | SBR           |
| Minor Lane/Major Mvn<br>Capacity (veh/h)                                               |           | 1522                 | -      | 646                  | SBT<br>- | SBR<br>-      |
| Minor Lane/Major Mvn<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                         | nt        | 1522<br>0.256        | -      | 646<br>0.533         | SBT<br>- | SBR<br>-<br>- |
| Minor Lane/Major Mvn<br>Capacity (veh/h)<br>HCM Lane V/C Ratio<br>HCM Control Delay (s | nt        | 1522<br>0.256<br>8.2 | -      | 646<br>0.533<br>16.8 | -        | -             |
| Minor Lane/Major Mvn<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                         | <u>nt</u> | 1522<br>0.256        | -      | 646<br>0.533         | -<br>-   | -             |

| Intersection           |        |       |       |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 12.3   |       |       |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4      |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 5      | 280   | 5     | 5      | 340    | 5     | 5      | 30   | 10   | 5      | 30   | 40   |
| Future Vol, veh/h      | 5      | 280   | 5     | 5      | 340    | 5     | 5      | 30   | 10   | 5      | 30   | 40   |
| Conflicting Peds, #/hr | 2      | 0     | 2     | 7      | 0      | 2     | 0      | 0    | 5    | 5      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | _      | None  | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90    | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2     | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 6      | 311   | 6     | 6      | 378    | 6     | 6      | 33   | 11   | 6      | 33   | 44   |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor N          | Minor2 |       |       | Minor1 |        |       | Major1 |      |      | Major2 |      |      |
| Conflicting Flow All   | 312    | 128   | 62    | 289    | 145    | 46    | 77     | 0    | 0    | 49     | 0    | 0    |
| Stage 1                | 67     | 67    | -     | 56     | 56     | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 245    | 61    | -     | 233    | 89     | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22  | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018  | 3.318 | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 641    | 763   | 1003  | 663    | 746    | 1023  | 1522   | -    | -    | 1558   | -    | -    |
| Stage 1                | 943    | 839   | -     | 956    | 848    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 759    | 844   | -     | 770    | 821    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 377    | 753   | 996   | 439    | 736    | 1016  | 1522   | -    | -    | 1551   | -    | -    |
| Mov Cap-2 Maneuver     | 377    | 753   | -     | 439    | 736    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 939    | 836   | -     | 947    | 840    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 413    | 836   | -     | 476    | 818    | -     | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 13.5   |       |       | 15.4   |        |       | 0.8    |      |      | 0.5    |      |      |
| HCM LOS                | В      |       |       | С      |        |       |        |      |      |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V |       | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1522  | -     | -      | 743    | 732   | 1551   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.004 | -     | -      |        | 0.531 |        | -    | -    |        |      |      |
| HCM Control Delay (s)  |        | 7.4   | 0     | -      | 13.5   | 15.4  | 7.3    | 0    | -    |        |      |      |
| HCM Lane LOS           |        | Α     | Α     | -      | В      | С     | Α      | Α    | -    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 2.2    | 3.2   | 0      | -    | -    |        |      |      |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | 1     | <b>†</b>   | ~    | <b>/</b> | <b>+</b>   | -✓       |
|------------------------------|------|----------|------|------|----------|------|-------|------------|------|----------|------------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT        | NBR  | SBL      | SBT        | SBR      |
| Lane Configurations          |      | 4        |      |      | 4        |      | 7     | <b>ተ</b> ኈ |      | ሻ        | <b>∱</b> ⊅ |          |
| Traffic Volume (veh/h)       | 110  | 160      | 180  | 60   | 210      | 20   | 370   | 790        | 60   | 10       | 840        | 30       |
| Future Volume (veh/h)        | 110  | 160      | 180  | 60   | 210      | 20   | 370   | 790        | 60   | 10       | 840        | 30       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0     | 0          | 0    | 0        | 0          | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.97 | 1.00 |          | 1.00 | 1.00  |            | 0.97 | 1.00     |            | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |       | No         |      |          | No         |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870  | 1870       | 1870 | 1870     | 1870       | 1870     |
| Adj Flow Rate, veh/h         | 122  | 178      | 160  | 67   | 233      | 2    | 411   | 878        | 67   | 11       | 933        | 32       |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 | 0.90  | 0.90       | 0.90 | 0.90     | 0.90       | 0.90     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2     | 2          | 2    | 2        | 2          | 2        |
| Cap, veh/h                   | 209  | 233      | 184  | 171  | 467      | 4    | 324   | 1616       | 123  | 329      | 1697       | 58       |
| Arrive On Green              | 0.33 | 0.33     | 0.33 | 0.33 | 0.33     | 0.33 | 0.48  | 0.48       | 0.48 | 0.48     | 0.48       | 0.48     |
| Sat Flow, veh/h              | 346  | 714      | 565  | 240  | 1432     | 11   | 581   | 3336       | 255  | 592      | 3504       | 120      |
| Grp Volume(v), veh/h         | 460  | 0        | 0    | 302  | 0        | 0    | 411   | 468        | 477  | 11       | 473        | 492      |
| Grp Sat Flow(s),veh/h/ln     | 1626 | 0        | 0    | 1683 | 0        | 0    | 581   | 1777       | 1814 | 592      | 1777       | 1847     |
| Q Serve(g_s), s              | 5.9  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 14.1  | 8.7        | 8.7  | 0.6      | 8.9        | 8.9      |
| Cycle Q Clear(g_c), s        | 12.3 | 0.0      | 0.0  | 6.4  | 0.0      | 0.0  | 23.0  | 8.7        | 8.7  | 9.4      | 8.9        | 8.9      |
| Prop In Lane                 | 0.27 |          | 0.35 | 0.22 |          | 0.01 | 1.00  |            | 0.14 | 1.00     |            | 0.07     |
| Lane Grp Cap(c), veh/h       | 626  | 0        | 0    | 641  | 0        | 0    | 324   | 861        | 879  | 329      | 861        | 895      |
| V/C Ratio(X)                 | 0.73 | 0.00     | 0.00 | 0.47 | 0.00     | 0.00 | 1.27  | 0.54       | 0.54 | 0.03     | 0.55       | 0.55     |
| Avail Cap(c_a), veh/h        | 706  | 0        | 0    | 726  | 0        | 0    | 324   | 861        | 879  | 329      | 861        | 895      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00     |
| Uniform Delay (d), s/veh     | 14.7 | 0.0      | 0.0  | 12.9 | 0.0      | 0.0  | 20.0  | 8.6        | 8.6  | 11.8     | 8.6        | 8.6      |
| Incr Delay (d2), s/veh       | 2.8  | 0.0      | 0.0  | 0.2  | 0.0      | 0.0  | 142.3 | 0.9        | 0.9  | 0.1      | 1.0        | 0.9      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   | 0.0        | 0.0  | 0.0      | 0.0        | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 4.4  | 0.0      | 0.0  | 2.3  | 0.0      | 0.0  | 16.2  | 2.7        | 2.8  | 0.1      | 2.8        | 2.9      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |       |            |      |          |            |          |
| LnGrp Delay(d),s/veh         | 17.5 | 0.0      | 0.0  | 13.1 | 0.0      | 0.0  | 162.2 | 9.5        | 9.5  | 11.9     | 9.6        | 9.5      |
| LnGrp LOS                    | В    | Α        | Α    | В    | Α        | Α    | F     | Α          | Α    | В        | А          | <u>A</u> |
| Approach Vol, veh/h          |      | 460      |      |      | 302      |      |       | 1356       |      |          | 976        |          |
| Approach Delay, s/veh        |      | 17.5     |      |      | 13.1     |      |       | 55.8       |      |          | 9.6        |          |
| Approach LOS                 |      | В        |      |      | В        |      |       | E          |      |          | Α          |          |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |       | 8          |      |          |            |          |
| Phs Duration (G+Y+Rc), s     |      | 28.0     |      | 19.5 |          | 28.0 |       | 19.5       |      |          |            |          |
| Change Period (Y+Rc), s      |      | 5.0      |      | 4.0  |          | 5.0  |       | 4.0        |      |          |            |          |
| Max Green Setting (Gmax), s  |      | 23.0     |      | 18.0 |          | 23.0 |       | 18.0       |      |          |            |          |
| Max Q Clear Time (g_c+l1), s |      | 25.0     |      | 14.3 |          | 11.4 |       | 8.4        |      |          |            |          |
| Green Ext Time (p_c), s      |      | 0.0      |      | 8.0  |          | 6.3  |       | 0.9        |      |          |            |          |
| Intersection Summary         |      |          |      |      |          |      |       |            |      |          |            |          |
| HCM 6th Ctrl Delay           |      |          | 31.3 |      |          |      |       |            |      |          |            |          |
| HCM 6th LOS                  |      |          | С    |      |          |      |       |            |      |          |            |          |

| Intersection               |      |  |
|----------------------------|------|--|
| Intersection Delay, s/veh. | 22.9 |  |
| Intersection LOS           | С    |  |

| EBL           | EBT                                                                       | EBR                                                                                         | WBL                                                                                                          | WBT                                                                                                                                     | WBR                                                                                                                                                                  | NBL                                                                                                                                                                | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 4                                                                         |                                                                                             |                                                                                                              | 4                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5             | 410                                                                       | 5                                                                                           | 5                                                                                                            | 580                                                                                                                                     | 10                                                                                                                                                                   | 5                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5             | 410                                                                       | 5                                                                                           | 5                                                                                                            | 580                                                                                                                                     | 10                                                                                                                                                                   | 5                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.90          | 0.90                                                                      | 0.90                                                                                        | 0.90                                                                                                         | 0.90                                                                                                                                    | 0.90                                                                                                                                                                 | 0.90                                                                                                                                                               | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2             | 2                                                                         | 2                                                                                           | 2                                                                                                            | 2                                                                                                                                       | 2                                                                                                                                                                    | 2                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6             | 456                                                                       | 6                                                                                           | 6                                                                                                            | 644                                                                                                                                     | 11                                                                                                                                                                   | 6                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0             | 1                                                                         | 0                                                                                           | 0                                                                                                            | 1                                                                                                                                       | 0                                                                                                                                                                    | 0                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EB            |                                                                           |                                                                                             | WB                                                                                                           |                                                                                                                                         |                                                                                                                                                                      | NB                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WB            |                                                                           |                                                                                             | EB                                                                                                           |                                                                                                                                         |                                                                                                                                                                      | SB                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1             |                                                                           |                                                                                             | 1                                                                                                            |                                                                                                                                         |                                                                                                                                                                      | 1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ft SB         |                                                                           |                                                                                             | NB                                                                                                           |                                                                                                                                         |                                                                                                                                                                      | EB                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1             |                                                                           |                                                                                             | 1                                                                                                            |                                                                                                                                         |                                                                                                                                                                      | 1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| gh <b>N</b> B |                                                                           |                                                                                             | SB                                                                                                           |                                                                                                                                         |                                                                                                                                                                      | WB                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1             |                                                                           |                                                                                             | 1                                                                                                            |                                                                                                                                         |                                                                                                                                                                      | 1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16            |                                                                           |                                                                                             | 29.2                                                                                                         |                                                                                                                                         |                                                                                                                                                                      | 10                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С             |                                                                           |                                                                                             | D                                                                                                            |                                                                                                                                         |                                                                                                                                                                      | Α                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 5<br>5<br>0.90<br>2<br>6<br>0<br>EB<br>WB<br>1<br>ft SB<br>1<br>ghNB<br>1 | 5 410<br>5 410<br>0.90 0.90<br>2 2<br>6 456<br>0 1<br>EB<br>WB<br>1 ft SB<br>1 ghNB<br>1 16 | 5 410 5<br>5 410 5<br>0.90 0.90 0.90<br>2 2 2 2<br>6 456 6<br>0 1 0<br>EB<br>WB<br>1 ft SB<br>1 ghNB<br>1 16 | 5 410 5 5<br>5 410 5 5<br>0.90 0.90 0.90 0.90<br>2 2 2 2 2<br>6 456 6 6<br>0 1 0 0<br>EB WB WB EB 1 1 1 ft SB NB 1 1 1 ghNB SB 1 1 29.2 | 5 410 5 5 580<br>5 410 5 5 580<br>0.90 0.90 0.90 0.90 0.90<br>2 2 2 2 2 2<br>6 456 6 6 6 644<br>0 1 0 0 1<br>EB WB  WB EB  1 1 1  ft SB NB  1 1 1  ghNB SB  1 1 29.2 | 5 410 5 5 580 10 5 410 5 5 580 10 0.90 0.90 0.90 0.90 0.90 0.90 2 2 2 2 2 2 2 2 6 456 6 6 6 644 11 0 1 0 0 1 0  EB WB  WB EB 1 1 1 ft SB NB 1 1 1 ghNB SB 1 1 29.2 | 5       410       5       5       580       10       5         5       410       5       5       580       10       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90         2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3 </td <td>5       410       5       5       580       10       5       20         5       410       5       5       580       10       5       20         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90</td> <td>5       410       5       5       580       10       5       20       5         5       410       5       5       580       10       5       20       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       <td< td=""><td>5       410       5       5       580       10       5       20       5       5         5       410       5       5       580       10       5       20       5       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90&lt;</td><td>5       410       5       5       580       10       5       20       5       5       20         5       410       5       5       580       10       5       20       5       5       20         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90</td><td>5       410       5       5       580       10       5       20       5       5       20       10         5       410       5       5       580       10       5       20       5       5       20       10         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90</td></td<></td> | 5       410       5       5       580       10       5       20         5       410       5       5       580       10       5       20         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90 | 5       410       5       5       580       10       5       20       5         5       410       5       5       580       10       5       20       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90 <td< td=""><td>5       410       5       5       580       10       5       20       5       5         5       410       5       5       580       10       5       20       5       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90&lt;</td><td>5       410       5       5       580       10       5       20       5       5       20         5       410       5       5       580       10       5       20       5       5       20         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90</td><td>5       410       5       5       580       10       5       20       5       5       20       10         5       410       5       5       580       10       5       20       5       5       20       10         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90</td></td<> | 5       410       5       5       580       10       5       20       5       5         5       410       5       5       580       10       5       20       5       5         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90< | 5       410       5       5       580       10       5       20       5       5       20         5       410       5       5       580       10       5       20       5       5       20         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90 | 5       410       5       5       580       10       5       20       5       5       20       10         5       410       5       5       580       10       5       20       5       5       20       10         0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90 |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 17%   | 1%     | 1%    | 14%   |
| Vol Thru, %            | 67%   | 98%    | 97%   | 57%   |
| Vol Right, %           | 17%   | 1%     | 2%    | 29%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 30    | 420    | 595   | 35    |
| LT Vol                 | 5     | 5      | 5     | 5     |
| Through Vol            | 20    | 410    | 580   | 20    |
| RT Vol                 | 5     | 5      | 10    | 10    |
| Lane Flow Rate         | 33    | 467    | 661   | 39    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.061 | 0.631  | 0.858 | 0.07  |
| Departure Headway (Hd) | 6.547 | 4.868  | 4.67  | 6.451 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 550   | 733    | 767   | 558   |
| Service Time           | 4.551 | 2.95   | 2.744 | 4.455 |
| HCM Lane V/C Ratio     | 0.06  | 0.637  | 0.862 | 0.07  |
| HCM Control Delay      | 10    | 16     | 29.2  | 9.9   |
| HCM Lane LOS           | Α     | С      | D     | Α     |
| HCM 95th-tile Q        | 0.2   | 4.5    | 10.3  | 0.2   |

| Intersection                                |        |       |         |      |           |                  |
|---------------------------------------------|--------|-------|---------|------|-----------|------------------|
| Int Delay, s/veh                            | 0.6    |       |         |      |           |                  |
| •                                           |        | EDT   | MOT     | WDD  | OD        | 000              |
| Movement                                    | EBL    | EBT   | WBT     | WBR  | SBL       | SBR              |
| Lane Configurations                         |        | र्स   | ĵ.      |      | Y         |                  |
| Traffic Vol, veh/h                          | 5      | 355   | 550     | 40   | 20        | 10               |
| Future Vol, veh/h                           | 5      | 355   | 550     | 40   | 20        | 10               |
| Conflicting Peds, #/hr                      | 4      | 0     | 0       | 4    | 0         | 0                |
| Sign Control                                | Free   | Free  | Free    | Free | Stop      | Stop             |
| RT Channelized                              | -      | None  | -       | None | -         | None             |
| Storage Length                              | -      | -     | -       | -    | 0         | -                |
| Veh in Median Storage                       | ,# -   | 0     | 0       | -    | 0         | -                |
| Grade, %                                    | -      | 0     | 0       | -    | 0         | -                |
| Peak Hour Factor                            | 90     | 90    | 90      | 90   | 90        | 90               |
| Heavy Vehicles, %                           | 2      | 2     | 2       | 2    | 2         | 2                |
| Mvmt Flow                                   | 6      | 394   | 611     | 44   | 22        | 11               |
|                                             |        |       |         |      |           |                  |
| Majay/Minay N                               | 1-:1   |       | 10:00   |      | Min a rO  |                  |
|                                             | Major1 |       | //ajor2 |      | Minor2    |                  |
| Conflicting Flow All                        | 659    | 0     | -       |      | 1043      | 637              |
| Stage 1                                     | -      | -     | -       | -    | 637       | -                |
| Stage 2                                     | -      | -     | -       | -    | 406       | -                |
| Critical Hdwy                               | 4.12   | -     | -       | -    | 6.42      | 6.22             |
| Critical Hdwy Stg 1                         | -      | -     | -       | -    | 5.42      | -                |
| Critical Hdwy Stg 2                         | -      | -     | -       | -    | 5.42      | -                |
|                                             | 2.218  | -     | -       | -    | 3.518     |                  |
| Pot Cap-1 Maneuver                          | 929    | -     | -       | -    | 254       | 477              |
| Stage 1                                     | -      | -     | -       | -    | 527       | -                |
| Stage 2                                     | -      | -     | -       | -    | 673       | -                |
| Platoon blocked, %                          |        | -     | -       | -    |           |                  |
| Mov Cap-1 Maneuver                          | 925    | -     | -       | -    | 250       | 475              |
| Mov Cap-2 Maneuver                          | -      | -     | -       | -    | 250       | -                |
| Stage 1                                     | -      | -     | -       | -    | 521       | -                |
| Stage 2                                     | -      | -     | -       | _    | 670       | -                |
| <b></b> -                                   |        |       |         |      |           |                  |
| A I                                         |        |       | MA      |      | 0.0       |                  |
| Approach                                    | EB     |       | WB      |      | SB        |                  |
| HCM Control Delay, s                        | 0.1    |       | 0       |      | 18.6      |                  |
| HCM LOS                                     |        |       |         |      | С         |                  |
|                                             |        |       |         |      |           |                  |
| Minor Lane/Major Mvm                        | t      | EBL   | EBT     | WBT  | WBR :     | SBI n1           |
| Capacity (veh/h)                            |        | 925   |         | 1101 | VV DI ( ) | 297              |
| Capacity (Veri/II)                          |        | 0.006 | -       |      |           | 0.112            |
|                                             |        | 0.000 | -       | -    | -         |                  |
| HCM Lane V/C Ratio                          |        |       | 0       |      |           | 10.6             |
| HCM Lane V/C Ratio<br>HCM Control Delay (s) |        | 8.9   | 0       | -    | -         | 18.6             |
| HCM Lane V/C Ratio                          |        |       | 0<br>A  | -    | -         | 18.6<br>C<br>0.4 |

| Intersection           |        |       |      |        |        |       |        |      |      |         |            |      |
|------------------------|--------|-------|------|--------|--------|-------|--------|------|------|---------|------------|------|
| Int Delay, s/veh       | 14.8   |       |      |        |        |       |        |      |      |         |            |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL     | SBT        | SBR  |
| Lane Configurations    |        | 4     |      |        | 4      |       | ች      | ħβ   |      |         | <b>∱</b> } |      |
| Traffic Vol, veh/h     | 15     | 5     | 130  | 5      | 5      | 10    | 50     | 1190 | 5    | 5       | 990        | 80   |
| Future Vol, veh/h      | 15     | 5     | 130  | 5      | 5      | 10    | 50     | 1190 | 5    | 5       | 990        | 80   |
| Conflicting Peds, #/hr | 2      | 0     | 2    | 5      | 0      | 5     | 10     | 0    | 5    | 10      | 0          | 5    |
| Sign Control           | Stop   | Stop  | Stop | Stop   | Stop   | Stop  | Free   | Free | Free | Free    | Free       | Free |
| RT Channelized         | -      | -     | None | -      | _      | None  | -      | -    | None | -       | -          | None |
| Storage Length         | -      | -     | -    | -      | -      | -     | 75     | -    | _    | 75      | -          | -    |
| Veh in Median Storage  | ,# -   | 0     | -    | -      | 0      | -     | -      | 0    | -    | -       | 0          | -    |
| Grade, %               | _      | 0     | -    | -      | 0      | -     | -      | 0    | _    | -       | 0          | -    |
| Peak Hour Factor       | 90     | 90    | 90   | 90     | 90     | 90    | 90     | 90   | 90   | 90      | 90         | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2      | 2     | 2      | 2    | 2    | 2       | 2          | 2    |
| Mvmt Flow              | 17     | 6     | 144  | 6      | 6      | 11    | 56     | 1322 | 6    | 6       | 1100       | 89   |
|                        |        |       |      |        |        |       |        |      |      |         |            |      |
| Major/Minor N          | Minor2 |       |      | Minor1 |        |       | Major1 |      | N    | /lajor2 |            |      |
| Conflicting Flow All   | 1948   | 2617  | 610  | 2017   | 2658   | 679   | 1199   | 0    | 0    | 1338    | 0          | 0    |
| Stage 1                | 1167   | 1167  | -    | 1447   | 1447   | -     | -      | -    | -    | -       | -          | -    |
| Stage 2                | 781    | 1450  | -    | 570    | 1211   | -     | -      | -    | -    | -       | -          | -    |
| Critical Hdwy          | 7.54   | 6.54  | 6.94 | 7.54   | 6.54   | 6.94  | 4.14   | -    | -    | 4.14    | -          | -    |
| Critical Hdwy Stg 1    | 6.54   | 5.54  | -    | 6.54   | 5.54   | -     | -      | -    | -    | -       | -          | -    |
| Critical Hdwy Stg 2    | 6.54   | 5.54  | -    | 6.54   | 5.54   | -     | -      | -    | -    | -       | -          | -    |
| Follow-up Hdwy         | 3.52   | 4.02  | 3.32 | 3.52   | 4.02   | 3.32  | 2.22   | -    | -    | 2.22    | -          | -    |
| Pot Cap-1 Maneuver     | 39     | 24    | 437  | 34     | 22     | 394   | 578    | -    | -    | 511     | -          | -    |
| Stage 1                | 206    | 266   | -    | 138    | 195    | -     | -      | -    | -    | -       | -          | -    |
| Stage 2                | 354    | 194   | -    | 474    | 253    | -     | -      | -    | -    | -       | -          | -    |
| Platoon blocked, %     |        |       |      |        |        |       |        | -    | -    |         | -          | -    |
| Mov Cap-1 Maneuver     | 27     | 21    | 431  | 16     | 19     | 388   | 572    | -    | -    | 506     | -          | -    |
| Mov Cap-2 Maneuver     | 27     | 21    | -    | 16     | 19     | -     | -      | -    | -    | -       | -          | -    |
| Stage 1                | 184    | 260   | -    | 123    | 174    | -     | -      | -    | -    | -       | -          | -    |
| Stage 2                | 299    | 173   | -    | 303    | 247    | -     | -      | -    | -    | -       | -          | -    |
|                        |        |       |      |        |        |       |        |      |      |         |            |      |
| Approach               | EB     |       |      | WB     |        |       | NB     |      |      | SB      |            |      |
| HCM Control Delay, s   | 209.5  |       |      | 236.7  |        |       | 0.5    |      |      | 0.1     |            |      |
| HCM LOS                | F      |       |      | F      |        |       |        |      |      |         |            |      |
|                        |        |       |      |        |        |       |        |      |      |         |            |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT  | NBR I  | EBLn1V |       | SBL    | SBT  | SBR  |         |            |      |
| Capacity (veh/h)       |        | 572   | -    | -      | 137    | 33    | 506    | -    | -    |         |            |      |
| HCM Lane V/C Ratio     |        | 0.097 | -    | -      |        | 0.673 |        | -    | -    |         |            |      |
| HCM Control Delay (s)  |        | 12    | -    | -      | 209.5  |       | 12.2   | -    | -    |         |            |      |
| HCM Lane LOS           |        | В     | -    | -      | F      | F     | В      | -    | -    |         |            |      |
| HCM 95th %tile Q(veh)  |        | 0.3   | -    | -      | 10     | 2.3   | 0      | -    | -    |         |            |      |

| Intersection           |        |       |       |        |        |        |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|--------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 9.2    |       |       |        |        |        |        |      |      |        |      |      |
| •                      |        | EDT   |       | MDI    | MOT    | WDD    | NDI    | NDT  | NDD  | ODI    | ODT  | 000  |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR    | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    | 00     | 4     | 00    | _      | 4      | _      | _      | 4    | _    | _      | 4    | _    |
| Traffic Vol, veh/h     | 20     | 125   | 20    | 5      | 120    | 5      | 5      | 20   | 5    | 5      | 20   | 5    |
| Future Vol, veh/h      | 20     | 125   | 20    | 5      | 120    | 5      | 5      | 20   | 5    | 5      | 20   | 5    |
| Conflicting Peds, #/hr | 7      | 0     | 2     | 2      | 0      | 7      | _ 10   | 0    | _ 5  | _ 10   | 0    | _ 5  |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop   | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -      | None   | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -      | -      | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | •      | 0     | -     | -      | 0      | -      | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -      | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 90     | 90    | 90    | 90     | 90     | 90     | 90     | 90   | 90   | 90     | 90   | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2      | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 22     | 139   | 22    | 6      | 133    | 6      | 6      | 22   | 6    | 6      | 22   | 6    |
|                        |        |       |       |        |        |        |        |      |      |        |      |      |
| Major/Minor            | Minor2 |       |       | Minor1 |        |        | Major1 |      |      | Major2 |      |      |
| Conflicting Flow All   | 161    | 97    | 37    | 167    | 97     | 42     | 38     | 0    | 0    | 38     | 0    | 0    |
| Stage 1                | 47     | 47    | -     | 47     | 47     | -      | -      | -    | -    | -      | -    | -    |
| Stage 2                | 114    | 50    | -     | 120    | 50     | -      | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22   | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -      | -      | -    | -    | _      | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -      | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 |        | 4.018  | 3.318  | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 804    | 793   | 1035  | 797    | 793    | 1029   | 1572   | -    | -    | 1572   | -    | -    |
| Stage 1                | 967    | 856   | -     | 967    | 856    | _      | -      | _    | -    | _      | -    | -    |
| Stage 2                | 891    | 853   | -     | 884    | 853    | _      | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |        |        | _    | _    |        | -    | _    |
| Mov Cap-1 Maneuver     | 678    | 771   | 1023  | 660    | 771    | 1012   | 1557   | -    | -    | 1557   | -    | -    |
| Mov Cap-2 Maneuver     | 678    | 771   | -     | 660    | 771    | -      | -      | _    | _    | _      | -    | _    |
| Stage 1                | 954    | 844   | -     | 954    | 844    | _      | -      | -    | -    | -      | -    | -    |
| Stage 2                | 738    | 841   | -     | 718    | 841    | -      | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |        |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |        | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 11     |       |       | 10.7   |        |        | 1.2    |      |      | 1.2    |      |      |
| HCM LOS                | В      |       |       | 10.7   |        |        | 1.4    |      |      | 1.4    |      |      |
| I IOIVI LOO            | ט      |       |       | ט      |        |        |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NDD    | EBLn1\ | MRI n1 | SBL    | SBT  | SBR  |        |      |      |
|                        | IL .   |       |       |        |        |        | 1557   |      | אומט |        |      |      |
| Capacity (veh/h)       |        | 1557  | -     | -      | 781    | 773    |        | -    | -    |        |      |      |
| HCM Central Delay (a)  |        | 0.004 | -     | -      |        | 0.187  |        | -    | -    |        |      |      |
| HCM Control Delay (s)  |        | 7.3   | 0     | -      | 11     | 10.7   | 7.3    | 0    | -    |        |      |      |
| HCM Lane LOS           | \      | A     | Α     | -      | В      | В      | A      | Α    | -    |        |      |      |
| HCM 95th %tile Q(veh   | )      | 0     | -     | -      | 0.9    | 0.7    | 0      | -    | -    |        |      |      |

| Intersection                           |          |            |        |        |            |        |           |           |        |           |                |        |
|----------------------------------------|----------|------------|--------|--------|------------|--------|-----------|-----------|--------|-----------|----------------|--------|
| Int Delay, s/veh                       | 2.5      |            |        |        |            |        |           |           |        |           |                |        |
|                                        | EBL      | EBT        | EDD    | WDI    | WDT        | WBR    | NDI       | NDT       | NDD    | CDI       | SBT            | SBR    |
| Movement                               | EDL      |            | EBR    | WBL    | WBT        | WDK    | NBL       | NBT       | NBR    | SBL       |                | SDK    |
| Lane Configurations Traffic Vol, veh/h | 20       | 455        | 20     | E      | 440        | _      | ٥         | 4         | _      | 5         | <b>♣</b><br>30 | E      |
| Future Vol, veh/h                      | 20<br>20 | 155<br>155 | 20     | 5<br>5 | 110<br>110 | 5<br>5 | 0         | 20<br>20  | 5<br>5 | 5         | 30             | 5<br>5 |
| Conflicting Peds, #/hr                 | 20       | 0          | 7      | 7      | 0          | 2      | 5         | 0         | 5      | 5         | 0              | 5      |
| Sign Control                           | Free     | Free       | Free   | Free   | Free       | Free   | Stop      | Stop      | Stop   | Stop      | Stop           | Stop   |
| RT Channelized                         | -        | -          | None   | -      | -          | None   | Stop<br>- | Slop<br>- | None   | Slop<br>- | -<br>-         | None   |
| Storage Length                         | _        | _          | INOITE | _      | _          | -      | _         | _         | INOIIG | _         |                | NONE.  |
| Veh in Median Storage                  |          | 0          | _      | _      | 0          | _      | _         | 0         | _      | _         | 0              | _      |
| Grade, %                               | -        | 0          | _      | _      | 0          | _      | _         | 0         | _      | _         | 0              | _      |
| Peak Hour Factor                       | 90       | 90         | 90     | 90     | 90         | 90     | 90        | 90        | 90     | 90        | 90             | 90     |
| Heavy Vehicles, %                      | 2        | 2          | 2      | 2      | 2          | 2      | 2         | 2         | 2      | 2         | 2              | 2      |
| Mvmt Flow                              | 22       | 172        | 22     | 6      | 122        | 6      | 0         | 22        | 6      | 6         | 33             | 6      |
|                                        |          |            |        |        |            |        |           |           |        |           |                |        |
| Major/Minor I                          | Major1   |            | ı      | Major2 |            |        | Minor1    |           |        | Minor2    |                |        |
| Conflicting Flow All                   | 130      | 0          | 0      | 201    | 0          | 0      | 396       | 376       | 195    | 385       | 384            | 132    |
| Stage 1                                | -        | -          | -      | -      | -          | -      | 234       | 234       | 190    | 139       | 139            | 102    |
| Stage 2                                | _        | _          | _      | _      | _          | _      | 162       | 142       | _      | 246       | 245            | _      |
| Critical Hdwy                          | 4.12     | _          | _      | 4.12   | _          | _      | 7.12      | 6.52      | 6.22   | 7.12      | 6.52           | 6.22   |
| Critical Hdwy Stg 1                    | -        | _          | -      | -      | -          | _      | 6.12      | 5.52      | -      | 6.12      | 5.52           | -      |
| Critical Hdwy Stg 2                    | _        | -          | _      | -      | -          | -      | 6.12      | 5.52      | _      | 6.12      | 5.52           | -      |
| Follow-up Hdwy                         | 2.218    | _          | _      | 2.218  | -          | -      | 3.518     | 4.018     | 3.318  | 3.518     | 4.018          | 3.318  |
| Pot Cap-1 Maneuver                     | 1455     | -          | -      | 1371   | -          | -      | 564       | 555       | 846    | 573       | 550            | 917    |
| Stage 1                                | -        | -          | -      | -      | -          | -      | 769       | 711       | -      | 864       | 782            | -      |
| Stage 2                                | -        | -          | -      | -      | -          | -      | 840       | 779       | _      | 758       | 703            | -      |
| Platoon blocked, %                     |          | -          | -      |        | -          | -      |           |           |        |           |                |        |
| Mov Cap-1 Maneuver                     | 1452     | -          | -      | 1362   | -          | -      | 519       | 538       | 836    | 539       | 533            | 911    |
| Mov Cap-2 Maneuver                     | -        | -          | -      | -      | -          | -      | 519       | 538       | -      | 539       | 533            | -      |
| Stage 1                                | -        | -          | -      | -      | -          | -      | 751       | 694       | -      | 848       | 777            | -      |
| Stage 2                                | -        | -          | -      | -      | -          | -      | 791       | 774       | -      | 713       | 686            | -      |
|                                        |          |            |        |        |            |        |           |           |        |           |                |        |
| Approach                               | EB       |            |        | WB     |            |        | NB        |           |        | SB        |                |        |
| HCM Control Delay, s                   | 0.8      |            |        | 0.3    |            |        | 11.5      |           |        | 11.9      |                |        |
| HCM LOS                                |          |            |        |        |            |        | В         |           |        | В         |                |        |
|                                        |          |            |        |        |            |        |           |           |        |           |                |        |
| Minor Lane/Major Mvm                   | nt N     | NBLn1      | EBL    | EBT    | EBR        | WBL    | WBT       | WBR       | SBLn1  |           |                |        |
| Capacity (veh/h)                       |          | 579        | 1452   | -      |            | 1362   | -         | -         | 563    |           |                |        |
| HCM Lane V/C Ratio                     |          | 0.048      | 0.015  | _      |            | 0.004  | -         |           | 0.079  |           |                |        |
| HCM Control Delay (s)                  |          | 11.5       | 7.5    | 0      | -          | 7.7    | 0         | -         |        |           |                |        |
| HCM Lane LOS                           |          | В          | Α      | A      | -          | Α      | A         | -         | В      |           |                |        |
| HCM 95th %tile Q(veh)                  | )        | 0.2        | 0      | -      | -          | 0      | -         | -         | 0.3    |           |                |        |
| ,                                      |          |            |        |        |            |        |           |           |        |           |                |        |

|                              | •         | •     | <b>†</b>  | <b>/</b>  | <b>/</b> | ļ         |      |
|------------------------------|-----------|-------|-----------|-----------|----------|-----------|------|
| Movement                     | WBL       | WBR   | NBT       | NBR       | SBL      | SBT       |      |
| Lane Configurations          | ሻሻ        | 7     | <b>^</b>  | 7         | ች        | <b>^</b>  |      |
| Traffic Volume (veh/h)       | 220       | 430   | 790       | 150       | 520      | 630       |      |
| Future Volume (veh/h)        | 220       | 430   | 790       | 150       | 520      | 630       |      |
| Initial Q (Qb), veh          | 0         | 0     | 0         | 0         | 0        | 0         |      |
| Ped-Bike Adj(A pbT)          | 1.00      | 1.00  |           | 0.97      | 1.00     |           |      |
| Parking Bus, Adj             | 1.00      | 1.00  | 1.00      | 1.00      | 1.00     | 1.00      |      |
| Work Zone On Approach        | No        |       | No        |           |          | No        |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870  | 1870      | 1870      | 1870     | 1870      |      |
| Adj Flow Rate, veh/h         | 244       | 182   | 878       | 167       | 578      | 700       |      |
| Peak Hour Factor             | 0.90      | 0.90  | 0.90      | 0.90      | 0.90     | 0.90      |      |
| Percent Heavy Veh, %         | 2         | 2     | 2         | 2         | 2        | 2         |      |
| Cap, veh/h                   | 368       | 731   | 1181      | 510       | 632      | 2679      |      |
| Arrive On Green              | 0.11      | 0.11  | 0.33      | 0.33      | 0.35     | 0.75      |      |
| Sat Flow, veh/h              | 3456      | 1585  | 3647      | 1533      | 1781     | 3647      |      |
| Grp Volume(v), veh/h         | 244       | 182   | 878       | 167       | 578      | 700       |      |
| Grp Sat Flow(s), veh/h/ln    | 1728      | 1585  | 1777      | 1533      | 1781     | 1777      |      |
| Q Serve(g_s), s              | 5.1       | 5.2   | 16.4      | 6.1       | 23.3     | 4.5       |      |
| Cycle Q Clear(g_c), s        | 5.1       | 5.2   | 16.4      | 6.1       | 23.3     | 4.5       |      |
| Prop In Lane                 | 1.00      | 1.00  |           | 1.00      | 1.00     | -1.0      |      |
| Lane Grp Cap(c), veh/h       | 368       | 731   | 1181      | 510       | 632      | 2679      |      |
| V/C Ratio(X)                 | 0.66      | 0.25  | 0.74      | 0.33      | 0.91     | 0.26      |      |
| Avail Cap(c_a), veh/h        | 1197      | 1111  | 1420      | 612       | 807      | 3289      |      |
| HCM Platoon Ratio            | 1.00      | 1.00  | 1.00      | 1.00      | 1.00     | 1.00      |      |
| Upstream Filter(I)           | 1.00      | 1.00  | 1.00      | 1.00      | 1.00     | 1.00      |      |
| Uniform Delay (d), s/veh     | 32.3      | 12.3  | 22.2      | 18.8      | 23.1     | 2.8       |      |
| Incr Delay (d2), s/veh       | 0.8       | 0.1   | 2.0       | 0.5       | 12.7     | 0.1       |      |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0   | 0.0       | 0.0       | 0.0      | 0.0       |      |
| %ile BackOfQ(50%),veh/ln     | 2.1       | 1.7   | 6.5       | 2.1       | 10.9     | 0.8       |      |
| Unsig. Movement Delay, s/veh |           | 1.7   | 3.0       |           | 13.0     | 3.0       |      |
| LnGrp Delay(d),s/veh         | 33.0      | 12.4  | 24.3      | 19.3      | 35.9     | 2.9       |      |
| _nGrp LOS                    | C         | В     | Z+.5      | 13.3<br>B | D        | 2.5<br>A  |      |
| Approach Vol, veh/h          | 426       |       | 1045      |           |          | 1278      |      |
| Approach Delay, s/veh        | 24.2      |       | 23.5      |           |          | 17.8      |      |
| Approach LOS                 | 24.2<br>C |       | 23.5<br>C |           |          | 17.0<br>B |      |
|                              | U         |       | U         |           |          |           |      |
| Timer - Assigned Phs         |           | 2     |           |           | 5        | 6         | 8    |
| Phs Duration (G+Y+Rc), s     |           | 62.1  |           |           | 31.6     | 30.5      | 13.0 |
| Change Period (Y+Rc), s      |           | * 5.5 |           |           | 5.0      | 5.5       | 5.0  |
| Max Green Setting (Gmax), s  |           | * 70  |           |           | 34.0     | 30.0      | 26.0 |
| Max Q Clear Time (g_c+l1), s |           | 6.5   |           |           | 25.3     | 18.4      | 7.2  |
| Green Ext Time (p_c), s      |           | 5.2   |           |           | 1.4      | 6.2       | 0.7  |
| ntersection Summary          |           |       |           |           |          |           |      |
| HCM 6th Ctrl Delay           |           |       | 21.0      |           |          |           |      |
| HCM 6th LOS                  |           |       | С         |           |          |           |      |
| Notes                        |           |       |           |           |          |           |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |           |          |            |      |
|------------------------|--------|-------|-----------|----------|------------|------|
| Int Delay, s/veh       | 0.9    |       |           |          |            |      |
|                        |        | EDD   | NDI       | NDT      | CDT        | CDD  |
| Movement               | EBL    | EBR   | NBL       | NBT      | SBT        | SBR  |
| Lane Configurations    | •      | 7     | •         | <b>^</b> | <b>↑</b> ↑ | 470  |
| Traffic Vol, veh/h     | 0      | 120   | 0         | 940      | 680        | 170  |
| Future Vol, veh/h      | 0      | 120   | 0         | 940      | 680        | 170  |
| Conflicting Peds, #/hr | 2      | 2     | 0         | 0        | 0          | 0    |
| Sign Control           | Stop   | Stop  | Free      | Free     | Free       | Free |
| RT Channelized         | -      | None  | -         | None     | -          | None |
| Storage Length         | -      | 0     | -         | -        | -          | -    |
| Veh in Median Storage  | e, # 0 | -     | -         | 0        | 0          | -    |
| Grade, %               | 0      | -     | -         | 0        | 0          | -    |
| Peak Hour Factor       | 90     | 90    | 90        | 90       | 90         | 90   |
| Heavy Vehicles, %      | 2      | 2     | 2         | 2        | 2          | 2    |
| Mvmt Flow              | 0      | 133   | 0         | 1044     | 756        | 189  |
|                        |        |       |           |          |            |      |
| Majar/Minar            | Minor2 |       | 1-:1      |          | 4-1-10     |      |
|                        |        |       | //ajor1   |          | /lajor2    |      |
| Conflicting Flow All   | -      | 475   | -         | 0        | -          | 0    |
| Stage 1                | -      | -     | -         | -        | -          | -    |
| Stage 2                | -      | -     | -         | -        | -          | -    |
| Critical Hdwy          | -      | 6.94  | -         | -        | -          | -    |
| Critical Hdwy Stg 1    | -      | -     | -         | -        | -          | -    |
| Critical Hdwy Stg 2    | -      | -     | -         | -        | -          | -    |
| Follow-up Hdwy         | -      | 3.32  | -         | -        | -          | -    |
| Pot Cap-1 Maneuver     | 0      | 536   | 0         | -        | -          | -    |
| Stage 1                | 0      | -     | 0         | -        | -          | -    |
| Stage 2                | 0      | -     | 0         | -        | -          | -    |
| Platoon blocked, %     |        |       |           | -        | -          | -    |
| Mov Cap-1 Maneuver     | -      | 535   | -         | -        | -          | -    |
| Mov Cap-2 Maneuver     | _      | -     | -         | -        | -          | -    |
| Stage 1                | _      | -     | _         | -        | _          | -    |
| Stage 2                | _      | _     | _         | _        | _          | -    |
| 2.0.30 2               |        |       |           |          |            |      |
| Approach               | EB     |       | NB        |          | SB         |      |
| Approach               |        |       |           |          |            |      |
| HCM Control Delay, s   | 13.9   |       | 0         |          | 0          |      |
| HCM LOS                | В      |       |           |          |            |      |
|                        |        |       |           |          |            |      |
| Minor Lane/Major Mvm   | nt     | NBT E | EBLn1     | SBT      | SBR        |      |
| Capacity (veh/h)       |        | _     | 535       | _        | _          |      |
| HCM Lane V/C Ratio     |        | _     | 0.249     | _        | _          |      |
| HCM Control Delay (s)  |        | _     | 13.9      | _        | _          |      |
| HCM Lane LOS           |        | _     | 13.3<br>B | _        | _          |      |
| HCM 95th %tile Q(veh)  | )      |       | 1         |          |            |      |
| HOW JOHN JOHNE Q(VEIL) | J      |       |           | _        |            |      |

| Intersection           |        |       |        |        |        |        |          |          |          |        |      |          |
|------------------------|--------|-------|--------|--------|--------|--------|----------|----------|----------|--------|------|----------|
| Int Delay, s/veh       | 8.7    |       |        |        |        |        |          |          |          |        |      |          |
|                        |        | EDT   |        | MDI    | WDT    | WDD    | NDI      | NDT      | NDD      | ODI    | ODT  | 000      |
| Movement               | EBL    | EBT   | EBR    | WBL    | WBT    | WBR    | NBL      | NBT      | NBR      | SBL    | SBT  | SBR      |
| Lane Configurations    | -      | 4     | •      | -      | 4      | _      | ^        | 4        | -        | 4 =    | 4    | 40       |
| Traffic Vol, veh/h     | 5      | 100   | 0      | 5      | 130    | 5      | 0        | 20       | 5        | 15     | 15   | 10       |
| Future Vol, veh/h      | 5      | 100   | 0      | 5      | 130    | 5      | 0        | 20       | 5        | 15     | 15   | 10       |
| Conflicting Peds, #/hr | 2      | 0     | 2      | 7      | 0      | 7      | 0        | _ 0      | _ 0      | _ 5    | _ 0  | _ 0      |
| Sign Control           | Stop   | Stop  | Stop   | Stop   | Stop   | Stop   | Free     | Free     | Free     | Free   | Free | Free     |
| RT Channelized         | -      | -     | None   | -      | -      | None   | -        | -        | None     | -      | -    | None     |
| Storage Length         | -      | -     | -      | -      | -      | -      | -        | -        | -        | -      | -    | -        |
| Veh in Median Storage  | e,# -  | 0     | -      | -      | 0      | -      | -        | 0        | -        | -      | 0    | -        |
| Grade, %               | -      | 0     | -      | -      | 0      | -      | -        | 0        | -        | -      | 0    | -        |
| Peak Hour Factor       | 90     | 90    | 90     | 90     | 90     | 90     | 90       | 90       | 90       | 90     | 90   | 90       |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2      | 2      | 2      | 2        | 2        | 2        | 2      | 2    | 2        |
| Mvmt Flow              | 6      | 111   | 0      | 6      | 144    | 6      | 0        | 22       | 6        | 17     | 17   | 11       |
|                        |        |       |        |        |        |        |          |          |          |        |      |          |
| Major/Minor            | Minor2 |       |        | Minor1 |        |        | Major1   |          | ı        | Major2 |      |          |
| Conflicting Flow All   | 164    | 90    | 30     | 149    | 92     | 37     | 28       | 0        | 0        | 33     | 0    | 0        |
| Stage 1                | 57     | 57    | -      | 30     | 30     | -      | -        | -        | -        | -      | -    | -        |
| Stage 2                | 107    | 33    | _      | 119    | 62     | _      | _        | _        | _        | _      | _    | _        |
| Critical Hdwy          | 7.12   | 6.52  | 6.22   | 7.12   | 6.52   | 6.22   | 4.12     | _        | _        | 4.12   | _    | _        |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | - U.LL | 6.12   | 5.52   | - U.LL | - 1.12   | _        | _        | - 1.12 | _    | _        |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | _      | 6.12   | 5.52   | _      | _        | _        | _        | _      | _    | _        |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318  | 3.518  | 4.018  | 3.318  | 2.218    | _        | _        | 2.218  | _    | _        |
| Pot Cap-1 Maneuver     | 801    | 800   | 1044   | 819    | 798    | 1035   | 1585     |          |          | 1579   |      |          |
| Stage 1                | 955    | 847   | -      | 987    | 870    | -      | -        | _        | _        | -      | _    | _        |
| Stage 2                | 898    | 868   | _      | 885    | 843    | _      |          |          |          |        |      |          |
| Platoon blocked, %     | 000    | 000   |        | 500    | 070    |        |          | _        | _        |        | _    | _        |
| Mov Cap-1 Maneuver     | 674    | 787   | 1037   | 716    | 785    | 1023   | 1585     |          |          | 1571   |      |          |
| Mov Cap-1 Maneuver     | 674    | 787   | 1037   | 716    | 785    | 1023   | 1000     | _        | _        | 10/1   | _    | _        |
| Stage 1                | 955    | 838   | _      | 982    | 866    |        | _        | _        | _        | _      | _    |          |
| Stage 2                | 739    | 864   | _      | 754    | 834    |        | _        | _        | _        |        | _    | _        |
| Olaye Z                | 100    | 004   | _      | 1 34   | 004    | _      | -        | <u>-</u> | _        | _      | -    | <u>-</u> |
|                        |        |       |        |        |        |        |          |          |          |        |      |          |
| Approach               | EB     |       |        | WB     |        |        | NB       |          |          | SB     |      |          |
| HCM Control Delay, s   | 10.4   |       |        | 10.7   |        |        | 0        |          |          | 2.7    |      |          |
| HCM LOS                | В      |       |        | В      |        |        |          |          |          |        |      |          |
|                        |        |       |        |        |        |        |          |          |          |        |      |          |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT    | NBR    | EBLn1V | VBLn1  | SBL      | SBT      | SBR      |        |      |          |
| Capacity (veh/h)       |        | 1585  |        | -      | -0.4   | 789    | 1571     | _        |          |        |      |          |
| HCM Lane V/C Ratio     |        | -     | _      |        | 0.149  |        | 0.011    | <u>-</u> | <u>-</u> |        |      |          |
| HCM Control Delay (s)  |        | 0     | _      | _      |        | 10.7   | 7.3      | 0        | _        |        |      |          |
| HCM Lane LOS           |        | A     | _      | _      | В      | В      | 7.5<br>A | A        | _        |        |      |          |
| HCM 95th %tile Q(veh   | )      | 0     |        | _      | 0.5    | 0.7    | 0        | -        | _        |        |      |          |
| TION JOHT JUHE WIVELL  | )      | U     | _      |        | 0.0    | 0.1    | U        |          |          |        |      |          |

|                                   | ۶         | <b>→</b> | •        | •         | +        | •        | 1         | <b>†</b>    | <i>&gt;</i> | <b>/</b>   | <b>+</b>   | ✓        |
|-----------------------------------|-----------|----------|----------|-----------|----------|----------|-----------|-------------|-------------|------------|------------|----------|
| Movement                          | EBL       | EBT      | EBR      | WBL       | WBT      | WBR      | NBL       | NBT         | NBR         | SBL        | SBT        | SBR      |
| Lane Configurations               |           | 4        |          |           | 4        |          | ሻ         | <b>^</b>    |             | ሻ          | <b>∱</b> ∱ |          |
| Traffic Volume (veh/h)            | 40        | 5        | 70       | 20        | 5        | 10       | 360       | 860         | 20          | 30         | 760        | 30       |
| Future Volume (veh/h)             | 40        | 5        | 70       | 20        | 5        | 10       | 360       | 860         | 20          | 30         | 760        | 30       |
| Initial Q (Qb), veh               | 0         | 0        | 0        | 0         | 0        | 0        | 0         | 0           | 0           | 0          | 0          | 0        |
| Ped-Bike Adj(A_pbT)               | 0.99      |          | 0.99     | 0.99      |          | 1.00     | 1.00      |             | 0.97        | 1.00       |            | 0.97     |
| Parking Bus, Adj                  | 1.00      | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00      | 1.00        | 1.00        | 1.00       | 1.00       | 1.00     |
| Work Zone On Approach             |           | No       |          |           | No       |          |           | No          |             |            | No         |          |
| Adj Sat Flow, veh/h/ln            | 1870      | 1870     | 1870     | 1870      | 1870     | 1870     | 1870      | 1870        | 1870        | 1870       | 1870       | 1870     |
| Adj Flow Rate, veh/h              | 44        | 6        | 67       | 22        | 6        | 0        | 400       | 956         | 20          | 33         | 844        | 30       |
| Peak Hour Factor                  | 0.90      | 0.90     | 0.90     | 0.90      | 0.90     | 0.90     | 0.90      | 0.90        | 0.90        | 0.90       | 0.90       | 0.90     |
| Percent Heavy Veh, %              | 2         | 2        | 2        | 2         | 2        | 2        | 2         | 2           | 2           | 2          | 2          | 2        |
| Cap, veh/h                        | 152       | 23       | 102      | 262       | 57       | 0        | 522       | 2474        | 52          | 479        | 2432       | 86       |
| Arrive On Green                   | 0.12      | 0.12     | 0.12     | 0.12      | 0.12     | 0.00     | 0.70      | 0.70        | 0.70        | 0.70       | 0.70       | 0.70     |
| Sat Flow, veh/h                   | 461       | 197      | 882      | 1161      | 490      | 0        | 633       | 3557        | 74          | 575        | 3496       | 124      |
| Grp Volume(v), veh/h              | 117       | 0        | 0        | 28        | 0        | 0        | 400       | 478         | 498         | 33         | 429        | 445      |
| Grp Sat Flow(s),veh/h/ln          | 1540      | 0        | 0        | 1651      | 0        | 0        | 633       | 1777        | 1854        | 575        | 1777       | 1844     |
| Q Serve(g_s), s                   | 2.5       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 30.1      | 5.6         | 5.6         | 1.3        | 4.9        | 4.9      |
| Cycle Q Clear(g_c), s             | 3.6       | 0.0      | 0.0      | 0.7       | 0.0      | 0.0      | 35.0      | 5.6         | 5.6         | 6.9        | 4.9        | 4.9      |
| Prop In Lane                      | 0.38      |          | 0.57     | 0.79      |          | 0.00     | 1.00      | 4000        | 0.04        | 1.00       | 1000       | 0.07     |
| Lane Grp Cap(c), veh/h            | 276       | 0        | 0        | 318       | 0        | 0        | 522       | 1236        | 1290        | 479        | 1236       | 1283     |
| V/C Ratio(X)                      | 0.42      | 0.00     | 0.00     | 0.09      | 0.00     | 0.00     | 0.77      | 0.39        | 0.39        | 0.07       | 0.35       | 0.35     |
| Avail Cap(c_a), veh/h             | 567       | 0        | 0        | 589       | 0        | 0        | 522       | 1236        | 1290        | 479        | 1236       | 1283     |
| HCM Platoon Ratio                 | 1.00      | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00      | 1.00        | 1.00        | 1.00       | 1.00       | 1.00     |
| Upstream Filter(I)                | 1.00      | 0.00     | 0.00     | 1.00      | 0.00     | 0.00     | 1.00      | 1.00        | 1.00        | 1.00       | 1.00       | 1.00     |
| Uniform Delay (d), s/veh          | 21.2      | 0.0      | 0.0      | 20.0      | 0.0      | 0.0      | 10.9      | 3.2         | 3.2         | 4.6        | 3.1        | 3.1      |
| Incr Delay (d2), s/veh            | 1.0       | 0.0      | 0.0      | 0.1       | 0.0      | 0.0      | 10.3      | 0.9         | 0.9         | 0.3        | 0.8        | 0.7      |
| Initial Q Delay(d3),s/veh         | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.0       | 0.0         | 0.0         | 0.0<br>0.1 | 0.0        | 0.0      |
| %ile BackOfQ(50%),veh/ln          |           | 0.0      | 0.0      | 0.3       | 0.0      | 0.0      | 3.9       | 0.9         | 0.9         | 0.1        | 0.8        | 0.8      |
| Unsig. Movement Delay, s/veh      | 22.3      | 0.0      | 0.0      | 20.1      | 0.0      | 0.0      | 21.2      | 4.1         | 4.1         | 4.9        | 3.8        | 3.8      |
| LnGrp Delay(d),s/veh<br>LnGrp LOS | 22.3<br>C | 0.0<br>A | 0.0<br>A | 20.1<br>C | 0.0<br>A | 0.0<br>A | 21.2<br>C | 4.1<br>A    | 4.1<br>A    | 4.9<br>A   | 3.0<br>A   | 3.0<br>A |
|                                   |           | 117      | A        | U         | 28       | A        | U         |             | A           | A          |            | A        |
| Approach Vol, veh/h               |           |          |          |           | 20.1     |          |           | 1376<br>9.0 |             |            | 907<br>3.9 |          |
| Approach LOS                      |           | 22.3     |          |           |          |          |           |             |             |            |            |          |
| Approach LOS                      |           | С        |          |           | С        |          |           | A           |             |            | Α          |          |
| Timer - Assigned Phs              |           | 2        |          | 4         |          | 6        |           | 8           |             |            |            |          |
| Phs Duration (G+Y+Rc), s          |           | 40.0     |          | 10.3      |          | 40.0     |           | 10.3        |             |            |            |          |
| Change Period (Y+Rc), s           |           | 5.0      |          | 4.5       |          | 5.0      |           | 4.5         |             |            |            |          |
| Max Green Setting (Gmax), s       |           | 35.0     |          | 15.5      |          | 35.0     |           | 15.5        |             |            |            |          |
| Max Q Clear Time (g_c+I1), s      |           | 37.0     |          | 5.6       |          | 8.9      |           | 2.7         |             |            |            |          |
| Green Ext Time (p_c), s           |           | 0.0      |          | 0.4       |          | 8.6      |           | 0.1         |             |            |            |          |
| Intersection Summary              |           |          |          |           |          |          |           |             |             |            |            |          |
| HCM 6th Ctrl Delay                |           |          | 7.9      |           |          |          |           |             |             |            |            |          |
| HCM 6th LOS                       |           |          | Α        |           |          |          |           |             |             |            |            |          |

| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intersection          |       |       |      |       |       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------|------|-------|-------|------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 9.1   |       |      |       |       |      |
| Lane Configurations         Y         ↑           Traffic Vol, veh/h         350         0         10         90         10         8           Future Vol, veh/h         350         0         10         90         10         8           Conflicting Peds, #/hr         0         5         0         0         0         6           Sign Control         Stop         Stop         Free                           |                       |       | MPP   | NDT  | NDD   | ODI   | ODT  |
| Traffic Vol, veh/h 350 0 10 90 10 8 Future Vol, veh/h 350 0 10 90 10 8 Future Vol, veh/h 350 0 10 90 10 8 Conflicting Peds, #/hr 0 5 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - None - None - None Storage Length 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       | WBK   |      | NRK   | SBL   |      |
| Future Vol, veh/h 350 0 10 90 10 8 Conflicting Peds, #/hr 0 5 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - None - None - None Storage Length 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       | ^     |      | 00    | 40    |      |
| Conflicting Peds, #/hr         0         5         0         0         0           Sign Control         Stop         Stop         Free         Free |                       |       |       |      |       |       | 5    |
| Sign Control         Stop         Stop         Free         Romon           Storage Length         0         -         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                             |                       |       |       |      |       |       | 5    |
| RT Channelized         - None         - None         - None         None         None         None         Storage Length         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |       |      |       |       | _ 0  |
| Storage Length       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                             |                       |       |       |      |       |       |      |
| Veh in Median Storage, #         0         -         0         -         -         0           Grade, %         0         -         0         -         -         0           Peak Hour Factor         90         90         90         90         90         90           Heavy Vehicles, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <td< td=""><td></td><td></td><td>None</td><td>-</td><td>None</td><td>-</td><td>None</td></td<>                             |                       |       | None  | -    | None  | -     | None |
| Grade, %         0         -         0         -         -         0           Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                 |                       |       | -     |      | -     | -     | -    |
| Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                        |                       |       | -     |      | -     | -     | 0    |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grade, %              | 0     | -     | 0    | -     | -     | 0    |
| Momental Flow         389         0         11         100         11         6           Major/Minor         Minor1         Major1         Major2           Conflicting Flow All         89         66         0         0         111         0           Stage 1         61         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                      | Peak Hour Factor      | 90    | 90    | 90   | 90    | 90    | 90   |
| Major/Minor         Minor1         Major1         Major2           Conflicting Flow All         89         66         0         0         111         0           Stage 1         61         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                      | Heavy Vehicles, %     | 2     | 2     | 2    | 2     | 2     | 2    |
| Major/Minor         Minor1         Major1         Major2           Conflicting Flow All         89         66         0         0         111         0           Stage 1         61         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                      | Mvmt Flow             | 389   | 0     | 11   | 100   | 11    | 6    |
| Conflicting Flow All       89       66       0       0       111       0         Stage 1       61       -       -       -       -       -         Stage 2       28       -       -       -       -       -         Critical Hdwy       6.42       6.22       -       -       4.12         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -         Stage 1       962       -       -       -       -         Stage 2       988       -       -       -       -         Stage 3       988       -       - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                 |                       |       |       |      |       |       |      |
| Conflicting Flow All       89       66       0       0       111       0         Stage 1       61       -       -       -       -       -         Stage 2       28       -       -       -       -       -         Critical Hdwy       6.42       6.22       -       -       4.12         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -         Stage 1       962       -       -       -       -         Stage 2       988       -       -       -       -         Stage 3       988       -       - <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>                                                                                                                                               |                       |       | _     |      | _     |       |      |
| Stage 1       61       -       -       -       -         Stage 2       28       -       -       -       -         Critical Hdwy       6.42       6.22       -       -       4.12         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       1479         Mov Cap-2 Maneuver       906       -       -       -         Stage 1       962       -       -       -         Stage 2       988       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM Control Delay (s)       -       11.9       7.5                                                                                                                                                                                                                           |                       |       |       |      |       |       |      |
| Stage 2       28       -       -       -       -         Critical Hdwy       6.42       6.22       -       4.12         Critical Hdwy Stg 1       5.42       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       1479         Stage 1       962       -       -       -         Stage 2       995       -       -       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       1479         Mov Cap-2 Maneuver       906       -       -       -         Stage 1       962       -       -       -         Stage 2       988       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM Control Delay (s)       -       14.79         HCM Control Delay (s)       -       11.9       7.5                                                                                                                                                                                                                       |                       |       | 66    | 0    | 0     | 111   | 0    |
| Critical Hdwy       6.42       6.22       -       -       4.12         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -         Stage 1       962       -       -       -       -         Stage 2       988       -       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM LOS       B     Minor Lane/Major Mvmt  NBT NBRWBLn1       SBL       SBT         Capacity (veh/h)       -       -       906       1479         HCM La                                                                                                                                                                                                      |                       |       | -     | -    | -     | -     | -    |
| Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -       -         Stage 1       962       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>                                                                                                                                     |                       |       |       |      | -     |       | -    |
| Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218         Pot Cap-1 Maneuver       912       998       -       -       1479         Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -         Stage 1       962       -       -       -       -         Stage 2       988       -       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM LOS       B     Minor Lane/Major Mvmt  NBT NBRWBLn1     SB         Capacity (veh/h)       -       -       906       1479         HCM Los       -       -       -       -       -       -         Approach <t< td=""><td>Critical Hdwy</td><td></td><td>6.22</td><td>-</td><td>-</td><td>4.12</td><td>-</td></t<>                                                                                                                      | Critical Hdwy         |       | 6.22  | -    | -     | 4.12  | -    |
| Follow-up Hdwy 3.518 3.318 2.218  Pot Cap-1 Maneuver 912 998 1479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical Hdwy Stg 1   |       | -     | -    | -     | -     | -    |
| Follow-up Hdwy 3.518 3.318 2.218  Pot Cap-1 Maneuver 912 998 1479  Stage 1 962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical Hdwy Stg 2   | 5.42  | -     | _    | -     | -     | -    |
| Pot Cap-1 Maneuver         912         998         -         -         1479           Stage 1         962         -         -         -         -           Stage 2         995         -         -         -         -           Platoon blocked, %         -         -         -         -         -         -           Mov Cap-1 Maneuver         906         993         -         -         1479           Mov Cap-2 Maneuver         906         -         -         -         -           Stage 1         962         -         -         -         -           Stage 2         988         -         -         -         -           Approach         WB         NB         SB           HCM Control Delay, s         11.9         0         5           HCM LOS         B           Minor Lane/Major Mvmt         NBT         NBRWBLn1         SBL         SBT           Capacity (veh/h)         -         -         906         1479           HCM Lane V/C Ratio         -         -         0.008           HCM Control Delay (s)         -         11.9         7.5                                                                                                                                                  |                       | 3.518 | 3.318 | -    | -     | 2.218 | -    |
| Stage 1       962       -       -       -       -         Stage 2       995       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       906       993       -       -       1479         Mov Cap-2 Maneuver       906       -       -       -       -         Stage 1       962       -       -       -       -         Stage 2       988       -       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM Control Delay, s       11.9       0       5         Minor Lane/Major Mvmt       NBT       NBRWBLn1       SBL       SBT         Capacity (veh/h)       -       -       906       1479         HCM Lane V/C Ratio       -       -       0.008         HCM Control Delay (s)       -       -       11.9       7.5                                                                                                                                                                                                                                                                                                                                                    | Pot Cap-1 Maneuver    |       |       | -    | -     | 1479  | -    |
| Stage 2       995       -       -       -       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>•</td><td>962</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>                                                                                                                                                      | •                     | 962   | -     | -    | -     | -     | -    |
| Platoon blocked, %         -         -           Mov Cap-1 Maneuver         906         993         -         -         1479           Mov Cap-2 Maneuver         906         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                 |                       |       | -     | -    | -     | -     | -    |
| Mov Cap-1 Maneuver         906         993         -         -         1479           Mov Cap-2 Maneuver         906         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>-</td>                                       |                       |       |       | _    | _     |       | -    |
| Mov Cap-2 Maneuver         906         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                      |                       | 906   | 993   | _    | _     | 1479  | -    |
| Stage 1       962       -       -       -       -       -         Stage 2       988       -       -       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       11.9       0       5         HCM LOS       B         Minor Lane/Major Mvmt       NBT       NBRWBLn1       SBL       SBT         Capacity (veh/h)       -       -       906       1479         HCM Lane V/C Ratio       -       -       0.008         HCM Control Delay (s)       -       -       11.9       7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                     |       |       | _    | _     |       | _    |
| Stage 2         988         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                       |                       |       |       |      |       |       |      |
| Approach         WB         NB         SB           HCM Control Delay, s         11.9         0         5           HCM LOS         B           Minor Lane/Major Mvmt         NBT         NBRWBLn1         SBL         SBT           Capacity (veh/h)         -         -         906         1479           HCM Lane V/C Ratio         -         -         0.429         0.008           HCM Control Delay (s)         -         -         11.9         7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |       |      |       |       |      |
| HCM Control Delay, s   11.9   0   5     HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Slaye 2               | 300   | -     | -    | -     | -     | -    |
| HCM Control Delay, s   11.9   0   5     HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |       |      |       |       |      |
| Minor Lane/Major Mvmt         NBT         NBRWBLn1         SBL         SBT           Capacity (veh/h)         -         -         906         1479           HCM Lane V/C Ratio         -         -         0.429         0.008           HCM Control Delay (s)         -         -         11.9         7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Approach              | WB    |       | NB   |       | SB    |      |
| Minor Lane/Major Mvmt         NBT         NBRWBLn1         SBL         SBT           Capacity (veh/h)         -         -         906         1479           HCM Lane V/C Ratio         -         -         0.429         0.008           HCM Control Delay (s)         -         -         11.9         7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 11.9  |       | 0    |       | 5     |      |
| Minor Lane/Major Mvmt         NBT         NBRWBLn1         SBL         SBT           Capacity (veh/h)         -         -         906         1479           HCM Lane V/C Ratio         -         -         0.429         0.008           HCM Control Delay (s)         -         -         11.9         7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |       |      |       |       |      |
| Capacity (veh/h) 906 1479  HCM Lane V/C Ratio - 0.429 0.008  HCM Control Delay (s) - 11.9 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |       |      |       |       |      |
| Capacity (veh/h) 906 1479  HCM Lane V/C Ratio - 0.429 0.008  HCM Control Delay (s) - 11.9 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minor Long/Major May  | .4    | NDT   | NDDV | MDI 4 | CDI   | CDT  |
| HCM Lane V/C Ratio 0.429 0.008<br>HCM Control Delay (s) 11.9 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | IL    | MRT   |      |       |       | 2R1  |
| HCM Control Delay (s) 11.9 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       | -     |      |       |       | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       | -     |      |       |       | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       | -     | -    |       |       | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCM Lane LOS          |       | -     | -    |       |       | -    |
| HCM 95th %tile Q(veh) 2.2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HCM 95th %tile Q(veh) | )     | -     | -    | 2.2   | 0     | -    |

|                              | ၨ    | <b>→</b> | *    | •    | +    | •    | •    | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√    |
|------------------------------|------|----------|------|------|------|------|------|----------|-------------|----------|----------|-------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations          |      | 4        |      | 7    | 4    | 7    |      | 4        | 7           | ¥        | 4        |       |
| Traffic Volume (veh/h)       | 70   | 70       | 0    | 430  | 40   | 600  | 0    | 390      | 570         | 660      | 250      | 40    |
| Future Volume (veh/h)        | 70   | 70       | 0    | 430  | 40   | 600  | 0    | 390      | 570         | 660      | 250      | 40    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0           | 0        | 0        | 0     |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00        | 1.00     |          | 1.00  |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Work Zone On Approach        |      | No       |      |      | No   |      |      | No       |             |          | No       |       |
| Adj Sat Flow, veh/h/ln       | 1856 | 1856     | 1856 | 1856 | 1856 | 1856 | 1856 | 1856     | 1856        | 1856     | 1856     | 1856  |
| Adj Flow Rate, veh/h         | 78   | 78       | 0    | 509  | 0    | 0    | 0    | 433      | 0           | 528      | 566      | 44    |
| Peak Hour Factor             | 0.90 | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90     | 0.90        | 0.90     | 0.90     | 0.90  |
| Percent Heavy Veh, %         | 3    | 3        | 3    | 3    | 3    | 3    | 3    | 3        | 3           | 3        | 3        | 3     |
| Cap, veh/h                   | 94   | 94       | 0    | 581  | 0    |      | 0    | 435      |             | 535      | 514      | 40    |
| Arrive On Green              | 0.10 | 0.10     | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.23     | 0.00        | 0.30     | 0.30     | 0.30  |
| Sat Flow, veh/h              | 905  | 905      | 0    | 3534 | 0    | 1572 | 0    | 1856     | 1572        | 1767     | 1699     | 132   |
| Grp Volume(v), veh/h         | 156  | 0        | 0    | 509  | 0    | 0    | 0    | 433      | 0           | 528      | 0        | 610   |
| Grp Sat Flow(s),veh/h/ln     | 1810 | 0        | 0    | 1767 | 0    | 1572 | 0    | 1856     | 1572        | 1767     | 0        | 1831  |
| Q Serve(g_s), s              | 8.7  | 0.0      | 0.0  | 14.4 | 0.0  | 0.0  | 0.0  | 23.9     | 0.0         | 30.5     | 0.0      | 31.0  |
| Cycle Q Clear(g_c), s        | 8.7  | 0.0      | 0.0  | 14.4 | 0.0  | 0.0  | 0.0  | 23.9     | 0.0         | 30.5     | 0.0      | 31.0  |
| Prop In Lane                 | 0.50 |          | 0.00 | 1.00 |      | 1.00 | 0.00 |          | 1.00        | 1.00     |          | 0.07  |
| Lane Grp Cap(c), veh/h       | 188  | 0        | 0    | 581  | 0    |      | 0    | 435      |             | 535      | 0        | 554   |
| V/C Ratio(X)                 | 0.83 | 0.00     | 0.00 | 0.88 | 0.00 |      | 0.00 | 1.00     |             | 0.99     | 0.00     | 1.10  |
| Avail Cap(c_a), veh/h        | 212  | 0        | 0    | 621  | 0    |      | 0    | 435      |             | 535      | 0        | 554   |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00     | 0.00        | 1.00     | 0.00     | 1.00  |
| Uniform Delay (d), s/veh     | 45.0 | 0.0      | 0.0  | 41.8 | 0.0  | 0.0  | 0.0  | 39.2     | 0.0         | 35.5     | 0.0      | 35.7  |
| Incr Delay (d2), s/veh       | 21.5 | 0.0      | 0.0  | 12.8 | 0.0  | 0.0  | 0.0  | 42.2     | 0.0         | 35.6     | 0.0      | 68.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| %ile BackOfQ(50%),veh/ln     | 5.0  | 0.0      | 0.0  | 7.1  | 0.0  | 0.0  | 0.0  | 15.6     | 0.0         | 17.7     | 0.0      | 23.7  |
| Unsig. Movement Delay, s/veh |      |          |      |      |      |      |      |          |             |          |          |       |
| LnGrp Delay(d),s/veh         | 66.5 | 0.0      | 0.0  | 54.6 | 0.0  | 0.0  | 0.0  | 81.4     | 0.0         | 71.2     | 0.0      | 104.7 |
| LnGrp LOS                    | E    | A        | A    | D    | A    |      | A    | F        |             | <u>E</u> | A        | F     |
| Approach Vol, veh/h          |      | 156      |      |      | 509  |      |      | 433      |             |          | 1138     |       |
| Approach Delay, s/veh        |      | 66.5     |      |      | 54.6 |      |      | 81.4     |             |          | 89.1     |       |
| Approach LOS                 |      | Е        |      |      | D    |      |      | F        |             |          | F        |       |
| Timer - Assigned Phs         |      | 2        |      | 4    |      | 6    |      | 8        |             |          |          |       |
| Phs Duration (G+Y+Rc), s     |      | 29.0     |      | 21.8 |      | 36.0 |      | 15.6     |             |          |          |       |
| Change Period (Y+Rc), s      |      | 5.0      |      | 5.0  |      | 5.0  |      | 5.0      |             |          |          |       |
| Max Green Setting (Gmax), s  |      | 24.0     |      | 18.0 |      | 31.0 |      | 12.0     |             |          |          |       |
| Max Q Clear Time (g_c+l1), s |      | 25.9     |      | 16.4 |      | 33.0 |      | 10.7     |             |          |          |       |
| Green Ext Time (p_c), s      |      | 0.0      |      | 0.4  |      | 0.0  |      | 0.1      |             |          |          |       |
| Intersection Summary         |      |          |      |      |      |      |      |          |             |          |          |       |
| HCM 6th Ctrl Delay           |      |          | 78.2 |      |      |      |      |          |             |          |          |       |
| HCM 6th LOS                  |      |          | Е    |      |      |      |      |          |             |          |          |       |

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| و                            |    | <b>→</b> | •    | •    | <b>←</b> | •    | 4   | †   | <i>&gt;</i> | <b>/</b> | ţ    | 4    |  |
|------------------------------|----|----------|------|------|----------|------|-----|-----|-------------|----------|------|------|--|
| Movement EB                  | L  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL | NBT | NBR         | SBL      | SBT  | SBR  |  |
| Lane Configurations          |    | <b>^</b> | 7    | 44   | <b>^</b> |      |     |     |             | ľ        | र्स  | 77   |  |
| Traffic Volume (veh/h)       |    | 1240     | 90   | 330  | 740      | 0    | 0   | 0   | 0           | 960      | 0    | 550  |  |
| \ /                          |    | 1240     | 90   | 330  | 740      | 0    | 0   | 0   | 0           | 960      | 0    | 550  |  |
| \ /·                         | 0  | 0        | 0    | 0    | 0        | 0    |     |     |             | 0        | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1.0      |    |          | 1.00 | 1.00 |          | 1.00 |     |     |             | 1.00     |      | 1.00 |  |
| Parking Bus, Adj 1.0         | 0  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |             | 1.00     | 1.00 | 1.00 |  |
| Work Zone On Approach        |    | No       |      |      | No       |      |     |     |             |          | No   |      |  |
| •                            |    | 1870     | 1870 | 1870 | 1870     | 0    |     |     |             | 1870     | 1870 | 1870 |  |
|                              |    | 1305     | 37   | 347  | 779      | 0    |     |     |             | 1011     | 0    | 579  |  |
| Peak Hour Factor 0.9         | 5  | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 |     |     |             | 0.95     | 0.95 | 0.95 |  |
| , ,                          | 0  | 2        | 2    | 2    | 2        | 0    |     |     |             | 2        | 2    | 2    |  |
| 1 7                          |    | 1303     | 581  | 434  | 1974     | 0    |     |     |             | 1089     | 0    | 969  |  |
| Arrive On Green 0.0          |    | 0.37     | 0.37 | 0.13 | 0.56     | 0.00 |     |     |             | 0.31     | 0.00 | 0.31 |  |
|                              |    | 3647     | 1585 | 3456 | 3647     | 0    |     |     |             | 3563     | 0    | 3170 |  |
| 1 \ //                       |    | 1305     | 37   | 347  | 779      | 0    |     |     |             | 1011     | 0    | 579  |  |
| Grp Sat Flow(s),veh/h/ln     | 0  | 1777     | 1585 | 1728 | 1777     | 0    |     |     |             | 1781     | 0    | 1585 |  |
| Q Serve(g_s), s 0.           | 0  | 29.0     | 1.2  | 7.7  | 9.9      | 0.0  |     |     |             | 21.8     | 0.0  | 12.3 |  |
| Cycle Q Clear(g_c), s 0.     | 0  | 29.0     | 1.2  | 7.7  | 9.9      | 0.0  |     |     |             | 21.8     | 0.0  | 12.3 |  |
| Prop In Lane 0.0             | 0  |          | 1.00 | 1.00 |          | 0.00 |     |     |             | 1.00     |      | 1.00 |  |
| Lane Grp Cap(c), veh/h       | 0  | 1303     | 581  | 434  | 1974     | 0    |     |     |             | 1089     | 0    | 969  |  |
| V/C Ratio(X) 0.0             | 0  | 1.00     | 0.06 | 0.80 | 0.39     | 0.00 |     |     |             | 0.93     | 0.00 | 0.60 |  |
| Avail Cap(c_a), veh/h        | 0  | 1303     | 581  | 874  | 2426     | 0    |     |     |             | 1126     | 0    | 1002 |  |
| HCM Platoon Ratio 1.0        | 0  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |     |     |             | 1.00     | 1.00 | 1.00 |  |
| Upstream Filter(I) 0.0       | 0  | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 |     |     |             | 1.00     | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh 0.  | 0  | 25.0     | 16.2 | 33.6 | 10.0     | 0.0  |     |     |             | 26.6     | 0.0  | 23.3 |  |
| Incr Delay (d2), s/veh 0.    | 0  | 25.3     | 0.0  | 1.3  | 0.0      | 0.0  |     |     |             | 12.6     | 0.0  | 0.6  |  |
| Initial Q Delay(d3),s/veh 0. | 0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |     |     |             | 0.0      | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/ln0.   | 0  | 15.9     | 0.4  | 3.2  | 3.4      | 0.0  |     |     |             | 10.6     | 0.0  | 4.5  |  |
| Unsig. Movement Delay, s/v   | eh |          |      |      |          |      |     |     |             |          |      |      |  |
| LnGrp Delay(d),s/veh 0.      | 0  | 50.4     | 16.3 | 34.9 | 10.1     | 0.0  |     |     |             | 39.2     | 0.0  | 23.9 |  |
|                              | Α  | F        | В    | С    | В        | Α    |     |     |             | D        | Α    | С    |  |
| Approach Vol, veh/h          |    | 1342     |      |      | 1126     |      |     |     |             |          | 1590 |      |  |
| Approach Delay, s/veh        |    | 49.4     |      |      | 17.7     |      |     |     |             |          | 33.6 |      |  |
| Approach LOS                 |    | D        |      |      | В        |      |     |     |             |          | С    |      |  |
| Timer - Assigned Phs         | 1  | 2        |      | 4    |          | 6    |     |     |             |          |      |      |  |
| Phs Duration (G+Y+Rc), \$4.  | a  | 35.0     |      | 29.2 |          | 49.9 |     |     |             |          |      |      |  |
| Change Period (Y+Rc), \$4.   |    | * 6      |      | * 5  |          | * 6  |     |     |             |          |      |      |  |
| Max Green Setting (Gma20),   |    | * 29     |      | * 25 |          | * 54 |     |     |             |          |      |      |  |
| Max Q Clear Time (g_c+l19,   |    | 31.0     |      | 23.8 |          | 11.9 |     |     |             |          |      |      |  |
|                              |    | 0.0      |      | 0.4  |          | 2.2  |     |     |             |          |      |      |  |
| Green Ext Time (p_c), s 0.   | _  | 0.0      |      | 0.4  |          | ۷.۷  |     |     |             |          |      |      |  |
| Intersection Summary         |    |          |      |      |          |      |     |     |             |          |      |      |  |
| HCM 6th Ctrl Delay           |    |          | 34.4 |      |          |      |     |     |             |          |      |      |  |
| HCM 6th LOS                  |    |          | С    |      |          |      |     |     |             |          |      |      |  |
|                              |    |          |      |      |          |      |     |     |             |          |      |      |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Synchro 11 Report Fehr & Peers

|                           | ۶    | <b>→</b> | •    | •    | <b>←</b> | •           | 4    | †    | <b>/</b> | <b>/</b> | <b>↓</b> | 4   |  |
|---------------------------|------|----------|------|------|----------|-------------|------|------|----------|----------|----------|-----|--|
| Movement                  | EBL  | EBT      | EBR  | WBL  | WBT      | WBR         | NBL  | NBT  | NBR      | SBL      | SBT      | SBR |  |
| Lane Configurations       | ሻሻ   | <b>^</b> |      |      | <b>^</b> | 7           |      | 4    | 7        |          |          |     |  |
| Traffic Volume (veh/h)    | 440  | 1760     | 0    | 0    | 980      | 1000        | 90   | 0    | 350      | 0        | 0        | 0   |  |
| Future Volume (veh/h)     | 440  | 1760     | 0    | 0    | 980      | 1000        | 90   | 0    | 350      | 0        | 0        | 0   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0    | 0        | 0           | 0    | 0    | 0        |          |          |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00 |          | 0.99        | 1.00 |      | 1.00     |          |          |     |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Work Zone On Approac      |      | No       |      |      | No       |             |      | No   |          |          |          |     |  |
| Adj Sat Flow, veh/h/ln    | 1870 | 1870     | 0    | 0    | 1870     | 1870        | 1870 | 1870 | 1870     |          |          |     |  |
| Adj Flow Rate, veh/h      | 463  | 1853     | 0    | 0    | 1032     | 633         | 95   | 0    | 285      |          |          |     |  |
| Peak Hour Factor          | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95        | 0.95 | 0.95 | 0.95     |          |          |     |  |
| Percent Heavy Veh, %      | 2    | 2        | 0    | 0    | 2        | 2           | 2    | 2    | 2        |          |          |     |  |
| Cap, veh/h                | 574  | 2269     | 0    | 0    | 1431     | 629         | 744  | 0    | 331      |          |          |     |  |
| Arrive On Green           | 0.17 | 0.64     | 0.00 | 0.00 | 0.40     | 0.40        | 0.21 | 0.00 | 0.21     |          |          |     |  |
| Sat Flow, veh/h           | 3456 | 3647     | 0    | 0    | 3647     | 1562        | 3563 | 0    | 1585     |          |          |     |  |
| Grp Volume(v), veh/h      | 463  | 1853     | 0    | 0    | 1032     | 633         | 95   | 0    | 285      |          |          |     |  |
| Grp Sat Flow(s), veh/h/li |      | 1777     | 0    | 0    | 1777     | 1562        | 1781 | 0    | 1585     |          |          |     |  |
| Q Serve(g_s), s           | 9.3  | 28.4     | 0.0  | 0.0  | 17.6     | 29.0        | 1.6  | 0.0  | 12.5     |          |          |     |  |
| Cycle Q Clear(g_c), s     | 9.3  | 28.4     | 0.0  | 0.0  | 17.6     | 29.0        | 1.6  | 0.0  | 12.5     |          |          |     |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00 |          | 1.00        | 1.00 |      | 1.00     |          |          |     |  |
| Lane Grp Cap(c), veh/h    |      | 2269     | 0    | 0    | 1431     | 629         | 744  | 0    | 331      |          |          |     |  |
| V/C Ratio(X)              | 0.81 | 0.82     | 0.00 | 0.00 | 0.72     | 1.01        | 0.13 | 0.00 | 0.86     |          |          |     |  |
| Avail Cap(c_a), veh/h     | 960  | 2665     | 0    | 0    | 1431     | 629         | 1237 | 0    | 550      |          |          |     |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00 | 1.00     |          |          |     |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00 | 1.00     | 1.00        | 1.00 | 0.00 | 1.00     |          |          |     |  |
| Uniform Delay (d), s/vel  |      | 9.8      | 0.0  | 0.0  | 18.1     | 21.5        | 23.2 | 0.0  | 27.5     |          |          |     |  |
| Incr Delay (d2), s/veh    | 1.0  | 1.5      | 0.0  | 0.0  | 1.6      | 37.5        | 0.0  | 0.0  | 3.6      |          |          |     |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0         | 0.0  | 0.0  | 0.0      |          |          |     |  |
| %ile BackOfQ(50%),vel     |      | 8.9      | 0.0  | 0.0  | 6.9      | 16.1        | 0.6  | 0.0  | 4.8      |          |          |     |  |
| Unsig. Movement Delay     |      |          | 0.0  | 2.2  | 40.7     | <b>50.0</b> | 00.0 | 0.0  | 04.4     |          |          |     |  |
| LnGrp Delay(d),s/veh      | 29.9 | 11.4     | 0.0  | 0.0  | 19.7     | 59.0        | 23.2 | 0.0  | 31.1     |          |          |     |  |
| LnGrp LOS                 | С    | В        | A    | A    | В        | F           | С    | A    | С        |          |          |     |  |
| Approach Vol, veh/h       |      | 2316     |      |      | 1665     |             |      | 380  |          |          |          |     |  |
| Approach Delay, s/veh     |      | 15.1     |      |      | 34.6     |             |      | 29.1 |          |          |          |     |  |
| Approach LOS              |      | В        |      |      | С        |             |      | С    |          |          |          |     |  |
| Timer - Assigned Phs      |      | 2        |      |      | 5        | 6           |      | 8    |          |          |          |     |  |
| Phs Duration (G+Y+Rc)     | ), s | 52.0     |      |      | 17.0     | 35.0        |      | 20.0 |          |          |          |     |  |
| Change Period (Y+Rc),     | S    | * 6      |      |      | 5.0      | * 6         |      | 5.0  |          |          |          |     |  |
| Max Green Setting (Gm     |      | * 54     |      |      | 20.0     | * 29        |      | 25.0 |          |          |          |     |  |
| Max Q Clear Time (g_c     |      | 30.4     |      |      | 11.3     | 31.0        |      | 14.5 |          |          |          |     |  |
| Green Ext Time (p_c), s   | 3    | 7.3      |      |      | 0.7      | 0.0         |      | 0.6  |          |          |          |     |  |
| Intersection Summary      |      |          |      |      |          |             |      |      |          |          |          |     |  |
| HCM 6th Ctrl Delay        |      |          | 23.7 |      |          |             |      |      |          |          |          |     |  |
| HCM 6th LOS               |      |          | С    |      |          |             |      |      |          |          |          |     |  |
|                           |      |          |      |      |          |             |      |      |          |          |          |     |  |

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

