Appendix J Noise Technical Report (2022)

Noise Technical Report

Guajome Crest Project

DECEMBER 2022

Prepared for:

RINCON CAPTIAL INC. 5315 Avenida Encinas, Suite 200 Carlsbad, CA 92008 *Contact: Cameron St. Clair*

Prepared by:

605 Third Street Encinitas, California 92024 Contact: Connor Burke, INCE

Printed on 30% post-consumer recycled material.

Table of Contents

SECTION

PAGE NO.

1 Introduction				1
	1.1	Report Purpose and Scope		
	1.2	Regional and Local Setting		
	1.3	1.3 Project Description		1
	1.4	Fundar	nentals of Noise and Vibration	1
		1.4.1	Sound, Noise, and Acoustics	1
		1.4.2	Sound Pressure Levels and Decibels	2
		1.4.3	A-Weighted Sound Level	7
		1.4.4	Human Response to Changes in Noise Levels	8
		1.4.5	Noise Descriptors	8
		1.4.6	Sound Propagation	8
		1.4.7	Groundborne Vibration Fundamentals	9
2	Regulatory Setting			
	2.1	Federa	۱	11
	2.2	State		
		2.2.1	California Code of Regulations, Title 24	
		2.2.2	California Department of Health Services Guidelines	11
		2.2.3	California Department of Transportation	
	2.3	Local		
		2.3.1	Noise Ordinance	
		2.3.2	General Plan Noise Element	
3	Existing Conditions			
4	Thresholds of Significance			
5	Impact Discussion			
6	Summary of Findings			
7	References Cited			

TABLES

1	Typical Sound Levels in the Environment and Industry	7
2	City of Oceanside Exterior Noise Standards by Zone	12
3	Measured Baseline Outdoor Ambient Noise Levels	16
4	Typical Construction Equipment Maximum Noise Levels	23
5	Estimated Distances between Construction Activities and the Nearest Noise-sensitive Receptors	24

6	Predicted Construction Noise Levels per Activity Phase	25
7	Roadway Traffic Noise Modeling Results	26
8	Future Ambient Noise Levels at Residential Facades	27

FIGURES

1	Project Location	3
2	Site Plan	5
3	Noise Measurement Locations	18

APPENDICES

A Baseline Noise Measurement Field Data

- B Construction Noise Modeling Input and Output
- C Traffic Noise Modeling Input and Output
- D Transmission Loss Prediction

Acronyms and Abbreviations

Acronym/Abbreviation	Definition	
Caltrans	California Department of Transportation	
CEQA	California Environmental Quality Act	
City	City of Oceanside	
CNEL	Community Noise Equivalent Level	
dB	decibel	
dBA	A-weighted decibel	
FTA	Federal Transit Administration	
ips	inches per second	
Ldn	day-night average noise level	
Leq	equivalent noise level	
L _{max}	maximum sound level	
L _{min}	minimum sound level	
Guajome Crest	proposed project	
PPV	peak particle velocity	
RCNM	Roadway Construction Noise Model	
SLM	Sound level meter	
SPL	Sound pressure level	
ST	Short-term	
VdB	Velocity Decibel	

1 Introduction

1.1 Report Purpose and Scope

The purpose of this technical report is to assess the potential noise impacts associated with construction and operation of the Guajome Crest project (project). This analysis uses the significance thresholds in Appendix G of the California Environmental Quality Act (CEQA) Guidelines (14 CCR 15000 et seq.).

1.2 Regional and Local Setting

The Project is located at 2839 Guajome Lake Road, east of Alright Street, and southwest of Seattle Slew Way in Oceanside, California in northwest San Diego County (Figure 1, Project Location). The Project area falls within Section 2 of Township 11 South, Range 4 West of the San Luis Rey, California 7.5-minute U.S. Geological Survey Topographic Quadrangle Map (Figure 1). Residential development is present to the northwest, northeast, and southeast of the Project area. The majority of the Project area is located to the northeast of Guajome Lake Road, and south of that is Guajome Regional Park. A drainage runs through the northeastern portion of the Project area which ultimately empties into Guajome Lake, located approximately a half-mile northwest of the Project area within Guajome Regional Park

1.3 Project Description

The proposed Project would involve a request for approval of a Development Plan, Tentative Map, and Density Bonus to allow for the construction of 84 single-family homes on approximately 9.68 acres of the 16.6-acre project site. The Project area consists of an approximately 16.6-acre property covering one parcel (APN 157-412-15-00) (Figure 2, Site Plan).

All homes would be developed on the southern portion of the Project site which has been previously disturbed and graded. The Project would avoid the northernmost portion of the project site along the riparian corridor, preserving approximately 6.92 acres of the 16.6-acre project site as open space. The General Plan designation for the Project site is Single Family Detached Residential (SFD-R) with a zoning designation of Single-Family Residential - Scenic Park Overlay zone and Equestrian Overlay zone (RS-SP-EQ). The proposed Project would be consistent with the General Plan and Zoning designations for the Project site. In existing conditions, the Project site is mostly vacant and previously disturbed, with one existing residential house in the northern portion of the property.

1.4 Fundamentals of Noise and Vibration

The following is a brief discussion of fundamental noise concepts and terminology.

1.4.1 Sound, Noise, and Acoustics

Sound is actually a process that consists of three components: the sound source, sound path, and sound receiver. All three components must be present for sound to exist. Without a source to produce sound, there is no sound. Similarly, without a medium to transmit sound pressure waves, there is no sound. Finally, sound must be received;

a hearing organ, sensor, or object must be present to perceive, register, or be affected by sound or noise. In most situations, there are many different sound sources, paths, and receptors rather than just one of each. Acoustics is the field of science that deals with the production, propagation, reception, effects, and control of sound. Noise is defined as sound that is loud, unpleasant, unexpected, or undesired.

1.4.2 Sound Pressure Levels and Decibels

The amplitude of a sound determines its loudness. Loudness of sound increases with increasing amplitude. Sound pressure amplitude is measured in units of micronewton per square meter, also called micropascal. One micropascal is approximately one-hundred billionth (0.0000000001) of normal atmospheric pressure. The pressure of a very loud sound may be 200 million micropascals, or 10 million times the pressure of the weakest audible sound. Because expressing sound levels in terms of micropascal would be very cumbersome, sound pressure level in logarithmic units is used instead to describe the ratio of actual sound pressure to a reference pressure squared. These units are called Bels. To provide a finer resolution, a Bel is subdivided into 10 decibels (dB).

Figure 1 Project Location

SOURCE: SANGIS 2019, Open Street Maps 2019

FIGURE 1 Project Location Guajome Crest Project

Figure 2 Site Plan

SOURCE: SANGIS 2019, Open Streets Map 2019

FIGURE 2 Site Plan Guajome Crest Project

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

INTENTIONALLY LEFT BLANK

6

1.4.3 A-Weighted Sound Level

Sound pressure level alone is not a reliable indicator of loudness. The frequency, or pitch, of a sound also has a substantial effect on how humans will respond. Although the intensity (energy per unit area) of the sound is a purely physical quantity, the loudness, or human response, is determined by the characteristics of the human ear.

Human hearing is limited not only in the range of audible frequencies, but also in the way it perceives the sound in that range. In general, the healthy human ear is most sensitive to sounds between 1,000 and 5,000 hertz, and it perceives a sound within that range as more intense than a sound of higher or lower frequency with the same magnitude. To approximate the frequency response of the human ear, a series of sound level adjustments is usually applied to the sound measured by a sound level meter. The adjustments (referred to as a weighting network) are frequency-dependent.

The A-scale weighting network approximates the frequency response of the average young ear when listening to ordinary sounds. When people make judgments about the relative loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Other weighting networks have been devised to address high noise levels or other special situations (e.g., B-scale, C-scale, D-scale), but these scales are rarely used in conjunction with most environmental noise. Noise levels are typically reported in terms of A-weighted sound levels. All sound levels discussed in this report are A-weighted decibels (dBA). Examples of typical noise levels for common indoor and outdoor activities are depicted in Table 1.

Common Outdoor Activities	Noise Level (dB)	Common Indoor Activities
	110	Rock band
Jet fly over at 300 meters (1,000 feet)	100	_
Gas lawn mower at 1 meter (3 feet)	90	-
Diesel truck at 15 meters (50 feet), at 80 kilometers per hour (50 miles per hour)	80	Food blender at 1 meter (3 feet); garbage disposal at 1 meter (3 feet)
Noisy urban area, daytime; gas lawn mower at 30 meters (100 feet)	70	Vacuum cleaner at 3 meters (10 feet)
Commercial area; heavy traffic at 90 meters (300 feet)	60	Normal speech at 1 meter (3 feet)
Quiet urban, daytime	50	Large business office; dishwasher next room
Quiet urban, nighttime	40	Theater; large conference room (background)
Quiet suburban, nighttime	30	Library
Quiet rural, nighttime	20	Bedroom at night; concert hall (background)
	10	Broadcast/Recording studio
Lowest threshold of human hearing	0	Lowest threshold of human hearing

Table 1. Typical Sound Levels in the Environment and Industry

Source: Caltrans 2013.

1.4.4 Human Response to Changes in Noise Levels

Under controlled conditions in an acoustics laboratory, the trained, healthy human ear is able to discern changes in sound levels of 1 dBA when exposed to steady, single-frequency signals in the mid-frequency range. A doubling of sound energy results in a 3-dBA increase in sound, which means that a doubling of sound energy (e.g., doubling the volume of traffic on a road) would result in a barely perceptible change in sound level. A change of 5 dBA is readily perceptible, and a change of 10 dBA is *perceived* as twice (if a gain) or half (if a loss) as loud.

1.4.5 Noise Descriptors

Units of measure have been developed to evaluate the long-term characteristics of sound. The energy-equivalent sound level (L_{eq}) is also referred to as the time-average sound level. It is the equivalent steady-state or constant sound level that in a stated period of time would contain the same acoustical energy as the time-varying sound level during the same time period. For instance, the 1-hour A-weighted equivalent sound level, $L_{eq}(h)$, is the energy average of the A-weighted sound levels occurring during a 1-hour period, and is the basis for the City "general sound level limits".

People are generally more sensitive to and thus potentially more annoyed by noise occurring during the evening and nighttime hours. Hence, another noise descriptor used in community noise assessments—the community noise equivalent level (CNEL)—represents a time-weighted, 24-hour average noise level based on the A-weighted sound level. However, unlike an unmodified 24 hour L_{eq} value, the CNEL descriptor accounts for increased noise sensitivity during the evening (7 p.m. to 10 p.m.) and nighttime (10 p.m. to 7 a.m.) by adding 5 dBA and 10 dBA, respectively, to the average sound levels occurring during these defined hours within a 24-hour period.

1.4.6 Sound Propagation

Sound propagation (i.e., the traverse of sound from a noise emission source position to a receiver location) is influenced by multiple factors that include geometric spreading, ground absorption, atmospheric effects, and occlusion by natural terrain and/or features of the built environment.

Sound levels attenuate (or diminish) geometrically at a rate of approximately 6 dBA per doubling of distance from an outdoor point-type source due to the spherical spreading of sound energy with increasing distance travelled. The effects of atmospheric conditions such as humidity, temperature, and wind gradients are typically distance-dependent and can also temporarily either increase or decrease sound levels measured or perceived at a receptor location. In general, the greater the distance the receiver is from the source of sound emission, the greater the potential for variation in sound levels at the receptor due to these atmospheric effects. Additional attenuation can result from sound path occlusion and diffraction due to intervention of natural (ridgelines, dense forests, etc.) and built features (such as solid walls, buildings and other structures).

1.4.7 Groundborne Vibration Fundamentals

Groundborne vibration is fluctuating or oscillatory motion transmitted through the ground mass (i.e., soils, clays, and rock strata). The strength of groundborne vibration attenuates rapidly over distance. Some soil types transmit vibration quite efficiently; other types (primarily sandy soils) do not. Several basic measurement units are commonly used to describe the intensity of ground vibration. The descriptors used by the Federal Transit Administration (FTA) include peak particle velocity (PPV) that is in units of inches per second (ips). The calculation to determine PPV at a given distance is as follows:

 $PPV_{distance} = PPV_{ref}*(25/D)^{1.5}$

Where:

PPV_{distance} = the peak particle velocity in inches per second of the equipment adjusted for distance

 PPV_{ref} = the reference vibration level in inches per second at 25 feet

D = the distance from the equipment to the receiver

DUDEK

2 Regulatory Setting

2.1 Federal

In its Transit Noise and Vibration Impact Assessment guidance manual, the Federal Transit Administration (FTA) recommends a daytime construction noise level threshold of 80 dBA L_{eq} over an 8-hour period (FTA 2018) when detailed construction noise assessments are performed to evaluate potential impacts to community residences surrounding a project. Although this FTA guidance is not a regulation, it can serve as a quantified standard in the absence of such noise limits at the state and local jurisdictional levels.

2.2 State

2.2.1 California Code of Regulations, Title 24

Title 24 of the California Code of Regulations sets standards that new development in California must meet. According to Title 24, interior noise levels are not to exceed 45 dBA CNEL in any habitable room (ICC 2019).

2.2.2 California Department of Health Services Guidelines

The California Department of Health Services has developed guidelines of community noise acceptability for use by local agencies (OPR 2017). Selected relevant levels are listed here:

- Below 60 dBA CNEL: normally acceptable for low-density residential use
- 50 to 70 dBA: conditionally acceptable for low-density residential use
- Below 65 dBA CNEL: normally acceptable for high-density residential use and transient lodging
- 60 to 70 dBA CNEL: conditionally acceptable for high-density residential, transient lodging, churches, educational, and medical facilities

The normally acceptable exterior noise level for high-density residential use is up to 65 dBA CNEL. Additionally, this exterior noise level limit is consistent with the City of Chula Vista General Plan Noise Element, which considers multi-family unit noise-sensitive land uses.

2.2.3 California Department of Transportation

In its Transportation and Construction Vibration Guidance Manual (Caltrans 2013b), the California Department of Transportation (Caltrans) recommends 0.5 ips PPV as a threshold for the avoidance of structural damage to typical newer residential buildings exposed to continuous or frequent intermittent sources of groundborne vibration. For transient vibration events, such as blasting, the damage risk threshold would be 1.0 ips PPV (Caltrans 2013b) at the same type of newer residential structures. For older structures, these guidance thresholds would be more stringent: 0.3 ips PPV for continuous/intermittent vibration sources, and 0.5 ips PPV for transient vibration events. With respect to human annoyance, Caltrans guidance indicates that building occupants exposed to continuous groundborne vibration above 0.2 ips PPV would find it "annoying" and thus a likely significant impact. Although these Caltrans guidance thresholds are not regulations, they can serve as quantified standards in the absence of such limits at the local jurisdictional level.

2.3 Local

2.3.1 City of Oceanside General Plan

2.3.1.1 Noise Level Compatibility Standards

The Noise Element of the City's General Plan (City of Oceanside 1974) establishes target maximum noise levels in the City. The Noise Element provides the following limitations on construction noise:

- 1. It should be unlawful for any person within any residential zone of 500 feet there from to operate any pile driver, power shovel, pneumatic, power hoist, or other construction equipment between 8:00 p.m. and 7:00 a.m. generating an ambient noise level of 50 dBA at any property line unless an emergency exists.
- 2. It should be unlawful for any person to operate any construction equipment at a level in excess of 85 dBA at 100 feet from the source.
- 3. It should be unlawful for any person to engage in construction activities between 6:00 p.m. and 7:00 a.m. when such activities exceed the ambient noise level by 5 dBA. A special permit may be granted by the Director of Public Works if extenuating circumstances exist.

In addition, the Noise Element addresses nuisance noise and states that it should be unlawful for any person to make or continue any loud, unnecessary noise that causes annoyance to any reasonable person of normal sensitivity.

2.3.1.2 Transportation-Related Noise Standards

The City's Noise Element establishes a policy for exterior sensitive areas to be protected from high noise levels. The Noise Element sets 65 dBA CNEL for the outdoor areas and interior noise levels of less than 45 dBA CNEL as the "normally acceptable" level.

For interior noise, the Noise Element also establishes 45 dBA CNEL as the maximum acceptable level for habitable rooms when exterior noise levels are 60 dBA CNEL or more. If windows and doors are required to be closed to meet this standard, then mechanical ventilation (i.e., air conditioning) shall be included in the project design.

2.3.1.3 Noise Element Policies

- Noise levels shall not be so loud as to cause danger to public health in all zones except manufacturing zones where noise levels may be greater.
- Noise shall be controlled at the source where possible.
- Noise shall be intercepted by barriers or dissipated by space where other controls fail or are impractical.
- Noise levels shall be considered in any change to the Land Use and Circulation Elements of the General Plan.
- Noise levels of City vehicles, construction equipment, and garbage trucks shall be reduced to acceptable levels.

2.3.2 City of Oceanside Noise Ordinance

Chapter 38 of the Oceanside Municipal Code governs operational noise and contains the maximum one-hour average sound levels for various land uses for operational noise (Table 2) generated by sources within or affecting

DUDEK

each land use zone. The Noise Ordinance sets an allowed level for single-family and medium-density residential areas to 50 dBA L_{eq} from 7:00 a.m. to 9:59 p.m., and 45 dBA L_{eq} from 10:00 p.m. to 6:59 a.m. High density residential areas are limited to 55 dBA L_{eq} from 7:00 a.m. to 9:59 p.m. and 50 dBA L_{eq} form 10:00 p.m. to 6:59 a.m. High density a.m. In commercial zones, noise generation is limited to 65 dBA L_{eq} from 7:00 a.m. to 9:59 p.m. and 60 dBA L_{eq} form 10:00 p.m. to 6:59 a.m. Where two land use zones abut one another, the more restrictive noise limit is enforced along the common boundary between the two land uses.

Zone	Applicable Limit (decibels)	Time Period
Residential Estate, Single-Family Residential, Medium Density Residential, Agricultural, Open Space	50 45	7:00 a.m. to 9:59 p.m. 10:00 p.m. to 6:59 a.m.
High Density, Residential Tourist	55 50	7:00 a.m. to 9:59 p.m. 10:00 p.m. to 6:59 a.m.
Commercial	65 60	7:00 a.m. to 9:59 p.m. 10:00 p.m. to 6:59 a.m.
Industrial	70 65	7:00 a.m. to 9:59 p.m. 10:00 p.m. to 6:59 a.m.
Downtown	65 55	7:00 a.m. to 9:59 p.m. 10:00 p.m. to 6:59 a.m.

Table 2. City of Oceanside Exterior Noise Standards

Source: Oceanside Municipal Code, Section 38.12.

Construction activities are subject to Section 38.17 of the Noise Ordinance, which specifically prohibits the operation of any pneumatic or air hammer, pile driver, steam shovel, derrick, steam, or electric hoist, parking lot cleaning equipment or other appliance, the use of which is attended by loud or unusual noise, between the hours of 10:00 p.m. and 7:00 a.m.

Section 38.16 prohibits nuisance noise as recommended in the General Plan Noise Element. It is unlawful for any person to make, continue or cause to be made or continued, within the limits of the City of Oceanside, any disturbing, excessive, or offensive noise that causes discomfort or annoyance to reasonable persons of normal sensitivity.

2.3.3 City of Oceanside Engineering Manual

Construction noise in Oceanside is governed by the City Engineering Manual. Construction is normally limited to the hours between 7:00 a.m. and 6:00 p.m., Monday through Friday. However, Saturday construction is allowed by permit. More specifically, the City Engineering Manual (Engineers Design and Processing Manual Appendix Construction Guidelines and Requirements) states the following on pages 139 and 159:

- All operations conducted on the premises, including the warming up, repair, arrival, departure, or running of trucks, earthmoving equipment, construction equipment, and any other associated equipment shall be limited to the period between 7:00 a.m. and 6:00 p.m. each day, Monday through Friday, and no earthmoving or grading operations shall be conducted on the premises on Saturdays, Sundays or legal holidays, unless waived by the City Engineer.
- Hours of Operation (515)(34): 7:00 am to 6:00 p.m. M-F; including equipment warm-up.

• Saturday Operation: Requires filing a permit by 2:30 p.m. on the preceding Thursday.

DUDEK

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

3 Existing Conditions

Field measurements of sound pressure level (SPL) were conducted near the proposed project site on July 14, 2022, to quantify and characterize the existing outdoor ambient sound levels. Table 3 provides the location, date, and time period at which these baseline noise level measurements were performed by an attending Dudek field investigator using a Rion-branded Model NL-52 sound level meter (SLM) equipped with a 0.5 inch, pre-polarized condenser microphone with pre- amplifier. The SLM meets the current American National Standards Institute standard for a Type 1 (Precision Grade) sound level meter. The accuracy of the SLM was verified using a field calibrator before and after the measurements, and the measurements were conducted with the microphone positioned approximately 5 feet above the ground.

Two (2) short-term (ST) noise level measurement locations (ST1–ST2) that represent existing noise-sensitive receivers were selected on and near the proposed project site. These locations are depicted as receivers ST1–ST2 on Figure 3, Noise Measurement Locations. The measured L_{eq} and L_{max} noise levels are provided in Table 3. The primary noise sources at the sites identified in Table 3 consisted of traffic along adjacent roadways, Aircraft and helicopter noise, the sounds of leaves rustling, and birdsong. As shown in Table 3, the measured SPL ranged from approximately 41.2 dBA L_{eq} at ST1 to 45.4 dBA L_{eq} at ST2. Beyond the summarized information presented in Table 3, detailed noise measurement data is included in Appendix A, Baseline Noise Measurement Field Data.

Site	Location/Address	Date/Time	L _{eq} (dBA)	L _{max} (dBA)
ST1	Western property boundary	2022-07-14, 09:50 AM to 10:05 AM	41.2	47.4
ST2	Eastern property boundary	2022-07-14, 10:15 AM to 10:30 AM	45.4	60.7

Table 3. Measured Baseline Outdoor Ambient Noise Levels

Source: Appendix A.

Notes: Leq = equivalent continuous sound level (time-averaged sound level); L_{max} = maximum sound level during the measurement interval; dBA = A-weighted decibels; ST = short-term noise measurement locations.

Generally, the measured samples of daytime L_{eq} agree with expectations: at ST1 and ST2, L_{eq} values are below 50 dBA due largely to not being within a close proximity to a major roadway, which results in a substantially lower sampled L_{eq} value.

DUDEK

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

SOURCE: SANGIS 2019, Open Streets Map 2019, Dudek 2022

DUDEK **b** 0____75___150

FIGURE 3 Noise Measurement Locations Guajome Crest Project

DUDEK

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

4 Thresholds of Significance

The following significance criteria are based on Appendix G of the California Environmental Quality Act Guidelines (14 CCR 15000 et seq.) and will be used to determine the significance of potential noise and vibration impacts. Impacts associated with noise and vibration would be significant if the proposed project would result in:

- Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.
- Generation of excessive groundborne vibration or groundborne noise levels.
- Expose people residing or working in the project area to excessive noise levels (for a project located within the vicinity of a private airstrip or an airport land use plan, or where such a plan has not been adopted, within 2 miles of a public airport or public use airport).

In light of these above significance criteria, this analysis uses the following standards to evaluate potential noise and vibration impacts.

- Construction noise Although Chapter 38 of the Oceanside Municipal Code does not quantify a threshold for allowable construction noise, the City's General Plan allows noise from construction equipment operation to be as high as 85 dBA at 100 feet from the source. Applying the principles of sound propagation for a point-type source, this level could be interpreted to mean 91 dBA at 50 feet, which is greater than the maximum sound levels of most operating heavy construction equipment (DOT 2006) and would thus imply all but the loudest construction activities (e.g., pile driving) could be compliant with this standard. However, the apparent proximity of existing residential receptors to the north of the proposed project site suggests that source-to-receiver distances could be as short as 10 feet. Additionally, most construction equipment and vehicles on a project site do not operate continuously. Therefore, consistent with the FTA guidance mentioned in Section 2, Regulatory Setting, this analysis will use 80 dBA L_{eq} over an 8-hour period as the construction noise impact criterion during daytime hours (7:00 a.m. to 6:00 p.m.). If construction work were to occur outside these hours, the impact threshold would align with the City's General Plan requirement during such hours: no more than a 5 dBA increase over existing ambient noise levels.
- <u>Off-site project-attributed transportation noise</u> For purposes for this analysis, a direct roadway noise impact would be considered significant if increases in roadway traffic noise levels attributed to the proposed project were greater than 3 dBA CNEL at an existing noise-sensitive land use.

- <u>Off-site project-attributed stationary noise</u> For purposes for this analysis, a noise impact would be considered significant if noise from typical operation of heating, ventilation, and air conditioning and other electro-mechanical systems associated with the proposed project exceeded 50 dBA hourly Leq at the property line from 7:00 a.m. to 9:59 p.m., and 45 dBA hourly Leq from 10:00 p.m. to 6:59 a.m. Note that these are the City's thresholds for the industrial zones that characterize the proposed project site and its adjoining lands east and west.
- <u>Construction vibration</u> Guidance from Caltrans indicates that a vibration velocity level of 0.2 ips PPV received at a structure would be considered annoying by occupants within (Caltrans 2013b). As for the receiving structure itself, aforementioned Caltrans guidance from Section 2 recommends that a vibration level of 0.3 ips PPV would represent the threshold for building damage risk to an older residential structure.

For purposes of disclosure, since current CEQA noise criteria listed above do not consider it, this analysis also evaluates compatibility of on-site noise exposure levels (e.g., from roadway traffic) with the City of Oceanside exterior and interior noise standards of 65 dBA CNEL and 45 dBA CNEL, respectively.

DUDEK

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

5 Impact Discussion

Potential noise and vibration impacts attributed to project construction and operation are studied in the following subsections that are categorized by the CEQA Guidelines Appendix G significance for noise.

a) Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Short-Term Construction

Construction noise and vibration are temporary phenomena, with emission levels varying from hour to hour and day to day, depending on the equipment in use, the operations performed, and the distance between the source and receptor. Equipment that would be in use during construction would include, in part, graders, backhoes, rubber-tired dozers, loaders, cranes, forklifts, pavers, rollers, and air compressors. The typical maximum noise levels at a distance of 50 feet from various pieces of construction equipment and activities anticipated for use on the proposed project site are presented in Table 4. Note that the equipment noise levels presented in Table 4 are maximum noise levels. Usually, construction equipment operates in alternating cycles of full power and low power, producing average noise levels over time that are less than the maximum noise level. The average sound level of construction activity also depends on the amount of time that the equipment operates and the intensity of construction activities during that time.

Equipment Type	Typical Equipment (L _{max} , dBA at 50 Feet)	
All Other Equipment > 5 HP	85	
Backhoe	78	
Compressor (air)	78	
Crane	81	
Dozer	82	
Excavator	81	
Flat Bed Truck	74	
Front End Loader	79	
Generator	72	
Grader	85	
Man Lift	75	
Paver	77	
Roller	80	
Scraper	84	
Welder / Torch	73	

Table 4. Typical Construction Equipment Maximum Noise Levels

Source: DOT 2006.

Note: L_{max} = maximum sound level; dBA = A-weighted decibels.

Aggregate noise emission from proposed project construction activities, broken down by sequential phase, was predicted at two evaluation distances to the nearest existing noise-sensitive receptor: 1) from the

nearest position of the construction site boundary and 2) from the geographic center of the construction site, which serves as the time-averaged location or geographic acoustical centroid of active construction equipment for the phase under study. The intent of the former distance is to help evaluate anticipated construction noise from a limited quantity of equipment or vehicle activity expected to be at the boundary for some period of time, which would be most appropriate for phases such as site preparation, grading, and paving. The latter distance is used in a manner similar to the general assessment technique as described in the FTA guidance for construction noise assessment, when the location of individual equipment for a given construction phase is uncertain over some extent of (or the entirety of) the construction site area. In this studied scenario, because of the equipment location uncertainty, all the equipment for a construction phase is assumed to operate—on average—from the acoustical centroid position. Table 5 summarizes these two distances to the apparent closest noise-sensitive receptor for each of the five sequential construction phases. At the site boundary, this analysis assumes that up to only one piece of equipment of each listed type per phase will be involved in the construction activity for a limited portion of the 8-hour period. In other words, at such proximity, the operating equipment cannot "stack" or crowd the vicinity and still operate. For the acoustical centroid case, which intends to be a geographic average position for all equipment during the indicated phase, this analysis assumes that the equipment may be operating up to all 8 hours per day.

Table 5. Estimated D	istances between Construction Activities and the Nearest
Noise-sensitive Rece	ptors

Construction Phase (and Equipment Types Involved)	Distance from Nearest Noise- Sensitive Receptor to Construction Site Boundary (Feet)	Distance from Nearest Noise- Sensitive Receptor to Acoustical Centroid of Site (Feet)
Site Preparation (dozer, backhoe)	40	200
Grading (excavator, grader, dozer, scraper backhoe)	40	200
Building construction (crane, man-lift, generator, backhoe, welder)	40	200
Paving (paver, roller, concrete mixer truck)	40	200
Architectural Coating (compressor)	40	200

A Microsoft Excel-based noise prediction model emulating and using reference data from the Federal Highway Administration Roadway Construction Noise Model (RCNM) (FHWA 2008) was used to estimate construction noise levels at the nearest occupied noise-sensitive land use. (Although the RCNM was funded and promulgated by the Federal Highway Administration, it is often used for non-roadway projects, because the same types of construction equipment used for roadway projects are often used for other types of construction.) Input variables for the predictive modeling consist of the equipment type and number of each (e.g., two graders, a loader, a tractor), the duty cycle for each piece of equipment (e.g., percentage of time within a specific time period, such as an hour, when the equipment is expected to operate at full power or capacity and thus make noise at a level comparable to what is presented in Table 4), and the distance from

the noise-sensitive receiver. The predictive model also considers how many hours that equipment may be on site and operating (or idling) within an established work shift. Conservatively, no topographical or structural shielding was assumed in the modeling. The RCNM has default duty-cycle values for the various pieces of equipment, which were derived from an extensive study of typical construction activity patterns. Those default duty-cycle values were used for this noise analysis, which is detailed in Appendix B, Construction Noise Modeling Input and Output, and produce the predicted results displayed in Table 6.

Construction Phase (and Equipment Types Involved)	8-Hour Leq at Nearest Noise- Sensitive Receptor to Construction Site Boundary (dBA)	8-Hour L _{eq} at Nearest Noise- Sensitive Receptor to Acoustical Centroid of Site (dBA)
Site Preparation (dozer, backhoe)	73.7	67.4
Grading (excavator, grader, dozer, scraper backhoe)	79.9	70.1
Building construction (crane, man-lift, generator, backhoe, welder)	72.5	65.2
Paving (paver, roller, concrete mixer truck)	70.8	63.6
Architectural Coating (compressor)	68.3	58.1

Table 6. Predicted Construction Noise Levels per Activity Phase

Notes: Leq = equivalent noise level; dBA = A-weighted decibels.

As presented in Table 6, the estimated construction noise levels are predicted to be as high as 80 dBA L_{eq} over an 8-hour period at the nearest existing residences (as close as 40 feet away) when grading activities take place near the western and eastern project boundaries.

Although nearby off-site residences would be exposed to elevated construction noise levels, the increase to existing outdoor noise levels would typically be relatively short term. It is anticipated that construction activities associated with the proposed project would take place within the hours of 7:00 a.m. and 6:00 p.m. Monday through Saturday. In compliance with the Engineering Manual, the applicant would obtain a permit for Saturday construction.

In summary, daytime construction noise would not exceed the aforementioned FTA guidance-based standard Thus, temporary construction-related noise impacts would be considered **less then significant**.

Long-Term Operational

Off-Site Traffic Noise Exposure

The proposed project would result in the creation of additional vehicle trips on local arterial roadways (i.e., Guajome Lake Road), which could result in increased traffic noise levels at adjacent noise-sensitive land uses. Appendix C, Traffic Noise Modeling Input and Output, contains a spreadsheet with traffic volume data (average daily traffic) for Guajome Lake Road. In particular, the proposed project would create additional traffic along Guajome Lake Road, which according to the Traffic Impact Assessment prepared for the

proposed project (LOS Engineering 2022) would add 830 total average daily trips to adjacent to the project site.

According to Caltrans, a three-dBA change in sound is the beginning at which humans generally notice a barely perceptible change in sound, a five-dBA change is generally readily perceptible, and a 10-dBA increase is perceived by most people as a doubling of the existing noise level (Caltrans 2013a).

Potential noise effects from vehicular traffic were assessed using the Federal Highway Administration's Traffic Noise Model version 2.5 (FHWA 2004). Information used in the model included the roadway geometry, existing (year 2022), existing plus project, near-term (opening day) and near-term (opening day) plus project traffic volumes and posted traffic speeds. Noise levels were modeled at representative noise-sensitive receivers ST1 and ST2, as shown in Figure 3. The receivers were modeled to be 5 feet above the local ground elevation. The noise model results are summarized in Table 7. Based on results of the model, implementation of the proposed project would not result in readily perceptible increases in traffic noise.

Table 7. Roadway Traffic Noise Modeling Results

Modeled Receiver No.	Existing (2022) Noise Level	Existing with Project Noise Level	Near-term Noise Level	Near-term plus Project Noise Level	Maximum Project- Related Noise Level Increase
	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	(dB)
ST1	43.4	45.2	43.3	45.3	2.0
ST2	47.8	49.9	47.8	49.9	2.1

Source: Appendix C.

Notes: dBA = A-weighted decibel; CNEL = community noise equivalent level; dB = decibel.

Table 7 shows that at all four listed representative receivers, the addition of proposed project traffic to the roadway network would result in an increase in the CNEL of less than 3 dB, which is below the discernible level of change for the average healthy human ear. Thus, a less-than-significant impact is expected for proposed project-related off-site traffic noise increases affecting existing residences in the vicinity.

On-site Traffic Interior Noise Exposure

Aside from exposure to aviation traffic noise, current CEQA noise-related guidelines at the state level do not require an assessment of exterior-to-interior noise intrusion, environmental noise exposure to occupants of newly-created project residences, or environmental noise exposure to exterior non-residential uses attributed to the development of the proposed project. Nevertheless, the City's General Plan and the California Building Code requires that interior background noise levels not exceed a CNEL of 45 dB within habitable rooms. Hence, the following predictive analysis of traffic noise exposure at the exteriors of occupied residences and outdoor living areas is provided below.

In addition to the prediction results presented in Table 7, the FHWA TNM software was also used to predict the near-term-with-project scenario traffic noise levels at multiple on-site exterior areas, as listed in Table 8. These on-site modeled receptor locations, which appear in Appendix C, include representative positions for the exteriors of positions of four of the proposed project building facades. Predicted exterior sound levels presented in Table 8 that are higher than 65 dBA CNEL indicate locations where an exterior-to-interior

noise analysis should be performed for the proximate occupied residential unit. Individual Modeling locations appear in Appendix C.

Modeled Receptor	Noise Level (A-weighted CNEL)
M1	48.9
M2	49.5
M3	50
M4	50.5
0S-1	37

Table 8. Future Ambient Noise Levels at Residential Facades

According to the proposed project site plan, there will be no habitable residential units having exterior noise exposures that exceed 65 dBA CNEL at the proposed project. Typically, with the windows open, building shells provide approximately 15 dB (i.e., an average of 12-18 dB [OPR 2017]) of exterior-to-interior noise reduction; while with windows closed residential construction generally provides a minimum of 25 dB attenuation (FHWA 2011). Therefore, rooms exposed to an exterior CNEL not greater than 60 dB would result in an interior background CNEL of 45 dB or less, even with open fenestration. In other words, the arithmetic difference of an exterior noise level less than 60 dBA CNEL and an exposed building façade that provides 15 dB of sound insulation results in an interior background sound level less than 45 dBA CNEL. Table 10 shows that all residential facades will be well below 60 dB CNEL and thus will not exceed a CNEL of 45 dB within habitable rooms.

Onsite Open Spaces

As analyzed herein, shared outdoor project spaces such as "OS-1" are expected to experience noise levels that are compliant with the City's General Plan Noise Element guidance of 65 dBA CNEL for "parks" and "playgrounds".

Stationary Noise Sources

The incorporation of new single-family homes and a mix of open space uses attributed to development of the proposed project will add a variety of noise-producing electro-mechanical equipment that include those presented and discussed in the following paragraphs. Most of these noise-producing equipment or sound sources would be considered stationary, or limited in mobility to a defined area. Using a Microsoft Excel-based outdoor sound propagation prediction model, project-attributed operational noise at nearby community receptors was predicted using several assumptions:

- Treatment of exposed at-grade air-cooled condensing units as point-type sound emission sources; and,
- Point-source sound propagation (i.e., 6 dB per doubling of distance) that conservatively ignores acoustical absorption from atmospheric and ground surface effects.

Please see Appendix D for quantitative details of the inputs and outputs that form the basis of the following assessment presentations.

Residential Unit Heating, Ventilation, and Air Conditioning Noise

For purposes of this analysis, each of the new occupied residential units would be expected to feature a split-system type air-conditioning unit, with an air-cooled refrigeration (3-ton capacity) condenser unit. Assuming each condenser unit has an SPL of 68 dBA at 3 feet based on available data from a likely manufacturer (Carrier 2012), and the units would generally be installed at grade. Therefore, the closest existing noise-sensitive residential receptor to the west of the proposed project's western unit would be as close as 40 horizontal feet to the nearest of these condenser units. The predicted sound emission level from the combination of all operating condenser units as received by this offsite single-family home would be 45 dBA L_{eq} and thus be compliant with the City's nighttime threshold of 45 dBA hourly L_{eq}. Under such conditions, the operation of residential air-conditioning units would result in a **less-than-significant noise impact**.

b) Would the project result in generation of excessive groundborne vibration or groundborne noise levels?

Less Than Significant Impact. Construction activities may expose persons to excessive groundborne vibration or groundborne noise, causing a potentially significant impact. Caltrans has collected groundborne vibration information related to construction activities (Caltrans 2020). Information from Caltrans indicates that continuous vibrations with a PPV of approximately 0.2 ips is considered annoying. For context, heavier pieces of construction equipment, such as a bulldozer that may be expected on the project site, have peak particle velocities of approximately 0.089 ips or less at a reference distance of 25 feet (DOT 2006).

Groundborne vibration attenuates rapidly, even over short distances. The attenuation of groundborne vibration as it propagates from source to receptor through intervening soils and rock strata can be estimated with expressions found in FTA and Caltrans guidance. By way of example, for a bulldozer operating on site and as close as the northern project boundary (i.e., 40 feet from the nearest occupied property) the estimated vibration velocity level would be 0.053 ips per the equation as follows (FTA 2006):

PPV_{rcvr} = PPV_{ref} * (25/D)^1.5 = 0.053 = 0.089 * (25/40)^1.5

In the above equation, PPV_{rcvr} is the predicted vibration velocity at the receiver position, PPV_{ref} is the reference value at 25 feet from the vibration source (the bulldozer), and D is the actual horizontal distance to the receiver. Therefore, at this predicted PPV, the impact of vibration-induced annoyance to occupants of nearby existing homes would be less than significant.

Construction vibration, at sufficiently high levels, can also present a building damage risk. However, anticipated construction vibration associated with the proposed project would yield levels of 0.053 ips, which do not surpass the guidance limit of 0.3 ips PPV for building damage risk to older residential structures (Caltrans 2020). Because the predicted vibration level at 40 feet is less than this guidance limit, the risk of vibration damage to nearby structures is considered less than significant.

Once operational, the proposed project would not be expected to feature major producers of groundborne vibration. Anticipated mechanical systems like heating, ventilation, and air-conditioning units are designed and manufactured to feature rotating (fans, motors) and reciprocating (compressors) components that are

well-balanced with isolated vibration within or external to the equipment casings. On this basis, potential vibration impacts due to proposed project operation would be **less than significant**.

C) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

There are no private airstrips within the vicinity of the project site. The closest airport to the project site is the Oceanside Municipal Airport, approximately 4.9 miles southwest of the site. According to the Airport Land Use Compatibility Plan Exhibit IV-10, Compatibility Data Map: Noise, the project site is not located within a noise exposure of 60 dB CNEL and would therefore not expose people residing or working in the project area to excessive noise levels (San Diego County Regional Airport Authority 2010). Impacts from aviation overflight noise exposure would be **less than significant**.

INTENTIONALLY LEFT BLANK

6 Summary of Findings

This noise report was conducted for the proposed project. The predicted analysis results indicate that potential impacts during construction would be less than significant. Noise impacts due to construction and operation of the proposed project (including traffic noise) would be less than significant. No mitigation is required.

DUDEK

INTENTIONALLY LEFT BLANK

7 References Cited

- Caltrans (California Department of Transportation). 2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol. September.
- Caltrans. 2020. Transportation and Construction Vibration Guidance Manual. Division of Environmental Analysis, Environmental Engineering, Hazardous Waste, Air, Noise, Paleontology Office. Sacramento, California. April.
- Carrier. 2012. CA16NA 018-061 Single-Stage Air Conditioner w/ Puron Refrigerant. Catalog No: CA16NA-06PD. https://resource.carrierenterprise.com/is/content/Watscocom/carrier_ca16na03600g_article_1404816 230548_en_ss?_ga=2.123164302.489492439.1570570581-792571132.1570570581
- City of Oceanside. 1974. City of Oceanside General Plan: Noise Element. September 25, 1974. https://www.ci.oceanside.ca.us/civicax/filebank/blobdload.aspx?BlobID=24786.
- City of Oceanside. 1990. Noise Ordinance. Accessed February 15, 2019. https://library.municode.com/ca/ oceanside/codes/code_of_ordinances?nodeId=CH38NOCO.
- DOT (U.S. Department of Transportation). 2006. FHWA Roadway Construction Noise Model: User's Guide. Final Report. FHWA-HEP-06-015. DOT-VNTSC-FHWA-06-02. Cambridge, Massachusetts: DOT, Research and Innovative Technology Administration. August 2006.
- FHWA (Federal Highway Administration). 2004. FHWA Traffic Noise Model Version 2.5.
- FHWA. 2008. Roadway Construction Noise Model (RCNM), Software Version 1.1. U.S. Department of Transportation, Research and Innovative Technology Administration, John A. Volpe National Transportation Systems Center, Environmental Measurement and Modeling Division. Washington, D.C. December 8, 2008.
- FHWA. 2011. Highway Traffic Noise: Analysis and Abatement Guidance. FHWA-HEP-10-025. December. https://www.codot.gov/programs/environmental/noise/guidelines-policies/fhwa-noise-guidance-dec-2011
- FTA (Federal Transit Administration). 2018. Transit Noise and Vibration Impact Assessment. FTA Report No. 0123. September.
- LOS Engineering, Inc. 2022. Guajome Lake Subdivision. Draft Local Transportation Assessment.
- OPR (Governor's Office of Planning and Research). 2017. State of California General Plan Guidelines. http://www.opr.ca.gov/planning/general-plan/guidelines.html
- San Diego County Regional Airport Authority. 2010. Oceanside Municipal Airport Land Use Compatibility Plan. Prepared by Ricondo & Associates. Amended December 20, 2010. Accessed February 19, 2019. https://www.ci.oceanside.ca.us/civicax/filebank/blobdload.aspx?blobid=24742.

DUDEK

DUDEK

INTENTIONALLY LEFT BLANK

GUAJOME CREST PROJECT / NOISE TECHNICAL REPORT

Appendix A

Baseline Noise Measurement Field Data

EMERMS FIELD DATA REPORT

Field Noise Measurement Data

Record: 1435	
Project Name	Guajome Lake
Observer(s)	Connor Burke
Date	2022-07-14

Meteorological Conditions										
Temp (F)	70									
Humidity % (R.H.)	72									
Wind	Calm									
Wind Speed (MPH)	3									
Wind Direction	East									
Sky	Overcast									

Instrument and Calibrator Information	
Instrument Name List	(ENC) Rion NL-52
Instrument Name	(ENC) Rion NL-52
Instrument Name Lookup Key	(ENC) Rion NL-52
Manufacturer	Rion
Model	NL-52
Serial Number	553896
Calibrator Name	(ENC) LD CAL150
Calibrator Name	(ENC) LD CAL150
Calibrator Name Lookup Key	(ENC) LD CAL150
Calibrator Manufacturer	Larson Davis
Calibrator Model	LD CAL150
Calibrator Serial #	5152
GPS Assistance Used	Yes
Pre-Test (dBA SPL)	94
Post-Test (dBA SPL)	94
Windscreen	Yes
Weighting?	A-WTD
Slow/Fast?	Slow
ANSI?	Yes

Monitoring	
Record #	1
Site ID	ST1
Site Location Lat/Long	33.244601, -117.266289
Begin (Time)	09:50:00
End (Time)	10:05:00
Leq	41.2
Lmax	47.4
Lmin	36.7
Other Lx?	L90, L50, L10
L90	38.3
L50	40.2
L10	43.6
Other Lx (Specify Metric)	L
Primary Noise Source	Distant traffic
Other Noise Sources (Background)	Birds, Distant Traffic, Rustling Leaves
Is the same instrument and calibrator being used	Yes
as previously noted?	
Are the meteorological conditions the same as	Yes
previously noted?	

Description / Photos

Site Photos

Photo

Monitoring	
Record #	2
Site ID	ST2
Site Location Lat/Long	33.242895, -117.264378
Begin (Time)	10:15:00
End (Time)	10:30:00
Leq	45.4
Lmax	60.7
Lmin	35.4
Other Lx?	L90, L50, L10
L90	36
L50	37.5
L10	42.2
Other Lx (Specify Metric)	L
Primary Noise Source	Traffic
Other Noise Sources (Background)	Birds, Distant Conversations / Yelling, Distant Traffic, Rustling Leaves
Is the same instrument and calibrator being used	Yes
as previously noted?	
Are the meteorological conditions the same as	Yes
previously noted?	

ENDER RMS FIELD DATA REPORT

Description / Photos

Site Photos

Photo

Monitoring	
Record #	3
Site ID	S73
Site Location Lat/Long	33.243952, -117.261471
Begin (Time)	10:45:00
End (Time)	11:00:00
Leq	50.5
Lmax	64.3
Lmin	36.8
Other Lx?	L90, L50, L10
L90	39.8
L50	46.2
L10	52.9
Other Lx (Specify Metric)	L
Primary Noise Source	Traffic
Other Noise Sources (Background)	Birds, Distant Gardener / Landscape Noise, Distant Traffic
Is the same instrument and calibrator being used	Yes
as previously noted?	
Are the meteorological conditions the same as	Yes
previously noted?	

ENDER RMS FIELD DATA REPORT

and the

Description / Photos

Site Photos

Photo

Appendix B

Construction Noise Modeling Input and Output

Construction Activity	Equipment	Total Al Equipment Qty FH	Refs UF % (from Lmax WA RCNM) from R	eren ce (@ 50 ft.) FHWA CNM	Client Equipment Description, Data Source and/or Notes	Source to NSF Distance (ft.)	Temporary Barrier Insertion Loss (dB)	Additional Noise Reduction	Distance- Adjusted Lmar	Allowable Operation Tim (hours)	Allowable e Operation Time (minutes)	Predicted 8- hour Leq	Source Elevation (Receiver (ft) Elevation (ft	Barrier) Height (ft)	Source t Barr. ("A" Horiz. (ft	o Rovr. to Barr. ") ("B") Horiz. (1) (ft)	Source to Rovr. (*C*) Horiz. (ft)	"A" (tt	"B" (ft	"C"	(ft) Pat Dif	i Length Ab	sarr (dB) IL	barr (dB)	Notes
Site Prep	Dozer	1	40	82		4	D 0.4	4	83.	5 1.	5 90) 72		5	5	0	35 5	5 4	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	Backhoe	1	40	78		4	D 0.4	4	79.	5 1.	5 90	68		5	5	0	35 5	5 41	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
									Total for	Site Prep Phase	e -	73.7														
Grading	excavator	1	40	81		4	0.4	4	82	5 1.	5 90	71		5	5	0	35 5	5 4) 3	5.4	7.1	40.0	0.00	0.1	0.4	
	grader	1	40	85		4	0.4	4	86.	5 1.	5 90) 75		5	5	0	35 5	5 41	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	dozer	1	40	82		4	0.4	4	83.	5 1.	5 90	72		5	5	0	35 5	5 41) 3	5.4	7.1	40.0	0.00	0.1	0.4	
	scraper	1	40	84		4	D 0.4	4	85.	5 1.	5 90	74		5	5	0	35 5	5 4	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	backhoe	1	40	78		4	D 0.4	4	79.	5 1.	5 90	68		5	5	0	35 5	5 4) 3	5.4	7.1	40.0	0.00	0.1	0.4	
									Total for	Grading Phase	c	79.9														
Paving	paver	1	50	77		4	0.4	4	78.	5 1.	5 90	68		5	5	0	35 5	5 41	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	roller	1	20	80		4	0.4	4	81.	5 1.	5 90	67		5	5	0	35 5	4) 3	5.4	7.1	40.0	0.00	0.1	0.4	
									Total fi	r Paving Phase	e e	70.8														
Building Construction	crane	1	16	81		4	0.4	4	82	5 1.	5 90	67		5	5	0	35 5	4) 3	5.4	7.1	40.0	0.00	0.1	0.4	
	Man lift	1	20	75		4	D 0.4	4	76.	5 1.	5 90	62		5	5	0	35 5	4) 3	5.4	7.1	40.0	0.00	0.1	0.4	
	Generator	1	50	72		4	0.4	4	73.	5 1.	5 90	63		5	5	0	35 5	5 41	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	Backhoe	1	40	78		4	0.4	4	79.	5 1.	5 90	68		5	5	0	35 5	5 41	0 3	5.4	7.1	40.0	0.00	0.1	0.4	
	welder / torch	1	40	73		4	0.4	4	74.	5 1.	5 90	63		5	5	0	35 5	5 41) 3	5.4	7.1	40.0	0.00	0.1	0.4	
	1			-				Total	for Building Cor	struction Phase	6	72.5						-								
Architectural Coating	Compressor (Air)	1	40	78		4	D 0.4	4Total	for Architectura	i 1. I Coating Phase	5 90) 68 68.3	L	5	5	0	35 5	4) 3	5.4	7.1	40.0	0.00	0.1	0.4	

Construction Activity	Equipment	Total . Equipment Qty F	AUF % (from FHWA RCNM)	Reference Lmax @ 50 ft. from FHWA RCNM	Client Equipment Description, Data Source and/or So Notes D	ource to NSR Distance (ft.)	Temporary Barrier Insertion Loss (dB)	Additional Noise Reduction	Distance- Adjusted Lmaa	Allowable Operation Tim (hours)	Allowable e Operation Tir (minutes)	Predicted 8- ne hour Leq	Sou Elevati	urce Receiver tion (ft) Elevation (ft)	Barrier Height (ft)	Source to I Barr. ("A") Horiz. (ft)	Rovr. to Barr. 3 ("B") Horiz. F (ft)	Source to Rovr. (*C*) Horiz. (ft)	"A" (ff)	"B" (ft)	"C" (ft)	Path Length Diff. "P" (ft)	barr (dB) I	Lbarr (dB)	Notes
Site Prep	Dozer	3	40	8		200	0.0		66.1		6 3	60 66	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	Backhoe	4	40	71		200	0.0		62.1		6 3	60 63	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
									Total for \$	Site Prep Phase	£	67.4													
Grading	excavator	2	40	8		200	0.0		65.1		6 3	60 63	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	grader	1	40	8		200	0.0		69.1		6 3	60 64		5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	dozer	1	40	8		200	0.0		66.1		6 3	60 61		5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	scraper	2	40	8		200	0.0		68.1		6 3	60 66	5	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	backhoe	2	40	71	8	200	0.0		62.1		6 3	60 60)	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
									Total for	Grading Phase	5 C	70.1													
Paving	paver	2	50	7		200	0.0		61.1		B 4	80 61		5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	roller	2	20	8		200	0.0		64.1		B 4	80 60)	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
									Total fo	r Paving Phase	£	63.6	3												
Building Construction	crane	1	16	8		200	0.0		65.1		8 4	80 57	7	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	Man lift	3	20	75		200	0.0		59.1		B 4	80 57	7	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	Generator	1	50	73		200	0.0		56.1		B 4	80 53	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	Backhoe	3	40	71		200	0.0		62.1		8 4	80 63	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	welder / torch	1	40	75		200	0.0		57.1		B 4	80 53	3	5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	
	·							Total	or Building Con	struction Phase	c.	65.2	2		•										
Architectural Coating	Compressor (Air)	1	40	71		200	0.0	Total	62. for Architectura	Coating Phase	B 4	80 58 58.1		5 5	0	195	5	200	195.1	7.1	200.0	0.00	0.1	0.0	

Equipment Description	Impact Device?	Acoustical Use Factor (%)	Lesser of or available Lmax	Spec. 721 Lmax	Measured L _{max} @50ft (dBA, slow)
All Other Equipment > 5 HP	No	50	85	85	N/A
Auger Drill Rig	No	20	84	85	84
Backhoe	No	40	78	80	78
Phase 1					
Demolition	concrete	20	80	80	N/A
Riasting	excavalor	N/A	94	94	N/A
Boring Jack Power Unit	dozer	50	80	80	83
Chain Saw	No	20	84	85	84
Site Prep	dozer	20	87	93	87
Compactor (ground)	backhoe	20	80	80	83
Concrete Batch Plant	No	15	83	83	N/A
Concrete Mixer Truck	No	40	79	85	79
Grading	excavator	20	81	82	81
Concrete Saw	grader	20	90	90	90
Doter	ecroner	40	82	85	82
Drill Bin Tnuck	hackhoe	20	79	84	79
Drum Mixer	No	50	80	80	80
Paving	paver	40	76	84	76
Excavator	roller	40	81	85	81
Generator	No	50	72	72	81
Generator (<25KVA, VMS signs)	No	50	70	70	73
Phase 2	+				
Building Construction	crane	20	08	80	N(A
Blasting Radios lask Davior Liet	Man Int	- N/A	94	94	NIA
Boring Jack Power Unit Roring Jack Power Linit	Bakhoe	50	80	80	83
Chain Saw	No	20	84	85	84
Architectural Coating	Yes	20	87	93	87
Compactor (ground)	No	20	80	80	83
Compressor (air)	No	40	78	80	78
Concrete Batch Plant	No	15	83	83	N/A
Phase 3					
Building Construction	No	20	80	80	N/A
Blasting	Yes	N/A	94	94	N/A
Boring Jack Power Unit Chain Saw	No	20	84	85	84
Architectural Costion	Yes	20	87	93	87
Compactor (ground)	No	20	80	80	83
Compressor (air)	No	40	78	80	78
Concrete Batch Plant	No	15	83	83	N/A
Concrete Mixer Truck	No	40	79	85	79
Grader	No	40	85	85	N/A
Grapple (on backhoe)	No	40	85	85	87
Horizoniai Boring Hydr. Jack	ND	20	00	00	02 M/A
moert Rie Driver	Vae	10	95	95	101
Jackhammer	Yes	20	85	85	89
Man Lift	No	20	75	85	75
Mounted Impact Hammer (hoe ram)	Yes	20	90	90	90
Pavement Scarafier	No	20	85	85	90
Paver	No	50	77	85	77
Pickup Truck	No	40	55	55	75
Pneumatic Tools	No	50	85	85	85
Pumps	No	50	11	//	81
Duit Busterichinging our	Vae	20	70	85	70
Rock Drill	No	20	81	85	81
Roller	No	20	80	85	80
Sand Blasting (Single Nozzle)	No	20	85	85	96
Scraper	No	40	84	85	84
Shears (on backhoe)	No	40	85	85	96
Slurry Plant	No	100	78	78	78
Slurry Trenching Machine	No	50	80	82	80
Son Mix Linii Kâğ	NO	50	80	80	N/A
Iractor	No	40	84	84	N/A
Vacuum ExceVator (Vac-truck)	ND	40	00 80	80	82
Ventilation Fan	No	100	79	85	79
Vibrating Hopper	No	50	85	85	87
Vibratory Concrete Mixer	No	20	80	80	80
Vibratory Pile Driver	No	20	95	95	101
Warning Horn	No	5	83	85	83
Welder / Torch	No	40	73	73	74

Appendix C

Traffic Noise Modeling Input and Output

INPUT: ROADWAYS

Dudek					14 Decembe	r 2022					
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement type	e shall be i	used unles	S
PROJECT/CONTRACT:	Guajome	Lake RD					a State hi	ghway agenc	y substant	iates the u	se
RUN:	Guajome	Lake					of a differ	ent type with	the approv	val of FHW	Α
Roadway		Points		<u>.</u>			1		_	_	
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				x	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Guajome Lake Road-2-2	30.0	point68	68	6,252,119.0	2,033,244.4	0.00				Average	
		point11	11	6,252,104.5	2,033,261.5	0.00				Average	
		point12	12	6,252,066.5	2,033,271.0	0.00				Average	
		point13	13	6,252,014.5	2,033,279.0	0.00				Average	
		point14	14	6,251,934.5	2,033,296.4	0.00				Average	
		point15	15	6,251,889.5	2,033,309.1	0.00				Average	
		point16	16	6,251,831.5	2,033,324.5	0.00				Average	
		point17	17	6,251,773.0	2,033,347.8	0.00				Average	
		point18	18	6,251,718.0	2,033,388.0	0.00				Average	
		point19	19	6,251,680.0	2,033,429.6	0.00				Average	
		point20	20	6,251,620.5	2,033,465.4	0.00				Average	
		point21	21	6,251,582.5	2,033,481.5	0.00				Average	
		point22	22	6,251,506.5	2,033,497.1	0.00				Average	
		point23	23	6,251,453.0	2,033,501.2	0.00				Average	
		point24	24	6,251,380.0	2,033,525.8	0.00				Average	
		point25	25	6,251,310.5	2,033,567.9	0.00				Average	
		point26	26	6,251,224.0	2,033,626.9	0.00				Average	
		point27	27	6,251,135.0	2,033,685.0	0.00				Average	
		point28	28	6,251,054.0	2,033,737.0	0.00				Average	
		point29	29	6,250,964.0	2,033,800.1	0.00				Average	
		point30	30	6,250,920.0	2,033,851.5	0.00				Average	
		point31	31	6,250,884.5	2,033,913.2	0.00				Average	
		point32	32	6,250,837.5	2,033,995.8	0.00				Average	
		point33	33	6,250,809.0	2,034,047.0	0.00				Average	
		point34	34	6,250,777.5	2,034,079.1	0.00				Average	

INPUT: ROADWAYS				Guajo	ome Lake RD
	point35 35	6,250,736.0	2,034,095.9	0.00	Average
	point36 36	6,250,647.0	2,034,096.2	0.00	Average
	point37 37	6,250,552.0	2,034,093.1	0.00	Average
	point38 38	6,250,461.0	2,034,091.6	0.00	Average
	point39 39	6,250,362.0	2,034,084.9	0.00	Average
	point40 40	6,250,315.5	2,034,092.8	0.00	Average
	point41 41	6,250,273.5	2,034,113.8	0.00	Average
	point42 42	6,250,234.5	2,034,140.4	0.00	Average
	point43 43	6,250,190.5	2,034,160.6	0.00	Average
	point44 44	6,250,126.5	2,034,180.2	0.00	Average
	point45 45	6,250,055.0	2,034,206.1	0.00	Average
	point46 46	6,250,027.5	2,034,228.1	0.00	Average
	point47 47	6,250,007.5	2,034,258.5	0.00	Average
	point48 48	6,249,994.0	2,034,328.8	0.00	Average
	point49 49	6,249,981.5	2,034,388.6	0.00	Average
	point50 50	6,249,971.5	2,034,434.2	0.00	

INPUT: TRAFFIC FOR LAeq1h Volumes					G	uajome l	_ake RI	D	i.				
Dudek				14 Dec	ember 2	2022							
СВ				TNM 2	.5								
INPUT: TRAFFIC FOR LAeg1h Volumes													
PROJECT/CONTRACT:	Guajome Lake	RD	1		1								
RUN:	Guajome Lake)											
Roadway	Points	-											
Name	Name	No.	Segmer	t									
			Autos		MTruck	S	HTrucks	5	Buses	_!	Motorcy	ycles	
			V	S	v	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	
Guajome Lake Road-2-2	point68	68	8 72	25	1	l 25	0	0	0	0	()	0
	point11	11	72	25	1	l 25	0	0	0	0	()	0
	point12	12	2 72	25	1	l 25	0	0	0	0	()	0
	point13	13	8 72	25	1	l 25	0	0	0	0	()	0
	point14	14	72	25	1	l 25	0	0	0	0	()	0
	point15	15	5 72	25	1	l 25	0	0	0	0	()	0
	point16	16	6 72	25	1	l 25	0	0	0	0	()	0
	point17	17	72 72	25	1	l 25	0	0	0	0	()	0
	point18	18	8 72	25	1	l 25	0	0	0	0	()	0
	point19	19	72	25	1	l 25	0	0	0	0	(נ	0
	point20	20	72	25	1	l 25	0	0	0	0	(נ	0
	point21	21	72	25	1	l 25	0	0	0	0	()	0
	point22	22	2 72	25	1	l 25	0	0	0	0	()	0
	point23	23	8 72	25	1	l 25	0	0	0	0	()	0
	point24	24	72	25	1	l 25	0	0	0	0 0	()	0
	point25	25	5 72	25	1	l 25	0	0	0	0 0	()	0
	point26	26	6 72	25	1	l 25	0	0	0	0 0	()	0
	point27	27	72 72	25	1	l 25	0	0	0	0 0	()	0
	point28	28	8 72	25	1	l 25	0	0	0	0 0	()	0
	point29	29	72	25	1	25	0	0	0	0	()	0
	point30	30	72	25	1	25	0	0	0	0	()	0
	point31	31	72	25	1	25	0	0	0	0	()	0
	point32	32	2 72	25	1	l 25	0	0	0	0	()	0

INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome L	.ake RD)			
	point33	33	72	25	1	25	0	0	0	0	0	0
	point34	34	72	25	1	25	0	0	0	0	0	0
	point35	35	72	25	1	25	0	0	0	0	0	0
	point36	36	72	25	1	25	0	0	0	0	0	0
	point37	37	72	25	1	25	0	0	0	0	0	0
	point38	38	72	25	1	25	0	0	0	0	0	0
	point39	39	72	25	1	25	0	0	0	0	0	0
	point40	40	72	25	1	25	0	0	0	0	0	0
	point41	41	72	25	1	25	0	0	0	0	0	0
	point42	42	72	25	1	25	0	0	0	0	0	0
	point43	43	72	25	1	25	0	0	0	0	0	0
	point44	44	72	25	1	25	0	0	0	0	0	0
	point45	45	72	25	1	25	0	0	0	0	0	0
	point46	46	72	25	1	25	0	0	0	0	0	0
	point47	47	72	25	1	25	0	0	0	0	0	0
	point48	48	72	25	1	25	0	0	0	0	0	0
	point49	49	72	25	1	25	0	0	0	0	0	0
	point50	50										

INPUT: RECEIVERS								Guajome	Lake RD		
Dudek						14 Decem	ber 2022				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Guajo	me Lal	ke RD		1						
RUN:	Guajo	me Lal	ke								
Receiver											-
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
		Ì	X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
ST1	1	1	6,250,929.0	2,034,079.9	10.00	4.92	41.20	66	10.0	8.0	Y
ST2	2	1	6,251,532.0	2,033,548.4	20.00	4.92	45.40	66	10.0	8.0	Y
OS-1	5	1	6,251,204.0	2,033,987.0	20.00	4.92	0.00	66	10.0	8.0	Y

INPUT: BARRIERS

Dudek					14 Dec	ember 2	022											
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Guajo	me Lake	RD															
RUN:	Guajo	me Lake	•															
Barrier			-			-			Points							_		
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segment			
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			x	Y	Z	at	Seg Ht Per	turbs	On	Important
	Ì	1		Unit	Unit	Width		Unit					1	Point	Incre- #Up	#Dn	Struct?	Reflec-
	Ì	1		Area	Vol.	ĺ		Length					1		ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier1	W	0.00	99.99	0.00		Ì		0.00	point1	1	6,250,962.5	2,033,920.2	0.00	0.00	0.00	0 C)	
									point2	2	6,251,019.5	2,033,949.1	0.00	0.00	0.00	0 C)	
									point3	3	6,251,009.0	2,033,965.8	0.00	0.00	0.00	o c)	
									point4	4	6,250,977.5	2,033,951.0	0.00	0.00	0.00	0 C)	
									point5	5	6,250,974.0	2,033,953.9	0.00	0.00	0.00	0 0)	
									point6	6	6,250,956.0	2,033,945.1	0.00	0.00	0.00	0 0)	
									point7	7	6,250,960.5	2,033,934.2	0.00	0.00	0.00	0 0)	
									point8	8	6,250,957.0	2,033,930.8	0.00	0.00	0.00	0 0)	
									point9	9	6,250,962.5	2,033,920.2	0.00	0.00				
Barrier2	W	0.00	99.99	0.00	1			0.00	point10	10	6,250,985.0	2,033,881.2	0.00	0.00	0.00	0 0)	
									point11	11	6,251,037.0	2,033,908.0	0.00	0.00	0.00	0 0)	
									point12	12	6,251,038.5	2,033,903.4	0.00	0.00	0.00	0 0)	
									point13	13	6,251,043.5	2,033,908.4	0.00	0.00	0.00	0 0)	
									point14	14	6,251,053.0	2,033,890.2	0.00	0.00	0.00	0 0)	
									point15	15	6,250,999.5	2,033,860.2	0.00	0.00	0.00	0 0)	
									point16	16	6,250,995.5	2,033,871.1	0.00	0.00	0.00	0 0)	
									point17	17	6,250,990.5	2,033,868.6	0.00	0.00	0.00	0 0)	
									point18	18	6,250,985.0	2,033,881.2	0.00	0.00				
Barrier3	W	0.00	99.99	0.00				0.00	point19	19	6,251,074.0	2,033,794.8	0.00	0.00	0.00	0 0)	
									point20	20	6,251,108.0	2,033,845.4	0.00	0.00	0.00	0 0)	
									point21	21	6,251,085.5	2,033,856.9	0.00	0.00	0.00	0 0)	
									point22	22	6,251,056.5	2,033,815.4	0.00	0.00	0.00	0 0)	
									point23	23	6,251,066.5	2,033,808.5	0.00	0.00	0.00	0 0)	
									point24	24	6,251,062.5	2,033,801.5	0.00	0.00	0.00	0 0)	
									point25	25	6,251,074.0	2,033,794.8	0.00	0.00				
Barrier4	W	0.00	99.99	0.00				0.00	point26	26	6,251,245.0	2,033,680.9	0.00	0.00	0.00	0 0)	
									point27	27	6,251,276.5	2,033,727.6	0.00	0.00	0.00	0 0	0	<u> </u>
									point28	28	6,251,253.0	2,033,738.2	0.00	0.00	0.00	0 0	0	<u> </u>
									point29	29	6,251,221.0	2,033,691.9	0.00	0.00	0.00	0 0		
									point30	30	6,251,232.5	2,033,683.9	0.00	0.00	0.00	0 0	1	<u> </u>
									point31	31	6,251,236.5	2,033,686.6	0.00	0.00	0.00)	
									point32	32	6,251,245.0	2,033,680.9	0.00	0.00				

RESULTS: SOUND LEVELS								Guajome I	ake RD		(
Dudek								14 Decem	ber 2022					
СВ								TNM 2.5						
								Calculate	d with TN	M 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Guajon	ne Lake RD)										
RUN:		Guajon	ne Lake											
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unless	3	
									a State h	ighway agend	y substantiat	es the us	se	
ATMOSPHERICS:		68 deg	F, 50% RH	l					of a diffe	erent type with	approval of F	HWA.		
Receiver														
Name	No.	#DUs	Existing	No Barrier	_					With Barrie	r			
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Redu	ction		
			-	Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Cal	culated
								Sub'l Inc					min	ius
								1	1				Goa	al
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
ST1	1	1 1	41.2	43.4	1	66	2.2	2 10		43.4	4 0.0)	8	-8.0
ST2	2	2 1	45.4	47.8	3	66	2.4	10		47.	8 0.0)	8	-8.0
OS-1	5	5 1	0.0	36.1	1	66	36.1	10		36.	1 0.0)	8	-8.0
Dwelling Units		# DUs	Noise Re	duction										
-			Min	Avg	Max									
			dB	dB	dB									
All Selected		3	0.0	0.0)	0.0								
All Impacted		0	0.0	0.0)	0.0								
All that meet NR Goal		0	0.0	0.0)	0.0								

INPUT: ROADWAYS

Dudek					14 Decembe	er 2022					
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Guajome	Lake RD					a State h	ighway agend	cy substant	iates the u	se
RUN:	Guajome	Lake					of a diffe	erent type with	the approv	al of FHW	A
Roadway		Points								-	
Name	Width	Name	No.	Coordinates	(pavement)		Flow Co	ntrol		Segment	
				x	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Guajome Lake Road-2	30.0	point67	67	6,252,122.5	2,033,217.	0.0	0			Average	
		point10	10	6,252,119.0	2,033,244.4	4 0.0	0			Average	
		point11	11	6,252,104.5	2,033,261.	5 0.0	0			Average	
		point12	12	6,252,066.5	2,033,271.	0.0	0			Average	
		point13	13	6,252,014.5	2,033,279.	0.0	0			Average	
		point14	14	6,251,934.5	2,033,296.4	4 0.0	0			Average	
		point15	15	6,251,889.5	2,033,309.	1 0.0	0			Average	
		point16	16	6,251,831.5	2,033,324.	5 0.0	0			Average	
		point17	17	6,251,773.0	2,033,347.8	8 0.0	0			Average	
		point18	18	6,251,718.0	2,033,388.	0.0	0			Average	
		point19	19	6,251,680.0	2,033,429.	6 0.0	0			Average	
		point20	20	6,251,620.5	2,033,465.4	4 0.0	0			Average	
		point21	21	6,251,582.5	2,033,481.	5 0.0	0			Average	
		point22	22	6,251,506.5	2,033,497.	1 0.0	0			Average	
		point23	23	6,251,453.0	2,033,501.2	2 0.0	0			Average	
		point24	24	6,251,380.0	2,033,525.	8 0.0	0			Average	
		point25	25	6,251,310.5	2,033,567.	9 0.0	0			Average	
		point26	26	6,251,224.0	2,033,626.	9 0.0	0			Average	
		point27	27	6,251,135.0	2,033,685.	0.0	0			Average	
		point28	28	6,251,054.0	2,033,737.	0.0	0			Average	
		point29	29	6,250,964.0	2,033,800.	1 0.0	0			Average	
		point30	30	6,250,920.0	2,033,851.	5 0.0	0			Average	
		point31	31	6,250,884.5	2,033,913.2	2 0.0	0			Average	
		point32	32	6,250,837.5	2,033,995.8	8 0.0	0			Average	
		point33	33	6,250,809.0	2,034,047.	0.0	0			Average	

INPUT: ROADWAYS				Guajo	ome Lake RD	
	point34 34	6,250,777.5	2,034,079.1	0.00	Average	
	point35 35	6,250,736.0	2,034,095.9	0.00	Average	
	point36 36	6,250,647.0	2,034,096.2	0.00	Average	
	point37 37	6,250,552.0	2,034,093.1	0.00	Average	
	point38 38	6,250,461.0	2,034,091.6	0.00	Average	
	point39 39	6,250,362.0	2,034,084.9	0.00	Average	
	point40 40	6,250,315.5	2,034,092.8	0.00	Average	
	point41 41	6,250,273.5	2,034,113.8	0.00	Average	
	point42 42	6,250,234.5	2,034,140.4	0.00	Average	
	point43 43	6,250,190.5	2,034,160.6	0.00	Average	
	point44 44	6,250,126.5	2,034,180.2	0.00	Average	
	point45 45	6,250,055.0	2,034,206.1	0.00	Average	
	point46 46	6,250,027.5	2,034,228.1	0.00	Average	
	point47 47	6,250,007.5	2,034,258.5	0.00	Average	
	point48 48	6,249,994.0	2,034,328.8	0.00	Average	
	point49 49	6,249,981.5	2,034,388.6	0.00	Average	
	point50 50	6,249,971.5	2,034,434.2	0.00		

INPUT: TRAFFIC FOR LAeq1h Volumes	-0				G	uajome	Lake R	D					
Dudek				14 Dec	ember 2	2022							
СВ				TNM 2	.5								
INPUT: TRAFFIC FOR LAeg1h Volumes													
PROJECT/CONTRACT:	Guajome Lake	RD	1		1								
RUN:	Guajome Lake	•											
Roadway	Points		1	_		_						_	
Name	Name	No.	Segmer	nt	-								
			Autos		MTruck	S	HTrucks	\$	Buses		Motorc	ycles	\$
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mp	h
Guajome Lake Road-2	point67	67	/ 113	3 25	2	2 25	0	0	0	0	1	0	0
	point10	10	113	3 25		2 25	0	0	0	0	(0	0
	point11	11	113	3 25	2	2 25	0	0	0	0	(0	0
	point12	12	2 113	3 25	2	2 25	0	0	0	0	(0	0
	point13	13	113	8 25		2 25	0	0	0	0	. (0	0
	point14	14	113	8 25		2 25	0	0	0	0	. (0	0
	point15	15	6 113	8 25	2	2 25	0	0	0	0	. (0	0
	point16	16	5 113	8 25	2	2 25	0	0	0	0		0	0
	point17	17	113	8 25		2 25	0	0	0	0		0	0
	point18	18	113	8 25		2 25	0	0	0	0		0	0
	point19	19	113	3 25		2 25	0	0	0	0		0	0
	point20	20	113	3 25	2	2 25	0	0	0	0		0	0
	point21	21	113	3 25	2	2 25	0	0	0	0		0	0
	point22	22	2 113	3 25	2	2 25	0	0	0	0		0	0
	point23	23	113	3 25	2	2 25	0	0	0	0		0	0
	point24	24	113	3 25	2	2 25	0	0	0	0		0	0
	point25	25	5 113	3 25	2	2 25	0	0	0	0		0	0
	point26	26	5 113	3 25	2	2 25	0	0	0	0		0	0
	point27	27	113	8 25	2	2 25	0	0	0	0		0	0
	point28	28	113	3 25		2 25	0	0	0	0		0	0
	point29	29	113	3 25		2 25	0	0	0	0		0	0
	point30	30	113	3 25		2 25	0	0	0	0		0	0
	point31	31	113	8 25	2	2 25	0	0	0	0	(0	0

INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome L	ake RD)			
	point32	32	113	25	2	25	0	0	0	0	0	0
	point33	33	113	25	2	25	0	0	0	0	0	0
	point34	34	113	25	2	25	0	0	0	0	0	0
	point35	35	113	25	2	25	0	0	0	0	0	0
	point36	36	113	25	2	25	0	0	0	0	0	0
	point37	37	113	25	2	25	0	0	0	0	0	0
	point38	38	113	25	2	25	0	0	0	0	0	0
	point39	39	113	25	2	25	0	0	0	0	0	0
	point40	40	113	25	2	25	0	0	0	0	0	0
	point41	41	113	25	2	25	0	0	0	0	0	0
	point42	42	113	25	2	25	0	0	0	0	0	0
	point43	43	113	25	2	25	0	0	0	0	0	0
	point44	44	113	25	2	25	0	0	0	0	0	0
	point45	45	113	25	2	25	0	0	0	0	0	0
	point46	46	113	25	2	25	0	0	0	0	0	0
	point47	47	113	25	2	25	0	0	0	0	0	0
	point48	48	113	25	2	25	0	0	0	0	0	0
	point49	49	113	25	2	25	0	0	0	0	0	0
	point50	50										

INPUT: RECEIVERS								Guajome	Lake RD		
Dudek						14 Decem	ber 2022				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Guajo	ome La	ke RD		1						
RUN:	Guajo	ome La	ke								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
ST1		1 1	6,250,929.0	2,034,079.9	10.00) 4.92	41.20	66	10.0	8.0	Y
OS-1		5 1	6,251,204.0	2,033,987.0	20.00	4.92	0.00	66	10.0	8.0	Y
ST2		7 1	6,251,532.0	2,033,548.4	20.00	4.92	.0.00	66	10.0	8.0	Y

INPUT: BARRIERS

										-						-	-		·
Dudek					14 Dec	ember 2	022												
СВ					TNM 2.	5													
INPUT: BARRIERS																			
PROJECT/CONTRACT:	Guajo	me Lake	e RD																
RUN:	Guajo	me Lake	е																
Barrier									Points										
Name	Type	Heiaht		If Wall	If Berm		_	Add'tnl	Name	No.	Coordinates	(bottom)		Heiaht	Seam	ent			
	1	Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			x	Ŷ	Z	at	Seg H	t Pert	urbs	On	Important
	1			Unit	Unit	Width		Unit						Point	Incre-	#Up	#Dn	Struct?	Reflec-
	Ì			Area	Vol.			Lenath							ment				tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft				
Barrier1	W	0.00		0.00		1		0.00	point1	1	6 250 962 5	2 033 920 9	2 8.0	20.00		0	0		
		0.00	00.00	0.00				0.00	point?	2	6 251 019 5	2 033 949	1 8.0	20.00		0	0		
									point2	3	6 251 009 0	2 033 965	8 8.0	20.00	0.00	0	0		
									pointe	4	6 250 977 5	2,000,000.	0 8.0	20.00		0	0		
									point5	5	6 250 974 0	2 033 953 9	9 8.0	20.00		0	0		
									pointo point6	6	6 250 956 0	2,000,000.	1 8.0	20.00		0	0		
									pointo point7	7	6 250 960 5	2,000,040.	2 8.0	20.00		0	0		
									point?	8	0,250,900.0	2,000,004.	8 80	20.00		0	0		
									point0	0	6 250 962 5	2,000,000.	2 8.0	20.00	0.00	- 0			
Barrier?	\M/	0.00		0.00	1			0.00	point3	10	6 250 985 0	2,000,020.	2 8.0	20.00		0	0		
Damerz	••	0.00	33.33	0.00				0.00	point10	11	6 251 037 0	2,000,001.	2 0.0	20.00		0	0		
									point12	12	6 251 038 5	2,000,000.	0 0.0	20.00		0	0		
									point12	13	6 251 043 5	2,000,000.	4 8.0	20.00		0	0		
									point13	1/	6 251 053 0	2,000,000.	2 80	20.00		0	0		
									point15	15	6 250 999 5	2,000,000.	2 8.0	20.00		0	0		
									point16	16	6 250 995 5	2,033,000.	1 8.0	20.00		0	0		
									point17	17	6 250 990 5	2,000,071.	6 8.0	20.00		0	0		
									point18	18	6 250 985 0	2,000,000.	2 8.0	20.00	0.00				
Barrier3	W	0.00		0.00	1			0.00	point19	19	6 251 074 0	2 033 794	8 8.0	20.00		0	0		
		0.00	00.00	0.00				0.00	point20	20	6 251 108 0	2 033 845	4 8.0	20.00	0.00	0	0		
									point21	21	6.251.085.5	2.033.856.9	9 8.0	20.00	0.00	0	0		
									point22	22	6.251.056.5	2.033.815.4	4 8.0	20.00	0.00	0	0		
									point23	23	6.251.066.5	2.033.808.	5 8.0	20.00	0.00	0	0		
									point24	24	6.251.062.5	2.033.801.	5 8.0	20.00	0.00	0	0		
									point25	25	6.251.074.0	2.033.794.8	8 8.0	20.00)		-		
Barrier4	W	0.00	99.99	0.00)			0.00	point26	26	6.251.245.0	2.033.680.9	9 8.0	20.00	0.00	0	0		
						1			point27	27	6,251,276.5	2,033,727.0	6 8.0	20.00	0.00	0	0		
			1						point28	28	6,251.253.0	2,033.738	2 8.0	20.00	0.00	0	0		
		-	1			1			point29	29	6,251,221.0	2,033,691.9	9 8.0	20.00	0.00	0	0		
			1			1	-	1	point30	30	6,251.232.5	2,033.683.9	9 8.0	20.00	0.00	0	0		
			1					1	point31	31	6,251,236.5	2,033,686.0	6 8.0	20.00	0.00	0	0		
			1			1			point32	32	6,251,245.0	2,033,680.9	9 8.0	20.00					
	1	1	1	1	1	1	1	1	UL 7				-	1	1	1	1	1	L

RESULTS: SOUND LEVELS	(ï	ì			Guajome I	_ake RD	í.	(1		
Dudek							14 Decem	ber 2022					
СВ							TNM 2.5						
							Calculate	d with TN	M 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		Guajon	ne Lake RD	1									
RUN:		Guajon	ne Lake										
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement typ	e shall be use	ed unless	5	
								a State h	ighway agend	y substantiat	es the us	se	
ATMOSPHERICS:		68 deg	F, 50% RH	l				of a diffe	erent type with	approval of F	HWA.		
Receiver								1					
Name	No.	#DUs	Existing	No Barrier	_				With Barrie	r			
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcı	ulated
							Sub'l Inc					minu	S
								1				Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
ST1	1	1	41.2	45.2	2	66 4.0	0 10)	45.2	2 0.0)	8	-8.0
OS-1	5	5 1	0.0	37.0)	66 37.0) 10)	37.	0.0)	8	-8.0
ST2	7	7 1	0.0	49.9)	66 49.9	9 10)	49.9	9 0.0)	8	-8.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		3	0.0	0.0)	0.0							
All Impacted		0	0.0	0.0)	0.0							
All that meet NR Goal		0	0.0	0.0)	0.0							

INPUT: ROADWAYS

Dudek					14 Decembe	r 2022							
СВ					TNM 2.5								
INPUT: ROADWAYS							Average p	pavement type	e shall be i	used unles	S		
PROJECT/CONTRACT:	Guajome	Lake RD					a State hi	ghway agenc	y substant	iates the u	se		
RUN:	Lake					of a different type with the approval of FHWA							
Roadway		Points								_			
Name	Width	Name	No.	Coordinates	(pavement)		Flow Control						
				x	Y	Z	Control	Speed	Percent	Pvmt	On		
							Device	Constraint	Vehicles	Туре	Struct?		
									Affected				
	ft			ft	ft	ft		mph	%				
Guajome Lake Road-2	30.0	point67	67	6,252,122.5	2,033,217.0	0.00				Average			
		point10	10	6,252,119.0	2,033,244.4	0.00				Average			
		point11	11	6,252,104.5	2,033,261.5	0.00				Average			
		point12	12	6,252,066.5	2,033,271.0	0.00				Average			
		point13	13	6,252,014.5	2,033,279.0	0.00				Average			
		point14	14	6,251,934.5	2,033,296.4	0.00				Average			
		point15	15	6,251,889.5	2,033,309.1	0.00				Average			
		point16	16	6,251,831.5	2,033,324.5	0.00				Average			
		point17	17	6,251,773.0	2,033,347.8	0.00				Average			
		point18	18	6,251,718.0	2,033,388.0	0.00				Average			
		point19	19	6,251,680.0	2,033,429.6	0.00				Average			
		point20	20	6,251,620.5	2,033,465.4	0.00				Average			
		point21	21	6,251,582.5	2,033,481.5	0.00				Average			
		point22	22	6,251,506.5	2,033,497.1	0.00				Average			
		point23	23	6,251,453.0	2,033,501.2	0.00				Average			
		point24	24	6,251,380.0	2,033,525.8	0.00				Average			
		point25	25	6,251,310.5	2,033,567.9	0.00				Average			
		point26	26	6,251,224.0	2,033,626.9	0.00				Average			
		point27	27	6,251,135.0	2,033,685.0	0.00				Average			
		point28	28	6,251,054.0	2,033,737.0	0.00				Average			
		point29	29	6,250,964.0	2,033,800.1	0.00				Average			
		point30	30	6,250,920.0	2,033,851.5	0.00				Average			
		point31	31	6,250,884.5	2,033,913.2	0.00				Average			
		point32	32	6,250,837.5	2,033,995.8	0.00				Average			
		point33	33	6,250,809.0	2,034,047.0	0.00				Average			

INPUT: ROADWAYS					Guajome Lake RD	
	point34	34	6,250,777.5	2,034,079.1	0.00	Average
	point35	35	6,250,736.0	2,034,095.9	0.00	Average
	point36	36	6,250,647.0	2,034,096.2	0.00	Average
	point37	37	6,250,552.0	2,034,093.1	0.00	Average
	point38	38	6,250,461.0	2,034,091.6	0.00	Average
	point39	39	6,250,362.0	2,034,084.9	0.00	Average
	point40	40	6,250,315.5	2,034,092.8	0.00	Average
	point41	41	6,250,273.5	2,034,113.8	0.00	Average
	point42	42	6,250,234.5	2,034,140.4	0.00	Average
	point43	43	6,250,190.5	2,034,160.6	0.00	Average
	point44	44	6,250,126.5	2,034,180.2	0.00	Average
	point45	45	6,250,055.0	2,034,206.1	0.00	Average
	point46	46	6,250,027.5	2,034,228.1	0.00	Average
	point47	47	6,250,007.5	2,034,258.5	0.00	Average
	point48	48	6,249,994.0	2,034,328.8	0.00	Average
	point49	49	6,249,981.5	2,034,388.6	0.00	Average
	point50	50	6,249,971.5	2,034,434.2	0.00	

INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome l	Lake R	D				
Dudek				14 Dec	ember 2	2022							
СВ				TNM 2	.5								
INPUT: TRAFFIC FOR LAea1h Volumes													
PROJECT/CONTRACT:	Guaiome Lake	e RD	1		1								
RUN:	Guajome Lake	9											
Roadway	Points	-		-		_						_	
Name	Name	No.	Segmen	nt	J			-		-		_	
			Autos		MTruck	s	HTrucks	5	Buses	-	Motorc	ycles	-
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	1
Guajome Lake Road-2	point67	67	72	25	1	25	0	0	0	0	(0	0
	point10	10	72	25	1	25	0	0	0	0	(0	0
	point11	11	72	25	1	25	0	0	0	0	(D	0
	point12	12	72	25	1	25	0	0	0	0	(C	0
	point13	13	72	25	1	25	0	0	0	0	(0	0
	point14	14	72	25	1	25	0	0	0	0	(0	0
	point15	15	72	25	1	25	0	0	0	0	(D	0
	point16	16	72	25	1	25	0	0	0	0	(C	0
	point17	17	72	25	1	25	0	0	0	0	(C	0
	point18	18	72	25	1	25	0	0	0	0	(C	0
	point19	19	72	25	1	25	0	0	0	0	(C	0
	point20	20	72	25	1	25	0	0	0	0	(C	0
	point21	21	72	25	1	25	0	0	0	0	(C	0
	point22	22	72	25	1	25	0	0	0	0	(0	0
	point23	23	72	25	1	25	0	0	0	0	(C	0
	point24	24	72	25	1	25	0	0	0	0	(C	0
	point25	25	72	25	1	25	0	0	0	0	(D	0
	point26	26	72	25	1	25	0	0	0	0	(D	0
	point27	27	72	25	1	25	0	0	0	0	(0	0
	point28	28	72	25	1	25	0	0	0	0	(D	0
	point29	29	72	25	1	25	0	0	0	0	(0	0
	point30	30	72	25	1	25	0	0	0	0	(0	0
	point31	31	72	25	1	25	0	0	0	0	(J	0
INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome L	.ake RI)				
-----------------------------------	---------	----	----	----	---	----	----------	---------	---	---	---	---	
	point32	32	72	25	1	25	0	0	0	0	0	0	
	point33	33	72	25	1	25	0	0	0	0	0	0	
	point34	34	72	25	1	25	0	0	0	0	0	0	
	point35	35	72	25	1	25	0	0	0	0	0	0	
	point36	36	72	25	1	25	0	0	0	0	0	0	
	point37	37	72	25	1	25	0	0	0	0	0	0	
	point38	38	72	25	1	25	0	0	0	0	0	0	
	point39	39	72	25	1	25	0	0	0	0	0	0	
	point40	40	72	25	1	25	0	0	0	0	0	0	
	point41	41	72	25	1	25	0	0	0	0	0	0	
	point42	42	72	25	1	25	0	0	0	0	0	0	
	point43	43	72	25	1	25	0	0	0	0	0	0	
	point44	44	72	25	1	25	0	0	0	0	0	0	
	point45	45	72	25	1	25	0	0	0	0	0	0	
	point46	46	72	25	1	25	0	0	0	0	0	0	
	point47	47	72	25	1	25	0	0	0	0	0	0	
	point48	48	72	25	1	25	0	0	0	0	0	0	
	point49	49	72	25	1	25	0	0	0	0	0	0	
	point50	50											

INPUT: RECEIVERS								Guajome	Lake RD		
Dudek						14 Decem	ber 2022				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Guajo	me Lal	ke RD		1						
RUN:	Guajo	me Lal	ke								
Receiver											-
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
		Ì	X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
ST1	1	1	6,250,929.0	2,034,079.9	10.00	4.92	41.20	66	10.0	8.0	Y
ST2	2	1	6,251,532.0	2,033,548.4	20.00	4.92	45.40	66	10.0	8.0	Y
OS-1	5	1	6,251,204.0	2,033,987.0	20.00	4.92	0.00	66	10.0	8.0	Y

INPUT: BARRIERS		1			-	1	1	í.	Gua	ajome Lak	e RD	1		- i					
Dudek					14 Dece	ember 2	022												
СВ					TNM 2.	5													
INPUT: BARRIERS																			
PROJECT/CONTRACT:	Guajo	ome Lak	e RD																
RUN:	Guajo	ome Lak	е																
Barrier								_	Points										-
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segm	ent			
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			X	Y	z	at	Seg H	lt Perl	turbs	On	Important
				Unit	Unit	Width		Unit						Point	Incre-	#Up	#Dn	Struct?	Reflec-
	Ì			Area	Vol.			Length		ĺ					ment				tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft				
<< This table is empty >>	Ì							1	1	Ì			1		1			1	

RESULTS: SOUND LEVELS				Ť				Guajome I	ake RD					
Dudek								14 Decem	ber 2022					
СВ								TNM 2.5						
								Calculate	d with TNI	VI 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Guajon	ne Lake RD)										
RUN:		Guajon	ne Lake											
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unless	5	
									a State h	ighway agend	y substantiat	es the us	e	
ATMOSPHERICS:		68 deg	F, 50% RH	1					of a diffe	rent type with	approval of F	HWA.		
Receiver									1					
Name	No.	#DUs	Existing	No Barrier						With Barrie	r			
			LAeq1h	LAeq1h		ľ	Increase over	existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	0	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Cal	culated
								Sub'l Inc					min	us
													Goa	al
			dBA	dBA	dBA	(dB	dB		dBA	dB	dB	dB	-
ST1	1	1 1	41.2	43.3	3	66	2.1	10		43.3	3 0.0)	8	-8.0
ST2	2	2 1	45.4	. 47.8	3	66	2.4	10		47.8	8 0.0)	8	-8.0
OS-1	5	5 1	0.0	35.6	3	66	35.6	6 10		35.	6 0.0)	8	-8.0
Dwelling Units		# DUs	Noise Re	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		3	0.0	0.0)	0.0								
All Impacted		C	0.0	0.0)	0.0								
All that meet NR Goal		C	0.0	0.0)	0.0								

INPUT: ROADWAYS

Guajome Lake RD

Dudek					14 Decembe	er 2022					
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Guajome	Lake RD					a State h	ighway agend	cy substant	iates the u	se
RUN:	Guajome	Lake					of a diffe	erent type with	n the approv	val of FHW	۵.
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Co	ntrol		Segment	
				x	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Guajome Lake Road-2	30.0	point67	67	6,252,122.5	2,033,217.0	0.00)			Average	
		point10	10	6,252,119.0	2,033,244.4	4 0.00)			Average	
		point11	11	6,252,104.5	2,033,261.	5 0.00	כ			Average	
		point12	12	6,252,066.5	2,033,271.0	0.00)			Average	
		point13	13	6,252,014.5	2,033,279.0	0.00)			Average	
		point14	14	6,251,934.5	2,033,296.4	4 0.00)			Average	
		point15	15	6,251,889.5	2,033,309.	1 0.00)			Average	
		point16	16	6,251,831.5	2,033,324.	5 0.00)			Average	
		point17	17	6,251,773.0	2,033,347.8	8 0.00)			Average	
		point18	18	6,251,718.0	2,033,388.0	0.00)			Average	
		point19	19	6,251,680.0	2,033,429.6	6 0.00)			Average	
		point20	20	6,251,620.5	2,033,465.4	4 0.00	כ			Average	
		point21	21	6,251,582.5	2,033,481.	5 0.00	כ			Average	
		point22	22	6,251,506.5	2,033,497.1	1 0.00)			Average	
		point23	23	6,251,453.0	2,033,501.2	2 0.00)			Average	
		point24	24	6,251,380.0	2,033,525.8	8 0.00)			Average	
		point25	25	6,251,310.5	2,033,567.9	9 0.00	כ			Average	
		point26	26	6,251,224.0	2,033,626.9	9 0.00	כ			Average	
		point27	27	6,251,135.0	2,033,685.0	0.00	ס			Average	
		point28	28	6,251,054.0	2,033,737.0	0.00	<u>כ</u>			Average	
		point29	29	6,250,964.0	2,033,800.	1 0.00	כ			Average	
		point30	30	6,250,920.0	2,033,851.	5 0.00	כ			Average	
		point31	31	6,250,884.5	2,033,913.2	2 0.00	כ			Average	
		point32	32	6,250,837.5	2,033,995.8	8 0.00	0			Average	
		point33	33	6,250,809.0	2,034,047.0	0.00)			Average	

INPUT: ROADWAYS				Guajo	me Lake RD
	point34 34	6,250,777.5	2,034,079.1	0.00	Average
	point35 35	6,250,736.0	2,034,095.9	0.00	Average
	point36 36	6,250,647.0	2,034,096.2	0.00	Average
	point37 37	6,250,552.0	2,034,093.1	0.00	Average
	point38 38	6,250,461.0	2,034,091.6	0.00	Average
	point39 39	6,250,362.0	2,034,084.9	0.00	Average
	point40 40	6,250,315.5	2,034,092.8	0.00	Average
	point41 41	6,250,273.5	2,034,113.8	0.00	Average
	point42 42	6,250,234.5	2,034,140.4	0.00	Average
	point43 43	6,250,190.5	2,034,160.6	0.00	Average
	point44 44	6,250,126.5	2,034,180.2	0.00	Average
	point45 45	6,250,055.0	2,034,206.1	0.00	Average
	point46 46	6,250,027.5	2,034,228.1	0.00	Average
	point47 47	6,250,007.5	2,034,258.5	0.00	Average
	point48 48	6,249,994.0	2,034,328.8	0.00	Average
	point49 49	6,249,981.5	2,034,388.6	0.00	Average
	point50 50	6,249,971.5	2,034,434.2	0.00	

INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome	Lake RI	ס				
Dudek				14 Dec	cember 2	022							
СВ				TNM 2	.5								
INPUT: TRAFFIC FOR LAeg1h Volumes													
PROJECT/CONTRACT:	Guajome La	ake RD	1		1								
RUN:	- Guajome La	ake											
Roadway	Points					_						_	
Name	Name	No.	Segmer	nt									
			Autos		MTruck	S	HTrucks	\$	Buses	_!	Motorc	ycles	;
			V	S	V	S	v	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mpł	۱
Guajome Lake Road-2	point67	67	114	25	2	25	0	0	C	0		0	0
	point10	10	114	25	2	25	0	0	C	0	1	0	0
	point11	11	114	25	2	25	0	0	C	0	1	0	0
	point12	12	114	25	2	25	0	0	C	0		0	0
	point13	13	114	25	2	25	0	0	0	0		0	0
	point14	14	114	25	2	25	0	0	C	0		0	0
	point15	15	114	25	2	25	0	0	C	0		0	0
	point16	16	114	25	2	25	0	0	C	0		0	0
	point17	17	114	25	2	25	0	0	C	0		0	0
	point18	18	114	25	2	25	0	0	C	0		0	0
	point19	19	114	25	2	25	0	0	C	0		0	0
	point20	20	114	25	2	25	0	0	C	0 0		0	0
	point21	21	114	25	2	25	0	0	C	0 0		0	0
	point22	22	114	25	2	25	0	0	C	0		0	0
	point23	23	114	25	2	25	0	0	C	0		0	0
	point24	24	114	25	2	25	0	0	C	0		0	0
	point25	25	114	25	2	25	0	0	C	0 0		0	0
	point26	26	114	25	2	25	0	0	C	0 0		0	0
	point27	27	114	25	2	25	0	0	C	0		0	0
	point28	28	114	25	2	25	0	0	0	0		0	0
	point29	29	114	25	2	25	0	0		0		0	0
	point30	30	114	25	2	25	0	0		0		0	0
	point31	31	114	25	2	25	0	0	0	0		0	0

INPUT: TRAFFIC FOR LAeq1h Volumes						G	uajome L	.ake RI)			
	point32	32	114	25	2	25	0	0	0	0	0	0
	point33	33	114	25	2	25	0	0	0	0	0	0
	point34	34	114	25	2	25	0	0	0	0	0	0
	point35	35	114	25	2	25	0	0	0	0	0	0
	point36	36	114	25	2	25	0	0	0	0	0	0
	point37	37	114	25	2	25	0	0	0	0	0	0
	point38	38	114	25	2	25	0	0	0	0	0	0
	point39	39	114	25	2	25	0	0	0	0	0	0
	point40	40	114	25	2	25	0	0	0	0	0	0
	point41	41	114	25	2	25	0	0	0	0	0	0
	point42	42	114	25	2	25	0	0	0	0	0	0
	point43	43	114	25	2	25	0	0	0	0	0	0
	point44	44	114	25	2	25	0	0	0	0	0	0
	point45	45	114	25	2	25	0	0	0	0	0	0
	point46	46	114	25	2	25	0	0	0	0	0	0
	point47	47	114	25	2	25	0	0	0	0	0	0
	point48	48	114	25	2	25	0	0	0	0	0	0
	point49	49	114	25	2	25	0	0	0	0	0	0
	point50	50										

INPUT: RECEIVERS								Guajome	Lake RD		
Dudek						14 Decem	ber 2022				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Guajo	me Lal	ke RD		1						
RUN:	Guajo	me Lal	ke								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	#	ft	ft	dBA	dRA	dB	dB	
			n	11			ubA	UDA	uВ	uВ	
ST1	1	1	6,250,929.0	2,034,079.9	10.0	0 4.92	41.20	66	10.0	8.0	Y
ST2	2	1	6,251,532.0	2,033,548.4	20.0	0 4.92	45.40	66	10.0	8.0	Y
OS-1	5	1	6,251,204.0	2,033,987.0	20.0	0 4.92	0.00	66	10.0	8.0	Y
M1	7	1	6,250,955.5	2,033,926.6	8.0	0 4.92	2 0.00	66	10.0	8.0	Y
M2	8	1	6,250,985.5	2,033,873.8	8.0	0 4.92	0.00	66	10.0	8.0	Y
M3	9	1	6,251,065.5	2,033,797.2	8.0	0 4.92	0.00	66	10.0	8.0	Y
M4	10	1	6,251,224.0	2,033,685.8	8.0	0 4.92	0.00	66	10.0	8.0	Y

INPUT: BARRIERS

Guajome Lake RD

					-													
Dudek					14 Dec	ember 2	022											
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Guajo	me Lake	RD															
RUN:	Guajo	me Lake	•															
Barrier	-	-		1					Points								1	
Name	Туре	Height	Ì	If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segment			-
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at	Seg Ht Per	turbs	On	Important
			1	Unit	Unit	Width		Unit						Point	Incre- #Up	#Dn	Struct?	Reflec-
			1	Area	Vol.	1		Length							ment		1	tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft		-	
Barrier1	W	0.00	99.99	0.00		<u> </u>		0.00	point1	1	6.250.962.5	2.033.920.2	8.00	20.00	0.00 () (
									point2	2	6.251.019.5	2.033.949.1	8.00	20.00	0.00 () (,	
									point3	3	6 251 009 0	2 033 965 8	8.00	20.00	0.00 () (,	
									point4	4	6 250 977 5	2 033 951 0	8.00	20.00	0.00 ($\frac{1}{2}$,	
									point5	5	6 250 974 0	2 033 953 9	8.00	20.00	0.00 (,	
									point6	6	6 250 956 0	2 033 945 1	8.00	20.00	0.00 ()	
									point7	7	6 250 960 5	2 033 934 2	8.00	20.00	0.00)	
									point8	8	6 250 957 0	2,000,001.2	8.00	20.00	0.00			
									point9	0	6 250 962 5	2,000,000.0	8.00	20.00	0.00		+	
Barrier2	W	0.00		0.00				0.00	point0	10	6 250 985 0	2,000,020.2	8.00	20.00	0.00 (
Barrierz		0.00	00.00	0.00				0.00	point10	11	6 251 037 0	2,000,001.2	8.00	20.00	0.00			
									point12	12	6 251 038 5	2,000,000.0	8.00	20.00	0.00 ()	
									point12	13	6 251 043 5	2,000,000.1	8.00	20.00	0.00 ()	
									point14	14	6 251 053 0	2,000,000.1	8.00	20.00	0.00)	
									point15	15	6 250 999 5	2 033 860 2	8.00	20.00	0.00 ()	
									point16	16	6.250.995.5	2.033.871.1	8.00	20.00	0.00) (,	
									point17	17	6.250.990.5	2.033.868.6	8.00	20.00	0.00) (,	
									point18	18	6.250.985.0	2.033.881.2	8.00	20.00			-	
Barrier3	W	0.00	99.99	0.00				0.00	point19	19	6,251,074.0	2,033,794.8	8.00	20.00	0.00) (,	
									point20	20	6,251,108.0	2,033,845.4	8.00	20.00	0.00	0 0	,	
									point21	21	6,251,085.5	2,033,856.9	8.00	20.00	0.00	0 0	,	
									point22	22	6,251,056.5	2,033,815.4	8.00	20.00	0.00	0 0	,	
									point23	23	6,251,066.5	2,033,808.5	8.00	20.00	0.00	0 0	i	
									point24	24	6,251,062.5	2,033,801.5	8.00	20.00	0.00	0 0	i	
									point25	25	6,251,074.0	2,033,794.8	8.00	20.00				
Barrier4	W	0.00	99.99	0.00				0.00	point26	26	6,251,245.0	2,033,680.9	8.00	20.00	0.00) (J	
									point27	27	6,251,276.5	2,033,727.6	8.00	20.00	0.00) (,	
									point28	28	6,251,253.0	2,033,738.2	8.00	20.00	0.00) (J	
									point29	29	6,251,221.0	2,033,691.9	8.00	20.00	0.00) (J	
									point30	30	6,251,232.5	2,033,683.9	8.00	20.00	0.00) (J	
									point31	31	6,251,236.5	2,033,686.6	8.00	20.00	0.00) (J	
									point32	32	6,251,245.0	2,033,680.9	8.00	20.00				
1																		

RESULTS: SOUND LEVELS		1	Î	1	[1	Guajome L	ake RD			Ì	
Dudek							14 Decem	ber 2022				
СВ							TNM 2.5					
							Calculated	d with TNN	A 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Guajon	ne Lake RD)								
RUN:		Guajon	ne Lake									
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	e shall be use	ed unless	
								a State hi	ighway agenc	y substantiat	es the use	
ATMOSPHERICS:		68 deg	F, 50% RH	I				of a diffe	rent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
ST1	1	1	41.2	45.3	66	4.1	10		45.3	0.0) (-8.0
ST2	2	2 1	45.4	49.9	66	4.5	5 10		49.9	0.0	3 (-8.0
OS-1	5	5 1	0.0	37.0	66	37.0) 10		37.0	0.0	3 (-8.0
M1	7	' 1	0.0	48.9	66	48.9	10		48.9	0.0	3 (-8.0
M2	8	8 1	0.0	49.5	66	49.5	5 10		49.5	0.0) 8	-8.0
M3	9) 1	0.0	50.0	66	50.0	10		50.0	0.0) (-8.0
M4	10) 1	0.0	50.5	66	50.5	5 10		50.5	0.0) (-8.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	0.0	0.0							
All Impacted		0	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0	1						

Appendix C: Modeled Receptor Locations

Appendix D HVAC Noise Prediction

SOURCE: Dudek 2021

ed Aggrega [.] sure Level	te Sound (SPL)									
dBA range										
High Low										
70 65										
65	60									
60	55									
55	50									
50 45										
45	30									

FIGURE 1 HVAC Noise Levels Guajome Crest