ADVANCED GEOTECHNICAL SOLUTIONS, INC.

485 Corporate Drive, Suite B Escondido, California 92029

Telephone: (619) 867-0487 Fax: (714) 409-3287

C. H. Realty Partners, LCC 18032 Lemon Drive, Suite 367 Yorba Linda, California 92886 March 23, 2022 P/W 2202-09 Report No. 2202-09-B-3

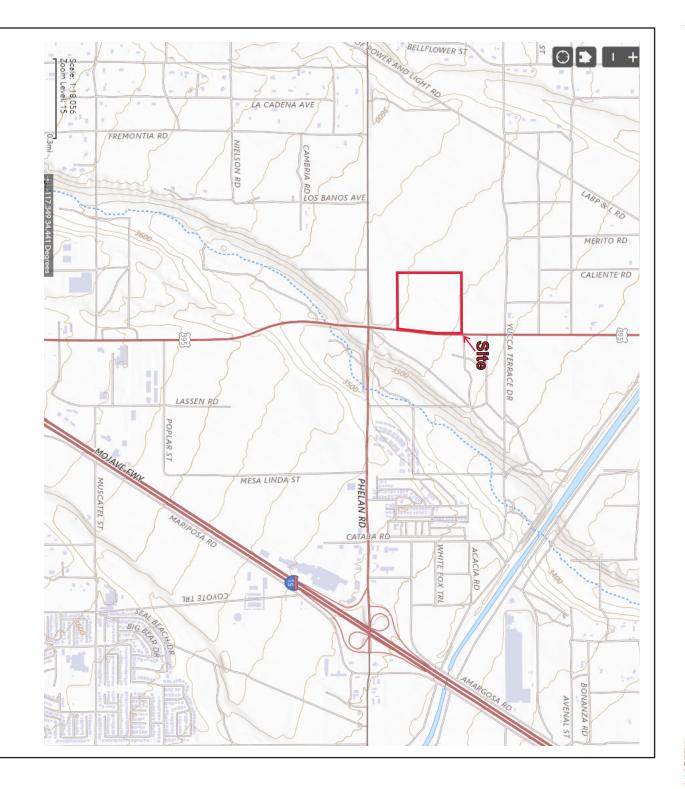
Attention: Mr. Michael Masterson

Subject: Infiltration Feasibility Level Study, Proposed Industrial Development, APNs 3064-

401-03, -04, -05, West Side of Highway 395, Hesperia, California

References: Appendix A

Gentlemen:


In accordance with your request, Advanced Geotechnical Solutions, Inc. (AGS) has prepared this infiltration feasibility study for the proposed 29-acre industrial development located on three contiguous parcels west of Highway 395 in Hesperia, California. This report is intended to meet the preliminary infiltration testing requirements of the City of Hesperia. AGS has evaluated the feasibility for storm water infiltration in accordance with the Mojave River Watershed Technical Guidance Document for Water Quality Management Plans (2016 Edition). Supporting data are presented in Appendix A.

1.0 SITE DESCRIPTION AND PROPOSED DEVELOPMENT

The ~29 acre site is located west of Highway 395 and north of Phelan Road / Main Street in Hesperia, California (Figure 1, Site Location Map). The site encompasses three contiguous parcels- APNs 3064-401-03, 3064-401-04, and 3064-401-05 with a total area of 29.37 acres. The site is currently vacant. Based on our review of historical aerial imagery, the site appears to have been mostly undeveloped except for some dirt roads and the unpaved Caliente Road crossing from the northeastern corner to the southwestern corner.

The site slopes and drains gently to the northeast. Based on the Site Development Plan prepared by Alliance Land Planning dated February 23, 2022, approximate site elevations range between 3,562 feet above mean sea level (msl) on the southwestern corner to 3,537 ft. msl on the northeastern corner of the site.

According to the site development plan, the project consists of a 655,520 square foot warehouse with loading docks to the east and west, offices and mezzanine areas. Associated improvements including a retaining wall along the southern boundary, driveways, parking areas, landscape areas, a storm water detention basin on the northern boundary, a public road on the western boundary and utility installations. Cuts up to 7 feet in depth and fills to about 10 feet are anticipated.

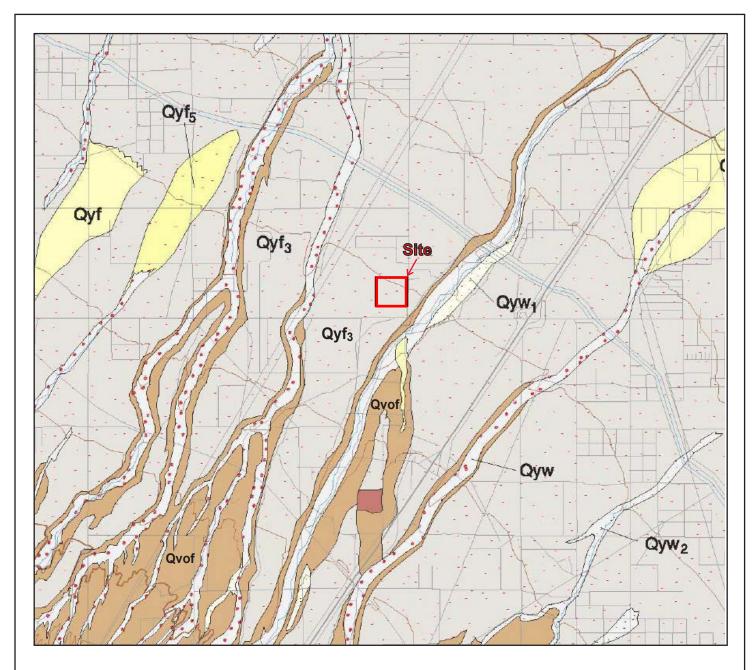
----;

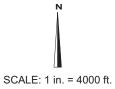
SCALE: 1 in. = 2000 ft.

SITE LOCATION MAP 29-ACRE PROPERTY HESPERIA, CALIFORNIA

FIGURE 1

March 23, 2022 Page 2
P/W 2202-09 Report No. 2202-09-B-3

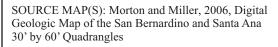

2.0 FIELD INVESTIGATION


On February 21, 2022, AGS performed subsurface exploration at the site which consisted of advancing five hollow-stem auger borings (B-1 through B-5) and four percolation test borings (P-1 through P-4) with a truck-mounted drill rig to approximate depths of 5 and 51.5 feet below existing ground surface (bgs). On March 3, 2022, AGS drilled an additional percolation test borings (P-5) with a hand auger to an approximate depth 6.5 feet bgs and excavated seven trenches (T-1 through T-7) to approximate depths ranging between 4 and 10 feet bgs with a JD 410J backhoe (22,000 lb). All borings and trenches were logged and sampled by our geologist or engineer. Logs of the borings and trenches are presented in Appendix A. The approximate trench locations are shown on Plate 1, Exploration Location Map. Percolation testing was performed on March 4, 2022, in an effort to evaluate the feasibility of storm water infiltration on the site and provide preliminary design infiltration rates in general conformance with Appendix C of the Mojave River Watershed Technical Guidance Document for Water Quality Management Plans (2016).

3.0 GEOLOGY

The site is not within a mapped liquefaction potential zone by the County of Riverside nor within a mapped fault zone. Regional geologic maps show that the site is underlain by alluvial fan deposits (Figure 2, Regional Geologic Map). Based on our site reconnaissance, subsurface excavations, and review of the referenced geologic maps, the site is mantled by topsoil and alluvium underlain by old alluvial-fan deposits. A brief description of the earth materials encountered onsite is presented below, and more detailed descriptions of these materials are provided in the subsurface logs included in Appendix A.

The majority of the site is mantled by topsoil consisting as light yellow brown to light brown, dry to slightly moist, fine- to coarse-grained, silty sand with some roots that is in a loose condition. The topsoil was observed to be 0.3 to 1 foot thick. The topsoil is underlain by alluvium consisting of light brown to yellow brown, dark brown and black, dry to slightly moist, loose to medium dense, porous, fine- to coarse-grained, silty sand with trace gravel and some roots. The alluvium extended to variable depths ranging between 1.7 and 3.3 feet. Older alluvium underlie the younger alluvium onsite. The differentiation is based upon the density changes observed. This unit consists of light brown, orange brown and red brown, slightly moist to moist, medium dense to very dense, fine- to coarse-grained, silty sand and sand with silt; which is slightly indurated and cemented, and contains gravel and cobbles. The older alluvium extended to the maximum depth of exploration of 51.5 feet. A discontinuous fine to coarse-grained sand layer was encountered at depths of around 5.5 to 7 feet below the ground along the northerly side of the site where the proposed basin is planned. This layer was encountered within P-5, T-1, and T-3 but was not encountered in T-2.


REGIONAL GEOLOGIC MAP 29-ACRE PROPERTY HESPERIA, CALIFORNIA

Qyf₃

Young Alluvial Fan Deposits, Unit 3 (Middle Holocene)

Qvof Very Old Alluvial Fan Deposits (Middle to Early Pleistocene)

FIGURE 2

4.0 TEST PROCEDURE

Percolation testing per the Orange County standards (TGD Appendix VII, 2011) was performed within the test borings as referenced in Appendix C of the Mojave River Watershed Technical Guidance Document for Water Quality Management Plans (2016).

The test holes were cleaned of loose debris then successively filled with more than 5 gallons of clean, potable water and allowed to pre-soak. The same day the test holes were cleaned of sediment and the bottom was lined with approximately 2 inches of washed gravel prior to infiltration testing.

A series of falling head percolation tests were performed. The test holes were filled with clean, potable water to approximately 1 to 2 feet above the infiltration surface and allowed to infiltrate. The water level was allowed to drop for a 30-minute period and then measured to calculate the drop rate in inches per hour. Reading were taken at 1-minute intervals in percolation test hole P-5 due to the high rates observed. The test hole was then refilled with water as necessary and the test procedure was repeated over the course of several hours until a stabilized percolation rate was recorded. The stabilized percolation rate was then converted to an infiltration rate based on the "Porchet Method" utilizing the following equation:

$$I_{t} = \underbrace{\Delta H \pi r^{2} 60}_{\Delta t (\pi r^{2} + 2\pi r H_{avg})} = \underbrace{\Delta H 60 r}_{\Delta t (r + 2H_{avg})}$$

Where:

I_t = tested infiltration rate, inches/hour

 ΔH = change in head over the time interval, inches

 $\Delta t = \text{time interval, minutes}$

*r = effective radius of test hole

H_{avg} = average head over the time interval, inches

Logs of the field testing and graphical representations of the test data presented as infiltration versus time interval are included in Appendix A.

March 23, 2022
P/W 2202-09
Report No. 2202-09-B-3

5.0 TEST RESULTS AND PRELIMINARY DESIGN VALUES

The results of our testing are summarized in Table 1 below.

	TABLE 1 SUMMARY OF INFILTRATION TEST RESULTS Test Hole Depth of Approximate Test Description (USCS) Tested Infiltration												
Test Hole No.	Depth of Test Hole	Description (USCS)	Tested Infiltration Rate (in./hr.)										
P-1	5.9 feet	0.55											
P-2	4.9 feet	3535 ft msl	Silty Sand (SM)	0.52									
P-3	4.0 feet	3537 ft msl	Silty Sand (SM)	1.02									
P-4	P-4 3.9 feet 3541 ft msl		Silty Sand (SM)	1.27									
P-5	15												

Infiltration BMPs have the potential to fail over time when not adequately designed or maintained. The infiltration rate will decline between maintenance cycles as the BMP surface becomes occluded and particulates accumulate in the infiltrative layer. The methodology for estimating an appropriate infiltration factor of safety is provided in Appendix C of the TGD.

The measured infiltration rate calculated for the purpose of infiltration infeasibility screening shall be based on a factor of safety of 2.0 applied to the rates obtained from the infiltration test results. No adjustments from this value are permitted. Soils would be considered potentially feasible for infiltration if the measured infiltration rate obtained from field testing is greater than 0.3 inches per hour. Measured rates shall account for uncertainty and bias in measurement methods by applying a factor of safety of 2.0 to testing results. Table 2 below summarizes the preliminary design infiltration rates for the subject test holes utilizing a factor of safety of 2.0.

The field measured infiltration rate is divided by the infiltration safety factor to obtain the design infiltration rate. The design safety factor varies between 2 and 9. A safety factor less than 2.0 must use 2.0, while a safety factor greater than 9 can be used at the discretion of the design engineer. The factor of safety to be used when determining the design infiltration rates should be determined once detailed information on the proposed BMPs are available.

	TABLE 2 PRELIMINARY DESIGN INFILTRATION RATES												
Test Hole No.	Measured Infiltration Rate (in. /hr.)												
P-1	0.55	2.0	0.28										
P-2	0.52	2.0	0.26										
P-3	1.02	2.0	0.51										
P-4	1.27	2.0	0.64										
P-5	15	2.0	7.5										

March 23, 2022 P/W 2202-09 Report No. 2202-09-B-3

DESIGN CONSIDERATIONS

6.1. **Groundwater**

6.0

Groundwater was not encountered during our subsurface exploration. Nearby groundwater wells indicate groundwater depths are several hundred feet below the surface. Localized perched groundwater may develop at a later date, most likely at or near fill/bedrock contacts, due to fluctuations in precipitation, irrigation practices, or factors not evident at the time of our field explorations..

6.2. Soil Characteristics and Anticipated Flow Paths

Based on our subsurface exploration and infiltration testing performed at the site, the underlying soils will allow for vertical infiltration with preliminary measured infiltration rates on the order 0.26 to 15 inches per hour, with the higher rates obtained within the underlying sand lens. This lens was capped by less permeable materials near the surface. Some of the underlying soils below this sand lens are less permeable.

Within the sand lens, storm water is anticipated to have very high vertical flow down to less permeable layers, at which point variable lateral flow is anticipated along the contact of dissimilar permeability.

6.3. Geotechnical Hazards

The introduction of water into hydro-collapsible soils may cause differential settlement and potential distress to improvements. Infiltration may saturate the near surface soils, which can potentially cause hydro-collapse prone soils to settle. The soils encountered onsite may be potentially hydro-collapsible. Setbacks from buildings and offsite improvements (minimum 25 feet) should mitigate the potential for settlement to occur below the proposed structures. It is possible that additional settlement of non-structural improvements may occur near infiltration devices. The owner should be aware of the potential need for additional long term maintenance for improvements constructed adjacent to the infiltration BMPs. Additional mitigation may include deeper removals below the improvements or construction of cut-off walls to mitigate the potential for lateral movement of water below the proposed improvements.

The introduction of water into expansive soils can cause heaving and potential distress to improvements, including flatwork, foundations, walls, etc., founded on the expansive soils or bedrock. The upper onsite soils are not considered expansive; therefore ,the infiltration of water is not expected to cause heaving.

The site is not located near nearby slopes. As such, the infiltration of water is not expected to cause slope instability.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Infiltration rates are generally greater than 0.3 inches per hour and infiltration type BMPs are considered feasible subject to the constraints described herein. If infiltration type BMPs are proposed, the infiltration layer can be placed within the sandier layer to yield higher infiltration rates. Additional exploration may be needed to further evaluate the limits and depths of the sandier soil layers.

This report is based on the project as described and the information obtained from the percolation borings at the locations indicated on the plan. The findings are based on the review of the field data combined with an interpolation and extrapolation of conditions between and beyond the exploratory excavations. The results reflect an interpretation of the direct evidence obtained. Services performed by AGS have been conducted in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, either expressed or implied, and no warranty or guarantee is included or intended.

The data, opinions, and recommendations of this report are applicable to the specific design of this project as discussed in this report. They have no applicability to any other project or to any other location, and any and all subsequent users accept any and all liability resulting from any use or reuse of the data, opinions, and recommendations without the prior written consent of AGS.

The infiltration rates presented in this report are based on limited testing performed as part of a preliminary screening for feasibility purposes. Dependent upon the final location, depth, and type of proposed BMP, additional testing may be warranted.

Advanced Geotechnical Solutions, Inc. appreciates the opportunity to provide you with geotechnical consulting services and professional opinions. If you have any questions, please contact the undersigned at (619) 867-0487.

Respectfully Submitted,

Advanced Geotechnical Solutions, Inc.

JØMN J. DØMOVAN

RCE 65051, RGE 2790, Reg. Exp. 6-30-21

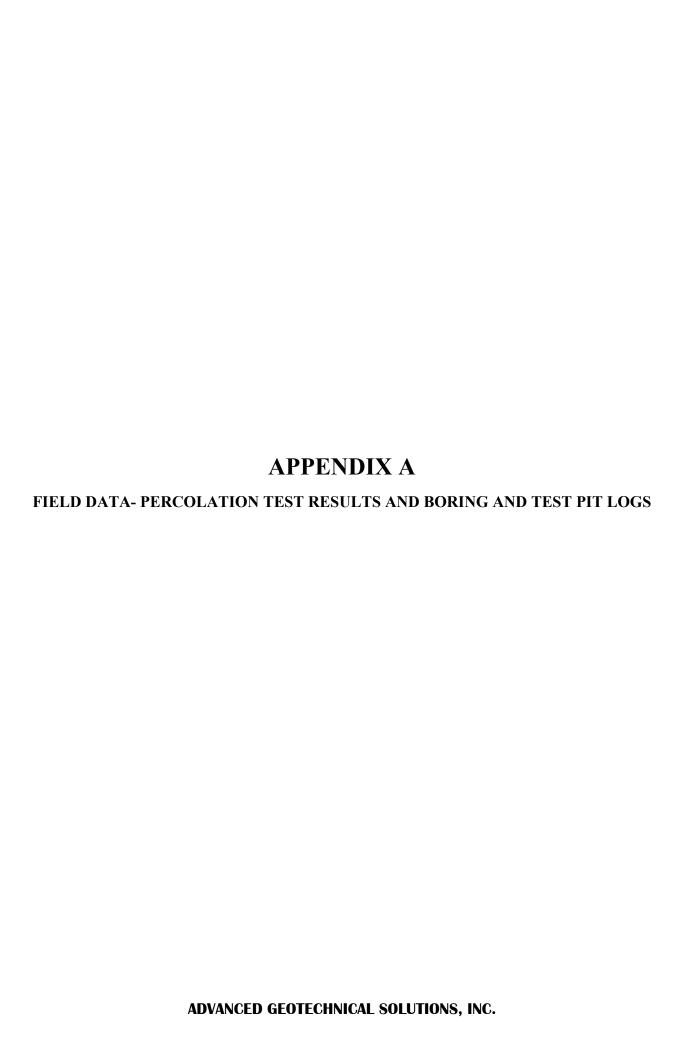
PAUL J. DERISI

CEG 2536, Reg. Exp. 5-31-21

CERTIFIED ENGINEERING GEOLOGIST

Distribution: (1) Addressee

Attachments: References


Figure 1 - Site Location Map Figure 2- Regional Geologic Map Plate 1 - Exploration Location Plan

Appendix A – Field Date- Percolation Test Results and Boring and Test Pit Logs

March 23, 2022 Page 7
P/W 2202-09 Report No. 2202-09-B-3

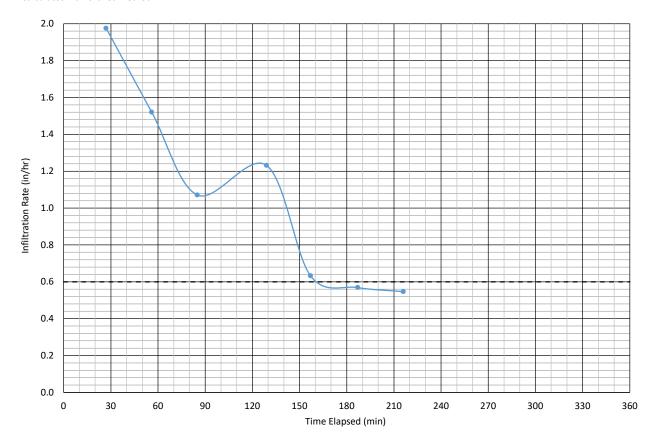
REFERENCES

- Advanced Geotechnical Solutions, Inc., 2022, "EIR Level Geotechnical Study, Proposed Industrial Development, APNs 3064-401-03, -04, -05, West Side of Highway 395, Hesperia, California," Report No. 2202-09-B-2, March 22, 2022.
- California Building Standards Commission, 2019, California Building Code, Title 24, Part 2, Volumes 1 and 2.
- County of San Bernardino, 2016, Mojave River Watershed Technical Guidance Document for Water Quality Management Plans, April 4, 2016.
- Morton, D. M., and Miller, F. K., 2006, *Geologic Map of the San Bernardino and Santa Ana 30'x 60' Quadrangles, California*, with digital preparation by Cossette, Pamela M., and Bovard, Kelly R.: United States Geological Survey (USGS) Open-File Report 2006-1217.
- Orange County Public Works. (2013). Exhibit 7.III, Technical Guidance Document (TGD) for the Preparation of Conceptual/ Preliminary and/or Project Water Quality Management Plans (WQMPs), December 20, 2013.
- State of California Water Boards, May 16, 2019, http://geotracker.waterboards.ca.gov/

 Project:
 Hesperia 29-Acre Business
 Project No.:
 2202-09
 Date:
 3/4/2022

 Test Hole No.:
 P-1
 Tested By:
 SD
 Water Temp.:

Depth of Test Hole: 71 inches USCS: SM Air Temp.: 48


Test Hole Dimensions (Inches)

Length: 71 Diameter: 8

Infiltration Test

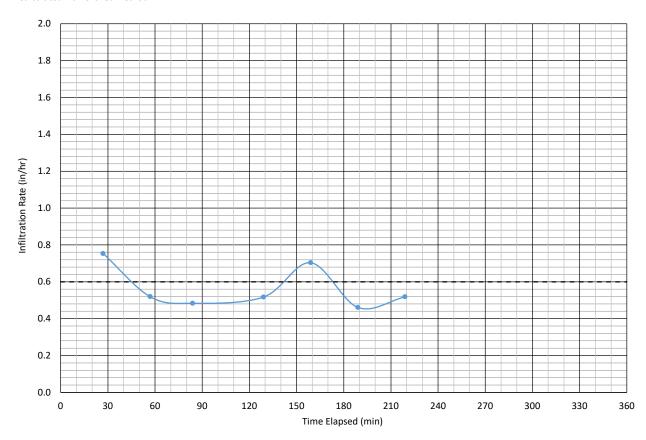
Trial No.		Stop Time	Time Interval	Piezon	netric Surface	(inches)	Average	Perc Rate	Infiltration Rate*
	(hr and min)	(hr and min)	(min.)	Start Depth	End Depth	Depth Change	Water Column	(in./hr.)	(in./hr.)
1	12:42	13:09	27	25 8/16	15 8/16	10	20.50	22.22	1.98
2	13:11	13:40	29	27	18	9	22.50	18.62	1.52
3	13:41	14:10	29	28	21 2/16	6 14/16	24.56	14.22	1.07
4	14:11	14:55	44	26 8/16	16	10 8/16	21.25	14.32	1.23
5	14:58	15:26	28	28	23 14/16	4 2/16	25.94	8.84	0.63
6	15:28	15:58	30	28 2/16	24 2/16	4	26.13	8.00	0.57
7	16:00	16:29	29	29 4/16	25 6/16	3 14/16	27.31	8.02	0.55

^{*}Calculated via Porchet Method

 Project:
 Hesperia 29-Acre Business
 Project No.:
 2202-09
 Date:
 3/4/2022

 Test Hole No.:
 P-2
 Tested By:
 SD
 Water Temp.:

Depth of Test Hole: 59 inches USCS: SM Air Temp.: 48


Test Hole Dimensions (Inches)

Length: ____ 59 ___ Diameter: ____ 8 ___

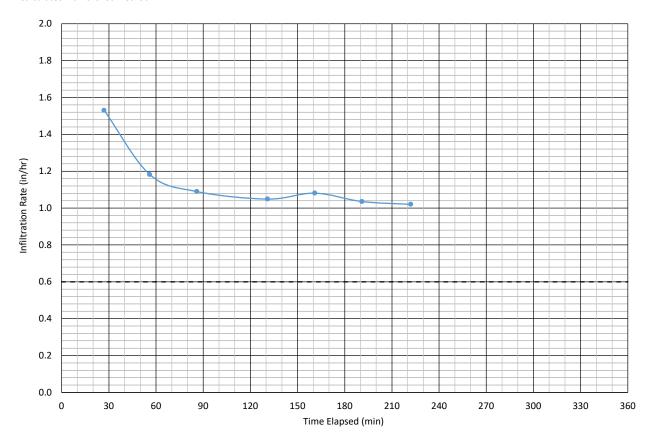
Infiltration Test

Trial No.	Start Time	Stop Time	Time Interval	Piezon	netric Surface	e (inches)	Average	Perc Rate	Infiltration Rate*
	(hr and min)	(hr and min)	(min.)	Start Depth	End Depth	Depth Change	Water Column	(in./hr.)	(in./hr.)
1	12:39	13:06	27	18	14 14/16	3 2/16	16.44	6.94	0.75
2	13:07	13:37	30	18 8/16	16	2 8/16	17.25	5.00	0.52
3	13:39	14:06	27	18	15 15/16	2 1/16	16.97	4.58	0.48
4	14:07	14:52	45	18 8/16	14 14/16	3 10/16	16.69	4.83	0.52
5	14:53	15:23	30	18 14/16	15 8/16	3 6/16	17.19	6.75	0.70
6	15:25	15:55	30	16 15/16	14 14/16	2 1/16	15.91	4.12	0.46
7	15:56	16:26	30	17 8/16	15 2/16	2 6/16	16.31	4.75	0.52
								•	

^{*}Calculated via Porchet Method

Project: <u>Hesperia 29-Acre Business</u> Project No.: 2202-09 Date: 3/4/2022 Test Hole No.: P-3 Tested By: Water Temp.: USCS: Depth of Test Hole: 48 inches Air Temp.:

Test Hole Dimensions (Inches)


8 Length: Diameter:

Infiltration Test

Trial No.	Start Time	Stop Time	Time Interval	Piezon	netric Surface	e (inches)	Average	Perc Rate	Infiltration Rate*
	(hr and min)	(hr and min)	(min.)	Start Depth	End Depth	Depth Change	Water Column	(in./hr.)	(in./hr.)
1	12:36	13:03	27	16 15/16	11 6/16	5 9/16	14.16	12.36	1.53
2	13:03	13:32	29	16	11 8/16	4 8/16	13.75	9.31	1.18
3	13:33	14:03	30	16 4/16	11 14/16	4 6/16	14.06	8.75	1.09
4	14:04	14:49	45	15 14/16	10	5 14/16	12.94	7.83	1.05
5	14:50	15:20	30	16 6/16	12	4 6/16	14.19	8.75	1.08
6	15:21	15:51	30	16	11 14/16	4 2/16	13.94 8.25		1.04
7	15:53	16:24	31	16 4/16	12	4 4/16	14.13	8.23	1.02
								•	

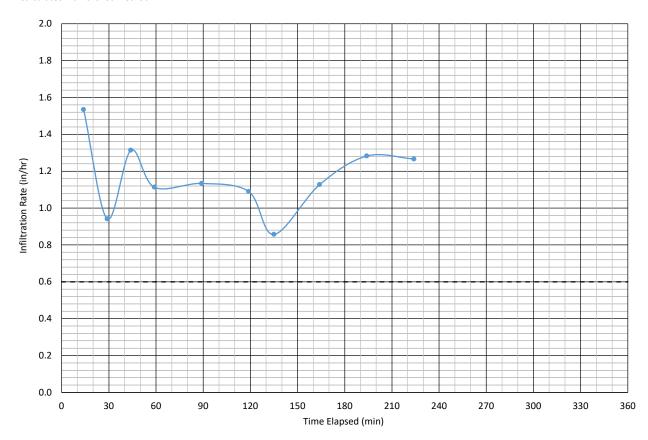
SM

^{*}Calculated via Porchet Method

 Project:
 Hesperia 29-Acre Business
 Project No.:
 2202-09
 Date:
 3/4/2022

 Test Hole No.:
 P-4
 Tested By:
 SD
 Water Temp.:

Depth of Test Hole: 46.5 inches USCS: SM Air Temp.: 48


Test Hole Dimensions (Inches)

Length: 46.5 Diameter: 8

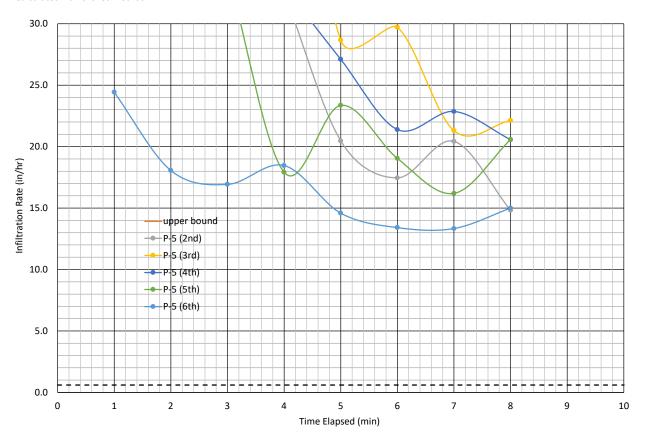
Infiltration Test

Trial No.		Stop Time	Time Interval	Piezon	netric Surface	(inches)	Average	Perc Rate	Infiltration Rate*
	(hr and min)	(hr and min)	(min.)	Start Depth	End Depth	Depth Change	Water Column	(in./hr.)	(in./hr.)
1	12:31	12:45	14	15 8/16	12 10/16	2 14/16	14.06	12.32	1.53
2	12:45	13:00	15	12 10/16	11	1 10/16	11.81	6.50	0.94
3	13:00	13:15	15	16 2/16	13 6/16	2 12/16	14.75	11.00	1.31
4	13:15	13:30	15	13 6/16	11 6/16	2	12.38	8.00	1.11
5	13:30	14:00	30	15 10/16	11 4/16	4 6/16	13.44	8.75	1.13
6	14:00	14:30	30	16 4/16	11 14/16	4 6/16	14.06 8.75		1.09
7	14:30	14:46	16	11 14/16	10 6/16	1 8/16	11.13	5.62	0.86
8	14:47	15:16	29	16 4/16	11 14/16	4 6/16	14.06	9.05	1.13
9	15:18	15:48	30	17	11 12/16	5 4/16	14.38	10.50	1.28
10	15:50	16:20	30	16 12/16	11 10/16	5 2/16	14.19	10.25	1.27

^{*}Calculated via Porchet Method

Project: Hesperia 29-Acre BusinessProject No.:2202-09Date:3/4/2022Test Hole No.:P-5Tested By:SDWater Temp.:

Depth of Test Hole: 77 inches USCS: SP-SM Air Temp.: 48


Test Hole Dimensions (Inches)

Length: ______ 77 ____ Diameter: _____ 8 ____

Infiltration Test

Trial No.	Start Time	Stop Time	Time Interval	Piezon	netric Surface	(inches)	Average	Perc Rate	Infiltration Rate*
	(hr and min)	(hr and min)	(min.)	Start Depth	End Depth	Depth Change	Water Column	(in./hr.)	(in./hr.)
6			1	21	16 12/16	4 4/16	18.88	255.00	24.43
			1	16 12/16	14 2/16	2 10/16	15.44	157.50	18.06
			1	14 2/16	12	2 2/16	13.06	127.50	16.93
			1	12	10	2	11.00	120.00	18.46
			1	10	8 10/16	1 6/16	9.31	82.50	14.59
			1	8 10/16	7 8/16	1 2/16	8.06	67.50	13.42
			1	7 8/16	6 8/16	1	7.00	60.00	13.33
			1	6 8/16	5 8/16	1	6.00	60.00	15.00
	•			·					
	•			·					
	•							•	

^{*}Calculated via Porchet Method

BORING NUMBER B-1 AGS

			_	_	-
P	Δ.	=	1	OF	2

ADV	ANCED GE		ICAL SOLUTIONS, INC.											
CLI	ENT La	ndstar	Companies	PROJEC	T NAME	Industrial	Devel	opmen	ıt					
PRO	JECT N	UMBE	R 2202-09		T LOCAT	ION APN	3064-	401-03	3, 04,	05, W.	of Hv	vy 395	, Hesp	peria
DAT	E STAR	TED _	2/21/22	GROUN	D ELEVAT	TION <u>3554</u>	ft		HOLE	SIZE	8			
			ACTOR 2R-Drilling											
			D Hollow Stem Auger			DRILLING								
			CHECKED BY AB			DRILLING								
						LING								
					T						ΔΤ	ERBE	RG	
ODEPTH (#)	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS		LIMITS	PLASTICITY STATE S	FINES CONTENT (%)
R/2202-09 LOGS AND LAB/2202	- / / / / / / / / / / / / / / / / / / /	SC	Older Alluvium (Qoal): Clayey SAND, yellowish brown, slightly moist, dens to coarse-grained; some gravel.	e, fine-	BU					RV				
E BUSINESS CENTE					МС	17-21-27 (48)	125	4.1	33	Conso				
AGS BORING LOG V2 - GINT STD US LAB. GDT - 3/24/22 14:09 - \\SERVERIPUBLIC\PROJECT FILES\\\\2202202-09 HESPERIA 29-ACRE BUSINESS CENTER\\\22022-09 LOGS AND LAB\\\\2202202-09 LOGS GPJ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		SM	@ 10 ft. Silty SAND, yellowish brown, moist, dense fine-grained; some clay.	· - · - · .	МС	18-20-31 (51)	113	7.5	43					
14:09 - SERVER PUBLIC PROJEC			@ 15 ft. brown with iron oxide staining, very dense, coarse-grained; some fine gravel.	fine- to	МС	19-38-46 (84)	130	5.7	55					
- GINT STD US LAB.GDT - 3/24/22			@ 20 ft. with sub-rounded gravel.		МС	18-33-48 (81)	122	1.8	13					
AGS BORING LOG V2					мс	12-22-38 (60)	127	3.9	34					

BORING NUMBER B-1

PAGE 2 OF 2

AGS
ADVANCED GEOTECHNICAL SOLUTIONS, INC.

 CLIENT
 Landstar Companies
 PROJECT NAME
 Industrial Development

 PROJECT NUMBER
 2202-09
 PROJECT LOCATION
 APN 3064-401-03, 04, 05, W. of Hwy 395, Hesperia

PROJ	PROJECT NUMBER 2202-09 PROJECT EOCATION AFIN 3004-401-03, 04, 03, W. of nwy 393, nespena												
DEPTH (ft)	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS	LIMIT	PLASTIC HIMIT LIMIT	PLASTICITY SUBJECT OF	FINES CONTENT (%)
 _ 30 		SM SP-SM	Older Alluvium (Qoal): (continued) Silty SAND, yellowish brown, moist, dense, fine-grained; some clay; with gravel. @ 30 ft. interbedded Silty SAND and gravelly SAND, fine-to coarse-grained, yellowish brown, dry, dense.	SPT	11-14-15 (29)	-							
		SP	@ 35 ft. SAND, fine-to coarse-grained, light gray, dry, friable.	МС	13-37-48 (85)	114	2.3	13					
<u>-</u> 40 		\$P-SM	@ 40 ft. interbedded Silty SAND and SAND, fine-to coarse-grained, yellowish brown, dry, dense.	SPT	11-11-18 (29)	-							
45 		ML	@ 46 ft. SILT, brown, wet, stiff; some clay.	МС	13-15-35 (50)	124	9.0	73					
 50 	. 0	SP	@ 50 ft. Gravelly SAND, brown, very dense, fine- to coarse-grained; some silt, metamorphic and granitic clasts to 1/2-inch size. Total Depth= 51.5 ft. No water. No caving	MC	18-34-40 (74)	117	2.4	15					

BORING NUMBER B-2 PAGE 1 OF 1

ADVA	NCED GE	OTECHN	CAL SOLUTIONS, INC.												
CLIE	NT La	ndstar	Companies		PROJEC	T NAME	Industrial	Devel	pmen	t					
PRO	JECT N	UMBEI	2202-09		PROJEC	T LOCAT	TION APN	3064-	401-03	, 04,	05, W	of Hv	vy 395	, Hesp	oeria_
DAT	E STAR	TED _2	2/21/22 COI	MPLETED <u>2/21/22</u>	GROUN	D ELEVA	TION <u>3553</u>	3 ft	!	HOLE	SIZE	8			
DRIL	LING C	ONTRA	ACTOR 2R-Drilling		GROUND WATER LEVELS:										
DRIL	LING N	ETHO	Hollow Stem Auger		_ A1	TIME OF	DRILLING								
LOG	GED BY	/ FE	CHE	ECKED BY AB											
NOT	ES						LLING								
								Ι.		(%		ATT	ERBE	RG	_
1_	U					SAMPLE TYPE NUMBER	တ 🛈	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ATURATION (%)	OTHER TESTS	L	IMITS	3	IEN EN
SS.GPJ DEPTH (ft)	GRAPHIC LOG	nscs	MATE	RIAL DESCRIPTION		E T	BLOW COUNTS (N VALUE)	F (5		9	世		일	Ę×.	NO @
DE DE	SRA L(SD		THE BESON THON		MP.	찍었≥	 >	SION	Σ	単	LIQUID	PLASTIC LIMIT	ST	000
Ŏ O O						SAI		DR	≥8	ÄTL	D		겁	PLASTICITY INDEX	FINES CONTENT (%)
0 0		SM	Older Alluvium (Qoa	D:						σ,	EI				_
AB/2;	-			brown, slightly moist, dense	, fine- to	BU					Max DSR				
			coarse-grained.			Щ					Chem				
7 S9 7						мс	8-16-17	124	2.0	16					
07 60						1	(33)								
- 202-(-														
<u>5</u>	-														
SE_															
SS															
						V	16-22-27	400		00					
<u> </u>	-					MC	(49)	123	4.7	36					
29-AC	-														
M 10															
ESPE															
∓ - 60															
2202	+ 1 1														
LES/															
SCT															
등 15															
				norphic clasts to 1/2-inch size		V	16-22-25								
	-		(quartzite).			MC	(47)	126	8.1	69					
- KER								1							
SER															
- 60:															
22 14															
3/54/		SP	@ 20 ft SAND fine-t	co coarse-grained, light yellow	ish brown		10 10 07	1							
<u>-</u>		0.	to light reddish brown		ion brown	MC	12-19-27 (46)	121	3.1	22					
AB.G							, ,	1							
I NS I															
	7														
<u> </u>	-														
<u>\$</u> 25								_							
AGS BORING LOG VZ - GINT STD US LAB. GDT - 3/24/22 14:09 - \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						МС	12-15-29	115	3.1	18					
PING -			Total Dantha CO 5 "			/\	(44)								
S BO			Total Depth= 26.5 ft. No water. No caving												

ADVANCED GEO	TECHNI	Conpanies	PRO IECT	Γ NΑME	Industrial				IG N	NUM	1BE PAGE	
PROJECT NU	JMBEF	2202-09	PROJECT GROUND	LOCAT	TION <u>APN</u>	3064-	401-03	3, 04,			vy 395	
OGGED BY	FE	O Hollow Stem Auger CHECKED BY AB	AT	END OF	DRILLING DRILLING LLING							
GRAPHIC LOG	USCS	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS		PLASTIC LIMIT	FINES CONTENT
	SM	Older Alluvium (Qoal): Silty SAND, yellowish brown, slightly moist, medium fine- to coarse-grained.	dense,									
5				МС	5-7-8 (15)	118	1.8	12				
10		@ 10 ft. medium- to coarse-grained, light yellowish b dry.	orown,	МС	24-41-50 (91)	129	2.5	24				
15		@ 15 ft. Silty SAND, yellowish brown, slightly moist, fine-grained; abundant subrounded gravel to 1/2-incl		МС	35-50/5"	132	4.1	42				
20	SP	@ 20 ft. Gravelly SAND, yellowish to reddish brown dense, fine- to coarse-grained; metamorphic clasts t 1/2-inch size.	, very	МС	32-39-50 (89)	121	1.9	14				

ADVANCED GEOTECHNICAL SOLUTIONS, INC.	PAGE 1 OF 1
CLIENT Landstar Companies	PROJECT NAME Industrial Development
PROJECT NUMBER 2202-09	PROJECT LOCATION APN 3064-401-03, 04, 05, W. of Hwy 395, Hesperia

 DATE STARTED
 2/21/22
 COMPLETED
 2/21/22
 GROUND ELEVATION
 3554 ft
 HOLE SIZE
 8

DRILLING CONTRACTOR 2R-Drilling GROUND WATER LEVELS: DRILLING METHOD Hollow Stem Auger AT TIME OF DRILLING _---LOGGED BY FE CHECKED BY AB AT END OF DRILLING _---

AFTER DRILLING _---NOTES

NOTE			Ar	I EK DKI	LLING								—— I
DEPTH (ft)	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS	LIQUID LIMIT	PLASTIC WESTIC LIMIT	PLASTICITY SHIP	FINES CONTENT (%)
S CENTER/2202-09 LOGS AND LAB/2203		SM	Older Alluvium (Qoal): Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained.	мс	6-9-11 (20)	117	1.9	12					
OJECT FILES/2202-09 HESPE		SP	@ 7 ft. SAND, light red, slightly moist, dense, fine-grained to coarse-grained; some subrounded gravel to 3/4-inch size.	мс	6-10-14 (24)	111	2.8	15	Conso	1			
AB.GDT - 3/24/22 14:09 - \SERVERPUBLIC/PRC			@ 20 ft. Gravelly SAND, light red, dry, very dense, fine- to coarse-grained; some gravel to 3/4-inch size. Total Depth= 21.5 ft.	MC MC	27-36-50 (86) 16-27-48 (75)	130	3.0	53					
AGS BORING LOG VZ - GINT STD USL			No water. No caving										

PROJ DATE DRILL DRILL LOGG	ECT NESTAR	ETED :: CONTRA CONTRA IETHOI Y _FE			JECT LOCAT UND ELEVAT UND WATER AT TIME OF AT END OF	TION APN TION 3548 LEVELS: DRILLING DRILLING LLING	3064	401-03	3, 04, (SIZE	8			
DATE DRILL DRILL LOGG NOTE	STAR LING O LING N SED B'	ETED ZEONTRA	R 2202-09 V/21/22 COMPLETED COMPLETED	PRO. 2/21/22 GRO GRO	JECT LOCAT UND ELEVAT UND WATER AT TIME OF AT END OF	TION APN TION 3548 LEVELS: DRILLING DRILLING LLING	3064	401-03	3, 04, (SIZE	8			
DRILL LOGG NOTE	ING O	SONTRA METHOI Y FE SOSO	CTOR 2R-Drilling Hollow Stem Auger CHECKED BY	GRO	UND WATER AT TIME OF AT END OF AFTER DRI	LEVELS: DRILLING DRILLING LLING								
DRILL LOGG NOTE	LING N	Y FE SOSO	Hollow Stem Auger CHECKED BY	'_AB	AT TIME OF AT END OF AFTER DRI	DRILLING DRILLING LLING								
NOTE (#)	SED B	Y FE SOSO	CHECKED BY	/ <u>AB</u>	AT END OF	DRILLING LLING								
DEPTH (ft)	:s	nscs			AFTER DRI	LLING								
DEPTH (ft)		nscs							(9)					
DEPTH (ft)		nscs			.R Y PE				(9)					
	Ъ				LE T	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS	L	ERBE IMITS	3	FINES CONTENT (%)
 					SAMPLE TYPE NUMBER	mo, s	DRY	CON	SATUF	ОТНЕ	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES
		SM	Older Alluvium (Qoal): Silty SAND, yellowish brown, d medium-grained.	ry, medium dense, fine- to										
5 10			@ 7 ft. less silt; with coarse gra	avel.	MC BU		115	2.7	16					
 15		sc			MC MC	27-39-43 (82) 29-50/5"	121	5.2	19 (Conso	I			
20		SP		dense, fine- to		5-12-17								
					SPI	(29)								
			Total Depth= 21.5 ft. No water. No caving											
	10	10	10 15 SC	Silty SAND, yellowish brown, dimedium-grained. @ 7 ft. less silt; with coarse grained: SC @ 15 ft. Clayey SAND, light yellowing fine- to medium-grained; some SP @ 20 ft. SAND, light gray, dry, coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. @ 7 ft. less silt; with coarse gravel. SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. @ 7 ft. less silt; with coarse gravel. BU MC BU SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. @ 7 ft. less silt; with coarse gravel. BU MC 24-50/5" BU MC 27-39-43 (82) SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5" 115 BU MC 27-39-43 (82) MC 27-39-43 (82) 121 SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5" 115 2.7 BU MC 27-39-43 (82) 121 2.7 MC 27-39-43 (82) 121 2.7 SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5* 115 2.7 16 BU MC 27-39-43 (82) 121 2.7 19 0 Total Depth= 21.5 ft. SIlty SAND, yellowish brown, dry, dense, fine- to medium-grained; some gravel. MC 24-50/5* 115 2.7 19 0 MC 29-50/5* 134 5.2 58	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5" 115 2.7 16 BU MC 27-39-43 121 2.7 19 Conso MC 27-39-43 121 2.7 19 Conso SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; frilable. Total Depth= 21.5 ft.	Sitty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5" 115 2.7 16 BU 27-39-43 121 2.7 19 Consol SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Sitty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5" 115 2.7 16 BU 27 ft. less silt; with coarse gravel. MC 27-39-43 (82) 121 2.7 19 Conso MC 27-39-43 (82) 121 2.7 19 Conso SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SP @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.	Silty SAND, yellowish brown, dry, medium dense, fine- to medium-grained. MC 24-50/5* 115 2.7 16 BU MC 27-39-43 121 2.7 19 Conso MC 27-39-43 121 2.7 19 Conso SC @ 15 ft. Clayey SAND, light yellowish brown, dry, dense, fine- to medium-grained; some gravel to 3/4-inch size. SC @ 20 ft. SAND, light gray, dry, dense, fine- to coarse-grained; friable. Total Depth= 21.5 ft.

BORING NUMBER P-1 PAGE 1 OF 1

, · · · · · · · · · · · · · · · · · ·	
CLIENT Landstar Companies	PROJECT NAME Industrial Development
PROJECT NUMBER 2202-09	PROJECT LOCATION _APN 3064-401-03, 04, 05, W. of Hwy 395, Hesperia
DATE STARTED 2/21/22 COMPLETED 3/4/22	GROUND ELEVATION 3540 ft HOLE SIZE 8
DRILLING CONTRACTOR 2R-Drilling	GROUND WATER LEVELS:
DRILLING METHOD Hollow Stem Auger	AT TIME OF DRILLING
LOGGED BY FE CHECKED BY AB	AT END OF DRILLING
NOTES	AFTER DRILLING
	ATTERBERG

09 LOGS.GPJ DEPTH	םו	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS	PLASTIC WISH	FINES CONTENT (%)
CENTER/2202-09 LOGS AND LAB/2202-09 LOGS.GPJ	5		SM	Silty SAND, fine- to coarse-grained, yellowish brown, slightly moist, loose; with subrounded gravel to 3/4-inch size. @ 2 ft. light yellowish brown, slightly moist.								

Total Depth= 6 ft. No water. No caving

AGS BORING LOG V2 - GINT STD US LAB GDT - 3/24/22 14:09 - \SERVER\PUBLIC\PROJECT FILES\2202-09 HESPERIA 29-ACRE BUSINESS CENTER\2202-09 LOGS AND LAB\2202-09 LOGS GPJ

BORING NUMBER P-2

	ADVAN	CED GE	OTECH	NICAL SOLUTION	ONS, INC.														PAGE	E 1 O)F 1
				r Companie:							PROJEC	T NAME	Industria	l Devel	opmer	ıt					
				R 2202-09									ION APN				05, W	. of Hv	vy 395	, Hesp	peria
	DATE	STAR	TED	2/21/22							GROUND ELEVATION 3540 ft HOLE SIZE 8										
	DRILL	ING C	ONTE	ACTOR 2	R-Drilling					GROUND WATER LEVELS:											
	DRILL	ING N	IETHO	Hollow :	Stem Au	ger					AT	TIME OF	DRILLING	3 <u></u>							*
	LOGG	SED BY	/ <u>FE</u>			CHECK	ED BY	AB			AT	END OF	DRILLING	·							
	NOTE	s									AF	TER DRII	LLING	•							
-09 LOGS.GPJ	o DEPTH (ft)	GRAPHIC LOG	nscs		N	//ATERIA	AL DES	CRIPT	ION			SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS		PLASTIC MINIT LIMIT	PLASTICITY SHIPPEX	FINES CONTENT (%)
R\2202-09 LOGS AND LAB\2202-09 LOGS.GPJ	 - 5		SM	Silty SA moist, lo	ND, fine cose; wit	- to coan h subrou	se-graii Inded g	ned, ye ravel to	llowish 3/4-ind	brown, ch size	slightly										
NG LOG V2 - GINT STD US LAB.GDT - 3/24/22 14:10 - \\SERVER\PUBLIC\PROJECT FILES\2202-09 HESPERIA 29-ACRE BUSINESS CENTER\2202-09					epth= 5 f																

	ADVAN	ICED GE	OTECH	NICAL SOLUTIONS, INC.					ВО	RIN	IG N	NUN	/IBE PAGE		
	CLIEN	NT La	ndsta	Companies	PROJEC	T NAME	Industrial	Devel	opmen	ıt					
	PROJ	ECT N	UMBE	ER _2202-09			ION APN				05, W	. of Hv	vy 395	, Hesp	oeria
	DATE	STAR	TED	2/21/22 COMPLETED 3/4/22	GROUNE	ELEVA1	TION <u>3541</u>	l ft		HOLE	SIZE	8			
	DRILL	ING C	ONTR	ACTOR 2R-Drilling											
	DRILL	ING N	IETHC	D Hollow Stem Auger	AT	TIME OF	DRILLING	i							
	LOGO	SED B	/ <u>FE</u>	CHECKED BY AB			DRILLING								
	NOTE	s			AFTER DRILLING										
-09 LOGS.GPJ	E	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS		PLASTIC HIMIT LIMIT	PLASTICITY SUBJECT OF	FINES CONTENT (%)
2-09 LOGS AND LAB\2202-09			SM	Silty SAND, fine- to coarse-grained, yellowish brow	n.										
JECT FILES\2202-09 HESPERIA 29-ACRE BUSINESS CENTER\2203				Total Depth= 4 ft. No water. No caving											

AGS BORING LOG V2 - GINT STD US LAB.GDT - 3/24/22 14:10 - \\SERVER\PUBLIC\PRO.

BORING NUMBER P-4

ADVANCED GEOTECHNICAL SOLUTIONS, INC.	PAGE 1 OF 1
CLIENT Landstar Companies	PROJECT NAME Industrial Development
PROJECT NUMBER 2202-09	PROJECT LOCATION APN 3064-401-03, 04, 05, W. of Hwy 395, Hesperia
DATE STARTED 2/21/22 COMPLETED 3/4/22	GROUND ELEVATION 3545 ft HOLE SIZE 8
DRILLING CONTRACTOR 2R-Drilling	GROUND WATER LEVELS:
DRILLING METHOD Hollow Stem Auger	AT TIME OF DRILLING
LOGGED BY FE CHECKED BY AB	AT END OF DRILLING
NOTES	AFTER DRILLING

-09 LOGS.GPJ	o DEPTH (ft)	GRAPHIC LOG	nscs	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	SATURATION (%)	OTHER TESTS	PLASTIC HISTORY PROPERTY AND A PROPERTY OF THE	FINES CONTENT (%)	
202-09 LOGS AND LAB\2202			SM	Silty SAND, fine to coarse-grained, light brown, dry.									
8				Total Depth= 4 ft									1

Total Depth= 4 ft. No water. No caving

AGS BORING LOG V2 - GINT STD US LAB.GDT - 3/24/22 14:10 - \SERVERPUBLIC\PROJECT FILES\2202-09 HESPERIA 29-ACRE BUSINESS CENTER\2202-09 LOGS AND LAB\2202-09 LOGS.GPJ

BORING NUMBER P-5

ADVANCED GEOTECHNICAL SOLUTIONS, INC.		PAGE 1 OF 1
CLIENT Landstar Companies		PROJECT NAME Industrial Development
PROJECT NUMBER 2202-09		PROJECT LOCATION APN 3064-401-03, 04, 05, W. of Hwy 395, Hesperia
DATE STARTED 3/4/22 COM	MPLETED <u>3/4/22</u>	GROUND ELEVATION 3545 ft HOLE SIZE 8
DRILLING CONTRACTOR		GROUND WATER LEVELS:
DRILLING METHOD Hand Auger		AT TIME OF DRILLING
LOGGED BY SD CHE	ECKED BY AB	AT END OF DRILLING

AFTER DRILLING _---

ATTERBERG LIMITS FINES CONTENT (%) SATURATION (%) SAMPLE TYPE NUMBER OTHER TESTS DRY UNIT WT. (pcf) MOISTURE CONTENT (%) GRAPHIC LOG BLOW COUNTS (N VALUE) DEPTH (ft) PLASTICITY INDEX **USCS** PLASTIC LIMIT LIQUID MATERIAL DESCRIPTION SM Silty SAND, fine to coarse-grained, light brown, dry. SP SAND with silt, fine to coarse-grained, light brown.

> Total Depth= 7 ft. No water. No caving

AGS BORING LOG V2 - GINT STD US LAB.GDT - 3/24/22 14:10 - \SERVER\PUBLIC\PROJECT FILES\\(\)2202-09 HESPERIA 29-ACRE BUSINESS CENTER\\(\)2202-09 LOGS AND LAB\\(\)2202-09 LOGS GPJ

NOTES

 Date Excavated:
 2/21/2022, 3/4/2022

 Logged by:
 SD

 Equipment:
 JD 410J Backhoe

LOG OF TEST PITS

Excavation No.	Depth (ft.)	USCS	Description
T-1	0.0 – 0.5	SM	Topsoil SILTY SAND, fine- to coarse-grained, light brown, with roots, dry, loose, numerous rodent holes.
	0.5 - 3.3	SM	Alluvium (Qal)? SILTY SAND, fine- to coarse-grained, trace gravel, light brown, dry, loose, porous.
	3.3 – 10.0	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, trace gravel, light brown, medium dense, rodent hole at 3.8 feet in depth.
			@ 5 ft., coarser grained, slightly moist, medium dense.
		SP-SM	@ 5.5 ft., SAND with Silt, trace cobbles.
			@ 9 ft., more cobbles, medium dense to dense.
			TOTAL DEPTH 10 FT. NO WATER, SOME CAVING BELOW 6 FT.

	. •
HVCOV	zation

No.	Depth (ft.)	USCS	Description
T-2	0.0 - 0.3	SM	<u>Topsoil</u> SILTY SAND, fine- to medium-grained, light yellow brown, some roots, dry, loose.
	0.3 – 1.7	SM	Alluvium (Qal)? SILTY SAND, fine-grained, yellow brown, slightly moist, loose.
	1.7 – 8.5	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, light brown, dry, medium dense.
			@ 4.5 ft., dense.
			@ 5.5 ft., fine-grained, slightly indurated, very dense.
			TOTAL DEPTH 8.5 FT. NO WATER, NO CAVING

Excavation No.	on Depth (ft.)	USCS	Description
T-3	0.0 - 0.7	SM	Topsoil SILTY SAND, fine- to medium-grained, light yellow brown, some roots, dry, loose.
	0.7 - 2.8	SM	Alluvium (Qal)? SILTY SAND, fine-grained, light yellow brown, slightly moist.
	2.8 - 6.0	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, less silt, yellow brown,
	6.0 – 10.0	SP-SM	medium dense. @ 6 ft., SAND with Silt, fine to coarse-grained, with gravel, light yellow brown, dense.
			@ 8 ft., dense to very dense.
			TOTAL DEPTH 10 FT. NO WATER, NO CAVING
Excavation No.	on Depth (ft.)	USCS	Description
T-4	0.0 - 1.0	SM	<u>Topsoil</u> SILTY SAND, fine- to coarse-grained, yellow brown, some roots, slightly moist, loose.
	1.0 – 3.0	SM	Alluvium (Qal)? SILTY SAND, fine- to coarse-grained, yellow brown, dry to slightly moist, loose, roots down to 30 inches in depth.
	3.0 – 5.0	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, less silt, light yellow brown, medium dense.
	5.0 – 6.0	SP-SM	@ 5 ft., SAND with Silt, fine to coarse-grained, some gravel, orange brown, slightly moist, medium dense.
	6.0 - 8.0	SM	@ 6 ft., SILTY SAND, fine to coarse-grained, orange brown, slightly indurated, dense, more difficult to excavate.
			TOTAL DEPTH 8 FT. NO WATER, NO CAVING

Г		. •	
Exca	va	T1(าท

No.	Depth (ft.)	USCS	Description
T-5	0.0 - 2.0	SM	Alluvium (Qal) SILTY SAND, fine- to medium-grained, yellow brown, slightly moist, loose, some roots.
	2.0 – 4.0	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, some gravel, less silt, yellow brown, dry, medium dense.
	4.0 – 5.0	SM	@ 4 ft., fine to coarse-grained, with gravel, medium dense to dense.
	5.0 – 10.5	SP-SM	@ 5 ft., SAND with silt, fine to coarse-grained, some gravel, orange brown, slightly moist, slightly indurated, dense.
			TOTAL DEPTH 10.5 FT. NO WATER, NO CAVING
Excavation No.	Depth (ft.)	USCS	Description
T-6	0.0 - 2.0	SM	Alluvium (Qal) SILTY SAND, fine- to medium-grained, yellow brown, slightly moist, loose to medium dense.
	2.0 – 2.5	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, trace gravel, less silt, lightly moist, light brown, dry, medium dense.
	2.5 – 7.5	SM	@ 2.5 ft., fine to coarse-grained, with gravel, light brown, dry, dense.
			@ 4 ft., slightly indurated, dense, harder to excavate.
			TOTAL DEPTH 7.5 FT. NO WATER, NO CAVING

		. •	
Hv	COL	≀ati	On

No.	Depth (ft.)	USCS	Description
T-7	0.0 - 2.7	SM	Alluvium (Qal) SILTY SAND, fine -grained, yellow brown, dry to slightly moist, loose, some roots down to 2 feet in depth.
	2.7 – 4.0	SM	Older Alluvium (Qoal)? SILTY SAND, fine- to coarse-grained, some gravel, yellow brown, dry, medium dense to dense.
	4.0 – 7.5	SP-SM	@ 4 ft., SAND with silt, fine to coarse-grained, with gravel, red brown, moist, slightly indurated, dense.
	7.5 – 10.0	SP	@ 7.5 ft., SAND, fine to coarse-grained, with gravel and cobbles, red brown, dense.
	10.0 – 12.0	SP-SM	@ 10 ft., SAND with silt, fine to coarse-grained, slightly indurated, dense, harder to excavate.
			@ 11 ft., light grey brown, slightly cemented.

TOTAL DEPTH 12 FT. NO WATER, SLIGHT CAVING 7.5 to 10 FEET

ADVANCED GEOTECHNICAL SOLUTIONS, INC.

